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Abstract

This work investigates how prior knowledge from
physics-based reflection models can be used to improve
the performance of semantic segmentation models under
an illumination-based domain shift. We implement various
color invariants as a preprocessing step and find that CNNs
trained on these color invariants get stuck in worse local
minima compared to RGB inputs, but can achieve compa-
rable or even superior performance when applying knowl-
edge transfer from RGB. We also find Batch Normalization
to severely affect the performance of neural networks under
an illumination-based domain shift and demonstrate that
Instance Normalization offers a simple remedy to this is-
sue. Additionally, we investigate different fusion models for
combining color invariants with RGB. Using a combination
of these methods we achieve a 14.5% performance increase
on nighttime semantic segmentation without any additional
training data.

1. Introduction

Recent technological advances have enabled a large va-
riety of deep learning driven real-world applications. A
commonly encountered problem in many applications is
domain divergence, which occurs when the data used for
training the neural network does not sufficiently resemble
the test data observed during operation and consequently
leads to performance degradation. Domain divergence is
often caused by varying illumination conditions that alter
the visual appearance of objects [47], including time of day
and weather based appearance changes in outdoor robotics
[48, 49]. Domain divergence is generally dealt with by col-
lecting more and more diverse training data but this may
not be practical when data is too expensive to obtain or to
annotate. Domain adaptation methods typically offer a so-
lution by training a model on a source data distribution that
performs well on a similar, but different target data distri-

bution [47]. However, these methods still require data from
the target domain, either labeled or unlabeled.

A different approach for addressing an illumination-
based domain shift is the use of photometric invariant fea-
tures, or color invariants, which represent properties of ob-
jects irrespective of their recording conditions [15]. These
features are derived from the physical nature of objects in
color images and are invariant to one or more factors in-
fluencing the recording conditions. The three most impor-
tant factors include the scene geometry, which affects the
formation of shadows and shading on objects, the object
surface properties, which defines whether or not the object
exhibits interface reflections (highlights) next to Lamber-
tian (matte) reflections, and the illuminant color, which al-
ters the overall color of the scene. Color invariants have
been used successfully in classical computer vision applica-
tions [2, 33, 15], but their use in a deep learning setting has
so far remained unexplored. In this paper, we investigate
the intrinsic robustness of convolutional neural networks to
illumination-based domain shifts and explore several meth-
ods to incorporate the uncertain prior knowledge from these
physics-based photometric invariants to improve the gener-
alization capabilities of a CNN under such domain shift.
We propose to directly feed color invariant representations
of images into the input layer of a neural network. Different
from other domain adaptation methods, this approach does
not require any data from the target domain. Specifically,
we apply these methods to perform semantic segmentation
on nighttime images, which is a key computer vision task
for autonomous driving.

It is well-known that photometric invariance generally
comes at the loss of some discriminative power [12]. As
such, RGB images inherently contain more information, en-
abling stronger CNNs to be trained compared to color in-
variants. We therefore investigate transfer learning through
both knowledge distillation [17, 45] and fine-tuning to im-
prove the performance of a color invariant segmentation
network using a CNN model trained on RGB images. Mo-
tivated by the same trade-off between invariance and dis-
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criminative power, we also investigate the joint use of both
RGB and color invariants to get the best of both worlds by
comparing different fusion architectures.

The main contributions of this paper are (i) a thorough
investigation into the illumination robustness of different
CNN architectures and individual layers, (ii) a comparison
of different fusion architectures for the joint use of RGB
images and color invariants, and (iii) a novel day-to-night
domain adaptation method using color invariants and trans-
fer learning to improve the target domain performance of a
segmentation network trained only on data from the source
domain.

2. Related work

Domain Adaptation Domain adaptation aims to train a
model on a source domain dataset that performs well on
a different but similar target domain dataset. This alle-
viates the burden of annotating datasets for computer vi-
sion applications in new domains where insufficient train-
ing data is available. Popular approaches include reducing
feature divergence between the source and target domain
through an additional discrepancy metric [42, 31] or adver-
sarial loss [19, 41] in the backpropagation loss function, and
using generative adversarial networks to perform synthetic
style transfer between the two domains [18] or to gener-
ate synthetically labelled target data [50]. [28] argues that
domain-specific knowledge is stored in the batch normal-
ization [20] layers of a model and that domain adaptation
can be performed by replacing the pre-trained batch nor-
malization statistics by the statistics of the target domain.
For the specific application of nighttime semantic segmen-
tation, Dark Model Adaptation [6] applies gradual day-to-
night fine-tuning on a segmentation model pre-trained on
daytime data, whereas GCMA [35] uses corresponding day-
night image pairs to learn a style transfer, which is then ap-
plied to generate a dark stylized version of a daytime dataset
used to train the final segmentation model. All aforemen-
tioned methods require training data from the target domain,
either labelled or unlabelled, whereas our approach achieves
improved performance by using only source domain data.

Color invariants The use of physics-based reflection
models to achieve invariance to lighting geometry and il-
luminant color is a well-researched topic in classical com-
puter vision. Early work includes invariants derived from
the Dichromatic Reflection Model [36] on the one hand
[11], and from the Kubelka-Munk reflection model [26] on
the other. Based on a new camera sensor response model
introduced in [9] many methods have been proposed for
shadow removal or intrinsic image decomposition [10, 8]
with applications in localization [5, 33], road detection
[1, 2, 25, 23] and street image segmentation [44]. In this

work, we investigate the use of a subset of these color in-
variants in a deep learning setting.

Physics-Guided Neural Networks Several works have
investigated how physical models can be used to improve
the performance or robustness of a neural network with-
out the help of additional training data. Applications in-
clude lake temperature modeling [22] and shape from po-
larization [3], where the output of a physics-based model
is used together with the raw data as input features for the
neural network. In [39], a neural network is trained on
unlabeled data to track objects in free fall and pedestrians
walking across the frame by regularizing the loss function
with physics laws and other domain constraints. Deep La-
grangian Networks [32] integrates prior knowledge from
Lagrangian Mechanics into the network topology to learn
more accurate and robust models of mechanical manipula-
tors for trajectory tracking. This work follows the line of
extracting features from the input data using physical mod-
els and using a combination of the extracted features and
raw images to train a neural network.

3. Method
In this section we first give a short recap on the deriva-

tion of the relevant color invariants and their properties. We
then briefly describe the transfer learning methods used to
improve our color invariant segmentation networks. Finally,
we discuss the fusion techniques for combining different in-
puts.

3.1. Color invariants

In this work we limit ourselves to color invariants origi-
nating from the Dichromatic Reflection Model (DRM) [36]
and the Kubelka-Munk (KM) reflection model [26].

3.1.1 DRM based color invariants

The general model for the RGB responses of a camera is
defined as

f c(~x) =

∫

λ

E(λ, ~x)ρc(λ)dλ, (1)

where λ denotes the wavelength of the light, c ∈ {R,G,B}
denotes the color channel, E(λ, ~x) is the energy reflected
from an object’s surface and ρc(λ) is the spectral sensitivity
function of the sensor, tuned to the wavelength correspond-
ing to channel c. The reflected energy is modeled using the
DRM, which is defined as

E(λ, ~x) =
(
mb(~x)s(λ, ~x) +mi(~x)

)
e(λ, ~x), (2)

where mb(~x) and mi(~x) are scale factors depending on the
scene geometry for Lambertian and interface reflections, re-
spectively, s(λ, ~x) denotes the surface albedo and e(λ, ~x)

2



the spectral distribution of the light source, which is often
assumed to be white and spatially uniform across the scene
and hence e is constant. Substituting the DRM into equa-
tion 1 and assuming only matte reflections (mi(~x) = 0), the
ratio of two color channels fi(~x)

fj(~x) factors out the dependence
on scene geometry such that we can define the normalized
RGB color invariant as

{r, g, b} = {R,G,B} /(R+G+B + ε), (3)

where ε is a small constant added for numerical stability.
The ratio of differences fi(~x)−fj(~x)

fk(~x)−fj(~x)
also factors out inter-

face reflections, such that we can define the dichromatic
color invariant as

{dR, dG, dB} =
{
(R−G)2, (G−B)2, (B −R)2

}
/I

(4)

with I = (R−G)2 + (G−B)2 + (R−B)2 + ε.
Both normalized RGB and the dichromatic color invari-

ant assume white illumination, which is highly optimistic in
any real-world scenario. Based on the von Kries model [46],
which describes the relationship between sensor responses
and the illuminant color, comprehensive image normaliza-
tion [11] (Comp) defines an iterative process of pixel inten-
sity normalization (3) and color channel normalization that
factors out the dependency on both scene geometry and il-
luminant color.

3.1.2 Kubelka-Munk based color invariants

Kubelka-Munk based color invariants are derived directly
from the KM reflection model without considering the sen-
sor response model from equation 1. The KM reflection
model is defined as

E(λ, ~x) = e(λ, ~x)(1− ρf (~x))2R∞(λ, ~x) + e(λ, ~x)ρf (~x)
(5)

where e(λ, ~x) denotes the spectral density of the illuminant,
ρf (~x) the interface reflection coefficient of the material and
R∞(λ, ~x) the material reflectivity, which is a property simi-
lar to the albedo. Assuming a white illuminant and dropping
(λ, ~x) from the notation, equation 5 reduces to

E = e(~x)
{
ρf (~x) + (1− ρf (~x))2R∞(λ, ~x)

}
(6)

with first and second order derivatives with respect to λ

Eλ = e(~x)(1− ρf (~x))2
∂R∞(λ, ~x)

∂λ
, (7)

Eλλ = e(~x)(1− ρf (~x))2
∂2R∞(λ, ~x)

∂λ2
. (8)

Then the ratio

H =
Eλ
Eλλ

(9)

Table 1: Overview of color invariants and their invariance
properties with respect to scene geometry (G), interface re-
flections (I) and illumination color (C). None of the repre-
sentations is invariant to all influences. The mapping func-
tions ensure a [0, 1] output range, | · | denotes normalization.

Mapping G I C
RGB | · | 5 5 5

r, g, b - 3 5 5

DR, DG, DB | · | 3 3 5

Comp f(x) = 1
1+e−(x−1) 3 5 3

H f(x) = 1
1+e−x 3 3 5

Cλ f(x) = 1
1+e−2x 3 5 5

Nλ f(x) = 11x
1+10x 3 5 3

is an invariant for scene geometry under both matte and in-
terface reflections and

Cλ =
Eλ
E

(10)

for matte reflections only. If the power spectrum of the il-
luminant is not necessarily uniform but independent of the
position in the scene, then the spatial derivative

Nλ~x =
∂

∂x

{
Eλ
E

}
=
Eλ~xE − EλE~x

E2
(11)

is an invariant to both scene geometry and illuminant color
for matte surfaces. The spatial derivative is calculated by
convolution with Gaussian derivative filters and the gradient
magnitude is simply given by Nλ =

√
N2
λx +N2

λy . Based
on the Gaussian color model [14], the linear transformation
in equation 12 is used to estimate the reflected energy E
and its first- and second-order derivatives Eλ and Eλλ from
RGB camera responses.



Ê

Êλ
Êλλ


 =



0.0024 0.0252 0.0108
0.0119 0.0017 −0.0140
0.0137 −0.0240 0.0066





R
G
B




(12)

Mapping functions are used when necessary to ensure
all output values lie in the [0, 1] range. An overview of the
discussed color invariants and corresponding properties and
mapping functions is shown in table 1.

3.2. Transfer learning approach

We explore knowledge distillation and fine-tuning as two
approaches to transfer knowledge from the more informa-
tive RGB network to the less informative but more robust
color invariant network.

3



Our knowledge distillation approach involves a typical
teacher-student setup where the color invariant student net-
work is trained using both the ground-truth labels of the
dataset y and the soft targets produced by the RGB teacher
network ysoft. The soft targets are calculated by softening
the logits zi (the outputs of the last layer before activation)
using the softmax function defined as

qi =
exp(zi/T )∑
j exp(zj/T )

, (13)

where qi denotes the output probability for class i and T is
the temperature, which is normally set to 1. Higher values
of T produce ”softer” output probabilities that are more uni-
formly distributed, whereas a low temperature increases the
differences between the output probabilities. The loss func-
tion is a weighted average of the cross entropy loss of the
soft targets and the cross entropy loss of the ground-truth
labels and is defined as

LKD = L(ysoft, ŷsoft) + λL(y, ŷ). (14)

The predicted label ŷ is calculated by softening the student
network logits with T = 1, whereas for the soft prediction
ŷsoft the logits are softened using the same temperature as
used for generating the soft targets from the teacher net-
work. T and λ are additional hyperparameters that need to
be defined prior to training. Since the gradients with re-
spect to the loss, as used in backpropagation to update the
weights, produced by the soft targets scale with 1/T 2, λ is
often also set to a value of approximately 1/T 2 to ensure
both terms of the loss function have a comparable contribu-
tion to the total gradient.

The second approach involves fine-tuning a pre-trained
RGB network on a color invariant as input. We randomly
initialize the first convolutional layer in case the number of
input channels deviates from 3.

3.3. Fusion of multiple modalities

We investigate four fusion methods for combining dif-
ferent input representations: input concatenation, feature
concatenation, feature summation and prediction averaging.
We modify the FC-DenseNet architecture in figure 1a to ac-
commodate for the fusion of two different inputs at different
stages of the network.

Input concatenation directly fuses different representa-
tions at the input layer and uses the same encoder to learn
semantic information from both inputs. The fusion of infor-
mation is thus solely dependent on the filters learned by the
first convolutional layer.

Feature concatenation (figure 1b) and feature summation
(figure 1c) both use separate encoders to individually ex-
tract features from the two inputs. In feature concatena-
tion the skip connections from both encoders, in the fig-
ures shown as dashed lines, as well as the output of the last

Table 2: Number of rank 1 retrievals out of 1000 query im-
ages in the ALOI image retrieval benchmark (higher is bet-
ter). Comp and Nλ show best average performance.

Geometry Color Average
RGB 483 997 740.0
r, g, b 819 524 671.5
D2 804 310 557.0
Comp 820 909 864.5
H 662 215 438.5
Cλ 738 362 550.0
Nλ 796 973 884.5

Dense Block (DB) are concatenated and fed to the decoder.
In feature summation, the skip connections and DB outputs
are first added together and then concatenated with the de-
coder. Both ways thus ensure fusion of inputs at three dif-
ferent semantic levels.

Finally, prediction averaging simply calculates the mean
prediction of two individual networks.

4. Experiments
4.1. Real-world performance of color invariants

The color invariants from section 3.1 are evaluated on
their robustness to changes in scene geometry and illumi-
nant color by performing an image retrieval task on the
ALOI dataset [13], which contains 1000 objects, both matte
and glossy, photographed under varying lighting conditions.
Given a query image the closest target image out of the 999
other images is returned, measured by the sum of absolute
differences of pixel values between two images. The rank
denotes after how many images the correct target image is
retrieved. The overall performance is reported as the av-
erage rank over all query images. Our query image con-
tains an object photographed under normal lighting condi-
tions and has two corresponding target images of the same
object, illuminated from a different position or with a dif-
ferent illuminant color. A sample query image with its two
target images is shown in figure 2. The benchmark is per-
formed on all color invariants from table 1. The results are
shown in table 2.

All invariants show improved robustness to variations in
scene geometry compared to the RGB color space, whereas
all representations are less invariant to the illuminant color.
Comp and Nλ show the best average performance and are
therefore used throughout the rest of this work.

4.2. Illumination robustness of CNNs

We estimate the potential benefits of using color invari-
ants in deep learning by performing an evaluation on the

4
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Figure 1: FC-DenseNet-based mid-fusion CNNs. Dashed lines denote skip connections, C is concatenation, A is addition.

(a) Baseline (b) Scene gemetry (c) Illuminant color

Figure 2: Sample image from the ALOI dataset[13]. In the
image retrieval task, (a) is used as the query image, whereas
(b) and (c) represent the target images. (a) and (b) mostly
differ in terms of shading and shadows caused by the change
in illuminant position, whereas (c) has an overall yellow
glow compared to (a).

intrinsic robustness of CNNs to illumination-based domain
shifts using a classification toy problem. We create 3DM-
NIST, a 3D version of the MNIST handwritten digit dataset
[27]. The data samples are rendered with POV-Ray [34],
which provides a fully controlled environment in terms of
illumination, and have a resolution of 96x96 pixels. Pixels
from the original MNIST dataset are rendered as individ-
ual 3D blocks on a uniform background. The 3D scene is
illuminated by a single light source and is subsequently cap-
tured from a fixed location, resulting again in a 2D image.
A large training set of 11,000 images under normal lighting
conditions, as well as multiple test sets of 1,000 images with
different illumination effects have been generated, includ-
ing variations in global illumination intensity, scene geom-
etry and illuminant color. This allows both different CNNs
and color invariants to be evaluated on individual illumina-
tion effects. As figure 3 shows, Comp and Nλ are invariant
to nearly all changes. A clear failure case is the Nλ repre-
sentation under a changed illuminant color, caused by the
sharp and thin edges between object and background due to

Baseline Dark Local Color

RGB

Comp

Nλ

Figure 3: Sample from different test sets of the 3DMNIST
dataset, shown in RGB, Comp and Nλ representations.

the artificial nature of the dataset.

4.2.1 How robust are CNNs to illumination variations?

An initial evaluation is performed on ResNet-18 [16] and
VGG16 [37], two popular architectures often used as fea-
ture extractors in semantic segmentation networks. We train
both networks on the baseline training set with a batch size
of 50 and evaluate their performance on the various test
sets. The networks are trained using the RMSProp [40] op-
timizer with initial learning learning rates 0.001 and 0.0001
for ResNet-18 and VGG16, respectively. The learning rate
is reduced by a factor 0.1 if the training loss has not de-
creased for 10 epochs up to a minimum of 1e-6. Training is
halted after the training loss has not improved for 20 consec-
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Table 3: Classification accuracy on the different test sets
of the 3DMNIST dataset (average of three models) using
different input representations. Bold indicates sensitivity
to the respective illumination change. ResNet-18 is highly
sensitive to illumination changes and benefits from color in-
variants, whereas VGG16 is inherently robust to all effects.

ResNet-18 VGG16
RGB Comp Nλ RGB Comp Nλ

Baseline 98.5 98.6 98.2 98.6 98.6 98.4
Dark 10.4 98.5 97.9 98.1 98.6 98.5
Local 21.2 98.6 95.1 97.4 98.6 97.0
Color 10.1 98.5 29.6 96.4 98.5 89.9

utive epochs and the weights corresponding to the highest
validation accuracy are stored. Each architecture is trained
from scratch three times and the average performance. The
same process has been repeated with the dataset converted
to the Comp and Nλ representations.

The results in table 3 show that both architectures per-
form well on the baseline set, but respond differently to il-
lumination changes: ResNet-18 is extremely sensitive to all
sorts of changes and consequently benefits from the use of
color invariant inputs, whereas VGG16 is inherently robust
to intensity variations and thus the Comp and Nλ represen-
tations provide only a marginal performance gain.

4.2.2 What makes CNNs sensitive to illumination?

The ResNet-18 and VGG16 architectures mainly differ in
three aspects. ResNet-18 uses both residual connections
[16] and Batch Normalization (BN) layers [20], whereas
VGG16 uses neither. Moreover, ResNet-18 contains a
Global Average Pooling (GAP) layer [30] as opposed to
a flatten layer in VGG16. To identify which of these dif-
ferences causes the sensitivity of ResNet-18, we define the
simple base model in table 4 and create three variations: a
model with residual building blocks [16] instead of plain
Conv2D layers (Res), a model with a Batch Normalization
layer after each Conv2D layer (BN) and a model in which
flattening has been replaced by Global Average Pooling
(GAP). Following the same procedure as before, we evalu-
ate their performance on the 3DMNIST dataset. The results
are summarized in table 5.

Residual connections do not have a negative effect on
the robustness of neural networks and rather increase the
overall performance compared to the base model.

The model featuring Global Average Pooling performs
worse on the Local and Color test sets. GAP reduces the
number of trainable parameters in a model by fixing the
transformation matrix between the last convolutional layer

Table 4: Base network architecture with 96x96x3 input
shape. Conv2D layers are followed by ReLU activation
functions and the final dense layer by softmax.

Layer Filter Output shape
Conv2D 7x7, 16, stride 2 48x48x16

MaxPooling2D 4x4, stride 4 12x12x16
Conv2D 3x3, 32 12x12x32

MaxPooling2D 4x4, stride 4 3x3x32
Flatten 288
Dense 288x10 fc 10

Table 5: Classification accuracy of the base model and
its three variations, including residual connections (Res),
Batch Normalization (BN) and Global Average Pooling
(GAP), on the 3DMNIST test sets. Bold indicates sensi-
tivity to the respective illumination change.

Model Base Res BN GAP
Parameters 9,898 33,034 10,090 7,338
Baseline 96.3 98.1 96.4 94.4
Dark 95.8 97.8 32.0 93.8
Local 92.3 95.2 46.4 71.0
Color 93.3 97.1 63.0 42.2

and the output layer, which generally reduces overfitting in
large networks and such improves performance. Moreover,
it enforces correspondence between categories and feature
maps as a whole. Our hypothesis as to the performance
degradation in the GAP model is two-fold. First, we argue
that our network is so small that it does not contain suf-
ficient final feature maps for such correspondences to be
enforced for all classes, resulting in increased sensitivity
to changes in the input data. Indeed, increasing the num-
ber of feature maps to 288 partly restores robustness. Our
second hypothesis is more elaborate. Uniformly darkening
an image is equivalent to multiplying all pixel values by a
scale factor of < 1. Consequently, assuming linear activa-
tion functions, all activations in a neural network will be
uniformly reduced by the same scale factor and the soft-
max layer will thus result in the same output class. Experi-
ments showed that this argument also approximately holds
for ReLU activations and as such the GAP model performs
similarly well on both the Baseline and the Dark test sets.
Shadows and variations in the illuminant color, on the other
hand, affect feature map activations non-uniformly. Given
the same input digit from the Baseline and Color test sets
figure 4 shows how the activations of individual neurons in
the final feature map (left) and the average activation of fea-
ture maps as a result of GAP (right) differ between the two
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Figure 4: Differences in activations of individual neurons
(left) and average activations of neurons in feature map
(right) given the same input from the Baseline and Color
test set. Individual neurons remain more stable.

inputs. Individual neuron activations remain more constant
compared to the average activation of feature maps and thus
flattening is more robust to shadows and changes in illumi-
nant color than GAP.

The model with BN layers achieves a higher classifica-
tion accuracy on the baseline test set but performs signifi-
cantly worse under all types of illumination variations, in-
dicating BN to be the main cause of the intensity sensitivity
of ResNet-18. Given a mini-batch B(x1, . . . , xn) of size n,
BN normalizes, scales and shifts the output of each feature
map before activation, such that the batch normalized out-
put sample yi of input xi is given by

yi = γ
xi − µB√
σB + ε

+ β := BNγ,β(xi), (15)

where µB and σB represent the mean and variance used for
normalization, ε is a constant added for numerical stabil-
ity and γ and β are the trainable scale and shift param-
eters. During training µB and σB are calculated as the
sample mean and variance of the given feature map of the
mini-batch B, whereas at inference time the batch statistics
are replaced by the statistics of the entire train set, which
are estimated during training as the moving average of the
batch statistics. However, this assumes that both the train-
ing set and test set have equal statistical distributions which
makes BN inherently sensitive to any domain shift that in-
fluences the low-order statistics of the data. Intensity shifts
and changes in the illuminant color are in this sense an ex-
treme form of domain shift as they directly affect the chan-
nel means and variances of an input image (e.g. the color
channels of a darker image have significantly lower mean
an variance). This causes a large discrepancy between the
pre-computed statistics and the true mean and variance of
an image affected by such domain shifts in all network lay-
ers, and the normalizations performed in the BN layers will
thus result in feature maps of non-zero mean and non-unit
variance. Consequently, the input to the next layer will have
a different distribution than observed during training.

Table 6: Classification accuracy of the BN model on 3DM-
NIST using Batch Normalization, Instance Normalization,
a combined normalization method and Input Standardiza-
tion.

BN IN IN+BN IS
Baseline 96.4 93.8 95.4 93.4
Dark 32.1 94.2 96.1 93.4
Local 46.4 64.6 66.0 11.9
Color 63.0 93.5 93.3 93.2

4.2.3 Addressing BN-induced illumination sensitivity

The assumption that BN-induced illumination sensitivity is
caused by a statistical distribution shift between the source
and target domain suggests that this problem can be eas-
ily overcome by replacing the training set statistics with the
target domain statistics. AdaBN [28] does exactly so and
estimates the target domain statistics using an online algo-
rithm. However, this technique requires access to the target
domain dataset.

Instance Normalization [43] (IN) normalizes the output
of a feature map using the mean and standard deviation of a
single input sample instead of a batch of samples, thus be-
ing equivalent to BN with a batch size of 1. However, as op-
posed to BN, IN performs the same calculation during both
training and inference and so it does not rely on the statistics
of the training set. We again evaluate the simple model, first
using BN layers and then using IN layers. Since the input
to deeper layers in a network depends on the output of its
earlier layers, a distribution mismatch in the early layers is
propagated through the entire network leading to erroneous
predictions. To this end, similarly to AdaBN, we also ex-
plore a combined method in which IN is used in the earlier
layers and BN in the deeper layers. Table 6 shows the re-
sults for all three normalization approaches (three leftmost
columns).

Both the IN and IN+BN methods show a similar per-
formance improvement compared to BN, which relies en-
tirely on the training set statistics. This raises the question
whether the distribution shift can be addressed outside the
network by directly normalizing the input data itself, which
is often referred to as input standardization (IS). We train
an additional model with standardized inputs by subtract-
ing the channel means and dividing by the channel stan-
dard deviations calculated from a single input image and
evaluate its performance using BN layers. The results are
shown in the rightmost column of table 6. Although input
standardization improves robustness to global illumination
changes, the resulting model becomes more sensitive to lo-
cal changes such as shadows. This indicates that normaliza-
tion of all feature maps throughout the network is essential
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for improving the robustness of a model.

4.3. Nighttime Segmentation

Experimental setup We use the FC-DenseNet [21] se-
mantic segmentation network for our experiments, which
has a conventional encoder-decoder architecture and is rel-
atively inexpensive to train as it does not require a pre-
trained frontend. We trained our models on the training
set of the CityScapes [4] dataset containing 2975 densely
annotated daytime street images and used the 50 coarsely
annotated nighttime street images from the Nighttime Driv-
ing [6] dataset for evaluation. Results are evaluated by the
mean Intersection-over-Union (mIoU) metric. Considering
our findings regarding the Batch Normalization layers, we
report performance both using BN layers as well as using
IN layers.

Training is performed using the Adam [24] optimizer,
using an initial learning rate of 0.001 which is lowered by
a factor 0.1 after the training loss has not improved for
10 consecutive epochs. All input images are resized to
256x512 pixels and randomly cropped to 224x224 pixels,
allowing us to use a batch size of 4 for the single-encoder
models and 3 for larger fusion models. Data augmentation
in the form of random scaling, zooming, rotation, brightness
variation and horizontal flipping has been applied in order to
reduce overfitting. For knowledge distillation we use a tem-
perature of T = 5 and a relative weight of λ = 0.03 based
on initial experiments. The Comp and Nλ models used in
the prediction averaging fusion approache have been pre-
trained on RGB data and fine-tuned on the respective color
invariant.

Conversion from RGB to the color invariants is imple-
mented as a pre-processing step. We perform 5 iterations
of comprehensive normalization, which is sufficient for the
pixels to be converged to fixed values, and apply the map-
ping function from table 1. Similarly, we convert the im-
ages to the Nλ representation from RGB-space using lin-
ear transformation 12 and equation 11, and again apply the
corresponding mapping function. A standard deviation of
σ = 2 is used for the Gaussian derivative filters.

The pre-processed input images are shown in figure 5.
Both color invariant representations yield a visually more
similar day-night representation compared to RGB. How-
ever, comprehensive normalization produces low-contrast
daytime images which are still affected by the illuminant
color. The daytime and nighttime images in Nλ represen-
tation are nearly indistinguishable, although the nighttime
image is slightly affected by noise artefacts.

Results and analysis The segmentation results using a
single input source are shown in table 7. We consider
RGB, denoted in italic, to be our baseline for all experi-
ments. Both Comp andNλ perform worse than the baseline

Day Night

RGB

Comp

Nλ

Figure 5: Samples from the Dark Zurich [35] datasets in
RGB, Comp and Nλ representations.

Table 7: Day and night segmentation performance using
RGB and color invariant inputs measured by the mean IoU
(%). Nλ is most robust to illumination changes when using
Batch Normalization, but RGB performs best with Instance
Normalization.

Normalization Batch Instance
Dataset Day Night Avg. Day Night Avg.
RGB (baseline) 43.0 16.2 29.6 49.8 26.9 38.4
Comp 42.8 8.4 25.6 44.3 21.1 32.7
Nλ 40.7 21.7 31.2 41.2 22.2 31.7

on the daytime set. As the training sets used for all three
experiments are content-wise equal and only differ in their
representation, it is natural to conclude that the networks
trained on the color invariants got stuck in worse local min-
ima. This is unsurprising considering the trade-off between
invariance and discriminative power, as discussed earlier.
However, Nλ is more robust to illumination changes and
outperforms the baseline on nighttime data when using BN.

Instance Normalization (three rightmost columns) pro-
vides a significant performance improvement on both day-
time and nighttime domains compared to Batch Normaliza-
tion (three leftmost columns). In fact, using IN our RGB
network even outperforms Nλ on nighttime data. The per-
formance difference between BN and IN on daytime data
is somewhat surprising as the test set should have the same
statistical distribution as the training set. We argue that the
pre-trained statistics calculated over the entire training set
are too diverse and therefore not representative for individ-
ual samples.

The performance of color invariant networks can easily
be improved through both knowledge distillation as well as
fine-tuning, as shown in table 8. By fine-tuning our pre-
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Table 8: Day and night segmentation performance using
transfer learning from RGB to color invariant inputs, mea-
sured by the mean IoU (%). The fine-tuned Nλ model per-
forms best on nighttime data.

Normalization Batch Instance
Dataset Day Night Avg. Day Night Avg.
RGB (baseline) 43.0 16.2 29.6 49.8 26.9 38.4
Knowledge distillation
RGB → Comp 40.9 9.5 25.2 41.8 23.6 32.7
RGB → Nλ 39.4 24.6 32.0 40.4 25.6 33.0
Fine-tuning
RGB → Comp 44.7 13.0 28.9 46.2 25.5 35.9
RGB → Nλ 42.5 25.5 34.0 43.5 27.5 35.5

trained RGB baseline model on Nλ input, we have trained
a color invariant network that not only outperform the color
invariant networks trained from scratch, but also the RGB
baseline model itself. Knowledge distillation by means of
a teacher-student set-up also significantly improves perfor-
mance but remains inferior to fine-tuning as erroneous pre-
dictions from the teacher network propagate through to the
student network.

The segmentation results using various fusion methods
are shown in 9. Our early- and mid-fusion approaches
provide some performance improvement in the daytime
domain but perform significantly worse on the nighttime
dataset. Training a network on two inputs simultaneously
causes the network to be dependent on both inputs, rather
than using each one of them to complement the other. As a
result, if the representation of an object deviates from the
source domain in either one of the inputs, this object is
likely to be misclassified. We verified this hypothesis by
adding zero-mean Gaussian noise with a variance of 0.05
to the Nλ input and re-running the evaluation on the RGB +
Nλ feature concatenation model, which resulted in a perfor-
mance loss of 44.9%→ 38.7% mIoU and 49.2%→ 49.1%
mIoU for the daytime domain, using BN and IN layers, re-
spectively. Late fusion by way of averaging of two individ-
ual segmentation networks is able to successfully combine
complementary information from both inputs. Using a com-
bination of RGB and Nλ, we achieve a 14.5% performance
increase on nighttime data compared to using only RGB in-
puts.

Ablation study: RGB-RGB fusion To verify that the
performance improvement shown by the RGB and Nλ late
fusion approach is not simply a result of model ensembling,
we train a second segmentation model on RGB data and
evaluate an RGB+RGB late fusion network. The results,
shown in table 10, confirm that the improved illumination
robustness is due to the use of color invariants.

Table 9: Day and night segmentation performance using fu-
sion networks to combine RGB and color invariant inputs,
measured by the mean IoU (%). Averaging of RGB and Nλ
predictions significantly outperforms the baseline in both
source and target domain.

Normalization Batch Instance
Dataset Day Night Avg. Day Night Avg.
RGB (baseline) 43.0 16.2 29.6 49.8 26.9 38.4
Input concatenation - early fusion
RGB + Comp 48.1 12.8 30.5 50.0 24.7 37.4
RGB + Nλ 45.9 8.7 27.3 48.9 24.7 36.8
Comp + Nλ 45.7 12.3 29.0 45.3 22.3 33.8
Feature concatenation - mid fusion
RGB + Comp 43.3 11.5 27.4 51.1 21.5 36.3
RGB + Nλ 43.5 10.5 27.0 50.2 25.0 37.6
Comp + Nλ 43.9 14.4 29.2 42.9 21.4 32.2
Feature summation - mid fusion
RGB + Comp 42.1 9.9 26.0 48.5 24.8 36.7
RGB + Nλ 44.9 11.3 28.1 49.2 25.6 37.4
Comp + Nλ 38.7 13.1 25.9 44.4 21.0 32.7
Prediction averaging - late fusion
RGB + Comp 57.1 16.9 37.0 63.7 30.4 47.1
RGB + Nλ 55.9 24.8 40.4 63.4 30.8 47.1
Comp + Nλ 55.6 22.4 39.0 58.8 30.8 44.8

Table 10: Day and night segmentation performance using
late fusion of two RGB networks versus an RGB and a
color invariant network, measured by the mean IoU (%).
Improved illumination robustness is due to the use of color
invariants and not simply a result of model ensembling.

Normalization Batch Instance
Dataset Day Night Avg. Day Night Avg.
RGB + Nλ 55.9 24.8 40.4 63.4 30.8 47.1
RGB + RGB 54.6 14.9 34.8 64.3 28.9 46.6

State-of-the-art We repeat the best performing method,
prediction averaging of RGB and Nλ using Instance Nor-
malization, using the more powerful RefineNet [29] archi-
tecture. The ResNet frontend has been pre-trained on the
ImageNet [7] dataset in Nλ representation. A performance
comparison on the Nighttime Driving dataset is shown in ta-
ble 11. Although our method does not achieve state-of-the-
art performance, it significantly outperforms the RefineNet
baseline. Moreover, it does so without the use of target do-
main data, while [6] requires extensive fine-tuning on in-
termediate and target domains and [35] uses corresponding
day-night image pairs. Qualitative results are shown in table
12.
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Table 11: Quantitative evaluation on the Nighttime Driving
(Night) datasets using the RefineNet architecture. Color in-
variants help achieve better-than-baseline performance by
only using source domain data.

Method Trained on mIoU
RefineNet [29] Source 34.0
Ours Source 37.5
GCMA [35] Source + Target 40.9
DarkModel adaptation [6] Source + Target 41.6

5. Discussion

In this paper, we have presented a novel method for im-
proving the illumination robustness of convolutional neural
networks using prior knowledge derived from physics mod-
els. Additionally, through a thorough examination of dif-
ferent network architectures we have pinpointed Batch Nor-
malization to be the main cause of performance degradation
under an illumination-based domain shift and showed that
Instance Normalization can be applied instead to largely re-
store performance.

We found that CNNs trained on color invariants get stuck
in worse local minima compared to RGB inputs, but can
achieve similar or even superior performance after apply-
ing knowledge transfer from RGB by either finetuning or
knowledge distillation. We also found that the hyperparam-
eters T and λ used in knowledge distillation have a signif-
icant effect on the achieved performance. We leave it to
future work to investigate the exact effect of these hyperpa-
rameters on the final performance, possibly by performing
Bayesian hyperparameter optimization [38].

The color invariants used in this work have been imple-
mented as a separate preprocessing step. It would be inter-
esting to investigate other methods to exploit this physics-
based knowledge in deep learning, e.g. by explicitly incor-
porating reflection models into the neural network architec-
ture or using a regularization term in the backpropagation
loss function.

Using our method, we were able to significantly improve
segmentation performance on nighttime data while only us-
ing training data from the daytime domain. On the Night-
time Driving dataset our method demonstrates competitive
performance against domain adaptation methods that do re-
quire target domain data.
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2
Introduction

Over the past several years deep learning has shown unprecedented progress in various computer vi-
sion tasks, including image classification, object detection and semantic segmentation [1, 2, 3], mainly
powered by the increasing availability of cheap computational resources and easily accessible large-scale
datasets. Whereas classical machine learning and computer vision methods relied on carefully engi-
neered hand-crafted features [4, 5, 6], the current deep learning paradigm dictates that all information
should be learned from the available dataset rather than be included a priori. Although this approach
has proven to be successful, it has two general shortcomings. Firstly, without any prior knowledge a
deep learning model requires a sufficiently large and diverse dataset to achieve satisfactory performance
and to be able to generalize well to unseen data. Secondly, CNNs are often bound to the specific domain
of the training dataset and perform significantly worse under any form of domain divergence. A possible
solution to both shortcomings is to collect and label more data and to include additional domains in
the training set. However, this solution is often extremely labour-intensive and thus costly, if possible
at all. The field of domain adaptation [7] offers a more elegant solution to this problem by modifying
models trained on data from a certain source domain to perform well on a different but related target
domain. However, very few domain adaptation techniques exist that do not require any date from the
target domain, which leaves us again with the burden of data collection.

This work investigates a different approach to improve the generalization capabilities of neural networks
by moving away from the data-driven paradigm and including prior knowledge in deep learning methods
by design. This work investigates the use of physics-based reflection models in a convolutional neural
networks to improve the robustness of a model to domain shifts caused by illumination changes in the
environment. Specifically, we apply this method in semantic segmentation for autonomous driving.

2.1. Motivation
Illumination changes are omnipresent in all outdoor computer vision applications and are known to
significantly affect the performance of neural networks [8]. Color invariants are derived from physical
models describing light reflections and represent properties of objects irrespective of their recording
conditions [9]. Color invariants have been successfully used in classical computer vision applications
[10, 11] and implementing them in a deep learning setting thus seems like an obvious next step.

Color invariants achieve invariance to shadows and shading by factoring out dependence on the scene
geometry from an RGB image. Consequently, information is lost in the process and as such invariance to
illumination changes comes at a loss of discriminative power [12]. Part of this research therefore focuses
on how both RGB and color invariants can be optimally used to complement each other. This leads us to
investigating different architectures for the fusion of multiple modalities and transfer learning methods
for distilling knowledge between deep learning models trained on different input representations.
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2.2. Research questions
The main research question is defined as:

What are the physical color invariance accuracy versus generalizability trade-offs under an
illumination-varying domain shift?

This is further divided into the following sub-questions:

Q1. Is the illumination-robustness of a neural network dependent on its architecture?

Q2. Can the robustness of neural networks to illumination-based domain shifts be improved through
the use of physics-based color invariants?

The first question aims to explore the relation between the intrinsic illumination-robustness of a con-
volutional neural network and the specific layer types used in its architecture, whereas the second
question concerns the use of physics-based models to include prior information about the formation of
color images in order to improve the illumination-robustness of a CNN.

2.3. Outline
The chapters that follow contain supplementary materials to the scientific paper presented before.
Chapter 3 includes background information about both the physics-based image formation models that
are used in this work, as well as a general introduction to deep learning in computer vision. Chapter 4
contains additional experiments to support claims in the scientific paper. Finally, chapter 5 introduces
a novel method to deep-learn a color invariant mapping from data that did not end up within the scope
of the paper.
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3
Preliminaries

3.1. Color Invariants
Color invariants are derived from the physical nature of objects in color images and are invariant to
one or more factors influencing the recording conditions [1]. The three most important factors include
the scene geometry, which affects the formation of shadows and shading on objects, the object surface
properties, which defines whether or not the object exhibits interface reflections (highlights) next to
Lambertian (matte) reflections, and the illuminant color, which alters the observed color of the overall
scene. In order to derive possible color invariants from RGB images, we should first study how images
are rendered in the first place. This process is defined as the color image formation process.

3.1.1. Color image formation
Light is physically described as electromagnetic radiation within a certain range of the electromagnetic
spectrum. The visible spectrum for humans ranges from wavelengths of approximately 380 nm (violet)
to 740 nm (infrared). Color image formation describes the process of how visual images are formed
by an observer, be it either an electronic device such as a visual light- or hyperspectral camera, or the
eyes of humans and animals. The process consists of three stages: illumination, material reflection and
detection.

Illumination
The process begins with a light source emitting photons, thereby illuminating the environment. The
light source is characterized by its power spectral density e(λ). Light with a uniform spectral density
is called white and can be notation-wise simplified to e(λ) = e. Moreover, we distinguish between an
isotropic light source which radiates light in all directions with the same power spectral density, and a
directed light source where the power spectrum also depends on the relative location x.

Material reflection
Material reflection is modelled using a so-called Bidirectional Reflectance Distribution Function (BRDF).
Incident light interacts with an object by partly being reflected and partly being absorbed. A material
property called the surface albedo defines which part of the spectrum of the light is absorbed and con-
sequently defines the object color, e.g. a red object absorbs light rays of all wavelengths except those
corresponding to the red color and is therefore observed red. When the intensity of the reflected light
is independent of the viewing angle, i.e. the reflection is isotropic, we speak of Lambertian reflection.
This is the case for matte materials such as fabric, unfinished wood and paper. The reflected energy
from a surface E under the assumption of Lambertian reflection is given by the Lambertian Reflection
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Model

E(λ, ~x) = mb(~x)s(λ, ~x)e(λ, ~x), (3.1)

where mb(~x) is a scale factor depending on the scene geometry (e.g. the angular difference between
incoming light and surface normal), s(λ, ~x) denotes the surface albedo and e(λ, ~x) the power spectrum
of the light source.

In addition to Lambertian reflection, glossy materials also exhibit interface reflections, which introduce
highlights on the object. In case of interface reflections, the incident light is reflected directly from the
object surface without interacting with the albedo and therefore the spectral density of the reflected
light beam is not affected. Shafer’s Dicromatic Reflection Model (DRM) accounts for both Lambertian
and interface reflections: [2].

E(λ, ~x) =
(
mb(~x)s(λ, ~x) +mi(~x)

)
e(λ, ~x), (3.2)

with mi(~x) being the geometric factor for interface reflections. It is easy to see that the DRM is
essentially an extension of the Lambertian reflection model with a second term accounting for interface
reflections.

Both aforementioned reflection models assume a single, direct light source. However, in most realistic
scenes, an additional ambient light source of lower intensity can be observed. Indeed, an outdoor
environment contains both a direct light source, the sun, and the diffuse, blue-ish illumination of the
sky. While the illuminated parts of the scene are dominated by the direct light source, in the shaded
areas the ambient illuminant has a non-negligible effect. This highlights an important shortcoming of
the DRM. Alternative BRDFs have been proposed to account for such ambient light source, including
the Bi-illuminant Dichromatic Reflection Model [3]. However, the color invariants derived from such
models require additional scene-specific calibration parameters and therefore are not suitable for the
purposes of this work.

An alternative description of photometric reflections is provided by the Kubelka-Munk reflection model
[4]

E(λ, ~x) = e(λ, ~x)(1− ρf (~x))2R∞(λ, ~x) + e(λ, ~x)ρf (~x) (3.3)

where e(λ, ~x) again denotes the power spectrum of the illuminant, ρf (~x) the interface reflection coeffi-
cient of the material and R∞(λ, ~x) the material reflectivity, which is a property similar to the albedo.
Substitution of

s(λ, ~x) = R∞(λ, ~x),

mb(~x) = (1− ρf (~x))2,
mi(~x) = ρf (~x)

shows the similarity with the Dichromatic Reflection Model in equation 3.2.

Detection
Finally, reflected light is captured by integrating the energy of the photons over a certain bandwidth ω,
spatial area and period of time. According to the trichromatic theory [5], three independent detectors,
each tuned to a specific wavelength, are required to record the full color space observed by humans.
In a camera, each pixel is recorded by capturing the intensity of long, medium and short wavelength
light using three separate sensors corresponding to the three cones in the retina of an eye. The RGB
responses of a camera are therefore given by

fR(~x) =

∫

ω

E(λ, ~x)ρR(λ)dλ,

fG(~x) =

∫

ω

E(λ, ~x)ρG(λ)dλ,

fB(~x) =

∫

ω

E(λ, ~x)ρB(λ)dλ,

(3.4)

where ρc(λ) with c ∈ R,G,B is the spectral sensitivity function of the sensor, tuned to the wavelength
corresponding to the respective color channel.
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3.1.2. Derivation of color invariants
Based on this color image formation process and some simplifying assumptions, different color invariants
can be derived that factor out the dependencies on either geometry, illuminant color, or both. Since
these color invariants will be used as inputs to CNNs, their outputs should be well-defined and within
a reasonable range as infinity and NaN values cause unpredictable behaviour.

DRM-based color invariants
The sensor response function for color i based on the Lambertian reflection model assuming white
illumination (e(λ, ~x) = e(~x)) is defined as

f i(~x) = mb(~x)e(~x)

∫

ω

s(λ, ~x)ρi(λ)dλ. (3.5)

It is clear that the dependence on geometry and intensity can easily be factored out by division and the
resulting representation is only dependent on the properties of the object and the camera sensors.

f i

f j
=
mb(~x)e(~x)

∫
ω
s(λ, ~x)ρi(λ)dλ

mb(~x)e(~x)
∫
ω
s(λ, ~x)ρj(λ)dλ

=

∫
ω
s(λ, ~x)ρi(λ)dλ∫

ω
s(λ, ~x)ρj(λ)dλ

(3.6)

Considering the RGB channels, a complete set of Lambertian color invariants is given by [1]

LRGB =

∑
i aiR

p
iG

q
iB

r
i∑

j bjR
s
jG

t
jB

u
j

, (3.7)

where p + q + r = s + t + u denotes the order of the color invariant. A well-known first-order color
invariant is normalized RGB, where each of the color channels is divided by the total pixel intensity.

{r, g, b} = {R,G,B} /(R+G+B + ε) (3.8)

The color space is undefined for low intensity, e.g. for R = G = B ≈ 0, and therefore a small number ε
is added for numerical stability. Normalized RGB has output range {r, g, b} ∈ [0, 1].

Color invariants for interface reflections can be derived in a similar fashion. The sensor response function
given by the full DRM is defined as

f i(~x) =

∫

ω

mb(~x)s(λ, ~x)e(λ, ~x)ρi(λ)dλ+

∫

ω

mi(~x)e(λ, ~x)ρi(λ)dλ. (3.9)

Subtraction and division factors out the geometric scale factor for both Lambertian and interface re-
flections and the resulting representation is again only dependent on the albedo en sensor sensitivities.

f i − f j
fk − fm =

∫
ω
s(λ, ~x)ρi(λ)dλ−

∫
ω
s(λ, ~x)ρj(λ)dλ∫

ω
s(λ, ~x)ρk(λ)dλ−

∫
ω
s(λ, ~x)ρm(λ)dλ

, k 6= m. (3.10)

The complete set of invariants is thus given by

DRGB =

∑
i ai(R−G)

p
i (R−B)qi (G−B)ri∑

j bj(R−G)sj(R−B)tj(G−B)uj
. (3.11)

Let us define the second-order Dichromatic invariant

{DR, DG, DB} =
{
(R−G)2, (G−B)2, (B −R)2

}

(R−G)2 + (G−B)2 + (R−B)2
(3.12)

which is well-defined for R 6= G 6= B with an output range [0, 23 ].

When we drop the assumption of white illumination, it is no longer possible to take the term e(λ, ~x) out
of the integration in equation 3.9 and deriving color invariants becomes again non-trivial. However, we
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can use the von Kries Model [6] to predict the change in camera sensor responses under two different
illuminants a and b:



fRb
fGb
fBb


 =



α 0 0
0 β 0
0 0 γ





fRa
fGa
fBa


 (3.13)

This transformation reveals that a ratio of two pixel values of the same channel factors out the effect of
the illuminant. More specifically, dividing each pixel value of an image by the mean of all pixel values
of the same channel results in an illuminant invariant representation, as is shown for the R channel in
equation 3.14.

fRb,i
1
N

∑N
i=1 f

R
b,i

=
αfRa,i

1
N

∑N
i=1 αf

R
a,i

=
fRa,i

1
N

∑N
i=1 f

R
a,i

(3.14)

Invariance to both illuminant color and lighting geometry can be achieved through comprehensive image
normalization [7], an iterative process of normalizing for illuminant color (equation 3.14) and lighting
geometry (equation 3.8), which converges to a fixed point.

Being an iterative process, it is less straightforward to calculate the output range of comprehensive
normalization. A good estimate can be obtained by producing a histogram of pixel values from a diverse
dataset, such as STL-10 [7], as shown in the leftmost image in figure 3.1. Based on this histogram, a
logistic function with midpoint 1 is defined as the mapping function: f(x) = 1

1+e−(x−1) .

Kubelka-Munk-based color invariants
Rather than considering the complete color image formation process, Kubelka-Munk-based color invari-
ants are derived directly from the reflection model. Let us assume white illumination and let us drop
(λ, ~x) from E(λ, ~x) for notational convenience. The Kubelka-Munk reflection model from equation 3.3
now simplifies to

E = e(~x)
{
ρf (~x) + (1− ρf (~x))2R∞(λ, ~x)

}
, (3.15)

with its first- and second-order derivatives with respect to λ defined as

Eλ = e(~x)(1− ρf (~x))2
∂R∞(λ, ~x)

∂λ
, (3.16)

Eλλ = e(~x)(1− ρf (~x))2
∂2R∞(λ, ~x)

∂λ2
. (3.17)

Division between these two derivatives factors out all terms except the material reflectance and thus

H =
Eλ
Eλλ

=
∂R∞(λ,~x)

∂λ
∂2R∞(λ,~x)

∂λ2

(3.18)

is an invariant for lighting geometry, for both Lambertian and interface reflections. If we assume matte
surfaces with low interface reflectance (ρf (~x) ≈ 0), then the ratio

Cλ =
Eλ
E

=
∂R∞(λ,~x)

∂λ
∂2R∞(λ,~x)

∂λ2

(3.19)

is also an invariant.

Let us now relax the assumption on white illumination. Let the spectral density of the illuminant be
not necessarily uniform but independent on the scene geometry. Then e(λ, ~x) can be decomposed into
a separate spectral component e(λ) and a spatial component i(~x) and thus for matte surfaces, equation
3.15 reduces to

E = e(λ)i(~x)R∞(λ, ~x) (3.20)
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with the first order derivative with respect to λ being

Eλ = i(~x)R∞(λ, ~x)
∂e(λ)

∂λ
+ e(λ)i(~x)

∂R∞(λ, ~x)

∂λ
. (3.21)

Dividing the two terms results in

Eλ
E

=
1

e(λ)

∂e(λ)

∂λ
+

1

R∞(λ, ~x)

∂R∞(λ, ~x)

∂λ
, (3.22)

which consists of a term related to the illuminant e(λ) and a term related to the material reflectivity
R∞(λ, ~x). As the illuminant is independent of the scene, the first term can easily be removed by
differentiating with respect to ~x

∂

∂x

{
Eλ
E

}
=

∂

∂x

{
1

R∞(λ, ~x)

∂R∞(λ, ~x)

∂λ

}
, (3.23)

and as such

Nλ~x =
∂

∂x

{
Eλ
E

}
=
Eλ~xE − EλE~x

E2
(3.24)

is an invariant to the scene geometry and illuminant color. The spatial derivative of E and Eλ is
calculated by convolution with Gaussian derivative filters and the gradient magnitude is simply given
by Nλ =

√
N2
λx +N2

λy.

Based on the Gaussian color model[8], a linear transformation can be derived to estimate the reflected
energy E and its first- and second-order derivatives Eλ and Eλλ from RGB camera responses.




Ê

Êλ
Êλλ


 =



0.0024 0.0252 0.0108
0.0119 0.0017 −0.0140
0.0137 −0.0240 0.0066





R
G
B


 (3.25)

The output ranges and the corresponding mapping functions are derived in the same way as for the
comprehensive normalization. The resulting histograms are shown in figure 3.1.

0 1 2 3

Comp

20 0 20

H

0 2 4

C

0.0 0.5 1.0

N

Figure 3.1: Histogram of pixel values of the STL-10 dataset in the Comp, H, Cλ and Nλ Gaussian color spaces.

3.1.3. Overview of color invariants
Figure 3.2 shows a visualization of the color invariants mentioned throughout this section. An overview
of the invariance properties can be found in table 1 of the scientific paper.
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Baseline Scene geometry Illuminant color

RGB

r, g, b

D2

Comp

H

Cλ

Nλ

Figure 3.2: Visualization of color invariants under normal "baseline" lighting conditions, a change in scene geometry
and a change in illuminant color. Most color invariants are noise-sensitive in low-intensity parts of the image. Comp and
Nλ are the only color invariants that are, in theory, invariant to both types of changes. The images are taken from the
Amsterdam Library of Object Images (ALOI) dataset [9].
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3.2. Deep Learning in Computer Vision
Supervised machine learning is concerned with learning a function f(x) = y which maps an input x
to a desired output y given a large collection of input-output pairs. This function is then used to
perform a classification or regression task on new, previously unseen data. Deep learning is a subset
of machine learning that uses artificial neural networks, consisting of multiple interconnected layers of
neurons, to define the structure of the mapping function. In recent years, deep learning gave rise to
significant improvements in computer vision tasks such as image classification, object detection and
semantic segmentation [10, 11, 12], as illustrated in figure 3.3.

䌀氀愀猀猀椀昀椀挀愀琀椀漀渀 䐀攀琀攀挀琀椀漀渀 匀攀最洀攀渀琀愀琀椀漀渀

䬀漀愀氀愀
䬀漀愀氀愀

䈀愀挀欀最爀漀甀渀搀䬀漀愀氀愀

Figure 3.3: Classification, detection and semantic segmentation: three common computer vision tasks.

3.2.1. Neural networks
An artificial neural network (ANN) generally consists of an input layer, several hidden layers and an
output layer, where every neuron in a layer is connected to every neuron in the neighbouring layers
through weighted connections. The input layer is where input data enters the network - in the case of
computer vision applications in the form of pixel intensities - and the output layer gives the desired
classification or regression output. The hidden layers and the weights corresponding to their neurons
define the exact mapping function f(x). Figure 3.4a denotes an ANN with an input layer and two
hidden layers of three neurons each, and an output layer of two neurons.

Inside each neuron a weighted summation of all incoming activations is performed and is offset with a
bias term, resulting in the following linear function:

aj =

n∑

i=1

xiwi + b. (3.26)

In order to allow the ANN to learn non-linear mapping functions, the output resulting from this sum-
mation is passed through an activation function, such that the activation of neuron j as a function of
its n inputs is given by

yj = f

(
n∑

i=1

xiwij + bj

)
, (3.27)

as is schematically shown in figure 3.4b. Popular activation functions include the rectified linear unit
[13] (ReLU) for hidden layers, given by f(x) = max(0, x) and the softmax or normalized exponential
function for representing output probabilities in the final layer of a network, given by xi =

exp(xi)∑
j exp(xj)

.

Based on the outputs from the output layer, a task-specific loss function is defined which is used together
with the correct data labels during training to find the values of the weight and bias terms w and b that
minimize the loss. Typical loss functions include the mean squared error loss for regression and the
categorical cross-entropy loss for classification. Training of the network is performed by computing the
gradient of the loss function with respect to the weights w and biases b and performing optimization
through gradient descent. This process is known as backpropagation, as the error in the output is
propagated back through the network. The loss and gradients are calculated as an average over a
randomly chosen subset of the training set called a mini-batch, and are then used to update the weights
and biases in the network. This is repeated until an epoch has elapsed, i.e. all training data in the
training set has been used once, after which training either stops or continues with the next epoch. The
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(a) Neural network containing two hidden layers of
three neurons each.

(b) Schematic representation of a neuron.

Figure 3.4: Schematic representation of an artificial neural network.

mini-batch size and the number of epochs after which to halt training are hyperparameters that need
to be defined before training. Due to its random nature, this optimization process is called Stochastic
Gradient Descent (SGD). Other popular optimization algorithms that use this same basic principle
include RMSProp [14] and Adam [15].

The layers in figure 3.4a are known as fully-connected or dense layers since all neurons in a layer are
connected to all neurons in neighbouring layers. Due to the inherent nature of fully-connected layers,
image data needs to be flattened to a vector representation before it can be used in an ANN, a process
in which spatial information in the image is lost.

3.2.2. Convolutional neural networks

Convolutional layers
Convolutional layers instead learn fixed-size filters, which are then used to perform convolution oper-
ations on the original image or the outputs of the previous layer, as shown in figure 3.5. Filters in
early layers represent edges, corners and other low-level features, whereas deeper layer filters learn to
recognize increasingly more abstract features, such as pointy ears and whiskers when learning to identify
a cat. The output of a convolutional layer can thus be seen as a feature map. The use of convolutions
not only preserves spatial information in the image, but also reduces the number of parameters in the
network as only the filter values need to be learned rather than individual connections between all
neurons, which in turn reduces overfitting.

111

105 102 100 97 96

103 99 103 101 102

101 98 104 102 100

99 101 106 103 100

104 104 103 107 99
0 -1 0

-1 5 -1

0 -1 0

Image matrix Feature map

Convolution filter

Figure 3.5: Basic principle of a convolutional layer in a neural network.



3.2. Deep Learning in Computer Vision 27

Pooling layers
Deeper layers of convolutional neural networks (CNNs) generally not only contain more abstract fea-
tures, but each feature map activation also corresponds to an increasingly large area covering multiple
pixels in the input image. This is necessary for abstract features to be detectable as a single pixel does
not contain any semantic information; an image patch is needed to detect cat ears, and an even larger
patch is needed to detect cats. Feature map reduction can be implemented by either performing convo-
lutions with a stride of larger than 1 or by downsampling the feature map using pooling layers, where
the latter is generally preferred. An n × n pooling layer has a default stride of n and as such reduces
the feature map size by a factor n. The most widely used pooling method is max pooling, where the
output is simply defined as the maximum of the neuron activations in the input patch. Alternatively,
average pooling can be applied, where the average of the input patch is calculated.

Flattening and Global Average Pooling
Data in CNNs is stored as a four-dimensional tensor of size (mini-batch size,height,width,channels).
However, the output of an image classification network is a two-dimensional tensor of class probabilities
of size (mini-batch size,no.classes), which requires that at some point in the network convolutional
layers are converted to dense layers. This can be achieved through either flattening the last convolutional
layer, i.e. reshaping it to a tensor of size (mini-batch,height*width*channels), or by applying Global
Average Pooling [16] (GAP), where the output tensor is calculated by averaging the activations in each
feature map in the last convolutional layer and has size (mini-batch size,channels). This way, GAP
enforces correspondences between classes and feature maps and significantly reduces the number of
learnable parameters in the network as it results in a smaller dense layer. Consequently, most state-of-
the-art CNNs employ GAP instead of flattening.

3.2.3. Batch normalization
Very deep neural networks tend to be difficult to train and often get stuck in local minima. Batch Nor-
malization [17] (BN) accelerates the training of neural networks by making the optimization landscape
smoother and more predictable, allowing the optimizer to use larger steps [18]. BN is implemented as
a separate network layer, generally placed between a feature map and its activation function. Given
a mini-batch B(x1, . . . , xn) of size n, BN normalizes, scales and shifts the output of each feature map,
such that the batch normalized output sample yi of input xi is given by

yi = γ
xi − µB√
σB + ε

+ β := BNγ,β(xi), (3.28)

where µB and σB represent the mean and variance used for normalization, ε is a constant added for
numerical stability and γ and β are trainable scale and shift parameters. During training µB and σB
are calculated as the sample mean and variance of the given feature map of the mini-batch B, whereas
at inference time the batch statistics are replaced by the statistics of the entire train set, which are
estimated during training as the moving average of the batch statistics. Due to its benefits, BN is used
in almost all state-of-the-art ANNs.

3.2.4. Fine-tuning
As a result of the large number of parameters involved, deep neural networks easily overfit when trained
on a not sufficiently large training set. This can be problematic, as training data can be scarce for
specific applications. However, the filters learned in early layers of CNNs represent generic features
and textures, such as edges, corners and various patterns. The intuition behind fine-tuning is that
these universal features do not need to be learned from the task-specific dataset, but can rather be
trained using any large and diverse collection of image-label pairs. Fine-tuning involves pre-training a
cumbersome network on such dataset, which then functions as a so-called feature extractor and is placed
before an optional task-specific part of the network. Subsequently, the weights in the first n layers are
frozen such that they do not get updated during training and the rest of the network is fine-tuned on the
smaller, task-specific dataset. Fine-tuning is a well proven and often applied method in deep learning.
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Figure 3.6: Schematic representation of knowledge distillation. LCC denotes the categorical cross-entropy loss function.

Popular feature extractor networks include ResNet-50, ResNet-101 [10] and VGG16 [19], and are often
pre-trained on the ImageNet dataset [20] containing over 1.5 million training images.

3.2.5. Knowledge distillation
ANNs are generally trained on datasets containing hard labels, e.g. when learning to recognize hand-
written digits, an image of an ’8’ in the training set is labelled with 100% certainty to be an ’8’.
However, it is found that models trained on additional ’soft targets’ achieve superior performance by
using knowledge about resemblances between classes. The soft targets of said ’8’ might show that it is
with 80% certainty an ’8’, but also displays a 10% resemblance with a ’6’ and a ’9’. Knowledge distil-
lation [21] is a method to improve the performance of a simple ’student’ network by using the output
probabilities produced by an expert ’teacher’ network as soft targets. A schematic representation of
this set-up is shown in figure 3.6. As expert networks are usually very cumbersome - they often contain
an ensemble of large ANNs that average their predictions - the main benefit of knowledge distillation
is that a significant reduction in model size can be achieved with only a minor performance loss.

The softmax activation function normalizes a layer such that the highest activation is very close to 1
and all other activations are very close to 0. As such, the output probabilities produced by a common
softmax layer contain very little knowledge about class resemblances. The soft targets are therefore
calculated by softening the logits (zi), the outputs of the last layer before activation, using the softmax
function defined as

qi =
exp(zi/T )∑
j exp(zj/T )

, (3.29)

where qi denotes the output probability for class i and T is the temperature, which is normally set to 1.
Higher values of T produce "softer" output probabilities that are more uniformly distributed, whereas
a low temperature increases the differences between the output probabilities. As the expert network
can still produce faulty predictions, the total loss function is a weighted average of the cross entropy
loss of the soft targets and the cross entropy loss of the ground-truth labels and is defined as

LKD = L(ysoft, ŷsoft) + λL(y, ŷ). (3.30)

The predicted label ŷ is calculated by softening the student network logits with T = 1, whereas for
the soft prediction ŷsoft the logits are softened using the same temperature as used for generating the
soft targets from the teacher network. T and λ are additional hyperparameters that need to be defined
prior to training. Since the gradients with respect to the loss, as used in backpropagation to update the
weights, produced by the soft targets scale with 1/T 2, λ is often also set to a value of approximately
1/T 2 to ensure both terms of the loss function have a comparable contribution to the total gradient.

3.2.6. Performance metrics
The performance of an ANN can be evaluated using different metrics, depending on the computer vision
task at hand. The two performance metrics that will be used throughout this thesis are Accuracy and
Intersection over Union.
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Accuracy
Accuracy is calculated as the percentage of correctly classified samples and is generally used for eval-
uating a classification task. Semantic segmentation methods can be evaluated by the pixel accuracy,
which denotes the percentage of correctly classified pixels in an image.

Intersection over Union
Intersection over Union (IoU) is a popular metric used in both object detection and semantic segmen-
tation. Given the ground-truth label GT and a prediction P , the IoU is defined as

IoU =
GT ∩ P
GT ∪ P , (3.31)

where a score of 1 denotes perfect overlap and 0 denotes no overlap at all. In object detection the object’s
bounding box is used, whereas in semantic segmentation the IoU is calculated using the area under the
object expressed in the number of corresponding pixels. For multiclass detection or segmentation the
IoU score is first calculated per object class and then averaged over all classes to arrive at the mean
Intersection over Union (mIoU) score.
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4
Experiments

This chapter contains both additional details to experiments already discussed in the scientific paper,
as well as experiments to back certain claims that were made in the paper. It also includes methods
that have been explored but did not result in the desired performance improvement.

4.1. Intensity robustness of CNNs
This section corresponds to section 4.2 of the scientific paper - Illumination robustness of CNNs.

Network architectures
The architectures used in experiment 4.2.2 - What makes CNNs sensitive to illumination? - have been
briefly outlined in the scientific paper. This section gives a more detailed description and motivation
for the variations on the base network (table 4.1a).

Residual connections Deeper ANNs are increasingly difficult to train. It is found that adding more
layers to an already sufficiently deep model also leads to an increased training error [1], and as such
the observed performance degradation is not caused by overfitting but simply by the model failing to
converge. The motivation behind the residual learning block [2] is that given an input x and a desired
mapping H(x), to be learnt within a subset of layers in the neural network, it is easier to fit the residual
function of the mapping with respect to its inputs F(x) := H(x) − x, such that the final mapping is
defined as F(x)+x. Residual connections indeed enable deeper networks to be trained and are therefore
used in most state-of-the-art architectures. A residual learning block including two convolutional layers
is shown in figure 4.1. The network architecture in table 4.1b includes two such residual learning blocks
(ResBlocks).

Figure 4.1: A residual learning block [2].

Batch Normalization BN has been added between every Conv2D layer and its ReLU activation in
the base network, resulting in the network architecture shown in table 4.1b.
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Global Average Pooling In the network architecture in table 4.1d the Flatten layer has been re-
placed by Global Average Pooling. This resulted in a significant dimensionality reduction from 288 to
32 neurons in the final fully-connected layer and as such a parameter reduction of 28% over the entire
network.

Table 4.1: Network architectures used for the 3DMNIST classification problem.

(a) Base network architecture.

Layer Filter Output
shape

Conv2D 7x7, 16, stride 2 48x48x16
ReLU - 48x48x16

MaxPooling2D 4x4, stride 4 12x12x16

Conv2D 3x3, 32 12x12x32
ReLU - 12x12x32

MaxPooling2D 4x4, stride 4 3x3x32

Flatten - 288
Dense 288x10 fc 10

Softmax - 10
9,898 parameters

(b) Network architecture with ResBlocks.

Layer Filter Output
shape

Conv2D 7x7, 16, stride 2 48x48x16
ReLU - 48x48x16

MaxPooling2D 4x4, stride 4 12x12x16
ResBlock - 12x12x16
Conv2D 3x3, 32 12x12x32
ReLU - 12x12x32

MaxPooling2D 4x4, stride 4 3x3x32
ResBlock - 3x3x32
Flatten - 288
Dense 288x10 fc 10

Softmax - 10
33,034 parameters

(c) Network architecture containing Batch Normalization
layers.

Layer Filter Output
shape

Conv2D 7x7, 16, stride 2 48x48x16
Batch Norm. - 48x48x16

ReLU - 48x48x16
MaxPooling2D 4x4, stride 4 12x12x16

Conv2D 3x3, 32 12x12x32
Batch Norm. - 12x12x32

ReLU - 12x12x32
MaxPooling2D 4x4, stride 4 3x3x32

Flatten - 288
Dense 288x10 fc 10

Softmax - 10
10,090 parameters

(d) Network architecture using Global Average Pooling
(GAP) instead of a flatten layer.

Layer Filter Output
shape

Conv2D 7x7, 16, stride 2 48x48x16

ReLU - 48x48x16
MaxPooling2D 4x4, stride 4 12x12x16

Conv2D 3x3, 32 12x12x32

ReLU - 12x12x32
MaxPooling2D 4x4, stride 4 3x3x32

GAP 32
Dense 288x10 fc 10

Softmax - 10
7,338 parameters

Performance degradation due to Global Average Pooling
Hypothesis 1 The first hypothesis presented in section 4.2.2 of the paper as to the performance
degradation in the model using Global Average Pooling argues that the network is too small for cor-
respondences between classes and feature maps to be enforced. We therefore extended the number of
filters in the second Conv2D layer of the GAP model to 288 and repeated the 3DMNIST classification
experiment. The results are shown in table 4.2. The extended GAP model outperforms the GAP model
on all test sets, which confirms the hypothesis.
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Table 4.2: Classification accuracy of the extended GAP model on 3DMNIST. Base and GAP model performances are
included for reference. Extending the number of filters significantly improved performance as indicated in bold.

Model Base GAP Ext. GAP
Parameters 9,898 7,338 47,018
Baseline 96.3 94.4 97.1
Dark 95.8 93.8 96.2
Local 92.3 71.0 83.0
Color 93.3 42.2 57.8

Hypothesis 2 In the second hypothesis, we claimed that uniformly darkening an image by a scale
factor also uniformly reduces the activations in a neural network by approximately the same scale factor,
even when ReLU activation functions are used. To verify this claim, we compute the ratios between the
neuron activations in the extended GAP model given different input image pairs. The first image pair
contains the Baseline and Dark digits from figure 2 in the scientific paper. The relationship between
the pixel values of the two images can be approximated by IDark = αIDark, with α = 0.4. The second
and third image pair consists of the Baseline and Color, and the Baseline and Local digits, respectively.
The results are shown as histograms in figure 4.2. The histogram corresponding to the Baseline-Dark
image pair (left) clearly shows a peak around 0.4, corresponding to the scale factor α in the input image,
whereas the ratios of the other input pairs are more uniformly distributed. This supports our claim.

0 1 2

Dark

0 1 2

Color

0 1 2

Local

Figure 4.2: Ratios between neuron activations given different image pairs from the 3DMNIST dataset: Baseline-
Dark, Baseline-Color and Baseline-Local. A uniform change in the input results in an approximately uniform change in
activations.

Statistical distribution shift under changes in illumination
To support the claim that intensity shifts and changes in the illuminant color directly affect the color
channel means and variances of an image, we report the statistics of the different test sets of the
3DMNIST dataset in table 4.3.

Table 4.3: First-order statistics of 3DMNIST test sets, reported as mean±std, RGB ∈ [0, 1].

R G B
Baseline 0.25± 0.22 0.48± 0.16 0.34± 0.04

Dark 0.10± 0.09 0.19± 0.06 0.14± 0.01

Local 0.14± 0.14 0.24± 0.36 0.18± 0.34

Color 0.10± 0.09 0.36± 0.12 0.34± 0.04
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4.2. Nighttime Segmentation
This section corresponds to section 4.3 of the scientific paper - Nighttime Segmentation.

ConvolutedMixture of Deep Experts
We have evaluated the Convoluted Mixture of Deep Experts [3] (CMoDE) fusion method in addition
to the fusion methods presented in the scientific paper.

CMoDE fuses the outputs of two expert networks trained on different modalities by means of class-wise
adaptive weighting of their predictions. The class weights are produced by adaptive gating networks,
which predict probabilistic confidence scores for the outputs of the expert networks based on the feature
maps in their conv4 layers. An additional convolutional layer followed by softmax activation finally
produces the segmentation output. The CMoDE archtitecture is shown in figure 4.3.

Figure 4.3: Convoluted Mixture of Deep Experts architecture [3].

The CMoDE network has been trained end-to-end on the CityScapes training set using both RGB and
a color invariant as inputs. The pre-trained and fine-tuned models from table 8 in the scientific paper
have been used as experts, whose weights have been frozen such that backpropagation only updates the
weights of the adaptive gating networks and the final convolutional layer of the model.

The segmentation results on both the Cityscapes test set as well as on Nighttime Driving are shown in
table 4.4. As CMoDE dynamically weighs the prediction outputs from the expert networks based on
information from the multimodal input it is expected to outperform prediction averaging, at the least on
the known source domain data. However, CMoDE only provides a marginal performance improvement
compared to the RGB baseline and performs significantly worse than simple prediction averaging. This
suggests that the adaptive gating networks were not successful in learning to predict correct confidence
scores based on the input images. Further work is needed to assess why this is the case and how the
class-wise probability predictions can be improved upon.
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Table 4.4: Day and night segmentation performance of CMoDE, measured by the mean IoU (%). RGB and prediction
averaging are shown for reference.

Normalization Batch Instance
Dataset Day Night Avg. Day Night Avg.
RGB (baseline) 43.0 16.2 29.6 49.8 26.9 38.4
CMODE - late fusion
RGB + Comp 45.3 17.3 31.3 49.4 28.5 39.0
RGB + Nλ 44.3 19.8 32.1 49.5 28.4 39.0
Comp + Nλ 45.3 17.2 31.3 46.7 27.9 37.3
Prediction averaging - late fusion
RGB + Comp 57.1 16.9 37.0 63.7 30.4 47.1
RGB + Nλ 55.9 24.8 40.4 63.4 30.8 47.1
Comp + Nλ 55.6 22.4 39.0 58.8 30.8 44.8

[3] A. Valada, J. Vertens, A. Dhall, and W. Burgard. Adapnet: Adaptive semantic segmentation in
adverse environmental conditions. In 2017 IEEE International Conference on Robotics and Automa-
tion (ICRA), pages 4644–4651, May 2017. doi: 10.1109/ICRA.2017.7989540.





5
Deep-Learning Color Invariants

In the DRM-based color invariants introduced in section 3.1, dependency on scene geometry is factored
out by dividing each pixel by the total pixel intensity I. As a result, these color invariants are noise-
sensitive to low-intensity (I = R + G + B ≈ 0) parts of images, as can clearly be seen in figure
3.2. While this thesis is mainly concerned with equipping ANNs with physics-based prior knowledge
through the use of these color invariants, in this section we explore the exact opposite: can we learn
a color invariant mapping with better noise characteristics from RGB data using deep learning as an
optimization framework?

Inspired by recent work [1, 2] in the field of intrinsic image decomposition1, we would like to train a
CNN with two encoders to decompose an input image I into a reflectance component R and a shading
component S such that the original image can be reconstructed by multiplication of the two components
I = R × S. As opposed to [1, 2] we would like to derive a color invariant mapping that does not use
any spatial or contextual information from the input image but only depends on the RGB values of a
single pixel.

As intrinsic image decomposition is an ill-posed problem, accurate ground-truth shading and reflectance
images are extremely difficult to obtain for real images. Therefore, most methods either make use of
photo-realistic rendering to generate training data with corresponding ground-truth labels or rely on
self-supervised training. Since we want our color invariant to approximate real-world conditions as
closely as possible we employ the second strategy.

5.1. Method
Our DLInv convolutional neural network consists of two separate encoders for the reflectance and shad-
ing components that are equivalent in architecture. To enforce the use of only pixel-level information,
the entire encoder architecture solely consists of 1x1 convolutional layers, each followed by Leaky ReLU
activations. L2 activity regularization is applied before the final convolutional layer. The reflectance
encoder has an output of depth 3, corresponding to the RGB channels, whereas the shading component
is represented in a single channel. The encoder architecture is shown in figure 5.1b. The output of
the two encoders is multiplied with each other to reconstruct the original input image. The loss for
training the network is defined as the mean average error (MAE) between the input image and the
reconstruction.

As the decomposition problem is ill-posed - an image could be decomposed into a reflectance component
containing the original image and a shading component being an all-ones matrix, resulting in a perfect
reconstruction - an additional constraint is required that forces the reflectance component to represent
a scene irrespective of its illumination conditions. We therefore train the encoders on two input images

1Intrinsic image decomposition is the computer vision task of breaking an image down into its shading and reflectance
components, where the latter represents a scene irrespective of its recording conditions.
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(a) DLInv decomposes an input image into a reflectance component R and a shading
component S based on its individual pixel values. During training the difference
between the two reflectances RA and RB as well as the reconstruction losses are
minimized.
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(b) Encoder architecture.

simultaneously, containing the same object taken from the same viewpoint but illuminated from a
different position, and minimize the MAE between the two resulting reflectance components such that
the illumination-related appearance changes are encoded in the shading components. The total loss
function is thus given as

Ltot = LMAE(A,RA × SA) + LMAE(B,RB × SB) + LMAE(RA, RB)

+ λ [L2(RA) + L2(SA) + L2(RB) + L2(SB)] , (5.1)

where A and B correspond to the two input images, R and S represent the reflectance and shading
components, respectively, and λ = 1e − 4 is the regularization weight parameter. Figure 5.1a denotes
the CNN training setup. The reflectance and shading encoders contain 2,563 and 2,529 parameters,
respectively, summing up to a total of 5,092 parameters for the complete DLInv network.

5.2. Experiments
Experimental setup
The network has been trained using the Adam [3] optimizer with an initial learning rate of 1e-3 and
decay 1e-4. The training set consists of 800 image pairs from the ALOI [4] dataset, containing objects
photographed under different illumination conditions. Each pair includes an image of an attribute
illuminated from the viewpoint of the camera and an image showing the same object illuminated from
the right side, casting heavy shadows on the left side of the object.

Results and analysis
Two example input pairs and their resulting reflectance R and shading S components and reconstruc-
tions R× S are shown in figure 5.2a. Reflectance and shading have been near-perfectly decomposed in
both examples and as a result the reconstructions are indistinguishable from the input images. Note
that the reflectance component of the football even shows the object color in low-intensity parts of the
input image (see [R, Object B] in figure 5.2a), where at the same time the amount of noise is limited.

Figure 5.2b compares the reflectance R produced by the DLInv network with the physics-based color
invariants r, g, b (normalized RGB) and Comp (Comprehensive normalization). R not only exhibits more
realistic color rendering, it is also significantly less sensitive to low intensity in the input image. Also
note that both physics-based color invariants clearly show the shading of the turntable the attributes
rest on, whereas DLInv encodes this effect in the shading component S instead.

Figure 5.3 shows the RGB encoding of hue, represented in the RGB, normalized RGB (r, g, b) and
DLInv color spaces. RGB and DLInv show significant resemblances throughout almost the entire color
spectrum, whereas the secondary colors yellow, magenta and cyan appear dark in normalized RGB.
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(a) Input image pairs and their reflectance R and shading
S components, resulting in reconstruction R× S.
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(b) Reflectance R compared to the more noisy physics-
based color invariants r, g, b (normalized RGB) and Comp
(Comprehensive normalization).

Figure 5.2: Outputs produced by the DLInv network. Both images were not part of the training set.
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Figure 5.3: RGB encoding of hue, shown in RGB, normalized RGB (r, g, b) and DLInv. DLInv is more similar to RGB
but fails to correctly map the range of blue colors.
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RGB
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Figure 5.4: RGB, normalized RGB (r, g, b) and DLInv representations of the primary colors red, green and blue, the
secondary colors yellow, magenta and cyan, and grayscales.

DLInv has failed to learn a correct mapping for the blue part of the color spectrum, which is now shown
in beige. This is most likely a result of blue being underrepresented in the ALOI dataset. Figure 5.4
shows the primary and secondary colors of the RGB color space in RGB, normalized RGB (r, g, b) and
DLInv representations. For the primary colors DLInv can be seen as a composition of the RGB and
r, g, b color spaces: dark colors are mapped to r, g, b and light colors to RGB, with the exception of
the incorrectly mapped blue color. For secondary colors, DLInv behaves like the RGB color space but
removes the dark component of the color, which is now encoded in the shading component S. Finally,
grayscale values are mostly removed from the DLInv mapping, while white is preserved. Note that
r, g, b is unable to distinguish between any of the grayscale values as they lack saturation (R = G = B).

Real-world applications
We applied the DLInv color invariant on semantic segmentation of street images. The experimental
setup is identical to the experiment described in section 4.3 of the scientific paper. Figure 5.5 shows an
input image in the daytime and nighttime domain. Note that the original colors are better preserved
in the DLInv representation, but both color invariants are unable to completely factor out the shadow
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in the daytime image and are heavily affected by artificial lighting in the nighttime image.

RGB r, g, b DLInv

Figure 5.5: RGB, normalized RGB (r, g, b) and DLInv representations of daytime and nighttime street image data from
the Cityscapes [5] and Nighttime Driving [6] datasets.

Quantitative segmentation results are given in table 5.1. DLInv only performs marginally better than
comprehensive image normalization (Comp) and performs significantly worse than RGB and Nλ in the
daytime domain.

Table 5.1: Day-night segmentation performance using RGB and color invariant inputs measured by the mean IoU (%).
DLInv does not improve segmentation performance.

Normalization Batch Instance
Dataset Day Night Avg. Day Night Avg.
RGB (baseline) 43.0 16.2 29.6 49.8 26.9 38.4
Comp 42.8 8.4 25.6 44.3 21.1 32.7
Nλ 40.7 21.7 31.2 41.2 22.2 31.7
DLInv 42.0 9.9 26.0 44.3 21.2 32.8

5.3. Discussion
The experiments have shown that it is possible to learn a color invariant mapping using nothing but
data and self-supervised deep learning. DLInv has better noise characteristics than DRM-based color
invariants, in the sense that it is able to completely remove dark components from colors, as shown
in figure 5.4. However, solid black is mapped to a seemingly arbitrary neutral color in the reflectance
component R. While this is self-evident, as a 0 in the shading component S results in a zero in the
reconstruction for any value in R, one might argue that a black mapping in R would be more natural.
It is worthwhile to explore whether this can be achieved through additional regularization.

Future work also includes further improving the color invariant mapping and investigating how to
further optimize the network architecture in terms of performance and number of parameters, possibly
by including physics-based reflection models in the network architecture itself as extra constraints. It
is also interesting to examine the opposite, namely whether we can use a well-performing deep-learnt
color invariant to improve upon its physics-based counterparts.
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