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Abstract 

With the rise of hydrogen as a green alternative for fossil fuels, the demand for storage capacity of 

hydrogen increases significantly. Due to the high risk of explosions in urban environments it brings along, 

the blast analysis of buildings within in range of the explosions becomes more relevant.  

The goal of this research is to develop a quick method to analyse the roof of a building subjected to blast 

load. This is done by first clarifying the blast load definition on a reinforced concrete (RC) structural 

element through existing design standards and literature. Next, the material behaviour of the concrete and 

the reinforcement steel is scrutinised by an extensive literature study. Materials behave differently under 

dynamic loads. The dynamic material properties are increased by the strength increase factor (SIF) and 

the dynamic increase factor (DIF). 

In blast analysis, most energy is dissipated though plastic deformation. Therefore, it is of great importance 

to accurately describe the nonlinear behaviour of RC elements. The nonlinear behaviour of RC elements 

is translated in the moment-curvature relationship. This relationship is calculated on cross-sectional level 

and serves as input for the global beam or slab model. The global structural behaviour of the beam or the 

slab is calculated using the finite difference method (FDM). The FDM model generates a force-deflection 

(F-u) relationship which can be used in the single degree of freedom (SDOF) mass-spring system. The 

SDOF mass-spring system is used in this research to predict the dynamic behaviour of RC elements. 

The research method is validated by published experiments and finite element analysis. Three 

experiments are reported, where the following results are obtained: 

• Flexural stiffness may be assumed when the scaled distance is above 1.2 m/kg1/3. This is labelled 

as the ‘far field design range’. 

• When choosing the DIFs carefully, the dynamic behaviour of RC elements can be predicted well.  

• The FDM model can provide a good estimation of the nonlinear F-u relationship. The method of 

incorporating cracks in the FDM model is not previously presented in published literature. 

• The unloading stiffness requires additional care. This research briefly covers the unloading 

stiffness. 

• According to the UFC 3-340-02 (Department of Defence, US, 2008), RC elements without shear 

reinforcement and without the possibility of membrane action, fail at a support rotation of 2 

degrees. This is where crushing is supposed to happen. This research shows that this is rather 

conservative and that the support rotation can go up to 6 degrees before failure.   

 

Finally, the validated research method is applied on a case study. The case study contains a slab 

supported on two stiff beams on opposing sides. This results in a main span (weak direction) and a 

secondary span (stiff direction) due to the flexural stiffness of the supporting beams. In most cases, the 

slab supported by beams can be approached as a SDOF mass-spring system. After occurrence of cracks, 

the slab reinforcement in the main span direction will absorb most of the energy and is therefore the 

dominating member in the two degrees of freedom (2DOF) mass-spring system.  
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Symbol: Meaning: 
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1 Introduction 

This chapter introduces the subject of the research and the reason why it should be conducted. A problem 

statement and research objectives are formulated. Lastly, an overview of the research is given. 

1.1 Background and motivation 

In 2017, Royal HaskoningDHV performed a high-level blast assessment on an office building, called 

‘Admin Old’, at a refinery site in The Netherlands (report reference: BG8305-RHD-01-ZZ-RP-S-0002). This 

building is constructed in 1960 and has an in-situ cast reinforced concrete structural system. The resulting 

blast loads are not incorporated in the original design. The building is indicated in Figure 1.1. 

 

Figure 1.1: Location of Admin Old 

Royal HaskoningDHV uses a 3D model of the buildings structural system existing out of 2D shells and 1D 

beams to analyse the building. A nonlinear time history analysis (NLTH) is performed. It is time consuming 

to model a complete building in finite element software and do a nonlinear analysis. Not just the modelling 

and running the model takes a lot of time, but also making sure the model is correct. A hand calculation 

can provide a good estimation of the result in a FEM analysis and is much quicker. 

The purpose of the current research is to develop a quick method to analyse the building on blast load. 

The most convenient way to do this is to filter out members, such as a beam or a plate, of the building and 

analyse them individually. This research focusses on the roof of the building, which is supported by 

beams. By modelling it as a mass-spring system, the dynamic response can be well-captured.  

A single degree of freedom (SDOF) mass-spring system represents the slab supported by stiff beams. A 

two degrees of freedom (2DOF) mass-spring system takes the beam deflection into account. Another 

reason to use a mass-spring system is to filter out the response to the first eigenmode, which is the 

dominating one.  
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An important purpose to conduct the current research is to validate the analysis of Admin Old made by 

Royal HaskoningDHV. This is done by analysing published experiments and use the obtained insights on 

the analysis of Admin Old. Experiments are mainly done on a single beam or plate instead of a building. 

1.2 Problem statement 

How can a two-way reinforced concrete slab with stiffened edges subjected to blast load be reduced to a 

SDOF or 2DOF mass-spring system in which it approximates the nonlinear behaviour of the 

experimentally tested slabs? 

The problem statement contains much information on the focus in this research. It states that a two-way 

reinforced concrete (RC) slab is investigated. According to (Blaauwendraad, 2010), a slab has the 

following definition: “A plate subjected to a load perpendicular to its plane is in a state of bending and 

transverse shear. If the plate is of concrete, it is called a slab. Plates are generalizations of beams. A 

beam spans one direction, but a plate is able to carry loads in two directions.”  

The mentioning of stiffened edges implies that the slab is supported by beams. In the case study the 

beam and slabs are cast in-situ and are therefore fully connected. There are only two beams present, at 

each opposing side of the main span.  

The slab is subjected to blast load. This is a time varying load, which goes by in less than a second. 

Although the duration of the blast load is short, it cannot be treated as an instantaneous impact load. In 

certain cases, the maximum deflection might occur before the complete blast wave has arrived at the slab. 

This is not the case for an instantaneous impact load. 

The slab is reduced to a single-degree of freedom (SDOF) mass-spring system or a two-degree of 

freedom (2DOF) mass-spring system. The difference is that for a SDOF mass-spring system the edges 

with beams are supposed to act as vertically fixed supports, whereas in a 2DOF mass-spring system the 

beams have a vertical motion. 

The mass-spring system should approximate the nonlinear behaviour of the concrete. This is because in 

blast analysis, the maximum load acting on the slab is so high that damage is expected. In fact, in many 

cases the design goal in such analysis is to avoid collapsing of the building, meaning that severe damage 

is allowed. Therefore, an elastic blast analysis is less common than a plastic analysis. 

Lastly, the mass-spring system should match existing experiments. The theory on the material models, 
dynamic effects and response are tested on published experiments. The applied analysis method is then 
calibrated where needed. 

1.3 Research objective 

The goal is to find a method to accurately predict the nonlinear dynamic behaviour of the element. This 

method should be able to replace the time consuming NLTH analyses with a detailed FEM model, while 

remaining the accuracy of such analyses. This is achieved by verifying the used method with FEM 

analyses and calibration with published experiments. The flowchart in Figure 1.2 and the explanation 

below the figure further clarifies the verification process of the used method. 
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Figure 1.2: Flowchart of the experiment calibration 

Validation process: 

 

1. The material properties under blast load conditions are substantiated by a literature study. 

2. A moment-curvature (M-κ) relationship is manually constructed based on the material properties. 

A python script is written to achieve this. The python script incrementally increases the curvature 

and finds force balance after each curvature increase step. The M-κ relationship is compared with 

the one found in a finite element method (FEM) model. 

3. The M-κ is used as input for the finite difference method (FDM) model. This model solves the 

beam equation or slab equation numerically. Another two python scripts are written for the FDM 

beam model and the FDM slab model. The load is incrementally increased while storing the 

previous nodal deflections. Two things are extracted from the results of the FDM model: the force-

delfection (F-u) relationship of the mid-point of the beam or slab and the participaing mass and 

load factors. 

4. The F-u graph and participating mass and load factors are input for the single degree of freedom 

(SDOF) mass-spring system or the two degrees of freedom (2DOF) mass-spring system. There is 

no incremental precedure in the mass-spring system. Therefore an iterative Excel spreadsheet is 

convinient to use. A time marching Newton-Raphson iteration procedure is used. The results of 

the mass-spring system are compared with exeriments. Adjustments are made where neccesary. 
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Nonlinear time history analysis 
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1.4 Report structure 

The report structure follows the design steps to be followed for a blast analysis. Chapter 2 explains what a 

blast load is. The cause of an explosion is addressed. Once the explosion has occurred, a blast wave 

propagates through the air. This is called the free field blast. When the blast wave arrives at the structure, 

the blast wave gets disturbed by the presence of the structure.  

Chapter 3 describes the material parameters to be used in blast analysis. The main component in this 

chapter is the dynamic increase factor. The dynamic increase factor is the strength increase of a material 

under rapid loading conditions. 

The method of analysing the slab to a blast load is described in chapter 4, chapter 5, and chapter 6. 

Chapter 4 describes the cross-sectional behaviour. In this research, the cross-sectional behaviour is 

characterised by the moment-curvature relationship. Chapter 5 is about the static behaviour of the 

element. First, the FDM is conceptionally explained. After that, it goes more in-depth on the application on 

a one-way element and two-way elements. The results of the FDM are the F-u graph and the participating 

mass and load factors. Chapter 6 is about the dynamic behaviour. The mass-spring-damper system 

specifically for blast analysis on one-way elements or two-way elements is addressed. Then the equation 

of motion and the solution of it are described for the SDOF mass-spring system and the 2DOF mass-

spring system.  

The results are presented in chapter 7 and chapter 8. Chapter 7 gives a summarised version of Appendix 

I, Appendix II and Appendix III. In these appendices the experiments are presented, analysed, and 

discussed. In chapter 8, the obtained insights into the dynamic blast analysis on one-way elements and 

two-way elements are applied on the roof of Admin Old. This case study is expanded by a parametric 

study, where the influence of the supporting beams is investigated. 

The results are discussed in chapter 9. Conclusions are drawn in chapter 10 followed by the 

recommendations. 
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2 Blast load 

In this chapter the definition of a blast load is given. The mechanics of an explosion are briefly discussed. 

Once an explosion has occurred, the blast wave travels through the air. The pressure of the wave front 

has a characteristic shape in time. At some point it reaches the building, which interacts in the blast wave. 

2.1 Mechanics of an explosion 

Every molecule has a certain amount of chemical potential energy stored within the bonds between its 

atoms. Chemicals with more potential energy are less stable and thus more likely to react. This does not 

necessarily mean that the chemical will explode after the reaction. This depends on the speed of the 

reaction and the activation energy.  

Usually, a trigger is needed to activate the chemical reaction, unless the chemical is extremely unstable. A 

log of wood, for example, has enough chemical potential energy to start burning after igniting it. Yet, the 

log will not explode, while TNT, with less chemical potential energy than the log of wood, will explode after 

being ignited. This is because the speed of the chemical reaction is much faster than that of the log of 

wood. To put it in numbers: the log has a chemical potential energy of 15.5 MJ/kg and a reaction speed of 

0.3 m/s. TNT has a chemical potential energy of 4.184 MJ/kg and a reaction speed of 6900 m/s.  

Not all explosive materials will explode after being ignited. An example is C-4, which is commonly used in 

the military. C-4 is very stable for an explosive material. It can safely be lit on fire without the risk of 

exploding. This is because C-4 needs more input energy than TNT to initiate the explosion, a combination 

of heat and shock. The energy needed to initiate the explosion is the activation energy. Activation energy 

is the energy barrier that must be overcome to start the chemical reaction, as illustrated in Figure 2.1. The 

higher the activation energy, the slower the chemical reaction. This is because, probability wise, fewer 

molecules can overcome the energy barrier. 

 

Figure 2.1: Energy path of molecules through the reaction progress 

Lowering the activation energy can be done in two ways and are shown in Figure 2.2. The first method is 

by adding a catalyst to the chemical. This is mainly used in chemistry and biology, not necessarily to 

trigger an explosion. The second method is more usual for detonating a stable explosive material. To 

trigger the explosion, a detonator is used. A detonator gives an initial activation energy, which lowers the 

energy barrier enough to initiate the explosion. 
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Figure 2.2: Tools to lower the activation energy 

2.2 Effects of an explosion 

Once the explosion has started, a large amount of energy is released, and the volume of the explosive 

material rapidly expands to a significantly larger volume. This heats up and pushes surrounding gas 

particles in form of a wave. The waves propagate because the molecules bump into each other and 

thereby transfer the pressure change. Flames are created due to combustion of the explosive material in 

air. In a combustion process, a distinction is made between a detonation and deflagration. The difference 

is the speed of the chemical reaction. A detonation is characterised by a supersonic flame velocity (> 343 

m/s). Lower flame velocities are deflagrations. Usually, a detonation (Figure 2.3, left) is a more powerful 

explosion than a deflagration (Figure 2.3, right). Generally, detonations occur due to the explosion of solid 

explosives and deflagrations due to gas explosions, according to (Ministerie van Verkeer en Waterstaat, 

2003). 

  

Figure 2.3: Free field pressure for detonations (left) and deflagrations (right) 

The general term for the wave resulting from detonations and deflagration is blast wave. In this research, 

blast wave coming from a detonation is examined. 
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2.3 Interaction between blast and structure 

The blast wave can freely propagate in the air if there are no obstacles in the way. Once the blast wave 

encounters an obstacle, such as a building or the ground, it starts interfering the wave. The incoming 

wave is called the incident wave. After reaching the façade of a building the wave gets reflected. The 

reflection of the wave leads to a higher, or at least equal, pressure. This is illustrated in Figure 2.4. 

 

 

Figure 2.4: Blast wave interaction with the building (interaction with the ground not included) 

The pressure of the blast wave front is characterised by a positive phase and a negative phase. The 

positive phase is of short duration but contains most of the energy. In practice the negative phase is 

neglected, and the positive phase is described as (2.1) or approximated by an equivalent triangular 

function. Equation (2.1) is also known as the Friedlander waveform. 

 

Figure 2.5: Typical pressure function for blast analysis 
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 𝑃𝑠(𝑡) = 𝑃𝑠𝑜 (1 −
𝑡

𝑡0
) 𝑒

−𝑏
𝑡
𝑡0 (2.1) 

Where: 

• Pso is the peak overpressure 

• t0 is the positive phase duration 

• b is the decay coefficient 

The destructive effect of a blast load on a building depends on the following factors, according to UFC 3-

340-02 (Department of Defence, US, 2008): 

1. Explosive properties, namely type of explosive material, energy output (high or low order 

detonation), and weight of explosive. 

2. The location of the detonation relative to the protective structures. 

3. The magnitude and reinforcement of the pressure by its interaction with the ground barrier, or the 

structure itself. 

Explosive properties 

Explosive materials can come in solid form, liquid form or gaseous form. The blast effects of solid 

explosives are best known and are primarily high explosives, according to UFC 3-340-02 (Department of 

Defence, US, 2008). Figure 2.5 holds for supersonic explosions created by high-explosive solid materials. 

These types of explosions result in the governing load on the structure. The mass and potential chemical 

energy of the material defines the strength of the blast load. However, not every type of explosive has the 

same density. It is convenient to relate each type of explosive to one reference. This is called the TNT 

equivalency (trinitrotoluene). TNT has a mass density of 1.60 g/ml. 

 

Reinforcement of the incident wave 

As Figure 2.5 shows, the reflected wave is stronger than the incident wave. Under perfect linear-elastic 

circumstances the particles of the incident wave arrive at the obstacle and bounces off with the same 

pressure as the pressure of the incident wave. This doubles the pressure in the region where the incident 

wave and reflected wave coincide. However, the reflected molecules are distorted in the transfer region 

which reinforces the reflecting wave pressure. 

Location of the detonation 

The distance of the detonation to the structure defines the strength of the load acting on the structure. This 

distance is well described by the Hopkinson-Cranz scaling law (2.2). 

 

 𝑍 =
𝑅

𝑊1/3
 (2.2) 

Where: 

R = Range estimation 
Z = Scaled distance 
W = mass of the explosive material 

 

The vertical distance is relevant for the ground interaction with the blast wave. There are three categories 

of explosions relating the vertical distance to the ground. UFC 3-340-02 gives the following descriptions: 

1. Free air burst: When a detonation occurs adjacent to and above a protective structure such that 

no amplification of the initial shock wave occurs between the explosive source and the protective 

structure, then the blast loads acting on the structure are free-air blast pressures 
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Figure 2.6: Free air burst 

2. Air burst: The air burst environment is produced by detonations which occur above the ground 

surface and at a distance away from the protective structure so that the initial shock wave, 

propagating away from the explosion, impinges on the ground surface prior to arrival at the 

structure. As the shock wave continues to propagate outward along the ground surface, a front 

known as the Mach front is formed by the interaction of the initial wave (incident wave) and the 

reflected wave. This reflected wave is the result of the reinforcement of the incident wave by the 

ground surface. 

 

Figure 2.7: Air burst 

3. Surface burst: A charge located on, or very near the ground surface, is considered to be a surface 

burst. The initial wave of the explosion is reflected and reinforced by the ground surface to 

produce a reflected wave. Unlike the air burst, the reflected wave merges with the incident wave 

at the point of detonation to form a single wave, similar in nature to the free air burst but 

essentially hemispherical in shape. 

 

Figure 2.8: Surface air burst 
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2.4 Force acting on a roof 

As the blast wave propagates through the air, the pressure encloses the structure. The peak pressure 

arrives directly at the front façade which receives the greatest load. The pressure on the roof gradually 

builds up as the wave front needs time to propagate over the roof. The peak pressure on the roof is lower 

than the peak reflected pressure that arrives at the front façade. Also, the wavelength of the characteristic 

pressure function on the roof is larger than for the front façade (UFC 3-340-02). Figure 2.9 illustrates the 

pressure function on a roof. 

 

Figure 2.9: Simplified pressure function on a roof 

UFC 3-340-02 describes the pressure function as follows: 

 𝑃𝑅 = 𝐶𝐸𝑃𝑠𝑜𝑓 + 𝐶𝐷𝑞𝑜𝑓 (2.3) 

Where: 

• Psof is the incident pressure at point F 

• CE is the equivalent load factor 

• CD is the drag coefficient 

• qof is the dynamic pressure corresponding to CEPsof  

2.5 Far field and near field explosions 

The failure mechanism of a structure depends on the scaled distance Z. Experiments have shown that 

below a certain value the explosion can be categorised as near field, while above this value the explosion 

is considered as far field. UFC3-340-02 sets this boundary on 1.2 m/kg1/3. Anything above that failure 

tends to have flexural failure. Scaled distances between 0.4 m/kg1/3 and 1.2 m/kg1/3 can have either or 

both local and flexural failure but are classified as near field. Scaled distances below 0.4 m/kg1/3 will most 

likely fail on local failure. 

Local failure of a concrete slab is hard to simulate in a finite element model and to express in a mass-

spring system. Software packages with explicit solver should be used to capture local failure. 

Besides the modelling complexity, near field explosions are less relevant for roof slabs because it is 

unlikely that the explosion happens on or close to the roof. Because of the reason only far field explosions 

are considered in this research. 
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3 Material behaviour 

Materials behave differently under dynamic loads. This has to do with the speed at which the load is 

applied. The dynamic material properties are increased by the strength increase factor (SIF) and the 

dynamic increase factor (DIF), as (3.1) and (3.2) are formulating. 

 𝑓𝑑𝑐 = 𝑆𝐼𝐹 ∙ 𝐷𝐼𝐹 ∙ 𝑓𝑐 (3.1) 

 𝑓𝑑𝑦 = 𝑆𝐼𝐹 ∙ 𝐷𝐼𝐹 ∙ 𝑓𝑦 (3.2) 

3.1 Static material models 

The material stress-strain relationships used in this research are based on the static material behaviour. 

They are obtained by applying the load slowly on a specimen. Typically, a softening or hardening branch 

is found after reaching the maximum stress of the material. The used material models are mainly based 

on RTD 1016-1:2020 (Hendriks & Roosen, 2020) and experience of Royal HaskoningDHV. 

3.1.1 Concrete 

The stress-strain relationship of concrete in compression is based on the parabolic curve (3.3). The area 

under the compression curve is the amount of energy that can be absorbed. This area is in literature 

referred to as the concrete compressive fracture energy or the energy absorption capacity and denoted as 

GC. The maximum compressive strength is denoted as fc. 

 𝑓 =

{
  
 

  
 −𝑓𝑐

1

3

𝛼𝑗

𝛼𝑐/3

−𝑓𝑐
1

3
(1 + 4 (

𝛼𝑗−𝛼𝑐/3

𝛼𝑐−𝛼𝑐/3
) − 2 (

𝛼𝑗−𝛼𝑐/3

𝛼𝑐−𝛼𝑐/3
)
2

)

−𝑓𝑐 (1 − (
𝛼𝑗−𝛼𝑐

𝛼𝑢−𝛼𝑐
)
2

)

0

     

𝑖𝑓 𝛼𝑐/3 < 𝛼𝑗 ≤ 0

𝑖𝑓 𝛼𝑐 < 𝛼𝑗 ≤ 𝛼𝑐/3

𝑖𝑓 𝛼𝑢 < 𝛼𝑗 ≤ 𝛼𝑐
𝑖𝑓 𝛼𝑗 ≤ 𝛼𝑢

 (3.3) 

 𝛼𝑐/3 = −
1

3

𝑓𝑐
𝐸

 (3.4) 

 𝛼𝑐 = 5𝛼𝑐/3 (3.5) 

 𝛼𝑢 = 𝛼𝑐 −
3

2

𝐺𝐶
ℎ𝑓𝑐

 (3.6) 

The stress-strain relationship for concrete in tension is based on the Hordijk curve (3.7). The softening 

curve is based on the tensile fracture energy GF. Concrete is a brittle material, but the tensile strength is 

not completely gone after cracking. The post-cracking behaviour of concrete under tension is called the 

tension softening curve. Defining this curve is necessary for an accurate cracking model. Besides that, 

defining the tension softening curve usually benefits the nonlinear analysis, because the decline of the 

fracture tensile stress down to 0 runs smoothly.  

 𝑓 =

{
 
 

 
 𝑓𝑡

𝜀𝑗

𝜀𝑡

𝑓𝑡 (1 + (3.0
𝜀𝑗

𝜀𝑢
)
3

exp (−6.93
𝜀𝑗

𝜀𝑢
) −

𝜀𝑗

𝜀𝑢
(1 + 3.03) exp(−6.93))

0

     

𝑖𝑓 0 < 𝜀𝑗 ≤ 𝜀𝑡

𝑖𝑓 𝜀𝑡 < 𝜀𝑗 ≤ 𝜀𝑢
𝑖𝑓 𝜀𝑗 > 𝜀𝑢

 (3.7) 

 𝜀𝑢 = 5.136
𝐺𝐹
ℎ𝑒𝑞𝑓𝑡

 (3.8) 
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The stress-strain relationship of concrete is illustrated in Figure 3.1. This is the input of the parabolic 

concrete compression curve and the Hordijk concrete tension curve according to the DIANA manual. A 

popular way of implementing cracks in a FEM model is by use of a smeared cracking model. In smeared 

cracking models, the input for the tensile fracture energy depends on the crack bandwidth. This should be 

considered when using smeared cracking models. 

 

Figure 3.1: Stress-strain relationship for concrete in FEM analysis 

3.1.2 Reinforcement steel 

Figure 3.2 schematises the stress-strain relationship for reinforcement steel. The tension hardening 

branch is simplified by a straight line. The values for the distinct points in the graph are given in the design 

codes NEN-EN 1992-1-1 (Normcommissie 351 001 "Technische Grondslagen voor Bouwconstructies",, 

2011) and Model Code 2010 (Fédération internationale du béton (fib), 2013). 

 

 

Figure 3.2: Stress-strain relationship for reinforcement steel 
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3.2 Static strength increase 

A static increase factor (SIF) is applied on the nominal strength of the material. The SIF is also called the 

Average strength factor (ASF). Usually, this only applies to structural steel because commonly the 

minimum required strength of the material is specified. The mean strength is higher. The UFC 3-340-02 

suggests using a SIF of 1.1 on reinforcement steel. 

The regular design codes do not give a value for the mean yield strength fym of the reinforcement steel. 

The probabilistic model code (Joint Committee on Structural Safety, 2001) published by the Joint 

Committee on Structural Safety provides statistical parameters for reinforcement steel. The standard 

deviation is given as 30 MPa. Considering the fact that the characteristic value corresponds with a 

probability of 5%, the mean yield strength must be 550 MPa according to the normal distribution. This 

corresponds with the suggested value of 1.1 by UFC3-340-02. The factor between the ultimate strength 

and the yield strength is 1.08, according to the design codes Model Code 2010 and NEN-EN 1992-1-1. 

3.3 Dynamic strength increase 

Material parameters used in designing a structure usually represent the static parameters. These 

parameters are determined in experiments on specimens loaded relatively slow. This falls into the 

category ‘Quasi-static’ in Figure 3.3. When a material is loaded much faster, the strength and ductility of 

the material might increase. The increase of strength depends on the strain rate and is usually called the 

DIF. This is something to consider when designing a structure subjected to blast load. MC2010 gives 

recommendations for the DIF’s for concrete and reinforcement steel. These are based on papers that are 

citied in this chapter.  

 

Figure 3.3: strain rate ranges for different types of load according to UFC 3-340-02 

UFC 3-340-02 advises similar values for the DIF’s as Model Code 2010. The big difference is that UFC 3-

340-02 defines the DIF as the mean dynamic strength over the mean static strength. Whereas the 

MC2010 defines the DIF as the characteristic dynamic strength over the mean static strength. This is 

shown further on in this chapter. For simulating experiments with an engineering tool, the mean values 

must be taken as this should lead to a better approximation of the experimental results. For design 

purposes the characteristic values are more appropriate. UFC 3-340-02 helps the engineer in choosing an 

appropriate DIF by providing a table with DIF’s. This table is rather conservative but useful for quick 

calculations. It is difficult to predict the DIF beforehand since the strain rate is usually required. The strain 

rate follows from the analysis and in theory changes throughout the analysis. However, adjusting the DIF 

based on the strain rate after each load-step in a non-linear time analysis is too detailed and hard to prove 

whether it is the correct way to approach the analysis. An average value for the strain rate should be taken 

to calculate the DIF’s. UFC 3-340-02 provides a formulation of the average strain rate, namely (3.9) for 

concrete and (3.10) for reinforcement steel. The time to yield the reinforcement is denoted as tE. (3.9) is 

based on the concrete compressive stress being reached at a strain of 0.002.  
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 𝜀�̇�,𝑎𝑣𝑔 = 0.002/𝑡𝐸 (3.9) 

 𝜀�̇�,𝑎𝑣𝑔 = 𝑓𝑑𝑦/(𝐸𝑠𝑡𝐸) (3.10) 

3.3.1 Concrete compressive strength 

The DIF on the compressive strength (DIFc) in both Model Code 2010 and UFC 3-340-02 is based on 

(Bischoff & Perry, 1991). The base formula for the DIFc is given in (3.11), (3.12) and (3.13). Bischof and 

Perry assembled data from existing studies taking into account the difference in compressive strength of 

the concrete specimen. They found a correlation between the strain rate and the DIFc with a correction for 

the concrete compressive strength. Figure 3.4 is adopted from (Bischoff & Perry, 1991). The figure is 

plotted in log-log scale. Three lines are drawn in the figure: one for fc=20 MPa, one for fc=50 MPa and one 

for fc=90 MPa. The first two are already included in the figure, the latter is what Model Code 2010 

recommends. The graph of fc=50 MPa is the one that UFC 3-340-02 recommends. 

 
𝐷𝐼𝐹𝑐 = {

(𝜀�̇�/𝜀�̇�0)
1.026𝛼

𝛾(𝜀�̇�)
1/3  

for 𝜀�̇� ≤ 30 𝑠−1

for 𝜀�̇� > 30 𝑠−1
 

𝜀�̇�𝑡0 = 30 ∙ 10
−6 𝑠−1 

(3.11) 

 𝛼 = (5 + 3𝑓𝑐𝑢/4)
−1 (3.12) 

 𝛾 = 6.156𝛼 − 0.492 (3.13) 

 

 

Figure 3.4: DIFc at different strain rates 

The recommended value for the DIFc by UFC 3-340-02 is formulated in (3.14). The compressive strength 

of 50 MPa is predetermined as the value for α is already filled in. The DIFc in the UFC 3-340-02 is defined 

as the dynamic mean compressive strength over the static mean compressive strength. 

 
𝐷𝐼𝐹𝑐 =

𝑓𝑑𝑐𝑚

𝑓𝑐𝑚
= {

(𝜀�̇�/𝜀�̇�0)
0.024

0.45(𝜀�̇�)
1/3  

for 𝜀�̇� ≤ 30 𝑠
−1

for 𝜀�̇� > 30 𝑠
−1 

𝜀�̇�𝑡0 = 30 ∙ 10
−6 𝑠−1 

(3.14) 

The recommended value for the DIFc by Model Code 2010 in (3.15) is different formulated. It is defined as 

the dynamic characteristic compressive strength over the static mean compressive strength. The α value 
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is determined based on a compressive strength of 90 MPa. As seen in Figure 3.4 the line that represents 

the compressive strength of 90 MPa is slightly off the data points. This is because Model Code 2010 

directly gives the designing value for the compressive strength. 

 
𝐷𝐼𝐹𝑐 =

𝑓𝑑𝑐𝑘

𝑓𝑐𝑚
= {

(𝜀�̇�/𝜀�̇�0)
0.014

0.012(𝜀�̇�/𝜀�̇�0)
1/3 

for 𝜀�̇� ≤ 30 𝑠−1

for 𝜀�̇� > 30 𝑠−1
 

𝜀�̇�𝑡0 = 30 ∙ 10
−6 𝑠−1 

(3.15) 

 

3.3.2 Concrete compressive fracture energy 

Many studies are focussing on DIF of the compressive strength, while only a few studies also paid 

attention to the energy absorption capacity. (Bischoff & Perry, 1991) dedicated a short chapter on the 

energy absorption capacity and concluded the following: “ (Watstein, 1953) measured energy absorption 

increases of up to 120% for a strain rate of about 10 s-1 (which was larger than the corresponding 85% 

increase in compressive strength), while (Takeda & Tachikawa, 1962) reported an increase between 20 

and 80% for a strain rate of 1 s-1 (also greater than the corresponding increase in compressive strength). 

An increase between 37 and 42% was observed by (Atchley & Furr, 1967) for several strengths of 

concrete at a loading rate of about 3 s-1.”  

Considering this information, it is safe to assume that the DIF on the energy absorption capacity (DIFGC) is 

around the same value as DIFc.  

3.3.3 Concrete tensile strength 

Concrete under tension is highly dependant on the strain rate. (Schuler et al., 2006) assembled existing 

experiments of concrete specimens in one paper. Figure 3.5 is one of the results he obtained in his 

research. It is clear that an exponential relation between the strain rate and the DIF is present. The DIF 

gets larger for strain rates above 10 s-1, corresponding with impact load or near-field explosions. This 

range is strain rate is outside the scope of this research. The area of interest is indicated in Figure 3.5. 

The UFC 3-340-02 recommended DIF for concrete under tension (DIFt) (3.16) has good agreement with 

the experimental data, whereas the graph belonging to the Model Code 2010 recommendation is shifted 

conservatively. This equation is given in (3.17). Unlike Figure 3.4, the vertical axis in Figure 3.5 is not in a 

logarithmic scale.  

 
𝐷𝐼𝐹𝑡 = {

(𝜀�̇�𝑡/𝜀�̇�𝑡0)
0.03

0.015(𝜀�̇�𝑡/𝜀�̇�𝑡0)
1/3      

for 𝜀�̇�𝑡 ≤ 10 𝑠−1

for 𝜀�̇�𝑡 > 10 𝑠−1
 

𝜀�̇�𝑡0 = 1 ∙ 10−6 𝑠−1 

(3.16) 

 
𝐷𝐼𝐹𝑡 = {

(𝜀�̇�𝑡/𝜀�̇�𝑡0)
0.018

0.0062(𝜀�̇�𝑡/𝜀�̇�𝑡0)
1/3      

for 𝜀�̇�𝑡 ≤ 10 𝑠−1

for 𝜀�̇�𝑡 > 10 𝑠−1
 

𝜀�̇�𝑡0 = 1 ∙ 10−6 𝑠−1 

(3.17) 
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Figure 3.5: Experimentally obtained DIFs on concrete tensile strength 

3.3.4 Tensile fracture energy 

There are many studies and experiments done on the post-cracking behaviour of concrete. In many 

studies an exponentially decreasing curve is found. However, this does not necessarily mean that such a 

curve still holds for concrete under high strain rate. (Vegt & Weerheijm, 2016) studied the effect of 

dynamic strain rates on the tensile strength and fracture energy. Two types of concrete mixtures are 

presented in the paper, Portland cement (PC) concrete and Blast Furnace Slag cement (BFSC) concrete. 

Both types of concrete are tested under three conditions: normal, wet, and dry. Only the results under 

normal conditions are presented in this research. This is representative for the used experiments and the 

used case study. Figure 3.6 shows two graphs from (Vegt & Weerheijm, 2016) that show the influence of 

strain rate on the tensile behaviour of concrete. Table 3.1 gives the DIF’s on the tensile strength and 

fracture energy. For strain rates around 1 1/s the tensile curve follows a similar trajectory as the curve 

obtained under static conditions. The tensile strength increases significantly, while the fracture energy 

does not change much. For strain rates higher than 40 1/s the trajectory is different. The post-cracking 

branch is still descending but the material keeps its tensile strength for much longer compared to the lower 

strain rates. The DIF on the fracture energy is higher than the DIF on the tensile strength. 

.  

Figure 3.6: strain-stress curve for concrete under tension at different strain rates (left: PC, right: BFSC) 

 

 

Far-field blast

UFC MC2010

2.7∙10-6 1/s 

1.1 1/s 

47.3 1/s 

1.4∙10-6 1/s 

0.8 1/s 

42.7 1/s 
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Table 3.1: DIFt and DIFG high strain rates (Vegt & Weerheijm, 2016) 

Type of concrete Strain rate [1/s] DIFt DIFG 

Portland cement 
1.1 1.7 1.1 

47.3 3.3 4.6 

Blast Furnace Slag 

cement 

0.8 1.6 1.0 

42.7 3.9 5.1 

The observation that the DIFG barely increases at the strain rates around 1 s-1 and increases much more 

at higher strain rates is in line with Figure 3.7. This figure is from (Schuler et al., 2006) and shows the 

correlation between the crack opening width and DIFG. Based on the dashed line Schuler proposed (3.18) 

for the dependence of the specific fracture energy from the crack opening velocity. The DIFG is taken as 

1.0 in this research. Based on (Schuler et al., 2006) and (Vegt & Weerheijm, 2016), this is considered 

reasonable for strain rates between 10-1 and 101. 

 𝐷𝐼𝐹𝐺 = {
1

1.74 ∙ �̇�0.5
  
𝑓𝑜𝑟 �̇� ≤ 0.33 𝑚/𝑠

𝑓𝑜𝑟 �̇� > 0.33 𝑚/𝑠
 (3.18) 

 

Figure 3.7: Relation between crack opening velocity and DIFG 

Little is known about the DIFG apart from the citied studies in this chapter. Model Code 2010 states the 

following on the DIFG: “The information available regarding the effect of stress or strain rate on the fracture 

energy is too incomplete to be included in this Model Code.”. This confirms that there is still a gap to be 

filled in on this topic.  

3.3.5 Young’s modulus of concrete 

Recent studies are scarse on the strain rate effect on the elastic modulus of concrete. fib Bullitin 42 (Task 

Group 8.2, 2008), a background document on (Fédération internationale du béton (fib), 2013), presents 

Figure 3.8. The relation between the DIF on the Young’s modulus (DIFE) and the crack opening velocity is 

found by (Dargel, 1985). 
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Figure 3.8: Influence of strain rate on the Young’s modulus of concrete 

Model Code 2010 gives (3.19) as an estimation of the DIFE. This relationship is also mentioned in 

(Bischoff & Perry, 1991) and is based on Figure 3.4 (stress) and Figure 3.9 (strain). 

 

𝐷𝐼𝐹𝐸 = (𝜀�̇�/𝜀�̇�0)
0.026 

𝜀�̇�𝑡0 = 1 ∙ 10
−6 𝑠−1 for tension 

𝜀�̇�𝑡0 = 30 ∙ 10
−6 𝑠−1 for compression 

(3.19) 

 

Figure 3.9: Influence of strain rate on the compressive strain 

(Körmeling & Reinhardt, 1987) studied the strain rate effects on fibre reinforced concrete. The relevant 

results of that study are presented in Table 3.2. It appeared that the DIFE for concrete under compression 

according to (3.19) has good agreement with the results of the experiments, especially for the plain 

concrete specimen. 
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Table 3.2: DIFE for different strain rates 

Strain 

rate [s-1] 

Fibre 

content [%] 

Tensile strength 

[MPa] 

Strain at 

tensile 

strength [%] 

Elastic 

modulus 

[MPa] 

DIFE  

Experiment / MC2010 

(compression) 

1.25∙10-6 
0 3.3 0.0130 25385 Reference specimen 

1.5 3.8 0.0180 21111 Reference specimen 

2.5∙10-3 
0 4.8 0.0170 28235 1.11 / 1.12 

1.5 5.4 0.0220 24545 1.16 / 1.12 

1.5 
0 5.5 0.0165 33333 1.31 / 1.32 

1.5 6.5 0.0225 28889 1.37 / 1.32 

 

The DIFE based on (3.19) for concrete under compression is considered as appropiate to use in this 

research. The modulus of elasticity is more relevant for concrete under compression, since concrete under 

tension cracks relatively quickly and therefore losing its stiffness. 

3.3.6 Reinforcement steel strength 

There is a large variety of steel types which makes it difficult to attach a DIF to. The DIF for reinforcement 

steel is not included in Model Code 2010 and UFC 3-340-02 gives merely a single design value in a table. 

Despite the lack of information in the design codes, the DIF on the reinforcement strength is of great 

importance. Most of the energy is dissipated through the yielding of the reinforcement.  

A more detailed way of describing the increasing material properties due to high strain rates is by the 

Johnson-Cook (JC) model (Johnson & Cook, 1983). This model is only applicable on ductile metals, such 

as steel reinforcement bars. (3.20) provides the relation between the static behaviour (reference 

conditions), the influence of the strain rate and the temperature. A, B, C, n and m are material constant. 

These constants are experimentally determined by fitting a line between the data points of the experiment. 

The constants stand for the following: 

• A is the yield stress of the material under reference conditions 

• B is the strain hardening constant 

• C is the strengthening coefficient of strain rate 

• n is the strain hardening coefficient 

• m is the thermal softening coefficient 

𝜀̇∗is the equivalent plastic strain and is defined as 𝜀̇/𝜀0̇. 𝜀0̇ is the reference strain rate and is 1.0 by default, 

as prescribed in (Johnson & Cook, 1983). In some papers it might also relate to the static strain rate. T* is 

the homogeneous temperature. Temperature effects are not included in this research. 

 𝜎𝑡𝑟𝑢𝑒 = (𝐴 + 𝐵𝜀
𝑛)(1 + 𝐶 ln 𝜀̇∗)(1 − 𝑇∗𝑚) (3.20) 

Note that the JC model gives the true stress instead of the engineering stress. The difference is that true 

stress considers the decrease in area of the specimen when it elongates. The engineering stress relates 

the applied force at any moment to the initial area of the specimen. (3.21) and (3.22) are giving the 

relation between the true stress, engineering stress, true strain, and engineering strain. 
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 𝜎𝑡𝑟𝑢𝑒 = 𝜎𝑒𝑛𝑔(𝜀𝑒𝑛𝑔 + 1) (3.21) 

 𝜀𝑡𝑟𝑢𝑒 = ln(𝜀𝑒𝑛𝑔 + 1) (3.22) 

 
Figure 3.10: True stress-strain and engineering stress-strain 

 

The true strain-stress curve is always increasing, while the engineering strain-stress curve has a 

maximum at the ultimate strain. At this point, the stress cannot increase anymore when the force is 

divided over the original area of the reinforcement bar (definition of the engineering stress). The point of 

the ultimate strain is the moment where necking occurs. Large strains then localise in a small region in the 

bar. 

For an accurate non-linear model, it is important to specify the behaviour of the reinforcement steel in the 

post-necking region. This allows for analysis of the structure until failure of the reinforcement. A popular 

method to achieve the correct strain-stress curve in the post-necking region is by use the Bridgman 

(Bridgman, 1952) correction formula (3.23). The average axial stress is denoted as σ̅x. 

 𝜎𝑒𝑞 = 𝑘𝜎𝑥 (3.23) 

 𝑘 =
1

(1 +
2𝑅
𝑎
) ln (1 +

𝑎
2𝑅
)
 

(3.24) 

The stress state of steel is usually represented by the Von Mises stress, or sometimes called the 

equivalent stress. Before necking the shear components in the equivalent stress are 0. For a round bar, it 

then can be proven that the equivalent strain εeq is equal to the principal strain ε1. However, beyond the 

point of necking the shear component are not necessarily 0. When the shear component is non-zero, the 

true stress-strain curve based on ε1 only is not following the right path anymore. This is depicted in Figure 

3.11. 

 

Figure 3.11: Correction of the true stress-strain curve 
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The correction factor k is mathematically derived and relates the radius R to radius a, as depicted in 

Figure 3.12. The values of R and a can be obtained by experiments or by using empirical relations. A 

widely used empirical relation is (3.25), found by (Le Roy et al., 1981). In this relation the corrected strain 

in the post-necking region is denoted as εeq and the ultimate strain as εu. 

 
Figure 3.12: mathematical derivation of the Bridgman correction formula. 

 
𝑎

𝑅
= {

1.1(𝜀𝑒𝑞 − 𝜀𝑢)

0
     
𝑓𝑜𝑟 𝜀𝑒𝑞 > 𝜀𝑢 

𝑓𝑜𝑟 𝜀𝑒𝑞 < 𝜀𝑢 
 (3.25) 

(Lin et al., 2016) did research on the dynamic strength of reinforcement steel. A comparison is made 

between an existing DIF formulation, the JC model and experiments. One of the conclusions of the study 

is that both the DIF formulations and the JC model are appropriate to use for strain rates below 75 s-1. The 

JC model is chosen as the reinforcement model. The same parameters as in (Lin et al., 2016) are used 

and are included in Table 3.3. These values hold for reinforcement steel with the characteristic yield 

strength fyk of 500 MPa. The regular design codes do not give a value for the mean yield strength fym of the 

reinforcement steel. The probabilistic model code (Joint Committee on Structural Safety, 2001) provides 

statistical parameters for reinforcement steel. The standard deviation is given as 30 MPa. Considering the 

fact that the characteristic value corresponds with a probability of 5%, the mean yield strength must be 

550 MPa according to the normal distribution. The factor between the ultimate strength and the yield 

strength is 1.08, according to the design codes Model Code 2010 and NEN-EN 1992-1-1 

Table 3.3: Johnson-Cook parameters for steel reinforcement 

Rebar grade �̇�𝟎 A [MPa] B [MPa] n C 

HRB500 (Lin et al., 2016) (hot-rolled) 1.0 629.6 666.2 0.5976 0.030 

B500B (Cadoni & Forni, 2015) (cold-worked) 0.001 571 643 0.720 0.02139 

 

The difference between hot-rolled steel and cold-worked steel is the strength and ductility. Cold-worked 

steel is essentially hot-rolled steel with additional processing after cooling. Cold-worked steel is harder 

than hot-rolled steel for the same base material. This results in a higher yield stress and higher ultimate 

stress. Hot-rolled steel, on the other hand, is more ductile. The ultimate strain of cold-formed steel is 

around 5%, while for a hot-rolled bar it easily exceeds 10%.  

The most common type of reinforcement in Europe is B500B. There is also B500A and B500C. The latter 

is mainly used in the Southern countries in Europe for earthquake resistant designing because of its 

ductility properties.  

3.3.7 Reinforcement Young’s modulus 

Another conclusion of (Lin et al., 2016) is that no changes are found in the Young’s modulus. Therefore, 

no DIF is considered for the Young’s modulus of steel.  
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4 Cross-sectional behaviour of reinforced concrete elements 

The nonlinear behaviour of a concrete beam or slab is described by the force-deflection (F-u) graph of the 

mid-span deflection. The F-u graph is calculated by a nonlinear finite difference model (FDM). In the finite 

difference method (FDM) the differential equations for beams and slabs are solved numerically. The 

structure is discretized, and the deflections are evaluated for each node. The stiffness is also bound to the 

node, this differs from finite element method (FEM), where the stiffness is bound to the element between 

the nodes. The bending stiffness per node is evaluated by the bending moment and corresponding 

curvature in the node.  

4.1 Moment-curvature relationship 

Constructing the moment-curvature graph for a RC cross section gives the resistance of the cross section. 

The moment-curvature relationship is derived by force equilibrium in the cross section. The curvature of 

the cross section is gradually increased under the assumption that straight cross sections remain straight. 

The strain is therefore proportional to the curvature. Knowing the strain in the cross section, the stress can 

be interpreted from the strain-stress relationship of the material. After each increase of the curvature, the 

neutral line is shifted in order to make force equilibrium between the compressive and tensile forces. 

The forces are derived from the stress distribution in the cross section. When the concrete cracks, the 

tensile stress reduces, and the compressive force is greater than the tensile forces. The neutral line must 

shift up to make force equilibrium. Convergence is reached after the tensile force is approximately equal to 

the compressive forces.  

The cross-section fails when the moment-curvature graph drops drastically. The area under the moment-

curvature graph is the amount of strain energy the cross section can dissipate. Evaluating every cross 

section along the beam axis or slab area gives the total energy dissipation capacity. In other words, 

integrating the moment-curvature relationship over the length or area gives the energy dissipation 

capacity. 

The procedure is summarised in the flowchart in Figure 4.1. In this figure an example is given with 2 

different widths in the cross section and 3 reinforcement layers. This represents the edge nodes in the 

case study where the supporting beam is present. 
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Figure 4.1: Flowchart for the moment-curvature relation 

  

No failure

Fr ≥ 0

Failure

Fr < 0

Shifting neutral line

zn,i = zn,i-1 + Δzn

End of calculation

Input: dimensions of cross 

section and material parameters

discretizing height and defining 

neutral line step size Δzn and 

curvature step size Δκ

Next curvature step 

κi = κi-1 + Δκ

First guess of the height of the 

neutral line zn

Calculating strain per node 

εc = κi x znode and interpreting 

strain at reinforcement εs

Interpreting stress of ε-σ 

relationship

Evaluating force (c=compression, t=tension)

Calculating resulting force (tension is positive)

Calculating bending moment
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4.2 Failure criteria 

In principle, the elements fails when the curvature exceeds the limit according to the M-κ graph. The M-κ 

graph is based on assumption which holds for a support rotation up to 2 degrees. After this support 

rotation, the element might behave differently than predicted. The UFC 3-340-02 expresses the failure of 

the elements as a function of the support rotation. Depending on the support rotation, the cross-section is 

categorised in type I, type II, or type III: 

• Type I: The cross-section works as predicted. The F-u graph represents the behaviour of the RC 

element accurately up to the support rotation of 2 degrees. After the support rotation of 2 degrees 

the concrete may be considered crushed. No shear reinforcement is required and only the 

reinforcement at the tension side is considered. 

• Type II: The concrete is considered crushed, but the concrete cover remains intact. Compression 

reinforcement is required to take over the compressive force of the crushed concrete. The 

compression reinforcement should be sufficiently laterally restraint in order to work properly. When 

this is the case, a support rotation up to 6 degrees is possible. Without the lateral restraint, the 

compression reinforcement may buckle prematurely and causing failure of the element. When no 

stirrups are applied, the direct shear capacity should be checked.  

• Type III: The concrete cover is completely disengaged. The bending moment resisting relies on 

the tension and compression reinforcement. A support rotation up to 12 degrees is possible. 
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5 Static behaviour of reinforced concrete elements 

In this chapter, the static behaviour of concrete is described. By use of the finite difference model (FDM) 

for a one-way element and two-way element, the force-deflection (F-u) graph is obtained. The F-u graph 

represents the nonlinearity in a mass-spring system, which is addressed in chapter 6. 

5.1 Finite difference method 

There are several assumptions made in the FDM model: 

• The Euler-Bernoulli theory is applied on beams and the Kirchhoff theory on slabs 

• The structure is symmetric and in case of a slab double symmetric 

• A discrete crack us assumed through the middle of the beam and slab 

• The beam is rigidly supported on the outer nodes, the slab is rigidly supported on the corners 

• The structure is loaded by an equally distributed load 

 

In the FDM the solution is approximated by a differentiation scheme. The most basic approaches are the 

forward difference scheme, the backward difference scheme, and the central difference scheme and 

formulated in (5.1), (5.2) and (5.3) respectively.  

 𝑑

𝑑𝑥
𝑤(𝑥) ≈

𝑤𝑖+1 − 𝑤𝑖
∆𝑥

 (5.1) 

 𝑑

𝑑𝑥
𝑤(𝑥) ≈

𝑤𝑖 − 𝑤𝑖−1
∆𝑥

 (5.2) 

 𝑑

𝑑𝑥
𝑤(𝑥) ≈

𝑤𝑖+1 − 𝑤𝑖−1
2∆𝑥

 (5.3) 

It is possible to include more nodes for a better approximation. By approximating the differential equation 

an error remains between the approximation and the exact solution. This error is called the truncation 

error. A good approximating scheme will result in a smaller error. However, in this research the central 

difference scheme is used as indicated in (5.4) - (5.11). 

 𝑑2

𝑑𝑥2
𝑤(𝑥) ≈

𝑤𝑖+1 − 2𝑤𝑖 + 𝑤𝑖−1
(∆𝑥)2

 (5.4) 

 𝑑3

𝑑𝑥3
𝑤(𝑥) ≈

𝑤𝑖+2 − 2𝑤𝑖+1 + 2 𝑤𝑖−1 − 𝑤𝑖−2
2(∆𝑥)3

 (5.5) 

 𝑑4

𝑑𝑥4
𝑤(𝑥) ≈

𝑤𝑖+2 − 4𝑤𝑖+1 + 6𝑤𝑖 − 4𝑤𝑖−1 + 𝑤𝑖−2
(∆𝑥)4

 (5.6) 

The central difference scheme is applied similarly for the deflection function in 2 directions. 

 𝜕

𝜕𝑥
𝑤(𝑥, 𝑦) ≈

𝑤𝑖+1,𝑗 − 𝑤𝑖−1,𝑗

2∆𝑥
 (5.7) 

 𝜕2

𝜕𝑥 𝜕𝑦
𝑤(𝑥, 𝑦) ≈

𝑤𝑖+1,𝑗+1 − 𝑤𝑖−1,𝑗+1
2∆𝑥

−
𝑤𝑖+1,𝑗−1 − 𝑤𝑖−1,𝑗−1

2∆𝑥
2∆𝑦

 
(5.8) 
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 𝜕3

𝜕𝑥2 𝜕𝑦
𝑤(𝑥, 𝑦) ≈

𝑤𝑖+1,𝑗+1 − 2𝑤𝑖,𝑗+1 + 𝑤𝑖−1,𝑗+1
(∆𝑥)2

−
𝑤𝑖+1,𝑗−1 − 2𝑤𝑖,𝑗−1 + 𝑤𝑖−1,𝑗−1

(∆𝑥)2

2∆𝑦
 

(5.9) 

 𝜕4

𝜕𝑥2 𝜕𝑦2
𝑤(𝑥, 𝑦) ≈

𝑤𝑖+1,𝑗+1 − 2𝑤𝑖,𝑗+1 + 𝑤𝑖−1,𝑗+1
(∆𝑥)2

− 2
𝑤𝑖+1,𝑗 − 2𝑤𝑖,𝑗 +𝑤𝑖−1,𝑗

(∆𝑥)2
+
𝑤𝑖+1,𝑗−1 − 2𝑤𝑖,𝑗−1 + 𝑤𝑖−1,𝑗−1

(∆𝑥)2

(∆𝑦)2
 

(5.10) 

    𝜕4

𝜕𝑥4
𝑤(𝑥) ≈

𝑤𝑖+2,𝑗 − 4𝑤𝑖+1,𝑗 + 6𝑤𝑖,𝑗 − 4𝑤𝑖−1,𝑗 + 𝑤𝑖−2,𝑗
(∆𝑥)4

 (5.11) 

5.2 One-way elements 

5.2.1 Finite difference model 

The Euler-Bernoulli equation that describes the deflection of a beam is formulated in (5.12). This equation 

is discretized according to the central difference scheme. The deformation of the node of is denoted as wi 

and is isolated on the left-hand side of (5.14).  

 𝐸𝐼
𝑑4

𝑑𝑥4
𝑤(𝑥) = −𝑞 (5.12) 

 𝐸𝐼
𝑤𝑖+2 − 4𝑤𝑖+1 + 6𝑤𝑖 − 4𝑤𝑖−1 + 𝑤𝑖−2

(∆𝑥)4
= −𝑞 (5.13) 

 𝑤𝑖 =
1

6
(−
𝑞 (∆𝑥)4

𝐸𝐼
− 𝑤𝑖+2 + 4𝑤𝑖+1 + 4𝑤𝑖−1 − 𝑤𝑖−2) 

(5.14) 

For the deflection of the first 2 nodes and last 2 nodes, so-called ‘ghost’ nodes need to be specified. The 

ghost nodes are located beyond the physical boundary conditions and their properties depend on the 

boundary conditions. This is illustrated by an example. Figure 5.1 displays one half of a symmetric beam. 

On the left side the support is hinged, clamped or something in between. On the right side the symmetry 

conditions are applied.  

 

Figure 5.1: FDM beam example 

The beam is loaded by a distributed load. For this case it is known that the shear force is 0 in the middle of 

the beam. It is also known that the rotation is 0 in the elastic stage.  

 𝑤(𝑥 = 0) = 𝑤0   →   𝑤𝑖 = 𝑤0 (5.15) 

 𝑑

𝑑𝑥
𝑤(𝑥)|𝑥=0 = 0  →   𝑤−1 = 𝑤1 (5.16) 

 𝑑2

𝑑𝑥2
𝑤(𝑥)|𝑥=0 = 0  →   𝑤−1 = 2𝑤0 −𝑤1 

(5.17) 
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When the reinforcement bars start to yield, a plastic hinge forms in the middle of the beam, causing a 

rotation at this location. The amount of rotation is lies somewhere between the uncracked cross section 

(boundary condition (5.18)) and a complete plastic hinge (boundary condition (5.19)) and is defined by the 

factor ζ according to (5.21). 

 𝑑

𝑑𝑥
𝑤(𝑥)|𝑥=𝐿/2 = 0  →   𝑤6 = 𝑤4 

(5.18) 

 𝑑2

𝑑𝑥2
𝑤(𝑥)|𝑥=𝐿/2 = 0  →   𝑤6 = 2𝑤5 − 𝑤4 

(5.19) 

 𝑤6 = 2𝑤5 − 𝑤4 + 𝜁 ∗ (𝑤4 − 𝑤5) (5.20) 

 

Figure 5.2: illustration of rotational stiffness at the discrete crack 

 

 𝜁 = 2 ∗
𝐸𝐼𝜑,𝑖

𝐸𝐼𝜑,0
 (5.21) 

 𝐸𝐼𝜑,𝑖 =
𝑀𝑖+1 −𝑀𝑖

𝜅𝑖+1 − 𝜅𝑖
 (5.22) 

 𝐸𝐼𝜑,0 =
𝑀1 −𝑀0

𝜅1 − 𝜅0
=
𝑀1

𝜅1
 (5.23) 

 

The symmetry condition (5.20) represents a discrete crack in the middle of the beam. The reinforcement 

only yields at the location of the discrete crack in the model. Other smaller cracks in the beam are 

represented by a reduction of the secant bending stiffness, where the limit is set on the bending stiffness 

that belongs to the moment where the reinforcement start to yield, as shown in Figure 5.3.  
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Figure 5.3: Secant bending stiffness 

After each load step, the bending moment is derived based on the converged deflection. The 

corresponding curvature is read off in the moment-curvature graph. The bending stiffness of the node in 

the next iteration is based on the bending moment and curvature of the previous load step. Figure 5.4 

illustrates this. After the first load step the node is still in the elastic stage. Therefore, the bending stiffness 

in the next load step is equal to the initial stiffness. After the second load step the bending moment is 

found in the elasto-plastic stage. This leads to a reduction of the bending stiffness in the next load step. 

 

Figure 5.4: Change in Secant stiffness after an iteration 

After each load step a set of nodal deflection is found. This is used arrive at the mass factor and load 

factor to approach the beam as a lumped mass spring system.  

 𝐾𝑀 =
∑ 𝑀𝑖  𝜙𝑖

2
𝑛𝑜𝑑𝑒𝑠

∑ 𝑀𝑖𝑛𝑜𝑑𝑒𝑠

 (5.24) 

 𝐾𝐿 =
∑ 𝑀𝑖  𝜙𝑖𝑛𝑜𝑑𝑒𝑠

∑ 𝑀𝑖𝑛𝑜𝑑𝑒𝑠

 (5.25) 
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5.2.2 Force-deflection relationship 

A output of the FDM model is the force-deflection (F-u) relationship at mid-span. This is extensively 

described further on in the research. Roughly, the F-u relationship has three branches: the elastic branch, 

the cracked branch, and the yielding branch. These are indicated in Figure 5.5. 

 

Figure 5.5: Roughly graphed F-u relationship 

5.3 Two-way elements 

(Blaauwendraad, 2010) is used for the derivation of the two-way element FDM model. 

5.3.1 Finite difference model 

The FDM for a slab is more complicated than the FDM applied on a beam. The load in a slab is carried by 

the bending moment mxx, myy and mxy, as formulated in (5.26).  

 𝜕2

𝜕𝑥2
𝑚𝑥𝑥 + 2

𝜕2

𝜕𝑥 𝜕𝑦
𝑚𝑥𝑦 +

𝜕2

𝜕𝑦2
𝑚𝑦𝑦 = −𝑝 (5.26) 

Furthermore, there is interaction between the curvatures κxx and κyy. This interaction is defined by rigidity 

Dν. The formulation of Dν is based on (Blaauwendraad, 2010), which gives (5.28) as practical value, since 

it is not clear what rigidity must be used. This leads to the correct term for the isotropic case. For the same 

reason, (Blaauwendraad, 2010) gives an expression for rigidity Dxy, which connects the torsional moment 

mxy and torsional deformation ρxy, and is formulated as (5.29). 

 [

𝑚𝑥𝑥

𝑚𝑦𝑦

𝑚𝑥𝑦

] = [

𝐷𝑥𝑥 𝐷𝜈 0
𝐷𝜈 𝐷𝑦𝑦 0

0 0 𝐷𝑥𝑦

] [

𝜅𝑥𝑥
𝜅𝑦𝑦
𝜌𝑥𝑦

] (5.27) 

 𝐷𝜈 = 𝜈√𝐷𝑥𝑥𝐷𝑦𝑦   
(5.28) 

 𝐷𝑥𝑦 =
1

2
(1 − 𝜈)√𝐷𝑥𝑥𝐷𝑦𝑦 (5.29) 

Formulating the curvatures and torsional deformation as (5.30), (5.31) and (5.32) the equilibrium equation 

(5.33) is derived. Simplifying the equilibrium equation (5.34) is obtained. As mentioned before, this 

equilibrium equation is valid for an isotropic slab. When this equation is applied on an anisotropic slab the 

results might differ from the analytical solution. 

 𝜅𝑥𝑥 =
𝜕2

𝜕𝑥2
𝑤(𝑥, 𝑦) (5.30) 
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 𝜅𝑦𝑦 =
𝜕2

𝜕𝑦2
𝑤(𝑥, 𝑦) (5.31) 

 𝜌𝑥𝑦 = 2
𝜕2

𝜕𝑥 𝜕𝑦
𝑤(𝑥, 𝑦)  (5.32) 

 𝜕2

𝜕𝑥2
(𝐷𝑥𝑥

𝜕2

𝜕𝑥2
𝑤(𝑥, 𝑦) + 𝐷𝜈

𝜕2

𝜕𝑦2
𝑤(𝑥, 𝑦)) + 2

𝜕2

𝜕𝑥 𝜕𝑦
(2𝐷𝑥𝑦

𝜕2

𝜕𝑥 𝜕𝑦
𝑤(𝑥, 𝑦)) +

𝜕2

𝜕𝑦2
(𝐷𝑦𝑦

𝜕2

𝜕𝑦2
𝑤(𝑥, 𝑦) + 𝐷𝜈

𝜕2

𝜕𝑥2
𝑤(𝑥, 𝑦)) = −𝑝 (5.33) 

 𝐷𝑥𝑥
𝜕4

𝜕𝑥4
𝑤(𝑥, 𝑦) + 2√𝐷𝑥𝑥𝐷𝑦𝑦

𝜕4

𝜕𝑥2 𝜕𝑦2
𝑤(𝑥, 𝑦)+ 𝐷𝑦𝑦

𝜕4

𝜕𝑦4
𝑤(𝑥, 𝑦) = −𝑝 (5.34) 

The boundary conditions for a double symmetric slab are similar to that of a beam. However, the discrete 

crack over the symmetry lines is treated differently. Considering the example in Figure 5.6, if one node on 

the symmetry axis is past the cracking bending moment while the other nodes are still in the uncracked 

region, the stiffness of the whole cross section lends itself to the stiffest node. In other words, if ζ is 

evaluated at each node, the largest value of ζ is governing for the whole symmetry line.  

 

Figure 5.6: FDM for a 2D case 

The general equation of force equilibrium at the edges is defined as (5.35), where f is a support reaction 

(illustrated in Figure 5.7). 

 

Figure 5.7: general boundary condition 
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𝜕

𝜕𝑥
𝑚𝑥𝑥 +

𝜕

𝜕𝑦
𝑚𝑥𝑦 = 𝑓 (5.35) 

 

Simply supported edge condition 

 

 

Figure 5.8: Simply supported edge condition 

 {
𝑤(𝑥, 𝑦) = 0
𝑚𝑥𝑥 = 0

→ {

𝑤𝑖,𝑗 = 0

𝑤𝑖−1,𝑗 = 2𝑤𝑖,𝑗 − 𝑤𝑖+1,𝑗 − 𝜈
(∆𝑥)2

(∆𝑦)2
(𝑤𝑖,𝑗+1 − 2𝑤𝑖,𝑗 + 𝑤𝑖,𝑗−1)

 (5.36) 

 

 

Clamped edge condition 

Initially, a clamped boundary condition has no translation and no rotation and the constrained nodes. 

When cracking occurs, the nodes start to allow some rotation around the y-axis in Figure 5.9.  

 

Figure 5.9: Clamped edge condition 

 {

𝑤(𝑥, 𝑦) = 0
𝜕

𝜕𝑥
𝑤(𝑥, 𝑦) = 0

→ {
𝑤𝑖,𝑗 = 0

𝑤𝑖−1,𝑗 = 𝑤𝑖+1,𝑗
 (5.37) 

 {𝑤(𝑥, 𝑦) = 0
𝑐𝑟𝑎𝑐𝑘

→ {

𝑤𝑖,𝑗 = 0

𝑤𝑖−1,𝑗 = 2𝑤𝑖,𝑗 − 𝑤𝑖+1,𝑗 − 𝜈
(∆𝑥)2

(∆𝑦)2
(𝑤𝑖,𝑗+1 − 2𝑤𝑖,𝑗 + 𝑤𝑖,𝑗−1) + 𝜁 (𝑤𝑖+1,𝑗 −𝑤𝑖,𝑗 + 𝜈

(∆𝑥)2

(∆𝑦)2
(𝑤𝑖,𝑗+1 − 2𝑤𝑖,𝑗 + 𝑤𝑖,𝑗−1))

 (5.38) 

Free edge condition 

On a free edge the force equilibrium is formulated as (5.39), since there is no support reaction. 
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 {
𝑚𝑥𝑥 = 0

𝜕

𝜕𝑥
𝑚𝑥𝑥 +

𝜕

𝜕𝑦
𝑚𝑥𝑦 = 0

→

{
 
 

 
 

𝑤𝑖+1,𝑗 − 2𝑤𝑖,𝑗 + 𝑤𝑖−1,𝑗

(∆𝑥)2
+ 𝜈

𝑤𝑖,𝑗+1 − 2𝑤𝑖,𝑗 +𝑤𝑖,𝑗−1

(∆𝑦)2
= 0

𝑤𝑖+2,𝑗 − 2𝑤𝑖+1,𝑗 + 2𝑤𝑖−1,𝑗 −𝑤𝑖−2,𝑗

2(∆𝑥)3
+

𝑤𝑖+1,𝑗+1 − 2𝑤𝑖+1,𝑗 + 𝑤𝑖+1,𝑗−1
(∆𝑦)2

−
𝑤𝑖−1,𝑗+1 − 2𝑤𝑖−1,𝑗 + 𝑤𝑖−1,𝑗−1

(∆𝑦)2

2∆𝑥
= 0

 (5.39) 

 

Symmetry conditions (discrete crack) 

In a double symmetric slab supported in the corners it is known that the torsional bending moment mxy is 0 

at every position. Also, there is no support reaction present. This means that the symmetry condition for a 

discrete crack is defined as (5.40). 

 {𝑤(𝑥, 𝑦) = 0
𝑐𝑟𝑎𝑐𝑘

→ {

𝑤𝑖,𝑗 = 0

𝑤𝑖−1,𝑗 = 2𝑤𝑖,𝑗 − 𝑤𝑖+1,𝑗 − 𝜈
(∆𝑥)2

(∆𝑦)2
(𝑤𝑖,𝑗+1 − 2𝑤𝑖,𝑗 + 𝑤𝑖,𝑗−1) + 𝜁 (𝑤𝑖+1,𝑗 −𝑤𝑖,𝑗 + 𝜈

(∆𝑥)2

(∆𝑦)2
(𝑤𝑖,𝑗+1 − 2𝑤𝑖,𝑗 + 𝑤𝑖,𝑗−1))

 (5.40) 

 

Poisson’s ratio 

The Poisson’s ratio for cracked concrete is not easy to determine. However, a good approximation can be 

made by looking at the physical behaviour of concrete. Before any crack arises, it is widely accepted to 

take the Poisson’s ratio as 0.2, shown in the element on the left in Figure 5.10. The lower limit of the 

Poisson’s ratio in reinforced concrete is 0. It is assumed that the lower limit is reached at the onset of 

yielding of the reinforcement. In the cracked stage an interpolation is made according to (5.41). 

  

Figure 5.10: Poisson’s ratio after cracking 

 𝜈 = {

0.2

0.2
|𝜅|−𝜅𝑐𝑟𝑎𝑐𝑘

𝜅𝑦𝑖𝑒𝑙𝑑−𝜅𝑐𝑟𝑎𝑐𝑘

0

   

𝑖𝑓 |𝜅| ≤ 𝜅𝑐𝑟𝑎𝑐𝑘
𝑖𝑓 𝜅𝑐𝑟𝑎𝑐𝑘 ≤ |𝜅| ≤ 𝜅𝑦𝑖𝑒𝑙𝑑
𝑖𝑓 |𝜅| ≥ 𝜅𝑦𝑖𝑒𝑙𝑑

  (5.41) 

5.3.2 Force-deflection relationship 

The F-u graph for a two-way element is similar to that of the one-way element. It can also be identified by 

the three branches as mentioned in chapter 5.2.2.  
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6 Dynamic behaviour of reinforced concrete elements 

In this chapter, the structural response to a blast load is described by means of a mass-spring system. 

The mass-spring system is then applied on a one-way element and a two-way element. They represent 

the single degree of freedom (SDOF) approach and the two degrees of freedom (2DOF) approach, 

respectively. 

6.1 Structural response to a blast load 

6.1.1 Mass-spring-damper system 

The use of the mass-spring(-damper) system in this research is illustrated by the deflection a simply 

supported beam. The mass in the mass-spring-damper system represents the mass of the beam, the 

spring represents the stiffness of the beam, and the damper represents the structural damping. The mass 

is connected to the spring and damper and the other end of the spring and damper is attached to a rigid 

surface. When an impact load hits the beam, it starts oscillating. It is assumed that only the first 

eigenmode has contribution to the vibration of the beam. That way, the mass-spring-damper in Figure 6.1 

should behave the same when the correct parameters are chosen. The general equation of motion of a 

mass-spring-damper system is formulated in (6.1). In this equation, the M stands for the dynamic mass, 

the C for the structural damping, and k for the structural damping 

 

Figure 6.1: Mass-spring-damper system for a beam 

 𝑀�̈�𝑧 + 𝐶�̇�𝑧 + 𝑘𝑢𝑧 = 𝐹(𝑡) (6.1) 

6.1.2 Inertia effects 

The difference between a static analysis and a dynamic analysis is the inclusion of damping and inertia. 

Typically, the influence of damping is small while the inertia effects is significantly larger and can dominate 

in the structural response. This is especially true when the duration of the load is much shorter than the 

structural response time.  

6.1.3 Structural damping 

In blast analysis it is accepted to disregard damping for the following reasons, according to UFC 3-340-02: 

• Damping has very little effect on the first peak of response, which is usually the only cycle of 

response that is of interest. 

• The energy dissipated through plastic deformation is much greater than that dissipated by normal 

structural damping. 

• Ignoring damping is a conservative approach. 

 

If damping has to be considered in an analysis the UFC recommends to express it as some percentage of 

the critical damping. For free vibration, this is the amount of damping that that would remove all vibration 

from the system and allow it to return to its neutral position. The critical damping is expressed as (6.2). 
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 𝐶𝑐𝑟 = 2 √𝑘𝑀 (6.2) 

UFC 3-340-02 states: “For steel structures, c should be taken as 0.05 Ccr and 0.01 Ccr for reinforced 

concrete structures.” 

6.2 One-way elements as a single degree of freedom mass-spring 

system 

6.2.1 Equation of motion and equivalent parameters 

Not all the mass of the one-way element contributes to the SDOF representation of the one-way slab. The 

mass in the middle contributed much more than the mass close to the supports. The same principle holds 

for the distributed load on the one-way slab. The percentage of the mass and the load that is activated are 

called the mass factor KM and the load factor KL, respectively. The equation of motion without damping is 

thereby defined as (6.3).  

 𝐾𝑀𝑀�̈�𝑧 + 𝐾𝐿𝑘𝑢𝑧 = 𝐾𝐿𝐹(𝑡) (6.3) 

The mass factor and load factor are calculated with the normalised deflection function ϕ. They are defined 

as (6.4) and (6.5). 

 
𝐾𝑀 =

∫ 𝑚𝜙(𝑥)2
𝐿

0
𝑑𝑥

𝑚𝐿
 (6.4) 

 
𝐾𝐿 =

∫ 𝑝𝜙(𝑥)
𝐿

0
𝑑𝑥

𝑝𝐿
 (6.5) 

The equation of motion can also be written as (6.6). Here the load-mass factor is denoted as KLM and is 

formulated as (6.7). 

 𝐾𝐿𝑀𝑀�̈�𝑧 + 𝑘𝑢𝑧 = 𝐹(𝑡) (6.6) 

 𝐾𝐿𝑀 =
𝐾𝑀
𝐾𝐿

 (6.7) 

The mass factor and load factor can be approximated by a theoretical deflection function Φ(x). (Biggs, 

1964) uses the deflection functions in Table 6.1. This table is partially adopted from (Biggs, 1964). The 

load factor KL is included in the dynamic spring constant. For each load diagram the dynamic spring 

constant is given for the deflection function. 

For the simply supported beam a comparison is made between the deflection function according to (Biggs, 

1964) and (6.15). Both dynamic spring constants result in a similar, but not exactly equal, value. For 

example, at the first loading diagram the factors on the spring constant are 384/5*0.64 = 49.15 and π4/2 = 

48.70. This difference is barely noticeable in the results of the mass-spring system. 

The mass factor, load factor and load-mass factor in Table 6.1 indicate the upper and lower limits for the 

corresponding loading diagrams. For a clamped beam the mass factor starts at 0.41. It gradually climbs 

up to 0.50 as the plastic hinge forms. However, the mass factor can only reach 0.50 if the plastic hinge 

has fully developed at the supports while the middle part is still fully elastic. This is unlikely to happen in a 
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concrete beam since cracking in the middle of the beam occurs not to long after the cracks at the supports 

when the load is applied in equal load steps. 

Table 6.1: participating mass and load factor for different loading diagrams. 

Loading  

diagram 

Strain 

range 
Φ(x) KM KL KLM 

Dynamic spring 

constant 

 
Elastic 

16

5𝐿4
(𝐿3𝑥 − 2𝐿𝑥3 + 𝑥4) 𝑜𝑟 (5.1) 0.50 0.64 0.78 

384

5
𝐾𝐿
𝐸𝐼

𝐿4
 𝑜𝑟 

𝜋4

2

𝐸𝐼

𝐿4
 

 
Plastic 

2𝑥

𝐿
 𝑓𝑜𝑟 𝑥 <

𝐿

2
 0.33 0.50 0.66 0 

 
Elastic 

16

𝐿4
(𝐿2𝑥2 − 2𝐿𝑥3 + 𝑥4) 0.41 0.53 0.77 384𝐾𝐿

𝐸𝐼

𝐿4
  

 

Elastic-

plastic 

16

5𝐿4
(𝐿3𝑥 − 2𝐿𝑥3 + 𝑥4) 0.50 0.64 0.78 

384

5
𝐾𝐿
𝐸𝐼

𝐿4
  

 
Plastic 

2𝑥

𝐿
 𝑓𝑜𝑟 𝑥 <

𝐿

2
 0.33 0.50 0.66 0 

6.2.2 Analytical solution 

There are several methods to arrive at the deflection of a SDOF system. One method is to analytically 

solve the second order differential equation. This might be the way to go when the force-deflection 

relationship is simple. Figure 6.2 shows the approach of the response of a single-mass-spring system to a 

pulse loading. The shown force-deflection is typical for a simply supported steel beam. Appendix IV 

illustrates how such a SDOF mass-spring system can be solved. 

 

 

Figure 6.2: Analytical approach for a SDOF mass-spring system 

 

The force-deflection relationship of reinforced concrete is more complicated than the one shown in Figure 

6.2. In that case much more curves need to be added to analytically describe the deflection in time. This 

would unnecessarily complicate the solution. Approach it numerically is in that case more convenient and 

is therefore used in further research.  
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6.2.3 Numerical solution 

Another method of arriving at the deflection of a SDOF system is by solving the equation of motion using 

direct numerical time integration of the equilibrium equation. With this method, it is easier to include a 

more complex nonlinear behaviour. Direct time integration can be subdivided into explicit integration 

methods and implicit integration methods. The main advantage of the implicit methods over the explicit 

methods is that implicit methods can be unconditional stable, whereas explicit methods need a small 

enough time step to be stable. The unconditionally stability depends on the type of implicit method that 

has been chosen. The Newmark method is such a type of implicit method. It should be noted that the 

Newmark method does not guarantee the unconditionally stability in nonlinear analysis. This is especially 

true for long term simulation, as stated in (Saieni, 2012). The main point of interest in this research is the 

first peak in the time-deflection graph. Therefore, the risk of instability of the solution is small and does not 

weigh of against the advantages of the Newmark method. 

The acceleration is predicted by an iterative procedure. In this research the Newton-Raphson method is 

chosen as the iterative procedure. In general, the Newton-Raphson method leads to the converged 

solution in relatively few iterations. After each iteration, the tangent stiffness matrix Kt is updated and 

thereby getting closer to the solution after each iteration. This is illustrated in Figure 6.3. 

 

Figure 6.3: Newton-Raphson iteration 

The procedure of the Newmark and Newton-Raphson procedure is summarised in Figure 6.4. This is the 

general approach for multiple degrees of freedom. The matrices should be considered as scalars.  

An appropriate time step size should be chosen from which the acceleration, velocity and deflection is 

calculated in the next timestep. The velocity is calculated with (6.8) and the deflection with (6.9). The 

acceleration is calculated using the Newton-Raphson iteration method. The acceleration at t=0 is 

determined by (6.14), where v0 and u0 are respectively the initial velocity and deflection. This is the first 

prediction of the acceleration in the next time step. This first prediction is refined by adding (6.12), where 

the residual force is divided by the tangent stiffness. The newly discovered acceleration is plugged in to 

(6.10) again, which leads to the better approximation of the acceleration. This process is repeated until 

(6.12) approaches 0. The γ and β values are 0.5 and 0.25 respectively. For completeness the contribution 

of damping is included in the equations.  
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Figure 6.4: Flowchart SDOF time-marching Newton-Raphson scheme 

 𝑣𝑡+∆𝑡 = 𝑣𝑡 + ∆𝑡((1 − 𝛾)𝑎𝑡 + 𝛾𝑎𝑡+∆𝑡) (6.8) 

 𝑢𝑡+∆𝑡 = 𝑢𝑡 + ∆𝑡 𝑣𝑡 +
1

2
(∆𝑡)2((1 − 2𝛽)𝑎𝑡 + 2𝛽𝑎𝑡+∆𝑡) (6.9) 

 𝑟𝑡+∆𝑡 = 𝐾𝑀𝑀𝑎𝑡+∆𝑡 + 𝐶𝑣𝑡+∆𝑡 + 𝐾𝐿𝐹𝑠𝑡+∆𝑡 − 𝐾𝐿𝐹𝑡+∆𝑡 
(6.10) 

 𝑆𝑡+∆𝑡 = 𝐾𝑀𝑀 + 𝛾∆𝑡𝐶 + 𝛽(∆𝑡)2 (𝐾𝐿
𝐹𝑠,𝑡+∆𝑡 − 𝐹𝑠,𝑡
𝑢𝑡+∆𝑡 − 𝑢𝑡

) (6.11) 

 ∆𝑎𝑡+∆𝑡 = −
𝑟𝑡+∆𝑡
𝑆𝑡+∆𝑡

 (6.12) 

 𝑎𝑡+∆𝑡,𝑛 = 𝑎𝑡+∆𝑡 + ∆𝑎𝑡+∆𝑡 (6.13) 

 𝑎0 =
𝐾𝐿𝐹0 − 𝐶𝑣0 − 𝐾𝐿𝐾0𝑢0

𝐾𝑀𝑀
 (6.14) 

The spring force (Fs) is a characteristic of the one-way slab, which can be determined by a static analysis. 

The DIFs should be taken into account for the correct force-deflection graph that represents the one-way 

slab behaviour under blast load. In the design the strain rate is yet unknown. Thus, a verification of the 

assumed strain rate beforehand is needed after the blast analysis is performed.  

Calculating residual force rt+Δt

if rt+Δt > tolerance

Calculating St+Δt and Δat+Δt

Correction: at+Δt = at+Δt + Δat+Δt  

from which vt+Δt and ut+Δt are 

derived 

Initial input: M0, K0, F(t), u0, v0

calculation of a0

Next time step (t+Δt)

First prediction: ut+Δt = ut, 

vt+Δt = vt, at+Δt = at

if rt+Δt ≤ tolerance
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6.3 Two-way elements as a two degrees of freedom mass-spring 

system 

6.3.1 Equations of motion and equivalent parameters 

In the two-degree of freedom representation the deflection of the beam is taken as the additional degree 

of freedom. It is not directly clear how the equations of motion should look like. There is coupling between 

the beams and the slab that makes it more complicated than 2 separate systems. The derivation of the 

correct equations of motion are demonstrated by an example. The example is based on section 4.6 of 

(Biggs, 1964), where a beam is supported by 2 girders as shown in Figure 6.5.  

 

 

 

Figure 6.5: Used example 

The static deflection function of the girder is sine shaped. The deflection function of the beam is also sine 

shaped with the addition of the midspan deflection of the girders. The same principle is applied on the 

case study, only here the deflection function of the slab goes in 2 directions. 

 

Figure 6.6: 2DOF system 
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 𝑤𝑏 = 𝑤𝑏,0 sin (
𝜋 𝑥

𝐿
) (6.15) 

 𝑤𝑠 = 𝑤𝑏 + 𝑤𝑠,0 sin (
𝜋 𝑥

𝐿
) sin (

𝜋 𝑦

𝑊
) (6.16) 

There are two main methods in engineering to derive the equations of motion. One method is following the 

Newtonian mechanics and the other method is following the Lagrangian mechanics. Newtonian 

mechanics can be convenient for simple cases that lead to a lumped mass matrix. The mass matrix is 

lumped when there are non-zero terms only on the diagonal. The masses do not interact with each other. 

The interaction might take place in the stiffness matrix. When there is coupling in the mass matrix the 

Newtonian method to derive the equations of motion becomes rather complicated. In that case, 

Lagrangian mechanics is the better choice. This method solves almost every mechanics problem and is in 

many cases faster than Newtonian mechanics.  

The Lagrangian 𝓛 is defined as (6.17). The 𝒦 in this equation is the kinetic energy in the system and 

depends on the velocities of the masses. 𝒰 is the strain energy and depends on the movement of the 

masses.  

 ℒ = 𝒦 −𝒰 (6.17) 

The Euler-Lagrange equation is formulated in (6.18). Essentially, this equation is a reformulation of 

Newton’s second law (F=ma). 

 
𝑑

𝑑𝑡
(
𝜕ℒ

𝜕�̇�𝑖
) =

𝜕ℒ

𝜕𝑤𝑖
 (6.18) 

The right-hand side of (6.18) are called the generalized forces. The Euler-Lagrange equation only 

incorporates conservative forces. Conservative forces are independent of the path taken. A spring force is 

an example of a conservative force. Non-conservative forces do depend on the path taken and cannot be 

derived from the energy in the system. An applied force is an example of a non-conservative force. They 

must be included manually in the Euler-Lagrange equation. After inserting (6.17) in (6.18) and including 

the work done by the applied force, (6.19) is obtained. The work done by the applied force is denoted as 

𝒲. 

 
𝑑

𝑑𝑡
(
𝜕𝒦

𝜕�̇�𝑖
) +

𝜕𝒰

𝜕𝑤𝑖
=
𝜕𝒲

𝜕𝑤𝑖
 (6.19) 

The kinetic energy in the system is determined and evaluated in (6.20). A coupling between the mass of 

the beams and the mass of the slab becomes visible after evaluating the integral. 

 𝒦 = 2 ∙
1

2
 𝑚𝑏∫ �̇�𝑏

2 𝑑𝑦
𝑊

0

+
1

2
 𝑚𝑠  ∫ ∫ �̇�𝑠

2 𝑑𝑥 𝑑𝑦
𝐿

0

𝑊

0

 
(6.20) 

 𝒦 =
𝑊

2
𝑚𝑏 �̇�𝑏,0

2 +
𝐿 𝑊

4
𝑚𝑏 (�̇�𝑏,0

2 + �̇�𝑠,0
2 +

16

𝜋2
�̇�𝑏,0�̇�𝑠,0) 

The strain energy in the system is the integral of moment-curvature relationship over the length and width 

of the slab and beam. This involves the Poisson’s ratio ν and rigidities Dν and Dxy. The meaning of those 

parameters is further explained in chapter 6. When evaluating the integrals, it happens that those 

parameters cancel out. 
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 𝒰 = 2 ∙
1

2
∫ 𝐸𝐼 (

𝑑2𝑤𝑏
𝑑𝑦2

)

2

𝑑𝑦
𝑊

0

+
1

2
∫ ∫ 𝐷𝑥𝑥 (

𝑑2𝑤𝑝
𝑑𝑦2

)

2

+ 𝐷𝑦𝑦 (
𝑑2𝑤𝑝
𝑑𝑦2

)

2

+ 2𝜈𝐷𝜈
𝑑4𝑤𝑝
𝑑𝑥2𝑑𝑦2

+ 2(1 − 𝜈)𝐷𝑥𝑦 (
𝑑2𝑤𝑝
𝑑𝑥 𝑑𝑦

)

2

 𝑑𝑥 𝑑𝑦
𝐿

0

𝑊

0

  
(6.21) 

 𝒰 =
𝜋4

2𝑊3
𝐸𝐼 𝑤𝑏,0

2 +
𝜋4

4𝐿3𝑊3
(𝐷𝑥𝑥𝑊

4𝑤𝑠,0
2 + 𝐷𝑦𝑦𝐿

4𝑤𝑏,0
2) 

The amount of work done is only dependant on the area on which the distributed pressure acts. The work 

is formulated and evaluated in (6.22). 

 𝒲 = 𝑝∫ ∫ 𝑤𝑠
2 𝑑𝑥 𝑑𝑦

𝐿

0

𝑊

0

 

(6.22) 

 𝒲 =
2𝐿𝑊

𝜋
𝑝 𝑤𝑏,0 +

2𝐿𝑊

𝜋
𝑝 𝑤𝑠,0 

After applying Lagrange’s equation (6.17) the equations of motion in (6.23) are obtained. The equations 

are displayed in matrix form. The first matrix on the left-hand side is called the mass matrix M. The second 

matrix on the left-hand side is called the stiffness matrix K. The right-hand side vector is the force vector 

F. 

 [
2 ∙
1

2
𝑊𝑚𝑏 +

1

2
𝐿𝑊𝑚𝑠

4

𝜋2
𝐿𝑊𝑚𝑠

4

𝜋2
𝐿𝑊𝑚𝑠

1

2
𝐿𝑊𝑚𝑠

] [
�̈�𝑏,0
�̈�𝑠,0

] +

[
 
 
 2
𝜋4

2

𝐸𝐼

𝑊3
+
𝜋4

2

𝐿𝐷𝑦𝑦

𝑊3
0

0
𝜋4

2

𝑊𝐷𝑦𝑦

𝐿3 ]
 
 
 

[
𝑤𝑏,0
𝑤𝑠,0

] = [

2

𝜋
𝐿𝑊𝑝

2

𝜋
𝐿𝑊𝑝

] (6.23) 

The mass matrix, stiffness matrix and force matrix are generalized in (6.24), (6.25) and (6.26). This is 

proven by following the modal analysis approach as described in chapter 3.5 in (Biggs, 1964). 

 𝑴 = [
2𝐾𝑀,𝑏,𝑦𝑊𝑚𝑏 + 𝐾𝑀,𝑠,𝑦𝑦𝐿𝑊𝑚𝑠 𝐾𝑀,𝑠,𝑥𝑦𝐿𝑊𝑚𝑠

𝐾𝑀,𝑠,𝑥𝑦𝐿𝑊𝑚𝑠 𝐾𝑀,𝑠,𝑥𝑥𝐿𝑊𝑚𝑠
] (6.24) 

 𝑲 = [
2𝐾𝐿,𝑏𝑊𝑘𝑏 + 𝐾𝐿,𝑠𝐿𝑊𝑘𝑠,𝑦𝑦 0

0 𝐾𝐿,𝑠𝐿𝑊𝑘𝑠,𝑥𝑥
] (6.25) 

 𝑭 = [
𝐾𝐿,𝑠𝐿𝑊𝑝

𝐾𝐿,𝑠𝐿𝑊𝑝
] (6.26) 

The shape of the slab deflection is approached as the superposition of the deflection function of the beam 

independent of the slab and the deflection function of the slab independent of the beam. Both deflection 

functions can be considered as 2 separate modal shapes. Therefore, the shape of the slab deflection can 

be expressed in the discretised form (6.27). ϕra is the assumed deflection of mass r. ϕrm is the deflection 

coordinate for the mth mode and ψm is the participation factor for the mth mode 

 𝜙𝑟𝑎 = ∑ 𝜓𝑚𝜙𝑟𝑚

𝑁

𝑚=1

 (6.27) 

If both sides of (6.27) are multiplied by Mrϕrq, where ϕrq is the deflection coordinate for the qth mode, and 

summed up over all masses, (6.28) is obtained. 
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 ∑𝑀𝑟𝜙𝑟𝑎𝜙𝑟𝑞

𝑗

𝑟=1

=∑∑ 𝜓𝑚𝑀𝑟𝜙𝑟𝑚𝜙𝑟𝑞

𝑁

𝑚=1

𝑗

𝑟=1

 (6.28) 

The right-hand side of (6.28) is the effective mass. This is specified for a slab with indices i and j for  

x-direction and j-direction respectively. N runs from 1 to 2. 

 𝑀𝑠,𝑞=1
∗ =∑∑∑𝐾𝑀,𝑠,𝑚𝑞𝑀𝑖,𝑗𝜙𝑖,𝑗,𝑚𝜙𝑖,𝑗,𝑞

2

𝑚=1

𝑁𝑗

𝑗=0

𝑁𝑖

𝑖=0

=∑∑𝐾𝑀,𝑠,11𝑀𝑖,𝑗𝜙𝑖,𝑗,1
2 + 𝐾𝑀,21𝑀𝑖,𝑗𝜙𝑖,𝑗,2𝜙𝑖,𝑗,1

𝑁𝑗

𝑗=0

𝑁𝑖

𝑖=0

 (6.29) 

 𝑀𝑠,𝑞=2
∗ =∑∑∑𝐾𝑀,𝑠,𝑚𝑞𝑀𝑖,𝑗𝜙𝑖,𝑗,𝑚𝜙𝑖,𝑗,𝑞

2

𝑚=1

𝑁𝑗

𝑗=0

𝑁𝑖

𝑖=0

=∑∑𝐾𝑀,𝑠,12𝑀𝑖,𝑗𝜙𝑖,𝑗,1𝜙𝑖,𝑗,2 + 𝐾𝑀,𝑠,22𝑀𝑖,𝑗𝜙𝑖,𝑗,2
2

𝑁𝑗

𝑗=0

𝑁𝑖

𝑖=0

 (6.30) 

 𝑀𝑏,𝑞=1
∗ =∑∑∑𝐾𝑀,𝑏,𝑚𝑞𝑀0,𝑗𝜙𝑖,𝑗,𝑚𝜙𝑖,𝑗,𝑞

1

𝑚=1

𝑁𝑗

𝑗=0

𝑁𝑖

𝑖=0

=∑∑𝐾𝑀,𝑏,11𝑀0,𝑗𝜙0,𝑗,1
2

𝑁𝑗

𝑗=0

𝑁𝑖

𝑖=0

 (6.31) 

6.3.2 Numerical solution  

The numerical solution for a 2DOF mass-spring system is similar to the numerical solution for a SOD 

mass-spring system. The difference is that now matrix operation must be performed. The tangent matrix Kt 

(6.36) is introduced. This matrix includes the amount of change in stiffness after each time-step. Equations 

(6.32) - (6.39) are similar to (6.8) - (6.14), but written in matrix form notation 

 
Figure 6.7: Flowchart 2DOF time-marching Newton-Raphson scheme 

if ||rt+Δt|| ≤ tolerance

if ||rt+Δt|| > tolerance

Calculating iteration matrix St+Δt 

and Δat+Δt

Correction: at+Δt = at+Δt + Δat+Δt  

from which vt+Δt and ut+Δt are 

derived 

Initial input: M0, K0, F(t), u0, v0

calculation of a0

First prediction: ut+Δt = ut, 

vt+Δt = vt, at+Δt = at

Calculating residual force rt+Δt

Next time step (t+Δt)
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 𝒗𝒕+∆𝒕 = 𝒗𝒕 + ∆𝑡((1 − 𝛾)𝒂𝒕 + 𝛾𝒂𝒕+∆𝒕) (6.32) 

 𝒖𝒕+∆𝒕 = 𝒖𝒕 + ∆𝑡𝒗𝒕 +
1

2
(∆𝑡)2((1 − 2𝛽)𝒂𝒕 + 2𝛽𝒂𝒕+∆𝒕) (6.33) 

 𝒓𝒕+∆𝒕 = 𝑲𝑴𝑴𝒂𝒕+∆𝒕 + 𝑪𝒗𝒕+∆𝒕 + 𝑲𝑳𝑭𝒔,𝒕+∆𝒕 − 𝑲𝑳𝑭𝒕+∆𝒕 (6.34) 

 𝑺𝒕+∆𝒕 = 𝑲𝑴𝑴+ 𝛾∆𝑡𝑪 + 𝛽(∆𝑡)2𝑲𝒕 (6.35) 

 𝑲𝒕 =

[
 
 
 
 2𝐾𝐿,𝑏 𝑊

𝐹𝑠,𝑏,𝑡+∆𝑡 − 𝐹𝑠,𝑏,𝑡
𝑢𝑏,𝑡+∆𝑡 − 𝑢𝑏,𝑡

+ 𝐾𝐿,𝑠𝐿𝑊
𝐹𝑠,𝑠,𝑡+∆𝑡 − 𝐹𝑠,𝑠,𝑡
𝑢𝑠,𝑡+∆𝑡 − 𝑢𝑠,𝑡

0

0 𝐾𝐿,𝑠𝐿𝑊
𝐹𝑠,𝑠,𝑡+∆𝑡 − 𝐹𝑠,𝑠,𝑡
𝑢𝑠,𝑡+∆𝑡 − 𝑢𝑠,𝑡 ]

 
 
 
 

 (6.36) 

 ∆𝒂𝒕+∆𝒕 = −𝑺𝒕+∆𝒕
−𝟏. 𝒓𝒕+∆𝒕 (6.37) 

 𝒂𝒕+∆𝒕,𝒏 = 𝒂𝒕+∆𝒕 + ∆𝒂𝒕+∆𝒕 (6.38) 

 𝒂𝟎 = 𝑴𝟎
−1. (𝑭𝟎 − 𝑪𝟎𝒗𝟎 − 𝑲𝟎𝒘𝟎) (6.39) 
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7 Experimental validation and calibration 

The presented method in chapter 5 (finite difference model) and chapter 6 (mass-spring system) are 

validated by an experimental study. The full reports of the validation are included in Appendix I, Appendix 

II, and Appendix III. A compact version of the appendices is presented in this chapter 

7.1 Validation experiment 1 

In this validation experiment, numerous experiments are performed and compared with engineering tools. 

The experiments are conducted at the Ernst-Mach-Institut (EMI) in Germany using a shock tube. A shock 

tube simulates a blast load under controlled conditions. Two types of experiments are performed: one that 

represents a close-in detonation and one that represents far field detonations. The far field detonation is 

what this research focusses on. The engineering tool used for the far field detonations is a pressure-

impulse diagram.  

7.1.1 Experiment observations 

Four beams are analysed by (Riedel et al., 2009) of which one fails. The failed beam is the bottom picture 

in Figure 7.1. The top picture is the damaged plate, as indicated in the graph. The last two beams remain 

intact, according to the graph.  

 

Figure 7.1: Walls after the blast. Top wall: NRC-3. Bottom wall: NRC-4 

7.1.2 Moment-curvature relationship 

The constructed M-κ graph as described in chapter 4.1 is compared with the M-κ graph retrieved from 

FEM analysis. The comparison is showed in Figure 7.2. The M-κ graph stops, in this case, when the 

reinforcement fails. This is due to the relative ultimate strain of the applied reinforcement steel type BSt 

500S. 
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Figure 7.2: Moment-curvature relationship EPR4 (dynamic) and static 

7.1.3 Force-deflection relationship 

The M-κ graph is an input for the FDM model, which constructs the F-u graph. The F-u graph in the FDM 

model and the FEM model are similar, but the FDM model stops earlier. The FDM model stops all the 

available energy according to the M-κ graph is used. The F-u graph is constructed in a force-controlled 

manner. Therefore, the bending moment can only increase or remain equal. The M-κ graph is slightly 

adjusted in such a way that it is always increasing while retaining the same area under the M-κ graph.  

 

Figure 7.3: F-u graph for NRC-4 (dynamic) and the static case 

  

0

5

10

15

20

25

30

35

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

B
e
n
d
in

g
 m

o
m

e
n
t 
[k

N
m

]

Curvature [1/m]

Dynamic FEM Static FEM Dynamic FDM Static FDM

0

20

40

60

80

100

120

140

160

0 5 10 15 20 25 30 35 40 45

R
e
s
is

ta
n
c
e
 [

k
N

]

Mid-point deflection [mm]

Dynamic FEM Static FEM Dynamic FDM Static FDM



 
O p e n  

 

Main report Experimental validation and calibration 55 

 

7.1.4 Nonlinear time history analysis 

Figure 7.4 presents the results of the SDOF mass-spring system analyses compared to the experimental 

results. Figure 7.5 present the NLTH analyses in DIANA compared to the SDOF mass-spring system 

results 

 

Figure 7.4: Comparison with the experiment 

 

 

Figure 7.5: NLTH analyses 
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7.2 Validation experiment 2 

This validation experiment presents the results of the experiment conducted in Woomera, Australia in 

2004 (Ngo, Mendis, & Krauthammer, 2007). The goal of the experiment is to investigate the structural 

behaviour of concrete for heavy explosions. The blast is generated by a 6 tonnes TNT equivalent 

explosion with a standoff distance of 40 m. This is equivalent to the scaled distance Z of 2.3 m/kg1/3, high 

enough to be considered ‘far field’. 

7.2.1 Experiment observations 

There is no deflection-time history graph available for panel 4. Some observations are described in (Ngo, 

Mendis, & Krauthammer, 2007): 

• Concrete is crushed and a cavity of 100 mm width and 30 mm depth is formed vertically at the 

midspan 

• A permanent deflection of 142 mm is measured. 

• At the rear surface, an approximately 8-mm-wide crack at the midspan is observed. 

The concrete panel after the blast trial is shown in Figure 7.6. Figure 7.7 is a scaled illustration of the 

observations. At the given permanent deflection, the support rotation is 8°.  

 

 

Figure 7.6: Panel 4 after the blast 

 

Figure 7.7: Scaled illustration of the observations 

  



 
O p e n  

 

Main report Experimental validation and calibration 57 

 

7.2.2 Moment-curvature relationship 

The M-κ graph is manually constructed and shown in Figure 7.8. Noticeable is that the manually 

constructed M-κ graph fails earlier than the M-κ graph obtained in FEM. This is because the concrete 

crushes before the reinforcement fails, whereas the failure mechanism in the FEM analysis is 

reinforcement failure. 

 

Figure 7.8: M-κ graph for panel 4 

7.2.3 Force-deflection relationship 

The force-deflection (F-u) is shown in Figure 7.9. The permanent deflection is 142 mm, which does not 

lead to failure according to the F-u graph.  

 

Figure 7.9: F-u graph for panel 4 
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7.2.4 Nonlinear time history analysis 

The result of the mass-spring system analysis is shown in Figure 7.10. The results of the SDOF mass-

spring system are close to the results of the nonlinear time history analysis performed in DIANA. The 

deflection goes beyond the permanent deflection, which is as expected. Due to the inward acceleration 

after reaching the maximum deflection and possible effects of the negative phase of the blast (partial 

vacuum), the slab moves back.  

 

 

Figure 7.10: Deflection-time history graph of the mass-spring system 

7.3 Validation experiment 3 

In this validation experiment, the treatment of relatively low scaled distances according to the Hopkinson-

Cranz scaling law (2.2) are analysed. Detonations with low scaled distances result in a nonlinear pressure 

distribution over the beam. The reviewed scaled distance is large enough to be considered as far field 

detonation. 

7.3.1 Experiment observations 

The UFC 3-340-02 (Department of Defence, US, 2008) considers scaled distances above 1.2 m/kg1/3 

explosions in the ‘far field’ design range. This does not necessarily mean that blast load categorised in the 

far field design range leads to a uniform pressure distribution. This is showed in (Wu et al., 2009), where 

the pressure is measured in the middle of the beam and near the support. These pressure measurements 

are used to predict the pressure distribution for the beam reported in (Pham, 2015).  

The load is more concentrated on the middle of the beam, leading to a different load factor and mass 

factor. The simplification shown in Figure 7.11 is used in the analysis. The influence of the nonlinear 

pressure distribution in Figure 7.11 is illustrated in equations (7.1) - (7.4). 
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Figure 7.11: simplification of the nonlinear pressure distribution 

 𝑃(𝑥, 𝑃𝑠𝑜) =
𝑃𝑠𝑜
2
+
𝑃𝑠𝑜
2

2𝑥

𝐿
  (7.1) 

 𝜙(𝑥) =
2𝑥(16𝑥4 + 40𝐿𝑥3 − 120𝐿2𝑥2 + 65𝐿4)

41𝐿5
 (7.2) 

 𝐾𝐿 =
∫ 𝑃(𝑥, 𝑃𝑠𝑜 = 1)𝜙(𝑥) 𝑑𝑥
𝐿/2

0

∫ 𝑃(𝑥, 𝑃𝑠𝑜 = 1) 𝑑𝑥
𝐿/2

0

= 0.696 (7.3) 

 
𝐾𝑀 =

∫ 𝜙(𝑥)2 𝑑𝑥
𝐿/2

0

𝐿/2
= 0.502 

(7.4) 

7.3.2 Moment-curvature relationship 

The M-κ graph is manually constructed and shown in Figure 7.12. The first dip indicates cracking. The 

second dip is where the reinforcement is yielding.  

 

Figure 7.12: M-κ graph for Trial 1 
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7.3.3 Force-deflection relationship 

The F-u graph is shown in Figure 7.13. The FEM analysis is force-controlled with arc-length turned on. 

This allows for local dips in the F-u graph. The FDM model is force-controlled without arc-length. This 

limits the accuracy of the F-u graph obtained in the FDM model. 

 

Figure 7.13: F-u graph for Trial 1 

7.3.4 Nonlinear time history analysis 

Three ways of specifying the unloading stiffness are considered and compared, as indicated in Figure 

7.14 and the mass-spring results in Figure 7.15. Based on this research, the unloading path 2 is the best 

choice. For unloading stiffness 2, the deflection is slightly overestimated for the maximum inward and 

maximum outwards deflection. It should be noted that this requires more in-depth research for better 

insight in the unloading branch. 

 

 

Figure 7.14: Unloading stiffnesses 
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Figure 7.15: Mass-spring system deflection for Trial 1 

 

The load factor and mass factor that follows from the analysis in Appendix III is shown in Figure 7.16. The 

load factor and mass factor have the initial value as predicted in equations (7.3) and (7.4). This is where 

the one-way element is still elastic. 

 

 

Figure 7.16: mass factor and load factor for Trial 1 
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8 Case study 

This chapter contains the blast resistance assessment of building Admin Old. This building section is 

constructed in 1960 and has an in-situ cast reinforced concrete structural system. 

A risk of a blast scenario is present in the area of Admin Old. The resulting blast loads are not 

incorporated in the original design. In 2017, Royal HaskoningDHV performed a high-level blast 

assessment of the building mainframe and concluded that based on the simplified analysis the main 

structure is not sufficient to withstand the specified blast load. 

The drawings of the building are given in Figure 8.1, Figure 8.2 and Figure 8.3. Figure 8.4 shows the 

vertical load bearing system 

 

Figure 8.1: Floor plan Admin Old 

 

Figure 8.2: Cross section Admin Old 
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Figure 8.3: Cross section Admin Old 

 

Figure 8.4: Columns in Admin Old 

 

Figure 8.5: Used FEM model in the original calculation 
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The goal of this research is to compare the existing assessment of the building with the experimental 

observations and methods described in throughout this report. The focus is on the roof slab, which is 

supported by beams. When the beams are infinitely stiff, the slab will behave as a one-way slab. In that 

case, a SDOF mass-spring system will suffice. When the deflection of the beams has a considerable 

contribution to the mid-point deflection of the slab, the total system must be approached as a 2DOF mass-

spring system. The beam stiffness which can be considered as infinitely stiff is determined in this chapter.  

The geometry of the concrete roof slab is indicated in Figure 8.6 

 

Figure 8.6: Geometry of the slab (not scaled) 

8.1 Method 

The roof is subjected to its dead weight. This has significant influence on the results since the dead weight 

already creates cracks in the roof without any load being applied yet. Since the building is constructed in 

1960, the structural elements are most likely more cracked due to previous loading of the structure, such 

as a layer of snow on the roof. For conveniency, the load history, apart from dead weight, is not accounted 

for in the initial stiffness state. This is justified by the following counteractive choices in the analysis of the 

roof: 

• Concrete gets stronger in time. By using the 28-days material parameters, the calculation is on 

the safe side. 

• The roof is slightly fixed at the supports. The structural scheme of the roof is simply supported. 

This is a conservative choice 

The dead weight of the roof may be incorporated as described in chapter 4-26.1 in UFC 3-340-02. The 

dead weight is subtracted from the total resistance of the roof. This is further explained in chapter 8.6.1. 

The dead weight has a negative effect on the outwards resistance and a positive effect for the rebound 

resistance. 
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In the parametric study, the slab dimensions remain the same while the supporting beams change in 

height and mass. For each beam used in the parametric study, a separate M-κ graph is setup. The 

reinforcement percentage remains equal in for all beams.  

8.2 Original results 

The original results are presented in Figure 8.7 (vertical deflection) and Figure 8.8 (reinforcement stress). 

The supporting beams do not contribute much to the total deflection of the slab. The reinforcement is 

clearly yielding, but only in the span direction. The deformation is scaled 20 times larger than the actual 

deformation. 

 

Figure 8.7: Deflection in the original results 

 

Figure 8.8: reinforcement stress in the main span direction 
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8.3 Parameters 

The parameters used in the M-κ graph are included in Table 8.1, Table 8.2, and Table 8.3, and visualised 

in Figure 8.9 and Figure 8.10. 

Table 8.1: Dynamic properties 

Parameter Units Case study 

Time to yield tE s ± 0.07 

Concrete strain rate ε̇c,avg s-1 ± 0.03 

Steel strain rate ε̇s,avg s-1 ± 0.03 

DIFc - 1.18 

DIFt - 1.00 

DIFE - 1.20 

DIGGF - 1.00 

DIFGC - 1.18 

Table 8.2: Concrete properties 

Parameter Units Case study 

Young’s modulus (static / dynamic) MPa 29962 / 35954 

Initial Poisson’s ratio - 0 

Mass density Kg/m3 2500 

Tensile curve - Hordijk 

Tensile strength (static/dynamic) MPa 2.21 / 2.21 

Crack bandwidth mm 454 

Fracture energy N/m 133 

Poisson’s ratio reduction - Damage based 

Compression curve - Parabolic 

Compressive strength MPa 28.00 / 33.04 

Compressive fracture energy N/m 33250 / 39235 

Table 8.3: Reinforcement steel properties 

Parameter Units Case study 

Young’s modulus MPa 200000 

Yield stress (static / dynamic) MPa 550 / 613 

Ultimate engineering stress (static / 

dynamic) 
MPa 594 / 657 

Ultimate engineering strain - 0.05 
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Figure 8.9: Stress-strain relationship for the concrete (h=454 mm) 

 

 

Figure 8.10: Stress-strain relationship for the reinforcement 

8.4 Applied force 

The applied force is shown in Figure 8.11. The peak incident overpressure is 13.38 kPa. The positive 

phase duration is 106 ms, resulting in an impulse of 700.05 kPa ms.  
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Figure 8.11: Applied force in the original calculation 

8.5 Moment-curvature relationship 

The moment-curvature (M-κ) graph for the main span is given in Figure 8.12. The M-κ is obtained in a 

deflection-controlled manner, allowing to have local snap-throughs. This is observable, for example, at the 

point of cracking.  

The top reinforcement is considerably smaller than the bottom reinforcement. This causes the difference 

in the positive and negative side of the M-κ graph. The maximum moment on the positive side of the M-κ 

graph is reached before cracking theoretically occurs. At around the curvature of 0.45 1/m, the bending 

moment starts to drop. This is due to reinforcement failure.  

The FDM model is force-controlled, meaning that the force can only increase. For that reason, the M-κ 

graph is adjusted for the FDM model in such a way that it only increases in bending moment while 

retaining the area under the M-κ graph. 

 

 

Figure 8.12: M-κ graph in the main span direction 
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The direction perpendicular (secondary span) to the main span direction is relatively stiff, due to the 

supporting beams. Figure 8.13 shows the M-κ graph of the slab for the secondary span direction. Figure 

8.14 shows the M-κ graph for the beams. Interesting to see is that the cracking moment of the beams is 

far beyond the ultimate moment of the slab. Therefore, it is convenient to treat the beams elastically and 

do a post-analysis check on the maximum bending moment in the beams to confirm that the beams are 

still in the elastic stage. 

 

 

Figure 8.13: M-κ graph in the secondary span direction 

 

 

Figure 8.14: M-κ graph in the beams 
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8.6 Single degree of freedom mass-spring system  

8.6.1 Force-deflection relationship 

The F-u graph used in the analysis is shown in Figure 8.15 on the right. The dead weight is accounted for 

in the F-u graph. 

 

 

Figure 8.15: F-u graph for the SDOF mass-spring system. On the left: total F-u. On the right: Dead weight 

subtracted. 

8.6.2 Deflection-time history 

The result of the SDOF mass-spring system analysis is shown in Figure 8.16. The maximum displacement 

is 151 mm. The SDOF mass-spring system has decent agreement with NLTH analysis in FEM. 

 

 

Figure 8.16: Deflection-time history graph for the SDOF mass-spring system 
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8.7 Two degrees of freedom mass-spring system  

This paragraph presents the results of the parametric study on the influence of the edge beams on the 

slab. This is done by analysing the two degrees of freedom (2DOF) mass-spring system. The second 

degree of freedom is the deflection of the beams. The slab dimensions are fixed in the parametric study. 

Variations are made in the beam stiffness and beam mass.  

8.7.1 Case 

8.7.1.1 Force-deflection relationship 

 

Figure 8.17: F-u graph for the 2DOF mass-spring system 

 

The F-u graph for the beams represent the beam behaviour inside the system. Although it seems like the 

beam stiffness reduces at around the deflection of 2 mm because of cracking, this is not the case. The 

beams are rigidly connected to the slab edge and therefore the F-u graph for the beams cannot be derived 

manually based on a simply supported beam. Cracking might influence the F-u graph of the beams inside 

the system, but this is hard to distinguish.   
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8.7.1.2 Deflection-time history 

The results of the 2DOF mass-spring analysis are shown in Figure 8.18 and Figure 8.19. The maximum 

and minimum total deflections are 155.6 mm and -24.9 mm, respectively. The maximum and minimum 

slab deflections are 184.7 mm and -79.6 mm. The beams have little influence on the total deflection. 

 

Figure 8.18: mass-spring system results of the case 

 

Figure 8.19: F-u graph in the mass-spring system of the case 

Branches: 

1. The deflection starts at the initial deflected state due to dead weight 

2. The bottom reinforcement starts to yield 

3. After reaching the maximum deflection, the unloading branch is followed 

4. The remaining deflection is pushed back to the initial deflection state without resistance 

5. The initial deflection is pushed back to the zero-deflection state 

6. The upwards resistance is activated 

7. The top reinforcement starts to yield  
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8.7.2 Parametric study 

The case study shows that when the beams are 12 times stiffer relative to the slab, it has little influence in 

the dynamic analysis. Not only the stiffness of the beams has influence on the results, but also the mass 

of the beams. The stiffness of the beams determines the magnitude of the deflection, while the mass of 

the beams determines the response time of the beams. A higher mass leads to a slower response due to 

the inertia effects. 

 

The parametric study is performed according to the flowchart in Figure 1.2, but without the experiment 

calibration. By comparing the presented method (FDM / mass-spring system) with FEM results, the 2DOF 

mass-spring system is verified.  

 

The following variations are made: 

1. SDOF and 2DOF mass-spring system comparison 

1.1. Beam stiffness = 1000x the edge stiffness, beam mass = 1x cross-section mass. This 

represents the SDOF case. 

2. Beam stiffness effect 

2.1. Beam stiffness = 8x the edge stiffness, beam mass = 1x cross-section mass. 

2.2. Beam stiffness = 5x the edge stiffness, beam mass = 1x cross-section mass. 

2.3. Beam stiffness = 2.5x the edge stiffness, beam mass = 1x cross-section mass. 

3. Beam mass effect 

3.1. Beam stiffness = 5x the edge stiffness, beam mass = 0.1x cross-section mass. 

3.2. Beam stiffness = 5x the edge stiffness, beam mass = 10x cross-section mass. 

8.7.2.1 Variation 1: SDOF and 2DOF mass-spring system comparison 

There are two ways to modify the 2DOF mass-spring system to get the SDOF mass-spring system results. 

The first is to make the beam much stiffer than the plate. This way, the beams does not deflect. The other 

way it to significantly increase the mass of the beam. Due to the inertia effect the beam’s response is 

much slower than that of the slab. In the timespan of interest, the period of the first positive and first 

negative peak deflection of the slab, the beam will not accelerate and thereby remains on its original 

position. 

 

 

Figure 8.20: Variation 1.1: 12x the edge stiffness, beam mass = 1e6x cross-section mass 
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8.7.2.2 Variation 2: Beam stiffness effect 

The results of the 2DOF mass spring system for variation 2 are shown in Figure 8.21, Figure 8.22, and 

Figure 8.23. In the latter, it is seen that the slab behaves slightly different compared to the first two graphs. 

 

 

Figure 8.21: Variation 2.1: 8x the edge stiffness, beam mass = 1x cross-section mass 

 

Figure 8.22: Variation 2.2: 5x the edge stiffness, beam mass = 1x cross-section mass 

 

Figure 8.23: Variation 2.1: 2.5x the edge stiffness, beam mass = 1x cross-section mass 
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8.7.2.3 Variation 3: Beam mass effect 

The results of the 2DOF mass spring system for variation 3 are shown in Figure 8.24 and Figure 8.25. The 

weight of the beams does not have a significant influence on the results. The beam with a larger mass has 

a slower response, while a smaller mass leads to a faster response. 

 

 

Figure 8.24: Variation 3.1: 5x the edge stiffness, beam mass = 0.1x cross-section mass 

 

Figure 8.25: Variation 3.2: 5x the edge stiffness, beam mass = 10x cross-section mass 

 

 

  

-75

-50

-25

0

25

50

75

100

125

150

175

0 50 100 150 200 250 300 350 400 450D
e
fl
e
c
ti
o
n
 [

m
m

]

Time [ms]

Series1 Series2 Series3

-75

-50

-25

0

25

50

75

100

125

150

175

0 50 100 150 200 250 300 350 400 450D
e
fl
e
c
ti
o
n
 [

m
m

]

Time [ms]

Series1 Series2 Series3



 
O p e n  

 

Main report Discussion 76 

 

9 Discussion 

In this chapter, the results are discussed. This discussion section is subdivided in different topics that are 

discussed in the Appendices. This is supplemented by the discussion of the case study results. 

9.1 Nonlinear pressure distribution 

Experiment 3 (Appendix III) is about the nonlinear pressure distribution. UFC 3-340-02 (Department of 

Defence, US, 2008) considers scaled distances above 1.2 m/kg1/3 explosions in the ‘far field’ design 

range. The current research has shown that this does not necessarily mean that the blast load categorised 

in the far field design range leads to a uniform pressure distribution. Rather, the scaled distance boundary 

of 1.2 m/kg1/3 says something about the failure mechanism. Below the scaled distance boundary, local 

failure can occur such as cratering and spalling. For close-in detonation, the blast load might cause a 

crater on the front face of the concrete element. On the other side (the tension side), the concrete might 

break off, what is called spalling. Spalling can also occur on the compressive side when high compressive 

forces are reached.  

For scaled distances above 1.2 m/kg1/3, flexural failure is much more likely in the blast analysis. Although 

the pressure on the panel in experiment 3 is more concentrated in the middle (Figure 7.7), the panel still 

fails on bending. For clear local failure the pressure needs to be more concentrated in the middle. 

9.2 Dynamic increase factors 

When a material is loaded at a high strain rate, it tends to increase the strength. The increase in strength 

under high strain rate conditions is called the dynamic increase factor (DIF). Sufficient information about 

this effect is available in literature. In general, a distinction is made for the DIF in the far field design range 

and the near field design range. A clear rise in DIF is observable in the found correlations between the 

strain rate and the DIF outside of the far field design range, as shown in chapter 3. In the far field design 

range, the scatter of the DIFs is small. This makes it easier to predict the DIFs beforehand. The actual DIF 

comes from the dynamic analysis. In the validation experiments it is concluded that the applied DIFs in 

each experiment do not differ much from each other, because all the experiments are in the far field 

design range. When the assumed DIF before the analysis is within ±2% compared to the actual DIF that is 

derived after the analysis, the changes in results are neglectable.  

The DIFs in the original results of the case study are 1.1 for concrete and 1.17 for the reinforcement steel. 

Based on this research, the used DIFs in the analysis of the case study are 1.18 for concrete and 1.11 for 

reinforcement steel. This means that the DIF for reinforcement steel is slightly overestimated in the 

original analysis of Admin Old while the DIF for concrete is underestimated. The DIF for the reinforcement 

has the most effect on the results since most energy is dissipated through the plasticity of the 

reinforcement steel. The DIF for concrete mainly affects the compressive fracture energy. The concrete 

needs to be strong enough to create a lever arm in the cross-section, allowing it to resist bending moment. 

9.3 Unloading stiffness 

Both the outwards deflection and the inward deflection (rebound) are given in experiment 3. For this 

reason, the unloading stiffness needs to be defined after obtaining the maximum outwards deflection (first 

peak). Based on this research, the unloading stiffness equal to the cracking branch (before reinforcement 

yielding) fits the experimental results well. For this unloading stiffness, the deflection is slightly 

overestimated for the maximum inward and maximum outwards deflection. It should be noted that this 

requires more in-depth research for better insight in the unloading branch. 
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9.4 Failure mechanism 

According to UFC 3-340-02, the failure criterion for elements with flexural behaviour is related to the 

support rotation. For elements with only actively participating reinforcement on the tension side and no 

possibility for membrane action, the UFC 3-340-02 limits the support rotation on 2 degrees. This is the 

point where crushing of the concrete may occur and thereby losing the flexural integrity of the element.  

Experiment 1 (Appendix I) fails at the support rotation of 2 degrees due to reinforcement failure. The 

reinforcement type BSt 500S is used, which is equivalent to B500A. The ultimate strain of this type of 

reinforcement may be 2.5%. In contrast to the commonly used reinforcement type B500B, BSt 500S is 

much less ductile. There are no clear signs of failure due to crushing. At the point of failure, the strain in 

the outer compression fibre is slightly above 3.5 ‰. This is the strain where NEN-EN 1992-1-1 indicates 

crushing. The concrete compression model in NEN-EN 1992-1-1 corresponds to a discretised element 

length of 670 mm. This is determined by fitting the compressive stress-strain curve according to the 

parabolic relationship in DIANA over the NEN-EN 1992-1-1 concrete compression model, while retaining 

the compressive fracture energy. 

The structural scheme of the element in experiment 2 (Appendix II) is the same as in experiment 1: a 

simply supported beam with only reinforcement on the tension side. Yet, the element in experiment 2 

reaches a much higher support rotation, namely 8 degrees. There are two differences that influences the 

ductility of the element in experiment 2: a more ductile reinforcement steel and the element is not 

subjected to its self-weight.  

9.5 Post-crushing behaviour 

The one-way element of experiment 3 has reinforcement at the tension side and the compression side. 

After the concrete crushes the flexural stiffness is not immediately gone. The top reinforcement takes over 

the force after the compressive resistance of the concrete is lost in the crushed zone. When the top 

reinforcement has an equal or larger area than the bottom reinforcement, the resisting bending moment 

remains equal after crushing. However, in most cases the top reinforcement is smaller than the bottom 

reinforcement. Failure due to a force imbalance in the cross-section is avoided by including the 

compressive force of the concrete below the crushed zone. This results in a lower bending moment than 

that at the onset of crushing. The post-crushing resistance creates additional ductility of the element. This 

allows the structure to reach a larger support rotation compared to the element without compression 

reinforcement. The resisting force of the compression reinforcement is limited by its buckling force when 

the bars are free to buckle. Buckling may be restrained by uncrushed concrete or stirrups to transfer 

forces to the tension reinforcement.  

9.6 Verification of the post-crushing behaviour 

A comprehensive study is performed by (U.S. Army Corps of Engineers, 2008) on the comparison of 

SDOF analysis to a large data set of experiments (Appendix II). The referred tests in (U.S. Army Corps of 

Engineers, 2008) are mostly classified since they are conducted by defence departments. The study gives 

a good indication of the level of damage at certain support rotations. Up to 2 degrees the damage of the 

element can be considered moderately. Above the support rotation of 2.6 degrees the damage level is 

categorised as “heavy” damaged. The transition zone between 2 degrees and 2.6 degrees can lead to 

“moderate” damage or “heavy” damage. The crucial part of this study is that it shows the ductility of one-

way elements beyond the support rotation of 2 degrees up to 6 degrees. This confirms the observations 

made on the ductility of one-way elements in the validation experiments.  
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9.7 Case study 

The span of the case study slab is significantly larger than experiment 3. Both structures are roofs and 

subjected to their dead weight. In the case study, the dead weight has significant influence. The bending 

moment caused by the dead weight is already half the resisting bending moment. The blast load is 

therefore critical and might cause heavy damage or failure. On the other hand, the dead weight gives 

additional resistance for the rebound since the initial permanent deflection needs to be pushed back to the 

zero-deflection state first in order to activate the upwards resistance. 

The analysed element of the case study is approached as a SDOF mass-spring system and 2DOF mass-

spring system. The F-u graph is obtained in a FDM model. The FDM model for a one-way element is 

different than for a two-way element. Although the F-u graph for the one-way element and the two-way 

element (with stiff beams) are similar, as seen in Figure 8.15 and Figure 8.17, they are not quite the same. 

The main reason for the difference between the F-u graph for a one-way element and a two-way element 

with stiff beams is the accuracy of the FDM model. The FDM model for a one-way element is based on the 

beam equation and the two-way element for the plate equation. The load in the two-way element is also 

carried by the twisting bending moment. Also, the Poisson’s ratio increases the load bearing capacity of 

the slab. The downside of the two-way element FDM model is that is assumed a certain cracking pattern. 

Cracks are assumed through parallel and perpendicular to the element edges. When the supporting 

beams are stiff, this is a reasonable assumption. However, when the beams weaker or not present at all, 

the cracking pattern is different. For this reason, the nonlinear FDM model for the two-way element is less 

accurate than the nonlinear FDM model for a one-way element.  

From the 2DOF mass-spring system it can be concluded that the supporting beams have little influence. 

This is due to the high stiffness of the beams compared to the slab. An SDOF approach is suitable for 

predicting the mid-span deflection of the slab. The maximum mid-span deflection in the nonlinear time 

history analysis of the original analysis is 144 mm, while the SDOF mass-spring system predicts 156 mm. 

The rebound motion is less critical due to the positive working dead weight of the concrete. 

In the parametric study it is shown that when the beams are stiff enough to keep the slab undamaged in 

the secondary span direction (perpendicular to the main span), the dynamic response of the slab is 

practically independent of the beam stiffness. When the beams do not fully support the slab in the 

secondary span direction, the response of the slab is different. In that case, the beams dissipate more 

energy whereas the slab dissipated less energy. 
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10 Conclusions and recommendations 

The conclusions are drawn by reflecting on the research objective. The research objective is formulated in 

a single all-encompassing question: 

How can a two-way reinforced concrete slab with stiffened edges subjected to blast load be reduced 

 to a SDOF or 2DOF mass-spring system in which it approximates the nonlinear behaviour of the 

experimentally tested slabs? 

The research question contains a lot of elements. The following elements define the scope of the 

research: 

• Two-way reinforced concrete slab with stiffened edges 

• Blast load definition 

 

The other elements in the research question are specifying the research objective: 

• The nonlinear (static) behaviour 

• The dynamic behaviour 

• Experimental validation 

• The choice between SDOF or 2DOF mass-spring system 

 

To formulate a good answer, the elements in the research question are elaborated one by one in chapter 

10.1 and chapter 10.2. This is followed by a summarizing answer to the research question in chapter 10.3. 

After that, the contribution of this research to existing studies is expounded in chapter 10.4. Finally, 

recommendations are put together for designing a reinforced concrete slab supported by beams in 

chapter 10.5. These recommendations are related to the current design method of Royal HaskoningDHV 

and the case study. 

10.1 Reflection on the research scope and assumptions 

Two-way reinforced concrete slab with stiffened edges 

In the case study, a slab is assessed supported by two beams on opposing sides. This causes a main 

span and a secondary span. The main span is perpendicular to the beams and the secondary span is 

parallel to the beams. The main span is assumed to be much weaker than the secondary span 

(perpendicular to the main span), resulting in a clear crack through the middle of the main span. On this 

assumption, the finite element method (FDM) model is set up.  

 

Blast load definition 

The blast load on the element partially determines its response. The term ‘blast’ is used for waves 

generation by detonation and deflagrations. A detonation is more critical and is typically formulated as an 

exponentially decaying pressure function in time. Generally, the most destructive part of the blast wave, 

the positive phase, passes by in less than 0.1 seconds. Blast waves generated by deflagrations are not 

considered in this research. 

A distinction is made between near field explosions and far field explosions. Near field explosions, as the 

name suggests, are more close-in explosions. Typically, near field explosions cause local failure. This is 

hard to capture in a mass-spring system. The behaviour of RC elements subjected to close-in explosions 

is often analysed in FEM software with explicit solvers, such as Abaqus and LS-DYNA. For this type of 

behaviour and load definition, DIANA is not preferred. This research focusses on the far field explosions, 

leading to flexural failure. 
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10.2 Reflection on the research objective 

The nonlinear behaviour 

The nonlinear behaviour in the mass-spring system is covered by the force-deflection (F-u) relationship. 

The F-u graph can be constructed in various ways. In this research, the F-u graph is obtained by use of 

the FDM model. The F-u graph of the FDM model is compared with the F-u graph of the finite element 

method (FEM) model. For the one-way element, good agreement is found between the FDM model and 

the FEM model. The FDM model for the two-way element deviates a little. This is because a discrete 

crack through the middle of the element is assumed in the FDM model. This is true when the supporting 

beams are relatively stiff. When this is not the case, the actual yield lines are not through the middle of the 

element.  

The mass-spring system is validated by published experiments. From the experiments it turned out that 

concrete crushing occurs at around a support rotation of 2 degrees. This is followed by the loss of flexural 

resistance. This is in line with the UFC 3-340-02. For a rough design check, the FEM results can be 

checked for the support rotation of 2 degrees for slabs without the possibility of membrane action. The 

more accurate way is to compare the moment-curvature (M-κ) graph in FEM with the constructed M-κ as 

described in chapter 4. 

The mass-spring system transforms the mass and load into a point mass and spring. Not all the mass of 

the element contributes to the mass-spring system. The same holds for the load. The participating mass 

factor and participating load factor can be extracted from the deflection of the element. When the load is 

more concentrated in the middle, the load factor increases. It is shown in the validation experiments that 

for scaled distances above 1.2 m/kg1/3 the load factor does not differ much compared to the distributed 

load case. 

 

The dynamic behaviour 

The dynamic behaviour involves two main additions in comparison with the static behaviour. The first 

addition is the inclusion of damping and inertia. Typically, the influence of damping is small while the 

inertia effects is significantly larger and can dominate in the structural response. This is especially true 

when the duration of the load is much shorter than the structural response time. 

The second addition is the strength increase for the materials under blast loading conditions. This is 

incorporated by the DIF. The UFC 3-340-02 gives accurate formulas for the DIFs. The Model Code 2010 

is rather conservative. Besides the formulas, the UFC 3-340-02 also gives a table with predefined DIFs. In 

general, this table is conservative. For low material strain rates, the table is more accurate and might 

overestimate the DIF for reinforcement steel slightly.  

Experimental validation 

The presented method of analysis (chapters 4-6) is applied on several published experiments. When 

using the real material parameters taking into account the DIFs, the results of the analysis (FEM or FDM) 

are a good approximation for a simply supports one-way element. Based on the assessed experiments, it 

is safe to assume that the failure mechanism for a one-way element in the far field design range is 

reinforcement failure. UFC 3-340-02 advises to design on a support rotation of 2 degrees. This is where 

crushing may occur. In the analysis of experiment 1, it is seen that the strain in the outer compressive fibre 

is around 3.5 ‰ at the support rotation of 2 degrees. This value for the ultimate strain is commonly used 

as the ultimate strain of concrete because NEN-EN 1992-1-1 (Normcommissie 351 001 "Technische 

Grondslagen voor Bouwconstructies",, 2011) prescribes it. Defining the ultimate strain in FEM analysis is 

inconvenient. This makes the results mesh dependant since the compressive fracture energy remains 

equal for any mesh size. Using an energy based concrete model for both tension and compression makes 

the FEM model mesh independent. Generally, this leads to a much larger ultimate strain of the discretised 
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element. The NEN-EN 1992-1-1 concrete compression model corresponds to a discretised element length 

of 670 mm, while the mesh size in FEM is usually smaller.   

The analyses show that the concrete compressive force is spread out over a certain area. This is seen in 

experiment 2, where the concrete is clearly spalling over a relative wide area. It shows that there is plenty 

energy absorption capacity left in the structure after the support rotation of 2 degrees. 

 

The choice between SDOF or 2DOF mass-spring system 

The case study showed that for stiff beams, the beams can be modelled elastically. A post-analysis check 

on the maximum moment should be done. When the beams are stiff (14x stiffer), the contribution of the 

beams to the total mid-slab deflection is neglectable. A parametric study has shown that for beams with a 

spring stiffness ratio compared to the slab lower than 5, the contribution of the beam should be 

considered. 

10.3 Reflection on the problem statement 

The two-way reinforced concrete slab with stiffened edges can be reduced to a mass-spring system that 

correctly calculates the nonlinear behaviour by using: 

• The correct dynamic increase factors, which chapter 3 provides, on the material properties. 

• An accurately defined force-deflection relationship, which reflects the real nonlinear behaviour as 

good as possible. 

 

The two-way reinforced concrete slab subjected to blast load can be reduced to a SDOF mass-spring 

system under the following conditions: 

• The scaled distance Z is above 1.2 m/kg1/3. This is referred to as the far field design range. In this 

range, flexural behaviour of the slab may be assumed. 

• The DIFs are chosen carefully, preferably using the empirical relations as described in chapter 3. 

• The supporting beams are 5 times stiffer relative to the slab. When the beam stiffness ratio is 

lower, the contribution of the beams to the total slab deflection should be considered. A 2DOF 

mass-spring system is then more appropriate. 

• Cracks form perpendicular to the main span direction. This is the case in the used experimentally 

tested slabs 

10.4 Contribution of this research to existing studies 

The main addition of this research to existing studies is the extensive use of a mass-spring system, 

specifically the single degree of freedom (SDOF) approach. The SDOF mass-spring system is validated 

by published experiments. In most experiments, the specimen is analysed in FEM software but sometimes 

a SDOF mass-spring system is used. In the reports of the experiments, simplifications are made at some 

point in the analysis. Whether it be the moment-curvature (M-κ) graph, the force-deflection (F-u) graph or 

the participating load and mass factors.  

The presented analysis method of a one-way element is accurate throughout the whole analysis and is 

applied on multiple published experiments. It originates from the underlaying python scripts where the 

running variable is incrementally increased. By remembering the previous steps in the script, the cracking 

and yielding branches are well-captured in both the M-κ graph and the F-u graph. There are no 

publications available on the use of the FDM for cracking reinforced concrete (RC) elements. This 

research presents an accurate technique to implement it on symmetric beams. 

The two degrees of freedom (2DOF) mass-spring system is specific for this research. It is not validated by 

experiments. The validity of the model is affirmed by modifying a similar example in (Biggs, 1964), a 
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leading source on the topic of dynamic analysis. The 2DOF mass-spring system is compared with FEM 

results. For the elastic case, the 2DOF mass-spring system matches the FEM results. When cracking of 

concrete gets involved, the 2DOF mass-spring system deviates a little from the FEM results, but with an 

acceptable error. 

10.5 Recommendations and further development 

As concluded before, the nonlinear FDM model for the one-way element is more accurate than the 

nonlinear FDM model for the two-way element. The loss of accuracy appears after severe cracking occurs 

through the middle of the two-way element. This is mainly because for relative weak beams, the real 

cracking pattern is different than assumed in the FDM model. In this research, the nonlinear FDM model 

for the two-way element is valuable to analyse the effect of the beams. The FDM model for the one-way 

element is significantly faster than the FDM model for a two-way element and is therefore more suitable 

for a quick judgement. The two-way element FDM model is practically useable for small spans (leading to 

less nodes, which reduces computation time) and a clear dominating span. Because of the downsides of 

the two-way element FDM model, it is not recommended to use it as a design tool.  

The FDM model can be significantly improved by implementing the arc-length method. This is an 

improvement on a force-controlled analysis to accomplish what a deflection-controlled analysis would 

achieve. The arc-length method makes it possible to continue to analysis after reaching the maximum 

allowable force, when there is still energy absorption capacity left in the structure.    

 

The unloading stiffness should be investigated more thoroughly for better insight in the rebound deflection. 

It is not trivial what the exact unloading stiffness should be after the reinforcement has yielded. This 

research uses the slope of the cracked branch (before reinforcement yielding) in the F-u graph as an 

approximation for the unloading stiffness. This seems to be a reasonable assumption.  

 

The most important recommendation in relation to blast analysis are listed below: 

• When applicable, the SDOF mass-spring system can provide quick and accurate results. It can 

also serve as a model check for DIANA. Likewise, the constructed M-κ graph (chapter 4) and the 

constructed F-u graph (chapter 5) can be used to check the DIANA results. 

• When the scaled distance is below 0.4 m/kg1/3, the blast analysis should be performed in FEM 

software with explicit solvers. For scaled distances above 1.2 m/kg1/3, DIANA or a mass-spring 

system may be used. For the scaled distances in between 0.4 m/kg1/3 and 1.2 m/kg1/3, DIANA or a 

mass-spring system can provide good results, but the nonlinear pressure distribution over the 

one-way element must accurately modelled. 

• Slabs where the beam deflection has a considerably effect on the slab deflection, DIANA is 

preferred over the two-way element FDM model to construct the F-u graph. The 2DOF mass-

spring system can still be used. 

• The beams in the case study can be modelled elastically because of the high stiffness relative to 

the slab. Generally, the beams are much stiffer than the slab to fulfil their function of supporting 

the slab.  

• The DIFs should be chosen according to the empirical relations mentioned in chapter 3. 
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