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This paper presents a model specifically developed to explore the mobility impacts of connected 

and automated driving and shared mobility. It is an explorative iterative model that uses an 
elasticity model for destination choice, a multinomial logit model for mode choice and a network 
fundamental diagram to assess traffic impacts. To the best of the authors’ knowledge, it is the 
first model that combines a network fundamental diagram with choice models. A second 
contribution is the inclusion of automated vehicles, automated (shared) taxis, automated shared 
vans and new parking concepts in the model as well as the way in which they affect mobility 
choices and traffic conditions. The insights into the direct mobility impacts are the third 
contribution. The short computation time of the model enables exploration of large numbers of 
scenarios, sensitivity analyses and assessments of the impacts of interventions. The model was 
applied in a case study of the Dutch Province of North-Holland, in which the potential impacts of 
automated and shared vehicles and mitigating interventions were explored. In this case study, 
four extreme scenarios were explored, in which 100% of the vehicles have SAE-level 3/4 or 5 and 
people have a low or high willingness to share. The extremes were chosen to get insights into 
maximum effects. The results show that if automated vehicles and sharing are accepted, it is 
likely that there will be considerable changes in mobility patterns and traffic performance, with 
both positive and problematic effects. 
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1. Introduction 

In the coming decades, major changes in the transport system are expected, because of trends 
such as connected and automated vehicles and shared mobility. There is much uncertainty with 
respect to how soon these changes will happen, and how much the way people travel and goods 
are transported is impacted. If technology develops further and is affordable, if people are willing 
to use automated vehicles, and there are clear societal benefits, a ‘driverless’ future with shared 
vehicles can be imagined and the traffic and transport system could change drastically. 

Traditionally, strategic traffic and transport models have been applied to explore the impacts of 
trends and socio-economic developments, and to determine which changes are needed in 
transport networks in terms of network design and capacity. However, as explained in more 
detail in the next section, the models available are generally not suitable for assessing the impacts 
of automation and shared mobility because they don’t contain new mobility concepts and they 
have long computation times which makes them unsuitable to explore many different future 
scenarios. We therefore need dedicated transport models, that can consider new transport 
concepts, enabled by automation and shared mobility and that can deal with all the uncertainties 
with respect to implementation, cost and time parameters and acceptance of these new concepts. 

This paper presents an explorative iterative model that uses an elasticity model for destination 
choice, a multinomial logit model for mode choice and a network fundamental diagram to assess 
traffic impacts of connected and automated driving and shared mobility. To the best of the 
authors’ knowledge, it is the first model that combines network fundamental diagrams with 
choice models. The network fundamental diagrams replace traffic assignment models that are 
traditionally used in iterative 4-step traffic and transport models. Since network fundamental 
diagrams are much more aggregate than network-based traffic assignment models, the presented 
model contributes to the literature of explorative models. A second contribution is the inclusion 
of automated vehicles, automated (shared) taxis, automated shared vans and new parking 
concepts in the model as well as the way in which they affect mobility choices and traffic 
conditions. The insights into the direct mobility impacts are a third contribution. The model was 
applied in a case study, in which the potential impacts of automated and shared vehicles in the 
Dutch Province of North-Holland were examined. 

The next section provides an overview of related modelling efforts in literature. Then, the 
methodology section discusses the set-up of the model – input, models, output. This is followed 
by a section discussing the application of the model in the North-Holland case study, and a 
conclusions and recommendations section. 

2. Literature review 

A comprehensive overview of the implications of automated driving is provided by the ripple 
model of Milakis et al. (2017), which distinguishes three layers: 1) implications on traffic, travel 
cost, and travel choices; 2) implications on vehicle ownership and sharing, location choices and 
land use, and transport infrastructure; 3) wider societal implications. The methodology that we 
propose in this paper focuses primarily on the first layer, which roughly corresponds to the 
impacts that can be assessed with a traditional four-stage model (Ortúzar & Willumsen, 2011). 
This section subsequently discusses how automated driving and car and ride sharing are 
included in traffic assignment, mode choice, trip and destination choice, and location and car 
ownership choice models in literature. All these elements are also present in the road transport 
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impact assessment framework of Annamae et al. (2018) and may be impacted by automated 
driving according to Kuhr et al. (2017).  

Throughout this paper, automation levels follow the SAE-levels of motor vehicle automation 
(SAE International, 2018). 

2.1 Traffic assignment 
For the automated driving adaptation of the Puget Sound regional transport model by Childress 
et al. (2015), link capacities were adjusted, but no distinction between vehicle classes was added 
to the model. Levin and Boyles (2015) formulate a static assignment distinguishing between fully 
automated and non-automated vehicles, where the capacity linearly depends on the penetration 
rate of automated driving. Levin and Boyles (2016) formulate a similar dynamic assignment 
where the fundamental diagrams depend on the penetration rate. Bischoff and Maciejewski 
(2016), Moreno et al. (2018) and Basu et al. (2018) use dynamic agent-based simulations to study 
the impact of shared autonomous vehicles, explicitly replicating the operation of the shared 
vehicle system. Zhang and Guhathakurta (2017) and Bischoff and Maciejewski (2017) do this 
without considering the impact of congestion on link travel times. In their modification of the 
Dutch national transport model for automated driving, Smit et al. (2017) distinguish between 
level 4 automated vehicles and other vehicles in the assignment, which is static but heuristically 
accounts for spillback. The route choice differs due to different values of time and automated 
driving only being available on part of the network. The assignment considers assumed 
differences in time headways (road capacity) of both vehicle classes.   

To calculate travel times, one may alternatively use a network fundamental diagram, i.e. the 
relation between vehicle density and speed for a network (Zhang, et al., 2015; Knoop & 
Hoogendoorn, 2015). Abbas (2016) suggests to adapt the network fundamental diagram to 
automated vehicles based on microscopic simulations. Lu and Tettamanti (2018) estimated 
network fundamental diagrams this way for different penetration rates of different automation 
levels, based on assumed parameters for driving behaviour. Based on Malone et al. (2001), 
Puylaert et al. (2018) calculate travel times for automated driving scenarios in the Netherlands 
using a network BPR function per region type, which is made dependent on the proportion of 
level 0, level 1-2 and level 3 automated vehicles. This capacity effect is made non-linear to 
account for cooperative driving.  

In addition to passenger transportation, Smit et al. (2017) and Puylaert et al. (2018) explicitly 
consider the presence of both automated and non-automated trucks on the road. Finally, the 
International Transport Forum (OECD, 2015) uses a mobility dispatcher for ride sharing to assign 
shared vehicles to users, based on time-minimization-rules. Link travel times are fixed and 
waiting times and route travel times including detours are minimized.  

2.2 Mode choice 
Many mode choice models in automated driving literature have the same structure and 
alternatives as traditional mode choice models, with only modified parameter values and 
attribute levels accounting for automated driving. For example, Puylaert et al. (2018) use a logit 
model to choose between car driver, car passenger, train, bus/tram/metro, and bicycle/walking. 
Malokin et al. (2015) estimate a mode choice model with multitasking attributes using revealed 
preferences, and then adjust these attributes to quantitatively adjust the model for multitasking 
possibilities of automated driving. Gelauff et al. (2017) use the same mode choice model as the 
LUCA model for the Netherlands (Teulings, et al., 2018), but alter the travel time attributes of the 
alternatives to account for assumed changes in value of time and travel time due to the 
introduction of automated driving. Smit et al. (2017) adjust their mode choice model by 
modifying the value of time for owners of automated vehicles and by using the travel times from 
their modified assignment model. Childress et al. (2015) do the same without distinguishing 
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these user classes. Some literature mentions changing the available modes in the mode choice. 
LaMondia et al. (2016) add automated vehicle as a third alternative to a mode choice model 
between car and airplane. Conversely, Correia and Van Arem (2016) consider only level 5 
automated vehicles and model mode choice as a choice between car passenger and public 
transport, removing car driver as a separate option. 

While there may be important relations between vehicle automation and sharing (Hao & 
Yamamoto, 2018; Tillema, et al., 2017), shared vehicle concepts are only sometimes embedded as 
alternatives in mode choice models for automated driving scenarios. In a multimodal setting, Yap 
et al. (2016) estimate a mode choice model on stated-preference data that includes an explicit 
choice between driving a shared vehicle manually and being driven in a shared fully automated 
vehicle. Bansal et al. (2016) estimate a usage frequency choice model for shared automated 
vehicles. Pakusch et al. (2018) researched stated preferences among traditional private car, 
automated private car, traditional shared car, automated shared car, and public transport, but did 
not include level-of-service attributes in their survey. Moreno et al. (2018) use stated-preference 
data to calibrate and apply a mode choice model to choose between private car and shared 
autonomous car, that is dependent on the number of daily trips, but again not on the level-of-
service provided by these modes. Basu et al. (2018) add shared automated taxis and the 
combination of shared automated taxis with rail transport as new options to an existing mode 
choice model, reusing parameters of existing modes like conventional taxi (Li & Biran, 2017). 

In terms of new parking concepts with automated vehicles, Levin and Boyles (2015) add a choice 
within the mode choice between parking at the destination and having the vehicle drive back 
empty to the origin and park there, avoiding parking costs. Childress et al. (2015) only reduce 
parking costs in their model to account for more compact parking of automated vehicles. 

2.3 Trip and destination choice 
The attractiveness of the modes available in the mode choice can in turn impact the destination 
choice of trips and the choice to make trips. The Dutch national transport model used by Smit et 
al. (2017) and LUCA used by Gelauff et al. (2017) account for the destination choice effect by 
combining mode choice and destination choice in a nested logit model (Train, 2002). The Dutch 
national transport model furthermore uses the expected maximum utility (logsum) of this nested 
logit model in the trip frequency choice, so that the number of trips also depends on the 
attractiveness of available destination-mode combinations. Levin and Boyles (2015) base 
destination choice on the best generalized travel cost of all modes. The reduction of travel time 
and value of time causes the activity-based model used by Childress et al. (2015) to schedule both 
more and longer trips. Basu et al. (2018) also have the travel utility feed back into the activity 
pattern choice. 

2.4 Location and car ownership choice 
Location and car ownership choices are not traditional components of the four-stage model 
(Ortúzar & Willumsen, 2011). In terms of the ripple model of Milakis et al. (2017), these choices 
are not directly relevant for first-layer implications of automated driving, but focus on the second 
layer. Incorporation of location choice would contribute towards closing the land use-transport 
interaction circle (Wegener & Fürst, 1999). Gelauff et al. (2017) focus on commuter trips and 
include a home location choice within the same nested logit model as destination (i.e. work 
location) choice and mode choice, allowing them to analyse relocation effects of automated 
driving. Car ownership choice is complicated by automated driving in case multiple levels of 
automation are available to choose from. Smit et al. (2017) inherit a car ownership model from the 
Dutch national transport model, but assume pre-specified penetration rates for different levels of 
automation. Puylaert et al. (2018) use penetration rates from Nieuwenhuijsen et al. (2018), who 
estimate penetration rates of different levels of automation over time using system dynamics, 
without an explicit model for car ownership choice. As indicated earlier, Pakusch et al. (2018) 
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embed the choice between an automated and a non-automated vehicle in the mode choice instead 
of a separate car ownership choice. 

2.5 Conclusion literature review 
Although there is a growing body of literature with respect to modelling the impact of automated 
driving and shared mobility, integrated approaches addressing the combined impacts of sharing 
and automation on travel times, mode choice, destination choice, location choice and car 
ownership are rare. While the approach of Basu et al. (2018) already includes many of these 
aspects, it is an activity-based and agent-based approach, resulting in high data requirements and 
long computation times for large networks. New parking concepts are not included yet. 

3. Methodology 

This paper presents a model that focuses on mode choice and travel times (via a network 
fundament diagram) and takes destination choice into account via elasticities. Location choice 
(spatial effects) and car ownership effects are exogenous inputs to the model. Table 1 describes 
the model segmentation. The next section describes the model approach in more detail. After that 
the model convergence and validation are described. 

Table 1. Model segmentation 

Input Explanation 

12 transport modes 
(m) 

Modes included are car driver (level 0/1/2), car passenger, train, bus/tram/metro, 
bicycle, walking, trucks (level 0/1/2), automated private car (level 3/4 or 5), automated 
taxi, automated shared taxi, automated shared van, automated trucks (level 3/4 or 5). 
Automated private cars are privately owned vehicles with level 3/4 or 5 automated 
driving functions. Distinctions between the levels can be made by selecting the road 
types on which the vehicles are allowed to drive automatically, and by changing the 
cost and time parameters. Automated shared taxis offer a ride sharing service. The 
same holds for automated shared vans (or buses) but with a higher capacity. In level 3 
and 4 a driver is still required for automated taxis (and shared taxis and vans/buses). 
Automated trucks are level 3/4 or 5 trucks. Finally, with level 5 automation, there is no 
difference between car driver and car passenger. The car passenger option thus 
becomes superfluous in level 5 scenarios and is hence removed. Members of the same 
household can still travel together in an automated private car. Non-automated 
(shared) taxis/vans are excluded because they have a very low share in the 
Netherlands. 

Level of 
communication 

Share of the fleet that is capable of vehicle-to-vehicle (V2V) communication.  

4 road types (s) Through roads (freeways and highways), distributor roads with separate roadways, 
distributor roads with mixed traffic, access roads (district and neighbourhood arteries, 
residential streets). 

5 region types (r) Very highly urbanized areas, highly urbanized areas, other urbanized residential/work 
areas, rural residential and recreational areas, hubs and mainports. 

4 user groups (u) Car owners with a household income >30000 euro (1) or a household income ≤ 30000 
euro (2), no private car available and household income >30000 euro (3) or a household 
income ≤30000 euro (4).  

4 age classes (a) 0-17, 18-35, 36-75, >75 years. 
3 parking options (p) Parking or drop off at location (in case of level 5 automation), valet parking, and 

parking or drop off at some distance (e.g. park-and-ride locations or centrally located 
car parks). 

3 time periods (t) Morning peak, evening peak, off-peak period. 
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3.1 Model steps 
Figure 1 summarizes the method used. The numbers in the circles refer to the different steps of 
the method, described below the figure. 

 
Figure 1. Steps model approach 

Step 1: Trips base year 
Trips for a base year are exogeneous input. The model was developed for the Dutch situation and 
passenger trips were derived from the large-scale Dutch survey OVIN (CBS, 2018) which 
includes trips of about 40 thousand respondents each year. This is about 0.25% of the population. 
For each respondent, personal characteristics like driving license and age and household 
characteristics like home location, car ownership and household income are available. For each 
trip, characteristics like start time, end time, main mode, access and egress modes, estimated 
travel time and trip distance are available. Weight factors are available to derive information for 
the entire population. Truck trips are also exogenous input to the model. Truck trips were 
derived from the Dutch national transport model. The number of trucks does not change (no 
mode choice effects). The impact of trucks on the capacity can change because of automation 
and/or communication. 

Step 2: Trips future year 
The trips for a future year are derived by multiplying the weight factors of the trips with a factor 
that represents the growth in number of inhabitants according to the long-term future scenarios 
for the Netherlands (Centraal Planbureau and Planbureau voor de Leefomgeving, 2015). Changes 
in other socio-economic variables are not considered, nor the impact of changes in travel times on 
the trip generation. This simplification is justified, because we look at the relative impacts of 
automation and sharing in several future scenarios.  

3.2 Step 3: Location choice 
Spatial impacts or location choice effects of automated driving are exogeneous input to our 
model. Based on literature (see section 2.4) and expert knowledge, it is possible to indicate per 
region type what percentage of inhabitants relocate and to which region type they are relocating. 
The weight factor of each trip is multiplied by 1 plus the percentage change in the number of 
inhabitants of the region type in which the trip starts. 

Step 4: Destination choice 
Automation and sharing may also affect the destination choice. Destination choice effects are 
approximated with an elasticity that indicates with what percentage the mileage changes when 
the generalized travel time changes. An elasticity of -1 is used, which is based on (Herder, et al., 
2015). 

Step 5: Mode choice 
Mode choice effects for each trip are modelled with a multinomial logit model. Similar to 
(Pakusch, et al., 2018), the choice between automated and non-automated (shared) vehicles is 
embedded in the mode choice as is explained in section 2.2. Trips are divided over different 
parking concepts (scenario input) and divided over different user classes that have a different 
willingness to share (scenario input per user group and age class).  

2. Trips 
future
year

3. 
Locatio
n choice

4. Desti-
nation
choice

5. Mode 
choice

6. 
Traffic 
assign-
ment

1.Trips
Base year
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The utility functions for the different modes contain fixed costs (cf), costs per kilometre (cv), 
travel time (distance/speed = X/V), parking search time and time to go to the destination (pt), 
parking costs (pc), an extra travel time factor for ride sharing and/or car sharing that represents 
the extra time needed to pick up or to drop off other passengers or to walk to or wait for a shared 
vehicle (tf). Costs for road pricing per region (cpr) and per kilometre (cpk) are included for 
analysing the impact of pricing interventions. Finally, the utility function includes a mode 
specific constant and age dummies. Equation 1 shows the general form of the utility function for 
each mode, in which m = mode index, p = parking concept index, r = region type index, s = road 
type index, a = age class index, t = time index, vot = value of time. The distance per trip is output 
of the ‘destination choice’ step. The trip length is split over multiple road types s such that 
∑ 𝑋𝑠 = 𝑋𝑠 , using road type fractions that are exogenous input. The speeds for the car modes are 
output of the traffic assignment via the network fundamental diagram (step 6). The speed V for 
cars, taxis and vans are weighted average speeds. The speeds for these modes vary per road type 
and region type. 

𝑈𝑚 = 𝑐𝑓𝑚  + 𝑐𝑣𝑚 ∗ 𝑋 + (
𝑋

𝑉𝑚
+ 𝑝𝑡𝑚𝑝) ∗ 𝑣𝑜𝑡𝑚 ∗ 𝑡𝑓𝑚 + 𝑝𝑐𝑚𝑝 + 𝑐𝑝𝑟𝑟 + ∑ (𝑐𝑝𝑘𝑠 ∗ 𝑋𝑠) +  𝐴𝑆𝐶𝑚 + 𝑎𝑔𝑒𝑎𝑠    (1) 

Table 2 summarizes the input. The costs are derived from (Boston Consulting Group, 2016). The 
costs of automated vehicles are expected to stay equal to the costs of current cars. The purchase 
costs of automated vehicles are expected to be higher, but the insurance costs and fuel costs are 
assumed to decrease. In case of sharing, the costs decrease because they are shared with multiple 
people. In the level 3/4 scenarios, the automated taxi (shared or not) and van is relatively 
expensive as a driver is still needed. The value of times for the existing modes are based on (KIM, 
2013). The values of time for the new modes are derived from (Snelder, et al., 2015). Finally, 
automation of trains and bus/ tram/metro could also reduce the costs of these modes. However, 
this has not been implemented. It is assumed that automated taxis, shared taxis and shared vans 
increase the total travel time with respectively 5%, 20% and 40%, as compared to private cars. 
When shared concepts become more attractive, the detour time might decrease, because the 
vehicle fleet will be larger, which allows for further optimization of the system. For automated 
shared taxis and vans a maximum distance (md) of 35 km is assumed because these vehicles are 
assumed to stay within a certain range from their ‘home region’. 

 The modes car driver and automated private car (level 3/4) can only be chosen when the person 
that makes a trip has a car in the household and a driver’s license. Automation might have an 
impact on car ownership, especially when the costs decrease. This is however outside the scope. 
We assumed that in case of level 5 automation, a driver’s license is no longer necessary. A bicycle 
can only be chosen when the person that makes a trip has a bicycle. The modes automated shared 
taxi and automated shared van can only be chosen when the person is willing to share.  

Each mode can only be selected when the mode is allowed in the region type of the origin and 
destination. This allows for scenarios in which, for instance, automated private cars are not 
allowed in very highly urbanized areas or any other region restriction. Restrictions for region 
types that are merely crossed during a trip are not considered. 

The mode choice model is estimated based on OVIN data for the base year 2015. For the new 
transport concepts including automation and sharing, the parameters cannot be estimated, since 
they are not included in the data yet. The mode specific constant (ASCm) and age dummies (agea) 
contain mode preferences that are not related to travel times and costs (e.g. comfort). Because 
people of different ages may have different preferences age dummies are added. The parameters 
for the automated private car are set equal to the parameters of car driver. For automated taxis, 
shared taxis and shared buses, these parameters were set to 40%, 80% and 100% of the 
parameters for bus, tram and metro since these new concepts have more in common with public 
transport than with cars. It is assumed that automated taxis are preferred over automated shared 
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taxis and buses, because they are not shared with others. Similarly, automated shared taxis are 
shared with less people than automated shared vans. Therefore, they have a lower disutility. 

The costs, value of time and mode specific constants were varied in a sensitivity analysis. 

Table 2. Exogeneous variables and parameters 

  CF 
(€) 

CV 
(€/KM) 

TF VOT 
(€/H) 

MD 
(KM) 

ASC AGE 
0-17 

AGE 
18-35 

AGE 
36-75 

AGE 
>75 

Car driver - 0.17 1.00 9.00 - 0.0 8.0 0.0 0.0 3.0 

Car passenger - 0.00 1.00 7.20 - -1.0 -1.0 0.5 0.5 0.0 

Train 2.20 0.17 1.00 9.25 - 3.5 2.0 0.0 0.0 12.0 

Bus/Tram Metro 0.78 0.10 1.00 6.75 35 5.0 0.0 0.0 0.0 5.0 

Bicycle - - 1.00 9.00 - 2.5 -3.0 0.0 0.0 4.0 

Walking - - 1.00 9.00 - 2.0 -2.0 0.5 -1.2 2.0 

Automated private car - 0.17 
 

1.00 L5     7.20 
L3/4 8.10 

- 0.0 8.0 0.0 0.0 3.0 

Automated taxi - L5     0.18  
L3/4 2.50 

1.05 L5     7.20 
L3/4 8.10 

- 2.0 0.0 0.0 0.0 2.0 

Automated shared taxi - L5     0.12 
L3/4 1.63 

1.20 L5     7.65 
L3/4 8.55 

35 4.0 0.0 0.0 0.0 4.0 

Automated shared van - L5    0.06  
L3/4 0.81 

1.40 L5     7.65 
L3/4 8.55 

35 5.0 0.0 0.0 0.0 5.0 

Step 6: Traffic assignment 
Travel time impacts are computed with a network fundamental diagram per road type s and 
region type r for the morning peak, evening peak and off-peak period t. The network 
fundamental diagram gives a relation between the accumulation (average network density K) 
and the average network speed V. If the network density is below the critical density vehicles 
drive at the maximum or free-flow speed. If the density is above the critical density the speed 
reduces to 0 km/h. 

𝑉𝑟𝑠𝑝(𝐾𝑟𝑠𝑡) = 𝑣0
𝑠                                                  𝑖𝑓 𝑘𝑟𝑠 ≤ 𝑘𝑐𝑟𝑖𝑡

𝑟𝑠                   ∀ 𝑟 ∈ 𝑅, 𝑠 ∈ 𝑆, 𝑡 ∈ 𝑇  (2) 

𝑉𝑟𝑠𝑡(𝐾𝑟𝑠𝑡) = (𝑘𝑗𝑎𝑚
𝑠 − 𝐾𝑟𝑠𝑡) ∗

𝑤𝑠

𝐾𝑟𝑠𝑡
                𝑖𝑓 𝑘𝑟𝑠 > 𝑘𝑐𝑟𝑖𝑡

𝑟𝑠                  ∀ 𝑟 ∈ 𝑅, 𝑠 ∈ 𝑆, 𝑡 ∈ 𝑇 

𝑤𝑠 =
𝑐𝑎𝑝𝑠

(𝑘𝑗𝑎𝑚
𝑠 −𝑘𝑐𝑟𝑖𝑡

𝑠 )
                             ∀ 𝑠 ∈ 𝑆 

v0 is the free-flow speed, kjam is the jam density (vehicles/kilometre/lane), kcrit is the critical 
density (vehicles/kilometre/lane), w is the waves peed (km/h) and cap is the capacity 
(vehicles/lane/hour). R, S and T are the sets of region types, road types and periods respectively. 
The free-flow speed and lane capacity of the fundamental diagrams are based on the national 
model system LMS and are summarized in Table 3. The jam density of 125 veh/km is based on 
literature. 

Table 3. Parameters fundamental diagram 

Car Through roads Distributor roads Access roads 

Freeflow 𝑣0
𝑟𝑠 [km/h] 100 60 50 

JamDensity 𝑘𝑗𝑎𝑚
𝑟𝑠  [veh/km] 125 125 125 

Capacity 𝑐𝑎𝑝𝑟𝑠 [veh/hour] 2000 1400 1000 
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To compute the network density per region and road type and per period (formula 3), the trips i 
are converted to the number of vehicles that are present in the network in a period based on a 
weight factor D that shows how many trips with mode m, trip i represents (see step 1). For each 
trip i, the modal split Dim has been determined by the mode choice model. Only the subset of 
modes (MR) that use the road network are considered. This implies that cycling, walking, train, 
bus, tram, metro are excluded. For automated shared taxis and automated shared vans an 
average occupancy rate o is assumed of respectively 2.5 and 5 persons per vehicle. For automated 
private cars and automated taxis, the average occupancy rate depends on the number of car 
passengers. Per trip, region and road type, the vehicles are multiplied by a factor (travel time 
reference case/duration period 𝐻𝑡) that indicates which percentage of the time they are present 
in the network of that region and road type. The travel time for the reference case is computed by 
dividing the distance travelled X on each region and road type by the speed from the reference 

case for that region and road type and period 𝑣𝑏
𝑟𝑠𝑡. 𝑓𝑖

𝑟𝑠 is the fraction of the trips driven on road 
type s in region type r and tf is an extra travel time factor for ride sharing and/or car sharing that 
represents the extra time needed to pick up or to drop off other passengers or to walk to or wait 
for a shared vehicle. This factor is exogenous input to the model. The factor can be determined 
using a vehicle allocation model as is for instance done in (OECD, 2015)(see section 2.1). Finally, 
the density is computed by dividing by the calibrated total number of lane kilometres LK per 
region and road type and per period. The number of lane kilometres is used as calibration 
parameter to correct for the fact that a sample of trips is used as input (see step 1). 

𝐾𝑟𝑠𝑡 = (∑ ∑ ((𝐷𝑖𝑚𝑡/𝑜𝑚) (
𝑓𝑖

𝑟𝑠∗𝑋𝑖∗t𝑓𝑚

𝑣𝑏
𝑟𝑠𝑡 /𝐻𝑡) 𝑝𝑐𝑒𝑚)𝑚∈𝑀𝑅𝑖 ∈ 𝐼 + 𝐷𝑡𝑟𝑢𝑐𝑘

𝑟𝑠 ∗ 𝑝𝑐𝑒𝑡𝑟𝑢𝑐𝑘) /𝐿𝐾𝑟𝑠𝑡    (3)       

Automated vehicles affect the capacity because they can drive closely together when there is 
V2V-communication. When there is no V2V-communication (autonomous driving) the headways 
are expected to stay equal or increase slightly because of larger safety margins. Snelder et al. 
(2015) present a literature overview of microsimulation studies, e.g. Shladover et al. (2012) and 
Wang (2014), that indicate how much time headways may change for locations with and without 
bottlenecks. Based on those studies, we assume that automated private cars, (shared) taxis and 
vans have a passenger car equivalent (pce) value of 1.05 when there is not V2V-communication 
and a pce-value of 0.7 when there is V2V-communication.  

3.3 Iterative process 
The speeds for the car modes are input to the destination and mode choice model. The sub-
models iterate until convergences is reached. In order to make sure that the model converges, the 
speeds from the previous iteration and the current iteration are combined using a fixed weight α 
of 0.25 as is recommended by Ortúzar and Willumen (2011)(see formula 4). 

𝑉𝑗
𝑟𝑠𝑡 = 𝛼𝑉𝑗−1

𝑟𝑠𝑡 + (1 − 𝛼)𝑉 ∗𝑗
𝑟𝑠𝑡    ∀ 𝑟 ∈ 𝑅, 𝑠 ∈ 𝑆, 𝑡 ∈ 𝑇                   (4) 

Convergence is reached when the weighted average summed speed difference between two 
iterations j and j -1 is below a threshold value ε (see formula 5). A default value of 0.05 km/h is 
used for ε. For all presented scenarios convergence is reached in less than 20 iterations. 

∑ ∑ ∑ 𝐷𝑗
𝑟𝑠𝑡|𝑉𝑗

𝑟𝑠𝑡 − 𝑉𝑗−1
𝑟𝑠𝑡|𝑡∈𝑇𝑠∈𝑆 / ∑ ∑ ∑ 𝐷𝑗

𝑟𝑠𝑇
𝑡∈𝑇𝑠∈𝑆𝑟∈𝑅𝑟∈𝑅 <  𝜀      (5) 

3.4 Model validation 
The mode choice model is validated by comparing the mode choice elasticities for changes in 
costs and times with elasticities found in literature (Wardman, 2012; de Jong & Gunn, 2001; 
Geilenkirchen, et al., 2010). The elasticity for changes in car travel times is -0.76. Literature reports 
a value of -0.74. Since the elasticity for changes in car travel times is most important, because it 
also covers changes in the value of time caused by automated driving and changes in the extra 
travel time factor for ride sharing and/or car sharing, it is concluded that the mode choice model 
is valid for usage in exploratory research. 
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The network fundamental diagrams for distributor and access roads have been validated by 
making a comparison with a network fundamental that has been derived from Google data for 
urban roads (Knoop, et al., 2017). The main conclusion is that the network fundamental diagrams 
are valid for densities up to 35 veh/km. For higher densities the model is a bit too sensitive which 
results in an underestimation of the speeds of at most10 km/h.  

Section 4.3 presents a validation of the model results for four different scenarios with automated 
driving and sharing. 

4. Case study North-Holland  

The case study focuses on the Province of North-Holland in the Netherlands (Arcadis and TNO, 
2018). The largest city in this province is Amsterdam. Figure 2 shows the province of North-
Holland and its region types.  

  
Figure 2. The Province of North-Holland and its region types 
 

In 2015, the Netherlands Institute for Transport Policy Analysis (KIM) presented four scenarios 
for a future traffic and transport system with self-driving vehicles (KIM, 2015). The scenarios 
vary in the extent to which vehicles will be automated and how much use will be made of 
automated vehicles, as well as the extent to which travellers are willing to share a vehicle (in 
terms of car sharing and ride sharing). The four scenarios were called: 

1. Mobility as a Service: Any time, any place (100% Level 5, high willingness to share) 

2. Fully automated private luxury (100% Level 5 – no willingness to share) 

3. Letting go on highways (100% Level 3/4 – no willingness to share) 

4. Multimodal and shared automation (100% Level 3/4 – high willingness to share) 

In this case study, extreme scenarios were explored in which 100% of the vehicles is automated 
L3/4 or L5. The extremes were chosen to get insights into maximum effects. In practice, there will 
be a long transition phase with a mix of level 0/1/2/3/4/5 vehicles on the road. The transition 
path is outside the scope of this paper. The presented model can, however, also be used to assess 
the impact of a mix of vehicles on the road. 

It is assumed that in the level 5 scenarios, automated vehicles could drive in automated mode on 
all road types. There is no abuse such as people stepping in front of a vehicle to make it stop, so 
reasonable speeds can be achieved everywhere, including residential streets with mixed traffic 
(e.g. cyclists, pedestrians, stationary delivery vans). For the L3/4-scenarios, it was assumed that 
on through roads and distributor roads where motorized traffic and active modes are separated 
effectively, vehicles can drive in automated mode. On mixed use distributor roads and access 

very highly urbanized areas

highly urbanized areas

other urbanized residential/work areas

rural residential and recreational areas

hubs and mainports

very highly urbanized areas 
highly urbanized areas 
other urbanized residential/work areas 
rural residential and recreational areas 
hubs and mainports 
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roads, vehicles need to be driven manually. In the level 5 scenarios, it was assumed that all 
vehicles communicate with each other and the infrastructure. In the L3/4-scenarios it is assumed 
that 60% communicates with each other and 40% is autonomous. 

4.1 Scenario specific input 
Each transport concept was either enabled or disabled. Car and car passenger, as well as 
automated private car, were disabled in the L5-sharing scenario, except for rural regions. In the 
L5-no-sharing scenario, automated private cars were enabled but not conventional car and 
passenger. Automated taxis were enabled for all scenarios and region types; shared automated 
taxis/vans/buses only in the sharing scenarios. Conventional public transport (train, bus, tram, 
metro) were enabled everywhere, because disabling them would mean that in the sharing 
scenarios, for long distances only automated taxis are available (as cycling, walking and sharing 
concepts were assumed to have a maximum distance associated with them). Cycling and walking 
were enabled in all scenarios and region types. 

The preference for parking concepts has been specified for each scenario and region type. For the 
L5-sharing scenario, travellers are always dropped off at their destination in all region types. In 
L5-no-sharing, valet parking has a large share in mainports and hubs. In urbanized areas, 
parking is mostly at the destination or valet parking, with a tiny share for parking at a distance. 
For the most urbanized areas in Amsterdam, parking is assumed to be mostly at the edge or just 
outside these areas, with a small share for valet parking and a tiny share for parking at the 
destination. In rural regions, most parking is still done at the destination. In the L3/4 scenarios, 
valet parking has a very small share. In the rural regions, parking at the destination is still 
dominant. In L3/4-sharing, parking at a distance and parking at the destinations have equal high 
shares for urbanized regions; for the most urbanized areas, parking at a distance is dominant.  

Some shifts were assumed in spatial distribution, in terms of where people choose to live. Gelauff 
et al. (2017) indicate that “more productive time use during car trips because of automation 
results in population flight from cities. The efficiency gain in public transport because of 
automation has an opposite effect. It leads to further population clustering in urban areas where 
public transport efficiency is primarily expected to increase. A combination of these two 
components may result in concentration of the population in the largest most attractive cities and 
their suburbs at the cost of smaller cities and non-urban regions.”  Both shifts were applied, 
taking the order of magnitude of the effect from (Gelauff, et al., 2017). No changes were assumed 
for L3/4-no-sharing; changes in the order of 0.5-1% for L3/4-sharing (shift towards more 
urbanized areas) and L5-no-sharing (shift towards less urbanized areas); and finally, in the L5-
sharing scenario shifts in the order of 2-3% shift towards highly urbanized areas. 

4.2 Results scenarios 
This section first presents the results for the entire Province of North-Holland and then highlights 
the main differences per region type. Figure 3 describes the modal split effects in terms of 
number of trips. In L5-sharing there is a large modal shift of all modes mainly to automated taxis, 
because the costs for this mode are relatively low and the value of time is lower as well. 8% of the 
trips are made with shared concepts. In L5-no-sharing the private car and automated taxi are the 
dominant concepts. The total share of car trips increases from 41% to 68%. L3/4-no-sharing 
resembles the reference scenario the most. The differences between L3/4-no-sharing and L3/4 
sharing are small because a professional driver is still needed for shared taxis and vans and the 
costs are therefore relatively high. 
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Figure 3. Modal split effects  
 

Figure 4 shows that the number of vehicle kilometres increases in all scenarios compared to the 
reference scenario. In L5-no-sharing the increase in the number of vehicle kilometres is 69%. This 
is partly explained by the modal shift towards automated taxis and partly explained by longer 
distances travelled. By consequence, the number of vehicle hours of delay increases considerably 
resulting in severe congestion in the L5-scenarios. The total number of vehicles required increases 
in all scenarios but L5-sharing, where the number of vehicles required decreases with 58% 
because automated taxis can complete multiple trips per day. The parking revenues increase in 
the L3/4-scenarios and decrease in the L5 scenarios. In L5-sharing it is assumed that people are 
dropped off at their destinations. Vehicles must park themselves sometimes during the day when 
they are inactive. This might give some revenues, but they are not considered in this case study. 

 

 
Figure 4. Traffic effects and parking revenues 
 

The abovementioned results are an average for the entire Province of North-Holland. Since the 
region type ‘Other urbanized residential/work areas’ is the most frequently occurring region 
type, the results for this region type are closest to the average results. In (very) highly urbanized 
areas, the relative increase in mileage and delay is the largest (up to +150% in very highly 
urbanized areas in L5-no-sharing), because people switch from walking, cycling and public 
transport to car modes. In rural areas and in mainports and hubs the share of car trips is already 
high in the reference case, because of the lower spatial density and a lower level of public 
transport services, so the relative increase in mileage is lower. Since there is more spare road 
capacity in these regions, the increase in mileage will have less impact on delay. Nonetheless, in 
L5-no-sharing the delays still increase in rural areas. In the other scenarios, the delays stay more 
or less equal or even decrease in rural areas and near mainports. 

4.3 Comparison with literature 
Since automated vehicles of level 3 and beyond are very rare at present time, and comprehensive 
studies of their impacts are limited and differ in assumptions, our model is difficult to validate. 
To the best of our ability, we compare results from each of our four model scenarios with results 
from relevant literature below. While a thorough assessment remains difficult, our model 
appears reasonably adequate for its explorative purpose. 
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L3/4-no-sharing: Unlike the considerable changes our model predicts for the L3/4-no-sharing 
scenario, Smit et al. (2017) report only very small changes in the outcomes of the Dutch national 
transport model after automating about one-third of the vehicles up to level 4 when driving on 
trunk roads. Contrary to Smit et al., Puylaert et al. (2018) do predict a modal shift to cars, but the 
impacts are smaller than in our model. A possible explanation is that our L3/4-no-sharing 
scenario has 100% penetration and further adds automated taxis as a new mode. 

L3/4-sharing: Basu et al. (2018) model a scenario for a virtual city where automated shared taxis 
are introduced. We can roughly compare this with our L3/4-sharing scenario, keeping in mind 
that Basu et al.’s virtual city also has a human-driven taxi mode and that no changes are made to 
privately-owned cars. Compared to the respective reference scenarios, both models predict that 
ridership of traditional public transport will drop (-21% for us versus -7% for Basu et al.) and that 
the number of car passengers will drop (-2% versus -9%). However, the effect on the number of 
car drivers of privately-owned cars differs (+13% versus -7%), likely due to the different 
assumption about automation. 

L5-no-sharing: Levin and Boyles (2015) model a scenario in Austin, Texas where motorists can 
send their automated vehicle back home to avoid parking it at their destination. We can roughly 
compare this with our L5-no-sharing scenario where travellers also have various parking options 
and can additionally opt for automated taxis. Compared to the respective reference scenarios, the 
results turn out to be surprisingly similar: parking at the destination drops considerably (-56% for 
us versus -66% for Levin & Boyles), public transport ridership also drops considerably (-67% 
versus -61%), and the network-average speed also reduces (-10% versus -8%). 

L5-sharing: Boston Consulting Group (2016) conducted a stated-choice survey among Amsterdam 
travellers of various modes, asking them whether they would switch to new modes utilizing 
automated driving. Table 4applies the resulting mode changes to our 2040 reference modal split 
for metropolitan areas and compares it to our L5-sharing modal split for metropolitan areas. Our 
model predicts much higher automated taxi use (41%) than the survey forecast (5%). However, 
contrary to the Boston Consulting Group survey, our L5-sharing scenario does not allow 
travellers to use private cars; if the private car use according to the survey (23%) is added to the 
automated taxi use, the difference becomes much smaller. The survey predicts more use of 
shared vehicles (10% versus 6%). The results for traditional public transport and bicycle are 
similar. Finally, note that our model predicts a reduction in walking (from 29% to 19%) whereas 
Boston Consulting Group assumed this wouldn’t change. 

Table 4. Modal split in metropolitan areas 

 2040-reference 2040-reference with 
BCG mode changes 

L5-sharing 

Car 14% 6% 0% 
Automated car 0% 17% 0% 
Automated taxi 0% 5% 41% 
Automated shared taxi/van 0% 10% 6% 
Train 8% 4% 3% 
Bus/tram/metro 8% 2% 4% 
Bicycle 41% 28% 27% 
Walk 29% 29% 19% 

4.4 Sensitivity analysis 
Figure 5 shows the results of a sensitivity analysis on the costs, value of time, mode specific 
constant and occupancy rate. The mode specific constant for automated taxis, shared taxis and 
shared vans, was respectively 40%, 80% and 100% of the mode specific constant for bus, tram and 
metro. In the sensitivity analyses they are all set equal to 100% (run ‘asc 100%’). In another run 
the costs of automated taxis, shared taxis and shared vans are set equal to the values for car 
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drivers (run ‘costs 17ct’). The run ‘costs+fixed costs’ is a run in which 20 cent per kilometre 
divided by the occupancy rate was added to the costs per kilometre. In this scenario the owner of 
the vehicle, charges the ownership costs to the user(s) of the vehicle. In the runs 
‘Costs+10%/20%/30%’ the costs for automated taxis, shared taxis and shared vans are increased 
with respectively 10%, 20% and 30%. In the run ‘vot 9.00 euro’ it was assumed that the value of 
time does not reduce because of vehicle automation. Finally, in the run ‘occupancy rate’ the 
occupancy rate of shared taxis and shares vans was set to 2 and 4 instead of 2.5 and 5. 

The results show that varying the mode specific constant has the largest impact. If the new 
concepts appear to be less attractive than we assumed their total modal share might reduce from 
62% to 44%. Charging the ownership costs to the user (run ‘costs+fixed costs’) also makes a large 
difference. It reduces the modal share of the new modes to 46%. It is likely that owners of the 
automated (shared) taxis and vans will do this at least to some extent. Finally, the runs in which 
the costs are increased with 10%, 20% and 30%, show that some non-linear effects occur. 

 

a  

b  
Figure 5. Results sensitivity analysis 

4.5 Interventions 
Governmental interventions can, on the one hand, accelerate a transition to a self-driving future. 
On the other hand, the Province and the Amsterdam Transport Region can intervene to mitigate 
potential negative impacts (e.g. expected severe congestion in (very) highly urbanized areas), in 
their role as road authority and public transport concession provider. In the case study, the 
model is further applied to explore the effect of interventions. By means of example, Figure 6 
shows the modal split results and traffic effects for a selection of interventions that are relevant in 
L5-no-sharing (column 4-8) and that are relevant in L5-sharing (column 9-12). The three columns 
on the left are the same as in figure 3. They are included to make comparisons easier.  

Interventions L5-no-sharing 
‘Park at distance’ refers to a scenario in which parking or drop/off at location is forbidden in 
highly urbanized areas. ‘Road pricing <30/15/5> ct/km’ refer to road pricing scenarios and 
‘improved public transport’ refers to a scenario where the frequencies of train, but, tram and 
metro are increased with a reduction of about 20% of travel time as a result. The figure shows 
that in L5-no-sharing only high road pricing charges (15 and 30 cent/kilometre) can keep the 
number of car related trips, the number of vehicle kilometres and the vehicle hours of delay more 
or less at the same level as in the reference scenario. The number of bicycle and walking trips 
increases with all interventions, but the level of the reference scenario will not be reached. For the 
traditional public transport modes (train, bus, tram and metro) high road pricing charges are 
needed to reach the level of the reference scenario. The impact of ‘Park at distance’ is close to zero 
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when all area types are considered. In very highly urbanized areas, the impact is larger (e.g. 9% 
reduction in automated private car trips). 

Interventions L5-sharing 
‘100% sharing’ refers to a scenario in which 100% of the people is willing to share. In the reference 
scenario for L5-sharing it is assumed that 100% of the people younger than 18 year is willing to 
share. For others it this percentage is assumed to be between 5%-75% depending on age, 
household income and car ownership. In ‘Reduced time factor’ it is assumed that the extra travel 
time factor for automated shared taxis and vans is reduced with 50% enabled by a larger vehicle 
fleet. In ‘no automated taxi’ these vehicles are just like private cars not allowed except in rural 
areas. ‘Mix sharing’ combines all these interventions and reduces the travel times by train, 
bus/tram/metro with 20%. The last 2 scenarios have the largest impact. They reduced the 
number of vehicle kilometres with respectively 88% and 79%. 

 

a  

b  
Figure 6. Modal split effects (a) and traffic effects and parking revenues (b) interventions 

 
Based on the results described above it can be concluded that a strong mix of interventions is 
needed to keep vehicle kilometres at the same level as in the reference scenario. This is especially 
the case in (very) highly urbanized areas. In other areas, the interventions can be more modest. 

5. Discussion, conclusions and recommendations 

This paper presented a new modelling approach that can be used to get insights in the combined 
impacts of automated driving and shared mobility.  

With respect to the results: the case study showed the order of magnitude and types of modal 
split and traffic effects that can be expected in extreme scenarios. A shift to automated private 
cars, automated taxis can be expected and to the sharing concepts when sharing becomes 
popular. This increases the accessibility of many regions for many people; also, those who are not 
allowed to drive. In the most extreme scenario, L5-no-sharing, the amount of car trips including 
new modes increases from 41% to 68%. The increased mobility has negative effects on congestion. 
Note that the impact of congestion on mode choice has been considered. A strong mix of 
interventions is needed to keep delays at the same level as in the reference scenario. This is 
especially the case in (very) highly urbanized areas. In other areas, the interventions can be more 
modest.  
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With respect to the model: it can be concluded that the model is suitable to get first insights in 
mobility impacts of connected automated and shared mobility. New transport concepts and 
parking concepts are included in the model as well as the way in which they affect mobility 
choices and traffic conditions. The innovative approach that combines choice models with a 
network fundamental diagram, gives clear insights into the impact mechanisms, despite 
uncertainties with respect to implementation path, time and costs parameters and user 
acceptance. The short computation time of the model (less than one minute) enables exploration 
of large numbers of scenarios, sensitivity analyses and assessments of the impacts of 
interventions. 

The methods used for each sub-model can all be replaced by more detailed methods, like a land-
use model, a discrete choice model or gravity model for destination choice, a nested logit model 
for mode choice, a dynamic traffic assignment model and an optimization model for shared 
mobility solutions. The level of detail that was chosen in this paper matches the limited amount 
of empirical evidence regarding the input attributes and parameters and makes it possible to 
explore many different scenarios within a short computation time. It is recommended to develop 
more details models, to model de most relevant scenarios in more detail. It is also recommended 
to include other phenomena in the model like zero-occupant vehicle demand and the impact of 
automation on car ownership.  

Another recommendation is to reduce the uncertainties with respect to the costs, value of time 
and user acceptance of automated vehicles and sharing concepts, by carrying out stated 
preference research and by initiating pilots. Finally, it is recommended to get a clearer view on 
the transition towards a self-driving future and associated scenarios, and subsequently assess the 
impacts during the transition phase. This allows the development of adaptive policies that will be 
needed in an era with connected, automated and shared mobility. 
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