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Executive Summary           
Introduction 
In times of finite oil reserves, rising oil prices and an increasing focus on sustainable mobility, alternative fuels 
become increasingly attractive. Electric vehicles (EVs) are an alternative to current vehicles. These vehicles are 
powered by electricity instead of petrol or diesel. Electric vehicles can be charged both home and en route by 
using a charger. About 80-100 kilometres can be driven on a full battery if negative effects such as weather 
conditions, extra load and stop-and-go traffic are included. This distance is named the driving range. If a 
distance larger than this driving range should be driven, an interim charge is required. Here, fast chargers are 
ideal. Fast chargers can charge the battery to 80% in about thirty minutes. This is much faster compared to 
slow charging (6-8 hours). 
 

Problem definition 
In recent years, some fast chargers have been installed over the Netherlands. The current (and planned) 
locations of fast chargers are determined without conclusive reasoning: driving patterns are not taken into 
account. As a result, it is possible that at some locations fast chargers are insufficiently used, and at other 
locations the demand is too high. In the first case, the fast charger is a poor investment, and in the latter case 
queues might occur. 
 
An optimal network of fast chargers is designed in such a way that, given a number of chargers, as many trips 
as possible can be made with an electric car. In other words, it facilitates the maximum use of electric vehicles 
and stimulates the transition to electric cars. The purpose of this research is to optimize the locations for fast 
chargers so that the available money will be spent as efficiently as possible. 
 
In this thesis a method is developed that can be used to find the optimal locations and the corresponding 
number of fast chargers within any area.  
 

User group and relevant patterns 
The driving range of an EV is the most important aspect to determine whether a fast charger is required. To 
determine who might use fast chargers, daily car patterns are analysed. In these patterns, it is shown how a car 
is used over a day. The EV users that are driving more than the driving range on a day are possible fast charger 
users. Furthermore, it is assumed that users are not willing to wait twice while their car is charging. In this 
study it is assumed that the battery is fully charged at the start of the day because the vehicle is fully charged 
during the preceding night. Using this assumption, it can be determined which daily patterns are relevant: 
 

 The total distance of the daily pattern is larger than the driving range 

 The total distance of the daily pattern is shorter than twice the driving range 
 
Analysis showed that 12.1% of the daily patterns are relevant assuming a driving range of 80km. Here, it is 
assumed that no other chargers are present, for example at activity end (destinations). 
 

The TAGA-method 
A method is developed that can be used to obtain an optimal configuration of fast chargers within a certain 
area. This method, the TAGA-method, consists of three parts: 
 
The input: 

 A dataset containing information about daily patterns 
 

Steps required to translate the data from the dataset into an optimal configuration of fast chargers: 

 Translation of data into spatial representation of the demand  

 Allocation of fast chargers 
 
In order to find the most reliable method, several options are studied per step. The options are illustrated in 
Figure 1. 
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Figure 1, Options studied per step 

 
The dataset 
A dataset is required to obtain information about the (spatial) travel behaviour of drivers. The analysis has 
showed that none of the studied datasets satisfies the set requirements. The following requirements have not 
been complied: 
 

 Reliability and kind of data: The dataset contains information about daily patterns (quality) 

 The size of the dataset (quantity) 
 
Therefore, the decision has been made to use a traffic model combined with data of the MON/OViN to 
generate daily patterns over an area. Since generating all possible daily patterns will cost (too) much 
computation time, only three types of daily patterns are created. The created daily patterns consist of 1 tour 
with two, three or four trips. 
 
Traffic model 
An origin/destination morning matrix of a traffic model shows the 
flows, the number of vehicles, between areas that are made in the 
morning rush hour (see Figure 2, step 1). However, this is only a single 
trip. It is unknown how someone will continue his or her daily pattern.  
 
Dutch National Travel Survey 
To determine how someone will prosecute his or her daily pattern, 
data from the Dutch National Travel Survey (MON/OViN) is analysed. 
Each year, approximately 50,000 people participate in this study. In 
this survey, people have to fill in how they travel over a single day 
(daily pattern). Using this data, a probability distribution can be made 
to decide where someone will go to from a certain departure area. 
This distribution is based on the following data: 
 

 A gravity model: The areas get a probability based on the 
distance from the departure area. 

 The attractiveness of areas: Probability on the basis of 
attractiveness of areas. Urban areas, for example, are more 
likely to be chosen as destination. 

 
By combining both probabilities, it can be determined from any 
destination where people will travel to and by what probability. In this 
way, different daily patterns are generated which consist of 1 tour 
with two, three or four trips (see example in step 2). Because not all 
daily patterns have an equal probability of occurrence, not all patterns 
will have the same weight. 

 
Figure 2, Steps in the TAGA-method 
(1/2) 
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Translation into spatial representation of the demand  
It can be determined which of the generated daily patterns are relevant. In other words, which daily patterns 
require a fast charger in order to be able to make the pattern with an EV. The possible locations for a fast 
charger can be determined for every single relevant daily pattern. Therefore, two extreme points on the route 
of the daily pattern have to be determined: 
 

 The first possibility is the point on the route where (after a full charge) the battery is empty on arrival 
at the final destination 

 The last possibility is the point where the driver drives until the battery is empty. 
 
A fast charger is required on the road segments between these points; 
this is the potential interval of the daily pattern. To determine which 
road sections are situated in this interval, a network is used. Using this 
network, it can be determined which road sections will be used 
between all destinations as the fastest route is driven. In this way, the 
possible locations for a fast charger can be spatially presented. An 
example of a daily pattern and a potential interval (red part) is 
depicted in Figure 3 step 3. 
 
The desire to charge is greatest in the centre of the potential interval; 
the chance to strand with a flat battery somewhere on the daily 
pattern will be theoretically smallest if the battery will be charged at 
that location. Therefore, it is chosen to use a triangular distribution to 
distribute the demand over the interval. This is shown in step 4. Using 
this distribution, all road sections in the potential interval will get a 
score. This score is based on the surface under the triangle and is 
dependent on: the probability that the daily pattern will be made 
(weight) and the length of the road section. 
 
Next, these scores are assigned to cells. The area in which the daily 
patterns are generated is divided into cells. In this way, every cell 
overlapping a road section in the potential interval will get a score. See 
Step 5. 
 
If this is done for all relevant generated daily patterns and the cell 
scores of each pattern will be added, a total distribution of the 
demand will be created. This is depicted in step 6.  
 
To determine the demand in a future year, the following aspects are 
taken into account: 

 The market share of the EV fleet: The more EVs, the more 
demand 

 Charge behaviour: Not everyone with an EV will use fast 
chargers due to the extra travel time 

 Presence of slow chargers at activity end: If an EV can also be 
charged at a destination, less fast chargers are required.  

 Simplification factor: Only three types of daily patterns are 
generated. Therefore not all demand is defined.  
 

These effects have to be applied to the cell scores. This ultimately 
results in a spatial distribution of demand, the expected number of 
charges in a certain period of time, within an area. 
 

 
Figure 3, Steps in the TAGA-method 
(2/2) 
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Allocation of fast chargers 
The spatial distribution of the demand is used to determine the actual locations for fast chargers. The fast 
chargers are allocated as follows: 
 

1. Find the cell with the highest demand, the cell with the highest score 
2. Allocate as many fast chargers to that cell until the remaining demand –which decreases after every 

allocated fast charger- is too low to place an additional fast charger. This implies that another fast 
charger will not be profitable at the remaining demand.  

3. Repeat step 1 
 
This process is shown in Figure 4. A possible distribution of the demand is shown on the left side. Fast chargers 
are assigned to the most red cell, the cell with the highest demand. This has effect on the demand on the 
surrounding cells as shown in the right figure. The following fast chargers will be allocated to the cell that has 
now the highest score. If there is no profitable spot left, an optimal configuration has been found. 
 

 
Figure 4, Example of the effects on the demand in an area after allocating fast chargers at a location 

 
The combination of the three steps described results in the TAGA-(Two-Point Approach Greedy Algorithm) 
method. 

 

Fields of application 
The developed TAGA-method can be used for the following purposes: 

 Determining the optimal configuration (locations and number of fast chargers per location) for a 
random area 

 Evaluate and rank planned or potential locations on profitability 

 Determining which existing locations can best be upgraded to hubs (more chargers at one location) 
 

Application to Amsterdam 
The method is applied to find the optimal configuration of fast chargers within the municipal boundary of 
Amsterdam in 2020 and for the EV owners that live Amsterdam. The daily patterns, the dataset, are created 
using: 
 

 The O/D morning matrix of VENOM (Verkeerkundig noordvleugel model) 

 Stacked data of the Dutch National Travel Survey (MON/OViN) 
 
The first trips are copied from the O/D morning matrix of VENOM and subsequent trips are determined using 
assumptions derived from the MON/OViN.  
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The results associated with a driving range of 80 km are depicted in figures 5 and 6. The red dots indicate the 
optimal locations and the number in the dot is the required number of (profitable) fast chargers. 
 

  
Figure 5, Optimal configuration within the study area assuming 
a driving range of 80km 

Figure 6, Optimal configuration for 
residents of Amsterdam assuming a driving 
range of 80km 

 
Figure 5 shows that the optimal configuration within the borders of the municipality of Amsterdam consists of 
21 fast chargers spread over 3 locations. 
 
The EV users that are leaving Amsterdam in the morning require a fast charger about 30-40 kilometers south of 
Amsterdam. Three fast chargers spread over two locations are required to meet the expected demand. 
However, these locations and numbers do not fit the ideal configuration for a larger area. Therefore, all daily 
patterns (departing from all cities) have to be included. 

 

Evaluation of the method 
The TAGA-method is evaluated by comparing the created dataset and by means of a sensitivity analysis. 
 
The created dataset containing daily patterns, which is used for the application to Amsterdam, has been 
validated with daily patterns in the MON/OViN. The average length of the relevant daily patterns, the average 
length of the potential interval and the percentage of relevant daily patterns is analysed. This analysis shows 
that the created dataset is in good agreement with the MON/OViN despite the fact that MON/OViN is based on 
data from the past and the created dataset on the future (2020). 
 
The sensitivity analysis shows that the locations are fairly robust. However, the demand varies greatly in the 
different scenarios calculated. Related to this is the number of chargers required. 
 
A point of improvement are the daily patterns generated and used as input for the method. The created 
dataset is supposed to be best available and will provide good results. However, it can be improved by tackling 
the following (main) weaknesses: 
 

 Illogical daily patterns might be created due to general assumptions with respect to destination choice 

 In addition, not all kind of daily patterns are created. 
 
The reliability of the results depends mainly on the quality and quantity of the dataset.  
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Conclusions 
Total distance travelled op a day is indicative for the use of fast chargers  
A potential user of a fast charger is an EV user that makes a daily pattern with a total distance between the 
driving range and twice the driving range if it is assumed that the battery is fully charged at departure. 

 
The TAGA-(Two-point Approach Greedy Algorithm) method is best, dataset point of improvement 
The TAGA-method is the best method to determine the optimal configuration of fast chargers within a certain 
area. However, the method contains some uncertainty. This is mainly because there is no dataset available that 
meets the set requirements (quality and quantity). The self-created dataset contains the following weaknesses: 
 

 Illogical daily patterns might be created due to general assumptions with respect to destination choice 

 In addition, not all kind of daily patterns are created 
 
Despite these improvements, the method and the results are supposed to be reliable. 
 
Fast chargers are required on at least three locations in Amsterdam  
At least three locations within the border of Amsterdam are required to serve more than 80% of the expected 
demand in 2020. The locations are: A10 nearby the RAI, A10 nearby the Coentunnel and on the junction A9-A1. 
These locations will ensure that everyone passing Amsterdam will encounter a fast charger. 
 
The locations are robust, the demand is uncertain  
The optimal configuration of fast chargers will hardly change when a larger driving range is assumed. The 
number of required fast chargers in a certain year is very uncertain due to: the market share of the EV fleet, 
charge behaviour (willingness to use fast chargers), presence of slow chargers at activity end and the 
profitability of a charger. In addition, electric vehicles will mainly be used as a second car.  
 
From a commercial point of view, fast chargers are a risky investment without subsidy. From the perspective of 
the government, placing (unprofitably) fast chargers might take away the anxiety range. This will ensure EV 
users have the idea that they can always reach a fast charger, which promotes EV usage. The chargers should 
be placed in the right order to spend the available money as efficiently as possible. The order can be 
determined by the TAGA-method. 
 

Recommendations 
Application to a large area 
The area that is studied in this thesis is too small. The method should be applied to a larger area to obtain a 
better optimization. In addition, it allows analysing the effect of a larger driving range.  
 
First spatial distribution, then upgrade to hubs 
It is not advisable to install the number of predicted fast chargers at a location in one time. It is better to first 
install one fast charger at each location in the optimal configuration to create a ubiquitous network. 
Thereafter, more fast chargers can be added. The order of installation can be determined by the TAGA-method.  
 
Monitoring demand and parameters 
To make more reliable predictions regarding expected demand, it is recommended to monitor fast charger 
usage from time to time to calibrate the parameters. In this way, an estimate can be made which scenario is 
most plausible. 
 
Furthermore, the TAGA-method assumes that the desire to charge is distributed over an interval using a 
triangular distribution. However, this is not scientifically valid. Additional research might provide insight into 
charge behaviour of EV users which will eventually lead to better results. 
 
Improving the quality of the generated tours 
The dataset, the input of the TAGA-method, is a point of improvement. Improving the created dataset will 
improve the quality of the results. 
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Management samenvatting 
Inleiding 
In tijden van eindige olievoorraden, stijgende olieprijzen en een stijgende aandacht voor duurzame mobiliteit 
worden alternatieve brandstoffen steeds aantrekkelijker. Elektrische voertuigen (EVs) zijn een alternatief voor 
de huidige voertuigen. Deze voertuigen rijden op elektriciteit in plaats van benzine of diesel. Elektrische 
voertuigen kunnen zowel onderweg als thuis worden opgeladen door middel een laadpaal. Met een volle 
batterij kan in de praktijk ongeveer 80-100 kilometer worden gereden mits negatieve effecten zoals slechte 
weersomstandigheden, extra gewicht en stop-en-go verkeer worden meegerekend. Deze afstand is de 
actieradius. Dit betekent dat als er afstanden langer dan deze afstand moet worden afgelegd, een tussentijdse 
laadbeurt nodig zal zijn. Hiervoor zijn snelladers ideaal, deze kunnen de batterij tot 80% opladen in ongeveer 
dertig minuten. Dit is veel sneller dan de 8 uur die nodig is als met een gewone (langzaam)lader word geladen. 
 

Probleemstelling 
Afgelopen jaren zijn er enkele snelladers geplaatst in Nederland. De locaties van deze snelladers zijn echter niet 
bepaald aan de hand van rijpatronen of verkeerskundig inzicht. Hierdoor kan het voorkomen dat snelladers op 
sommige locaties te weinig worden gebruikt en op andere locaties worden overbelast. In het eerste geval is de 
snellader een slechte investering en in het laatste geval kunnen er wachtrijen ontstaan.  
 
Een optimaal netwerk van snelladers is zodanig ruimtelijk opgebouwd dat, gegeven het aantal laadpunten, 
zoveel mogelijk autoverplaatsingen met een elektrische auto kunnen worden gemaakt. Met andere woorden, 
het faciliteert maximaal het gebruik van elektrische auto’s en stimuleert daarmee maximaal de transitie naar 
elektrische auto´s. Het doel van dit onderzoek is om de optimale locaties voor snelladers te bepalen zodat het 
beschikbare geld zo efficiënt mogelijk wordt besteed.  
 
In deze thesis is een methode ontwikkeld waarmee onder andere voor een willekeurig gebied de optimale 
configuratie met het daarbij horende benodigde aantal snelladers kan worden bepaald.  
 

Doelgroep en relevante verplaatsingen 
De actieradius van een EV is het belangrijkste aspect om te bepalen of iemand een snellader nodig heeft. Om te 
bepalen wie de potentiële gebruikers zijn, zijn dagpatronen van voertuigen geanalyseerd. In deze patronen is 
weergegeven hoe een auto wordt gebruikt over een dag. De EV gebruikers die op een dag meer dan de 
actieradius rijden zijn mogelijke gebruikers. Daarnaast wordt verondersteld dat gebruikers niet twee keer op 
een dag dertig minuten willen wachten terwijl hun auto wordt geladen. Een uitgangspunt in dit onderzoek is 
dat de batterij van het EV ’s ochtend helemaal opgeladen is omdat gedurende de voorgaande nacht is geladen. 
Met deze aanname kan worden bepaald welke autoverplaatsingen relevant zijn: 
 

 De totale afstand van het dagpatroon is groter dan de actieradius 

 De totale afstand van het dagpatroon is kleiner dan twee keer de actieradius 
 
Uit analyse is gebleken dat 12,1% van de dagpatronen latent (relevant) zijn uitgaande van een actieradius van 
80km. Hierbij is verondersteld dat er geen andere laders, bijvoorbeeld op een bestemming, worden gebruikt.  
 

De TAGA-methode 
Een methode is ontwikkeld die kan worden gebruikt om de optimale configuratie van snelladers te verkrijgen in 
een bepaald gebied. Deze methode, de TAGA-methode, bestaat uit drie onderdelen: 
 
De input: 

 Een dataset die informatie bevat over hoe mensen zich verplaatsen.  
 

Stappen die nodig zijn om de data uit de dataset om te zetten naar een configuratie van snelladers: 

 Vertaling van data naar ruimtelijke vraag 

 Toewijzen van snelladers 
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Om de meest betrouwbare methode te vinden zijn verschillende opties die per stap onderzocht. Deze zijn 
weergegeven in figuur 1. 
 

 
Figuur 1, Mogelijke opties per onderzochte stap 

 
De gekozen optie per stap worden hieronder toegelicht: 
 
De dataset 
Een dataset is nodig om informatie te krijgen over het ruimtelijke verplaatsingsgedrag van automobilisten. Uit 
analyse is gebleken dat geen van de onderzochte datasets voldoet aan de eisen die waren gesteld. De twee 
eisen waar geen van de datasets aan voldeed waren: 
 

 Betrouwbaarheid en soort data: de dataset bevat informatie over dagpatronen (kwaliteit) 

 De grootte van de dataset: de hoeveelheid data (kwantiteit) 
 
Er is daarom gekozen om met behulp van een verkeersmodel en data van het MON/OViN dagpatronen te 
genereren over een bepaald gebied. Omdat genereren van alle soorten dagpatronen (te)veel rekentijd kost is 
gekozen om slechts drie soorten dagpatronen te creëren. Dit zijn dagpatronen bestaande uit 1 tour met twee, 
drie of vier trips. 
 
Verkeersmodel 
In een herkomst/bestemming ochtend matrix van een verkeersmodel 
zijn verkeerstromen, het aantal voertuigen, tussen gebieden (zones) 
weergegeven die worden gemaakt tijdens de ochtendspits (zie figuur 
2, stap 1). Dit is echter maar één verplaatsing, het is dus niet bekend 
hoe iemand zich vervolgens zal gaan verplaatsen.  
 
Mobiliteits Onderzoek Nederland 
Om te bepalen hoe iemand zijn reis zal vervolgen is data uit het 
Mobiliteits Onderzoek Nederland (MON/OViN) geanalyseerd. In het 
MON/OViN vullen elk jaar ongeveer 50.000 mensen in hoe ze over een 
dag hebben gereisd. Met deze data is een kansverdeling gemaakt waar 
iemand naar toe zal rijden vanuit het gebied waar hij is aangekomen. 
Deze kansverdeling is gebaseerd op de volgende twee gegevens: 
 

 Een gravitatie model: De gebieden krijgen een kans gebaseerd 
op afstand van het vertrekgebied.  

 De attractiviteit van gebieden: Kansen op basis van 
aantrekkingskracht van gebieden. Stedelijke gebieden hebben 
bijvoorbeeld meer kans als bestemming gekozen te worden 
dan gebieden die voornamelijk bestaan uit weiland. 

 
Door het combineren van beide kansen kan vanaf elke bestemming 
worden bepaald waar mensen met een bepaalde waarschijnlijkheid 
heen zullen reizen. Op deze manier worden verschillende dagpatronen 
gegenereerd die bestaan uit 1 tour met twee, drie of vier trips (zie 
voorbeeld in stap 2). Omdat niet alle dagpatronen een zelfde waarschijnlijkheid hebben om gemaakt te worden 
wegen ze niet allemaal even zwaar.  
 

 
Figuur 2, Stappen in TAGA-methode 
(1/2) 
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Vertaling van data naar ruimtelijke vraag 
Van de gegenereerde dagpatronen kan worden bepaald of ze relevant zijn. Met andere woorden, welke 
dagpatronen hebben een snellader nodig om gemaakt te kunnen worden met een EV. Voor deze dagpatroon 
die zijn de mogelijke locaties bepaald waar een snellader kan worden bepaald. Hiervoor worden twee 
extremen punten op de route van het dagpatroon bepaald: 
 

 De eerste mogelijkheid is het punt op de route waarbij (na volledige lading) de batterij precies leeg is 
bij aankomst op de eindbestemming 

 De laatste mogelijkheid is het punt waarbij er zo lang wordt doorgereden totdat de batterij leeg is.  
 
Op de wegvakken tussen deze punten is een snellader nodig, dit is het 
“potentiele interval voor een snellader’’. Om te bepalen welke 
wegvakken zijn gesitueerd in dit interval is een netwerk gebruikt. 
Hiermee is gekeken welke wegvakken worden gebruikt als er via de 
snelste route tussen twee gebieden wordt gereden. Op deze manier 
wordt de mogelijke locaties voor een snellader ruimtelijk 
weergegeven. In figuur 3 stap 3 is een dagpatroon weergegeven met 
daarin in rood aangegeven waar een snellader geplaatst kan worden. 
 
De wens om te laden is het grootst in het midden van het potentiële 
interval, de kans om te stranden met een lege batterij is hier 
theoretisch het kleinst. Daarom is er gekozen voor een driehoekige 
verdeling van het vraag over het interval, zoals weergegeven in stap 4. 
Gebruikmakend van deze verdeling krijgen de wegvakken in het 
potentiele interval een score toegewezen. Deze score is gebaseerd op 
het oppervlak onder de driehoek en hangt af van: de 
waarschijnlijkheid van voorkomen van het dagpatroon en de lengte 
van het wegvak. 
 
Vervolgens worden deze scores toegewezen aan cellen. Het gebied 
waarin de dagpatronen zijn gegenereerd is onderverdeeld in cellen. 
Op deze manier ontstaat er voor elk dagpatroon cel scores, zie stap 5.  
 
Indien dit voor alle gegenereerde relevante dagpatronen wordt 
gedaan en de cel scores worden opgeteld ontstaat er een totale 
verdeling van de vraag. Dit is weergegeven in stap 6.  
 
Om de vraag in een toekomstig jaar te bepalen dient er rekening te 
worden gehouden met de volgende aspecten:  
 

 Marktaandeel van EVs: Hoe meer EVs er zijn, hoe meer vraag. 

 Laadgedrag: Niet iedereen met een EV zal gebruik maken van 
snelladers door de extra reistijd 

 Aanwezigheid van langzaamladers op bestemmingen: Indien 
EVs ook op bestemmingen kunnen laden zullen er minder 
snelladers nodig zijn.  

 Factor dagpatronen: omdat slechts drie soorten dagpatronen 
zijn gegenereerd is niet alle vraag weergegeven 

 
Deze effecten worden toegepast op de cel scores. Uiteindelijk 
resulteert dit in een ruimtelijke verdeling van de vraag, het aantal 
verwachte laadbeurten in een bepaald tijdsinterval, in een gebied. 
  
 

 
Figuur 3, Stappen in TAGA-methode 
(2/2) 
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Toewijzen van snelladers 
Met de ruimtelijke verdeling van de vraag naar snelladers wordt vervolgens de stap gemaakt naar 
daadwerkelijke locaties. De snelladers worden als volgt toegewezen aan het gebied:  
 

1. Zoek de cel met de hoogste vraag, de cel met de hoogste score. 
2. Plaats zoveel snelladers in die cel totdat de vraag – die daalt na elke geplaatste snellader- te laag is om 

nog een rendabele snellader neer te zetten. Dit houdt in dat de snellader niet winstgevend is bij de 
overgebleven vraag.  

3. Herhaal stap 1. 
 
Dit proces is weergegeven in Figuur 4. Aan de linkerkant is een mogelijke verdeling van de vraag te zien. Aan de 
meest rode cel, de cel met de hoogste vraag, worden snelladers toegewezen. Dit heeft effect op de vraag in de 
andere cellen, zoals is te zien in het rechter figuur. De volgende snelladers zullen worden toegewezen aan de 
cel die nu de hoogste score heeft. Indien er nergens meer een rendabele snellader kan worden neergezet is 
een optimale configuratie bepaald.  
  

 
Figuur 4, Voorbeeld van de effecten op de vraag in een gebied na plaatsing snelladers op een locatie 

 
De combinatie van de drie beschreven stappen leidt tot de TAGA (Twee-punts Aanpak Greedy Algoritme)-
methode.  
 

Toepassingsgebieden 
De ontwikkelde TAGA-methode kan worden gebruikt voor de volgende doeleinden: 

 Het bepalen van de optimale configuratie (locaties en aantal snelladers per locatie) binnen een 
willekeurig gebied 

 Het beoordelen en ranken van geplande of mogelijke locaties op winstgevendheid 

 Bepalen welke bestaande locaties het best kunnen worden opgewaardeerd tot hubs (meer laders op 
een locatie) 

 

Toepassing op Amsterdam 
De methode is toepast om de optimale locaties voor enerzijds Amsterdammers en anderzijds mensen die door 
de regio Amsterdam rijden te bepalen. De dagpatronen, de dataset, zijn gecreëerd door middel van: 
 

 De H/B ochtend matrix van het verkeersmodel VENOM (Verkeerkundig noordvleugel model) 

 Gestapelde data van het Mobiliteits Onderzoek Nederland (MON/OViN 2004-2010) 
 
De eerste verplaatsingen van de dagpatronen zijn overgenomen van VENOM en de vervolgverplaatsingen zijn 
bepaald met behulp van aannames uit het MON/OViN.  
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In de figuren 5 en 6 zijn de resultaten weergegeven voor een aangenomen actieradius van 80km. De rode 
bollen zijn de optimale locaties en het getal wat erin staat het aantal benodigde (rendabele) laders.  
 

  
Figuur 5, Optimale configuratie van snelladers in en rondom 
Amsterdam (totaal binnen de gemeentegrens: 21 laders verdeeld 
over 3 locaties) 

Figuur 6, Optimale configuratie van 
snelladers voor EV gebruikers vertrekkend 
uit Amsterdam  

 
In figuur 5 is te zien dat voor een optimale configuratie binnen de gemeentegrens van Amsterdam 21 
snelladers nodig zijn verdeeld over drie locaties.  
 
De EV gebruikers die ’s ochtends vertrekken uit Amsterdam wensen een snellader nodig op ongeveer 30-40 
kilometer ten zuiden van Amsterdam. Hiervoor zijn drie snelladers verdeeld over twee locaties nodig. Echter 
zullen deze locaties en aantallen niet passen in de optimale situatie voor een groter gebied. Daarvoor dienen 
alle EV verplaatsingen te worden meegenomen.  
 

Evaluatie van de methode 
De TAGA-methode is geëvalueerd door het vergelijken van de gecreëerde dataset en door middel van een 
gevoeligheidsanalyse. 
 
De gecreëerde dataset met dagpatronen, welke is gebruikt voor de toepassing op Amsterdam, is gevalideerd 
met de dagpatronen uit het MON/OViN. Hierbij is gekeken naar de gemiddelde lengte van de relevante 
dagpatronen, de gemiddelde lengte van het potentiele interval en het percentage relevante dagpatronen. Uit 
deze analyse blijkt dat de gecreëerde dataset goed overeenkomt met de MON/OViN ondanks het feit dat 
MON/OViN is gebaseerd op het verleden en de gecreëerde dataset op de toekomst (2020). 
 
Uit de gevoeligheidsanalyse blijkt dat de locaties vrij robuust zijn. Daarentegen varieert de vraag in 
verschillende berekende scenario’s sterk. Gerelateerd hieraan is het aantal benodigde laders.  
 
Het verbeterpunt zijn de dagpatronen die zijn gegenereerd en zijn gebruikt als input voor de methode. De 
gecreëerde dataset is verondersteld de best beschikbare te zijn en geeft ook goede resultaten. Echter kan deze 
worden verbeterd door de volgende (grootste) zwaktes aan te pakken: 
 

 Onlogische tours kunnen worden gecreëerd door de algemene aannames met betrekking tot 
bestemmingskeuze.  

 Daarnaast worden niet alle mogelijke dagpatronen gecreëerd. 
 
De betrouwbaarheid van de uitkomsten hangt daarom vooral af van de kwaliteit en kwaliteit van de dataset. 
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Conclusies 
De totaal gereden afstand met een auto op een dag is maatgevend voor het gebruik van snelladers 
Een potentiele gebruiker van een snellader is een EV gebruiker die een dagelijkse verplaatsing maakt met een 
totale afstand tussen de actieradius en twee keer de actieradius als is aangenomen dat de batterij vol 
opgeladen is bij vertrek.  
 
De TAGA-(Twee-punten Aanpak Greedy Algoritme) methode is de beste, de dataset is het verbeterpunt 
De TAGA-methode is de beste methode om onder andere de optimale configuratie van snelladers te bepalen in 
een bepaald gebied. Echter bevat deze methode enkele onbetrouwbaarheden. Deze hebben vooral te maken 
dat er geen dataset beschikbaar is die zowel kwalitatief als kwantitatief voldoende is. De zelf gecreëerde 
dataset heeft de volgende zwaktes: 
 

 Onlogische tours kunnen worden gecreëerd door de algemene aannames m.b.t. bestemmingskeuze.  

 Daarnaast worden niet alle mogelijke dagpatronen gecreëerd. 
 
Ondanks deze verbeterpunten wordt de methode verondersteld betrouwbaar te zijn. 
 
Er zijn minimaal drie locaties snelladers nodig om Amsterdam beter bereikbaar te maken met een EV 
Drie locaties zijn minimaal nodig binnen de gemeente grens van Amsterdam om meer dan 80% van de 
verwachte vraag te bereiken in 2020. Deze locaties zijn: A10 nabij de RAI, A10 nabij de Coentunnel en nabij het 
knooppunt A9-A1. Deze locaties zorgen ervoor dat iedereen die Amsterdam inrijd een snellader tegenkomt. 
 
De locaties zijn robuust, maar de vraag is onzeker  
De optimale configuratie van snelladers verandert in beperkte mate als er een grotere actieradius wordt 
aangenomen. Het aantal benodigde laders in een toekomstig jaar is zeer onzeker door: de verandering van de 
actieradius, het marktaandeel van EVs, het laadgedrag (daadwerkelijke gebruik van snelladers), de 
aanwezigheid van langzaamladers op bestemmingen en de winstgevendheid van snelladers. Daarnaast zullen 
EV’s vooral worden gebruikt als tweede auto. 
 
Vanuit een commercieel oogpunt zijn snelladers zonder subsidie een risicovolle investering. Vanuit het oogpunt 
van de overheid kunnen (niet winstgevende) snelladers mogelijk de angstradius wegnemen. Dit zal zorgen dat 
gebruikers altijd het idee hebben dat een lader in de buurt is, wat het gebruik van EV’s promoot. De laders 
dienen in de juiste volgorde geplaatst worden om het beschikbare geld zo efficiënt mogelijk te spenderen. De 
volgorde kan worden bepaald met de TAGA-methode.  
 

Aanbevelingen 
TAGA-methode toepassen op groter gebied 
In dit onderzoek is een klein gebied onderzocht. De methode dient te worden toegepast op een groter gebied 
om een landelijke optimalisatie te krijgen. Daarnaast kan ook de invloed van een grotere actieradius worden 
bestudeerd. 
 
Eerst ruimtelijke spreiding van snelladers, dan upgraden tot hubs 
Het is niet verstandig om het aantal verwachte snelladers op een locatie in één keer neer te zetten. Het is beter 
om eerst overal één snellader neer te zetten om zo een dekkend netwerk te realiseren. Voor de volgorde van 
plaatsing kan weer de TAGA-methode worden gebruikt.  

 
Monitoren van gebruik en parameters 
Om te voorspellen hoeveel vraag er in de toekomst zal zijn dient de ontwikkeling van de gerelateerde aspecten 
te worden gemonitord. Op deze manier kan er preciezer worden geschat welk scenario aannemelijk is en 
hoeveel snelladers daarvoor nodig zijn. Daarnaast De TAGA-methode gaat uit van een driehoek verdeling die 
weergeeft waar EV gebruikers willen laden binnen een relevant dagpatroon. Echter is dit niet wetenschappelijk 
gegrond. Extra onderzoek kan inzicht geven in het laadgedrag van gebruikers. 
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Verbeteren van de dataset 
De dataset, de input van de TAGA-methode, is een verbeterpunt. Het verbeteren van de gecreëerde dataset zal 
de kwaliteit van de uitkomsten verbeteren. 
 
 
 



 

2 Improving Infrastructure for Electric Vehicles: A Method to Optimize Locations for Fast chargers 

 



 

   
Improving Infrastructure for Electric Vehicles: A Method to Optimize Locations for Fast chargers 1 

  

 Content 
1 INTRODUCTION ................................................................................................................................... 3 

1.1 Background ..................................................................................................................................... 3 

1.2 Problem definition ........................................................................................................................... 4 

1.3 Research questions .......................................................................................................................... 4 

1.4 Relevance of research ....................................................................................................................... 5 

1.5 Readers guide .................................................................................................................................. 5 

 
2 EV’S, (FAST)CHARGING AND POTENTIAL MARKET ................................................................................ 7 

2.1 Introduction ..................................................................................................................................... 7 

2.2 Electric Vehicles ............................................................................................................................... 8 

2.2.1 History ..................................................................................................................................... 8 

2.2.2 EVs on market and targets ........................................................................................................ 8 

2.2.3 Driving range ........................................................................................................................... 9 

2.3 Charging ......................................................................................................................................... 10 

2.3.1 Charging levels & fast charging ............................................................................................... 10 

2.3.2 Charging time and capacity .................................................................................................... 11 

2.3.3 Current and future charge locations ........................................................................................ 11 

2.3.4 Usage of current fast chargers ................................................................................................. 12 

2.3.5 Requirements for new locations .............................................................................................. 13 

2.4 Defining the potential market .......................................................................................................... 13 

2.4.1 Definitions .............................................................................................................................. 13 

2.4.2 Relevant and non relevant daily patterns ................................................................................. 14 

2.4.3 Size of potential market .......................................................................................................... 15 

2.5 Conclusions .................................................................................................................................... 16 

 
3 THEORETICAL FRAMEWORK ................................................................................................................ 17 

3.1 Introduction .................................................................................................................................... 17 

3.2 Structure of the method .................................................................................................................. 18 

3.3 General assumptions & conditions .................................................................................................. 18 

3.4 Datasets .......................................................................................................................................... 19 

3.4.1 Dutch National Travel Survey .................................................................................................. 19 

3.4.2 Albatross ............................................................................................................................... 20 

3.4.3 Data from a traffic model ....................................................................................................... 20 

3.4.4 Comparison ............................................................................................................................ 21 

3.5 Translation into spatial representation of the demand ..................................................................... 21 

3.5.1 One-point approach .............................................................................................................. 22 

3.5.2 Two-point approach ............................................................................................................... 23 

3.5.3 Translation to expected demand ............................................................................................ 25 

3.5.4 Comparison ........................................................................................................................... 26 

3.6 Allocation methods ........................................................................................................................ 26 

3.6.1 Objective function ................................................................................................................. 26 

3.6.2 Optimization Algorithms ........................................................................................................ 27 

3.6.3 Planning perspective.............................................................................................................. 29 

3.6.4 Comparison ........................................................................................................................... 29 

3.7 Conclusions ................................................................................................................................... 30 

 
4 THE TAGA-METHOD ........................................................................................................................... 33 

4.1 Introduction ................................................................................................................................... 33 

4.2 Creating a dataset .......................................................................................................................... 34 

4.2.1 Simplification of daily patterns ............................................................................................... 34 

4.2.2 Required input ....................................................................................................................... 34 

4.2.3 Structure ............................................................................................................................... 35 

4.2.4 First trip of a tour ................................................................................................................... 35 

4.2.5 Estimation of sequel trips ....................................................................................................... 35 

4.2.6 Weight of the generated tours ................................................................................................ 38 



 

2 Improving Infrastructure for Electric Vehicles: A Method to Optimize Locations for Fast chargers 

 

4.2.7 Example ................................................................................................................................. 38 

4.3 Spatial presentation of the demand ................................................................................................ 39 

4.3.1 Distribution of the weight over the potential interval .............................................................. 39 

4.3.2 Converting weight of a tour to cell scores ............................................................................... 39 

4.3.3 Size of the cells ...................................................................................................................... 40 

4.4 Greedy algorithm ............................................................................................................................ 41 

4.5 Conclusions ................................................................................................................................... 44 

 
5 APPLICATION TO AMSTERDAM ........................................................................................................... 47 

5.1 Introduction ................................................................................................................................... 47 

5.2 Study setup .................................................................................................................................... 48 

5.2.1 Area of Influence & Study area................................................................................................ 48 

5.2.2 Datasets used for generation of tours ..................................................................................... 48 

5.2.3 Assumed parameters ............................................................................................................. 49 

5.3 Results ............................................................................................................................................ 51 

5.3.1 Tours generated ...................................................................................................................... 51 

5.3.2 Spatial presentation of the demand......................................................................................... 51 

5.3.3 Optimal configuration of fast chargers ................................................................................... 52 

5.4 Conclusions ................................................................................................................................... 56 

 
6 EVALUATION OF THE METHOD ........................................................................................................... 57 

6.1 Introduction ................................................................................................................................... 57 

6.2 Validation of the dataset ................................................................................................................. 58 

6.3 Sensitivity analysis.......................................................................................................................... 59 

6.3.1 General aspects ..................................................................................................................... 59 

6.3.2 Influence of driving range ...................................................................................................... 60 

6.3.3 Influence of market share & charge behaviour ......................................................................... 61 

6.3.4 Presence of slow chargers at activity end ................................................................................ 62 

6.3.5 Profitability of a charger ......................................................................................................... 63 

6.4 Conclusions ................................................................................................................................... 64 

 
7 CONCLUSIONS .................................................................................................................................. 67 

7.1 Main research findings ................................................................................................................... 68 

7.1.1 Total distance travelled on a day is indicative for the use of fast chargers ................................ 68 

7.1.2 The TAGA-(Two-point Approach Gr. Algorithm)method is best, dataset point of improvement 68 

7.1.3 Fast chargers are required on at least three locations in Amsterdam ....................................... 70 

7.1.4 The locations are robust, the demand is uncertain ................................................................... 71 

7.1.5 Answer to the main research question .................................................................................... 72 

7.2 Recommendations ......................................................................................................................... 73 

7.2.1 Application to a large area ..................................................................................................... 73 

7.2.2 First spatial distribution, then upgrade to hubs ...................................................................... 73 

7.2.3 Monitoring demand and parameters ...................................................................................... 73 

7.2.4 Improving the quality of the generated daily patterns ............................................................. 73 

7.3 Reflection and discussion ............................................................................................................... 74 

7.3.1 Reflection on results: Profitability versus ubiquitous network? ................................................ 74 

7.3.2 Market functioning and competition ...................................................................................... 74 

7.3.3 Regular and incidental daily patterns: will the potential user group increase? ......................... 75 

7.3.4 Has the development of fast charging infrastructure the priority? ........................................... 76 

 
REFERENCES .................................................................................................................................................. 77 

 
APPENDIX A: Electric vehicles on market ..................................................................................................... 83 

APPENDIX B: Driving range and battery developments ................................................................................ 85 

APPENDIX C: Comparison MON/OViN - VENOM .......................................................................................... 87 

APPENDIX D: Estimation of the cell size ...................................................................................................... 89 

APPENDIX E: Estimation of profitability ........................................................................................................ 91 

APPENDIX F: Greedy Algorithm B: More locations with less chargers ........................................................... 93 

APPENDIX G: Survey results ........................................................................................................................ 95 



 

   
Improving Infrastructure for Electric Vehicles: A Method to Optimize Locations for Fast chargers 3 

  

 

1 INTRODUCTION  
 

1.1 Background 

In times of finite oil reserves, rising oil prices and a rising demand for 
sustainability, alternative fuels are becoming increasingly attractive. Electric 
vehicles (EVs) are an alternative to the current internal combustion engine (ICE) 
vehicles. Many pilot projects are currently being implemented to detect possible 
barriers and convince car drivers of the benefits of electric driving. One of the 
major problems is the driving range of the car (Direct research, 2011). This is the 
maximum distance that can be driven on a full battery. The fear of many drivers 
is to get a flat battery when they want to perform their current daily travel 
pattern with an EV.  
 
 (Fast)charging 

The battery can be recharged using a 
charging station or plug, this can be done at a 
destination when the vehicle is not in use. 
This is often during the night; this ensures 
that the battery is full at departure the next 
day. Because there is no pressure of time, 
often regular (slow)chargers are used. The 
charging time of those chargers is about six to 
eight hours. It is also possible to charge en 
route, this is similar to petrol stations for 
regular cars. In this case, fast chargers (see 
Figure 7) are preferred. Those chargers can 
charge the battery up to 80% within 30 
minutes.  
 
Current situation 

There are currently plans developed for a ubiquitous nationwide network of fast 
chargers that will eliminate the fear of getting a flat battery. Many companies 
cooperate to exploit fast chargers. Often there is collaboration between energy 
companies, car manufacturers, petrol station owners and suppliers of (fast) 
chargers.  
 
At this time, there is no method available that indicates where fast chargers are 
desirable from the perspective of driving patterns of (potential) EV users. This 
report provides insight in the methods that can be used to allocate fast chargers 
as efficiently as possible. This chapter contains the problem definition, the 
research questions, the relevance of the research and a reader’s guide. 

 
Figure 7, Fast charger: Epyon 
Terra (ABB, 2012) 
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1.2 Problem definition 
Creating a national network in order to boost electric vehicle usage is a good goal. However, it is also a costly 
development. The current and the planned locations of fast chargers are determined without conclusive 
reasoning: driving patterns are not taken into account. Because of this, it may occur that fast chargers will be 
underused or overused (the demand is too high). In the first case, the investment will be a waste of money. The 
demand will be too low to make a fast charger profitable. In the other case, the fast charger has a shortage of 
capacity which might result in waiting times. This is a disstatisfier that might diminish consumer’s enthusiasm 
for fast charging and even for electric cars in general. 
 
An optimal designed configuration with corresponding number of chargers will ensure that the money is spent 
as efficiently as possible.  

1.3 Research questions 
This thesis studies how an optimal configuration of fast chargers within a certain area can be determined. 
Therefore, several methods are developed that can be used to present the demand for fast chargers spatially 
and methods that can be used to allocate fast chargers to the studied area with the aim to obtain an optimal 
configuration. An evaluation of the different methods will lead to a method that will lead to the best solution of 
the problem. The main question dealt with in this thesis is: 

 
Many aspects have relevance with the topic. Therefore, it is first made clear which aspects are included in this 
thesis. 
 
Firstly, it should be stated that chargers are not the only way to charge the battery of an EV. Battery swap 
stations can be used to switch the battery (Better place, 2009). Furthermore, charging is possible using 
induction. Inductive charging is a type of short-distance wireless energy transfer that can be used to charge the 
battery of the EV when stationary on a charging plate (John Tarantino, 2011, Nissan, 2011). This thesis will only 
focus on charging stations.  
 
Many aspects are related to electric vehicles, such as impact on the environment, cost and subsidy, 
technological developments and infrastructure. This research scopes on the infrastructure for EVs. However, 
technological developments will affect the way infrastructure has to be designed. This aspect is partly included 
in this thesis. In addition, the effect of costs and subsidies are included in the scenarios studied and are 
therefore indirectly included. In this way, many aspects are in some way involved in this study without getting 
into detail.  
 
Infrastructure 
The infrastructure for EVs is different compared to internal combustion engine cars. Regular (ICE) cars only 
have the ability to increase the driving range at petrol stations along roads. Conversely, EVs can be recharged at 
home or en route. However, the distance that can be driven on a full battery is way less than on a full tank of 
petrol/diesel. Because of this, EVs have to be charged more frequently. Despite the fact that it is possible to 
charge the EV at home and is therefore often full on departure, it might happen that another charge is needed 
on the same day.  
 
The concept of fast chargers is increasing the driving range, without losing a lot of time due to charging. 
Therefore, fast chargers are an interesting option to make (incidental) daily patterns (how someone travels 
over a day) that are larger than the driving range also with an EV.  
 

Main research question 
What is the optimal configuration of  fast chargers to reach the highest potential of electric vehicles usage? 
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Methods 
The methods studied in this thesis will provide insight into where people prefer a fast charger if they will switch 
their car to an electric vehicle and would maintain their current travel behaviour. These methods follow from 
an analysis of how the world of electric vehicles looks like today and in the future. From this analysis, the key 
aspects and user groups are determined. 
 
Using a dataset containing relevant information about daily vehicle patterns, a spatial distribution of the 
demand for fast chargers can be presented. The results will be used to allocate fast chargers to the best 
locations, leading to an optimal configuration. How many chargers have to be placed depends on the 
requirements which are imposed on the profitability.  
 
To provide an answer on the main question, some sub questions are developed. These questions are arranged 
and formulated in such a way that the answer of the previous question will be used for the following. 

 
The questions are also answered separately in the conclusions (chapter 7). 

1.4 Relevance of research 
General 
Several surveys (Stadspeil, 2009, Research Direct, 2011) show that the major drawback of electric vehicles is 
the (limited) driving range (mentioned by 74% of the respondents). In addition, the limited presence of 
chargers is a problem according to 51% of the respondents. This thesis shows how these problems can be 
(partly) eliminated by installing fast chargers. 
 
The thesis provides insight in the aspects that determine whether or not a location has potention for placing a 
fast charger and how the optimal locations can be determined. To obtain the best possible configuration of fast 
chargers, it should be considered where demand is greatest. The method that is developed can be applied for 
every area. If the proper input data is available, an optimal network of fast charging stations for different 
scenarios can be calculated. In this way, the available funds can be spent as efficiently as possible.  
 
Amsterdam 
The developed method is applied to Amsterdam to provide insight in what (extra) measures have to be taken 
to keep Amsterdam in a leading position with respect to electric vehicles. Designing the best possible 
configuration of fast chargers will ensure that the use of EV will increase which eventually lead to improved air 
quality. In addition, this report shows where the EV owners in Amsterdam want to charge. In this way, 
Amsterdam can cooperate with other municipalities to ensure that their residents will have a greater range. 
This will take away the major disadvantage with the possible result that the EV sales might increase. 

1.5 Readers guide 
The structure of this report is as follows. In the first chapter, a comprehensive analysis is performed to figure 
out which aspects are relevant to define the potential users of fast chargers and which aspects will influence 
the location of fast chargers. From this analysis, the potential user groups are outlined and the most important 
parameters are determined. This is the basis for the developed methods. 
 

Sub questions 
1. Who are the potential users of fast chargers and which aspects are relevant for determining the 

optimal locations and corresponding number of fast chargers? 
 

2. What methods can be used to determine the expected demand for fast chargers, and what methods 
can be used to find an optimal configuration that meet the demand? 

 
3. Should the municipality of Amsterdam install extra fast chargers to meet the expected demand in the 

future and where should they be placed? 
 

4. What is the influence of the assumptions on the results, are the results reliable and robust? 
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In the next chapter various methods are developed and evaluated. Chapter 3 is divided into three parts: In the 
first part, datasets are studied that can be used as input. In the second step several methods have been 
examined resulting in a spatial distribution of demand for fast chargers. In the last step, allocation methods are 
studied that provide the best possible fast charging supply at a given demand. The objective of this 
optimization is to minimize the number of fast chargers by allocating them to the best positions in such a way 
that each charger satisfies the predetermined conditions. A combination of the (best) options will lead to a 
methodology that can be used universally.  
 
In chapter 4, the method that is supposed to be best is described in more detail. Here, a new dataset is created 
which combines the best characteristics of the datasets studied. In addition, the algorithm that is used to 
allocate fast chargers is further elaborated.  
 
The method is applied on behalf of the municipality of Amsterdam in chapter 5. First, the optimal configuration 
of fast chargers within the municipality of Amsterdam is determined. Secondly, it has been studied were 
residents of Amsterdam with an EV want to charge.  
 
The method is evaluated in Chapter 6. Here, a validation is made between the data of the created dataset and 
the data of the Dutch National Travel Survey. In the second part a sensitivity analysis is performed to see if the 
locations and the number of fast chargers will change when the adopted parameters are changed. 
Furthermore, an overview is given about possible unreliability in the steps taken. 
 
The division of the chapters corresponds with the research questions. This is shown as a flowchart in Figure 8 . 
 

 
Figure 8, Flowchart of the structure of the report. 
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2 EV’S, (FAST)CHARGING AND 

POTENTIAL MARKET 

2.1 Introduction 
This chapter provides general information to become familiar with aspects that 
are related to electric vehicles. Topics that have been analysed by means of 
literature study and driver experiences are: types of EVs, market share, driving 
range, charging times and potential users. For all of these aspects it is briefly 
explained what it is, why it's relevant and what value it may have for this study. In 
order to obtain more specific information about charging behaviour, a survey 
among EV users is held in cooperation with DIVV, AgentschapNL and Goudappel 
Coffeng. The results are attached in appendix G. 
 
EVs 

The introduction briefly describes why EVs are slowly gaining popularity. Surveys 
that have been done to identify the advantages and disadvantages are analysed.  
The relevant thresholds are discussed in more detail in order to better understand 
the problem. In addition, the current market is set out as well as the development 
and targets that are set by different institutes. 
 
Charging 

In the second part, the possibilities how an EV can be charged are further 
elaborated. The focus will be on fast charging. Fast charging is suitable for 
charging en route due to the relatively short charge time compared to normal 
charging. The current locations of (fast)chargers in the Netherlands are presented 
and it is studied why they have been placed there. To provide more insight in the 
usage of fast chargers, a survey is held. The results show what EV users want to do 
while waiting, their attitude towards fast charging and their experiences.  
 
Potential market 

Finally, an analysis is done to figure out who might be a potential user. For this, 
the travel behaviour of car drivers is studied. Firstly, some definitions which are 
used throughout the thesis are explained. Hereafter, it is examined what 
characteristics determine which patterns are eligible for a fast charger. For this 
analysis, the data from the Dutch National Travel Survey is used. Furthermore, an 
estimate is made about the size of the potential user group under certain 
conditions. 
  
The chapter concludes with a summary of the aspects that are relevant for 
determining the relevant daily patterns, a description of a potential user and the 
size of this group. 
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2.2 Electric Vehicles  

2.2.1 History 

The idea behind electric driving is invented a long time ago. The first electric vehicle (EV) was a scale model 
based on calculations of Faraday and was made by the Dutchmen Sibrandus Stratingh. At the end of the 19

th
 

century developers were mainly working on improving the battery. In 1906 a method was invented to convert 
AC to DC leading to a breakthrough. This new technology ensured that the (driving) range of an electric car 
improved (to 65km) and it was possible to drive faster than 25km/h. At that time approximately 10.000 EVs 
were in use throughout the world, representing a market share of more than 25% (Encyclopædia Britannica 
Online, 2012). The batteries could be charged by charging points which were distributed across the country. 
The market share decreased over the years due to the high costs compared to the emerging internal 
combustion engine cars and the lack of power (80-300 times smaller than petrol and diesel). Especially during 
both world wars, the EV lost a lot of ground and became rare. Nevertheless the research to develop better 
batteries and cars continued.  
 

After World War 2 the electric vehicles regain some ground due to lack of oil. Till the 90’s only a few 
developments with respect to batteries (still the major challenge) were made. During the 90’s some car 
manufacturers decided to experiment with some new technologies which resulted in some test vehicles. These 
developments have eventually led to the EVs currently on the market. 

2.2.2 EVs on market and targets 

There are different types of EVs on the market, but not all of them are full electric vehicles. Roughly, three 
types of vehicles using one or more electric motors for propulsion can be distinguished: BEVs (Battery Electric 
Vehicles), HEVs (Hybrid Electric Vehicles) and PHEVs (Plug-in Hybrid Electric Vehicles). This report only contains 
information about BEVs: when the term EV is used, BEVs are considered. 
 
The size of the electric vehicle market has grown in recent years. Currently (Dec 2011) there are about twenty 
models on the market; these are shown in appendix A. Not all of these models have the ability to use fast 
chargers due to technical limitations. The most known and best-selling EVs, Nissan Leaf and Mitsubishi iMiev, 
have this option as well as most of the models that will be released in the future (AgentschapNL, 2012).  
 
At this time there are about 1500 electric cars in the Netherlands

1
 (Trouw, 2012). Most of them are used as 

lease car or have a shared owner (AgentschapNL, 2010). How rapidly the number of electric vehicles in the 
Netherlands will increase is difficult to estimate. Many factors affect the development, therefore scenarios and 
targets are often used.  
 
Future 
In the beginning of March (2012), only 0.3% of the cars sold is an EV (NU.nl, 2012). The future market share of 
newly sold EVs is developed by the Ministry of EL&I

2
 and is derived from the ambition that has been 

established. The graph is depicted in Figure 9. This figure clearly shows that from 2015 the market share will 
grow exponentially and will than flatten to a market share of 75%. In a study of the DHV (DHV, 2010) different 
phases are linked to the development: from 2010 to 2015 is the test phase, 2015-2020 is the phase in which 
the 'early adopters' will try out EVs and from 2020 the electric car will be widely accepted by society.  
 
In a study of CEDelft (2011), the market share (of the fleet) of all types of EVs (BEVs, PHEVs and HEVs) is 
estimated for different scenarios, the result is shown in Figure 10. For all scenario’s the same exponentially 
graph is shown, resulting in a market share of 7%, 18% or 33% in 2030. However, the percentage of BEVs 
among this group is unknown. The major differences between the scenarios arise because the growth is highly 
dependent on development costs and performance of both battery technology as well as conventional vehicle 
technology. Also the fiscal policy plays an important role.  
 

                                                                 
1 The numbers are also tracked by AgentschapNL, see graph in Appendix A 
2 Ministry of Economic Affears, Agriculture and Innovation 
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Figure 9, Prognosis of the market share of EVs in new 
sales (EL&I and I&M, 2009) 

Figure 10, Total share of EVs in the EU car fleet, BEVs, 
PHEVs and HEVs (CEDelft, 2011) 

 
The number of BEVs the government focuses on in their ambitions is included in the action plan of 
AgentschapNL (AgentschapNL, 2010). The aim that there will be 20,000 EVs in 2015, 200,000 in 2020 and 1 
million in 2025. The Dutch fleet currently consists of 9,451,739 vehicles (CBS, 2011). This means a market share 
of the fleet of approximately 2% in 2020. Compared with other European countries, these expectations are 
quite ambitious.  

2.2.3 Driving range 

The driving range is the distance that an electric vehicle can cover on a full battery. According to the 
manufacturers, the driving range is around 140-160 kilometres. This value is based on the EPA city driving cycle 
and Japanese test cycle (Nissan, 2010). However, this is measured under ideal conditions. If you verify some 
driving conditions and climate controls the range decreases by about 35-45% (Bullis K., 2010, Autozine, 2010). 
If some more energy consuming conditions, like bad driving style, load, traffic conditions and accessory use, are 
combined the maximum driving range decreases even more. Some tests even show that driving during busy 
circumstances, a lot stop and-go-traffic (traffic light / traffic jam) and when the air conditioning is used or the 
heater is on (to maintain some comfort) the driving range drops below 50% of the promised driving range 
(Nissan leaf assumed

3
, source: Nissan, 2010).  

 
Range anxiety 
In addition, there is also a fear of getting a flat battery and get stranded on a roadside.  The name for this 
phenomenon is ‘Range anxiety’, and is one of the most common (71%) perceived disadvantages of EVs (CEA, 
2011). Although the remaining range is displayed quite precisely on the display and the locations of chargers 
have been incorporated in navigation systems it still is a problem. The result is that users want to charge the 
battery (far) before the battery is flat. In other words, they use only a part of the possible driving range. 
 
A realistic driving range can be estimated if all negative factors are taken into account in a certain degree. For 
the current EVs (2011), a driving range of 80 kilometres is assumed. In this value both physical and 
psychological reasons for a driving range decrease are incorporated. More information is attached in annex B. 
 
Future developments 
The capacity of the battery is the most important aspect 
to increase the driving range. Therefore, a lot of research 
is conducted to improve the driving range. New types of 
batteries will allow faster charging and/or have more 
energy storage. To make EVs more acceptable, major 
steps have to be made (see Figure 11). How rapidly new 
technologies will be available on the market is unknown, 
this will depend on the cost of production. In Appendix C, 
three new kinds of batteries are examined. 

                                                                 
3
 Most sold car (AgentschapNL, 2012) 

 
Figure 11, minimum required battery capacity in 
km (ECN, 2009) 
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2.3 Charging 

2.3.1 Charging levels & fast charging  

To charge the battery of an EV, the alternating current (AC) from the electrical grid has to be transformed to 
direct current (DC). How long it takes to charge the battery depends on the rectifier, a device that concerts AC 
to DC. Cost and thermal issues limit how much power the rectifier can handle. Different modes and permissible 
connections are specified in the standardization of the International Electrotechnical Commission. Here, four 
modes are distinguished, of which three are used for slow charging and one for fast charging.  
 
Modes of charging 
Mode 1, slow charging. The vehicle is connected to a single-phase (250V) or three phase (krachtstroom, 480V) 
AC network, using the most common voltages and currents (16 A). This charging mode is prohibited in certain 
countries due to the lack of earthing. 
 
Mode 2, slow charging. The vehicle is also connected to a single phase or three phase AC network. The 
difference with mode 1 is that the supply network may not exceeded 32A and has an in-cable safety device 
implemented.  
 
Mode 3, slow/fast charging. The vehicle is connected using dedicated electric vehicle supply equipment (EVSE). 
This means that a specific EV socket-outlet with control and protection function is installed. With required 
specialized cables and access to the three phase AC network (eventually smart grid) it is also possible to charge 
with higher currents up to 250 A 
 
Mode 4, fast charging. This mode charging allows high power levels performed with either a DC of an AC 
connection. In the DC case, the battery is connected with a rectifier, leading to heavy and expensive 
infrastructure, whereas for AC fast charging the rectifying is done on-board. Both connections can handle 
power levels up to 250 kW, decreasing the charge time to less than 10 min. For chargers in this mode a three 
phase power grid is necessary. In the Netherlands the three phase network provides a power of 50 kW. 
 
The different modes with associated voltages and currents are shown in Table 1. 
 
Table 1, Different modes with respect to charging (INTERNATIONAL STANDARD IEC 62196-1, 2006) 

Mode Charging station Voltage (V) Amps (A) Phases / Volts Power (kW) 

1 Slow charger 230 16 1 
3 

3.7 

2 Slow charger 230 32 1 
3 

7.4 

3 Slow charger 
 

Fast charger 

230 16 
32 

1 
3 

11.1 
22.2 

400 250 1 
3 

50 

4 Fast charger 400 400 - 50 
(Netherlands) 
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2.3.2 Charging time and capacity 

The time that is required to fully charge a battery depends on a number of aspects, such as the type of the 
battery and the power of the charger. How long it takes to charge a vehicle can be determined by a simple 
calculation (Bossche, 2010). An example is given: 
 
A Nissan Leaf with a weight of 1500 kg has an energy 
consumption of 200 Wh/km. This implies that for a trip 
with a distance equal to the driving range according to 
the manufacturer (160 kilometres), 32 kWh is required 
(200 Wh/km x 160 km). 
 
The time that is needed to charge 32 KWh depends on 
the power available and on the rating (mode) of the 
charger. For European countries the normal charge 
rate with the standard outlet (230V, 16A) is 3.7 kW. 
This means that the battery will be full in 32/3.7 = 8.65 
hour. The charging rate can be expressed in km/h for 
the example, the rate is about 160/8.65 = 18.5 km/h. 
 
Fast chargers can cope with much higher power levels, 
these are currently limited to 50 kW in the 
Netherlands (three phase). This will greatly shorten 
the charging time. When charging the same battery as 
mentioned in the example, the charging time will 
decrease to 38 minutes (=32 KWh/50 kW). Converted 
to a capacity of 80%, this means 32 minutes. This is 250km/h. (13.5 times faster than slow charging).  
 
Future developments 
The charging time will decrease as higher charging powers will be used. This relationship is illustrated in Figure 
12. The figure shows that it is possible to reduce the charging time to less than 10 minutes. In addition, new 
type of batteries ensures that the charge time will decrease. These are explained in appendix B. 
 
Capacity 
As mentioned in the above, a fast charger can charge an electric vehicle to about 80% in less than 30 minutes. 
However, in many cases it is not necessary to charge up to 80%, for instance when a destination is almost 
reached. If there is a possibility to charge at the next destination, it would be a waste of time to charge longer 
than necessary. The capacity of a charger can be estimated by taking this behaviour into account. This value 
will be determined in chapter 5. 

2.3.3 Current and future charge locations 

Current 
In the Netherlands are currently about 1800 (slow)charging stations (ANWB, 2012) and 14 fast charging 
stations (AgentschapNL, 2012). A major part of the chargers, approximately 300 (slow)chargers and 7 fast 
chargers

4
, are situated in Amsterdam and more are planned. The current locations are depicted in Figure 13. 

These locations are determined on the basis of some characteristics (de Haas, 2011); these are discussed in 
section 2.3.5. 
 
Future 
At the end of 2012, ten thousand regular (slow) chargers have to be installed in the Netherlands, according to 
the ANWB (ANWB, 2012). To achieve this, the current market players should expand their network or new 
operators should enter the market.  
 

                                                                 
4
 www.oplaadpunten.nl, maps.google.nl, ANWB.nl, leafhebbers.nl 

 

Figure 12, Charging time versus the charging power. 
Minutes required to charge 80% of the capacity (ABB, 
2012)  

http://www.oplaadpunten.nl/
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In late January 2012, Rijkswaterstaat announced that they will expand the nationwide network with 459 new 
fast chargers (NOS, 2012). These will be installed on parking lots along highways, the locations are shown in 
Figure 14. Another market player is The Green Motion. Their ambition is, in collaboration with Epyon and 
Essent, to expand their network with 80 fast chargers across the Netherlands (The new Motion

5
). The exact 

locations are not yet known, but probably few will be placed in and around Amsterdam. The last big market 
player is Total; this fuel company will realize seven fast chargers in the Netherlands to provide a better market 
position (Groen7, 2012). In addition, also governments want to contribute to the promotion of EV by placing 
fast chargers. 
 

  
Figure 13, current locations of fast chargers in the 
Amsterdam region (Leafhebbers, 2012) 

Figure 14, current (yellow) and planned (green) 
locations of fast chargers in the Netherlands (NOS, 
2012) 

2.3.4 Usage of current fast chargers 

How often the current fast chargers are used is unknown. Currently some tests are performed to monitor the 
usage. In a survey conducted among EV users (GC, AgentschapNL, DIVV, 2012) it is asked how often they use 
the current fast chargers, the result is presented in Figure 15. This graph shows that a majority of the surveyed 
EV users has used a fast charger once. However, the use per month is low. In addition, it was asked if the 
installation of new fast chargers will lead to more usage. A majority (61%) said here that they will do so, 
presented as a graph in Figure 16. 
 

How often do you (average) use a fast 

charger per month ?
18%

28%

5%8%

41%

one time

2-5 times

6-10 times

more than 10
times
never

 Would you use fast chargers (more often) 

if there would be more available?

66%

26%

8%

yes, sure

maybe

no

 

Figure 15, Usage of current fast chargers Figure 16, usage of fast chargers when more are 
present 

                                                                 
5
 http://www.thenewmotion.com/ 
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2.3.5 Requirements for new locations 

The locations of the current fast chargers have been determined on the basis of several criteria (Haas, 2011). 
From the perspective of a user, these criteria are: 
 

 Near or nearby highway. It is assumed that most EVs are driving over there; 

 Easy to find. Fast chargers should be placed at locations where you would expect them; 

 Presence of ‘distraction’. Charging takes about half an hour. To spend this time well, the presence of 
surrounding facilities (e.g. to drink something) will be fine to “kill time”. However, the activity should 
not take longer than 30 minutes; otherwise queues can occur due to unnecessary occupied chargers. 
Therefore it should be well considered nearby what activity a fast charger is placed.  

 
In order to save money, the following aspect may be relevant: 

 Accessible from two ways. Since fast chargers and connecting a fast charger to the power grid is 
expensive, it is a waste of money to place chargers on both sides of the road. In addition, two chargers 
at the same location are not always required.  
 

Another criterion in the choice of fast 
charger locations is the presence of an 
appropriate infrastructure (three phase  
network). However, this aspect is not taken 
into account in this thesis.  
 
In the survey of DIVV, AgentschapNL and 
Goudappel Coffeng is also asked what the 
EV users would like to do when they have 
to wait for some time at a charger. The 
result shows (Figure 17) that a Wi-Fi 
network will be valuable; in this way drivers 
can work while waiting. In addition, a cup of 
coffee or something to eat is desirable. 

2.4 Defining the potential market 
In order to determine which users require and might use fast chargers, some aspects have to be considered. As 
mentioned earlier, the distance to be driven and behaviour play a role.  Both of these aspects will be explained. 

2.4.1 Definitions 

There are several ways to analyse individual or grouped travel behaviour. Three terms related to this are used 
frequently in this report. To avoid misunderstandings the differences are outlined below. 
 

 Trip: A trip is a single movement from one place (origin) to another (destination). See Figure 18. 

 Tour: A tour consists of multiple trips in a row. A tour is completed when the origin of a first trip and 
the destination of a trip are the same (see Figure 19).  

 Daily pattern: A daily pattern shows how someone travels over a day. This can consist out of multiple 
tours. An example is given in Figure 20. 

 
In this thesis only trips, tours and daily patterns made by a car are considered. 

 
 

  
Figure 18, Example of a trip 

 

Figure 19, Example of a tour Figure 20, Example of a daily 
pattern 

Fast charging takes up to half an hour. What would you 

like to do during this half hour?

0
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16

18

20

wifi a cup of coffee eat something make a call a warm place shopping
 

Figure 17, What is preferred to do while waiting? (GC, DIVV, 
AgentschapNL) 
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2.4.2 Relevant and non relevant daily patterns 

The aspect that determines whether a driver have to use a fast charger is the distance that can be driven on a 
full battery.  
 
A daily pattern can be made without charging en route when the driving range will not drop to 0 while driving, 
assuming a full battery at departure. These daily patterns are considered non relevant.  
 
If the total distance of the daily pattern is larger than the driving range, than the remaining driving range will 
drop at some point on the route below 0 assuming that there is no possibility to charge at a destination. This 
implies that the EV is not able to complete the daily pattern. In this case, a fast charger is required. These daily 
patterns are assumed relevant, or in other words: these daily patterns might be ‘electrified’ if a fast charger is 
somewhere along the route.  
 
Figure 21 shows a daily pattern that doesn’t require a fast charger; the driving range doesn’t drop below 0. In 
other words, the total distance of the daily pattern (68km) is shorter than the assumed maximum driving range 
(80km). On the other hand, the daily pattern outlined in Figure 22 requires a fast charger. The total length of 
the daily pattern (92km) is larger than the assumed maximum driving range. If the EV user doesn’t charge, than 
he or she will strand somewhere between destination 2 and 3. This is the point in the graph where the driving 
range will turn negative.  
 

  

Figure 21. An imaginary daily pattern that doesn’t require a 
charge en route (non-relevant)  

  

Figure 22. An imaginary daily pattern that does require a 
charge en route (relevant)  

 
From a behavioural perspective can be assumed that a driver does not want to wait twice a day. This 
assumption is based on the fact that a single time loss is actually not desired. Daily patterns with a total 
distance of more than twice the driving range are therefore not relevant. The expectation is that these patterns 
will always be made with a conventional car or by public transport.  
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Presence of slow chargers 
Finally, there is an aspect that will influence whether a daily pattern is relevant or not. Because a daily pattern 
can consists of multiple tours on a day, there is a probability that the EV temporary returns home between two 
tours. In the time that the EV is not in use it can be charged if a (slow)charger is present. In addition, the EV can 
also charge at activity end (somewhere at a destination). The extent to which the driving range is recharged 
depends on the time between arrival and departure and the type of charger. In both cases, daily patterns with 
a total distance which is larger than the driving range can possibly be made without an intermediate charge.  

2.4.3 Size of potential market 

An analysis is performed to determine how many daily patterns belong to the relevant group in the 
Netherlands with respect to travel behaviour. For this analysis, the Dutch National Travel Survey (MON/OViN) 
is used. It is important to notice that the percentage of the relevant daily patterns is not equal to the (extra) 
number of potential EV users. Therefore, a longer period should be studied

6
.  

 
It is assumed that the battery is fully charged at the start of the day and the EV will not be charged at any 
destination (home and activity end). According to the data from the MON (2008), in almost all daily patterns 
(99%)  there is sufficient time to fully charge the battery at night. This is studied by calculating the time 
between the last and the first trip of a daily pattern. Using this information, approximately 81% of the daily 
patterns are shorter than the assumed driving range (80km) and 7% is larger than twice the driving range 
(160km). Because of those two filters, 12.1% of the daily patterns are relevant on a single day. This number will 
decrease if a larger driving range is assumed or when chargers are present at home or activity end. These 
effects are studied in chapter 6.  
 
 
  

                                                                 
6
 This is further elobarated in the reflection 
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2.5 Conclusions 
The concept of driving using one or more electric motors for propulsion is actually an old concept. However, it 
has never been competitive because of internal combustion engine cars being cheaper. Since several years, 
electric driving is again a hot topic. Rising oil prices and sustainable development ambitions have enhanced the 
market opportunities for electric cars.   
 
The number of EVs in the Netherlands this year (2012) will probably exceed 2000. How many EVs there will be 
in the future is uncertain. Many studies show different scenarios with varying assumptions which results in 
different outcomes. The government has the ambition to have 200.000 EVs on the road in 2020. Electric 
vehicles use infrastructure to charge, which consists of regular chargers (charging time: 6-8 hours) and fast 
chargers (30 minutes). Currently (Feb. 2012) there are about 1800 slow charging stations and 14 fast charging 
stations situated in the Netherlands. The network of charging points will greatly expand upcoming years. 
According to plans, 10,000 charging stations and dozens of fast chargers have to be installed before the end of 
this year. 
 
Whether someone (theoretically) requires a fast charger, and thus is a possible potential user, depends on 
his/her travel behaviour. An extra charge is required, assuming a full battery at departure, when the total 
distance of a daily pattern is larger than the driving range. A daily pattern presents, in this thesis, how someone 
travels over a day using a car. To determine how many daily patterns would require a fast charger, some filters 
have to be applied. The following daily patterns are considered not relevant: 
 

 The total distance of the daily pattern is shorter than the driving range 
This implies, because it is assumed that the battery is full on departure, the daily pattern can be made 
with an EV without charging en route. 
 

 The total distance of the daily pattern is larger than twice the driving range 
These daily patterns will not be made with an EV, because it is assumed that EV users do not want to 
wait twice a day. 

 
A non-relevant daily pattern is depicted in Figure 23 and a relevant daily pattern is shown in Figure 24 assuming 
a driving range of 80km. 
 

  
Figure 23. An imaginary daily pattern that doesn’t 
require a charge en route (non-relevant) 

Figure 24. An imaginary daily pattern that does 
require a charge en route (relevant) 

 
Around 12,1% of the daily patterns on a day is characterized as relevant meaning: can be performed by an 
electric car if there would be fast chargers on that route. The aspects that influences whether a daily pattern is 
relevant are: driving range and the presence of slow chargers. 
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3 THEORETICAL FRAMEWORK  

3.1 Introduction 
The outlined market of fast chargers and the related user group that is described 
in chapter 2 is the basis for the methods developed in this chapter.  
 
This chapter consists of three parts which will eventually lead to the best feasible 
method to determine the optimal locations for fast chargers and the 
corresponding number of chargers. The chapter starts with an explanation of 
those steps. Here, some conditions and assumptions are set to simplify the 
problem. 
 
Datasets 

In the first part, datasets are studied which contain data about the aspects that 
are considered to be relevant in the analysis. This will be the input for the method. 
The datasets are compared and evaluated on the criteria set.  
 
Translation into spatial representation of the demand 

In the next step, methods are studied that can be used to translate (raw) data into 
a spatial presentation of the demand for fast chargers. The data derived from the 
datasets can be processed and presented in different ways. Four possible ways are 
studied. To determine the expected demand in a certain year, some aspects such 
as market share of the EV fleet, charge behaviour and distribution over time are 
analysed. This results in a factor which has to be applied. In the end, the options 
are compared and evaluated. 
 
Allocation methods 

In order to determine at what locations fast chargers have to be installed 
(allocation) to serve the in demand determined in the previous step, different 
algorithms are studied. Using the capacity of a single fast charger and a stop 
criterion, the locations and number of chargers can be determined. Again, the 
options are compared and evaluated. 
 
The best and most feasible option per step combined lead to a method that is 
supposed to provide the most reliable results. This method is summarized at the 
end of the chapter. Also possible problems are briefly described at the end. 
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3.2 Structure of the method 
Chapter 2 showed which aspects are relevant to determine whether a daily pattern requires a fast. This 
information is used as a basis for the steps that are developed. These steps provide insight into the 
methodology followed.  
 
Datasets 
The relevant daily patterns are input to find an optimal configuration of fast chargers. Different datasets are 
studied and compared to find out what data can be used best.  
 
Translation into spatial representation of the demand 
Of all patterns that require a fast charger, following from the dataset and applied filters, the desired location(s) 
for a fast charger have to be determined. These locations have to be plotted on a map in order to find a spatial 
distribution. The methods that can be used in order to perform this translation are explained in this section. 
The purpose of this step is to create a map containing the demand within a certain area.  
 
Allocation methods 
In the last step, allocation methods are studied that can be used to determine an optimal configuration of fast 
chargers that will serve the demand as good as possible. A distinction is made between a mathematical 
approach in the form of algorithms and an approach from the perspective of spatial planning. Finally, an 
overview of the pros and cons of each method is given. 

3.3 General assumptions & conditions 
To make the problem soluble, some assumptions are set. The following principles and assumptions apply to all 
options in all steps: 
 

 Driver behaviour will not change over time 
It is assumed that the driver behaviour will not change in a way it will affect the locations of the fast 
chargers. This is about the fact that a driver can make his or her total daily pattern using an EV 
(‘electrify’) without changing his driving pattern.  
 

 A driver will not change car if the driving range is insufficient 
A daily pattern can consist of multiple tours in one day. It might happen that a driver will return to 
home between two tours. If the driver wants to make another tour with a distance larger than the 
remaining driving range, he or she can switch car (if available). However, this is not the aim of this 
thesis. In other words, it will not contribute to more EV kilometres.  

 

 Full battery at departure  
In addition, it is assumed that anyone who owns an electric vehicle can charge it at home. If everyone 
is at least 8 hours at home during the night, it means that the battery is full at departure the next day.  
 

 No chargers at activity end 
It is considered that no chargers are available at activity end or that they will not be used. In other 
words, the driving range does not increase in a daily pattern. 
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3.4 Datasets 
In the first step three datasets are studied to find out what dataset suits the problem best. Data of the Dutch 
National Travel Survey, data derived from Albatross and data that is obtained from a traffic model have been 
compared. Based on the analysis, the following aspects are important: 
  

 The dataset contains daily patterns (and not only trips or tours); 

 Destinations in postal code or another division that can be used for spatial presentation; 

 Distances between destinations, required to determine whether a pattern is relevant; 

 Reliability / accuracy of the data (quality); 
The extent to which the data corresponds with reality.  

 Size of the dataset (quantity). 
 
Not necessarily, but interesting to analyse the effect of slow chargers at home and activity end is: 

 Time of departure and arrival of each trip in  a daily pattern 
The departure and arrival times can be used to make statements about the effect of slow chargers at 
activity end. The longer the time the EV is not in use, the more the battery can be charged if a charger 
is present. 

3.4.1 Dutch National Travel Survey 

The Dutch National Travel Survey (MON (RWS), OViN (CBS)
7
) is an on-going investigation into the mobility of 

the Dutch population. Each year, approximately 50,000 people participate in this study and the results are 
published every year. In the survey, people have to fill in how they travel over a single day (daily pattern). The 
MON/OViN contains the following information that is relevant for this study: 
 

 The location of arrival and departure for each trip (4-digit postal code)  

 The distance between destinations, filled in by the respondents (in kilometres)  

 The time of arrival of departure for each trip (rounded to 5 minutes)  

 
Using this data, a daily pattern can be presented with departure and arrival times. The postal codes of arrival 
and departure for each trip are based on four digits. The distance that is filled in on the form usually differs 
from the distance that is derived from a traffic model by means of a shortest path algorithm

8
. The respondents 

often make an estimate of the distance or/and do not always choose the fastest route. In order to obtain the 
most reliable results, the distance derived from the traffic model is preferred. This implies that always the 
fastest route between origin and destination is chosen. An example of a daily pattern is shown in Table 2. 
  
Table 2, Example of a daily pattern using data of the MON/OViN  
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To enlarge the dataset, and thus get more information about spatial distribution, the datasets of different years 
can be merged. The final dataset of the MON/OViN eventually contains around 117,000 daily patterns (years 
2004-2010). 
 

                                                                 
7
 New name since 2010 

8
 Finds the fastest path between two points on a map 
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In principle, all daily patterns in the MON/OViN can be plotted. However, not all daily patterns are relevant to 
use, since not all of them require a fast charger (see the filters in chapter 2). In order to shorten the calculation 
time, the non relevant daily patterns are removed from the dataset. If the percentage that is calculated in the 
analysis in section 2.4.3 (12,1%) is applied, 15.000 daily patterns require en-route charging. Whether this is 
enough to obtain reliable results is unknown. This is further discussed in the comparison and evaluation. 
 
To estimate the travel behaviour of the entire population, the sample should be multiplied with a certain value. 
A factor is included in the MON/OViN. However, this factor tells something about how many times a kind of 
pattern occurs. It is therefore not possible to make statements about the spatial travel behaviour of the entire 
population. Another problem may arise if the data of several years is stacked, the factors should be revised. 

3.4.2 Albatross 

Albatross is an activity-based model that is calibrated using data of the MON (Arentze, 2005). The model 
predicts which activities are conducted when, where, for how long, with whom and also which transport mode 
is used. The dataset has the same structure as the MON/OViN, it only contains fewer properties. The dataset 
that is available has base year 2004 and contains approximately 700,000 daily patterns. This data is generated 
data, which means it is a simulation of reality. The O/D matrices of the base year match reasonably well, the 
predictions are however uncertain (Zwerts, 2004).  

3.4.3 Data from a traffic model 

A traffic model can also be used as dataset. In a traffic model, the amount of traffic between zones (flow) is 
determined by different attributes and (trip generation) models. In this way, an O/D (Origin/Destination) matrix 
is obtained containing the number of trips between each zone 
within a certain period of time. A zone is an area in a traffic 
model, for example a postal code area. Time periods that are 
often used are: the morning rush hour, the evening rush hour 
and the rest of the day for an average workday. The result of a 
distribution of the traffic for a particular zone can be displayed 
in OmniTrans

9
, an example for a zone in the area of 

Amsterdam is depicted in Figure 25. In this example, the model 
of VENOM

10
 is used. 

 
Only the relevant trips in the O/D matrix, the trips that require 
a fast charger, are used to analyse the optimal locations. This 
can be done by filtering all non relevant trips. By using the 
distance matrix, the relevant trips can be indicated. In the 
distance skim matrix, the distances between the different 
zones are shown; an example for three zones is given in Table 
3 (left). Because the flows between the different zones are also 
known (right table), it is possible to make an estimation of the 
demand. The red numbers are relevant flows/intensities.  
 
Table 3, Example for three zones: the left matrix indicates (red numbers) which trips requires a fast charger if 
made by an EV. The right matrix shows the corresponding flows.  

 

Distance   1 2 3 

1 X 52 70 

2 56 X 95 

3 68 91 X 
 

Flow 1 2 3 

1 423 41 23 

2 65 213 5 

3 44 10 322 

The drawback of this dataset is that the traffic model only contains information about single trips. As a result, 
more trips in a row (tours and daily patterns) cannot be analysed. If single trips are used, only a small part of 
the demand will be found. Furthermore, the trips indicated relevant in the example require another charge on 

                                                                 
9
 OmniTrans is a transport planning package (www.omnitrans-international.com) 

10
 More information about VENOM later in this thesis 

 
Figure 25, Distribution of traffic departing 
from a zone in Amsterdam (VENOM, 
OmniTrans) 
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the way back. It appears that the red numbers are non relevant trips, because it is assumed that only one 
charge per day is desirable. 
 
Combining different O/D matrices of a day in order to create daily patterns is impossible, because there is no 
connection (e.g. car IDs) between the matrices.   

3.4.4 Comparison 

The datasets are compared and assessed on the set criteria. Besides this, the strengths and weaknesses of each 
dataset are given. There is no judgment made about which dataset is best/most reliable; this is done in the 
overall conclusion at the end of this chapter. The comparison of the datasets is shown in Table 4. 
 
Table 4, Comparison of strengths and weaknesses of the datasets 

Dataset Strengths Weaknesses Daily 
patterns 

Quality Quantity 

Dutch 
National 
Travel 
Survey 

Real data  
Includes daily patterns 
Arrival and departure times 
between trips is known   
Purposes per trip 
distinguished 

Sample: Only data of one day 
in a week and only a few years 
of data available.  
Quantity of data after filtering 
Factors required to find 
demand for entire population 
Data from the past 

Yes ++ - 

Albatross  Includes daily patterns  
More data in comparison 
with MON/OViN  

Simulated data 
Fewer attributes 
Reliability of predictions 
unknown 

Yes O O 

Traffic 
model 

Relevant trips can easily be 
filtered  
Entire population (Quantity) 
Present and future situation 

Only contains trips  
Max. three periods of time  
Linking cars in different periods 
of time impossible 

No -- ++ 

 
None of the studied datasets gets a positive score on all three criteria. The main disadvantage of the 
MON/OViN is the low number of daily patterns; the main disadvantage of a traffic model is the fact that it 
provides no information about daily patterns. This problem will be discussed at the end of this chapter. 

3.5 Translation into spatial representation of the demand 
The data from the dataset can be processed in various ways to translate the (daily) patterns into a spatial 
presentation of the demand for fast chargers. For this step some criteria are defined to which the methods are 
assessed. These are: 
 

 Representation of reality and robustness 

 Execution time and computation time 
 
First, a distinction can be made in the determination of the desired location for a fast charger in a daily pattern. 
To find the desired location for a fast charger, two approaches can be used: the one-point approach and the 
two-point approach. The first approach assumes that in a single relevant daily pattern, there is only one 
optimal desired point on the route for a fast charger. The two-point approach uses an interval to indicate 
where a charger can be placed. Within both approaches, variety of ways can be applied to present the demand 
spatially.  
 
Subsequently, the demand for a fast charger of all daily patterns has to be cumulated to create a total 
distribution of demand across the study area. Finally, some factors have to be applied to calculate the expected 
demand, the number of charges within a period of time, in a certain year.  
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3.5.1 One-point approach 

The simplest way to determine the location for a fast charger in a daily pattern is to assume that there is only 
one point on the route which represents all demand. The probability of getting a flat battery is smallest 
midway; therefore this is supposed to be the optimal location. This point can be found by determining the total 
distance of a daily pattern and divide this by two. Subsequently, this distance and the first location of a daily 
pattern (usually home) can be used to calculate where on the daily pattern this point is situated. This is 
schematically shown in Figure 26. 
 

 
Figure 26, Determining the optimal location for a fast charger in a daily pattern using the one-point approach 

 
To present this point spatially on a map, an area division is required. The desired location can be plotted in a 
straight line between the two relevant destinations. Advantage of this type of plotting is that it is easily 
executable. Drawback of this approach is that when no network is used, situations might occur that are 
inappropriate. For example, it is possible that if someone who wants to drive from Amsterdam to Leeuwarden 
has an optimal charge location somewhere in the IJsselmeer. Also other issues related to the landscape (rivers, 
lakes) might occur. 
  
Adding a network will lead to more realistic and specific results, but is more difficult to implement. The optimal 
location is determined by finding the fastest route between the two relevant destinations using a traffic model. 
Using this information, the location will be assigned to a road segment.  
 
The options are depicted in Figure 27 and Figure 28 for the daily pattern used earlier in chapter 2. In this case, 
the desired locations are quite similar.  
 

  
Figure 27, Relevant daily pattern; the optimal location 
is determined using the one-point approach (without 
network) 

Figure 28, Relevant daily pattern; the optimal location 
is determined using the one-point approach (with 
network) 

 
Presentation techniques: addition of relevant daily patterns 
All desired locations of the daily patterns determined by the one-point approach can be plotted on a map. This 
can be done in two ways. First, it is possible to add all daily patterns without extra actions. This creates a map 
showing all the desired locations together (scatter plot). The higher the density of the points, the more 
attractive to allocate a fast charger to that area. An example is illustrated in Figure 29. 
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Figure 29, Result of addition of multiple relevant daily patterns that have been processed by using a point 
presentation 

 
The second option makes use of an area classification. The desired location of a single daily pattern is no longer 
an independent object, but is assigned to a cell. Cells are created by a grid with a predetermined size. After 
adding up all the daily patterns, a distinction of potency can be analysed between the cells. The more points in 
a single cell, the more attractive it is to allocate a fast charger to that cell. An example is shown in Figure 30. 
 

 
Figure 30, Result of addition of multiple relevant daily patterns that have been processed by using a point-cell 
presentation 

3.5.2 Two-point approach 

In order to ‘electrify’ a certain daily pattern, the fast charger doesn’t necessarily have to be located on a single 
fixed point along the route, but is has to be located between two points. The path between these two points is 
named the potential interval. 
 

 The upper boundary of the interval (Xalap) is the last opportunity to charge: this will be the location 
someone gets a flat battery if he or she drives as long as possible without charging. The location of this 
point is determined by summing up the road segment distances until it exceeds the driving range.  

 

 The lower boundary of the interval (Xasap) is based on the fact that the battery will be empty at the 
final destination after a full charge (100% of the assumed driving range, this is not equal to the 
technical range due to range anxiety). If it is assumed that all the EV users can charge at home, this will 
be the most extreme case. The beginning of the potential interval can be determined by counting back 
from the final destination.  

 
However, it is not desirable to charge as soon as possible. From the perspective of human behaviour, it is 
assumed that an EV user does not want to charge if he or she is almost at a destination. It is conceivable that it 
is boring when someone who is almost at a destination still have to spent time on charging and has also, since 
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it is in the beginning of the potential interval, a (reasonable) chance to get a flat battery before arriving at the 
final destination. This modification is implemented for all daily patterns that consist of more than two trips.  
 
In order to clarify the two-point approach, the example used before is elaborated (see Figure 31). The last 
option to charge (Xalap) is easy to determine, this is the driving range (80km) from the starting point. The first 
possible location to charge is located between D1 and H (92-80 = 12km). Because of the set conditions, 
however, Xasap will be located at 63 kilometres before the final destination at D1. The length of the potential 
interval for this particular daily pattern is thus 51 kilometres. 

 
Figure 31, Example of the determination of the potential interval by defining Xasap and Xalap 

 
Presentation techniques: addition of relevant daily patterns 
The two-point approach can only be presented spatially using a network. Again, two possible ways are studied 
to translate the demand of a single daily pattern into a total spatial configuration. In both ways, the potential 
interval is converted to potential road sections.  
 
The demand for a fast charger is not evenly distributed over the road sections. From a behavioural perspective, 
EV users will prefer to charge halfway than at the edges of the potential interval despite the fact that the 
charging time will everywhere be the same. In addition, the theoretical probability of getting a flat battery is 
smallest near the centre of the interval. Different distributions can be used to implement this, such as the 
normal distribution and the Poisson distribution. The distribution that fits the charging behaviour best is 
further elaborated in chapter 4.  
 
In the first method studied, all road sections in the potential interval will receive a part of the demand. This is 
named a link score. The link scores of all relevant daily patterns can be added to find a total distribution. This 
method is shown in Figure 32 
 

 
Figure 32, Result of addition of multiple relevant daily patterns that have been processed using a link 
presentation 
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The principle of the second option is to assign the road section scores (link scores) to cells. In this way, the cells 
containing potential road segments will get a (cell)score. This cell score is obtained by adding the link scores 
situated in that cell. After the addition of the cell scores of all relevant daily patterns, the area is divided in 
potential and less potential cells. An example is illustrated in Figure 33. 
 

 
Figure 33, Result of addition of multiple relevant daily patterns that have been processed by using a link-area 
presentation 

 
The total links and cell scores provide information about the demand for fast chargers in a given cell. Allocating 
a fast charger to the cell with the highest score (most red), will lead to a maximum number of daily patterns 
that can be ‘electrified’. 

3.5.3 Translation to expected demand 

The result, both in the one-point-approach as the two-point approach, cannot directly be transformed into the 
demand, the number of charges in a certain year. Therefore, some aspects have to be considered. 
 

 Market share of the EV fleet and charge behaviour 
Firstly, not everyone has an electric vehicle and will therefore not use a fast charger. It is assumed that 
the market share is evenly distributed over the daily patterns and start zones. Secondly, not all EV 
users will make use of a fast charger. Extra travel time, costs, negative effects on the battery and other 
aspects can discourage users to make use of them.  

 

 Peak hour 
Another aspect is the distribution of the demand over time: not all demand is evenly distributed over 
the day. In fact, most EV users have to charge at the end of the afternoon (OViN, 2010, appendix E), 
assuming they depart every morning with a full battery. Here, the question arises whether there 
should be designed at peak times or on a uniformly distributed demand.  

 

 Distribution of potential in the two-point approach 
In the two-point approach, the demand of a single daily pattern is distributed over the potential 
interval. As a result, the demand on a particular link or in a particular cell will not be the same as the 
score presented. To calculate the actual number of relevant daily patterns that can be served by 
allocating a fast charger to a link or cell, a tool have to be developed.  

 
 The magnitude of these parameters are defined in Chapter 4 
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3.5.4 Comparison 

The different approaches that can be used to translate information about daily patterns into a spatial 
presentation of demand are compared and assessed on the set criteria. Besides this, the strengths and 
weaknesses of each approach are given. There is no judgment about which method is best/most reliable, this is 
done in the overall conclusion at the end of this chapter. The comparison of the methods is shown in Table 5. 
 
Adding a network is not difficult to implement and a key aspect to get reliable results. Therefore, all methods 
will make use of a network.  
 
Table 5, Comparison of the methods that can be used to translate data into a spatial distribution of demand 

Options Strengths Weaknesses 

One-point approach Easy to implement 
Computation time 

More than one location possible 
Robustness 

 Point Easiest to execute  Robustness 

 Point-cell (small) detour factors included No exact location 

Two-point approach More than one location possible 
 

Additional programming 
Computation time 

 Link Locations along roads (realistic) Longer links will be more potential 
due to the distribution used 

 Link-cell Detour factor included 
Effect of link length differences 
eliminated 

Additional programming 
Computation time 

3.6 Allocation methods 
The data from step 1 is translated into a spatial representation in step 2. This result is used to allocate fast 
chargers to the most potential locations. These locations are the locations that serve most relevant daily 
patterns. In other words, most patterns will be ‘electrified’. The objective is to allocate the fast chargers as 
good as possible such that the demand is served in a most efficient way. To achieve this, different algorithms 
have been studied and evaluated. In addition, the problem is also analysed from a non-mathematical 
perspective containing a comparison with the locations of petrol stations. First, the objective function is given.  

3.6.1 Objective function 

The addition of a fast charger will ensure that a part of the demand in an area will be served. This implies that 
car drivers that have a daily pattern with a desired location or potential interval on the location where a 
charger is placed, now have the possibility to make the daily pattern also with an EV (are electrified). It is likely 
that the first fast chargers will be used at maximum capacity. After allocating a number of chargers, a new fast 
charger will no longer be used with a maximum capacity since the demand decreases below a certain value. If 
the aim is to meet 100% of the potential, most 
of the fast chargers will barely be used. The 
objective function that belongs to this problem 
is globally shown in Figure 34.  
 
The derivative of the line in the graph is the 
expected number of charges, the demand, for 
each (additional) charger. At a certain number 
of charges per time unit, a fast charger will no 
longer be profitable: the costs for the 
installation of a new charger are higher than the 
yields (MC>MR

11
). The minimum required 

number of charges to make a fast charger profitable differs per scenario (production costs, yields per charge 
etc.). This value can be used to determine how many fast chargers are required, and how much of the demand 

                                                                 
11 

marginal cost exceeds marginal revenue
 

 
Figure 34, Example of an objective function globally plotted 
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will be served. For example, the red line in the graph indicates a result of an optimization (19 chargers serve 
78% of the demand).  

3.6.2 Optimization Algorithms 

3.6.2.1 Requirements 

In order to find out what algorithm can be used best to find a solution, some criteria are set. The algorithms are 
assessed on the following aspects:  
 

 Quality of the solution  
The optimal configuration is found when with minimal number of allocated chargers a maximum 
number of daily patterns is served, as the objective function describes. To achieve this, a global 
optimum has to be found (and thus no local optimum)  

 

 Computation time:  
The time required to find an optimal solution. 

 

 Development/programming time.  
Some algorithms are easily programmable and can be applied without a lot of extra work to this 
specific problem, while others are much harder to apply. Extra additions to the standard algorithms 
can for instance be related to the implementation of a maximum distance between points (one-point 
approach) or effects on surrounding links (two-point approach). This difficulty is estimated to 
determine the degree of feasibility. If it appears that an algorithm costs too much time, it will not be 
chosen. 

 
The algorithms that can be used to allocate chargers can be divided into two main categories: one-by-one and 
simultaneously. Not all algorithms can be applied to both approaches. 

3.6.2.2 One-by-one 

Greedy algorithm 
A greedy algorithm makes the locally optimal choice at each stage with the hope of finding a global optimum 
(Kuehn, 1963). In the case of allocation fast chargers, the optimal choice is the road section or the cell with the 
highest score. If a fast charger is placed there, the demand that is served by the fast charger is removed from 
the total demand. Subsequently, again the road section or the cell with the highest score is determined. This 
step is repeated until adding a new fast charger is no longer profitable. 
 
Drop algorithm 
This algorithm can only be used when predetermined fast charger locations are used as input. The least 
attractive supply location, the one with the lowest number of expected charges, will be removed from the 
dataset (Chardaire and Lutton, 1993). An optimum is reached when the removed fast charger has more 
expected charges than the value (stop criteria) that is assumed. In other words, the removed the fast charger 
was profitable. (MR> MC). 
 
Allocating fast chargers one-by-one does not take into account the fact that new locations can influence old 
locations. It is conceivable that adding a fast charger nearby an existing fast charger will lead to a decrease the 
demand of the existing charger. It is therefore possible that this will result in a local optimum and not the 
desired global optimum. 

3.6.2.3 Simultaneously 

The points can also be distributed simultaneously. This will lead to an improvement of the solution, since the 
same number of chargers will serve more demand (Kaiser, 2000). The optimal configuration of a future 
situation have to be determined (simultaneously) and can be achieved by placing fast chargers one-by-one 
since placing all fast chargers simultaneously will result in unprofitable chargers in the first years. Eventually, 
the configuration will be better than placing chargers one-by-one.  
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Hierarchical clustering 
Determining the locations simultaneously can be performed by means of a clustering algorithm. Clustering is a 
process of partitioning a set of data (or objects) in a set of meaningful sub-classes, called clusters (Botta, 2002, 
Tan, Steinbach and Kumar, 2004). The cluster algorithms can be divided into several categories, the main 
distinction can be made between hierarchical clustering and partitional clustering. Partition clustering is a 
division of the set of data objects (n) into non-overlapping subsets (clusters (k)) such that each data object is in 
exactly one subset. If it is allowed to have sub clusters, then hierarchical clustering is obtained. In this way of 
clustering the set of nested clusters are organized as a tree, also named dendrogram. 
 
Agglomerative (bottom-up): merge clusters iteratively 
In this method all objects (points) are placed in its own cluster (k=n). Subsequently, several objects, for 
example closest to each other, are combined (Johnson, 1967). This is done until all objects are in the same 
cluster, leading to several sub clusters and levels. This results in a dendrogram. The number of clusters, which is 
relevant for the number of fast chargers, can be determined to select different levels. This way of hierarchical 
clustering is most commonly used. 
 
Divisive (top-down): split a cluster iteratively  
This method is exactly the opposite of the bottom up approach. Instead of starting with as many clusters as 
objects (k=n), now all objects are in one cluster (k=1) and subdividing them into smaller sub clusters. Divisive 
methods are not generally available, and have rarely been applied. 
 
The k-median/k-means problem 
The k-median/k-means problem is one of the larger class of problems known as minimum location-allocation 
problems (MacQueen, 1967). It aims to partition n objects into k clusters in which each object belongs to the 
cluster with the nearest mean or median (Moore, 2001). The objective is to minimize the total distance from 
desired locations to cluster centres (fast chargers) (e.g. using a squared error function). 
 
Enumeration (global optimum) 
Enumeration calculates all possible combinations to find a global optimum. For a small data set, this method 
will give the optimal solution within a tolerable calculation time (depending on processor). However, when 
more data have to be analysed the calculation time will increase exponentially. 
 
Branch and bound 
Branch and bound algorithms can be described as systematically enumerating all possibilities, but every 
possible set of solutions, or branch, is examined first to determine whether the set might contain a better 
solution than the current selection (Land & Doig, 1960). It starts with considering a root problem and the 
lower-bounding and upper bounding procedures are applied to the root problem. The two basic stages of a 
general branch and bound method are:  
 

 Branching: splitting up the problem into sub problems  

 Bounding: calculating lower and/or upper bounds for the objective function value of the sub problem  
 
If the branch might contain a better solution the branch is explored, if not the branch will be skipped. An 
optimal solution is found if the bounds match. Whether an optimal solution is found depends on the quality of 
the estimate of the bounds. 
 
Genetic Algorithm 
Genetic algorithms (GA’s) are based on the evolutionary ideas of natural selection and genetics. This algorithm 
searches for a faster way to find an optimum configuration than enumeration by using stochastic variables. The 
basic concept of GA’s is to simulate processes in a natural system and is based on the survival of the fittest 
principle. 
 
Simulated Annealing 
A Simulated annealing algorithm (SA) helps to reduce the calculation time by finding the optimum. It was 
mentioned as early as 1953 by Metropolis et al. A certain amount of random changes and probabilities are 
introduced to reduce the risk of trapping in a local optimum. An existing heuristic algorithm only accepts a 
change in the configuration if the objective function increases (more charges). A simulated annealing algorithm 
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will also accept the change, but also if the modification decreases the objective function; depending on a 
certain probability. The acceptance of a worse configuration can lead to a better final solution, thus help 
finding a global optimum. The probability that a change that leads to a worse configuration is accepted 
depends on the number of iterations. 
 
The algorithms are compared and assessed in section 3.6.4. 

3.6.3 Planning perspective 

The allocation of fast chargers can also be approached in a total different way. Instead of solving the problem 
mathematically, it is also possible to approach it from the perspective of a (spatial) planner. This approach 
compares the allocation of chargers with the locations of petrol stations. Issues such as density per area and 
distance between stations are relevant.  
 
In areas with a higher potency, a higher density of chargers is desirable. A minimum distance between the 
charging stations can be determined on the basis of the minimum distance between petrol stations. 
 
In total there are about 4300 stations in the Netherlands (BOVAG, 2008). The density of petrol stations in 
crowded areas is about 15 stations /25km

2 
(Google Maps, 2012). The distance between those stations is less 

than 1 km.  
 
This information can be used to make a prediction about the density of the fast chargers. However, cars behave 
total different than EVs. For example, EVs can charge at home or at activity end. Furthermore, the relation 
density/number of vehicles is difficult to implement. Therefore, this way of optimizing will only be an option if 
all other options are infeasible. 

3.6.4 Comparison 

The allocation methods are compared and assessed on the set criteria. Besides this, the strengths and 
weaknesses of each method are given. There is no judgment about which method is best / most reliable; this is 
done in the overall conclusion at the end of this chapter. The comparison of the allocation methods is shown in 
Table 6. 
 
Table 6, Comparison of the studied allocation methods 

 Strengths Weaknesses Quality Computati
on time 

Develop-
ment time 

One-by-one Easiest to program 
Computation time 

Global optimum not 
guaranteed 
Short term thinking 

   

Greedy   - ++ ++ 

Drop    - ++ - 

Simultaneously Best solution 
(highest 
demand/charger) 
Long-term thinking 

Computation time 
Programming time 
Long-term expectations 
are uncertain 

   

Hierarchical 
clustering 

  + + O 

K-means   + ++ O 

Enumeration    ++ -- + 

Branch and Bound   O + - 

Genetic   + O -- 

Simulated Ann.   + O -- 

Spatial planning Based on existing 
locations 
Creates a ubiquitous 
network 

Reliability of solution 
Differences EV-ICE car 

- ++ O 
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3.7 Conclusions 
A combination of one of the options in each step will lead to the best method which can be used to find the 
optimal configuration of locations and the corresponding number of fast chargers. In order to find the best 
possible combination, and therefore the preferred method, the options per step are evaluated. Since not all 
combinations are possible, the best option per particular step does not lead to the best configuration. It is first 
analysed which method can be used best to translate data into spatial demand. Subsequently, it is examined 
whether one of the studied datasets meets the requirements. 
 
Two-point approach is most reliable and robust 
The two-point-approach with network will provide the most realistic result and is therefore chosen. Primary 
reason for this approach is that it leads to a robust result, in contrast to the one-point-approach point where a 
small change of route/detour may lead to a different result. The dataset that should be used must fit the 
requirements for this approach.  
 
No existing/studied dataset satisfies the requirements 
The datasets that have been studied are the Dutch National Travel Survey (MON/OViN), Albatross and data 
derived from a traffic model. It can be concluded that the Albatross dataset is not an appropriate option. It 
contains fewer properties per daily pattern compared to MON/OViN, the available matrices have base year 
2004 (past) and the reliability is unknown. What remains is data from the MON/OViN and data from a traffic 
model. The major drawback to a traffic model is that it only contains trips, causing only a part of the demand 
can be determined. The main disadvantage of the MON/OViN is the amount of data. After filtering, only 15.000 
relevant daily patterns for the Netherlands are left. In other words, the traffic model contains data of the entire 
population, but is qualitatively (1 trip) insufficient and the MON/OViN contains all of the desired elements but 
the number of relevant daily patterns is limited. To determine whether the number of daily patterns is 
sufficient to make reliable statements, a small analysis is performed. Here, the O/D morning matrix of a traffic 
model is compared with the first trip of the daily patterns in the MON/OViN and an outlook is given to the 
results. This comparison is attached in Appendix C. 
 
As a result of this analysis, it was decided to combine both datasets in order to use both positive qualities. The 
way this is done is discussed in chapter 4.  
 
Greedy algorithm preferred 
The result of the second step is used as input for the allocation problem. The objective is to place the fast 
chargers in such a way that the demand is served in a most efficient way: none of the fast chargers should be 
non-profitable. This can be done by using algorithms, which focus on a mathematical approach, or from the 
perspective of (spatial) planning, which focuses on density and other related parameters derived from petrol 
stations.  
 
Since the two-point link-cell approach is supposed to be best, it can be determined which allocation method 
can be applied. The most important aspect is the level of detail which is pursued. Analysis showed that the 
average length of a potential interval is approximately 40 kilometres. Allocating a fast charger to a cell will 
therefore affect the cell scores in the surrounding cells. This will allow the outcome of a one-by-one algorithm 
(probably) to be not much different compared to a global optimum. In addition, a one-by-one algorithm is most 
easy to program and has a short computation time. It can be concluded that the greedy algorithm fits best to 
the level of detail and the reliability of the input. This algorithm can be programmed in several ways resulting in 
different kind of configurations. How this optimization is applied to this specific problem has been explained in 
the next chapter.  
 
Finally, a flow chart can be made of the method that is supposed to be best. This is illustrated in Figure 35.  
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Figure 35, A flowchart of the method that is considered best 

 
The only step missing is the dataset which have to be used as input. The solution to this problem is further 
elaborated in the chapter 4. 
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4 THE TAGA-METHOD 
 

4.1 Introduction 
General 

The method presented in chapter 3 shows that none of the datasets met the 
criteria set. An alternative should be developed. This chapter explains how a new 
dataset is composed as well as more technical background information of the other 
steps. The finally developed method that is considered best is named the TAGA-
method (Two-point Approach Greedy Algorithm-method). If you as a reader are not 
interested in more detailed information, you might skip to the application/results 
of the method. These can be found in Chapter 5. 
 
Creating a new dataset 

The new dataset combines the amount of data in the traffic model with the 
content of the MON/OViN. A model is created in which simplified daily patterns will 
be generated on the basis of assumptions. The first trips of the daily pattern are 
determined by using an O/D matrix from the traffic model, the subsequent trips are 
determined on the basis of MON/OViN data. Eventually daily patterns will be 
created from all areas within a certain area.  
 
Translation into spatial representation of the demand  

For each relevant daily pattern, the potential interval and the corresponding link- 
and cell scores can be determined. The distributions that can be used to determine 
the link scores are analysed. The cell scores are not the same as the expected 
number of charges in a cell. Aspects that should be taken into account are: market 
share of the EV fleet, charge behaviour, differences between daily patterns and the 
created simplified daily patterns and the distribution of weight caused by the 
distribution. This will lead to potential and less potential cells which are the input 
for the allocation problem. 
 
Greedy algorithm 

The allocation is performed by using a greedy algorithm. How this algorithm works 
is explained in more detail.  
 
Finally, the final method, the TAGA-method is presented along with technical 
background. In addition, the possible fields of application are summarized. The 
method is universal and can be used for all study areas. 
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4.2 Creating a dataset 
The datasets that were studied in Chapter 3 did not satisfy the set requirements. Therefore, a new dataset is 
developed based on a combination of the studied datasets. The aim of the new dataset is to generate a large 
number of daily patterns on basis of probability. In this way, sufficient data can be used to determine the 
optimal configuration of fast chargers. How the dataset is created is described in the following sections. 

4.2.1 Simplification of daily patterns 

The generation of daily patterns using a computer will take computation time, depending on the size of the 
chosen study area and the associated number of trips and tours. The more trips and tours of a daily pattern will 
be generated, the more complex and the more computing time it will take. Therefore it is chosen to simplify 
the travel behaviour.  
 
Instead of modelling all different kind of daily patterns, only a selection will be generated. To determine which 
kind of daily patterns represents an appropriate amount of demand, relevant daily patterns are studied. The 
percentage of relevant daily patterns of all daily patterns is 12.1% as stated in section 2.4.3 (assuming driving 
range of 80km). Table 7 shows how this percentage is distributed over the possible kind of daily patterns in the 
MON/OViN dataset. 
 
Table 7, Distribution of the demand over different kind of daily patterns in MON/OViN 

 2 trips 3 trips 4 trips 5 trips 6 trips 7 trips 8 trips Total 

1 tour 37,45% 10,27% 6,62% 2,82% 1,45% 1,00% 0,38% 59,99% 

2 tours - - 16,04% 4,95% 3,03% 1,31% 1,09% 26,42% 
3 tours        6.62% 
4 tours        1% 
Total        94.02% 
 

It can be concluded that most demand can be found in daily patterns consisting of 1 tour with two or three 
trips or 2 tours with four trips. Those kind of daily patterns are also most often made. If daily patterns 
consisting of 1 tour with two, three or four trips are created, approximately 54% of the demand will be used. In 
other words, the locations of fast chargers will be based on the majority of the demand. 
 
Because all relevant daily patterns that will be created are tours, the term tours will be used in the remainder 
of this chapter. How the tours are designed -how the destinations in the tour are chosen- depends on several 
aspects.  

4.2.2 Required input 

A combination of the dataset of the MON/OViN (low quantity, contains daily patterns) and a traffic model (high 
quantity, only contains individual trips) is used for the generation of tours. What type of data is used as input is 
explained below. Also other input that is required is appointed. 
 

 Area of influence and study area 
The area of influence is the area in which tours will be generated. The study area is the area in which 
the optimal configuration will be determined.   
 

 Dataset that contains information about daily patterns 
The data of the MON/OViN contains information about how someone travels over a day. The data that 
is relevant for generating tours are: distribution of patterns/purposes for each trip, average distance 
corresponding to each purpose and the attractiveness of the zones (e.g. postal code areas).  
 

 Division of the study area  
To model how people spatially travel over a certain area, a map with destinations is required. It is 
advisable to use a division that fits the data in the chosen dataset best. For example, the MON/OViN 
makes use of a postal code division. Here, a 3-digit postal code division can be chosen; this is preferred 
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over a 4-digit code division from the viewpoint of computing time and the availability of data. If 4-digit 
postal codes are used, assumptions such as area attractiveness would be based on only some 
observations.  

 

 Traffic model: O/D morning matrix of a future situation 
The O/D morning matrix of a traffic model is required for the first trip of a generated tour. This matrix 
must be converted to match the chosen division. A future matrix is required to find the optimal 
locations and corresponding demand in the future  

  

 Traffic model: Distance skim matrix and corresponding links  
The distances between the postal code areas (zones) are relevant to determine whether a tour is 
relevant or not. This distance is defined by using a shortest path algorithm. The road sections, the links 
in a model, on this fastest route are also relevant for determining the potential interval of each tour. 
Also here a future situation is assumed, this implies that new infrastructure are included.  

 
It should be noted that the data from MON/OViN is obtained in the past and the O/D matrix of the traffic 
model tells something about the future. It must therefore be assumed that people's behavior (destinations 
chosen) will not change over time significantly despite possible changes in the network.  

4.2.3 Structure 

The departure or start zones in the area of influence will be selected one-by-one and from there, tours are 
generated. The start zone is the postal code zone from which an EV user starts his or her tour in the morning. In 
this way, it is always known where the tour started and where it ends. For each trip in a tour, there are some 
options to choose with regard to travel behaviour. These options are related to the destination a driver will go 
to. Drivers that have completed their tour (are returned to their start zone) will not make another tour, 
because only daily patterns consisting of 1 tour are created. The fourth trip is the last trip that is generated. 
After all tours are generated from the departure zone, the next zone is selected. Then again tours are 
generated. These steps are repeated until tours are generated from all zones.  

4.2.4 First trip of a tour 

The first trip of a tour is taken from the O/D morning (rush hour) matrix of a traffic model. It is assumed that 
this matrix only contains first trips, in other world: the second trip of a tour will take place after the morning 
rush hour. This implies that the battery of the EV is full at departure in the morning, because the EV was 
charged in the preceding evening. The assumption will overestimate the intensities. However, this is not taken 
into account for the calculations.  
 
For the first trip, two options are possible: 

 The first option is that departing traffic has a destination in the same zone (intrazonal traffic). The 
extent to what this occurs can be obtained from the O/D matrix and differs per departure area. This 
value is assumed to be more reliable than a fixed value determined using the MON/OViN dataset.  

 

 The other option is that people are driving to another zone. The intensities from the start zone (postal 
code origin) to another zone (postal code destination) are derived from the O/D matrix.  

4.2.5 Estimation of sequel trips 

Possible options after each trip 

After arriving at the first destination, there are three possible options:  

 Drive back to home  (homebound traffic) 

 Make another trip in the same zone (intrazonal traffic) 

 Make another trip to another zone (interzonal traffic) 
 
The drivers that do not go home (interzonal and interzonal traffic) will make another trip after arriving at the 
second destination: the third trip. The same three options as for the second trip are possible. The traffic that is 
arrived at the third destination has only two options left: 
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 The driver returns to home (homebound traffic) 

 The tour is not completed and is therefore not relevant for this study (rest). This will be a daily pattern 
that consists of more than four trips 

 
Homebound traffic, intrazonal traffic and interzonal traffic are further elaborated. 
 
Homebound traffic 
The percentage of traffic that returns home after the first, second or third trip can be determined using the 
MON/OViN.  
 
Intrazonal traffic 
The percentage of traffic that remains in the same postal zone after the first and second trip can also be 
determined using the MON/OViN.  
 
Interzonal traffic 
The rest of the traffic will change from zone. The probability where a driver wants to go at a particular 
destination depends especially on two aspects. First, the (average) distance that drivers are willing to drive for 
each purpose - which is the reason to make a trip - influences the zone that is chosen. And the other aspect is 
the attractiveness of a zone. Both key factors are described below.  
 
Gravity model distances 
Analysis of the MON/OViN has shown that the purposes have different characteristics with respect to distance. 
For example, a trip with purpose shopping (8 km) is on average shorter than a trip to work (21 km). Those 
differences between purposes are therefore included in the choice for a destination. In this way, more detail 
will be added to the tours. 
 
In the MON/OViN, 16 purposes are distinguished. Because some purposes are uncommon and because the 
computation time that is required to calculate all possibilities for all purposes will be too long, some purposes 
are merged. This is done by comparing the purposes on average distance. The number of different purposes is 
decreased to six; these are shown in Table 8. 
 
Table 8, the merging of MON/OViN purposes to new categories 

New purpose number Contains the following MON/OViN purposes  

1  Home (1) 

2 Commuting traffic (2), driver as job (4) 

3 Travelling for business(3) 

4 Pick up and bring people (5) and shopping (8) 

5 Visit (9), touring, walking (10) and other leisure activities (12) 

6 Going to services (13), personal care (14), go along with supervisor and other (15)  
 
For all the new purposes, except home, the average distance and the frequency can be determined. This 
information is required to create a gravity model. To find this function the following has to be considered. 
 
Intrazonal and interzonal traffic are separate options, therefore intrazonal traffic is not used for the 
determination of average distances for interzonal traffic. The average distance for an intrazonal trip within a 
zone can roughly be estimated, for example by dividing the surface by the perimeter of an average zone. All 
values equal and smaller than this distance are removed.  
 
The trip length distribution of the remaining data can be plotted in a histogram; an example is depicted in 
Figure 36. The formula that fits best is an exponential-formula with the shape Pij(d) = α*exp(β*d)

12
 (Bovy, 

2006). Here, i is the departure zone, j is the arrival zone, d is the distance and α and β are shape parameters 
that differ per purpose. This formula is plotted for some purposes in Figure 37. Using this formula, the 
probability that a trip will be made from an origin to any destination for each purpose can be determined. 
Zones closer to the departure zone will have a higher probability to be chosen than zones further away.  
 
                                                                 
12

 The parameters (α,β) in this formula are determined using Excel 



 

   
Improving Infrastructure for Electric Vehicles: A Method to Optimize Locations for Fast chargers 37 

  

  
Figure 36, Example of a trip length distribution for a 
random purpose (MON/OViN) 

Figure 37, Formula (Pij(d) = α*exp(β*d) plotted for 
different values of α and β  

 
Attractiveness zones 
In addition to the distance, attractiveness of a zone is relevant for the choice a driver will make. Not all zones 
are equal with respect to attractiveness; some zones consist of urban area and are supposed to be more 
attractive compared to zones that primarily consist of nature, water and/or roads. To cope with these 
differences, data of the MON/OViN is used again.  
 
If all locations are assumed to be equally attractive to all motives, some illogical choices with respect to 
destination choice might be made. For example, shopping areas will be more attractive for purpose shopping 
than for work. Therefore, the attractiveness of the areas is considered separately for purpose work. Eventually, 
the probability from each origin to each destination for the two categories can be determined. The more 
attractive a zone, the higher the probability that this zone is chosen as destination.  
 
Combine and distribute 
The combination of both aspects is used to predict where a driver will go to when he or she is at a particular 
zone. This is done by multiplying the probabilities that are derived from the gravity model and the 
attractiveness of a zone. In this way, a list is created containing the probability that a zone is chosen as next 
destination. After sorting this list, the ‘x’ most attractive zones can be obtained. This step should be repeated 
for all purposes.  
 
Eventually a matrix is generated containing for each purpose, from every zone, the ‘x’ zones (destinations) that 
are most likely to be chosen. The ‘x’ is the number of possible destinations that can be chosen for each 
purpose. The more options, the more possible tours and the more computation time. For example, if ‘x’ is 
assumed five, than a maximum of 25 (5 purposes x 5 zones/purpose) zones for each departure zone are 
possible. However, some purposes can have the same zones that are likely to be chosen. Therefore, the 
number of options will be lower. A schematic representation of the process is shown in Figure 38. 
 



 

38 Improving Infrastructure for Electric Vehicles: A Method to Optimize Locations for Fast chargers 

 

 
Figure 38, Example of the distribution of the intensities to other zones (interzonal traffic) (x = 5) 

4.2.6 Weight of the generated tours 

The possibilities after each trip and the associated probability per option are known. Using this information, 
tours can be generated over an area. To convert the probability of a generated tour to the amount of people 
who will actually make that tour, the intensities in the O/D morning matrix are used. The intensity of the first 
trip of the tour is divided over the sequel trips. In this way, all tours will get certain ‘intensity’. This value is also 
named the weight of a tour. This is the value that will be used for the distribution over the links in the potential 
interval. The more likely the tour occurs, the higher the weight of a tour and the higher the sum of the link 
scores.  

4.2.7 Example 

To get an idea how a tour is generated using 
the steps above, an example is elaborated. In 
Figure 39, different tours are generated from a 
departure zone in Amsterdam. The first trip 
has a destination in the northern part of 
Utrecht. From here, nine other destinations for 
interzonal traffic are selected. The other 
options (homebound and intrazonal) are not 
shown. The destinations for the second trip are 
mainly situated in Utrecht itself. Also a zone in 
Hilversum is chosen; from here it is again 
determined what possible zones are most likely 
to be chosen. These are the smallest black 
dots. From these destinations is the only 
relevant option to return to the starting zone 
(this is the fourth trip). Most of the generated 
tours in the figure require a fast charger if they 
have to be made an EV.  
  
 

 
Figure 39, Example of some generated tours for a departure 
zone of Amsterdam 
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4.3 Spatial presentation of the demand  

The tours generated are not all relevant. Tours with a total distance shorter than the driving range and larger 
than twice the driving range are not relevant due to the filters assumed in this thesis. Of the relevant tours, the 
weight of each tour will be distributed over the links in the potential interval. In the end, the link scores will be 
assigned to cells. This section describes two relevant aspects that will influence the result: the distribution used 
and the size of the cells.  

4.3.1 Distribution of the weight over the potential interval 

In section 3.5.2 it was mentioned that the desire of a fast charger is not equally distributed over the potential 
interval. The distribution used is very decisive for the outcome. The time required to charge if roughly the same 
over the interval, the same ‘distance’ have to be charged. A fast charger is theoretically preferred somewhere 
in the middle of the area, the probability of getting a flat battery is here smallest. With this point of view, some 
distributions are examined.  
 
It is unknown how the demand is distributed over the rest of the potential interval. However, one aspect have 
to be considered. Most of the distributions (Normal, Poisson) have a bell-shaped probability density function 
(see Figure 40). The limits of these distributions are infinite: this will cause that links outside the potential 
interval will also get a (low) score. This can be remedied, but is not desired. 
 
Since there is too little knowledge about charging behaviour, a basic distribution is considered. The distribution 
has the shape of a triangle: the desire is greatest in the middle (=weight/0.5*length of potential interval) and 
takes off straight to the edges. This is shown in Figure 41. 
 

4.3.2 Converting weight of a tour to cell scores 

The links in the network situated in the potential interval will get a score that represent the weight by using the 
surface under the triangle. The link score is determined by three aspects.  
 

 First, the weight of a tour is relevant. This value is derived from the intensity and probabilities in the 
generation of the tours. This is the total score that is assigned to the links.  

 

 The second aspect is the location of the link. The links that are situated in the middle of the potential 
interval will get a higher score than the links at the edges due to the used triangle distribution. The 
surface of the triangle is larger in the centre.   

 

 Furthermore, longer links get higher scores because they represent more surface. 
 
The links are assigned to cells. This is done by determining the middle of each link and allocates it to the cell in 
which this point is situated. In this way, the cell scores are determined. These values have to be multiplied with 
factors such as market share and charge behaviour, distribution over time and a factor that compensates the 
differences in demand between the generated tours, three kind of daily patterns, and all kind of daily patterns. 

  
Figure 40, Various normal distributions Figure 41, Distribution in the form of a triangle 

http://de.wikipedia.org/w/index.php?title=Datei:Normalverteilung.svg&filetimestamp=20091213093404
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4.3.3 Size of the cells 

The size of the cells is a factor which can influence the robustness of the results. Some aspects have to be 
considered for determining an appropriate size: 
 
Detour factor  
If a fast charger is allocated to a cell, it will affect traffic driving through surrounding cells. Electric proposed 
traffic in need for a fast charger and driving in neighbouring cells will probably make a detour to use the 
charger; the consequence of this is that a fast charger will also serve tours that are not running via the cell 
where a fast charger is present. As a consequence, the demand in surrounding cells will drop too. The extent to 
which this happens depends on how far people are willing to make a detour. If this is a few kilometre, for 
example five, then a cell size of 10x10 km will provide a fairly robust network. If the fast charger is allocated in 
the middle of a cell, this won’t affect the demand of the surrounding. If a smaller cell size of 2x2 km is assumed, 
a certain percentage of the traffic in the surrounding cells will probably change their route. However, this 
percentage will be based on assumptions and will differ over the study area. How a reliable size can be 
obtained with respect to detour factors is shown in chapter 5. 
 
Network limits: Size of the links  
The links in the network will be assigned to cells by using the middle of a link. Larger links will get a higher score 
(the surface -see 4.3.2- is larger) and are therefore reasonably decisive for the difference between cells. If the 
cell size is too small, a link can overlap more than one cell and only one cell will get the score.  
 
Level of detail  
The general assumptions tell something about the quality of the data that is used as input. If coarse 
assumptions are made (e.g. the input and processing is relatively poor), it doesn’t make sense to adopt a small 
cell size. This will cause false precision.  
 
Computation time  
The last aspect is the computation time required to find a solution. The smaller the size of the cell is chosen, 
the more cells there will be in an area. The computation time will increase exponentially when more cells are in 
the study area.  
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4.4 Greedy algorithm 
In chapter 3 it was found that a Greedy algorithm provides an acceptable solution to the problem. In this 
section a detailed (technical) explanation of the functioning and expected outcomes are presented.  
 
Structure of the Greedy algorithm 
A greedy algorithm aims to determine the following two aspects: 
 

 The locations of the fast charge stations 

 The number of fast chargers at each location 
 
There are two types of greedy algorithms that involve both aspects. These have the following structures: 
 

 Greedy algorithm A: Determine location first and allocate as many profitable fast chargers as possible 
to that location. Results in few locations with multiple fast chargers. 
 

 Greedy algorithm B: Determine the location of each additional fast charger separately. Resulting in 
multiple locations with one or few fast chargers. 
 

Both types of algorithms have advantages and disadvantages. The advantages of both algorithms are shown in 
Table 9. 
 
Table 9, Pros and cons of clustering locations 

Greedy algorithm A Greedy algorithm B 

Probability of finding a free fast charger is greater 
Less expensive: only one connection to the three-
phase network per location is required

13
 

Opportunities for economic activities related to EVs / 
meeting point 

More locations will further reduce range anxiety  

 
It is chosen to apply algorithm A in this thesis. This algorithm provides the most cost effective solution 
(commercial point of view) and fewer locations will also ensure that EV users have a chance to meet each 
other. In addition, the algorithm will find the most potential locations among the existing locations to place 
more fast chargers (upgrade to hub). To demonstrate the differences between the algorithms, algorithm B is 
also executed. This is further discussed in 
Chapter 5. 
 
In order to explain the steps of the chosen 
algorithm, a flow chart is used which is 
illustrated in Figure 42. The cell scores in the 
study area, the spatial distribution of demand, 
which have been obtained by previous steps, are 
used as input for the allocation method. In 
addition, some initial conditions can be set (e.g. 
adding the existing locations of fast chargers).  
 
Location of the fast charge station 
The first step is to search for the cell with the 
highest score in the study area; this is the most 
potential location. A fast charger will be 
allocated to this cell. 
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 A major cost 

 
Figure 42. Flow chart of the used greedy algorithm 
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Number of chargers at each location 
The number of chargers required at each location depends on the capacity and the minimum required charges 
per charger. If a fast charger is allocated to a cell, some demand will be served. In other words, the cell scores 
will reduce. This reduction relates to the cell score of the cell in which a fast charger is placed and the cell 
scores on the surrounding cells due to the triangle distribution. 
 
The triangle distribution used will distribute the weight of a relevant tour over the links in the potential 
interval. Thereafter, the link scores are assigned to multiple cells. If a charger is allocated to one of those cells 
in the potential interval, a portion of the weight on the other cells is served as well. This will reduce the cell 
scores of the surrounding cells. To what extent this will happen and which cells are involved, depends on the 
structure of the generated tours. To determine this, a selected cell tool is developed.  
 
It is possible to store (a part of) the potential intervals of the generated tours. This makes it possible to 
determine which cells are connected to a selected cell and with what ratio. In other words, where could the 
same EV user also charge?  
 
In chapter 2 it is showed how the capacity of a fast charger, the number of EVs that can charge at a single fast 
charger within a certain period of time, can be calculated. This value should be distributed among all cells that 
have relevance. Therefore the cell score of the cell to which the fast charger is allocated is not reduced by the 
value assumed as capacity, but with a certain percentage of this value. The same applies to the surrounding 
cells. To clarify this, an example of this process is depicted in Figure 43.  
 

 
Figure 43, Example of the effect of allocating a fast charger on the surrounding cells 

 
The left picture shows the cell scores within a certain area. The sum of all cell scores, the demand, is 26.52. 
The highest cell score is 1.23. A fast charger is allocated to this cell.  
 
The middle figure shows the effect of allocating a fast charger to this cell: it will affect the scores of the cell and 
surrounding cells. This is the selected cell tool. The sum of the scores is equal to the capacity of a fast charger. 
In this example, the capacity is set to 8 charges per period of time.  
 
The scores in the middle figure will be subtracted from the cell scores in the area (left figure). The result is 
shown in the right figure. The sum of the demand in this figure is calculated (18.52) and compared with the 
initial demand in the study area (26.52). If the fast charger is used optimally the difference will be equal to the 
capacity of the charger. However, it is possible that due to the subtraction some cell scores will be negative. 
These are the red scores in the right figure. Since negative demand does not exist, these values are set to 0. As 
a result, it may occur that the difference in total demand between for and after allocating a fast charger is not 
equal to the capacity of a charger, but lower. This difference is the actual use of a charger. In the example the 
actual use is 7.18 charges per period of time.  
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Stop criteria per location 
As has been indicated in section 3.6.1, a fast charger is no longer profitable if the expected demand drops 
below a certain value. If the demand is higher than this value, a new fast charger will be allocated to the same 
cell (# charger < stop criteria). If the demand is lower than this value, than the loop starts again by finding the 
new highest cell score (location with most expected demand).   
 
Second and third highest cell 
It is possible that this new selected cell is the same as the previously studied cell. This will result in a re-
calculation of the effects and the subsequent same conclusion. The cell with the second highest can, however, 
still be a profitable spot. The same applies to the cell with the third highest score. Therefore, these cells are 
also studied before the algorithm ends. If none of the three cells with the highest scores are a profitable spot 
for a fast charger, the algorithm stops and an optimum is found. The result is the optimal configuration of fast 
chargers.  
 
Outcomes 
Per additional charger, a part of the total demand 
served. The percentage of the demand in a certain 
area that is eventually served depends on the 
established minimum demand which is necessary for 
a cost-effective fast charger. If this value is set to 0 
charges per period of time, 100% of the demand will 
be served. This is depicted as a graph in Figure 44. 
The vertical axis is the percentage of demand that is 
served and on the horizontal axis the number of 
allocated fast chargers.  
 
The red line indicates the percentage that is served 
by the number of fast chargers. This is not a straight 
line, because some fast chargers are not used optimal 
(max capacity).  
 
The green line (the derivative) indicates the use of 
the (new) fast charger, the capacity per time period in this example is assumed to eight. After allocating fifty 
fast chargers, the use of new fast chargers drops. The peaks indicate that a fast charger is assigned to a new 
cell. 
 
 
 
 
 

 
Figure 44, Possible result of the greedy algorithm 
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4.5 Conclusions 
The method that can be used to the find the optimal locations and the corresponding number of required fast 
chargers, the TAGA (Two-point Approach Greedy Algorithm)-method, is further elaborated.   
 
Creating a new dataset 
A new dataset is developed. This dataset generates daily patterns using an O/D morning matrix of a traffic 
model and data that contains information about daily patterns. Due to computational limits, the world is 
simplified: only daily patterns consisting of 1 tour with two, three or four trips are generated instead of all 
possible kind of daily patterns. Only a part (54%) of the relevant daily patterns in the MON/OViN consists of 
one tour with two, three or four trips. This implies that the datasets represents a majority of the actual 
demand. 
 
From each start zone, the first trip to other zones is copied from the O/D matrix of the traffic model. The 
following trips are determined on the basis of probability. For both the second and third trip there are three 
options drivers can choose: go back home (homebound, to the start zone), drive to a destination in the same 
zone (intrazonal) or drive to a destination in another zone (interzonal). The probabilities corresponding with 
each option are derived from the MON/OViN. Only one option is left for the fourth trip, returning home 
because daily patterns with more than four trips are not generated. 
 
The probability of that a tour will be made can be converted to intensities by using the O/D matrix. The 
intensity of the first trip in a tour can be copied and will be divided among the 2

nd
, 3th and 4

th
 trip using 

probability. The ‘intensity’ of every tour represents the weight of the tour. This value will be used to determine 
the most potential locations. The more weight, the more likely the tour occurs, the more influence it has on the 
results.  
 
Translation to expected number of charges in a certain year 
The generated tours with a total distance larger than the driving range and shorter than twice the driving range 
are relevant. Based on the relevant tours, the potential interval is determined.  The weight of each tour is 
distributed over the links in the potential interval using a triangle distribution. A triangle indicates the effect 
that EV users have a preference to charge in the centre of the potential interval. Subsequently, the links 
situated in the potential interval will get scores. Those links are assigned to cells, resulting in cell scores which 
represent the preference for a fast charger within an area. This is done for all relevant tours. Eventually the cell 
scores of all tours can be added. The cell scores have to be multiplied with some factors, such as market share 
of the EV fleet, charge behaviour and distribution over time, to find the actually demand during a period of 
time in a certain year.  
 
The greedy Algorithm 
The final cell scores within an area are used as input for the allocation method. Broadly there are two types of 
greedy algorithms possible. First, an algorithm that will search for the most potential location (highest cell 
score) and allocate as many as profitable chargers to that cell. The second algorithm will search for the most 
potential location every time a fast charger is allocated. In the first case, few locations with many fast chargers 
will be created (clustering). This has the following advantages: 
 

 Probability of finding a free fast charger is greater 

 Less expensive: only one connection to the three-phase network per location is required  

 Opportunities for economic activities related to EVs / meeting point 
 
Therefore this algorithm is preferred. The greedy algorithm will search for the cell with the highest score (most 
potential area). A fast charger will be allocated to that cell and the demand on the cell and surrounding cells 
will decrease. This step is repeated until the demand on the cell is lower than the demand that is required to 
install a profitable fast charger. If this is the case, the algorithm will search again for the cell with the highest 
score. These steps are repeated until there is no cell left where a profitable fast charger can be placed. 
Whether a fast charger is profitable will depend on the minimal required number of charges per period of time, 
the profitability.  
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The steps in the TAGA-method 
In summary, the following steps are executed in the TAGA-method: 

1. Generate tours using an O/D matrix and a dataset that contains information about daily patterns 
2. Calculate the weight of each tour 
3. Define the potential interval of each relevant tour 
4. Distribute the weight over the links in the potential interval 
5. Assign the link scores to cells 
6. Add up the cell scores of all relevant tours 
7. Convert the scores to expected demand   
8. Find the cell with the highest score  
9. Allocate as many profitable fast chargers as possible 
10. Repeat step 8 until no profitable locations (cells) are left 

 
Fields of application 
The TAGA-method can be used for the following purposes: 

 Determining the optimal configuration (locations and number of fast chargers per location) for a 
random area 

 Evaluate and rank planned or potential locations on profitability 

 Determine which existing locations can best be upgraded to hubs (more chargers at one location) 
 
The TAGA-method is applied to Amsterdam in the next chapter. 
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5 APPLICATION TO AMSTERDAM 
 

5.1 Introduction 
The municipality of Amsterdam currently has the leading position with regard to 
electric vehicles and infrastructure. The municipality promotes electric vehicles in 
order to improve the air quality. The installation of fast chargers can contribute to 
this. To make Amsterdam more accessible for electric vehicles and to promote EVs 
among the people of Amsterdam by eliminating driving range restrictions, fast 
chargers have to be placed on the right locations. In this way, the available funds 
will be spent as efficiently as possible. The following two questions are answered in 
this chapter: 

 What is the optimal configuration of fast chargers in and around 
Amsterdam in 2020? 

 What is the optimal configuration of fast chargers for EV users who live in 
Amsterdam in 2020? 

The year 2020 is chosen because a future situation is required to obtain an optimal 
configuration and most data is available for this year.  

 
 

Scenario Percentage 
of cars 

Total number of EV’s 
(inc plug-in hybrid) 

High 8% 20000 

Target 4% 10000 

Low 2% 6000 
Table 10, Possible distribution and number of EV's in 
Amsterdam in 2015 according three scenario’s 
(source: TNO, 2009) 

Figure 45, forecasts for the market share of EV's and 
plug-in hybrid vehicles in Amsterdam (source: TNO, 
2009) 

 

The municipality of Amsterdam has the 
ambition to have 10,000 electric vehicles in 
2015 (or 5% zero-emission kilometres) 
according the average (most likely) scenario 
(TNO, 2009). Of this number, 3000 vehicles are 
BEV’s (Full Battery Electric Vehicles). All 
scenarios are shown in Table 10. In 2008 there 
were approximately 215,000 vehicles in 
Amsterdam, this number will increase to about 
225.000 in 2020

14
. According to forecasts, the 

number of electric vehicles between 2015 and 
2020 will be doubled (see Figure 45).  The 
same will count for BEV’s; The number of BEVs 
is therefore estimated at 6000 in 2020. This 
will be a market share of 3%, which means that 
the ambition is greater than the average of the 
Netherlands. In this chapter, the TAGA-method 
that has been developed in the previous 
chapters is applied to Amsterdam. First of all, 
the required input is explained. It includes 
some specific assumptions and conditions, the 
composition of the study area and area of 
influence and the traffic model that is used. 
The distribution of the demand for fast 
chargers presented and the best configuration 
is determined.  
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 Estimate based on trends (DIVV)  
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5.2 Study setup 
In this section the input and assumptions are explained that are required to find an optimal configuration of 
fast chargers in 2020. This year is chosen because most information, e.g. an O/D morning matrix and a network 
including new infratructure, is available and a future situation will be most realistic. In addition, this year 
possible changes for different aspects can be simulated. In subsequent years, the development of those 
aspects is uncertain or unknown.  

5.2.1 Area of Influence & Study area 

The area of influence is the area in which the tours will be generated. The larger this area, the more tours have 
to be created and the more computation time. The area of influence is chosen on such a way that the optimal 
locations for the people that live in Amsterdam can be determined. Therefore, an area around Amsterdam 
should be taken with a radius of at least 50 kilometres. This will ensure that the residents of the municipality of 
Amsterdam will have their potential interval, the locations where a fast charger is required to ‘electrify’ a tour, 
are situated in the area of influence. The height of the area is 90 km, the width 120km. Because most of the 
traffic has a destination south of Amsterdam, the entire Randstad is included. This is at the expense of the 
smaller zones (less attraction/production) north of Amsterdam. Zones outside the area are not relevant 
because they won’t influence the demand in Amsterdam or with a significant quantity (flows are very low). The 
area of influence is shown in Figure 46.  
 
In the study area, the optimal configuration of fast chargers will be determined for all drivers who drive 
through this area. In this case, the study area includes not only the municipality of Amsterdam but also a part 
of the region. Fast chargers allocated just outside the border can influence the locations within the border. The 
study area chosen is based on the Noordvleugel area and the Stads Regio Amsterdam (SRA). The area has a size 
of 60x30 km and is shown in Figure 47. 

  
Figure 46, The area of influence Figure 47, The study area 

5.2.2 Datasets used for generation of tours 

Traffic model 
The model that fits best to the area of influence and study area is the Verkeerskundig Noordvleugelmodel 
(VENOM). This model is developed by Goudappel Coffeng on behalf of the metropolitan region of Amsterdam 
and is intended to make forecasts to maintain a smooth functioning traffic and transport system. 
 
This model is preferred over other models, because the level of detail is greater in this region: the links (road 
sections) are designed detailed and the zones (area classification for attraction and production of traffic) are 
specific (smaller than 4-digit postal code). In order to reduce the calculation time, a 3-digit postal code division 
is used. Therefore, the area of influence is divided into 260 zones. 
The O/D morning matrix is also derived from VENOM. VENOM consists of 3722 centroids

15
, but many of them 

are located outside the area of influence or are situated in the same zone. The traffic generated by the 
centroids in the same zone is added and the centroid closest to the centre of the zone is chosen to be relevant. 
Because a future situation is studied, the O/D matrix and network of 2020 is used. This network includes future 
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 Indicates where in a zone the traffic is generated and absorbed 
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developments such as the Westrandweg. The fastest routes between all relevant centroids are determined 
using OmniTrans, leading to a matrix containing 67.600 shortest routes (260x260) with associated links. 
 
Making assumptions with respect to sequel tours 
The dataset that is used to make assumptions about travel behaviour is a combination of the MON/OViN and 
Household surveys Amsterdam. To maximize the size of the dataset, with the aim of increasing the reliability, 
several years (2004-2010) are stacked. This stacked dataset contains a total of 117,000 daily patterns.  
 
There is a difference in travel behaviour between urban areas, such as the Randstad, and non-urban areas, 
such as the province. Because the facilities in non-urban areas are often further away, the distances associated 
with those trips will give a distorted picture relative to the area of influence (urban area). Therefore, the 
parameters are only based on trips that have an arrival and destination postal code within the area of 
influence. After this filter, approximately 60,000 second trips and 27,000 third trips are left for determining the 
parameters.  

5.2.3 Assumed parameters 

The input values used are outlined for the steps taken (dataset, filters, spatial presentation and allocation of 
fast chargers): 
 
Creating a dataset 

 Number of zones 
As mentioned before: 260 (3-digit postal code) 

 

 Distribution over options for each trip 
In Table 11, the probabilities per option for each trip are presented. From this table it can be 
concluded that the major part of the drivers returns to home after the first trip (73%) and only a small 
part of the drivers (3.7%) makes a daily pattern that consist of 1 tour with more than four trips.  

 
Table 11, Probabilities associated with the possible options for each trip (MON/OViN) 

Trip number Returns home Intrazonal Interzonal Leaving the model 

First trip -- Varies by zone Varies by zone 0 

Second trip 0.733 0.051 0.216 0 

Third trip 0.567 0.093 0.330 0 

Fourth trip 0.676 -- -- 0.324 

 

 Distribution over purposes 
The probabilities that are required to create tours are derived from the MON/OViN. The distributions 
of the purposes for the second and third trip are shown in Table 12.  In addition, the average distances 
(in km) for the purposes are given. Purpose home (homebound traffic) is not included, since this is a 
fixed destination by creating the tours and therefore not used for interzonal traffic. 

 
Table 12, Probabilities associated by the purposes for the second and third trip (MON/OViN) 

Cat.  Include purposes used in MON/OViN Trip 2 Trip 3 

  Distribution Avg.dist. Distribution Avg.dist. 

2 Commuting traffic (2), driver as job (4) 0.049 27.52 0.106 26.44 

3 Travelling for business (3) 0.056 35.35 0.095 28.75 

4 Pick up and bring people (5) and shopping 
(8) 

0.083 14.38 0.122 17.99 

5 Visit (9), touring, walking (10) and other 
leisure activities (12) 

0.065 25.56 0.094 22.90 

6 Going to services (13), personal care (14),  
go along with supervisor and other (15)  

0.015 17.05 0.017 16.25 
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 Number of possible destinations for interzonal traffic 
The number of possible destinations is fixed at 5. Using this value, the computation time is tolerable

16
. 

 
Filters 

 Driving range 
The driving range is set at 80 km. This value is derived from the current driving range, because it is 
unknown how this value will change for 2020

17
.  

 
Spatial presentation of demand 

 Cell size 
The cell size used is 3x3 km. This assumption is based on a maximum detour factor of 10% of the trip 
length. The value is substantiated in Annex E. The area of influence is thereby divided in 1200 cells and 
the study area consists of 273 cells. 

 

 Factor daily patterns – tours generated 
The created dataset contains only three possible kind of daily patterns. These are, as defined in 4.2.1, 
daily patterns consisting of 1 tour with two, three or four trips. In order to achieve a realistic demand, 
two factors have to be determined: 
 
According to the MON/OViN, 64% of all daily patterns consist of 1 tour with two, three or four trips. 
Since the O/D matrix contains the intensity of all kind of daily patterns, the cell scores have to be 
multiplied with 0.64.  
 
The second aspect that must be taken into consideration is the percentage of relevant daily patterns. 
As calculated before, the percentage of daily patterns that is relevant is 12.1%. A majority (54%) of the 
relevant daily patterns consist of 1 tour with two, three or four trips. To calculate the total demand, 
the cell scores have to be multiplied 1.84 (=1/0.54).  
 
Both factors combined result in a factor 1.1912 (0.64*1.84) 

 

 Market share of the fleet and charge behaviour 
The market share of the fleet that is used is taken from the targets of the government. Their ambition 
is a market share of 2% in 2020. It is assumed that this value is uniformly distributed over the 
Netherlands. How many EV owners will actually use a fast charger is unknown. This is provisionally set 
at 50%.  

 

 Peak hour 
The number of fast chargers depends on whether there is dimensioned at peak times or on demand 
over a day. Because queues are not desirable, peak times are considered. The demand for fast 
charging over a day is provided in Appendix E. From this analysis, a peak value of 0.5 is assumed. This 
implies that 50% of the demand over a day is expected during two hours. 

 

 Presence of slow chargers 
Currently, there are hundreds of (slow)chargers situated in Amsterdam (see 2.3.3). Nevertheless, it is 
assumed that no slow chargers are present at activity end.  

 
Allocation of fast chargers: 

 Capacity of a charger 
The capacity of a fast charger is set at eight charges per two hours. This value is determined by taking 
into account the charging time studied in 2.3.2. It is assumed that a charge cost about 20 minutes in 
2020. However, not all users will need a full charge. The charging time is therefore set at 15 minutes 
and the capacity for two hours at eight (=2/0.25). 
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 90 hours (Intel core i5 @2.63GHz, 4 GB RAM) 
17

 A underestimation provides a more robust results than an overestimation 
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 Profitability of a charger 
The minimum demand required to ensure a fast charger is profitable is fixed at seven charges / two 
hours. How this value has been established is explained in Appendix E. 

 
Some of the aspects are included in the sensitivity analyses in chapter 6.  

5.3 Results 

5.3.1 Tours generated 

Per 3-digit postal code area, approximately 20.000 different tours are generated. This implies that for all 260 
zones situated in the area of influence, approximately 5M tours are created. Of these, 49% tours are relevant 
(require a fast charger to be ‘electrified’). Because the tours are determined by probability and intensity of the 
O/D matrix, not all of tours have the same weight. Tours with a ‘heavy’ weight belong mainly to the non-
relevant group. Therefore, the relevant intensity, the expected demand, will be lower. 

5.3.2 Spatial presentation of the demand 

The relevant tours are processed using the steps in the TAGA-method to make a distinction between the 
potential and less potential cells (areas). The results for the study area and for the residents of Amsterdam are 
presented in this section. The results are based on 2020. 
 
The study area 
The distribution of demand over the study area is depicted in Figure 48. The red cells represents the greatest 
demand, the yellow cells have less potential. 
 

 
Figure 48, distribution of the demand over the study area 

 
This figure shows that the most potential locations are situated on the south side of Amsterdam. The A10 near 
the RAI is the most desired location for a fast charger. The next potential cell is cell that contains the junction of 
the A4 and A9. The total demand in the study area, the number of expected charges during peak times, is 345. 
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Residents of Amsterdam 
The distribution of the demand for the drivers that depart from Amsterdam in the morning is illustrated in 
Figure 49. Here, only tours are generated from the zones situated in Amsterdam. The red cells represents the 
greatest demand, the yellow cells have less potential. 
 

 
Figure 49, distribution of the demand for the residents of Amsterdam  

 
The result shows that the cells that indicate the A2, the highway between Amsterdam and Utrecht, contain a 
lot of demand. Especially just north of Utrecht, near the junction between the N230 and the A2. This implies 
that Utrecht is (better) accessible by EVs when a fast charger is allocated to the appropriate location. 
Furthermore, it is clear that fast chargers are desired along the A1 and A4. The demand here is however lower. 
The total score in the area, the number of expected charges during the during peak times is 66.  

5.3.3 Optimal configuration of fast chargers 

The greedy algorithm, developed in section 4.4, is applied to the results presented in the previous section. In 
this section, the possible fields of application of the TAGA-method are elaborated: 
 

 Determining the optimal configuration (locations and number of fast chargers per location) for a 
random area. (Applied to: The study area and for the residents of Amsterdam). 

 Evaluate and rank planned or potential locations on profitability (Applied to: study area) 

 Determine which existing locations can best be upgraded to hubs (more chargers at one location) 
(Applied to: MC Donald’s within the border of Amsterdam) 
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Optimal configuration: The study area 
The result for the study area is depicted in figures 50 to 51. 
 

  
Figure 50, Selected cell tool shows the cells that are 
related to a selected cell 

Figure 51, Graph that shows the relationship (red line) 
between the number of chargers (x-as) and the total 
demand served in the study area (y-as) 

  

 
Figure 52, The optimal configuration of fast chargers in the study area (number of locations within the 
municipality of Amsterdam (within the purple line): 3, number of chargers: 21) 

 
In the first figure, the most potential cell is selected to analyse which surrounding cells are related (the selected 
cell tool). Because the first fast charger will be allocated to this cell, the scores of those cells will reduce. 
 
Figure 51 shows the relationship between the number of chargers and the demand that is served in the study 
area (red line). The blue line indicates the minimum number of charges that is required (7) to make a charger 
profitable. If the green line, that shows the number of charges for every additional charger, drops below this 
line an optimum is found. The optimum will be 46 chargers. In total 82% of the demand in the study area is 
served in this configuration.  
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The optimal locations and corresponding number of fast chargers is shown in Figure 52. The locations are 
displayed as the red dots and the number of fast chargers at a location is indicated by the number in the dot. 
As a result of the chosen algorithm, only three locations within the border of Amsterdam -the purple line in the 
figure- will be sufficient to serve most of the demand. The location where most of the fast chargers are 
preferred is along the A10 south nearby the RAI. Here, 12 chargers are required. Another location for a large 
charging hub is nearby the junction A1-A9. Here, seven chargers are desired. Finally, there are two chargers 
required on the west side of the A10 near the Coentunnel. In total this means that 21 fast chargers are required 
within the border of the municipality of Amsterdam. These three locations ensure that EV users passing 
Amsterdam do not need to make a (intolerable) detour.  
 
In the rest of the study area more fast chargers are required. However, the number of chargers at each location 
is less reliable, because problems will occur relating the size of the area of influence. 
 
Optimal configuration: Residents of Amsterdam 
The optimization is also performed in order to find an optimal configuration for the residents of Amsterdam. 
This configuration will ensure that EV users in Amsterdam can reach destinations that they could not reach 
with a single full battery. The result of the optimization is illustrated in Figure 53. 
 

 

Figure 53, The optimal configuration of fast chargers for the benefit of residents of Amsterdam (number of 
locations: 2, number of chargers: 3) 

 
The demand for the EV owners living in Amsterdam is only 66 charges per period of time and is scattered over 
the cells containing highways. Therefore, only three fast chargers are profitable from the perspective of traffic 
that is leaving Amsterdam in the morning. Two of these are located along the A2 north of Utrecht. The other is 
situated on the A4 between Leiden and The Hague. These three fast chargers cover 33% of total demand. 
However, also traffic from leaving from other cities can use those chargers. The number of required chargers at 
both locations is therefore not relevant. In addition, those locations will not be part of an optimal configuration 
within the area.  
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Upgrade to hubs: Implementing existing locations 
The initial conditions in the algorithm were set at 0. 
This implies that there are no existing fast chargers 
in the area. However, some fast chargers are already 
installed in and around Amsterdam as mentioned in 
chapter 2. These locations (illustrated in Figure 54) 
are used as input. The optimal configuration is 
shown in Figure 55. 
 
It can be concluded that the existing fast charger 
location on the A10 south is an appropriate location 
for a meeting point. This corresponds to the earlier 
determined optimal configuration. In this 
configuration, however, no fast chargers are 
required on the north side of Amsterdam. 

 
Figure 55, Optimal configuration within the study area using initial locations 

 
Evaluate and rank: MC Donald’s in Amsterdam 
The TAGA-method can rank predetermined locations on profitability. To demonstrate this, the locations of the 
MC Donald’s in Amsterdam are ranked. The cells in which MC Donald restaurants are situated are illustrated in 
Figure 56. The numbers in Figure 57 indicate the order of profitability. Number 1 indicates the most profitable 
location, allocating a fast charger to this cell will be the best investment. In contrast, number 8 will be a poor 
investment.  

  
Figure 56, MC Donald locations in Amsterdam Figure 57, MC Donald locations in 

Amsterdam ranked by profitability 

 
Figure 54, Existing fast chargers in and around 
Amsterdam 
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5.4  Conclusions 
In this chapter, the TAGA-method is successfully applied to Amsterdam. The future network and the O/D 
morning matrix (2020) of VENOM are used in combination with stacked MON/OViN data (117.000 daily 
patterns). In addition, many assumptions are made. These are summarized in the table below. 
 

Area of influence Cell 
size 

Factor 
tours-daily 

patterns 

Market share of 
fleet & charging 

behaviour 

Peak 
factor 

Presence of 
slow chargers 

Capacity Profita
bility 

260 3-digit postal 
code areas 

3x3 
km 

1.19 0.02 & 0.5 0.5 0 8 7 

 
In total, 5M different daily patterns consisting of 1 tour with two, three or four trips are generated in the area 
of influence. The data is processed and presented using the steps described in chapter 4 which results in the 
following optimal configurations. 
 

  
Figure 58, The optimal configuration of fast chargers in the 
study area (number of locations within the border of 
Amsterdam: 3, number of chargers: 21) 

Figure 59, The optimal configuration for 
the benefit of residents of Amsterdam 
(number of locations: 2, number of 
chargers: 3) 

 
The results indicate that the most potential locations are situated along the busiest roads. There are three 
locations within the borders of the municipality of Amsterdam where fast chargers are desired (Figure 58). 
These are situated along the A10, close to a junction with another highway. In this way, the fast chargers are 
easily accessible from several directions making detours not necessary. Because only a few locations are 
sufficient, opportunities will arise to develop (desired) economic activities nearby the charge locations.  
 
From the perspective of EV users departing from Amsterdam in the morning, fast chargers are desired at 
locations with a distance of about 45-60 km from the city centre. This seems logical because these locations 
ensure that the driving range of an EV is increased to about 130 kilometres. Instead of the limited range of 40 
kilometres, now cities situated within a range of 65 kilometres can be visited using an EV. Especially Utrecht, a 
city located at 40 kilometres from the city centre of Amsterdam, is better accessible due to the presence of fast 
chargers. The possibility to charge will cope with the uncertainty to get a flat battery. The same effect occurs 
on the A4 in the direction of The Hague. Here, a fast charger is required to reach the city of Den Hague with an 
EV. The expected demand on those locations is however low, therefore only one and two fast chargers are 
required. However, also traffic departing from other cities can use these chargers. The number of required fast 
chargers at both locations are therefore not relevant. 
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6 EVALUATION OF THE METHOD 

6.1 Introduction 
In this chapter, the TAGA-Method is evaluated by means of a validation and a 
sensitivity analysis. 
 
Validation of the dataset 

In the first part, the created dataset is compared with data from the MON/OViN. 
Here, different aspects are compared to make a statement about the quality of the 
input. This comparison will emerge if the created dataset contains more or less 
relevant daily patterns and whether the total demand in the dataset is over or 
underestimated. 
 
Sensitivity analysis 

Furthermore, a sensitivity analysis is performed to study the influence of the 
adopted parameters and conditions set. Topics that are studied include: driving 
range, market share, charge behaviour, the presence of slow chargers and the 
profitability of a charger. 
 
At the end, the different configurations are compared and the robustness of the 
locations is analysed. The locations that are the same in most of the results are 
supposed to be most reliable. 
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6.2 Validation of the dataset 
The tours that are generated to create a dataset are compared in different ways to find out to what extent they 
match to reality. First, it has been studied whether the model generates the same kind of tours as in the 
MON/OViN. Here, the average length of the created tours and the related length of the potential interval are 
compared. The length of the potential interval is the distance between the first and the last possible option to 
charge. 
 
In addition, it is compared to what extent the percentage of relevant daily patterns consisting of 1 tour with 
two, three or four trips in the MON/OViN match with the total weight of the relevant generated tours. This is 
done by comparing the three created kind of daily patterns. An overview is given in Table 13. 
 
Table 13, Comparison MON/OViN – TAGA-method (driving range: 80km) 

Compared variable MON/ 
OViN 

TAGA-
Method 

Differ 
ence 

Average length of a relevant tour with two, three or four trips 113.3 km 123.3 km
18

 +8.8% 

Average length of the potential interval 46.7 km 50.2 km
18

 +7.5% 

Demand (weight) in relevant daily patterns consisting of 1 tour with 2 
trips of all daily patterns consisting of 1 tour with two, three or four 
trips  

8.95% 
 

9.37%  +4.7% 

Demand (weight) in relevant daily patterns consisting of 1 tour with 3 
trips of all daily patterns consisting of 1 tour with two, three or four 
trips 

2.49% 
 

2.36% 
 

-5.2% 

Demand (weight) in relevant daily patterns consisting of 1 tour with 4 
trips of all daily patterns consisting of 1 tour with two, three or four 
trips  

1.54% 
 

1.45% 
 

-5.8% 

Demand (weight) in relevant daily patterns consisting of 1 tour with 
two, three or four trips of all daily patterns consisting of 1 tour with 
two, three or four trips 

12.98% 
 

13.18% 
 

+1.5% 

 
This validation shows that the average length of the generated relevant tours is overestimated in comparison 
with the MON/OViN. The same effect can be seen for the average length of the potential interval. 
 
In addition, the total demand of the relevant daily patterns generated slightly overestimates the ‘real’ demand 
(12.98% vs. 13.18%). This can be explained by the fact that the generated dataset prevents from future data 
and MON/OVIN is based on the past. The difference is supposed to be acceptable. 
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 Weight of the tour is taken into account: potential intervals are weighted (intensity*probability)  
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6.3 Sensitivity analysis 
The conditions set, the assumptions made and the techniques chosen as input for the TAGA-method are 
analysed to make a statement about the robustness and reliability of the locations and the corresponding 
number as chargers. The aspects that can influence the final result are depicted in Figure 60. 
 

 
Figure 60, Conditions, assumptions and techniques used per step that can influence the final result.  

 
First, the aspects in black are discussed in general terms. These effects are not passed (calculated). The aspects 
in purple, however, are calculated and the effects on the locations and number of required fast chargers are 
analysed and compared. 

6.3.1 General aspects 

The influence of some assumptions and principles is briefly reviewed on possible effects. Some of them are 
combined.  
 
Zoning, number of possible destinations and destination choice 
The more zones in the area of influence and the more destinations that can be chosen after each trip will 
increase the computation time. It is assumed that this effect is relatively large because of the wide distribution 
of the demand: the five destinations with the highest probability to be chosen represent less than 10% of the 
total probability. Increasing the number of possible destinations will greater the level of detail.  
 
The destinations that are chosen from each (departure) zone for each purpose are determined using a gravity 
model and the attractiveness of the zones. A combination of both will often lead to a location close to the 
departure zone. Long trips in a tour are therefore underrepresented. In addition, selecting the destination with 
the highest probability does not take into account the direction a vehicle came from (the destinations are 
always the same). As a result, it might occur that tours with illogical detours are generated.  
 
Data used: Traffic Model and daily patterns 
The morning O/D matrix of a traffic model is generated using socioeconomic data

19
, such as car ownership, 

population and jobs, trip generation formulas and a trip distribution. This includes an (unknown) unreliability, 
especially for a future year. In addition, the municipality of Amsterdam doubts about the correctness of the 
traffic forecasts of VENOM. The data from MON/OViN tells something about the travel behaviour in the past, 
while future forecasts are studied. In addition, travel behaviour can change over time as well as travel 
behaviour when a different type of car is used, such as an EV. The effects, however, are unknown. 
 
The distribution of the weight of a tour over the potential interval and route choice 
The potential interval is determined on the basis of the road sections which are situated on the fastest route 
between two destinations. It is therefore assumed that the fastest route is always chosen. However, due to 
congestion or other preferred routes other choices can be made. The effect will be limited, because EV users 
will (probably) only make a detour if they know that they don’t need to charge on that part of the trip. In 
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addition, the distribution used to distribute the weight of a tour over the potential interval is an important 
assumption. Because nothing is known about the shape of the distribution, it is difficult to make a statement 
about the correctness of this choice. If a distribution is chosen which assigns more demand to the middle of the 
interval and less to the sides, it is plausible that the results will be less robust. This will be more similar to the 
one-point approach that is supposed to be less robust.   

 
Algorithm and capacity 
The capacity of a charger will change when the time required for charging will reduce. It is unknown how this 
will change over time.  

6.3.2 Influence of driving range 

An important assumption is the driving range. In section 2.2.3, it is described how the adopted driving range 
has been established. In the future, the batteries will improve, allowing a longer driving range. The extent to 
which this occurs is still uncertain. To study the influence of a greater driving range, the TAGA-method is 
applied again on the area of influence set in chapter 5. In this analysis a driving range of 100km is used. The 
area of influence is, however, is not large enough to study the effects of a larger driving range. This is a 
recommendation for further research.  
 
Spatial distribution of the demand 
The distribution of the demand in the study area derived with a driving range of 100 kilometres is depicted in 
Figure 61. The result for the residents of Amsterdam is shown in Figure 62. 

  
Figure 61, Distribution of demand in the study area assuming 
a driving range of 100km 

Figure 62, Distribution of demand for residents 
of Amsterdam assuming a driving range of 
100km 

Optimal configuration 
Using the results, an optimal configuration can be determined. The configuration for the study area is 
illustrated in Figure 63 and for the residents of Amsterdam it is shown in Figure 64.  
 

  
Figure 63, Optimal configuration for the study area 
assuming a driving range of 100km 

Figure 64, Optimal configuration for residents of 
Amsterdam assuming a driving range of 100km 
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In summary, the following table is made to compare both outcomes. 
 
Table 14, Influence of the driving on the locations and number of fast chargers 

Driving range 80 km 100 km Difference 

# of expected charges in study area 345 274 -26% 
% potential served 81.1 81.2 +1% 
Study area    

# Locations  3 3 0 
# Number of required fast chargers within 
the Municipality of Amsterdam 

21 11 -47% 

Residents of Amsterdam    

% potential served 33 20.2 -39% 
# Number of required fast chargers 3 1 -67% 

 
The robustness of the locations can be explained by analysing the way the weight is distributed over the 
potential interval of a relevant tour. The extreme points (Xalap and Xasap) will change, but the shape remains the 
same, as shown in Figure 65. 

 
Figure 65, Explanation of the robustness of the locations as the driving range increases 

 
Therefore, most locations will be the same. An aspect that could influence the results is the tours in the dataset 
that become relevant at a longer driving range and vice versa. In addition, the locations of fast chargers don’t 
need to change due to the large potential interval of an average tour. This implies that a driver can charge over 
a large distance, a small change in the configuration will not affect seriously the amount of demand served.   

6.3.3 Influence of market share & charge behaviour 

The expected size of the market share of the EV fleet depends on the scenario chosen. In section 2.2.2, several 
scenarios are described that estimate the number of electric vehicles in a certain year. Considering the year 
2020, the percentage of EVs on the road will be between 1% and 2%. The market share has a linear relationship 
with the demand: if the market share increases by 1% then the demand will also increase by 1%. The same 
applies to the charging behaviour of the users. Therefore, these two components are merged. The amount of 
EV users who will actually use fast chargers is unknown. It was decided to examine 25% and 75%. In this way, 
six categories are created. The results for the study area are presented in Table 15.  
 
Table 15, Influence of the market share and charge behaviour on the locations and number of fast chargers 
within the border of Amsterdam 

Market share 1% 1.5% 2% 1% 1.5% 2% 
Users that wants to use 25% 25% 25% 75% 75% 75% 

Factor 0.0025 0.00375 0.005 0.0075 0.01125 0.015 

# of expected charges in study 
area during peak hours 

86 130 173 259 389 518 

% potential served 75.6 87.2 86.4 83.1 83.6 83.2 
       

# Locations within the 
Municipality of Amsterdam 

3 4 4 3 4 3 

# Number of required fast 
chargers  

5 8 11 16 24 31 
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It follows logically that more fast chargers are required if the market share increases and when more people 
will really use fast chargers. The number of fast chargers in the study area varies from 5 to 31, while the 
number of locations substantially remains constant. The two most extreme combinations are shown in Figure 
66 (MS = 1%, USE = 25%) and Figure 67 (MS = 2%, USE 75%). 
 

  
Figure 66, Optimal configuration for MS = 1%/USE = 
25% 

Figure 67, Optimal configuration for MS = 2%/USE = 
75% 

 
These figures show that two locations within the municipal boundary are matching. This is the location in the 
cell near the RAI and the cell east of Amsterdam (junction A1-A9). The number of fast chargers required differs. 
Because the likelihood of the scenarios is unknown, it is difficult to assess whether extra fast chargers have to 
be placed. 
 
It should be noted that the market share is evenly distributed over all starting zones (home). However, there 
are areas with (probably) more potential users. The high purchase cost, for example, will only be affordable for 
higher incomes. 

6.3.4  Presence of slow chargers at activity end 

In the Netherlands more and more slow chargers become available (see 2.3.3), particularly at locations where 
people work (commercial areas). These slow chargers make it possible to make tours that are longer than de 
driving range without using a fast charger. The time between arrival and departure is indicative to what extent 
the battery will be charged. Because time is not taken into account when creating the dataset, the MON 2008 is 
used for this analysis. The values which are determined are based on an average of iterations. The presence of 
a slow charger changes per iteration: if the percentage is set at 60%, it means that in 6 out of 10 destinations 
(4-digit postal code area) a slow charger is present. To get reliable results, twenty iterations for each scenario 
are performed. The effect of slow chargers at activity end is shown in Table 16. In all cases, the EV will depart 
with a full battery.  
 
Table 16, Influence of the presence of slow chargers at activity end (home = 100% slow charger) (MON, 2008) 

Percentage of slow chargers  at 
activity end 

0% 20% 40% 60% 80% 100% 

Percentage of daily patterns that 
requires a fast charger  

12.05% 11.39% 10.71% 7.92% 5.35% 2.96% 

Difference  -7.28% -12.79% -35.51% -56.41% -75.91% 

 
It is likely that when more slow chargers are installed, less fast chargers are required. Of course, it is also 
possible to place fast chargers at activity end. Because of this, the demand for fast chargers will reduce even 
more. However, fast chargers are more expensive compared to slow chargers (ABB, 2012) and therefore not 
preferred to be installed at activity end. 
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6.3.5 Profitability of a charger 

The stop criterion of the greedy algorithm is the profitability of a fast charger. If fewer charges per unit of time 
are required to make a charger profitable, more fast chargers can be allocated and more demand will be 
served.  
 
The value determined in Appendix E is established from a commercial viewpoint. This value is based on the fact 
that no loss-making chargers are allowed in the optimal configuration. In this way, the profit is maximized. The 
value may be lower by the following aspects: 
 

1. Fast chargers will be less expensive in the future, so fewer chargers are required to break even 
2. The government is committed to reducing emissions. Therefore, loss-making chargers contribute to 

better air quality. This can be converted into money and are added to the revenues. 
 
For this reason, a sensitivity analysis is performed in which the value has been reduced from seven to five 
charges per two hours. The results are shown in Figure 68 and Figure 69. 
 

  
Figure 68, Optimal configuration for profitability = 5 charges/2 
peak hours 

Figure 69, Graph corresponding to the result. 
94.2% of the demand will be served (x-as: # 
chargers, y-as: percentage served) 

 
The optimal configuration gives approximately the same locations as seven charges per two hours. At some 
locations outside the borders of Amsterdam, new chargers are allocated. This ensures that more demand in the 
study area is reached (94% vs. 80%). 
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6.4  Conclusions 
This chapter discussed the validation of the dataset and a sensitivity analysis that is performed to study the 
effects of changing conditions. In this way, a statement can be made about the reliability and robustness of 
the results. From this analysis, the following conclusions can be drawn: 
 
VALIDATION 
The created dataset is in reasonable agreement with reality with respect to the size of the potential market 
The created dataset is compared with data from the MON/OViN. In this way, it is determined to which extent 
the created daily patterns corresponds to daily patterns in the MON/OViN. This shows that the percentage of 
relevant generated daily patterns slightly overestimate the real potential market (13.18% vs. 12.98%). The 
small difference can be explained by the fact that the dataset is created with an O/D matrix from a future 
situation (2020) and MON/OViN data is obtained in the past (2004-2010). Furthermore, it is studied to which 
extent the average size of the potential interval per tour match. This comparison shows good agreement, with 
a deviation of only a few kilometres. 
 
SENSITIVITY ANALYSIS 
To determine whether the TAGA-method provides reliable and robust results, the conditions, assumptions 
and the choices made are analysed. These aspects are illustrated in Figure 70. For some aspects (purple), the 
effects are passed (calculated) for the Amsterdam case. For the aspects in black, an estimate is made of the 
effects on the results. 

 
Figure 70, Possible uncertainties in the TAGA-method 

Aspects in black: 
The way the tours are generated contains uncertainty. Firstly, the number of possible destinations for 
interzonal traffic for trip two and three is limited to five. In reality, however, all destinations have a certain 
probability to be chosen. If all destinations are included by creating tours, the computation time will be 
intolerable. It is assumed that this effect is relatively large

20
, because of the wide distribution of the demand: 

the five destinations with the highest probability to be chosen represent less than 10% of the total probability.  
Secondly, the destinations that are chosen from each zone for each purpose are determined by a gravity 
model and the attractiveness of zones. A combination of both will often lead to a destination close to the 
departure zone. Long trips in a tour are therefore underrepresented. In addition, selecting the five 
destinations with highest probability does not taken into account the direction a vehicle came from (the 
destinations are always the same). As a result, it might occur that tours with illogical detours are generated. 
Those three aspects will (probably) cause the greatest unreliability. Effects related to the chosen O/D matrix, 
travel behaviour and the distribution of the weight of a tour over the links are unknown.  
 
Aspects in purple: 
The size of the driving range has minimal influence on the potential locations 
The locations of fast chargers within the border of Amsterdam will slightly change if the driving range is 
chosen larger. The fast chargers on the north side of Amsterdam will slightly displace and one location will 
switch from the A2 to the A1.  
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 23% is interzonal or intrazonal traffic after first trip and are thus involved 
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The larger the driving range, the fewer fast chargers will be required 
The driving range is one of the most important variables to determine the demand. The further can be driven 
on a full battery, the fewer relevant tours. Assuming a driving range of 80km, 12.1% of the daily patterns are 
relevant and for a driving range of 100km this percentage is decreased to 9.72%. A driving range greater than 
100km is also conducted with the method, but contains limitations due to the chosen size of the area of 
influence (see recommendations). Using the MON/OViN, it can be analysed to what extent the demand will 
decrease for greater driving ranges. For the Netherlands, the percentage of relevant daily patterns drops to 
8.2% for a driving range of 120 km and to 6.8% assuming a driving range of 140 km. 
 
Market share and charging behaviour has a linear relation with the expected demand 
The demand in a study area is determined on the basis of several factors. Because the weight of the relevant 
tours are determined using all vehicles in the O/D matrix, some factors are applied to convert the cell score to 
expected number of charges. These factors include market share, charge behaviour and distribution over time. 
All aspects have a 1 to 1 relationship to the demand: if there are 1% more EVs, the demand will also increase 
by 1%. The same applies to the percentage of EV owners that will actually use a fast charger.  
 
Furthermore, it is assumed that the market share is evenly distributed over the areas. However, there are 
(probably) areas with more potential users. The high purchase cost, for example, will only be affordable for 
higher incomes. In addition, it is assumed that the market share is evenly distributed over the daily patterns. 
But it is likely that most EVs are used and purchased by drivers who make only incidental daily patterns larger 
than the driving range. If only incidental daily patterns are studied, the locations might be different.  
 
The more (slow) chargers are present, the less fast chargers are required 
The presence of slow chargers will affect the demand. If the battery can be recharged at a destination, some 
relevant tours will become non relevant. If at all locations slow chargers are installed, the demand will 
decrease with more than 70%. 
 
The more charges are required to make a fast charger profitable, the less demand is served 
Every time a fast charger is allocated to a cell, the scores on that cell and surrounding cells will decrease. A fast 
charger requires a certain demand, number of charges per unit of time, to be profitable. If there is no cell that 
can provide that demand, an extra charger will not be profitable. The minimal number of charges that is 
required might change by, for example technological developments. The lower the value, the more profitable 
fast chargers can be allocated, and the more demand will be served. 
 
Finally, the following effects are 
plotted in one graph: 

 Charge behaviour (25% and 
75%) 

 Market share of the EV fleet 
(1%, 1,5% and 2%) 

 Profitability (5 /7 
charges/peak hour) 
-5 is top of the area in the 
graph- 

 
This is done for a driving range of 
80km in Figure 71.  
 
It can be concluded that the required 
number of fast chargers cannot be 
determined until there is more information available about how some scenarios will change in the future. The 
locations are however robust. The three locations (south-A10, A10-west and A1-A9) that are determined for 
Amsterdam in chapter 5 do not change significantly. 

 
Figure 71, overview of findings sensitivity analyses  (driving range 80 
km) 
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7 CONCLUSIONS 
The main research theme in this thesis is developing a method that can be used to 
find the optimal locations and the corresponding number of fast chargers. This final 
chapter summarises the main results of this thesis. First, the main research findings 
are given. These include the answers on the sub questions and the main research 
question. This is followed by recommendations for further research and some 
specific actions for the municipality of Amsterdam. Finally, a reflection is given on 
this thesis.  
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7.1 Main research findings 
This thesis has given insight into the possibilities that may contribute to better charge infrastructure for electric 
vehicles. By answering the sub questions, an answer is obtained on the following main question: 
 

Main research question 
What is the optimal configuration of  fast chargers to reach the highest potential of electric vehicles usage? 

 
The following main research findings are derived: 

7.1.1 Total distance travelled on a day is indicative for the use of fast chargers 

Electric vehicles (EVs) have different properties compared to the common used ICE vehicles. These differences 
are studied to find the potential user group that will use fast chargers. The following sub-question is answered: 
 

Who are the potential users of fast chargers and which aspects are relevant for determining the optimal 
locations and the corresponding number of fast chargers? 

 
The most important element is the distance that can be driven on a fully charged battery. This distance, named 
the driving range, varies per vehicle, per weather condition and travel behaviour (inc. the fear of getting an 
empty battery (range anxiety)). Car manufacturers often report a driving range which corresponds to a 
situation with optimal conditions. This will, however, never happen in reality. Therefore, the actual driving 
range is much shorter. The current EVs have a driving range of approximately 80 kilometres.  
 
In this thesis, it is assumed that every EV owner can charge their EV at home. Therefore, the battery will be 
fully charged in the morning. Whether an extra charge en route is required depends on the total distance to be 
driven on a day. This is studied by analysing daily patterns. If the total distance of a daily pattern is larger than 
the driving range a charge is required. On the other hand, from the user's point of view is not desirable to 
charge two times a day. The following conclusion can be drawn: 
 
A potential user is an EV user that makes a daily pattern with a total distance between the driving range and 
twice the driving range on a certain day. 
 
Analyses of the MON/OViN show that 12.1% of the daily patterns are relevant. How many drivers of this group 
will actually use fast chargers depends on many aspects. In addition, the presence of slow chargers will 
decrease the percentage of relevant daily patterns. 
 
The driving range, charge behaviour and presence of slow chargers are relevant parameters to determine the 
demand for fast chargers.  

7.1.2 The TAGA-(Two-point Approach Greedy Algorithm)method is best, dataset 

point of improvement 

In this thesis three datasets, four methods to translate data into a spatial presentation of demand and several 
allocation methods are studied and compared. Those steps will provide an answer on the following sub-
question: 
 

What methods can be used to determine the expected demand for fast chargers, and what methods can be 
used to find an optimal configuration that meet the demand? 

  
A combination of the steps results in the best method, the newly developed TAGA-method: The Two-point 
Approach Greedy Algorithm-method.  
 
The studied datasets in this thesis did not satisfy the requirements set (quality and quantity). Therefore, the 
dataset that is supposed to be best is a combination of a traffic model and a dataset that contains information 
about daily patterns. Using this input, tours are generated on the basis of probability. The first trip of a tour is 
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derived from an O/D morning matrix of a traffic model and the subsequent trips are estimated by means of 
data from daily patterns. In this way, tours up to four trips are generated for a specific area.  
 
The potential interval is determined for each relevant tour; this interval indicates where a fast charger is 
required to make the tour possible with an EV. To determine this interval, two points have to be defined (two-
point approach): 
 

 The first possibility is the point on the route where (after a full charge) the battery is empty on arrival 
at the final destination 

 The last possibility is the point where the driver drives until the battery is empty. 
 
Between these two points a fast charger can be installed to ensure that the tour can be ‘electrified’ (can be 
made with an EV). However, the demand is not spread evenly over the interval. It is safer to use the fast 
charger in the middle of the area; the probability of getting a flat battery is here the smallest. Hence, a 
triangular distribution is preferred to divide the demand of the tour (weight). The potential interval of all tours 
can be added and plotted to create a total spatial representation. The result shows differences between 
potential areas (more demand) and less potential areas (less demand). 
 
This distribution of demand is used to find the best possible configuration of fast chargers; this is done by 
allocating fast chargers to the area. A Greedy algorithm is used to allocate the chargers one-by-one to the area 
with the greatest demand. An optimal configuration has been found as the addition of a new fast charger will 
lead to loss. In other words, the additional fast charger is unprofitable. 
 
In summary, the following steps are executed in the TAGA-method: 

1. Generate tours using an O/D matrix and a dataset that contains information about daily patterns 
2. Estimate the weight of each tour 
3. Define the potential interval of each tour 
4. Distribute the weight over the links in the potential interval 
5. Assign the link scores to cells 
6. Add up the cell scores of all tours 
7. Convert the scores to real demand   
8. Find the cell with the highest demand 
9. Allocate fast chargers as long as they are profitable 
10. Repeat step 8 until no profitable locations (cells) are left 

 
The TAGA method can be used in the following cases: 

 Determine the optimal configuration of fast chargers within a certain area. 

 Evaluate and rank planned fast chargers on profitability. 

 Find the best existing fast charging stations to upgrade to a hubs. 
 
The TAGA-method has some weaknesses:  

 Not all possible kind of tours/daily patterns are generated. 

 Not all generated tours might be realistic due to general assumptions.  

 The Greedy Algorithm will not guarantee a global optimum.  
 
Nevertheless, it is assumed that the dataset and the TAGA-method will provide reasonably reliable results. 



 

70 Improving Infrastructure for Electric Vehicles: A Method to Optimize Locations for Fast chargers 

 

7.1.3 Fast chargers are required on at least three locations in Amsterdam 

The TAGA-method is applied to Amsterdam. Two issues are studied, namely: 
 

 What are the optimal locations for fast chargers within the municipality of Amsterdam? 

 What are the optimal locations for fast chargers for EV users who live in Amsterdam? 
 
In both cases, the year 2020 is studied. This corresponds to the following sub-question: 
 

Should the municipality of Amsterdam install extra fast chargers to meet the expected demand in the future and 
where should it be placed? 

 
To answer this question, some parameters have to be assumed. The tours are generated using VENOM (2020), 
a traffic model that focuses on the north wing of the Randstad, and (stacked 2004-2010) data of the Dutch 
National Travel Survey (MON/OViN). The other parameters are shown in Table 17.  
 
Table 17, Adopted parameters for the application to Amsterdam 

Driving range Market share of the EV fleet Users that will use fast chargers 

80 km 2% 50% 
 
Fast chargers within the border of Amsterdam 
Target: Promote EV usage and reduce emissions in Amsterdam 
The distribution of the demand is depicted in Figure 72 and the corresponding configuration in shown in Figure 
73. The red dots indicate the locations and the number is the number of fast chargers required.  
 

  

Figure 72, Distribution of the demand in the study area 
(2020) 

Figure 73, Optimal configuration of fast chargers in 
the study area (2020) 

 
The result indicates that the most potential locations are situated along the busiest roads. There are three fast 
charge locations required within the borders of the municipality of Amsterdam. All three locations are situated 
near a junction of highways. In this way, the fast chargers are easily accessible from several directions making 
detours unnecessary. In total, 21 fast chargers are required. This is only 14 more than currently present. In 
total, 80.2% of the expected demand is served with this configuration.  
 
The number of locations can be increased by using another greedy algorithm. This will provide a more 
ubiquitous network. However, clustering locations has the advantage that it is more cost efficient and offers 
opportunities for economic activities. See reflection for more information about this difference. 
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Residents in Amsterdam 
Target:  Make a larger part of the Netherlands accessible for EV users living in Amsterdam 

The distribution of the demand is depicted in Figure 74 and the corresponding configuration in shown in Figure 
75. 

  
Figure 74, Distribution of the demand for the residents of 
Amsterdam (2020) 

Figure 75, Optimal configuration of fast 
chargers for the residents of Amsterdam (2020) 

 
The EV users departing Amsterdam in the morning require fast chargers at a distance of about 50-70 km from 
the city centre. Instead of the limited range of 40 kilometres, now cities situated within a range of 60 
kilometres can be visited using an EV. Especially Utrecht, a city located at 40 kilometres from the city centre of 
Amsterdam, is better accessible due to the presence of fast chargers. The possibility to charge will cope with 
the uncertainty to get a flat battery. The same effect can be seen on the A4 between Leiden and The Hague. 
Here, a fast charger required to reach the city of Den Hague with an EV. The expected demand on those 
locations is however low, therefore only 1 and 2 chargers are required to meet the demand of 
Amsterdammers. However, not only residents of Amsterdam want to charge over there. Hence, the number of 
required chargers is unknown.  

7.1.4 The locations are robust, the demand is uncertain 

To determine how reliable and robust the results are, a sensitivity analysis is performed. The following sub 
question is answered: 

 
The number of expected charges and the associated number of fast chargers is uncertain. The driving range of 
an EV, the market share of the EV fleet, the number of people that actually wants to use fast chargers, the 
distribution of the demand over a day, the presence of slow chargers at activity end and the profitability of a 
fast charger will influence the expected demand in a certain year. These variables are very uncertain and will 
change over time. In addition, the TAGA-method itself has some uncertain assumptions which are mainly 
related to the dataset (input). Therefore, it is not yet possible to estimate the expected demand in a certain 
year. The following conclusions/relations can be drawn: 
 

 The size of the driving range has minimal influence on the potential locations 
The locations of fast chargers within the border of Amsterdam will slightly change if the driving range 
is chosen larger. The fast chargers on the north side of Amsterdam will slightly displace and one 
location will switch from the A2 to the A1.  

 

 The larger the driving range, the fewer fast chargers are required 
The driving range is one of the most important variables to determine the demand. The further can be 
driven on a full battery, the less relevant daily patterns. Assuming a driving range of 80km 12.1% is 
relevant and for a driving range of 120km this percentage is reduced to 8.2%. 

What is the influence of the assumptions on the results, are the results reliable and robust? 
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 Market share and the number of users that will actually use fast chargers has a linear relation with the 
expected demand 

 The more (slow) chargers are present, the less fast chargers are required 

 The more charges are required to make a fast charger profitable, the less potential is served 
 
The number of profitable fast chargers within the border of Amsterdam in 2020 varies from 5 up to 38. In the 
worst scenario, only five fast chargers will be profitable. Therefore, it is debatable whether fast chargers are a 
good investment at all (from a commercial perspective). The locations of the fast chargers in corresponding 
configurations are robust: only in some cases, a location will change.  
 
It can be concluded that the sensitivity analysis shows that increasing the driving range hardly influences the 
potential locations for fast chargers. The other aspects, market share of the EV fleet, presence of slow chargers 
and profitability of a charger, affect mainly the number of required fast chargers. This implies that the locations 
are robust.  

7.1.5 Answer to the main research question 

The sub-questions provide insight in the steps that are performed to find an answer on the main question. 
Using these answers, an answer can be formulated to the main research question: 
 

What is the optimal configuration of  fast chargers to reach the highest potential of electric vehicles usage? 

 
In this thesis two situations are studied: 

 What is the optimal configuration of fast chargers within a certain area? 

 Where do EV owners prefer a  fast charger when they depart from home with a full battery? 
 
The developed method, the TAGA-method, is used in both cases. This method translates daily patterns into a 
spatial distribution of demand for fast chargers in a certain area. The method determines for each daily pattern 
where a fast charger can be placed. This fast charger makes it possible to ‘electrify’ the daily pattern: this 
implies that the pattern can also be made with an electric vehicle. The optimal locations for fast chargers are 
the locations where as much as possible patterns will be ‘electrified’.  
 
In the first case, the optimal configuration of fast chargers is determined for all traffic driving through a certain 
area. Results show that the optimal locations are along the busiest roads. This thesis shows that only a few 
locations are required to serve most of the demand. Because only a few locations are sufficient, opportunities 
will arise to develop (desired) economic activities nearby the chargers.  
 
In the second situation, it can be concluded that fast chargers are desired at a distance of 60% -100% of the 
driving range. In this way, the EV user can reach destinations that are further away than the driving range. The 
large variation is related to the number of possible destinations (attraction) within the areas just outside the 
driving range.  
 
The exact locations can be determined by finding a spot in the cell which meets the wishes of the users. EV 
users prefer to do something while waiting. The most desired facilities are: wireless network, a shop or cafe to 
get something to eat/drink coffee. The locations must be attractive enough to spend a half hour, the maximum 
time required to charge. Activities that take longer than half an hour are not desirable; this may cause 
unnecessary occupied fast chargers. 
 
The number of required fast chargers in a future year is uncertain. However, it can be concluded with any 
certainty that the number of planned fast chargers is rather an overestimation than an underestimation. The 
percentage of relevant daily patterns, the daily patterns that require a fast charger, will greatly decrease if 
more slow chargers are present in combination with an improved driving range. For example, if a driving range 
of 120 km is assumed and slow chargers are present at 50% of the destinations at activity end this percentage 
drops below 5%. From a commercial point of view, fast chargers are therefore a risky investment without 
subsidy. From the perspective of the government, placing (unprofitably) fast chargers will take away the 
anxiety range. This will ensure people have the idea that they can always reach a fast charger, which promotes 
EV usage.   
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7.2 Recommendations 

7.2.1 Application to a large area 

An optimum configuration of fast chargers is established when the largest possible area is studied. The 
potential interval, the road segments where a fast charger is required within a daily pattern, is so large (42km 
at a driving range of 80km) that a good optimization for an area like Amsterdam is difficult. Therefore it is 
recommended that the TAGA-method should be applied for the entire country. A simplification, for example to 
generate tours with only two or three trips, might be useful to avoid long computation times. 
 
In addition, the study area is dimensioned for a maximum driving range of 100 kilometres. If a greater range is 
analysed, two problems will emerge. First, some EV users that live in Amsterdam desire a fast charger outside 
the area of influence. Because destinations (postal codes) outside this area can’t be chosen as destination, not 
all possible tours are plotted. This will lead to a distorted result. The same counts for the study area, since EV 
users from outside the area of influence are not included. 

7.2.2 First spatial distribution, then upgrade to hubs 

The results show that approximately 80% of the demand is served with a certain number of locations and 
chargers. The conclusions showed that the number of chargers in a given year is difficult to estimate. Therefore 
it is not advisable to place the number of predicted fast chargers at a location in one time. It is better to install 
one fast charger at each location to create a ubiquitous network. The TAGA-method can rank the locations in 
the optimal configuration to determine which fast chargers have to be placed first. In this way, the available 
money will be spend as efficiently as possible and a ubiquitous network is created as soon as possible.  

7.2.3 Monitoring demand and parameters 

The parameters that have been adopted to estimate the number of expected charges in a certain year contain 
a high degree of uncertainty. Many scenarios have been devised, but it is unknown which scenario will 
approach the developments best. The development of electric vehicles depends, as CEDelft (2011) has 
described, on many aspects such as price, subsidies and the development of batteries (driving range). Another 
effect that is unknown is whether EV users will actually make use of fast chargers. Currently, no data is 
available because the current fast chargers are not monitored. To make more reliable estimations it is 
recommended to monitor fast charger usage from time to time in order to calibrate the input parameters. 
 
Furthermore, the demand for a fast charger is not evenly distributed over the potential interval. The shape of 
the distribution is assumed a triangle. This implies that in the middle of the area, the desire for a fast charger is 
greatest and this evenly decreases to the sides. The shape of the distribution influences the results. Therefore, 
it should be further elaborated which distribution fits the charge behaviour best.  

7.2.4 Improving the quality of the generated daily patterns 

The dataset, the input of the TAGA-method, is a point of improvement. The created dataset contains some 
assumptions that simplify the world, namely: 
 

 The destinations chosen from every zone (interzonal traffic) 

 The number of possible destinations from every zone (interzonal traffic) 
 

Many destinations that are chosen are situated nearby the departure area. To achieve a more realistic 
distribution of destinations, the purpose of travelling has to be further analysed. The kind of facilities in each 
zone can, for example, be implemented to make more reliable choices. This, however, concerns only a small 
proportion (73% is homebound after first trip) of the intensity. 
 
The second assumption ensures that not all possible kind of daily patterns are generated. This can be solved by 
using faster computers.  
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7.3 Reflection and discussion 

7.3.1 Reflection on results: Profitability versus ubiquitous network? 

In this thesis it is chosen to cluster as many as possible for the following reasons: 
 

 Probability of finding a free fast charger is greater 

 Less expensive: only one connection to the three-phase network per location is required 

 Opportunities for economic activities related to EVs/meeting point 
 
This choice will strongly influence the number of locations. The greedy algorithm that is applied throughout this 
thesis will find an optimal configuration with three locations in within the borders of Amsterdam. This is 
depicted in Figure 76. Those three locations will ensure that all EV users passing Amsterdam can easily find a 
fast charger without making an unacceptable detour. From that point of view, more locations are not 
necessary. 
 
The configuration (Figure 77) obtained with the alternative algorithm, introduced in 4.4 and further elaborated 
in appendix F, will find of more locations with fewer chargers. This will contribute to a better ubiquitous 
network. Again, all EVs travelling through Amsterdam will encounter a fast charger.  

 
The differences between both configurations are shown in Table 18. 
 
Table 18, Differences greedy algorithms 

Aspect Greedy Algorithm A  Greedy Algorithm B Difference 

Number of locations within the 
municipality of Amsterdam 

3 7 +233% 

Number of chargers within the 
municipality of Amsterdam 

21 22 +4.7% 

Percentage of demand served 82% 83.9% +2.5% 
 
The preference for the kind of optimal configuration depends on the purpose of the client. Clustering will lead 
to more profit due to the reduced installation costs and more locations will provide a better ubiquitous 
network which will reduce range anxiety.  

7.3.2 Market functioning and competition 

An optimal configuration will, unfortunately, never be achieved because of the different market parties that 
are installing fast chargers. These parties do not consult with each other, because they are only installing fast 
chargers on their own ground. For example, the oil and gas company Total installs their fast chargers alongside 
their own fuel stations. Achieving an optimal configuration is therefore not feasible. The municipality or 
government can, however, place their own fast chargers or help companies to provide an optimal network. 
 
The TAGA-method can also be used to provide advice about the order of installation.  

  
Figure 76, Optimal configuration with clustering Figure 77, Optimal configuration without clustering 
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7.3.3 Regular and incidental daily patterns: will the potential user group increase?  

Regular daily patterns and incidental daily patterns 
In this thesis the number of expected charges per period of time is calculated and the corresponding optimal 
configuration is determined. From a policy perspective, fast chargers are installed to promote EVs. It makes it 
possible for more drivers to complete their travel behaviour with an EV. This report doesn’t include information 
about how a person travels over time. However, this element is relevant to determine whether a person might 
switch to an EV. To clarify this, two weekly patterns (how someone travels over a day) are depicted in Figure 
78. 

 
Figure 78, Two different weekly patterns (Goudappel Coffeng, 2011) 

 
Suppose the blue bar indicates the daily pattern which is filled in by a respondent in the Dutch National Travel 
Survey. Both daily patterns are not relevant, the total distance is shorter than the driving range. According to 
this day, both users can switch to an EV without making use of a fast charger. However, the weekly pattern 
showed on the right requires a fast charger on Sunday. These weekly patterns show that incidental daily 
patterns are the difference between a relevant or non relevant daily pattern and a potential user. If someone 
will/can switch to an EV depends on the amount of daily patterns in a period of time that are larger than the 
driving range.  
 
Extra potential due to fast chargers 
 
Potential replacement without fast chargers 
The TAGA-method assumes that the market share is an input to determine the number of chargers. However, 
increasing the market share is also a target (output). Thus, there is a mutual relation. The percentage of drivers 
that can switch to an EV can be determined by analysing a period of time. Goudappel Coffeng (Brink, 2011) has 
studied the potential replacement of EVs without fast chargers by using LVO

21
 data. This study shows that 80% 

of the drivers can switch to an EV when one day is analysed and only 15% as a longer period is studied (8 
weeks). In other words, 15% of the drivers doesn’t make a daily pattern longer than 80km during 8 weeks. 
Here, it is assumed that everyone can charge at home. This percentage will increase if another (conventional) 
car is available.  
 
Potential replacement with fast chargers 
The same kind of analyses can be made for a situation in which fast chargers are available. In this way, it can be 
determined how many extra potential users might be added to the percentage calculated in the report of 
Goudappel Coffeng (15%). However, this will be more difficult. The following aspects are relevant: 
 

 The probability that a driver makes a daily pattern with a total distance larger than twice the driving 
range for 8 weeks. 
 
This aspect can be determined by using the LVO data. This percentage is approximately 50%. This 
implies that 50% of the drivers doesn’t make a daily pattern longer than 160km during 8 weeks. Those 
daily patterns might be made with an EV. 

 

                                                                 
21

 Longitudinaal Verplaatsings Onderzoek 
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 Location of the fast chargers: The probability that the driver passes a fast charger on the day he or she 
makes a relevant daily pattern. 
 
This aspect is more difficult to determine. The results in this thesis have shown that 82-87% of demand 
is served by the configurations calculated. The probability that the driver encounter a fast charger 
depends on the route driven. It is unknown how many times during the 8 weeks a driver will encounter 
a fast charger when he or she makes a relevant daily pattern. 
 
For example, a driver makes four times a daily pattern with a distance between the 80km-160km 
during the 8 weeks and no daily patterns longer than 160 km. It is unknown whether this driver can 
change switch to an EV without changing his travel behaviour. The probability that a driver will be 
served by a fast charger at all four daily patterns can be calculated, but will result in a very uncertain 
conclusion. If the driver doesn’t encounter a fast charger during a daily pattern, he or she can’t make it 
with an EV and won’t be a potential user.  
 

 Charge behaviour: willingness to use a fast charger 
 
In contrast to the study of GC, behaviour is an important aspect. The time required to charge at a fast 
charger increases the travel time. It is unknown how many users which are currently driving a regular 
car would actually want to use fast chargers. This will probably depend on the frequency of usage: 
someone who makes an incidental relevant daily pattern in 8 weeks will probably switch easier than 
someone who requires a fast charger every day. 
 
The market share of 2% will therefore probably be achieved among those drivers who make an 
incidental relevant daily pattern. This will affect the demand for fast chargers and might affect the 
locations.  
 
The maximum potential will be achieved if everyone who needs a fast charger would use it. However, 
this will not be the case. 

 
It can be concluded that more research is needed to determine to what extent fast chargers will contribute to a 
larger potential group/market share of the EV fleet. 

7.3.4 Has the development of fast charging infrastructure the priority? 

Improving fast charge infrastructure is, in my opinion, not the key to the wide acceptability of electric vehicles. 
Many EV users will have a conventional car that can use be used for longer distances. The EV will be used as a 
car for short distances. Despite the fact that the EV is able to drive long distances by fast chargers, the normal 
vehicle (for the majority of the drivers) is preferred. In other words, only a small group that owns an EV will also 
use it for longer, relevant, distances. To serve their demand, only a few fast chargers are required.   
 
In the future, a greater driving range and the presence of more slow chargers at activity end will ensure that 
fewer fast charges are required. On the other hand, fast chargers will be less expensive to install and the 
charging time might reduce due to technical developments. For example, if the charging time drops below 5 
minutes it can compete will fuel tanking. This contradiction makes investing in fast chargers a difficult issue 
regarding future prospects.  
 
Therefore, it is difficult to make a decision whether large (unprofitable) investments should be made to provide 
a ubiquitous network. There are also other options that can help to make electric vehicles more attractive. For 
example, by installing slow chargers at attractive destinations.  
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APPENDIX A: Electric vehicles on market 
 
Electric Vehicles on the market according to AgentschapNL (2011) ZerAuto, ANWB, fuelswitch.nl and 
elektrischeauto.nl 

Manufacturer Type Kind of car Fast charge ability 

Citroen C-Zero 
Berlingo Electrique 

City car 
Van 

 
X 

DFM Mini bus Van  
ECE Qbee City car  
FAAM Jolly 2000 Van  
Fisker Karma Ecostandard Sportscar  
Mega eCity City car  
Mitsubishi i-MiEV City car X 
Nissan Leaf City car X 
Peugeot iOn City car X 
Plaggio Porter Elektro Glass Van  
Tazzari Zero City car  
Tesla Motors Roadster Sportscar  
Think City City car  
Chevrolet  Volt City car X 
Opel  Ampera City car X 
Volvo Electric City car X 
Smart Fortwo Electric Drive City car  

 
Expected Electric Vehicles 2012 (not sure if also in the Netherlands) 

Audi R8  e-tron   
Fiat 500   
Ford Focus Electric   
Hyundai i10   
Renault Fluence Z.E. 

Kangoo X.E. 
Twizy 

Zoe Preview 

  

Tesla Model S   
Toyota  iQ EV   
Volkswagen  E-Up!   

 
Top 5 registered Evs in the Netherlands according to AgentschapNL (2012) 

# Type Number 

1 Nissan Leaf 294 
2 SMART FORTWO Electric Drive 257 
3 Peugeot ION 82 
4 Mitsubishi I-MIEV 61 
5 Mercedes E-Cell 34 
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Figure 79, Number of EV's in the Netherlands (2009-2011) (AgentschapNL, 2012) 
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APPENDIX B: Driving range and battery developments 
Driving range 
The driving range is a much debated topic. There is considerable uncertainty about the range of an EV: the 
driving range is often suggested larger than it actually is. To determine a realistic value to use in this study, 
various scenarios are examined. The driving range of the Nissan Leaf has been studied in different conditions. 
The results are shown in Table 19. 
 
Table 19, Driving range of the Nissan leaf under varying conditions (Nissanusa.com) 

Condition Average 
Speed 

Temperat
ure 

Air 
conditioner 

Range 
(in km) 

Range 
anxiety  
factor 

Realistic 
range

22
 (in 

km) 

Cruising (ideal condition) 61 20 Off 222  
 

10% 

200 km 
City traffic 38 25 Off 169 152 km 
Highway 89 35 In use 110 100 km 
Winter, stop-and-go traffic 24 -10 Heater on 100 90 km 
Heavy stop and go traffic 10 30 In use 76 69 km 
 
Battery 
The Nissan LEAF (12-volt lead-acid battery) and the Mitsubishi iMiEV (16-kilowatt-hour (58 MJ) lithium-ion 
battery) are not using the latest technology. Battery innovations are expected to be key in making hybrid and 
electric vehicles more widespread. Electric car batteries can be further improved by combining and developing 
different techniques that will boost the energy density. Experts and car companies are making small steps on 
different aspects, like costs, weight and lifetime.  However, the driving range hasn’t strongly improved in recent 
years. 
 
The three most potential kinds of batteries for EV applications are lithium cobalt or lithium manganese oxides, 
lithium iron phosphate and lithium titanate.  
 
Lithium cobalt or lithium manganese oxides (LiCO, LiMn02) 
This is the ‘standard’ battery has been adopted by both BMW (mini E) and Tesla Motors. An improved battery 
can be a solution due to the relative low costs and very high specific energy. However, safety and performance 
reasons are limiting the development. 
 
Lithium-titanate battery (LiTi04) 
Tobisha, a company specialised in batteries has already developed a battery that can recharge way faster than 
other batteries (Toshiba Corporation, 2011). This lithium-titanate battery, named Super Charge ion Battery 
(SCiB), can charge up to 80% in 15 minutes. The technique is currently used for construction equipment, 
electric bikes and other industrial machines, but there are plans to bring the battery to electric vehicles. The 
SCiB combined with other improved techniques (regenerative braking) will extend the driving range by 1.7 
times the current driving range (270 km). 
 
Lithium iron phosphate battery (LiFePO4) 
Another development is the usage of lithium iron phosphate, the ideal material for the production of lithium 
car batteries in the near future according to chemists. Advantages of Lithium Iron Phosphate Batteries (LIPB) 
are the longer cycle life over standard lithium ion cells and superior thermal and chemical stability. In May 2007 
the first LIPB with cells large enough for electric vehicle (Aptera cars) usage was made. The breakthrough of 
this kind of battery is that the power density increases without increasing the energy density. In other words, 
the driving range doesn’t increase, but the charge time decreases. This means that the battery is full again in a 
few minutes; disadvantage is that the high voltages can be dangerous. The major problem is, despite its 
efficiency, the costs of the lithium material. To make this kind of battery more widely used, studies have to be 
done to lower the production costs. 
 

                                                                 
22

The effects caused by electronics (radio, navigation system, mobile phone etc) are not yet included 
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The department of energy
23

 (USA) set targets with respect to ingenuity, innovation and manufacturing. The 
investments in batteries alone should help to lower the costs, produce more and create jobs. This must lead to 
the results that are shown as graphs in figure Figure 80 and Figure 81. 
 

 
  

 

Figure 80, forecasted weight of a typical electric-vehicle 
battery (U.S. DOE Vehicle Technologies program, 2010) 

Figure 81, Expected lifetime of a typical electric vehicle 
battery (source: U.S. Vehicle Technologies Program, 
2010) 

 

 
 

 

Figure 82, Energy density (Wh/kg) as function of Charge 
rate for different types of batteries (source: EVS24) 

Figure 83, Charging time versus the charging power. 
Minutes required to charge 80% of the capacity (ABB) 
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 Transforming America’s Transportation Sector, Department of energy 
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 APPENDIX C: Comparison MON/OViN - VENOM 
The dataset MON/OViN probably contains too less daily patterns to find reliable results. To verify this, a 
comparison with another dataset is performed. In the first step, the amount of data and the spatial distribution 
is compared using the data of a traffic model. 
 
More data and more spatial distribution 
The matrix that is used in this comparison is the morning matrix of VENOM. This matrix contains more data and 
less unfilled O/D pairs. To demonstrate the difference, both O/D matrices (first trip MON/OViN and O/D matrix 
morning VENOM) are compared on some criteria. The results are shown in Table 20. 
 
Table 20, Comparison of spatial distribution and amount of entries (based on all first trips) 

Criteria  MON 1st trip VENOM 
morning 

Difference 
(VENOM/MON) 

Number of trips in matrix  40,404 1,070,573 x26.5 
Number of areas (pc3) 260 260  
Number of O/D pairs 67600 67600  

Percentage of filled cells (flow >=1)  14,42% 
 

37,25% x2.6 

Percentage of filled cells (flow >5) 2,36% 
 

19,92% x8.4 

Percentage of filled cells (flow >20) 0,44% 9,45% x21.5 

 
This table clearly shows that in the VENOM matrix much more cells are filled (x2.5) and with higher flows. This 
is logical since the MON/OViN is a sample (which can be increased by multiplication factors) and VENOM is 
based on calculated (realistic) flows/intensities. The difference will increase when higher intensities are 
analysed (factor 21.5 by intensity higher than 20).  
 
To see if the number of daily patterns is sufficient for analysis, a pre-analysis is performed. The result is shown 
in Figure 84 on the next page. 
 

. 
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Figure 84, Potential areas of all daily patterns in the MON/OVIN dataset 

 
The number of relevant daily patterns that is used as input is 7500. Because there are many possible 
relationships between all postal code zones, some cell scores are based on only a few trips. This implies a very 
low level of robustness; a tour with a small potential interval will give a high score to links and thus also to the 
related cell(s). The few trips per O/D pair route will cause an unbalanced distribution.  In the figure it is clearly 
shown that the daily patterns that have a relation with Amsterdam are overrated. Most of the red cells are 
situated in and around Amsterdam. 
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APPENDIX D: Estimation of the cell size 
When a fast charger is placed in a cell, it can affect surrounding cells. Traffic that is driving in the other cells will 
eventually make a detour to use the charger; the consequence of this is that the demand of those tours is 
served and the demand of their original potential interval will drop. The allocation method chosen cannot cope 
with detour factors. Therefore, this effect has to be minimized by making use of the appropriate cell size. 
 
If it is assumed that an EV user wants to make a detour with a maximum distance of 10% of the trip distance, 
an estimation of the cell size can be made. To determine this, two aspects have to be taken into account: 
 

 First of all, the distance associated with a detour factor of 10% varies per trip distance. The absolute 
detour distance for a short trip is shorter compared to a longer trip (e.g. 5km: 0.5km, 50km, 5 km). To 
find an average, the detour distance per trip length is multiplied with the degree to which the trip 
occurs. This distribution of the maximum detour lengths for the area of influence is depicted in Figure 
85. 

 

Figure 85, Distribution of 
detour lengths  

 

 The other aspect that plays a role is how this distance is driven. There are two extreme situations to 
consider: the situation in which the fast charger is on a location where the EV users should drive to the 
fast charger and go back on the same way. In the other situation, the fast charger is located closer to 
the route (Pythagoras).  
 

 

 
Figure 86, ‘Minimum’ maximum detour Figure 87, Percentage of EV users that will not make a detour 

 
Using this information, an estimate can be made about the cell size. If a car is situated in the centre of a cell, 
then a ‘minimum’ maximum detour (Figure 86) that can be driven is straight to the side of the cell and back. 
The detour distance is equal to the cell width (2*0.5 cell width). The distribution of the detour distances is used 
to determine how many percentage of the EV’s will not change cell at a certain cell size. This is shown in Figure 
87. This graph shows that when a cell size of 3.5km is assumed, 90% won’t change cell in the most extreme 
case.  
 
Because the mentioned network configuration (a straight road perpendicular to the cell side) is rare, the cell 
size is assumed a bit smaller. The cell size used for the application of Amsterdam is 3x3 km. Despite the fact 
that many exceptional situations can be devised and the value is based on an average (cell centre), it is 
considered to be an appropriate assumption. 



 

90 Improving Infrastructure for Electric Vehicles: A Method to Optimize Locations for Fast chargers 

 



 

   
Improving Infrastructure for Electric Vehicles: A Method to Optimize Locations for Fast chargers 91 

  

APPENDIX E: Estimation of profitability 
The minimum number required charges per unit time to make a fast charger profitable can be determined by 
cost-benefit analysis. This value is difficult to estimate because the conditions in 2020 may be highly variable. 
Therefore, some assumptions are made: 
 

 This calculation does not take into account interest rates 

 The calculation assumes an average demand. The market share will increase during the life time and 
the demand will therefore also change. The implantation of this is, however, to difficult. 

 The distribution of the demand over a year is based on an estimate. 
 The values used are based on sources of ABB and experiences of the DIVV (2011). 

 

  
Figure 88, distribution of demand over the week 
(source: OViN 2010) 

Figure 89, distribution of demand over the day (source: 
OViN 2010) 

 

 
Table 21, Estimation of the minimum required number of charges to make a fast charger profitable 

Explanation Amount Unit Source 

Life time fast charger 10 year Epyon Terra (ABB) 

Investment costs 75000 euro Epyon Terra (ABB): 25.000 without 
connection to electricity network 
Haas, R de 100.000 based on 
Amsterdam (2 sockets) 

Depreciation expense 7500 per year  

Maintenance costs 2000 per year 8% of the hardware costs with full 
SLA (Service Level Agreement)  
 (ABB) 

Total costs per year 9500 Per year  

    

Charge Revenue  8 euro The green motion 

Charge costs 5 euro Essent 

Profit per charge 3 euro  

    

Number of required charges a year Apr. 3200 Per year  

    

Conversion factor to relevant days 0.004  250 days in a year 

Conversion factor to peak hour 0.5  Derived from Figure 89 (OViN, 
2011) 

Required number of charges per day 12.7 Per day  

Required number of charges per two 
peak hours 6.3 

Per peak 
hour 

 

 
The effect of a change of the minimum required number of charges is included in the sensitivity analysis. 
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APPENDIX F: Greedy Algorithm B: More locations with less chargers 
The greedy algorithm used in the TAGA-method finds an optimal configuration based on the fact that it is 
preferred to find minimal number of locations. This choice was made by comparing the pros and cons of 
clustering the number of locations. These are shown in Table 22 
 
Table 22, Pros and cons of clustering locations 

Pros  Cons 

Probability of finding a free fast charger is greater 
Less expensive: only one connection to the three-
phase network is required 
Opportunities for economic activities related to EVs / 
meeting point 

More locations will further reduce the range anxiety  

 
It is also possible to use a Greedy Algorithm that finds more locations, introduced as Greedy Algorithm B in 4.4. 
This Greedy algorithm is presented and executed in this Appendix.  
 
The alternative Greedy Algorithm will search for the most potential location (highest cell score) every time a 
single fast charger is allocated, while the earlier used algorithm allocated as many profitable chargers as 
possible to a location.  
 
The flow chart corresponding to this alternative algorithm is depicted 
in Figure 90. The steps are briefly described: 
 
The fast charger is allocated to the cell with the highest cell score. 
The demand served by the fast charger is calculated in the same way 
as the algorithm used in the main report: 
 

1. Selected tool will distribute the capacity over the related 
cells 

2. The scores will be subtracted from the initial cell scores 
3. All negative values will be set to 0 
4. The difference is the actual use of the fast charger 

 
If the actual use is sufficient to make the charger profitable, another 
charger will be allocated. In contrast to the algorithm that was used 
in the main report, the additional charger will be allocated to the 
location that is most potential. This implies that the location does not 
have to be the same as the location where previous fast charger is 
placed. As a result, there will be multiple locations with fewer 
chargers. 
 
This effect can be observed after application of the algorithm on the 
same study area as used for the Amsterdam case. In this comparison, 
the parameters shown in Table 23 are used. 
 
Table 23, Parameters used as input for the alternative greedy algorithm 

Area of influence Cell 
size 

Factor tours-
daily patterns 

Market share of 
fleet & charging 

behaviour 

Peak 
factor 

Presence 
of slow 

chargers 

Capacity Profitability 

260 3-digit postal 
code areas 

3x3 
km 

1.84 0.02 & 0.5 0.5 0 8 7 

 
 
 

 
Figure 90, Flow chart associated with 
the alternative Greedy Algorithm 
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The optimal configuration is shown in Figure 90. The red dots indicate the locations, the numbers the amount 
of fast chargers.  
 

 
Figure 91, Optimal configuration found by the alternative greedy algorithm (7 locations, 22 chargers) 

 
The difference between the two algorithms is summarized in Table 24. 
 
Table 24, Differences greedy algorithms 

Aspect Greedy Algorithm A 
(used in the main report) 

Greedy Algorithm B Difference 

Number of locations within the border 
of Amsterdam 

3 7 +233% 

Number of chargers within the border 
of Amsterdam 

21 22 +4.7% 

Percentage of demand served 82% 83.9% +2.5% 
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APPENDIX G: Survey results 
Number of respondents: 45 
 
 
This survey is held among EV users and is filled in by using internet. Because of privacy data, the survey is 
distributed by means of the following resources: 

 Internet 

 Forums 

 LinkedIn 

 Twitter 
 
 
 
 
The respondents are mainly early adapters; this might provide a distorted picture 
 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
This survey is conducted in collaboration with: 
 

 

 
 

Goudappel Coffeng AgentschapNL Dienst Infrastructuur Verkeer en 
Vervoer 
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Vraag 12: Wat vond u van het snelladen? 
kosten hoog, locaties te weinig, tijdsduur mag iets korter, maar acceptabel 

Veel logischer dan langzaam laden. Geen gedoe met kabels, werken meestal wel in tegenstelling tot het 
"stopcontact palen van e-laad", tot voor kort geen gedoe met pasjes (waarvoor iemand hopelijk ook iets beters 
verzint) 

werkt goed, nog gratis. 

de verwachting is 2 tot 5 keer per week snelladenivm beperkte actie radius van iQ EV (max 50 ~ 80km) 

Ze zijn er nog veel te weinig! 

locatie nog een problemen. zwolle, den bosch vooral.. werking prima. verwarming werkt niet tijdens laden.. tijd 
is meestal ok. life saver 

positief, het maakt mijn langere rit mogelijk en een keer weigerde de paal in Vianen de pas te accepteren en 
stond ik dus stil..... 

Locatie was verborgen op industrieterreinen Tijdsduur 30-40 minuten is te lang voor snelladen. 10-15 min voor 
een volle lading zou ik acceptabel vinden. Kosten via laadpas van TheNewMotion 

Met name snellader bij Nissan Visscher in Amsterdam ZO gebruikt: locatie is gunstig langs vaak gebruikte 
snelwegen, vaak is vijf minuten voldoende om thuis te komen, en gebruik is gratis. 

Goed alternatief om bij te laden. Vaak is locatie niet aangenaam (dealer, taxiondernemer, etc). Voorlopig nog 
nooit moeten betalen voor snelladen 

super! 

Super! 8 Euro per laadbeurt is een fors bedrag in deze fase van de markt. 

27 januari ANWB Naarden; was daar de eerst gebruiker en werd daar enthousiast ontvangen. zo'n 30 min 
gestaan, kon weer 95KM verder terwijl acciradius op 6KM stond Kreeg kopje koffie en enthousiaste vragen 
kosten nul omdat 1ste half jaar gratis is. 

Antwerpen, 20 minuten, € 4,= Goes, 15 minuten, gratis 
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Op dit moment zijn de snelladers nog redelijk geconcentreerd rond utrecht en amsterdam. Er is nog geen sprake 
van een landelijk dekkend netwerk. De onzekerheid dat je niet weet of je terecht kunt bij een snellader (in 
gebruik, defect) of dat er op een dubbel punt al iemand staat te laden waardoor je 2x zoveel tijd nodig hebt om 
te laden is een beperking bij inzet. Op het moment dat je aankomt bij een snellader en er kan geen (/niet 
meteen) gebruik van gemaakt worden kun je vaak niet verder rijden om ergens anders te laden. Je bent dus 
volledig afhankelijk van dit laadpunt. Tot eind 2011 was het snelladen gratis. Momenteel is het tarief rond de 8 
euro (4 euro voor korte tijd). Gezien de energie-inhoud van bij de Leaf is dit een forse prijs per kWh (3x zo veel 
als privé-tarief). Voor zakelijk gebruik is dit wel te rechtvaardigen maar privé zijn dit forse tarieven.  Het laden 
zelf werkt prima, de aansluiting moet in sommige gevallen wel met enig "beleid" g gehanteerd worden (anders 
breekt er een palletje af) maar dat zal wel merk-specifiek zijn en snel opgelost worden. 

weinig problemen tot nu, maar enige zorgen om toekomst - slijtage, bezetting, kosten, commercie, technische 
problemen, etc 

Prima, zolang er niemand voor je staat en er een mogelijkheid is om je te vermaken, bijv. door wifi of een horeca 
gelegenheid. 

De wildgroei aan laadpassen is vreselijk. Kostenloos, new motion, e-laad. En een overzicht ontbreekt 

Kost natuurlijk teveel tijd maar kan nuttig worden gevuld met bel en mail. 8 euro is vrij veel 

Over het algemeen positief. Ik vind de tarieven van Total te hoog (eur 6/10 min.) Tijdsduur prima 

amsterdam, tijdsuur prima, kosten geen delft , tijdsuur prima, kosten geen leusden , tijdsuur prima, kosten geen 

snel bereikbaar, altijd plek dus meteen laden, gratis 

Prima, alleen veel te weinig laadpalen. Geen mogelijkheid door het land te rijden. Palen bij Zwolle, amersfoort, 
apeldoorn zoude MEER dan welkom zijn. Zodra dat het geval is kan ik mijn benzine auto laten staan. 

Was gratis. Nu enkele palen in amsterdam Te duur voor stroom die je aftopt.  Laadtijd redelijk. Kosten per 
tijdseenheid ipv volledige lading. 
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