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Abstract

This paper identifies and illustrates the theoedtoonnection between the Random Valuation
(RV) and Random Utility (RU) methods for Value afaVel Time Changes (VTTC) analysis.
The RV method has become more and more populanttgcand has been found to lead to
very different estimation results than conventiomd) models. Previous studies have
reported these differences but did not explain themch limited the confidence in the RV
model as a useful foundation for transport polinglgsis. In this paper, we first analytically
show in what way exactly the two models are diffiér@nd why they may generate different
estimation results. Based on this deeper undersiggnof the connection and difference
between the two models, we formulate hypotheseardety the conditions under which
differences in estimation results are expecteceterballer or larger. Using synthetic data, we
empirically test these expectations. Results pewitiong support for our hypotheses,
allowing us to derive a number of practical recomdaions for analysts interested in using
the RV and RU models in their VTTC-analysis.

Keywords:random utility, random valuation, value of timalwe of travel time
changes



1. Introduction

The value of travel time changes (VTTC), which meas how people trade off travel time
changes against changes in travel ¢psgsa crucial component of cost-benefit analyses a
plays an important role in transport policy desigmd evaluation studies (Small, 2012;
Bdrjesson and Eliasson, 2014). The large majority/ BT C-studies infer this trade off by
means of estimating discrete choice models on diatained from Stated Preference (SP)
experiments, where participants to the experimentagked to choose between a slower but
cheaper, and a faster but more expensive routeaveltmode (e.g. Mackie et al., 2003;
Fosgerau et al., 2007; Bérjesson and Eliasson, )20réditionally, the adopted discrete
choice model is of the Random Utility (RU) type (Fédden, 1974).

However, quite recently an interesting alternativeRU has emerged: this so-called
Random Valuation (RV) model has been gaining atanlately, after several empirical
studies have found it to be superior to RU in teaihexplaining respondents’ preferences (as
measured in model fit). The RV model differs frohetRU model in terms of how it
conceptualizes behavior. The RV approach, in aestnwhere a person can choose between
a cheap but slow and a fast but expensive travisbrgppostulates that people decide as if
they were in a “time market”. they choose the faption when their valuation of the
presented travel gain is larger than the implicitg of the travel gain which is embedded in
the choice situation. The RV-metifodtas suggested by Cameron and James (1987) in an
environmental economics context, although the dsthe term “RV” can be attributed to
Hultkranz et al. (1996). Fosgerau et al. (2007byemhe first to formally introduce the
method in a VTTC-context. Since then, a numbertofliss have shown that there may be
large differences in the VTTCs estimated by RU &\ respectively, on a given dataset;
model fit differences have been found to be sulisiaas well (e.g., Ojeda-Cabral et al.,
2016, Daly and Tsang, 2009)). These studies reppofiETCs that, in comparison with a
VTTC from a RV model, were often around 1.5 orr2ds greater when a RU model was
estimated. Ojeda-Cabral et al. (2016) reportedxénemme case where the RU estimate tripled
the RV estimate. It goes without saying, that sdidferences have potentially very large
implications for the evaluation of transport padgiand infrastructure investments.

Although the theoretical relationship between thg Bnd RV models has been
discussed in previous papers (Fosgerau et al., 20B@rjesson and Eliasson, 2014;
Hultkranz et al., 1996, Ojeda-Cabral et al., 20165 discussion is not complete, as we will
argue below. As a consequence, the observed noaltempirical differences in model fit
and estimated VTTC have so far come as a surgdoseyhich no full explanation is yet
provided. Given that the RV approach is growingpwpularity in the field of transport
economics, we believe that a rigorous assessmdheafonnection and differences between
the RU and RV approaches is needed. This paperda@®guch an in-depth exploration and
interpretation of the connection between RU andtR@ugh the use of analytical derivations
and analyses on simulated data. Note that althcatghiirst sight, exploration of the
differences between the two models might come acassa methodological exercise, it has
clear and substantial policy relevance. More spdly, given that the differences and
similarities between the two approaches have sbdan ill understood at a conceptual level,
there has been a hesitation to use the VTTC estsnaioduced by the relatively new and

! Most of the literature uses the tetravel time savingsHowever, since many transport projects lead awetr
time losses and, in fact, most studies do consideings as well as losses, we use the more gdremidravel
time changessee Ojeda-Cabral et al. (2016) for a more detaileerview of terminology.

2 In this paper, we will use the terms ‘model’, ‘inetl’ and ‘approach’ when referring to RU or RV.

2



O~NO U, WN B

28

29
30
31
32
33
34
35
36
37

38

39
40
41
42
43
44

unknown RV model in cases where its empirical penmnce (e.g. model fit) turned out to be
superior to that of the well-known RU model. Asansequence, the RV’s penetration in the
transport policy discourse has been severely lonibyy the absence of a clear and
unambiguous understanding of how and when the nauklts VTTC output differ from RU
and its VTTC. This goal of this paper is to lifetikonfusion which so far has surrounded the
RV model, and as such provide a more solid foundabiased on which researchers and
analysts can make safe and well informed decisregarding which model and VTTC
estimates to use for transport policy analysesdas the model’'s empirical performance.

In Section 2, we highlight the importance of anneat which has been missing in
previous studies: whereas those studies have athaedhe two methods are equivalent in
the deterministic domain (i.e., when error ternms excluded), we show that this equivalence
only applies in an ordinal sense (i.e., preferemcierings between two alternatives are the
same in both models), but not in a cardinal sense the extent to which an alternative is
preferred over another one may vary substantialipss the two model types). Since, in a
discrete choice context, cardinal differences aeitee choice probabilities (after error terms
have been included), this cardinal inequivalendsvéen RU and RV causes differences in
terms of model fit and VTTC estimates. Based os thsight, we are able to formulate
hypotheses about the size of the difference betweemilRU and RV models that one would
expect for various types of data, i.e., variousetypf SP designs and different levels of
randomness in choice behavior. These hypothesesibsequently tested based on empirical
analyses on synthetic data.

In section 3, we formulate hypotheses concernieg thifferences in terms of model fit
and obtained VTTCs, for different types of data. Aeo present the construction of the
simulated data sets, estimation of the RU and Rets) and the interpretation of estimation
results. In section 4 we present overall conclusi@nd we provide recommendations for
future research; in addition, we discuss practioglications of the obtained insights.

2. Random utility and random valuation: the theoretcal connection

The RU model assumes that a person faced with iaechbetween multiple options, chooses
the option that offers the greatest total utilifis total utility is usually conceived in term of
a summation of a deterministic (or: ‘systematiobserved’) utility and a random error. For
sake of exposition, we initially focus only on tldsterministic part of utility. Deterministic
utility V; of each option is a usually linear-additive function of its obgale characteristics
(in our case, travel time and cost) and associpéedmetersV; = f.c; + f:t; ; here,f; and

B. are the estimable marginal utilities of traveldirf) and cost(), respectively. The value
of travel time changes (VTTC) is equal to the maagrate of substitution between time and
cost, which is of a convenient form when systemaititdity is specified linearly, as

v jov
aboveVTTC = —/— = )
6t/ac ﬁf/ﬁc

The Random Valuation (RV) model (Cameron and Jadf@3/; Hultkranz et al,, 1996,
Fosgerau et al., 2007b) is applicable when, incti@ce context, there is an implicit ‘price’
for the good we want to value such as in our cag®eage in travel time. This is the case in a
binary choice context where alternatives are deedriin terms of a price attribute and a
quality attribute (in our case travel time); ndtattmany recent SP-experiments have adopted
such a binary, two attribute choice context, inolgdseveral European national VTTC

3
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studies, including those in the UK, Denmark, Sweded Norway (Mackie et al., 2003;

Fosgerau et al., 2007; Ramjerdi et al, 2010; Bégesand Eliasson, 2014). The implicit price
(denoted Boundary VTTC or BVTTC) can then be defias follows. Throughout the paper,
we will assume a choice context in which optiors Elower but cheaper than option 2 (i.e.
faster and more expensive): i.xtt and g<c,. Then, the price threshold or BVTTC, is equal

to: BVTTC = % = —% , whereAt andAc are the differences in travel time and cost,

respectively, between options 1 and 2. The RV madslmes that people choose whether
they accept the price of time (BVTTC) which is imegily embedded in the choice situation,
or not. If the individual’'s VTTC is larger than tlg/VTC, the faster but more expensive
option is chosen. As in the RU model, additive exrare introduced in the RV model to
accommodate randomness; hence the individual’scehmiobabilities will be driven by the
difference between the VTTC and the BVTTC, such tha 1{VTTC < BVTTC + ¢} (see
further below for details).

The RV model has been said to be equivalent toRtiemodel in the deterministic
domain, i.e. before randomness in the form of erisrintroduced (Fosgerau, 2007; Ojeda-
Cabral et al.,, 2016). However, these studies intjyliceferred to ordinal equivalence.
Indeed, in the deterministic domain, the two modals easily be shown to be equivalent in

an ordinal sense. To see this, consider an indaidinose VTTC equal%E . Take the above
described binary choice situation involving a cheagd slow alternative (1) and a fast but

expensive alternative (2), with an implicit prideat equals—) Now it can be easily
2

seen tha{(l—cz)) > — 2 Lif and only if ,t; + B.cy > Bet, + BeCy. In other words, if BVTTC >
2 c

VTTC in the RV model this necessarily implies tigt>V, in the RU model; both
inequalities imply that the cheaper but slower aptis chosen. This makes the two models
equivalent in an ordinal sense.

Given the equivalence (in an ordinal sense) betw®dnand RV in the deterministic
domain, previous research has related the obselfiedences between the two models in
model fit and obtained VTTC-estimates, to the waywhich randomness is introduced in the
two models. However, here we show that the diffeeeand connection between the two
models in the deterministic domain is more suldti@entthe ordinal analysis directly above
may suggest at first sight. Specifically, it has fap been overlooked that a difference
between the two models arises when we considerardinal as opposed to ordinal

perspective. To see this, consider again an indalidhose VTTC equalff . Take again the

above described binary choice situation involvinghaap and slow aIterFIative (1) and a fast
but expensive alternative (2), with an implicitqarifor the travel time difference that equals
_((t%_tzz)) . Now, it can be seen that the cardinal differelpesveen systematic utilitidg and

7, in the RU model isiot equal to the cardinal difference between price TB&) and value
(VTTC) in the RV modelB.t; + B.c;— (Bet, + Bocy) # ((tcl_t:‘;) zz . or in other words:

V, — V, # BVVTC — VTTC. Rather, one obtaingtatfeci= Belatbecs) _ fr  —(a-cy) .
ﬁc(tl_tz) ﬁc (tl_tz)

equivalently, V; —V, = B.(t; —t,) - [BVVTC —VTTC]. The factor B.(t; —t,) is the
product of the marginal utility of cost and theviehtime difference between the two options.
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If the utilities in the RU model are divided bysHactor, it becomes a RV motleNote that
Bdrjesson and Eliasson (2014) and Ojeda-Cabrdl €@&L6), in their comparisons of the RU
and RV model, have also identified this factor asiig role in scaling parameters and error
terms. However, the factor’'s crucial property (itbat it determines the connection between
the two models in the deterministic domain, froceedinal perspective) has been overlooked
until now.

In sum: both models, given a particular underlyuadue of travel time changes for an
individual, always agree owhich of the two alternatives (i.e., the cheap & slowtloe
expensive & fast alternative) is preferred by théividual. However, with the exception of
some very specific conditions (see further below® two models disagree on thgtent to
which one alternative is preferred over the other. Teegbone example for illustrative
purposes: the RV model states that the extent iohane alternative is preferred over the
other one, by an individual with a particular VTT@mains constant as long as the implicit
price (BVVTC) which is embedded in the choice ditba remains the same. For example,
for the RV model it does not matter if the faseaiative is 10 minutes faster and 2 pound
more expensive than the slow one, or 5 minutegrfasid 1 pound more expensive. In both
cases, the BVVTC equals 0.2 pounds per minute tlaadlifference between this value and
the individual’'s VTTC determines the extent to white fast alternative is (not) preferred
over the slow one. In contrast, the RU model pastsl that when attribute differences
between the alternatives become smaller, the extenwhich one of the alternatives is
preferred over the other one decreases as weth apoint where the individual is assumed
to become almost indifferent between the two a#teves when attribute differences become
very small. So, in the above example the RU modelipts that — given a particular
underlying VTTC — the extent to which the fast adtgive is preferred by the individual over
the slow one (or vice versa) is larger in the 1@utes / 2 pound case than in the 5 minutes /
1 pound case. So, even though both models (RU a)dvRuld always agree on whether or
not the fast alternative is to be preferred over show one, they may generate markedly
different predictions in terms of the extent to @¥hthe most attractive alternative is preferred
over the other one. It is this cardinal differemcgreferences which gives rise to differences
in choice probabilities in the stochastic domaidthdugh analysts may of course have
theoretical preferences with respect to the differmplicit behavioral premises underlying
the two models (such as the ones discussed ahiavi)e end it is of course an empirical
guestion which of the two fits best with the colést choice data.

We now proceed to the stochastic domain, by adédmgrs. We start with the RU
model. To arrive at closed form Logit-type choicelmbilities, the error ternz;f is assumed
to follow a Gumbel distribution (type-I generalizegtreme value distribution) with constant
variance normalized at? /6, and is introduced additively (McFadden, 1974):

Ui=Vi+¢& =pBcci +Beti + & (1)

In the context of a binary choice set containirtgraltives 1 and 2, (as noted earlier, the RV
method only works in the context of binary choi¢cesipice probabilities are then given by:

% Note that, while it is intuitive to think aboutraonetary price of time (i.e. RV model), there isprincipled
reason why one should not divide by the cost diffiee instead, giving an (inverse) RV model in e.g.
minutes/pence terms. This alternative model woaldMorthy of investigation, but it is outside of teeope of
this paper..
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_ exp(V1) _ exp(BecitBits) i —1_
PO = torenmy — solar i ep@arfay PRI =1=P(1) ()

Note that the difference in systematic utiliti&%) (between travel alternatives determines the
choice probabilities derived from the RU model.

In the RV model, like in the RU model, Gumbel esrarith constant variance
normalized atr?/6 are added so as to allow for the derivation ofetbform Logit type
choice probabilities:

UZZH'VTTC‘l'SZ ( !

exp(uBVTTC)
exp(UBVTTC)+exp(LVTTC)

P(1) =

;withP(2) =1-P(1) 4),

Clearly, the difference between-BVTTCandu -VTTC determines the choice probabilities
derived from the RV model. Note that scale factpris estimated in the RV approach,
together with VTTC. Importantly, the RU model caa tewritten in what has been called
Willingness to Pay space, by dividing and multiptyithe time-parameter by the cost-
parameter. In notatiof; = S.c; + B.(B:/L:)t;. In this case, cost-parameferbecomes de
facto scale parameter. This too would result in a mededre scale of utility and VTTC are
estimated. It is this variant of the RU model, whis fully equivalent to the formulation
presented in (1) and (2), which we use in our eicgdiranalysis, as it facilitates an easy
comparison between RU and RV.

Having specified choice probabilities, we can neavtsexploring why the two models —
which we have shown to be ordinally equivalent geatdinally different in the deterministic
domain — are expected to lead to different modeimesion outcomes (i.e., model fit and
estimated VTTC) in the stochastic domain. The keyrderstanding this lies in the obvious
fact that choice probabilities are determined kg differencel/; — V, in the RU model, and
betweenu -BVTTCandu -VTTCin the RV model. Above, we have shown tiat-V, =
B:(ty —t,) - [BVVTC — VTTC]. Now, given that scale parameteris estimated in the RV
model, the two models would become equivalent énstochastic domain when= g.(t; —

t,). However, whert; — t, differs between observations as is practicallyagisvthe case in
real life SP-experiments, it is impossible to fioie estimate fox which makes the choice
probabilities derived from the two models equivalésr every single observation in the
dataset. This argument lies at the core of theemdiffces in estimation results reported in
previous studies, and it allows us to formulatediipses as to when the difference between
the RU and RV models should be expected to be auifpest

* In this equation, BVTTC is observed in the dathijl&VTTC is estimated.
6



3. Formulation of hypotheses and empirical analysibased on synthetic data

Previous work (Hultkranz et al., 1996; Daly and figa2009; Ojeda-Cabral et al., 2016)
showed that there may be significant empiricaledéhces between RU and RV model, both
in the estimated VTTC as well as in model fit. langral, in these studies the RV model
provided a much better model fit and a significatwwer valuation. However, as explained
above, these sizeable differences remained naot fuitlerstood. It remained unclear if the
RV model would often or always fit the data betberwhether it would often or always
provide lower VTTCs. Based on the derivations ia fitevious Section, explicit hypotheses
can be formulated regarding what determines tHerdifices in model estimation outcomes.
More specifically, we identify two factors whichtdemine the size of the difference between
RU and RV estimation results (model fit and esteda¢y TTC):

1) The variation ofAt across cases, i.e., across choice tasks prouwd#dteiexperiment: if
only one level ofAt was used in the design (e.g. the fast route waayal 10 minutes
faster than the slow route), the RU and RV modelsgenerate the same results. The
reason for this lies in the fact that under thisdibon, there exists a single scale factor in
the RV model which leads to identical behavior esw RV and RU modelg: = S, *

At. Under maximum likelihood estimation conditiortsisi therefore impossible to obtain
different model fits for the two models, or diffate/TTCs. To the extent thait differs
across cases / choice tasks, the estimated valyevidl only be an imprecise proxy for
B. * At for most cases. This implies that to the exteat Al differs across cases / choice
tasks, there may be a better or worse model fitther RV model compared to RU
(depending of course on which of them mimics bést ainderlying data generating
process); and both models will lead to differentNCE.

2) Level of randomness in choice behavior: when clsoage such that in most cases there is
always a very strong preference for one of the options, then both the RU and RV
model will generate very high choice probabilities the most attractive alternative, and
there will be only small differences in model fitchestimated VTTC between RU and
RV. The reason behind this, is that in such a sdoathe ordinal equivalence of the two
models is what counts (i.e., both will always agsaevhich alternative in a choice task is
the most attractive one). Even if for example théRodel predicts a substantially larger
or smaller utility difference than the RV model,isthwill hardly impact choice
probabilities as these are close to 0/1 anywayiffardnt situation occurs when, from the
analyst’s viewpoint, choices are more random indéese that choices are more evenly
distributed across the fast and slow routes. Irt ttesse, where choice probabilities
generated by the two models are closer to 0.5fattethatV;, — V, #[BVVTC — VTTC]
does translate into relatively large choice prolitgbdifferences between RU and RV,
due to the steeper slope of the Logit-curve araadce probabilities of 0.5.

It goes without saying that most actual dataselisnalude substantial variation dft across
cases, and will feature fairly dispersed choiceabar in the sense that observed choice
frequencies close to 0/1 are rare in SP-data. ésnaequence, the above discussion already
indicates that one should expect relatively substhdifferences between RU- and RV-based
model estimation results in the context of reahd#&t the remainder of this section, we will
put the above two hypotheses to the test emplyicalbking use of synthetic data, as such

® This can be due to either a particular combinatibtimes and costs in the choice task, which makesof the
alternatives clearly superior to its competitorjtazan be due to a very strong dislike for timed &osts in the
population; or a combination of these two factors.
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data allow us efficiently, effectively and indepently to control the variation aft across
cases and the level of randomness in choice bahdvimthermore, in contrast to a real
experiment, the synthetic set up allows us to obrthre true data generating process (DGP)
in terms of decision rule (RU versus RV) and truelerlying VTTC. That way, we can
explain model fit differences in favor of one okthwo models, and differences in VTTC,
effectively.

The structure of this synthetic data experimem the matrix shown directly below:

o Much variation in c1 c2 c3
Variation | At across cases
in At Some variation in B1 B2 B3
across At across cases
cases No variation in At Al A2 A3
across cases
Almost no Some Much
randomness | randomness | randomness
in choice in choice in choice
behavior behavior behavior
Degree of randomness in choice behavior

Figure 1: Design of the synthetic data experiment

In line with the discussion above, we hypothesaérd larger differences between the RU
and RV models, when moving away from the lower kefhd area or ‘origin' (the extreme
case being Al) to the upper right hand area (CBgotie extreme case). The ordering of the
table can be interpreted as a coordinate systemewhe have two axes(randomness) angl
(at), whose magnitudes increase from the origin (AlQr Bach cell of the matrix, we
generate choices using RU and RV respectively asrtie DGP; and then we estimate both
models (i.e., RU model estimated on RU data, RUe&hedtimated on RV data, RV model
estimated on RU data, and RV model estimated ord&¥). This implies that we generate
9*2=18 different datasets, and that we report altof 9*4=36 model estimation results.
Without loss of general applicability, each datacstains 10,004 choices made by as many
individuals (i.e., each individual is assumed tokenane choice). The reason for the rather
odd number 10,004 is that, for the first simulatedign, we removed all design rows where
the BVTTC was greater than 100, retaining a tofél@004 cases; we then adhered to that
number for the other designs as well.

The SP-design we use to generate choice data bomdsvo major national VTTC
studies: the UK VTTC study (Mackie et al., 2003yidhe Danish VTTC study (Fosgerau et
al., 2007). This facilitates drawing comparisonshwhese real datasets. Both studies used a
simple design where only two options and two atitels (time and cost) were presented in
each choice scenario, allowing for application ltd RV method. The Danish study was a
pioneer in implementing a form of the RV model siimate official VTTC measures for
national level transport policy evaluation. Eacloich task is designed to make sure that
there is always a faster but more expensive opdind a cheaper but slower one. The
following design rules were applied (note thatdettA, B, and C refer to Figure 1):
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a. for design A, we used a travel time difference lestwthe slow and fast option, of
10 minutes; and kept this constant for all cases.

b. For design B, travel time differences between tlmvsand fast option are
randomly drawn, for each case, from a uniform distion between 0 and 20
minute$.

c. For design C, travel time differences between tlwevsand fast option are
randomly drawn, for each case, from a uniform distion between 0 and 60
minutes.

i) Ac: For all designs A, B and C, travel cost differendsetween the cheap and
expensive option are randomly drawn, for each casey a uniform distribution
between 0 and 300 pefice

Note that in the context of designs B and C, thal@aation of random draws fdt andAc
generated a wide variation in BVTTCs. To avoid ntina issues, we&x postrestricted the
range of BVTTC to an upper limit of 100 pence peanute. Also note that these random
draws did not influence choice behavior: each aeélg B and C) is a fixed input prior to the
simulation of more or less random choices, just &sin a real life choice experiment.

For every design we simulated choices based onlanaR well as based on an RV-
based decision process These decision processenasalues fof, andS, (RU model), as

well as for for (| e., VTITC) andu (RV model). We made sure that both models were

always based on the same underlying VTTC of 10 @grer minute, which holds for all
simulation exercises (this homogeneity allows ustwe easily interpret differences between
the RU and RV model outcomes). By carefully setecttombinations of;, S, andu, while

ensuring a constant ratfé for both models, we were able to systematicallyy\the degree

of randomness embedded in the simulated chqiedsle keeping constant the underlying
VTTC (since the degree of randomness by definitienreases with the magnitude of the
coefficients,ceteris paribus In an iterative process, we obtained the folliyvihree levels
of randomness (note that numbers 1, 2, and 3 tefeigure 1):

1) Almost no randomness: for both models, more th&8®put of 10,004 cases come with
a predicted choice probability for the most atikectalternative which is higher than
90%. In other words, in the vast majority of casexh models assign a very high choice
probability to the most attractive option, makihg dataset almost deterministic from the
analyst’s viewpoint (and implying a very high rhguared, i.e. implying a very good
model fit, for both models).

2) Some randomness: for both models, between 800 @@dcut of 10,004) cases come
with a predicted choice probability for the mostattive alternative which is higher than
90%. In other words, in some cases, both modelgraasvery high choice probability to
the most attractive option, while in many other esasthe difference in choice
probabilities between the two options is less pumoed. Note that the associated rho-

® This in fact is based on the values used for 6@82JK VTTC study, where 20 was the maximum level.
" This in fact is based on the values used for 8@ 2Danish VTTC study, where 60 was the maximurellev
8 This in fact is based on the values used for 8@82JK VTTC study, where 300 was the maximum level.
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squared of around 0.175 is about the same sizénaf @ne would expect in a real dataset
in the context of VTTC-estimation.

3) Much randomness: for both models, less than 70 ¢6ut0,004) cases come with a
predicted choice probability for the most attragtalternative which is higher than 90%.
In other words, only in some rare cases, do botllatsoassign a very high choice
probability to the most attractive option, whilethre vast majority of cases, the difference
in choice probabilities between the two optionsnisch less pronounced, leading to a
highly random dataset and very low levels of mdiel

All models were estimated using Biogeme (Bierla2@)3). Table 1 shows estimation results
for all 36 models, displaying parameter estimated measures of model fit. Note that as
discussed in the previous section, to estimate Rke model we have rearranged the
parameters of the model to allow us to estimate @irectly instead of5; (note thatg,
becomes a scale parameter, consequently denoteditythe table). This does not affect
model fit in the context of MNL and facilitates cparison between RU and RV estimates.
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Table 1. Estimation results

Almost no randomness in choice behavior Some randomness in choice behavior Much randomness in choice behavior
Preferences True DGP: RU True DGP: RV True DGP: RU True DGP: RV True DGP: RU True DGP: RV
Model estimated RU RV RU RV RU RV RU RV RU RV RU RV
Null LL -6934.24 -6934.24 -6934.24
Much LL -113.9 -243.7 -200.1 -166.6 -5462.1 -5896.7 -5401.3 -4998.8 -6201.2 -6434.5 -6833.9 -6758.7
variation Adj. p*2 0.98 0.97 0.97 0.98 0.21 0.15 0.22 0.28 0.11 0.07 0.01 0.03
in At Parameters C1 Cc2 c3
across VTTC 9.99 10 9.93 9.96 10.1 21 7.59 9.97 9.75 22.4 6.03 10.3
cases u 0.48 3.48 0.29 5.24 0.01 0.06 0.01 0.20 0.00 0.04 0.00 0.03
VTTC (s.e.) 0.02 0.04 0.03 0.03 0.26 0.89 0.12 0.16 0.36 1.16 0.33 0.63
M (s.e.) 0.04 0.91 0.02 0.39 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00
Preferences True DGP: RU True DGP: RV True DGP: RU True DGP: RV True DGP: RU True DGP: RV
Model estimated RU RV RU RV RU RV RU RV RU RV RU RV
Null LL -6934.24 -6934.24 -6934.24
Some LL -239.2 -391.4 -290.8 -252.3 -5418.4 -5907.4 -6233.9 -5976.1 -6771.7 -6828.6 -6742.2 -6666.6
variation Adj. p*2 0.97 0.94 0.96 0.96 0.22 0.15 0.10 0.14 0.02 0.02 0.03 0.04
inat | Pparameters [ BT B2 B3
across VTTC 10 10 10 10 10.1 10.7 9.63 10.3 10.5 11.3 10.1 11
cases U 0.50 2.99 0.41 4.71 0.01 0.07 0.01 0.06 0.00 0.02 0.00 0.03
VTTC (s.e.) 0.02 0.03 0.03 0.02 0.15 0.33 0.24 0.37 0.48 1.45 0.45 0.87
U (s.e.) 0.03 0.35 0.03 0.32 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Preferences True DGP: RU True DGP: RV True DGP: RU True DGP: RV True DGP: RU True DGP: RV
Model estimated RU RV RU RV RU RV RU RV RU RV RU RV
Null LL -6934.24 -6934.24 -6934.24
No LL -236.1 -236.1 -236.1 -236.1 -5473.9 -5473.9 -5473.9 -5473.9 -6787.6 -6787.6 -6787.6 -6787.6
variation Adj. p*2 0.97 0.97 0.97 0.97 0.21 0.21 0.21 0.21 0.02 0.02 0.02 0.02
inat | Parameters |[INATIEE A2 A3
across VTTC 10 10 10 10 10.1 10.1 10.1 10.1 10.8 10.8 10.8 10.8
cases u 0.47 4.74 0.47 4.74 0.01 0.13 0.01 0.13 0.00 0.04 0.00 0.04
VTTC (s.e.) 0.02 0.02 0.02 0.02 0.18 0.18 0.18 0.18 0.59 0.59 0.59 0.59
M (s.e.) 0.03 0.32 0.03 0.32 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
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The table shows the results of 36 models estimateghnized in 9 big cells (3x3); it thus
corresponds exactly to the experimental schemeigedvn Figure 1 presented earlier. Each
row corresponds to one SP-design (A, B and C),endsich column corresponds to a degree
of randomness in choices (the agsfjbeing an indicator of it). For each cell, we shbwets

of results: two models (RU and RV) are estimatec alataset where the DGP was RU, and
on a dataset where the DGP was RV. If the estimaiadel matches the DGP, we will refer
to this as the ‘right’ model; a ‘wrong’ model is astimated model that does not match the
DGP. The mean and robust standard error (s.e. h@ofMTTC and scale parameters are
displayed, together with model fit measures (fihab-Likelihood (LL) and adjp?. It is
directly seen, that obtained results match our etgens:

Constant travel time differences(At = 10)

* In the simplest design (A), where we assume thavery case, the travel time difference
between the fast and slow option equals 10 minledy models yield identical results
irrespectively of the underlying DGP. In all theseses the estimation results show that
U = B, *At. The VTTC of 10 p/min. is recovered with greatgis®n in A1 and A2. The
great degree of randomness in A3 causes the VTTi@ai®n to deviate slightly (10.8
p/min.) from the underlying true value, as one nexypect. However, also then both
models result in the exact same estimate for VTaitel xactly the same final-LL).

Hardly any randomness in choice behavior

» If At varies across cases, but choices are almost deistimimplying very high choice
probabilities for the most attractive option, imaist every case — i.e., in cases B1 and C1
— the RU and RV models are almost equivalent, aotesized. They both identify the
true underlying VTTC, although model fit differerscare significant in designs B1 and
C1, in favor of the model that corresponds to tia&D

Entering the real world

Cells B2, B3, C2 and C3 represent what is typicaligerved in real life experiments: choices
are relatively random (from the analyst's perspegtiand experiments consider different
levels ofAt for different cases.

* The right model is always able to recover the twmlerlying VTTC, although as
expected the precision decreases (i.e., the Sthndaor increases) as the level of
randomness in the choices increases.

* The wrong model is now always much worse in terinsiadel fit compared to the right
one, even when it does not perform too badly imgeof recovering the true VTTC (e.g.
case B2, where the wrong models give VTTC of 104 @63 p./min respectively).

* When the variation it is larger (design C), the wrong models estimatd @3 that are
very far from the underlying 10p./min, even whemicks are not very random (see the
VTTCs of 21 and 7.59 p./min in C2).
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4. Conclusions, discussion and directions for furtkr research

This paper has identified the connection betweenRandom Valuation (RV) and Random
Utility (RU) methods for Value of Travel Time Chaxy(VTTC) analysis. The RV method
has become more and more popular recently, oftatirlg to very different estimation results
(i.e., model fit and estimated VTTC). Previous ssdcave reported these differences but did
not explain their source; instead they pointedhatfact that the two models are equivalent in
the deterministic domain, in the sense that thdlyalways agree on which of the two options
is the most attractive one in a given choice t&skhis paper, we first analytically showed
that the two models actually differ in the detenstic domain, from a cardinal perspective,
in the sense that the extent to which one optiopréserred over the other one may differ
between RU and RV models. We then showed how tdirtal difference translates into
differences in model estimation results. This deepelerstanding of the connection and
differences between the two models allowed us tmditate precise hypotheses regarding the
conditions under which smaller or larger differemae estimation outcomes are to be found.
We then employed a carefully constructed experinbased on synthetic data to test these
hypotheses.

Taken together, results obtained from that synthedita experiment provided strong
support for our hypotheses, and were also fountdetan line with — and help explain —
findings obtained in previous studies based ondatd. In sum: to the extent that the choice
probabilities of the fast and slow options are sehe similar (i.e., both are relatively close
to 0.5), and to the extent that travel time diffexes between the two options vary across
cases/choice tasks, the RU and RV model shouldrgiendifferent results in terms of model
fit and estimated VTTC. Only under the fairly urrstac assumption that choice probabilities
of the fast and slow options are always very clas® or 1, and/or in a (yet unexplored)
context where travel time differences between th@ toptions are constant across
cases/choice tasks, do the RU and RV model becqoad.e

Of course, in real life experiments, we never knthwe true underlying choice
processes of the individuals, making it impossibl@ priori select one model's estimation
results. Our results highlight the risk of gettingmpletely wrong values if we fail to
approximate the true underlying choice processdbynating a RU model when RV is much
closer to the data generating process (DGP), erwécsa. The good news is that we can now
safely argue in this RU-RV context that, if in réiéd a given model (RU or RV) gives better
model fit, it is apparently a better explanationtlod observed choices and we should prefer
the VTTC estimate derived from it, even if it isryalifferent from the other model's VTTC.
This may to some extent appear to be obvious, bté that in previous studies, given the
incomplete assumption that the two models werevadgnt in the deterministic realm, large
differences in model fit and valuation came asrprsse (Ojeda-Cabral et al., 2016), making
it difficult to argue that the VTTC of the besttifiiig model should in fact be preferred for
transport policy analysis. It is this observatidratt carries the policy relevance of our
analyses: by lifting the confusion surrounding B¥ model, we provide a more solid base
for researchers and policy analysts to select arsdl the RV model and its VTTC in case its
empirical performance is better than that of RU.

Another source of policy relevance of this papes lin the observation that evidence
from previous studies on real data (Hultkranz et 2996; Daly and Tsang, 2009; Ojeda-
Cabral et al., 2016) where RU and RV were compamegpirically, suggested that RV
consistently yielded lower VTTC-estimates. Thisngiout not to be the case in the context of
our simulated datasets, where the RV often leadhigber VTTC estimates than those
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obtained by RU. Apparently, estimating the ‘wrongpdel can lead to failure in the recovery
of the true underlying VTTC, but with our curremidwledge it is not possible to stade
priori the direction of the bias. Based on our analysesuding our analytical identification
of the similarities and differences between the &4l RV models) we can safely advise
analysts to select the model (RU or RV) with bespeical performance, and trust its VTTC-
estimate for policy analysis.

In sum, this paper expands current knowledge conogrthe RV model, being an
alternative model to the classical RU model, whiels been receiving increasing attention
among scholars and practitioners during the lagtyiears. Our work clarifies the relationship
between these two models, thereby substantiallse@sing the scope for applying the RV
model for transport policy analysis.

Obviously, our study leaves considerable opporiemitor further research, of which
we here identify two: firstly, our empirical exeses assumed a unique VTTC for the full
(artificial) population of respondents. This is r@otealistic representation of real life, where
the VTTC varies across individuals and even fordhme person, across choice tasks. The
replication of this work introducing distributionfor the underlying VTTC seems an
important direction for future research. Secondifhereas our study focused on linear
specifications of the RU and RV models (which idime with the fact that the large majority
of VTTCs used for policy analysis are obtained friomear models), some previous studies
have been experimenting with log-specificationsteBaling our results to such non-linear
models is also an interesting avenue for furtheadyst
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