Fusion of Plans in a Framework with Constraints

Mathijs de Weerdt André Bos

Hans Tonino Cees Witteveen

Delft University of Technology

Zuidplantsoen 4, 2628 BZ Delft, The Netherlands
email: {M.M.deWeerdt, A.Bos, J.F.M.Tonino, C.Witteveen }@QITS.TUDelft.NL

Abstract

The promise of multi-agent systems is that multiple
agents can solve problems more efficiently than sin-
gle agents can. In this paper we propose a method to
implement cooperation between agents in the plan-
ning phase, in order to achieve more cost-effective
solutions than without cooperation. Two results are
presented: First of all, we introduce a flexible frame-
work to describe cooperation in a planning process.
This framework allows us to specify the basic tasks
that have to be performed in order to satisfy a set of
goals, and to specify constraints to model deadlines,
capacity constraints, speed limits, conflicting situ-
ations, et cetera. Furthermore, we present a poly-
nomial fusion algorithm to implement cooperation
between multiple agents.

1 Introduction

As agents are autonomous systems, they plan their
actions in relative isolation from the rest of the agent
society. Often it is much more cost effective to coop-
erate by taking advantage of the available resources
of other agents. As an agent has only a local span of
control, it is not clear how to exploit these resources
during the joint plan construction phase. In this pa-
per, we propose a solution to this problem by taking
the following approach: First, each individual agent
is assumed to construct or to select a plan from a
plan library, without taking into account the activ-
ities of other agents. Next, a (sub)group of agents
investigates whether a cooperative approach leads to
a more cost effective plan by taking advantage of so-
called free resources of each agent’s activities. The
creation of such a joint plan is called a fusion.

This method is related to work by Wooldridge and
Jennings [9] and Shehory and Kraus [7] on coalition

formation. Whereas the former concentrates on the
modeling of the mental state of cooperating agents,
and the latter on polynomial algorithms for task al-
location, we focus on the details of combining plans.
As described in [3], coalition formation in general
is NP-hard, but we will show that for benevolent
agents, a (suboptimal) fusion can be found in poly-
nomial time. Part of this work, concerning only time
constraints and a preliminary version of the frame-
work, has been published recently [2, 6, 8].

To give an intuitive idea of the cooperation pro-
cesses we have in mind, we present the following taxi
scheduling example.

Example 1 Assume two taxis (taxi 1 and taxi 2),
transporting three passengers (see Figure 1): Taxi
1 takes passenger 1 from A to B, passenger 2 from
C to D, and taxi 2 takes passenger 3 from D to E.
We assume both taxis are available from time 3 on
(taxi(1, A, 3) and tazi(2, F, 3)), passenger 1 at time
1 (p(1, A, 1)), passenger 2 at time 2 (p(2,C,2)), and
passenger 3 at time 1 (p(3, D, 1)). We use the follow-
ing notations for the resources passenger and taxi:
p(3, D, 1) to describe passenger 3 at location D from
time 1 on and taxi(2, F,3) to describe taxi 2 at lo-
cation F' from time 3 on. =

In this paper we show a way to model these plans
and an algorithm to create a combined plan that is
more efficient. For example, taxi 2 could pick up
passenger 2 as well, so taxi 1 won’t have to drive all
the way to E, but just to B. This example shows that
by cooperation the taxi-agents can realize all initial
goals with less production (viz. transportation) costs.
Such a reduction can be realized by exchanging goals
and/or by exchanging necessary resources.

The following notions play a central role in this
analysis: (i) elementary production processes, in our
framework called skills of an agent, that constitute

taxi(1, A, 3)
p(1,4,1)

taxi(2, F,3)

p(2,C,2)

p(3,D,1)

Figure 1: Overview of the locations and the initial
situation. The dashed arrows represented the goals
of the passengers.

the building blocks for production plans, (ii) the re-
sources needed to “fire” a skill, (iii) the goals to
be realized, and (iv) attributes to specify constraints
on the goals and the skills and to define production
properties of the resources.

In the next section we present an overview of the
framework !.

2 The resource-skill-plan for-
malism

In this section we propose a framework to describe
plans and operations on plans (like fusion). We start
by giving the building blocks: resources, goals to
achieve, and the skills to combine the resources to
obtain these goals. After that we define a plan in
terms of these building blocks.

2.1 Resources, goals, and skills

We consider the production of a set of products from
a set of resources. A product itself can be a re-
source for another product. Therefore, every object,
whether used or produced, is called a resource.

A resource r will be identified by its type (a predi-
cate symbol) and the set of values of all its attributes,
like, e.g., the time the resource is available, its ca-

LA simpler variant of this framework, without the ability
to specify attributes and constraints over attributes, was pro-
posed in [6] and further developed in [8].

pacity, an identifier id to refer to a real world object,
a maximum speed, current speed, current location,
weight, etc. Resources can be used exactly once, but
may result in new resources that refer to the same
type of objects in the real world (but with different
properties). We assume an enumerable set R of all
resources.

We use predicate symbols like taxi and plane to
identify the type of a resource r € R, denoted by
type(r). The arity n of a predicate symbol refers to
the number of attributes needed to fully specify an
individual resource. Attributes a; are (inductively)
specified by means of wvalue-terms, being either con-
stants belonging to the domain Dom(a;) of the a;,
variables occurring in a set Var(a;), or composite
terms of the form f(¢1,...t,) where f is an m-ary
function symbol and ty,...t,, are value-terms. A
value-term ¢; not containing any variable is called a
ground value term. The set of value terms associated
with a; is Term(a;).

If aq,...a, are (all) the attributes associated with
a predicate symbol p, and v, ...v, are ground value
terms associated with them respectively, then r =
P (v i p1,V i Pa, ..., Un ¢ Dn) is called a completely
instantiated resource or, abbreviated, a resource. An
example of a resource is a taxi containing two other
resources (passengers) p; and po:

taxi(AX-20-BT :id, 4 : cap, Amsterdam : locC,
[0, —>: time, 2: left_cap, 0 : speed,
120 : max_speed, {p1,p2} : contents)
The following attributes are used here: id to identify
the taxi, cap to specify the total capacity (number of
passengers) for this taxi, loc to specify the current lo-
cation, time gives the complete interval the resource
can be used, left_cap defines the left capacity of the
taxi, max_speed the maximum speed and speed the
current speed, and contents the current contents of
the taxi. Let A denote the set of all attributes dis-
tinguished. We will ensure Var(a;) N Var(a;) = 0
for every a; # a;. The set Var = |J,c 4 Var(a) de-
notes the set of all variables. Likewise, we will use
Term as the set of all value terms associated with
the set of all attributes. A substitution 6 then is a
finite set of pairs of the form z; = t; with x; € Var
and t; € Term satisfying the normal conditions?. If
T is a set of terms, 70 denotes the result of applying
0 to every t € T. Besides completely instantiated re-
sources, we also have to consider incompletely spec-

2That is: (i) variables and terms match, ie., if z; €
Var(a), then t; € Term(a); (i) © # j implies x; # x;; (i)
x; does not occur as a variable in ¢;.

ified resources or resource schemes. We distinguish
two sorts:

e Basic resource schemes of the form r = p™(v;, :
@iy, .., :a;) where (i) pis a predicate sym-
bol of arity n; (i) 1 < i; # ip < n for j # k,
with j,k = 1,...,m; (ii) v;; is a value term
(not necessarily ground) of attribute a;. Basic
resource schemes therefore are able to character-
ize sets of resources sharing the same predicate
symbol.

e FExtended resource schemes, to represent arbi-
trary subsets of instantiated resources, consist-
ing of a set RS of basic resource schemes to-
gether with a set of constraints C, being formu-
las using variables occurring in this set RS. A
resource r is said to belong to an extended re-
source scheme (RS, C) if there exists a ground
substitution 8 such that » € RS and every ele-
ment of C'0 evaluates to true. Extended resource
schemes are used to define skills.

We will use skills to represent elementary resource
production processes. In general, a skill s can be
applied to some set R of given resources and produces
as output some new set R’ of resources where R’ N
R = 0, i.e. skills consume their inputs completely
ensuring that every individual resource can be used
only once.

Definition 1 A skill s is a rule of the form RS’ «
RS, C such that (i) RS’ = {rs},...,rs,} is a set
of basic resource schemes, and (i) (RS, C) is an ex-
tended resource scheme. Out(s) = RS’ is called the
set of output schemes of s, In(s) = RS is the set
of input schemes, and C(s) = C is the set of skill
constraints.

Example 2 To give two concrete examples, take the
following skills:
drive : taxi(i : id,y : loc, t + t(x,y) : time),
ride(z : from,y : to,2 : cap,t : time)
— taxi(i : id, z : loc,t : time) { }
travel : p(i : id,y : loc, ta + t(z,y) : time),
ride(x : from,y : to,c — 1 : cap, ts : time)
—p(i:id,x : loc, ty : time),
ride(x : from,y : to,c: cap, to : time)
{ti1 <tg,c> 1}
To explain the last skill, travel: For a passenger to
travel from location x to location y, two resources
are necessary to get a resource p(i : id,y : loc, ty +
t(z,y) : time). First of all the passenger 7 should

be at location = at a certain time ¢; and secondly,
a ride (produced by a taxi) should be available at
a time t, > t; and with capacity at least 1. The
time the passenger arrives at y is calculated using a
pre-defined time-distance matrix t(x,y). =

Definition 2 [Produced from] Let S be a set of
skills, Ry and Rs be sets of resources. We say that
Ry can immediately be produced from Ry using S, ab-
breviated by Ry kg Rs, if there is a skill s € S and
a ground substitution 6 such that (i) In(s)0 C Ry,
i.e., specific resource instances of the input of the
skill occur in Ry; (i) Ro = (Ry — In(s)0) U Out(s)0,
i.e., the specific input instances are deleted from the
original set of resources Rp, while the corresponding
output instances of s are added to the remaining re-
sources. We say that Ry is produced from Ry using
S if Ri F§ Ry holds, where F§ denotes the reflexive,
transitive closure of Fg.

Skills are applied to realize a goal scheme GS. A goal
scheme is a special kind of extended resource set: i.e.
a set of basic resource schemes G = {g1,...,gm} (ba-
sic goals) together with a set of constraints C' using
variables occurring in G. We say that a given set
of resources satisfies a goal scheme GS = (G,C)
using some ground substitution 6, abbreviated as
Ry GS, if (i) GO C R and (ii) every constraint in
C0 evaluates to true. It is now easy to express that
an agent having resources R and skills S is able to
realize a goal scheme GS:

Definition 3 [Goal realizability] A goal scheme GS
is realizable from a set of resources R C R using skills
S C S and ground substitution 0, if there exists some
set of resources R’ such that (i) R’ can be produced
from R using S: R %5 R and (i) R’ satisfies the goal
scheme GS using 0: R’ =9y GS. A goal scheme GS
is said to be realizable from R using S, if there exists
a ground substitution 6 such that GS is realizable
from R using S and 6.

An example of a goal in this context is “passenger
2 should be at D before time 6”. This can be repre-
sented in a goal scheme as follows: (p(2, D, t),t < 6).

2.2 Plans

We assume that each agent already has some kind
of plan, for example generated by a planning system

such as Blackbox [5] or GraphPlan [1]. We repre-
sent a plan by a bi-partite Directed Acyclic Graph
(DAG) P = (Nr U Ng, E), where N C R denotes
a set of resource nodes, Ng a set of skill nodes ng
where s € S, and E a set of arcs. Note that different
skill nodes may refer to different applications of the
same skill: the notation “n,” means that n, is a skill
node denoting an application of skill s. For any two
nodes r € Ng and ns; € Ng, (r,ns) € E means that
resource r is used by an application of skill s, and
(ns,r) € E means that resource r is produced by an
application of s. Mind also that each resource can
be consumed only once.

We will use the following notational conventions
for subsets of nodes in a DAG P = (Np U Ng, E):
the set of input resources of P will be denoted by
In(P) = {r € Ng | d=(r) = 0}3, whereas Out(P) =
{r € Ng | d*(r) = 0} will refer to the set of final
products of P.

Definition 4 [Plan] Let S be a set of skills, and
GS a goal scheme. A plan P for GS using S and
ground substitution 0, is a bi-partite DAG P =
(Ngr U Ng, E), such that

1. Nr C R (R being the set of all resources),

2. Out(P) ¢ GS,

3. if ng € Ng, then {r | (ns,r) € E} = Out(s)0,
{r | (r,ns) € E} = In(s)d, and C(s)f evaluates
to true for the ground substitution 6,

4. if r € Ng, then d*(r) <1 and d~(r) <1 (re-
sources are used at most once).

The following observation is immediate:

Observation 1 If P is a plan for GS using S and
0 then In(P) realizes GS using S and 0. If such a 0
exists, we say P realizes GSS using S.

Example 3 Consider taxi 2 as described in Exam-
ple 1. Its plan is to pickup passenger 3 at D and drive
to E, where passenger 3 gets out. This plan can be
modeled in this formalism by applying skills drive
and travel from Example 2. The plan, including the
needed initial resources, is shown in Figure 2 (with an
applied substitution €). The initial resources are the
bottom nodes of this DAG. The applied-skill nodes
are represented by small boxes.

3d~(n) denotes the in-degree of node n; likewise, d*(n)
denotes the out-degree of n.

p(3,E,6) ride(D, E,1,5)

travel

taxi(2, E,6) ride(D, E,2,5)
p(3,D,1)

tazri(2, D,5) ride(C, D, 2,4)

taxi(2,C,4) ride(F,C,2,3)

taxi(2, F, 3)

Figure 2: The plan for taxi 2 as described in Exam-
ple 3.

There are more ways to model such activities in
this formalism, but as we will see in Section 3, fusion
only works when free (unused) resources are avail-
able. That is why we model a drive of a taxi as the
generation of free resources. =

3 Plan improvement and fu-
sion

Until now we have only paid attention to individ-
ual plans. The formalism as described in the pre-
vious section can also be used to describe certain
cooperation processes. In this section, we will look
at the fusion process, where agents are willing to
share all their resources and products in order to
improve overall performance. The fusion algorithm
is based on the notion of plan improvement: Skills
will be removed if the resources that the skills pro-
duce —needed for goal satisfaction— can be acquired
in another way (e.g., these resources are by-products
of other skill applications). Fusing agents can help
each other by exchanging their resources. In this
section, we present a polynomial algorithm for plan
improvement that can be used to model fusion.

Previous to starting the fusion, the agents should
have their own correct, individual plans. The im-
provement algorithm inspects all skills of all plans
and removes them, if possible, one by one. As these
skill removals do not necessarily lead to a globally op-

timal plan, this procedure is a local optimization. A
skill can be removed if for each output resource r that
is needed by another skill or as a goal, a substitute
can be found. To denote that resource r is needed
(directly or indirectly) for goal satisfaction, we use
the predicate needed(r). This predicate is imple-
mented by a boolean variable. Initially this variable
is defined true if the resource is used within a plan
and false otherwise. The variable is only changed
by the function RE-ASSIGN_RESOURCES for resources
that were needed by the (now removed) skill olds.
The function FIND_SUBST checks each resource that
is not needed for goal satisfaction whether it can be
used as a substitute for an output resource r of a skill
considered to be removed. The attributes of the sub-
stitution resource ro must satisfy all constraints im-
posed by the plan. These constraints are checked by
the function SAT_CONSTRAINTS. Furthermore, this
function verifies that ro is not dependent on r in the
current plan. Now we see that if there are no free
resources (all resources are needed), fusion does not
improve the solution.

The procedure RE-ASSIGN_RESOURCES replaces all
used output resources of the removed skill by their
replacements found by the function FIND_SUBST. As
the procedure is rather straightforward the details
are omitted here. The loop structure of OPTIMIZE
needs some more explanation: the outer loop, imple-
mented by a recursive call to OPTIMIZE, ensures that
skills are removed until no skill to be removed can be
found. The inner loop (step 2) specifies that all skills
have to be checked for removal until one is found.

Fusion is based on the same plan improvement al-
gorithm. Fusing agents are interested in an improve-
ment in performance of the whole set of cooperat-
ing agents, and not in individual plan improvement.
Therefore, we may use the plan improvement algo-
rithm on the joint set of individual plans. We will
denote the finite set of agents cooperating in a fusion
by A. The joint plan P4 must be such that all in-
dividual goals of the agents still can be realized. In
this paper, the fusion process is modeled as follows:
First, all individual plans are combined as a forest
of individual plans, and, second, the joint plan is op-
timized by the described algorithm. The following
propositions can be easily verified:*

Proposition 1 Given a finite set of m agents A
with for each agent i a goal scheme (Ga,,Ca,) and

4The proofs are easy but somewhat tedious and, due to
lack of space, omitted here.

FUSE(A)
1. plan =Uga,caPa;
2. OPTIMIZE(plan)

FIND_SUBST (7,5)
for each resource ro do

if ro#7r
N(—mneeded(rs) V re € In(s))
A=y € Out(s)
Atype(rz) = type(r)
A SAT_CONSTRAINTS(7'2,7)

then
return true

return false

OPTIMIZE(plan)

1. s_found = false

2. for each skill s until s_found do
s_found = true
for each r € Out(s) do

if needed(r) then
s_found = s_foundA
FIND_SUBST(r,)

olds = s

3. if s_found then
RE-ASSIGN_RESOURCES(0lds)
DELETE(olds)

OPTIMIZE (plan)

a plan Pa,, the fusion algorithm will always find a
plan Py that realizes (Ua,eaGa,,Ua,eaCa,;) using
all available skills.

Since we start with correct, individual plans, it is al-
ways possible to construct a joined plan, being noth-
ing more than a union of these individual plans.

With respect to the complexity, let n =
> i<icm ||Pa;l| denote the sum of the sizes® of the
plans of all agents in A. The worst-case time com-
plexity of SAT_CONSTRAINTS is O(n), because all
consequences of using r, instead of r have to be prop-
agated through the plan: whether ry was dependent
on r and all constraints can be checked in linear time,
since all attributes are known (i.e. if we store pre-
viously evaluated attributes and constraints in the
plan).

5The size ||P|| of a plan P equals the size of the DAG
representing P, i.e., the number of vertices plus the number
of arcs in the plan.

This function is executed for each free resource,
so the worst-case time complexity of FIND_SUBST is
O(n?). This function is called at most O(n?) times,
since each time a skill is removed at most O(n) re-
sources may have been searched for and in total at
most O(n) skills can be removed.

Proposition 2 Fusion of agents with total plan size
n can be performed in O(n*)-time.

A slightly simpler variant of this algorithm (in-
cluding only time constraints) is implemented in C
in the following set-up. First a translation is done
of the set of skills to a STRIPS-like Blackbox [4, 5]
input. Then each agent runs an instance of Black-
box to produce a plan. These plans are fused using
the described algorithm. To evaluate our algorithm,
we compared the results of this process to Blackbox
solving the problem globally. Some preliminary tests
showed us that solving problems for the agents sep-
arately, followed by our fusion process is about 25%
faster than solving the problem globally, and returns
a better solution (in terms of the number of skills
used) as well. The better running time is exactly
what we expected: Blackbox has an exponential time
complexity, while our algorithm is polynomial. In the
following example the fusion of two plans using this
algorithm is demonstrated.

Example 4 Suppose the two taxis as described in
Example 1 would like to cooperate. They decide to
fuse, i.e. they join their complete plans, including all
unused resources. The individual plan for taxi 2 is
displayed in Figure 2, the individual plan for taxi 1
looks almost the same, except it does have one travel
more, because it transports two passengers. Once
combined, the OPTIMIZE algorithm tries to remove
skills. The unused ride resources produced by taxi
2 can be used as substitutes in the plan originally
belonging to taxi 1. This leads to the joint plan
displayed in Figure 3. In this joint plan, taxi 1 only
drives from A to B and taxi 2 transports passenger
2. =

4 Conclusions and future work

One of the unique features of multi-agent systems
is that individual agents can cooperate in order to
achieve their goals. One reason to cooperate is that
agents cannot realize their goals individually; an-

p(E,6) ride(D, E,1,5)

ride(A, B, 1,3)

p(1,B,4)
taxi(2, E,6) ride(D, E,2,5)
3,D,1
.
ride(C, D, 1,4)p(2, D, 5)
taxi(2, D,5) ride(C, D, 2,4 1, A1)

ride(A, B, 2,3)
taxi(l, B ,4)

taxi(2,C,4) ride(F,C,2,3

p(2,C,2)
taxi(2, F, 3) tazi(l, A, 3)

Figure 3: The joint plan, see Example 4.

other reason is that cooperation leads to a more effi-
cient means to realize their goals. In this paper, we
have concentrated on the latter.

We described a computational framework, con-
sisting of resources and skills, to model coopera-
tion processes between different agents. Central in
this framework is that we model side products ex-
plicitly, so that other agents can exploit these un-
used resources. Furthermore, it is possible to specify
attributes of resources and constraints on these at-
tributes in skill definitions. This allows us to deal
with durations and deadlines, capacity constraints,
traffic limits, conflicting situations, costs, and many
more types of constraints.

The second main result of this paper is a novel
algorithm that fuses the individual plans of a set of
agents centrally in polynomial time, such that the
joint plan includes less skills.

We think our results are very promising, but there
are still some issues we will look at in the near fu-
ture: First of all a future version should include a
more detailed notion of costs, such that the optimiza-
tion of plans will be based on the cost properties of
resources and skills. Secondly, when only simple con-
straints are used, the fusion algorithm can use some
form of constraint propagation of goal constraints to
check possible substitute resources more efficiently.
Also, sometimes, a substitute resource can be modi-
fied slightly to fit in by changing some attributes in
the plan only slightly (for example, a ride resource
may be produced somewhat later to be able to pick

up another passenger as well). We will also pursue
research on the following topics: dealing with plan
fragments, creating robust plans (and plans having
alternatives built in or leaving some details to be
filled in at run-time), and some form of replanning.

Acknowledgements

Mathijs de Weerdt and André Bos are supported by the
research program Seamless Multimodal Mobility (SMM),
and André Bos by the research program Freight Trans-
port Automation and Multimodality (FTAM) as well.
Both programs are carried out within the TRAIL re-
search school for Transport, Infrastructure and Logis-
tics.

References

[1] Avrim L. Blum and Merrick L. Furst. Fast plan-
ning through planning graph analysis. Artificial
Intelligence, 90:281-300, 1997.

[2] M.M. de Weerdt, A. Bos, H. Tonino, and C. Wit-
teveen. A plan fusion algorithm for multi-
agent systems. In Proceedings of the Workshop
on Computational Logic in Multi-Agent Systems
(CLIMA-00), pages 56-65, 2000.

[3] M. d’Inverno, M. Luck, and M. Wooldridge. Co-
operation structures. In Proceedings of the Fif-
teenth International Joint Conference on Artifi-
cial Intelligence, Nagoya, Japan, pages 600-605,
1997.

[4] R. E. Fikes and N. Nilsson. STRIPS: A new ap-
proach to the application of theorem proving to
problem solving. Artificial Intelligence, 5(2):189—
208, 1971.

[5] H. Kautz and B Selman. BLACKBOX: A new
approach to the application of theorem proving
to problem solving. In Working notes of the work-
shop on planning as combinatorial search, held in
congunction with AIPS’98, Pittsburgh, PA, 1998.

[6] B.-J. Moree, A. Bos, H. Tonino, and C. Wit-
teveen. Cooperation by iterated plan revision.
In Proceedings of the ICMAS 2000, 2000.

[7] O. Shehory and S. Kraus. Methods for task al-
location via agent coalition formation. Artificial
Intelligence, 101(1-2):165-200, May 1998.

[8] H. Tonino, A. Bos, and C. Witteveen. Replan-
ning by revision in collective agent based systems.
Technical Report PDS-2000-004, Delft University
of Technology, May 2000.

[9] M. Wooldridge and N.R. Jennings. The coopera-
tive problem solving process. Journal of Logic &
Computation, 9(4), 1999.

