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Fast and Accurate Tensor Completion With Total
Variation Regularized Tensor Trains

Ching-Yun Ko
and Ngai Wong

Abstract— We propose a new tensor completion method based
on tensor trains. The to-be-completed tensor is modeled as a
low-rank tensor train, where we use the known tensor entries
and their coordinates to update the tensor train. A novel
tensor train initialization procedure is proposed specifically for
image and video completion, which is demonstrated to ensure
fast convergence of the completion algorithm. The tensor train
framework is also shown to easily accommodate Total Variation
and Tikhonov regularization due to their low-rank tensor train
representations. Image and video inpainting experiments verify
the superiority of the proposed scheme in terms of both speed
and scalability, where a speedup of up to 155x is observed
compared to state-of-the-art tensor completion methods at a
similar accuracy. Moreover, we demonstrate the proposed scheme
is especially advantageous over existing algorithms when only
tiny portions (say, 1%) of the to-be-completed images/videos are
known.

Index Terms— Tensor completion, tensor-train decomposition,
total variation, image restoration.

I. INTRODUCTION

ENSORS are a higher-order generalization of vectors and
matrices and have found widespread applications due to
their natural representation of real-life multi-way data, such as
images and videos [1]-[5]. Tensor completion generalizes the
matrix completion problem, which aims at estimating missing
entries from partially revealed data. For example, grayscale
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images are matrices (two-way tensors) that are indexed by
two spatial variables, while color images are essentially three-
way tensors with one additional color dimension. Grayscale
and color videos are extensions of grayscale and color images
by adding one temporal index. Thus image/video recovery
tasks are indeed tensor completion problems. Although one
can always regard a tensor completion task as multiple matrix
completion problems, state-of-the-art matrix completion algo-
rithms such as [6] have rather high computational costs and
poor scalability. Moreover, the application of matrix com-
pletion methods to tensorial data overlooks a key insight in
tensor completion, namely, the low tensor-rank assumption [4],
[7]1-[9] inherent to the data. For example, normally every
two adjacent frames of a video are shot with a very short
time interval, implying that only limited changes are allowed
between two adjacent video frames. Similarly, the values
among neighboring pixels in an image usually vary slowly.
These intuitive low rank ideas have been successfully utilized
in research areas such as collaborative filtering [10], multi-
task learning [11], image/video recovery [4], [5], [7] and text
analysis [12], [13].

A. Related Work

Most existing tensor completion methods are generalizations
of matrix completion methods. Traditional matrix completion
problems are generally formulated into the construction of a
structurally low-rank matrix E that has the same observed
entries:

mhinrank(E), st. (E—0)g=0,

where O represents the observed matrix with zero fillings
at the missing entries, and Q is the mapping that specifies
the locations of known entries. Directly solving the above
optimization problem is NP-hard, which resulted in extensive
research on solving alternative formulations. Two popular
candidates are to minimize the nuclear norm (being the convex
envelope of the matrix rank-operator [14], [15]), or to use
a factorization method [16] that decomposes the matrix E
as the product of two small matrices. The nuclear norm
approach has been generalized to tensor completion problems
by unfolding the tensor along its k modes into k& matrices
and summing over their nuclear norms [4], [12], [17]. Total
variation (TV) terms have also been integrated into this method
in [18]. Correspondingly, the factorization method has also
been generalized to tensors [7], [19], [20].
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Another way to tackle tensor completion is based on the
tensor multi-rank and tubal rank [21]-[23], which are intrin-
sically defined on three-way tensors such as color images
and grayscale videos. It is remarked that multi-rank and tubal
rank inspired methods are only applicable when the data are
compressible in a t-SVD representation. Methods that exploit
tensor decomposition formats were also introduced to tensor
completion problems in recent years. In [24] and [25], the
authors use the Canonical Polyadic (CP) decomposition for
Bayesian tensor estimators. Imaizumi et al. [26] adopted tensor
trains (TTs) and solved the optimization problem using a TT
Schatten norm [27] via the alternating direction method of
multipliers. Bengua et al. [28] also combined TT rank opti-
mization with factorization methods introduced in [7]. In [9],
Grasedyck et al. borrowed the traditional tensor completion
problem formulation and adopted the tensor train format
as the underlying data structure. By updating slices of the
tensor cores using parts of the observed entries, the tensor
train is completed through alternating least square problems.
Wang et al. [29] designed a tensor completion algorithm by
expanding the tensor trains in [9] to uniform TT-rank tensor
rings using random normal distributed values, which yields
higher recovery accuracies. However, using tensor rings suffers
from two drawbacks: the relatively large storage requirement
of a uniform TT-rank structure and a sensitivity of the obtained
solution to its random initialization.

B. Our Contribution

In this paper we propose to adopt tensor trains when
performing tensor completion, rather than using the CP and
Tucker decomposition. The motivation behind this lies in the
fact that determining the CP-rank is NP-hard while the TT-rank
is easily determined from an SVD [30]. Also, the Tucker
form requires exponentially large storage, which is not as
economic as a tensor train. We further reformulate the problem
as a regression task. The unknown completed tensor A is
thereby interpreted as an underlying regression model, while
the observed “inputs” and “outputs” of the model are the multi-
indices (coordinates) and values of the known tensor entries,
respectively. The tensor completion problem is then solved by
the following optimization problem

min |87 vec(A) — y|I2,
AcS@D

st. AeSYW and TT-rank(A) = (Ry, Ra, . . ., Ra),

where Sﬁ) denotes the subspace of d-order tensor where
each element can be represented in the tensor train format
with d TT-cores. The binary matrix S7 selects the known
entries of vec(A), where vec(LA) denotes the vectorization
of the unknown completed tensor .A. The vector y con-
tains the values of the observed tensor entries. Minimizing
1187 vec(A) — y| |% therefore enforces that the desired solution
needs to have nearly the same observed tensor entries. To
regularize the problem, an additional low-rank constraint is
added together with the requirement that the desired tensor is
represented in the tensor train format, which will be explained
in Section III. Moreover, other regularization terms such as
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Total Variation (TV) and Tikhonov regularization are readily
integrated into this tensor train framework. The above problem
is solved using an iterative method called the alternating
linear scheme that iteratively solves small linear systems. The
computationally most expensive steps are a singular value
decomposition and QR decomposition. The numerical stability
and monotonic convergence of the proposed method is guar-
anteed by these orthogonal matrix factorizations [31], [32].

The flexibility of our proposed model naturally permits
various variants and creates more possibilities for recovery
tasks. Particularly, the inputs and outputs in the proposed
model can be grouped into batches. This favors parallelization
and allows more room in tuning the number of equations and
unknowns in least square problems. For example, the updating
scheme in [9], [29] can be incorporated as one specific variant
of our proposed plain architecture (without TV/ Tikhonov
regularizers) by grouping the inputs/outputs into /g batches
when updating the k-th core. However, this way of grouping
inputs/outputs shows no evidence of balancing the number of
equations and unknowns in the resulting least square problems
and [9] has demonstrated a consistently inferior performance
than [29], while we will show in later experiments that the
proposed plain TTC model outperforms [29] in both time and
accuracy. Lastly, it is remarked that there is no direct TT
format employed in [28]. Instead, the TT rank optimization
problem formed refers to enforcing the matricizations along
k modes have pre-defined rank = Rj. This is equivalent to
updating the products of the first k tensor train cores and the
last d —k cores as two matrices at the same time via a standard
factorization method in matrix completions. In summary, the
main contributions of this article are:

o The tensor completion problem is rephrased as a regres-
sion task and solved using the alternating linear scheme.

o Both the selection matrix S and tensor A are never
explicitly formed, which lifts the curse of dimensionality
and results in a computationally efficient tensor comple-
tion algorithm.

o A deterministic TT-initialization method for image and
video data is provided, which guarantees consistent
results and is demonstrated to speed up convergence of
our proposed tensor completion algorithm.

o Both TV and Tikhonov regularization are integrated into
the tensor train framework. The addition of these regular-
ization terms comes at almost no additional computational
cost. The low TT-rank property of the matrices involved
in the TV regularization, especially, ensures a computa-
tionally efficient algorithm. To the best of our knowledge,
this is the first time that the Total Variation regularization
term is incorporated in tensor train form.

« We propose a factorization scheme of the physical indices
that can be exploited through tensor trains, which results
in a better scalability of our method compared to state-
of-the-art methods.

o The efficacy of the proposed algorithm is demonstrated by
extensive numerical experiments. The proposed method
shows a particular effectiveness and efficiency (155x
speedup) in recovering severely damaged (large portions
of missing pixels) high-resolution images. A comparable
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Fig. 1. Graphical depiction of a scalar a, vector a, matrix A and 3-way

tensor A
performance to the state-or-the-art methods is demon-
strated for small image inpainting tasks.

The outline of the article is as follows. Necessary tensor and
tensor train preliminaries are briefly introduced in Section II.
The proposed tensor train completion model and algorithm are
discussed in Section III. Numerical experiments comparing our
proposed algorithm with state-of-the-art methods are given in
Section IV. Finally, conclusions are drawn in Section V.

II. PRELIMINARIES

A d-way or d-order tensor A € RI*2x>la jg an array
where each entry is indexed by d indices i, i2, . . ., i4. Tensors
are generally high-dimensional arrays that generalize vectors
and matrices. If all dimensions except one of a d-way tensor
areequalto 1 (l.e. I =1, fork=1,...,t—1,t+1,...,d),
the d-order tensor is essentially a vector of length /;. Alterna-
tively, any vector or matrix can be viewed as a d-way tensor by
appending augmented dimensions that are size 1. We use the
convention 1 < iy < I fork =1,...,d. MATLAB notation
is used to denote entries of tensors. In this paper, boldface
capital calligraphic letters A, B, . . . are used to denote tensors,
boldface capital letters A, B, ... denote matrices, boldface
letters a, b, ... denote vectors, and Roman letters a, b, ...
denote scalars. A set of d tensors, like that of a tensor train,
is denoted as AWM, AP . A@D A useful representation
of tensors are tensor network diagrams. These diagrams use
a graphical depiction of scalars, vectors, matrices, and tensors
as introduced in Figure 1, where each node represents a tensor
and the number of free edges on each node represents its order.
For example, matrices are 2-way tensors, and thus are repre-
sented by nodes with two unconnected edges. We now give
a brief description of some required tensor operations. The
generalization of the matrix-matrix multiplication to tensors
involves a multiplication of a matrix with a d-way tensor along
one of its d modes.

Definition 1: ( [8, p. 460]) The k-mode product of a ten-
sor Ae RIVxla with a matrix U e R/*/ is denoted
B = A x; U and defined by

B(il» e »ik—19j5 ik+15 e ’ld)
Ix
= Z U(.]’ lk)A(l15 ) ik—l» ik; ik-‘rl’ ) ld);
ir=1
where B ¢ Rll XX T X J X Ijg1 ><~»><Id.

The proposed method also requires the knowledge of the
matrix Khatri-Rao product, which is crucial in the construction
of the input matrix S.

Definition 2: If A € RMXM and € € RM2*M | then their
Khatri-Rao product A © C is the N1 Ny x M matrix

(A DRCE 1) -+ A M)Q C(:, M),

where ® denotes the standard Kronecker product.
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Two other basic operations include tensor reshaping and
vectorization.

Definition 3: We adopt the MATLAB reshape operator
“reshape(.A, [n1, n2, n3 ---1)”, which reshapes the d-way ten-
sor A with column-wise ordering preserved into a tensor with
dimensions ny X ny X --- X ng. The total number of elements
of A must be the same as ny X na X - -+ X ng.

Definition 4: The vectorization vec(.A) of a tensor A is the
vector obtained from concatenating all tensor entries into one
column vector.

More details on these tensor operations can be found in [8,
p. 459]. The mapping between the index i of the vector vec(.A)
and the multi-index [i1, i2, . . ., ig] of the corresponding tensor
A is bijective. Herein we adopt the mapping convention

d k—1
i=it+ -] M
k=2 p=1

to convert the multi-index [iq,i2,...,ig] into the linear
index i. Before going into the formal definition of a tensor
train decomposition, we give an intuitive interpretation of this
process in Figure 2. For a given 4-way tensor as the one on the
left-hand side, we analogize it to a large train cabin with four
wheels (legs), while a tensor train decomposition separates
the train cabin to four small connected cabins as shown on
the right-hand side. Using a tensor train format can reduce the
storage complexity of a tensor significantly. The storage of
a tensor train of a d-way tensor Z € R/*/**I requires
approximately dIR> elements, where R is the maximum
TT-rank, compared to the conventional /¢ storage requirement.
The formal definition is given as follows:

Definition 5: A tensor train of a vector & € RI121a g
defined as the set of d 3-way tensors AL AD guch
that a (i) equals

Ry Ry
DD AV i1, ) AP 2, 13) - AD (g i, 1),
ri=1  rg=1
(2
where i is related to [iy,i2,...,iq] via (1) and r{,r, ..., 14

are auxiliary indices that are summed over. The dimensions
R1, Ry, ..., Ry of these auxiliary indices are called the tensor
train ranks (TT-ranks).

The summations over the auxiliary indices are represented in
Figure 2 by the connected edges between the different nodes.
The second auxiliary index of AD is R 1, which ensures that
the summation in (2) results in a scalar. When R; > 1, the
tensor train is also called a tensor ring or matrix product state
with periodic boundary conditions [33], [34]. Throughout this
article we always choose Ry = 1.

The notion of a site-k-mixed canonical tensor train is very
useful when implementing our proposed algorithm. In order
to be able to define this notion, we first need to introduce left
and right-orthogonal tensor train cores.

Definition 6: ( [31, p. A689]) A tensor train core AW g
left-orthogonal if it can be reshaped into an Ry Iy X Ry matrix
A for which

ATA = I,

Authorized licensed use limited to: TU Delft Library. Downloaded on July 28,2020 at 13:49:11 UTC from IEEE Xplore. Restrictions apply.
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Ry
@y )@y

—>

LI, I3 1,

Fig. 2.

applies. Similarly, a tensor train core AR g right-orthogonal
if it can be reshaped into an Ry X I Ry matrix A for which

AAT = Iy,

applies.

Definition 7: (Site-k-mixed-canonical tensor train) A tensor
train is in site-k-mixed-canonical form [35] when all TT-cores
AD (1<l <k— 1) are left-orthogonal and TT-cores AD (k+
1 <[ < d) are right-orthogonal.

One advantage of a tensor A being in a site-k-mixed-
canonical form is that its Frobenius norm is easily computed
as

AR = AD]} = vec(A®) T vec(A®).  (3)

III. METHODOLOGY

We first explain the basic idea of our proposed method
without any TV or Tikhonov regularization in Sections III-A
up to III-D. Discussions on how the tensor dimensions can be
factorized and the TT-ranks chosen are given in Section III-E.
The inclusion of both TV and Tikhonov regularization are
discussed in Sections III-F and III-G, respectively.

A. Basic Idea

The proposed tensor completion method intrinsically relies
on solving an underdetermined linear system under a low
TT-rank constraint. For a given set of N multi-indices
[i1,i2,...,i4] and a corresponding vector of observed tensor
entries y € RV, the goal is to obtain a tensor A € RA x>
that contains the same tensor entries. Equivalently, we form
the optimization problem

min |87 vec(A) — y|I2,
AcSY

st AeSY, and TTrank(A) = (Ry, Ry, ..., Ra), (4)

where §7 e RV*/122l3-+la jg the row selection matrix corre-
sponding with the known multi-indices. In other words, we
want STvec(\A) € RV*! to be as close as possible to the
observed entries y, under the constraint that vec(.4) has a
low-rank tensor train representation. We stress that the tensor
A is never computed explicitly in the proposed algorithm but
is stored in its tensor train format instead. This is possible by
exploiting the fact that S can be written as the Khatri-Rao
product of d smaller binary matrices

S=8DosdDg. . .osb. 5)
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I, I I3 I,

Graphical depiction of the tensor train decomposition of a 4-way tensor A.

Equation (5) also implies that the matrix S never needs to
be explicitly kept in memory. By storing the factor matrices
S(l), e, S instead, the storage cost for S is reduced from
N(I---1z) down to N(I; + - - -+ Iz). The decomposition of
S follows from the following definition.

Definition 8: For a tensor entry A(iy,i2,...,iq), the cor-
responding selection vector i, j,,....i,] 1S defined as

d 2 1
Sliy,inyeeniq] *= el(d) Q- ® elgz) ® elgl)’ ©)

where eg:) eRk (k=1,2,..., d) is the ii-th standard basis
vector.
One can verify that
T .
s[i],i2,..., ,ld).

i1 vee(A) = Ay, ia, . ...

Note that the order of the Kronecker products is reversed to
be consistent with the index mapping (1). We now define the
n-th column of the N x I; selection matrix S (®) as the standard
basis vector elg of the n-th observed entry. Equation (5) then
follows from the concatenation of (6) for each known multi-
index.

Example 1: We use a small example to illustrate Defini-
tion 8. Consider a 3 x 4 x 2 tensor .A with only 3 of the entries
observed. The multi-indices of the three observed entries are

(2,1,2],[1,3,1],[3,4,2].
The corresponding selection vectors are then given by

3 2
8[2,1,2] = e; ) ®e§ ) ®e§1),

5[1,3,11 = e?) ®e§2) ®e§1),
8[3,4,2] = ef) ® e‘(‘z) ® egl).

The corresponding selection matrices for each mode are then
s — (eél) egl) e;n) e RS,
s? — (e?) egz) 622)) e RY3,
§® = (ef) ef) eg)) e R,

In our regression task, the d matrices S(l),S(z),...,S(d)

from (5) act as the inputs to the unknown model and the output
is the vector of N observed tensor entries

y =012, y0)7,

where typically N < I11>--- 1.

Authorized licensed use limited to: TU Delft Library. Downloaded on July 28,2020 at 13:49:11 UTC from IEEE Xplore. Restrictions apply.
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B. Tensor Train Initialization

The proposed tensor completion algorithm solves (4) itera-
tively using an alternating linear scheme (ALS). Starting from
an initial guess for the tensor train of vec(.A), the ALS updates
each tensor train core for a predefined number of iterations or
until convergence. Each tensor train core update is achieved
by solving a relatively small (compared to the original tensor
size) least squares problem. A good initial guess is therefore
of crucial importance to speed up convergence. Through
extensive tests, we observed that the following heuristical
initialization method for images and videos is effective in
terms of convergence speed.

Suppose V € R/1*12xxld jg 3 tensor with missing entries.
Before converting V into a tensor train, the goal is to fill
up the missing entries using information from the observed
entries through two interpolation steps. First, each dimension
of the tensor V is resized by a factor h using a box-
shaped interpolation kernel. The resulting tensor is denoted
W e RL%JXL%JX”'XL%J and its entries are then used to
construct a tensor of the original size X € RI*[2xxl
through cubic kernel interpolation. Alternatively, one can use
max or average pooling together with interpolation to achieve
a similar effect. Note that for color images and videos the
color dimension is not resized during the whole initialization
procedure. We refer the readers to Section IV-A.5 for compar-
ing the convergence behavior of the proposal versus a vanilla
zero initialization. Finally, a tensor train with given TT-ranks
is computed from X by a modified version of the TT-SVD
algorithm [30, p. 2301]. The TT-SVD algorithm decomposes
a tensor to its tensor train format by consecutive reshapings
and singular value decomposition (SVD). The modification
is made in line 5 of the TT-SVD algorithm, where instead
of using the original truncation parameter J, each SVD is
truncated to the prescribed TT-rank R», ..., R;. Alternatively,
one can use a Krylov subspace method (‘svds’ command in
MATLAB) to determine the desired truncated SVD. Using
the TT-SVD algorithm to obtain the initial estimate of tensor
train also implies that the tensor train will be in site-d-mixed-
canonical form. We provide a sketch of the proof:

Proof: A typical TT-SVD starts from the truncated
SVD, UI(‘l)Z(l)UI(e1 r_ reshape(A, [I1, I> ... I;]). Since the
entries of A are real numbers, we have U S)TU S) =
Ir,, ZUVT € RRxD-li The first TT-core is then con-
structed as reshape(U (1), [1, I, R2]), which is automatically
left-orthogonal by definition. The norm |[|.A||fr therefore
resides in the LU part. Next, a truncated SVD is operated
on reshape(ZUI(e1 T, [Rolr, I3...14]) = UI(‘Z)E(Q)UI?)T, and
the second TT-core is formed by reshape(U éz), [R2, I, R3])
that naturally satisfies left-orthogonalty as well. At this point
we have two left orthogonal TT-cores and a tensor that
contains the norm ||.A||r. By continued application of this
reshaping and a truncated SVD we subsequently obtain a site-
d-mixed-canonical initial tensor train. [ ]

C. Alternating Linear Scheme

We now derive the least squares problem for updating each
tensor train core during the ALS. The main motivation for

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 29, 2020

solving (4) in tensor train form is the reduction in com-
putational cost. Indeed, we will show how updating each
tensor train core A® during the ALS has a computational
cost of O(N(RyIxRk+1)?) flops, whereas in vector form the
computational cost would take approximately O (N2I¢) flops.
In addition, by specifying small TT-ranks one effectively
regularizes the problem since the underdetermined system
STvec(A) = y will typically have an infinite number of
solutions. In what follows, sl(k) € Rlkx1 (1 <1 < N) denotes
the I-th column of the matrix S®). We further define the
following useful auxiliary notations

aly; = (A" x; sOTy L (AED xy sDT) ¢ R
a-r; = (A% x, sl(kH)T) o (AD %, sl(d)T) € REw+1,

for k =2,...,d — 1. Per definition a~1; = a-4; = 1. The
[-th observed entry y(/) can then be written as

y() = (aZk,l ® sl(k)T ®aci,)) vec(A(k)). (7

The proof of equation (7) resembles that in [36, Theorem 4.1].
Writing out (7) for all N observed entries results in the
following linear system

T

aZk,l®sl ®a<k,1
(k)T

al, ,®s,) Qac

y= vec(A®), (8)

afk,N ® s,(\]f)T Q a<i,N

where the matrix is N X RilyRi4+1. Solving (8) requires
O(N(R; It Ri11)%) flops. If the TT-ranks Ry, Ry;1 are cho-
sen such that N > RyI;Ry+1, one can solve the normal
equations of (8) instead with a computational complexity
of O((RiIxRiy1)) flops, which comes at the cost of a
squared condition number and possible loss of accuracy. It is
possible to construct the matrix of (8) without computing any
Kronecker product by exploiting the structure of the binary
S® matrices. However, the total runtime of our proposed
algorithm is dominated by solving the linear system (8) so we
will not discuss this particular optimization any further. The
key idea of the ALS is to solve (8) for varying values of k in a
“sweeping” fashion, starting from the leftmost tensor train core
AW to the rightmost A@ and then back from the rightmost
to the leftmost. The numerical stability of the ALS algorithm
is guaranteed through an orthogonalization step using the QR
decomposition [31, p. A701].

D. Tensor Train Completion Algorithm

The pseudocode of the proposed tensor train completion
(TTC) algorithm is given as Algorithm 1. First, d binary input
matrices S(l), S(z), . ..,S(d) are constructed as specified in
Section III. The tensor train with specified TT-ranks is then
initialized according to Section III-B. The ALS is then applied
to update the tensor train cores one by one in a sweeping
fashion by solving (8) repeatedly for different values of k.
Since the tensor train is in site-d-mixed-canonical form (see
proof III-B in Section IV-A.5 for details), the updating starts
with A, One can update the tensor train cores for a fixed
amount of sweeps or until the residual falls below a certain
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Algorithm 1 Tensor Completion in Tensor Train Form (TTC)

Input: d-way multi-indices of N known entries and their

corresponding values y(1),...,y(N), TT ranks Rs, ..., Rq.
Output: Completed tensor A in tensor train form
AL A,

1: Construct S S §(4) a5 specified in Section III-A.
2: Initialize the tensor train as specified in Section III-B.

3: while stopping criteria not satisfied do

4: for k=d,...,2 do

5: vec(A(k)) + solve equation (8), (11) or (13)

6: Ay — reshape(.A(k)7 [Rg, I Ri+1])

7: [Q, R] + thin QR decomposition of AT

8: A" reshape(QT, [Ry, I, Rit1))

9 Ap_q — reshape(A(kfl), [Ri—11r—1, Ri])

10: A=Y o reshape(Ay_1 RT, [Rp—1, I—1, Ri))
11: end for

12: for k=1,...,d—1do

13: vec(.A(k)) + solve equation (8), (11) or (13)

14: A}, < reshape( A", [Ri Ik, Ri+1])

15: (@, R] + thin QR decomposition of Ay

16: AR reshape(Q,!Rk,Ik,RkHD

17: Ak+1 — reshape(A k+1), [Rk+1, Ik+1Rk+2])

18: AFFD reshape(RA k1, [Rk+1, Ik+1, Rx+2])

19: end for
20: end while

threshold. Numerical stability and convergence is guaranteed
by the QR factorization step in line 7. In lines 8 to 10 of the
algorithm the updated tensor AK) is replaced by a reshaping
of the orthogonal Q matrix and the R factor is “absorbed” into
the next core A%~ In this way, the resulting tensor train is
brought into site-(k — 1)-mixed-canonical form, before updat-
ing A%=D Global convergence to the solution with unique
minimal norm is not guaranteed. Once A has been updated,
one iteration has completed and the sweep reverses direction
with updating the tensor train cores from A" up to A@—D,
Each for-loop in Algorithm 1 therefore corresponds with one
iteration. Depending on the application one can either choose
to keep the result in tensor train form or compute the full tensor
A by summing the tensor train over its auxiliary indices.

The most computationally expensive steps in Algorithm 1
are solving the linear systems in line 5 and line 13.

E. Choosing a Dimension Factorization and TT-Ranks

Color images and videos are 3-way and 4-way tensors,
respectively. Converting these tensors directly into tensor trains
would then result in 3 or 4 TT-cores with relatively large Ij
dimensions. This potentially has a detrimental effect on the
runtime of Algorithm 1 as the computational complexity of
solving (8) is O((RxIxRi+1)?). The runtime of computing
inverse matrices of different sizes varies from one computer
to another (the coefficients of the cubic complexity function
are dependent on the computer specifications). For the desktop
computer used in our experiments, a sharp increase in runtime
for matrix inversion was observed when Ry Iy Ri+1 ~ 4000.
The problem size was therefore limited to Ry Iy Rxy+1 < 4000

6923

in our experiments to guarantee a fast completion. This prob-
lem size limitation was implemented by factorizing each of
the I; dimensions of the desired completed tensor into more
manageable sizes. This implies that each linear index of I
is split into a corresponding multi-index. This factorization
comes at the cost of introducing more TT-cores, resulting in a
trade-off between the total number of TT-cores and the total
number of parameters per TT-core. The maximal amount of
TT-cores is determined by the factorization of each tensor
dimension [ into its prime factors. Specifically, we choose
the dimensions of each tensor train core [; < 10 combined
with TT-ranks Ry Rr4+1 <400 for k = 1,...,d. We will show
in an experiment that as long as we follow the above rules,
the completion performance of different factorization sizes
are similar. Moreover, in case the dimensions are large prime
numbers, one can always append zeros to the tensor such that
the dimensions can be factored. Since we never mix column
indices and row indices, the tensor decomposition essentially
serves as a normal matrix SVD with the left and right singular
vectors being factorized intro Kronecker products of smaller
vectors with low-rank constraints.

Example 2: Suppose we have a 360 x 640 x 144 x 3 tensor
of a color video that consists of 144 frames. The prime
factorizations of 360, 640 and 144 are 2% x 32 x 5, 27 x 5
and 2* x 32, respectively. Separating each of these factors
into TT-cores would result in a tensor train of 21 cores. The
number of cores can, for example, be set to 11 by using the
factorization 9 x 8 x S5 x4 x4 x5x8x4x6x6x3.

Choosing good values for the d — 1 TT-ranks can be quite
tedious when d is large. We therefore propose to choose the
values of Ry, Rmig (“mid” stands for middle) and R; and
automatically determine the remaining TT-ranks R;11(2 <
k <d—2) as min(Ry Iy, Rmiq). In this way, a uniform plateau
of TT-ranks equal to Rpiq is obtained. The TT-ranks R>, Ry
need to be chosen while keeping in mind that R, < I; and
Ry < I;. When the tensor represents either a color image or
color video, the last dimension will typically be 3 for the color
channels. In this case, we always set R; = 3 and additionally
choose the value of Ry_1.

Example 3: We revisit the 360 x 640 x 144 x 3 tensor of
Example 2, together with the 11-core dimension factorization
IXx8Xx5x4x4x5x8x%x4x6x6x3.Choosing R, =
5, Rmid = 5, Rg—1 = Rio = 5 and Ry; = 3 then results in
R3=---=R9g=5.

F. Total Variation Regularization

The low TT-rank constraint in (4) can be interpreted as a
global feature, as it pertains to the construction of the whole
tensor. Better completion results can be obtained from the
addition of local constraints on the completed tensor entries.
The notion of local smoothness, as described by TV, is such
a local feature, and is particularly useful when the tensor
represents visual data. The addition of TV terms to (4) is quite
straightforward, resulting in

P
min [|S7 vec(A) = yI5+ D 4, A x, DpllF
AcS@ oy

sit. A e Sﬁ), and TT-rank(A) = (R1, R2, ..., Ry), (9)
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Fig. 3. Tensor network diagram of W_4 > with the Dél), Déz), and D?)

being I, D, and Iy, respectively.
where D, € RU»r=DxIp has entries D,@G,i)=1 and
D,(i,i + 1) = —1. For notational convenience we make D,
square by appending a bottom row of zeros. Minimizing each
of the ||.A %, DplllzF terms ensures that the completed tensor
entries do not differ too much from their neighbors along
modes 1, ..., P, which encodes local smoothness. For image
and video tensors we have P = 2, as the smoothness is
only required in the width and length dimensions. Solving (9)
requires the modification of (8) with additional matrix terms.
To derive how exactly (8) needs to be modified, we will first
ignore the fact that we can factorize the dimensions of the
original tensor as discussed in Section III-E. It is worthwhile
to stress that to the best of our knowledge, this is the first
time that the Total Variation regularization term is exploited
and fully incorporated in tensor train form.

The derivation of this modification is very similar to the
traditional ALS derivation, where the input matrices S ®) are
now replaced with the matrices

: (10)
I, otherwise.

Indeed the p-th TV regularization term can now be rewritten
as (D ® - ® D(z) ® D(l)) vec(A). The only difference
between the TV term and ST vec(A) is that S consists of a
Khatri-Rao product, while the TV term contains a Kronecker
product. Just as in Section III-D we consider the contractions
of the TT-cores of A with these new “input” matrices

Weip = (A(l) X9 D;,l)) o (A(k_l) X2 D;,k_l)),
Woip = (.A(k+l) X2 D;k'H)) o (A(d) X7 Dfpd)),

which allows us to define the matrix
Wy = (Worp, ® DY @ Wy ) € RIT i ReliRicr,

In Figure 3, we exemplify the calculation of Wt , using
tensor diagrams. Specifically, we give an example of W_4»
(k = 4, p = 2), where, according to Equation (10), we have
Dél) =1, Déz) = D,, and Df) = I,. Denoting the matrix
in (8) by B, the modified linear system is then
P
(B"B+ )" 1,WIW,) vec(A¥) = B y.
p=1

(1)
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Fig. 4. Tensor network diagram of W; Wp, when updating AB in a tensor
train of 5 TT-cores.

The number of rows of W, grows exponentially with d.
Fortunately, it is not necessary to explicitly construct this
matrix as it is possible to compute W; W, directly from the
tensor network diagram depicted in Figure 4 for the case
d = 5,k = 3. This computation can be done efficiently by
exploiting the fact that most of the Dg) matrices are the unit
matrix. In addition, the site-k-mixed-canonical form of the
tensor train of A can also be exploited. Suppose for example
that p = 1 in Figure 4. The site-3-mixed-canonical form of
the tensor train of .A then implies that both ,A® and .A®) are
right-orthogonal. Since p = 1, both D§4) and Dis) matrices
are unit matrices. The summation of the two bottom rows in
Figure 4 then results in an R4 X R4 unit matrix and can be
sklfped Also note that all vertical edges between the different
matrices have dimensions 1.

When the dimensions of the original tensor are factorized as
discussed in Section III-E, then only one minor modification
is required. The TT-SVD algorithm needs to be applied to
D, to transform this matrix into a tensor train matrix (TT
matrix) [37] according to the same dimension factorization.
The corresponding node in the tensor network diagram is then
replaced by the corresponding TT matrix. As a result, not all
vertical edges will have dimension 1 anymore. It turns out that
the TT matrix-ranks of D, are always uniformly 3, irrespective
of the factorization of the dimensions or number of cores.
This low TT-rank feature of the D, matrix is favorable for
the computation of W; W, from the tensor network.

Example 4: Suppose we have a 1024 x 1024 x 3 color
image and we factor each of the 1024 dimensions into 4°.
The tensor train of vec(A) hence consists of 11 cores. The
1024 x 1024 D, matrix is then converted into a TT matrix of
5 cores with ranks Ry = --- = Rs = 3. When computing the
WlT W) term, we then have that the first five TT-cores of A
are connected with the TT matrix of D, while the remaining
cores are connected to identity matrices.

The values of the 4, parameters were fixed to 0.5 in [18].
Through experiments, we found that choosing values between
0 and 10 for the A, parameters resulted in consistently
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TABLE I
PERFORMANCE (RSES) OF TEN ALGORITHMS ON EIGHT BENCHMARK IMAGES

Method House River Bridge Man Lena Peppers Baboon Airplane

RSE  Time(s) RSE  Time(s) RSE  Time(s) RSE  Time(s) RSE  Time(s) RSE  Time(s) RSE  Time(s) RSE  Time(s)
TNN 0.221 44.9  0.193 43.0  0.159 60.7  0.231 33.5  0.221 13.6  0.295 16.6  0.246 15.7  0.168 18.1
HaLRTC 0.209 7.9 0.182 6.3 0.153 15.6 0.221 20.3  0.206 10.6  0.265 5.2 0.222 4.1  0.162 8.4
FaLRTC 0.210 30.0 0.181 10.0 0.153 26.6 0.218 10.6  0.202 5.1  0.253 5.3 0.228 7.0 0.161 12.3
LRTC-TV 0.138 163.1  0.123 178.4  0.126 165.8  0.130 185.7  0.107 97.4  0.127 99.3  0.159 99.7  0.102 98.9
TMac 0.226 12.6  0.199 8.4 0.168 114 0.237 12.0 0.240 5.6  0.287 7.7 0.236 6.0 0.173 8.2
TMac-TT 0.225 21.0 0.191 28.6  0.181 28.1 0.203 20.7 0.165 10.2 0.215 9.6 0.201 74 0.145 9.8
TR-ALS 0.170 8.2 0.154 7.6 0.153 9.5 0.185 8.5 0.160 54  0.198 7.2 0.205 51 0.141 3.6
TTC 0.161 20.7  0.153 38.1 0.161 39.9 0.171 279 0.158 15.3  0.194 20.5 0.212 29.5  0.142 27.6
TTC-Tikhonov ~ 0.161 21.3  0.153 39.5 0.160 40.1  0.170 28.1 0.158 15.3  0.194 20.6  0.212 30.1 0.142 27.4
TTC-TV 0.151 23.1  0.136 40.4  0.141 40.9  0.155 29.8  0.131 15.8 0.175 22.2  0.176 31.0 0.111 28.7

Fig. 5.

Ground-truth of eight small benchmark images.

improved completion results compared to the standard TTC
ALS method. Specifically, an initial 4, of 1 is chosen through-
out our later experiments. It is also possible to adjust the values
of the 4, parameters during the execution of Algorithm 1.
As the estimate of the completed image improves over the
iterations, it might not be necessary to keep enforcing the local
smoothness. The heuristic we propose is to multiply the 4,
parameters with the relative error on the observed errors at the
end of each iteration and use those values for the next iteration.
In practice, this results in a more monotonic convergence of
the relative error as a function of the iterations.

G. Tikhonov Regularization

In addition to the TV terms, Tikhonov regularization has
also been considered in [18, p. 2213]. The tensor completion
problem is then written as the following optimization problem

min

P
1S vec(A) = yI5+ D ApllAxp Dpll7+7 |IAIl7,

'AES%{!F) p=1
st. Ae Sﬁ), and TT-rank(A) = (Ry, R2, ..., Ry).

(12)

Using the fact that the tensor train is in site-k-mixed-canonical
form together with (3), the update step in the ALS algorithm
is then modified to

P
(B"B+D 2, WIW, 47 1) vec(A®) = BTy, (13)
p=1
where I is an identity matrix of size Ry Iy Rr+1. The addition
of a Tikhonov regularization term therefore comes at zero
additional computational cost.

IV. EXPERIMENTAL RESULTS

In this section our proposed algorithm is compared exten-
sively with state-of-the-art tensor completion methods in three
experiments. The scalability of our algorithm in particular is
demonstrated through the last two experiments. All experi-
ments were run in MATLAB2018a on a desktop computer with
an Intel i5 quad-core processor at 3.2GHz and 16GB RAM.
A MATLAB implementation of Algorithm 1, together with

necessary data files for reproducing all experimental results
can be downloaded from https://github.com/IRENEKO/TTC.
The values of all tuning parameters used in these experiments
as well as benchmark images are all given in the supplemental
materials. First, we apply Algorithm 1 to complete eight color
images with approximate size 300 x 300 and compare its
efficacy in runtime and completion accuracy with seven other
state-of-the-art tensor completion algorithms. The two best
methods from the first experiment are then compared with
our algorithm in the second experiment for the completion of
three color images with approximate size 4000 x 4000. The
increased dimensions allow us to highlight the scalability of
Algorithm 1 with these state-of-the-art methods. Another way
to assess the scalability of our method is to apply it on higher
order tensors. We therefore also compare Algorithm 1 with
the two best methods from Experiment 1 to complete a color
video. The completion accuracy of all methods is measured
either by the relative standard error (RSE)
I A—Allr

RSE = ~ - F
[l AllF

or the peak signal-to-noise ratio (PSNR)
PSNR = 20 log;q(MAXj) — 10 log;,(MSE),

where A is the completed tensor, MAXj is the maximum
possible pixel value and MSE is the mean square error
A — AJ|r/numel(.A), where numel(.A) denotes the total
number of entries in .A.

A. Small Image Inpainting

Eight benchmark images, shown in Figure 5, from the
Berkeley Segmentation dataset! and USC-SIPI image data-
base® were used to compare the performance of our proposed
method with state-of-the-art completion algorithms in terms of
completion accuracy and runtime. TTC denotes Algorithm 1
without any TV or Tikhonov regularization and TTC-TV
denotes Algorithm 1 with TV regularization. Tikhonov reg-
ularization did not improve the results significantly in the task
herein and its discussion is therefore conducted individually in
Section IV-A.7. Table II lists the dimensions of the benchmark
images and the dimension factorizations used for the tensor
train methods. All images were resized using bicubic interpo-
lation through the MATLAB “imresize” command. The eight

1 https://www.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/
2http://sipi.usc.edu/database/database.php
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(a) Observed  (b) TNN  (c) HALRTC (d) LRTC-TV () TMac  (f) TMac-TT  (g) TR-ALS (h) TTC @ TTC-TV
Fig. 6. Image inpaintings of Lena, and Airplane benchmarks by eight algorithms.
TABLE 11 TABLE III
EXPERIMENT 1 DIMENSION SETTINGS AVERAGE RUNTIME OVER THE EIGHT IMAGES OF EACH ALGORITHM TO
I}‘I“age o Resized dimensions Dimension factorization OBTAIN ITS BEST RSE SCORE AND THE CORRESPONDING AVERAGE
ouse 1ver
use, RUNTIME OF THE TTC ALGORITHM TO OBTAIN
Bridge, Man 324 x 486 x 3 IXB6X6X6Xx9IX9IX3 THE SAME RSE SCORE
Lena, Peppers
Baboon, Airplane 300 x 300 x 3 I0Xx6Xx5x5x6x10x3 TNN  HaLRTC  FaLRTC TMac  TMac-TT  TR-ALS
Average
. . . . . runtime (s 30.8 9.8 13.4 9.0 17.2 6.9
images are grouped into two groups with slightly different :Ve:age (T)Tc
dimensions, which is a first attempt to determine how sensitive  runtime (s) 1.0 1.6 1.6 0.8 3.0 4.3
Speedup 30.8% 6.1x 8.4x  11.3x 5.7x 1.6x

the runtime and completion accuracy of all methods are with
respect to dimension size. Only 10% of each benchmark
image was retained, whereby for each missing pixel all color
information was removed. We fine-tune the hyper-parameters
of the seven algorithms in comparison to give the best RSE
scores on the images.

For the proposed TTC method, the TT-ranks are determined
by cross-validation [38] on the completion error of a held-out
1% entries. That is, for an image with only 10% observed
entries, 1/10 of these known entries are kept for validation. We
perform 10 trials in each cross-validation experiment and the
TT-ranks that give the lowest average error of held-out entries
are chosen. The same TT-ranks are shared by TTC-Tikhonov
and TTC-TV experiments for the same image.

1) State-of-the-Art Methods: Algorithm 1 is compared
with the following state-of-the-art methods: TNN,3 HaLRTC,
FaLRTC,* LRTC-TV,> TMac,® TMac-TT,” and TR-ALS.}
These methods represent four different approaches towards the
completion problem. The TNN method aims at minimizing the
number of nonzeros in the tensor multi-rank, which is later
relaxed to minimize the nuclear norm of a matrix constructed
by frontal slices of the three way tensor [22]. HaLRTC, FalL-
RTC [4] and LRTC-TV [18] are on the other hand minimizing
the sum of nuclear norms of the unfolded matrices. The TMac
algorithm [7] includes two different schemes, TMac-inc and
TMac-dec, depending on different rank adjustment strategies.
Here we only compare with TMac-inc as it shows a better
performance than TMac-dec in our experiments. The extension
of TMac algorithm TMac-TT [28] is also considered. The
TR-ALS algorithm [29] also uses a tensor train of A but
with R; > 1. Moreover, it employs a different ALS for

3http://www.ece.tufts.edu/ shuchin/software.html

4http://WWWAcslrochester.edu/u/jliu/code/T ensorCompletion.zip

5 https://xutaoli.weebly.com/

6http://www.math.ucla.edu/ wotaoyin/papers/codes/TMac.zip

7https:// sites.google.com/site/jbengua/home/projects/efficient-tensor-
completion-for-color-image-and-video-recovery-low-rank-tensor-train

8 https://github.com/wangwenqil990/TensorRingCompletion

updating each tensor train core wherein each slice of the core
is updated sequentially, unlike our way of updating the whole
core at once. In these benchmarking algorithms, all MATLAB
implementations written by the original authors were used.

2) Comparison With State-of-the-Art: The completion
accuracy measured as the RSE of all algorithms and their
corresponding runtimes are reported in Table I, while the com-
pleted images for Lena and Airplane are shown in Figure 6.
The completed images obtained by the FaLRTC is indis-
tinguishable from HaLRTC and has therefore been omitted
from Figure 6. The proposed TTC-TV algorithm with TTC
cross-validated TT-ranks outperforms the other six algorithms,
excluding LRTC-TYV, in terms of RSE for all eight benchmark
images at the cost of an overall larger runtime than TR-ALS.
Moreover, although TTC only reaches lower RSEs compared
to its competitors on five out of eight benchmark images, we
remark that it is able to obtain the same or even lower RSEs
with less runtime with fine-tuned TT-ranks. Table III lists the
runtime for each method averaged over all images to obtain its
best RSE, together with the average runtime over all images
for the TTC algorithm to obtain an identical RSE. The TTC
algorithm is seen to be faster than the state-of-the-art methods,
with average speedups of at least 10 compared with TMac and
TNN. Moreover, it is worth noting that the proposed TTC-TV
algorithm results in consistently smaller RSEs compared with
those achieved by TTC at similar runtimes. These better RSE
values obtained with TTC-TV result in completed images
that are smoother while still preserving details. LRTC-TV, an
extension of the LRTC methods with total variation terms,
reaches the lowest RSEs in all benchmark images at the cost
of taking 4.7 times longer than TTC-TV on average.

3) RSE Is Not Enough: Table 1 seems to indicate that
LRTC-TV consistently obtains better completion results over
all other methods. However, we argue that it is sometimes not
enough to evaluate the completed images by their correspond-
ing RSEs. A visual inspection of the completed images still
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TABLE IV

PERFORMANCE (RSES) OF FIVE ALGORITHMS ON EIGHT BENCHMARK IMAGES WITH 1% OBSERVED ENTRIES

Method House River Bridge Man Lena Peppers Baboon Airplane
RSE  Time(s) RSE  Time(s) RSE  Time(s) RSE  Time(s) RSE  Time(s) RSE  Time(s) RSE  Time(s) RSE  Time(s)

TNN 0.523 11.0  0.469 124  0.431 55.3  0.498 31.4  0.842 2.3 0.662 6.0 0.585 12.1  0.500 15.6
LRTC-TV  0.228 154.5 0.191 150.8  0.202 138.3  0.296 150.1  0.324 81.1 0.453 776 0.353 77.0 0.198 71.5
TMac-TT 0.360 19.4 0.278 18.7 0.241 17.8 0.326 17.1  0.301 9.6 0.409 20.9 0.292 11.5  0.209 9.3
TR-ALS 0.350 2.2 0.260 3.0 0.251 2.8 0.322 2.3 0.347 1.8 0.457 1.6 0.339 1.3 0.244 1.3
TTC-TV 0.210 3.2 0.197 5.7 0.199 1.4 0.232 2.4 0.232 0.9 0.295 0.7 0.250 1.1  0.176 1.0

(a) LRTC-TV: PSNR = 24.577dB, RSE = 0.107. (b) TTC-TV: PSNR = 24.423dB, RSE = 0.109.
Fig. 7. Image inpaintings of Lena by LRTC-TV and TTC-TV. LRTC-TV scores better on the PSNR and RSE metrics but lacks details due to oversmoothing.

remains the best way to compare results. We illustrate this
point by comparing the completed Lena image using both the
LRTC-TV and TTC-TV methods in Figure 7. Both the TT-rank
and the number of iterations used in TTC-TV were increased
to obtain an RSE score that is quite close to the LRTC-TV
method. Although the LRTC-TV method has better RSE and
PSNR scores, one can see that detailed features such as the
eyes and feathers are blurred by the LRTC-TV method due
to oversmoothing. This oversmoothing was observed for any
nonzero value of the A tuning parameters.

4) Influence of Smaller Portions of Observed Entries: In
what follows, we explore the influence of smaller percentages
of observed entries on the completion accuracy and runtime
by recovering images with 1% observed. As before, we fine-
tune the tuning parameters of different algorithms except the
proposed TTC-TYV, for which cross-validated hyper-parameters
are used. LRTC-TV, TMac-TT and TTC-TV generally perform
better than LRTCs, TMac and TTC, respectively, according to
Table I, hence we omit the latter three in Table IV. LRTC-TV
outperforms the TNN, TMac-TT and TR-ALS algorithms in
five out of eight benchmark images at the cost of 6, 7, 55
times longer average runtime, respectively. TMac-TT reaches
lower RSEs than LRTC-TV when completing the remaining
three images. Moreover, the proposed TTC-TV outperforms all
other methods in all benchmark images except River, where
a similar RSE as that obtained by LRTC-TV is reached. It is
also worthwhile to note that TTC-TV demonstrates a speedup
of up to 55 times compared with LRTC-TV in the above
investigation.

5) Effect of TT-Initialization on ALS Convergence: We
also investigated whether our proposed initialization method
results in better convergence behavior of ALS. An alternative
initialization method, called the “missing entry zero filled”
tensor initialization, is described in [29] and used in the
TR-ALS method. Figure 8 depicts the RSEs of the completed
Man benchmark image as a function of the iteration count
using these two different initializations. If we assume that

the RSE obtained after 8 iterations when using the proposed
initialization method is taken as a threshold to stop the
TTC algorithm, then the “missing entry zero-filled” tensor
initialization would still not have converged after 20 iterations.
In general, using our proposed initialization method always
resulted in the RSE curve tapering off very fast over iterations.
However, modifying the code for TNN, LRTC-TV, TMac,
TMac-TT to the proposed initialization method is not trivial.
For HaLRTC, FaLRTC and TR-ALS, the algorithms get stuck
in local optima and achieve high RSEs (= 0.9) with the
interpolation initialization.

6) Influence of Different Factorization Sizes: In
Section III-E, a general guideline for choosing a specific
factorization size of a tensor is provided. Here we use the
House benchmark image as an example to show the influence
of different factorization sizes on both the obtained RSE, total
runtime and problem size (RylxRy+1), all listed in Table V.
The total number of iterations of Algorithm 1 is fixed for
all factorizations. As shown in the table, similar RSEs are
obtained when the maximal dimension in the factorization is
limited to 9. A slight improvement of the runtime is observed
when the number of tensor train cores is reduced from 13
down to 7 due to the trade-off between the number of cores
and problem size as discussed in Section III-E. Both the RSE
and total runtime are seen to degrade as the dimensions in
the factorization are further increased, due to the fast growing
problem size. These observations are consistent with the
rules specified in Section III-E. Moreover, when we do not
perform any dimension factorizations, we show in Table V
that the condition number of the linear systems to-be-solved
becomes infinitely large (due to the singularity of the linear
system). Specifically, we point out that the condition number
can also increase as we increase the TT-ranks adopted in
TTC algorithms. We will illustrate this in the following
Section IV-A.7.

7) Influence of Tihhonov regularization: Adding Tikhonov
regularization term can be beneficial for solving linear systems
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Fig. 8. The RSE as a function of the iteration count for two different
initialization methods of the TTC algorithm.
TABLE V
INFLUENCE OF DIFFERENT FACTORIZATION SIZES
Dimension factorization RSE Time(s) Problem size Condition number
324 x 486 x 3 0.200 820.4 14580 o]
182 x 18 x 27 x 3 0.174 28.4 2160 51.00
62 x9x6x9%x3 0.161 10.4 1683 71.45
22 x3*x2x3°%x3 0.161 14.4 1083 16.72
TABLE VI

SUPPLEMENTARY MRI SCANS DIMENSION SETTINGS

Image Resized dimensions Dimension factorization

Head-{1,2,3}

Neck 512 x 512 8X8X8Xx8x8xY
TABLE VII

PERFORMANCE (RSES) OF SEVEN ALGORITHMS ON FOUR BENCHMARK
MRI IMAGES WITH 10% OBSERVED ENTRIES

Method Head—} Headf_2 Head—? Neck(

RSE  Time(s) RSE  Time(s) RSE  Time(s) RSE  Time(s)
TNN 0.529 24.1  0.522 11.9  0.456 13.8  0.389 16.6
LRTC-TV 0.655 235.7 0.632 112.0 0.485 166.8  0.434 166.6
TMac-TT 0.541 7.6 0.531 3.7 0.489 3.0 0.443 1.3
TR-ALS 0.391 195.0 0.378 88.1  0.294 110.2  0.327 34.6
TTC 0.431 40.0 0.423 47.0  0.362 3.1 0.355 33.5
TTC-Tikhonov ~ 0.428 42.0 0.421 47.3  0.360 31.6  0.353 33.4
TTC-TV 0.370 45.3  0.361 49.6  0.284 35.0 0.289 34.3

in two ways: it can help in regularizing the problem in
Equation (13) for the case where the matrix BT B in the ALS
update is singular — adding a scaled unit matrix then makes
the matrix in the normal equation invertible; it can also be
interpreted as an equal scaling (down) of all pixels, which
serves well in certain applications.

In Figure 9, we demonstrate that the linear systems become
ill-conditioned (characterized by relatively large condition
numbers) as the TT-ranks Rpjg and R;—; grow. When the
condition number of original normal equation grows to 1118,
the benefits of Tikhonov regularization become visible. On
the other hand, we exploit the other gain by evaluating
TTC, TTC-Tikhonov algorithms on completions of magnetic
resonance imaging (MRI) scans of heads and necks® [39].
Table VI summarizes the dimensions of the benchmark images
and the dimension factorizations considered. Since we show
in the above experiments (Table I, IV, Figure 9) that TTC-TV
is generally more powerful than TTC and TTC-Tikhonov, the
TT-ranks herein are found by cross-validation using TTC-TV
on a held-out 1% entries. The same TT-ranks are then shared
by TTC and TTC-Tikhonov. By referring to Table VII, one

9https://www‘cis.rit.edu/htbooks/mri/chap— 14/chap-14.htm
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Fig. 9.  The effect of increased TT-ranks to the condition numbers in
linear systems and performance (RSEs) of TTC, TTC-Tikhonov, and TTC-TV
algorithms.

TABLE VIII

EXPERIMENT 2 DIMENSION SETTINGS.

Dimension factorization

25 x 55 x 22 x3x5° x3

24 x3x5%2x2°x5°x%x3

24 x3x5%°x2*x3x5%x3

Image

Dolphin

Water Nature Fall
Orion nebula

Original dimensions
4000 x 3000 x 3
6000 x 4000 x 3
6000 x 6000 x 3

can see that, though not significant, the effect of Tikhonov
regularization is discernible. We remark that the linear systems
are well-conditioned with a condition number of 24.72 on
average. Adding Tikhonov regularization, alternatively, helps
to scale down the pixels by 1.43% with 1, = 0.001 and
reaches lower RSEs.

B. Large Image Inpainting

The experiments above have shown that the performance
of both the TR-ALS and LRTC-TV methods are similar to
the proposed TTC (TTC-TV) method. In this experiment we
assess the scalability of the LRTC-TV, TR-ALS and TTC-TV
methods by completing three high-resolution benchmark color
images. The ground-truth of these three images is shown in the
supplemental materials. The color images used in this section
are Dolphin,'® Water Nature Fall'' and Orion nebula.'> The
dimensions of each image and their respective factorizations
used in TTC-TV and TR-ALS are listed in Table VIII. The
LRTC-TV method uses the original dimensions of each image.
The corresponding tensor trains consisted of 16, 17 and
17 cores, respectively. Only 1% pixels of each image were
retained. Figure 10 shows the PSNR obtained by TTC-TV,
TR-ALS and LRTC-TV as a function of the total runtime for
all three images. These graphs were constructed by increasing
the TT-ranks for both the TTC-TV and TR-ALS methods,
which resulted in better completion results at the cost of
increased runtime per iteration. The TT-rank Rpig of the
TTC-TV method was increased from 3 up to 24, 24 and 19
for Dolphin, Water Nature Fall and Orion nebula, respectively.

l0http://absfreepic.com/free—photos/download/dolphir1—4000 X
3000_21859.html
1 http://absfreepic.com/freephotos/download/water-nature-fall-6000 x

4000_90673.html
12http://absfreepic.com/free—photos/down10ad/orion—nebula—in—space—ﬁOOO x
6000_50847.html
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Fig. 10. Obtained PSNR of TTC-TV, TR-ALS and LRTC-TV on high-resolution benchmark images versus the total runtime.

(a) Original

Fig. 11.

The TT-ranks could only be varied from 2 up to 7, 5 and 4 for
the TR-ALS method, as the uniform TT-rank quickly lead to
out-of-memory errors. This is reflected by the limited number
of points in each of the TR-ALS graphs in Figure 10. The
LRTC-TV method does not use tensor trains and we allowed
it to run without time restriction.

All four figures in Figure 10 show that TR-ALS manages
to achieve almost as good PSNR values as TTC-TV at about
10 times larger runtimes. The PSNR values obtained by the
LRTC-TV method are unacceptable within reasonable run-
times. Figure 10(d) illustrates that LRTC-TV needs a runtime
that is about 155 times larger (64775 versus 417 seconds'?)
than TTC-TV to obtain the same PSNR on Water Nature Fall.
This is due to the use of the Tucker decomposition and a
corresponding computational complexity of O (K (HZ=1 1)),
which scales badly with both d and I;. We further note that

136011 versus 39 seconds on Dolphin to reach PSNR = 22dB and 59985
versus 345 seconds on Orion nebula to reach PSNR = 25dB.

(c) TTC-TV: PSNR=19 321dB

Image inpaintings of Water Natural Fall by LRTC-TV and TTC-TV.

LRTC-TV is unable to reach as high PSNR as TTC-TV in
this experiment, and a sharp drop in the PSNR is witnessed
after 89765 seconds as shown in Figure 10(d). The completed
images of LRTC-TV and TTC-TV are depicted in Figure 11.
By looking at the water flow in Figure 11(b), it is obvious
that many missing pixels remain missing after LRTC-TV
completion. As the RSE curves of these experiments lead to
same conclusions as above, we only show the RSE curves of
Dolphin benchmark in the supplemental materials.

Moreover, we further included the curve obtained by
applying TT-SVD for given TT-ranks on the original bench-
mark images in Figure 11(a)(b)(c). Noted that for the given
TT-ranks, the TT approximation given by TT-SVD method is
quasi-optimal in the tensor-train subspace S%) [30, Corollary
2.4.]. Thus including the curves enables us to evaluate the
gaps between the result obtained by TTC-TV and a quasi-
optimal solution in the subspace. However, we stress that the
curve is only meaningful when comparing to the curve of
TTC-TV, because the subspaces of TR-ALS and LRTC-TV are
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Fig. 12.  Obtained PSNR of both TTC and TR-ALS on the video versus the
total runtime for increasing TT-ranks.

essentially different from that of TTC-TV. We increased the
TT-rank Rpig of the TT-SVD approximation exactly the same
as we did for TTC-TV, and compare the PSNRs of TTC-TV
and TT-SVD approximation for same the TT-ranks. It is then
seen that the result obtained by TTC-TV is nearly or even
better than a quasi-optimal approximation in the tensor train
subspace S%).

C. Color Video Completion

The inpainting of high-resolution images demonstrated the
lack of scalability of the LRTC-TV method. This method
will therefore not be considered anymore. The purpose of
this experiment is to demonstrate an advantageous feature
of our proposed TTC algorithm with regard to color video
completion. A 144 frames video clip was taken from the
Mariano Rivera Ultimate Career Highlights video, available
on YouTube.!* The dimensions of the resulting tensor and
their factorizations are given in Table IX, resulting in a tensor
train of eleven cores. The total number of elements of this
particular tensor has the same order of magnitude as for the
high-resolution images. In this experiment 10% of the video
is retained. Observed pixels appear consistently at the same
position over all frames and color channels, which models a
breakdown of 90% of the available sensors in the camera. The
fact that all observed pixels occur at the same position over
all frames can be taken into account by solving the following
optimization problem

mjn ||STA — Y||%-, s.t. TT-rank(A) = (Ry, ..., Rg), (14)

where A is the original tensor reshaped into a (360 - 640) x
(144 - 3) matrix. This implies that the observed values are
also reshaped into the matrix Y. The input matrices related to
the frame and color dimensions are in this way not necessary
anymore. The matrix A is then modeled by a tensor train of
seven cores for which A1) has dimensions 1 x 9 x (144 -
3) x Ry. The (144-3) dimension of A" corresponds with the
columns of the A matrix and updating this TT-core is done
by rewriting (8) into a matrix equation. All other TT-cores
are updated by solving (8). Figure 12 shows the PSNR as a
function of the total runtime obtained by the conventional TTC

14https://www‘youtube.com/watch?v:UPtDJ uJMyhc
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TABLE IX
EXPERIMENT 3 DIMENSION SETTINGS

Dimension factorization
IOX8XHX4AX4AXHX8X4LAX6X6X3

Original dimensions
360 x 640 x 144 x 3

algorithm, its modification (14), and TR-ALS. The TT-rank for
the TR-ALS method was varied from 2 up to 4, higher values
for the ranks resulted in out-of-memory-errors. The best PSNR
obtained with TR-ALS is 17.45 dB and is obtained after a total
runtime of 4523 seconds. The conventional TTC algorithm
was run for a fixed number of 3 iterations and increasing
TT-ranks from 2 up to 5 and obtains the same PSNR value
about 2.5 times faster. The modified TTC algorithm for solving
Equation (14) was run for a fixed number of 3 iterations and
increasing TT-ranks from 2 up to 10. The smaller amount
of TT-cores results in faster runtimes and better PSNRs. The
best PSNR value obtained by TR-ALS is obtained by this
particular TTC implementation in 79 seconds, about 57 times
faster than TR-ALS and 23 times faster than the standard TTC
formulation.

V. CONCLUSION

We have proposed an efficient tensor completion framework
by assuming tensor train structures in the underlying regres-
sion model. Specifically, the multi-indices (coordinates) of the
known entries act as inputs and their corresponding values
act as outputs. Moreover, Total Variation regularization and
Tikhonov regularization are readily realized under the tensor
train framework with almost zero additional computational
cost. A simple yet effective tensor train initialization method
based on interpolations has also been introduced for images
and videos. Extensive experiments with low percentages of
known pixels have shown that the proposed algorithm not only
outperforms the state-of-the-art methods in both accuracy and
time cost, but also demonstrates better scalability.
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