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Abstract
Precision orbit determination for geodetic applications requires force models even for small perturbations. Radiation
from the Sun and Moon is a significant source of perturbation in lunar orbits and inadequate modeling of radiation
pressure (RP) can lead to large position errors. This paper describes the short-term effect of RP on the Lunar
Reconnaissance Orbiter (LRO), which has a position knowledge requirement of 50 m to 100 m in total and below 1 m
radially. We compared models of varying complexity to determine the benefits and computational cost of high-accuracy
RP modeling. We found that (1) the accelerations differ greatly depending on the Sun position, (2) only a paneled
spacecraft model can account properly for changing orientation and geometry of LRO, and (3) a constant-albedo model
is sufficient for lunar radiation, which is dominated by the thermal component. A spherical harmonics model for lunar
albedo increases computational cost with little gain in the attained accuracy. If RP is neglected, the along-track position
errors can be as large as 1100 m and the radial error varies periodically with an amplitude of up to 24 m, highlighting
the importance of adequate force modeling to meet LRO’s orbit determination requirements.
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Abbreviations: BRDF: bidirectional reflectance distribu-
tion function; DLAM-1: Delft Lunar Albedo Model 1; LRO:
Lunar Reconnaissance Orbiter; RMSE: root mean square
error; RP: radiation pressure; rRMSE: relative root mean
square error; Tudat: TU Delft Astrodynamics Toolbox.

1 Introduction

Precision orbit determination is a cornerstone of satellite
navigation and spaceborne geodesy. Only if the state,
and particularly the position, of the spacecraft are known
accurately can the high precision of modern instruments for
gravity field recovery or satellite altimetry be exploited fully.
Next to tracking data, force models accounting for gravity,
solid tides, drag, and other accelerations have the largest role
in improving orbit determination. Another important non-
conservative force is radiation pressure (RP), which arises
from the exchange of momentum between electromagnetic
radiation and the spacecraft. Because RP accelerations can
have magnitudes similar to third-body and irregular gravity
field perturbations [1], neglecting or mismodeling them can
deteriorate position knowledge below acceptable levels.

The Lunar Reconnaissance Orbiter (LRO) was launched
in June 2009 to identify safe landing sites, locate resources,
and characterize the radiation environment for future human
missions to the Moon [2]. To fulfill these objectives, LRO
is equipped with instruments to create high-resolution maps
of the lunar topography and gravity field. Accuracies of
50m to 100m in the total position and sub-meter accuracy
in the radial component are required to take advantage of
the instrument resolutions [3, 4], which necessitates force
modeling even of small perturbations. Solar RP is the “largest
non-gravitational perturbation affecting the LRO orbit and

inadequate modeling [. . . ] is the primary cause of large
prediction errors for LRO, particularly during high-beta angle
periods” [5]. The Moon itself is also a significant radiation
source since there is no atmosphere and especially the lunar
highlands are reflective [6]. The orbit determination error is
also highly dependent on the modeling of how RP translates
to accelerations: particularly during full-Sun periods, a model
accounting for LRO’s geometry and the definitive orientation
of the solar array and high gain antenna outperforms a simple
spherical model [7].

This paper describes the short-term effects of RP on
LRO’s orbit and the sensitivities of these effects to models
of varying complexity. Other authors have already described
their orbit determination approaches for LRO [5, 7–13], but
none compared RP modeling choices and their implications.
Vielberg and Kusche investigated the effect of different RP
models for Earth [14], where a plethora of observations are
available and the radiation environment differs greatly from
the Moon. Therefore, their results do not apply to orbits
around the Moon. Our paper alleviates this lack of guidance
for lunar orbits by elucidating the choice of force models
for orbit determination both in terms of attainable accuracy
and computational performance. The results relate to short-
term effects over 2.5 days, which is a typical arc used in
orbit determination. Long-term effects, which may cancel
or compound over the span of months, are not considered
here.

The TU Delft Astrodynamics Toolbox (Tudat) was used
for all orbital simulations and the models presented here
were integrated into the software, which is freely available
at https://docs.tudat.space/.

Email: dstiller@uw.edu

https://docs.tudat.space/
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2 Radiation pressure modeling
RP modeling requires the cooperation of models for the
radiation sources and the spacecraft. This section presents
a collection of compatible models, starting with a physical
description of RP and reflectance, which form the building
blocks for models of increasing complexity.

2.1 Mechanics of radiation pressure

RP results from the momentum transfer between electro-
magnetic radiation and a surface. A spacecraft may receive
such radiation from the Sun but also from other celestial
bodies: planets and moons emit albedo radiation through
the reflection of sunlight and thermal radiation depending
on the surface temperature. The RP exerts a force on the
spacecraft that is governed by surface properties such as area,
reflectivity, and absorptivity. The resulting acceleration is the
result of a complex interplay of the bodies emitting radiation
(the “sources”) and the spacecraft affected by the radiation
(the “target”).

Radiation can be characterized by the radiant flux density,
which commonly has units of W/m2. The radiosity J is
the emitted and reflected radiant flux density of an opaque
surface. The irradiance E is the incident radiant flux density
on a surface. The RP exerted on an irradiated surface is
proportional to 1/c, where c = 299 792 458m/s is the speed
of light. Given the magnitude of c, RP is usually small
(around 4.5× 10−6 N/m2 for solar radiation at Earth, where
E = 1361W/m2 [15]).

A light ray emitted by a source can be thought of as an
irradiance with a direction. Such directional irradiances
provide a convenient way to decouple source and target
models: the irradiance and the direction of ray incidence are
sufficient to determine the target acceleration, independently
of the actual source. Therefore, one or more directional
irradiances are the output of a source model and are used
as input to the target model. We represent a directional
irradiance as vector E = Er̂t/s, where r̂t/s is the unit vector
in the source-to-target direction.

Electromagnetic radiation is often composed not just of
a single wavelength but rather a range of wavelengths. The
distribution can be described by the spectral irradiance in
units of W/(m2 Hz). Since surface properties are often
wavelength-dependent, the target model would also have to
be aware of the distribution. However, the surface properties
as a function of wavelength are often not known, which is
also the case for LRO. Therefore, we assume the irradiance
from source models to be integrated over the whole spectrum
and the surface properties of the target model to be valid for
all wavelengths.

2.2 Reflectance distribution

Describing the reflectance of a surface is key to RP modeling.
Both the way a source reflects sunlight due to albedo and
the direction a target is accelerated in depend on the angular
distribution of reflectance.

General reflectance distribution In general, reflectance
comprises a diffuse (scattered in many directions) and a
specular (mirror-like) component. The remaining energy
is absorbed by the surface. The reflectance varies with
surface normal N, incoming radiation direction L, and

observer direction V. This geometry is shown in Figure 1.
A bidirectional reflectance distribution function (BRDF)
describes the fraction of irradiance reflected toward the
observer per steradian, i.e. [16]

fr(θi, ϕi, θr, ϕr) =
dLr(θr, ϕr)

dEi(θi, ϕi)
, (1)

where dLr is the reflected radiance (the directional
counterpart to radiosity, typically in W/(m2 sr)) and dEi is
the received irradiance.

The planetary surface BRDF directly leads to the albedo
irradiance received by a target if the solar irradiance at the
planet’s surface and the solid angle subtended by the target
are known.

The target surface BRDF gives the direction in which the
target is accelerated through integration over all directions V
in which radiation is reflected. The unitless reaction vector,
which includes both the direction and magnitude based
on absorbed, specularly reflected, and diffusely reflected
fractions, is therefore [16]

R = −

[
L+

∫ 2π

0

∫ π/2

0

fr cos θrV dθr dϕr

]
. (2)

This vector encapsulates the mechanics of momentum
transfer. The reaction is minimal for pure absorption (fr =
0) and maximal (double the minimum) for pure specular
reflection in the incidence direction.

Specular–diffuse reflectance distribution A simplified
BRDF is usually more practical for RP modeling: the
reflectance is assumed to be a mix of an ideal Lambertian
diffuse component and a purely mirror-like specular
component. Such a BRDF is given by [16]

fr = Cd
1

π
+ Cs

δ(V −M)

cos θi
, (3)

where δ is the delta function and Cd and Cs are the diffuse
and specular reflectivity coefficients. Together with the
absorption coefficient Ca, energy is conserved if Ca + Cd +
Cs = 1. The vector M = 2 cos θiN− L is L’s mirror-like
reflection, which contributes only if V = M.

Figure 1. Geometry of a BRDF for a surface with normal N,
incoming direction L, and observer direction V. The viewing
angle θr is between N and V. The phase angle (not labeled) is
between L and V. Adapted from [16].
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For this simplified BRDF, the integral in Equation (2)
evaluates to [17]

R = −
[
(Ca + Cd)L+

2

3
CdN+ 2 cos θiCsN

]
. (4)

Further, when the target is in thermodynamic equilibrium,
all absorbed radiation is reradiated instantaneously by
Kirchhoff’s law. If this reradiation is Lambertian, the reaction
vector becomes [17]

R = −
[
(Ca + Cd)

(
L+

2

3
N

)
+ 2 cos θiCsN

]
. (5)

The specular contribution is strictly along the surface
normal direction since its tangential components cancel.
The Lambertian diffuse contribution (both reflected and
reradiated) has a component along the incoming direction
but also, weighted by a factor 2/3 (see [18] for a derivation
of this factor), a component along the surface normal. The
reaction vector is thus always in the plane spanned by L and
N.

2.3 Radiation sources

Radiation sources emit or reflect radiation. As explained
in Section 2.1, the incident radiation at a target due to a
source can be thought of as light rays, which are described by
their directional irradiance at the target. How the directional
irradiance is calculated depends on the type of source.

Isotropic point sources The simplest source model is a point
source that isotropically radiates in all directions. This model
is appropriate for far-away sources such as the Sun at 1 au
distance. Due to the distance, all rays are effectively parallel
and can be merged into a single ray parallel to the source-to-
target vector rt/s. For an isotropic source, the total luminosity
L (units of W) is uniformly distributed over a sphere, leading
to an inverse square law. Therefore, the irradiance at the
target is

E =
L

4π
∥∥rt/s∥∥2 . (6)

Alternatively, a reference irradiance Eref observed at a
distance rref can be scaled:

E = Eref
rref∥∥rt/s∥∥2 . (7)

The solar luminosity is 3.828× 1026 W [19], which
corresponds to an irradiance of 1361W/m2 at 1 au.
Note that these values are averages, which vary with
the 11-year solar cycle by about 0.1% and more on
shorter timescales due to sunspot darkening and facular
brightening [20]. Observational time series exist to account
for these variations [21].

Paneled sources: Discretization Radiation due to planets
and moons requires more involved source models. Planetary
emissions comprise reflected solar radiation and thermal
infrared radiation [22]. The fraction of reflected sunlight
is called albedo1 a; the corresponding type is therefore
also called albedo radiation. Thermal radiation is due to
absorbed solar energy that is re-emitted in a delayed fashion.

Observational time series of albedo and thermal fluxes exist
for Earth [21], but physical modeling is required for the
Moon.

Since planetary radiation is not isotropic and the spacecraft
is typically much closer to the body than to the Sun, the
source extent has to be considered. In contrast to the
previously described point source, Earth and Moon are,
therefore, modeled as extended sources. These are discretized
into sub-sources, from which rays emanate that are generally
not parallel or of equal power. The sub-sources can be
thought of as panels with an area, orientation, position, and
radiosity model. The panel extent is represented by the area
but any other panel properties are solely evaluated at its center.
A panel only radiates from the positive normal side, not from
the backside.

Different algorithms exist to divide the planet ellipsoid into
panels. Some authors use a longitude–latitude grid (e.g., [24,
25], particularly with observed fluxes) or generate static,
uniformly spaced panels over the whole sphere (e.g., [16]).
However, both approaches are inefficient for low-altitude
spacecraft, which require a large number of panels, most of
which are never visible. Therefore, the de facto standard is
dynamic2 paneling as introduced by Knocke et al. [22].

In Knocke’s method, only the visible area of the planet
is paneled. This area is a spherical cap, centered at the
subsatellite point and divided into concentric rings that are,
again, divided into equal-width segments. A central panel
is located at the subsatellite point. All panels contribute to
the irradiance received by the target. However, the effective
area of each panel is projected by its viewing angle θr (see
Figure 1) and the irradiance is attenuated by an inverse square
law. In Knocke’s method, the rings are spaced such that each
panel has the same projected, attenuated area. The projected,
attenuated area of a panel is defined as [22]

dA cos θr∥∥rt/s∥∥2 , (8)

where dA is the geometric panel area and rt/s is the source-to-
target vector (in this case, the panel-to-target vector). More
rings and more panels per ring improve the fidelity of the
calculated irradiance, barring the resolution limit of the
radiosity model (e.g., the albedo distribution). While arbitrary
numbers of panels per ring are possible, Knocke suggests
multiples of 6 (i.e., six panels in the first ring, twelve panels
in the second ring, . . . ). The algorithm is elaborated in [26].

Two examples at different spacecraft altitudes and with
different ring numbers are shown in Figure 2. At higher
altitudes, a larger area is visible (approaching a hemisphere)
and panels are somewhat more uniform in area. At lower
altitudes, the panels are more tightly spaced toward the
subsatellite point. In both cases, panel areas increase toward

1Two types of albedo exist: spherical/Bond albedo is the fraction of sunlight
reflected in all directions, while geometrical albedo is the fraction of sunlight
reflected with respect to an ideal diffuse surface for normal incidence and
viewing directions [23]. For our purpose, spherical albedo is appropriate and
synonymous with albedo in this paper.
2Dynamic refers to the fact that panels move with the spacecraft, as opposed
to static paneling, for which panels are invariant with spacecraft position or
time.
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(a) High altitude: h = 1500 km, 2 rings, angular diameter of cap = 115◦. (b) Low altitude: h = 50 km, 6 rings, angular diameter of cap = 27◦.

Figure 2. Panels generated with Knocke’s algorithm for the Moon, which has a mean radius of 1737 km. The spacecraft (✖) sees a
spherical cap (—), which contains rings of panels and is larger at higher altitudes h. Panel centers (●) are scaled proportionally to
the panel area. The panels have equal projected, attenuated areas and are therefore concentrated around the subsatellite point. The
scenario in b corresponds to LRO’s orbit and the paneling used in this paper.

the edge of the visible cap. These patterns are a result of the
equal projected, attenuated areas.

Paneled sources: Radiosity models The emitted and
reflected fluxes of each panel are described by radiosity
models. The irradiance at the target position can then
be derived from the panel radiosity. Both radiosity and
irradiance commonly have units of W/m2. Each panel can
have one or more radiosity models, usually one for albedo
radiation and one for thermal radiation. We present three
such models.

The albedo radiosity model accounts for diffuse Lamber-
tian reflection of solar radiation. It implements the specular–
diffuse BRDF from Equation (3) with Cs = 0 and the albedo
value Cd = a at the panel center. The albedo radiosity of a
panel is [22]

Jalbedo = a (cos θi)+ Es, (9)

where Es is the incoming solar irradiance at the panel (e.g.,
as found from Equation (6)) and the solar incidence angle θi
is defined in Figure 1. The operator (·)+ restricts the input
to positive values or zero otherwise. This ensures that no
radiation incident on the backside is reflected.

The delayed thermal radiosity model assumes that
absorbed radiation is emitted independently of incident solar
radiation and the radiosity is thus not a function of θi. The
only spatial variations arise from emissivity differences. The
emissivity e of a surface is the ratio of the actual radiosity
to the ideal black body radiosity. The delay arises from the
planet’s large thermal inertia. The delayed thermal radiosity
of a panel is [22]

Jthermal = e
Es

4
, (10)

where e is the emissivity of the panel, evaluated at its
center. The factor 1/4 is the ratio of the absorbing area (a
circle) to emitting area (a sphere). The albedo and delayed
thermal model were originally used by Knocke et al. for Earth
emissions [22].

The angle-based thermal radiosity model is more
appropriate than the delayed model if the surface experiences
significant diurnal cooling and heating. The surface
temperature is modeled as a function of the solar incidence
angle θi and related to the radiosity through the Stefan–
Boltzmann law. The surface temperature is interpolated
between the minimum and maximum temperatures, Tmin and
Tmax, as [27]

T = max
(
Tmax (cos θi)

1/4
+ , Tmin

)
. (11)

These temperatures typically correspond to the nighttime
temperature and the temperature at the subsolar point. The
angle-based thermal radiosity of a panel is then [27]

Jthermal = eσT 4, (12)

where T is the surface temperature from Equation (11) at
the panel center and σ = 5.670× 10−8 W/(m2 K4) is the
Stefan–Boltzmann constant. On the dayside, the radiosity
is proportional to T 4

max cos θi. The maximum radiosity of
eσT 4

max is usually larger than the near-constant eEs/4 from
Equation (10), but quickly decreases as the panel moves away
from the subsolar point (where θi = 0◦). On the nightside,
the thermal radiosity reduces to eσT 4

min.
The albedo and thermal radiosity models depend on the

distribution of a and e over the planetary surface. The values
may be assumed constant but generally vary with longitude,
latitude, and time. Particularly for Earth, seasons and weather
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greatly affect reflectivity and emissivity [28]. Since the
Moon lacks seasons, distributions that only vary spatially are
sufficient.

To obtain the irradiance at the target due to the panel
radiosity, we account for the projected, attenuated area of the
source panel and assume that the emissions follow Lambert’s
cosine law. The irradiance therefore is

E =

(∑
Ji∈J

Ji

)
dA (cos θr)+

π
∥∥rt/s∥∥2 , (13)

where J is the set of radiosities from any of the previous
radiosity models. Usually, a panel has the albedo model
and one thermal model. Here, the source-to-target vector
rt/s uses the panel center position, not the source body
center. The direction r̂t/s of the corresponding directional
irradiance E = Er̂t/s is therefore not the same for each panel
and thus considers the extent of the source. The radiosities
Ji in Equation (13) can be summed since their radiation
emanates from the same point, the panel center. Contrarily,
the directional irradiances E can generally not be summed
since the their individual directions need to be retained;
the reflectance model of the target may be sensitive to the
incoming direction of each ray. Therefore, a set of directional
radiances E is handed to the RP target model for acceleration
calculations.

2.4 Radiation pressure targets

A RP target is a body that is accelerated by RP. The
target model governs how the incident irradiances from point
sources and extended sources accelerate the target body.

Cannonball target In its simplest form, a target can be
modeled as an isotropic sphere, also referred to as a
cannonball. This sphere is characterized by a cross-sectional
area Ac (independent of orientation), radiation pressure
coefficient Cr (incorporating reflectivity and absorption
coefficients), and mass m. Due to its isotropy, any lateral
components cancel and the net acceleration is always along
the source-to-target vector. The RP acceleration of a
cannonball target is [1]

a = Cr
Ac

m

∑
Ej∈E

Ej

c
, (14)

where the sum is vectorial and
∑

Ej/c is the total RP as
described in Section 2.1. E is the set of directional irradiances
from any number of sources, both point (Equation (6)) and
paneled (Equation (13)). The dependence on the area-to-
mass ratio Ac/m is similar to drag accelerations. While
the cannonball model cannot account for complex geometry,
it is often used in orbit determination with Cr as estimated
variable. Ray tracing of a detailed model can help to establish
the evolution of Ac and Cr [29].

Paneled target In reality, the cross-section and optical
properties of a spacecraft change with orientation and
incident direction. This effect is particularly noticeable for
solar panels, which are large and usually track the Sun. To
account for the geometry and differences in materials, a
spacecraft can be represented as a collection of n panels.
Each panel is characterized by its area, surface normal, and

reflectance distribution. The position would only be relevant
for rotational but not for linear accelerations. In the case of
moving parts, the surface normal may change over time. The
reflectance distribution can be given as generic BRDF, but
is often a specular–diffuse BRDF. The RP acceleration of a
paneled target is [30]

a =
1

m

∑
Ej∈E

(
∥Ej∥
c

n∑
k=1

Ak (cos θi,k)+ Rk

)
, (15)

where the indices j and k denote the (sub-)source and the
target panel, respectively. Ak is the area of the k-th panel.
θi,k is the incidence angle of Ej onto the k-th panel. Rk

is the reaction vector as defined by Equations (2), (4) or (5),
depending on the BRDF. The reaction vector is a function of
the panel surface normal N and the target-to-source direction
L = −Êj . Therefore, the inner sum has to be evaluated for
each directional irradiance Ej of the outer sum. However, Ej

itself is only calculated once for all panels at the target center
to avoid quadratic computational complexity. In general,
the resulting acceleration is not along the source-to-target
direction as for the cannonball.

Extensions for the paneled target model exist. The model
described above does not account for self-shadowing, which
occurs when one ray would intersect two panels. This
effectively reduces the area of the shadowed panel, an effect
that can be significant for complex spacecraft geometries [31].
Polygon intersections enable simple calculation of the
effective area [31]. Ray tracing is more involved but can also
account for multiple reflections between target panels [32].

Another extension is the radiation pressure due to the
thermal radiation of the spacecraft itself. Instantaneous
reradiation, as modeled by Equation (5) for the case of
thermodynamic equilibrium, is a simple variant of this
effect. In reality, panels heat up and cool down (particularly
during eclipses) through radiation, conduction, and internal
heat production. Advanced models, therefore, calculate
the temperature of each panel. Such models range from
a simple heat balance [16] to finite element models [25].
However, a lack of knowledge of the thermal properties may
restrict the applicability. For the sake of simplicity, neither
self-shadowing nor exact thermal radiation pressure of the
spacecraft were considered in this paper.

2.5 Occultation

All previous models assume that the line of sight between
the the source and the target is unobstructed. However,
occultation is a common astronomical phenomenon: a low-
altitude spacecraft may be in the planet’s shadow for more
than a third of its orbit, and partial or full lunar eclipses can
occur multiple times per year. We present two occultation
models.

Shadow function The shadow function ν describes the
fraction of light received from a spherical source in the
presence of an occulting spherical body. The geometry of
the conical occultation model is shown in Figure 3. In the
umbra, the source is fully occulted and the observer does
not receive any radiation (ν = 0), a state referred to as total
eclipse. In the penumbra, the observer can see part of the
source (0 < ν < 1). Only outside the shadow region does the
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Occulting body

Occulted source

Observer

Penumbra

Umbra

Figure 3. Conical occultation model for spherical sources and
occulting bodies. The observer is partially illuminated in the
penumbra but fully shadowed in the umbra. Adapted from [33].

observer receive the full radiation (ν = 1). In the case of a
lunar eclipse, Earth occults the Sun and casts a shadow onto
the Moon such that there is no lunar albedo radiation. On the
nightside of a planet, the planet itself occults the Sun.

With the models described in Sections 2.3 and 2.4, the
shadow function needs to be considered for radiation from
a point source, both when directly incident on the target
and when used as solar radiation for albedo radiosity. The
extent of the source and occulting bodies needs to be known
for shadow function calculations, even in the case of point
sources. A derivation of the commonly used conical model
for ν is presented by Montenbruck and Gill [1].

The conical model can only account for one occulting body.
In the case of multiple occulting bodies, shadows might
overlap and the product of their shadow functions would
underestimate the actual received fraction. Knowledge of the
shadow intersection would be required to avoid this. Zhang
et al. derived a model for two occulting bodies [34].

More involved shadow models exist that improve the
prediction of the penumbra passage. These models can
consider planetary oblateness and atmospheric effects like
absorption, scattering, and refraction [35]. Other models
can account for topography by combining a paneled Sun
model with a topography map [9]. These modifications
usually prolong the penumbra duration. However, only single
occultations from the simple conical model were considered
in this paper.

Point-to-point visibility For source panels represented by
their center point, the shadow function becomes binary: either
there is a line of sight between the panel center and the target
or there is not. Such point-to-point visibility with a spherical
occulting body is easily modeled geometrically. A derivation
is given by Vallado and Wertz [33]. Multiple occultations are
supported in this occultation model by the logical conjunction
of the individual visibilities.

3 Radiation pressure modeling for LRO
After describing RP modeling in general, we now present
models that are specific to LRO. This includes the source
models for lunar radiation and the target models. We also
elaborate LRO’s orbit geometry and the simulation setup.

3.1 Lunar albedo radiation

The Moon is a major source of radiation in LRO’s orbit,
with lunar irradiance magnitudes approaching the Sun’s.

Therefore, albedo and thermal radiation due to the Moon
should be considered. While the lunar albedo is only 40%
of Earth’s albedo [28], albedo radiation due to the Moon is
still substantial, particularly over the subsolar point [6]. Lunar
albedo varies significantly with geology: the highlands (mean
a = 0.16, maximum a = 0.25) are much more reflective
than the maria (mean a = 0.07, minimum a = 0.05) due to
their respective regolith composition [37–39]. The mosaic
of calibrated albedo imagery from Clementine in Figure 4a
clearly shows the differences between highlands and maria.
The mean of 0.12 agrees with other literature [37], and most
of the lunar surface has an albedo below 0.20. Higher values
are only found at the poles, where the imagery represents
topographic shading rather than actual albedo [40]. Note
that lunar reflectivity increases with wavelength [41]; the
mosaic is for the albedo of light at 750 nm wavelength, which
is slightly longer than the average solar wavelength. Solar
radiation has the most energy within the 300 nm to 2400 nm
band, but the spectrum peaks at around 470 nm [42].

Floberghagen et al.’s 15× 15 spherical harmonics
expansion called Delft Lunar Albedo Model 1 (DLAM-1) [6]
is often used to represent the spatial albedo variability in
lunar RP models. DLAM-1 was fitted from Clementine
imagery and was designed to work with Knocke’s albedo
model for dynamic paneling (Equation (9)). Due to the nature
of spherical harmonics, the model cannot resolve features
smaller than 12◦ (360 km at the equator). The expansion
is shown in Figure 4b. DLAM-1 was derived from 750
nm imagery, but we scale the original values by 1/1.3 to
account for the reduced reflectivity at the average solar solar
wavelength. This factor was proposed by Vasavada et al. [37].
However, even with the correction, the mean albedo of the
expansion of 0.15 is 25% above the commonly accepted
mean of 0.12. Particularly the highlands appear excessively
bright. This is possibly due to a different calibration of the
imagery that DLAM-1 is based on compared to the mosaic
from Figure 4a. Indeed, Clementine is known to overestimate
albedo due to bad calibration [41]. Notwithstanding the
difference in magnitude, the maria and highlands can be
clearly registered.

Despite the shortcomings of DLAM-1, spherical harmon-
ics are convenient: they are smooth, differentiable, do not
require interpolation like a gridded map, and can easily
be truncated to trade detail for computational efficiency.
Therefore, we used DLAM-1 in this paper but consider
that the magnitude may be overestimated by 25% during
the analysis of results. We also compare results for the
location-dependent DLAM-1 with those for a constant value,
which should be more computationally efficient. As a single
representative albedo, we choose the mean of 0.15 instead of
0.12 to facilitate comparison. Note that the spatial variability
described above suggests that a single albedo value cannot
accurately represent lunar reflectivity.

Albedo radiation assumes ideal, diffuse Lambertian
reflectance, which decreases with the cosine of the viewing
angle. This assumption is especially appropriate for Earth,
for which purely specular radiosity only amounts to 10% of
the purely diffuse radiosity [22]. However, this is not the case
for the Moon: the opposition effect increases the reflectance
at small phase angles (when the source is behind the observer,
see Figure 3) much more than would be expected from a
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Figure 4. Lunar albedo distributions from Clementine. Both the mosaic and DLAM-1 are based on 750 nm reflectivity, but DLAM-1
has been corrected to the average solar wavelength. Note that the maximum of the albedo scale here is 0.5 instead of 1.0 to
increase contrast; in reality, the Moon appears half as bright.

cosine law. In fact, the brightness increases more than
40% between phase angles of 4◦ and 0◦ [43]. This is
primarily caused by shadow hiding. To account for the non-
diffuse reflectance of the lunar surface, the Hapke BRDF was
developed [44]. This BRDF is an empirical relation based
on nine parameters that control, among other properties, the
strength and directionality of the opposition effect. Near-
global maps for these parameters have been fitted from LRO
observations and could be used for a radiosity model [39].
For RP acceleration modeling, the opposition effect is only
of concern when the target is above the subsolar point, which
requires the Sun to be in the orbital plane. For LRO, this
only occurs twice a year for a few days, and even then only
for a small fraction of the orbit. Therefore, we neglected the
opposition effect in this paper.

3.2 Lunar thermal radiation

Lunar surface temperatures and the associated thermal
radiation undergo a significant diurnal cycle. Daytime and
nighttime temperatures can differ by up to 290K. The surface
heats rapidly after sunrise, cools at about the same rate after
local noon, then slower during the night [37]. There are
small seasonal changes, with noon temperatures differing by
6K between lunar aphelion and perihelion [23]. The large
diurnal variability renders Knocke’s delayed thermal model
(Equation (10)), which yields a constant radiosity throughout
the day, unsuitable for the Moon.

Diurnal variability is represented well by the angle-based
thermal model (Equation (12)). We parametrize the model
with the equatorial temperatures just before sunrise (Tmin =
95K) and at local noon (Tmax = 385K) [37]. The model
transitions to the nighttime temperature when the incidence
angle θi ≥ 89.8◦. Our temperatures span a slightly larger
range than those of Lemoine et al. (Tmin = 100K, Tmax =
375K), who initially proposed the angle-based model.
However, they agree with those used by Park et al. [45]. Note
that Park et al.’s model is identical to ours except for a factor
1/4 in the radiosity, which is incorrect.

While the albedo varies with location (see Section 3.1),
the lunar emissivity and other thermophysical properties are
remarkably uniform [38]. This means that constant emissivity
is a fair assumption. We used a value of e = 0.95, which is

the broadband daytime emissivity, although it decreases to
0.90 during the night [46]. However, we assumed the constant
daytime emissivity at all times.

The thermal surface radiosity Jthermal from the angle-
based model with the aforementioned parameters is shown
in Figure 5. The radiosity decreases with the cosine of
the incidence angle and approaches negligible emissions of
6W/m2 at nighttime. The maximum radiosity, which occurs
below the subsolar point (i.e., at local noon at the equator),
is 1250W/m2. This peak value agrees with those used to
design LRO’s thermal control subsystem [2]. The only effect
that is not captured is the slow cooling by about 25K between
sunset and sunrise [37], which introduces a slight asymmetry;
constant pre-sunrise temperatures are used throughout the
night. We also do not model seasonal variations of surface
temperature.

3.3 Paneling of the Moon

The Moon needs to be discretized to evaluate the albedo and
thermal radiation numerically. LRO’s low altitude compared
to the lunar radius prohibits any static paneling, which would
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Figure 5. Map of lunar thermal emissions from the angle-based
model (Equation (12)), peaking at 1250W/m2. The emissivity is
0.95 and surface temperatures range between 95K and 385K,
depending on the subsolar angle.
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Figure 6. Convergence of lunar irradiance received by LRO for
increasing number of rings. Each ring contains six more panels
than the previous one. Six rings (—) are sufficient for an error of
less than 10% with respect to the converged solution.

result in a large number of invisible panels. Therefore, we
used Knocke’s dynamic paneling method (Section 2.3).

Selecting the number of rings is a trade-off between fidelity
and computational efficiency. To determine the lowest
number of rings that can still represent lunar radiation with
sufficient accuracy, we investigated the convergence behavior.
Figure 6 shows the albedo and thermal irradiance received
by LRO for an increasing number of rings. As suggested by
Knocke et al., each ring contains six more panels than the
previous one. For 13 rings and more, the peak irradiance
is within 1% of 1690W/m2. For six rings, the irradiance
peaks at 1540W/m2, which is within 10% of the converged
solution. The results are similar for constant and DLAM-1
albedo.

We choose six rings comprising 127 panels in total as
sufficiently accurate (cf. Figure 2b). This is one ring (or
36 panels) more than used by others. Floberghagen et al.
suggested five rings for Lunar Prospector, which has twice the
orbital altitude of LRO and thus needs fewer rings (Knocke
et al. used only two rings for a much higher altitude relative
to the planetary radius). Five rings were also used for LRO’s
precision orbit determination [10]. We chose one ring more to
keep the error due to paneling below 10%. More panels may
be required in case of a higher-resolution albedo distribution.

3.4 LRO target

LRO comprises a cubical bus with a large solar array and a
protruding high gain antenna (Figure 7). Different sides are
presented to solar and lunar radiation. The solar array can
be gimbaled partially about the Y and Z axes such that it can
track the Sun when it is within LRO’s orbit plane; when not,
the solar array is fixed at a 45◦ angle with the -Y bus side. The
antenna points toward Earth whenever it is visible [9]. Both
of this leads to large variations in cross-section over time.

LRO can be modeled as a paneled target (Equation (15))
to account for this variability. Table 1 summarizes the panels.
There are six panels for the bus, with surface normals along
the positive and negative axes of the LRO bus frame (cf.
Figure 7). The solar array and high gain antenna are modeled
separately, again with front and back panels. The solar array

Table 1. Panels for LRO target model from Smith et al. [11]. The
coefficients are for absorptivity and specular/diffuse reflectivity.
The solar array is by far the largest surface, followed by the
Z-facing panels. SA: solar array; HGA: high gain antenna.

Panel Ca Cs Cd A [m2] Tracking

+X 0.49 0.29 0.22 2.82
-X 0.42 0.39 0.19 2.82
+Y 0.45 0.32 0.23 3.69
-Y 0.50 0.32 0.18 3.69
+Z 0.50 0.32 0.18 5.14
-Z 0.28 0.54 0.18 5.14
+SA 0.90 0.05 0.05 11.00 +Sun or fixed
-SA 0.50 0.30 0.20 11.00 -Sun or fixed
+HGA 0.54 0.18 0.28 1.00 +Earth
-HGA 0.93 0.02 0.05 1.00 -Earth

is almost as large as all other panels combined. Panels for
the solar array and high gain antenna track the Sun and Earth
or have a fixed orientation, as described above. Definitive
attitudes of actuated panels are also available but were not
used.

We also model LRO as a cannonball (Equation (14)), a
model which is often used for orbit determination. Finding a
single equivalent cross-section area Ac and coefficientCr that
hold at all times is virtually impossible [33]. Different values
for LRO exist in literature: Bauer et al. used Ac = 10m2

and Cr = 1.2 [12], while Nicholson et al. used Ac = 14m2

and Cr = 1.0 [10]. Their acceleration should differ by about
15%. We choose the latter since it is used for operational
orbit estimation of LRO.

To complete the target model, the mass is required to
transform forces into accelerations. LRO performed monthly
station-keeping maneuvers during its science mission phase,
which reduced the initial mass after science orbit insertion
from 1272 kg to 1087 kg (Figure 8). With every maneuver,
6.3 kg of propellant are expelled [48]. This increases

+Y

+X

+Z

Figure 7. Rendering of LRO [47] with bus frame definition. The
X axis is along the velocity vector, the +Y axis is away from the
Sun, and the +Z axis is in the nadir direction [2].
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Figure 8. Mass evolution of LRO over the science mission
phase (■). LRO expelled 185 kg of propellant for station keeping
between 15 September 2009 and 11 December 2011.

accelerations by 15% over the course of 21 months. To
facilitate comparison and obtain worst-case results, we
used the end-of-mission mass of 1087 kg in this paper,
independently of the actual arc.

3.5 LRO orbit geometry

LRO’s polar science mission orbit has a period of 113min
and a low altitude of 50± 15 km. The difference between
periselene and aposelene is mostly due to a slight eccentricity,
but also an equatorial radius that is 2 km larger than the polar
radius. The altitude variation affects the lunar irradiance
received by LRO.

The visibility of the Sun is determined by the beta angle β,
which is the angle between the orbital plane and the Moon-
to-Sun vector. It is zero when the Sun is within the plane
and ±90◦ when the orbit normal points toward or away from
the Sun. Since LRO’s orbit is polar, it undergoes all β
within a year. For β = 0◦, LRO is moving straight toward
and away from the Sun above the poles, experiences the
maximum eclipse duration on the nightside, and passes over
the subsolar point. For β = 90◦, LRO is in full view of the
Sun throughout the orbit and does not pass over hot or well-
illuminated lunar regions. Far large β, LRO’s solar array has
a fixed orientation as mentioned in Section 3.4. Since the
solar array then covers most of the -Y side, self-shadowing
of up to 40% of the total cross-section can occur for solar
radiation [9]. Self-shadowing is no issue for small β. In
this paper, we neglected self-shadowing, which was shown to
only have a minor impact in most cases [5, 49].

Since the effect of RP varies greatly with β, we investigated
two contrasting arcs, which are summarized in Table 2. In
June, Moon is at aphelion and no eclipses occur since LRO
is continuously illuminated at β ≈ 90◦. In September, β is

Table 2. Orbit geometry for selected arcs over 2.5 days. The
June arc has permanent illumination, the September arc has the
maximum eclipse duration.

28 June 2010 26 Sept. 2011

Start time (UTC) 15:00:00 18:00:00
Beta angle β [◦] 88.8 to 88.9 −1.7 to −3.6
Sun distance [au] 1.019 1.000
Eclipse time [min] 0 48
Solar array Fixed (45◦ to -Y) Tracks Sun

just below 0◦ so LRO experiences the maximum solar eclipse
duration of 48min. No lunar eclipses occur during any of the
arcs. Both arcs have a length of 2.5 days, which is also used
for orbit determination of LRO [8, 10]. Choosing the same
length ensures our results are a relevant indicator of force
modeling error during orbit determination.

3.6 Simulation setup

A range of simulations with varying models is necessary
to determine the orbital effects of RP modeling choices.
However, a common setup, presented in Table 3, enables
comparison. Some items should be clarified:

• Gravity due to Jupiter and Venus is neglected since it
is 7 orders of magnitude lower than Earth’s.

• Albedo and thermal radiation due to Earth is neglected
since it is 3 orders of magnitude lower than the Moon’s.

• The occultation of solar radiation by the Moon follows
a simple conical model. Time spent in sunlight can
be overestimated by up to 480 s for large β if the
topography is ignored [9].

• No lunar eclipses occur over the two simulation arcs,
therefore occultation by Earth can be ignored.

• Good accuracy can be achieved with integration step
sizes as high as 15 s [9]. We use 5 s, which is used for
operational orbit determination [10].

• While the Moon has a difference between polar and
equatorial radius of 2.1 km due to flattening, a perfect
sphere will be assumed here to simplify paneling and
occultation.

• The Moon Mean Earth/Polar Axis frame is recom-
mended for use with LRO [52].

• LRO SPICE kernels containing ephemerides (SPK)
and orientation (CK) are available online.

4 Results
We analyzed the short-term effects of RP by examining
accelerations and the position at the end of the 2.5-day
arc. While the position is ultimately relevant for precise
orbit determination, studying the accelerations in different
scenarios and along the orbit can explain the cause of
position changes. Additionally, the accelerations underscore
differences between models of varying complexity.

To compare two accelerations over time, we used the root
mean square error (RMSE), which is defined as

RMSE(x, y) =

√√√√ 1

n

n∑
i=1

(xi − yi)
2
. (16)

The RMSE describes the difference between two scalar
time series xi, yi and gives more weight to large deviations.
These time series can be the magnitude of accelerations or
individual components. The relative root mean square error
(rRMSE) is defined as

rRMSE(x, y) =

√∑n
i=1 (xi − yi)

2∑n
i=1 y

2
i

(17)

and is useful to compare differences across orders of
magnitude.
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Table 3. Common setup for all simulations. Gravity and radiation pressure are the only force models.

Planetary bodies
Planetary ephemerides DE 421 [50]
Moon ellipsoid Sphere of radius 1737.4 km [51] (no flattening)
Moon reference frame Mean Earth/Polar Axis [52]

Force models
Moon gravity GRGM1200L [53] (truncated to 100× 100)
Earth + Sun gravity Central
Solar radiation Isotropic point source (L = 3.828× 1026 W [19]) Equation (6)

Occulted by Moon
Lunar radiation Paneled source with 6 rings of 6, 12, 18, 24, 30, and 36 panels

Albedo: Constant (a = 0.150) or DLAM-1 Equation (9)
Thermal: Angle-based (e = 0.95, Tmin = 95K, Tmax = 385K) Equation (12)

RP target Cannonball (Ac = 14m2, Cr = 1.0) or Paneled (see Table 1) Equations (14) and (15)
Paneled model with or without instantaneous reradiation Equations (4) and (5)
Mass: 1087.0 kg (end of science mission)
Orientation: LRO SC BUS frame from SPICE CK

Simulation settings
Software TU Delft Astrodynamics Toolbox (Tudat) 2.12.1.dev19
Propagation frame ECLIPJ2000
Propagation method Cowell
Integration method Runge–Kutta–Fehlberg 7(8)
Step size 5 s (fixed)
Arc length 2.5 days (31.9 revolutions)
Initial state Cartesian state from SPICE SPK (lrorg *)

While the simulation evaluates accelerations in a global
frame, the effect of accelerations on the orbit is best analyzed
in a spacecraft-fixed coordinate system that is aligned with
the orbital track. The RSW coordinate system is one such
system, defined by the unit vectors [33]

R =
r

∥r∥
, W =

r× v

∥r× v∥
, and S = W ×R. (18)

The radial component R is aligned with the planetocentric
position vector r. The cross-track component W is aligned
with the angular momentum vector, or orbit plane normal, and
involves the linear velocity v. The along-track component S
completes the right-handed coordinate system. Note that S is
generally not perfectly aligned with the velocity vector, but
can be considered so for LRO’s approximately circular orbit.

4.1 Instantaneous reradiation

First, we investigated the effect of instantaneous reradiation
for the paneled target model. This increases the acceleration
proportional to each panel’s Ca in a direction normal to the
panel (cf. Equation (5)).

Figure 9 shows the absolute and relative differences
between accelerations without and with instantaneous
reradiation. In absolute terms, the radial and along-track
components are impacted most for the September arc, while
the along-track and cross-track components experience the
largest increase for the June arc (for both arcs, up to about
1.9× 10−8 m/s2 RMSE). The relative differences are
more uniform (around 40% rRMSE), but the along-track
components of lunar and solar radiation in the June arc
increase by 140% and 570% rRMSE, respectively. In most
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Figure 9. RMS differences of RP accelerations over one orbit
with and without instantaneous reradiation. The dashed boxes
correspond to Figure 10.

cases, only the magnitude of accelerations changes but not
the pattern over an orbit.

Figure 10 shows the solar radiation of the June arc
without and with instantaneous reradiation, the only of our
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Figure 10. Accelerations due to solar radiation without and with
instantaneous reradiation over one orbit for the June arc. There
is a phase shift in the radial component and the along-track
component increased by 570% RMSE. Lunar contributions and
the September arc are not significantly affected in shape.

simulations for which the pattern changed significantly. The
phase of the radial acceleration is shifted by about 10%
of the orbital period, which is not the case for the other
two components or the acceleration due to lunar radiation.
The solar acceleration of the June arc also had the largest
relative change in along-track component as described above
(highlighted in Figure 9). This change manifests as a constant
offset of about −13× 10−9 m/s2.

The large changes seen in some cases are mostly due to the
+SA panel, which is highly absorptive (Ca = 0.90) and large
(A = 11.00m2). For the June arc, the solar array is angled at
45◦ with equal components in the cross-track and along-track
directions The Sun is on the same side as the solar array in
the cross-track direction. Without instantaneous reradiation,
no panel has a significant contribution to the along-track
acceleration, so it is quite small at around 2× 10−9 m/s2.
With instantaneous reradiation, each panel, and especially the
solar array, exerts an acceleration parallel to its normal, which
leads to the along-track increase witnessed for the June arc.

We applied instantaneous reradiation for all of the
following simulations since no reradiation due to spacecraft
panels is physically unrealistic and the differences in
magnitude are significant when instantaneous reradiation
is added. More sophisticated thermal models involving
conduction and internal heat generation would likely produce
more accurate results.

4.2 Accelerations

The most direct effect of RP is visible in the accelerations.
Therefore, we compare the RP accelerations

• for the September and June arcs,
• due to solar and lunar (albedo + thermal) radiation,
• for the constant and DLAM-1 albedo distributions,
• for the cannonball and paneled targets.

In total, we ran 46 simulations. All accelerations are
given in 10−9 m/s2. Regarding the cannonball and paneled
target models, note that their comparative magnitudes are
less important since the choice of cannonball parameters is
somewhat arbitrary. Instead, we compared their behaviors
and how they relate to model assumptions (e.g., symmetry
for the cannonball, tracking for the paneled target).

Solar and lunar radiation Both solar and lunar radiation are
significant but their accelerations may amplify or cancel each
other. To compare them, we used a constant albedo model
in addition to the thermal model. The accelerations over one
orbit are shown in Figure 11. Note that secular variations
in orbit geometry can change the magnitude of acceleration
components across orbits even within one 2.5-day arc; secular
variations are not shown here.

For the June arc (Figure 11a), the spacecraft is in
permanent sunlight and the orbit plane normal points toward
the Sun because β ≈ 90◦. This leads to extremely large,
constant cross-track solar accelerations. The paneled model
also has along-track solar accelerations due to the solar
array as explained in Section 4.1. Interestingly, the radial
solar accelerations show the same phase shift between
the cannonball and paneled targets as observed without
instantaneous reradiation (Section 4.1). This suggests that
symmetry, or the lack thereof, is the cause of the phase shift.
The magnitude of the total solar acceleration does not change
much throughout the year since it is only dependent on the
Moon–Sun distance, which is relatively constant at 1 au (see
Table 2).

The lunar accelerations during the June arc are generally
small (less than 2% of solar) because LRO never passes
over well-illuminated regions; half of the lunar source panels
that are visible by LRO are on the nightside and therefore
rarely contribute. The sinusoidal variations in lunar radiation
pressure are mainly caused by the fact that β is not exactly
90◦ and LRO’s angle to the subsolar point therefore varies
by 2◦. Periodic variations in altitude due to the eccentricity
itself have a minimal effect since higher altitudes mean
larger distances but also a larger visible area of the lunar
surface, which roughly cancels. Secular variations in lunar
accelerations (not shown) exist and are due to the evolution
of eccentricity over the 2.5 days caused by the non-uniform
lunar gravity field [2]. The eccentricity ranges from 0.005 to
0.008, which leads to periselene altitudes between 37 km and
41 km. Such changes in eccentricity lead to larger amplitudes
but no mean shift.

For the September arc (Figure 11b), the Sun is occulted
for 42% of the orbit since β ≈ 0◦. The effect of these
occultations is evident in solar and lunar radiation, both
of which vanish on the nightside. The accelerations are
mostly in the radial and along-track directions. This is
most clearly explained by the solar accelerations: At t = 0.2,
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Figure 11. Accelerations due to solar and lunar (thermal + constant albedo) radiation over one orbit. The cannonball and paneled
targets differ both in magnitude and pattern of accelerations. Note the different scales of each subplot.



Short-term orbital effects of radiation pressure on the Lunar Reconnaissance Orbiter 13

LRO crosses the terminator above the pole and is moving
straight toward the Sun; the along-track component is then
maximal and negative since the Sun opposes the spacecraft’s
motion. Continuing the orbit, LRO passes above the subsolar
point at t = 0.5, leading to a maximal and negative radial
component while the along-track component has vanished.
Further toward the other pole, LRO passes into the night at
t = 0.8, where the along-track component accelerates the
spacecraft into the direction of motion. During this whole
time, the cross-track component is slightly negative because
β is slightly negative but not zero. If β were slightly positive,
the cross-track component would be similar but with the sign
flipped. In addition to periodic changes, there is a secular
change in solar accelerations (not shown) since the already
slightly negative β continues to decrease: over the 2.5-day
arc, the mean of the along-track and cross-track components
increase twofold and threefold, respectively. This trend
continues until the cross-track component dominates for high
β, as seen for the June arc.

The lunar accelerations during the September arc are much
larger than during the June arc because LRO passes right
over the subsolar point, which reflects much sunlight and
has high thermal emissions. Indeed, the lunar irradiance
(up to 1830W/m2) is larger than the solar irradiance
(up to 1360W/m2) above the subsolar point. Still, the
lunar acceleration magnitude is 14% smaller than the solar
acceleration magnitude since lunar panels are distributed
azimuthally around the nadir and thus partially cancel while
all solar rays are parallel and therefore compound. Another
feature of lunar accelerations is the sign opposite to solar
accelerations: when passing over the subsolar point, the
radial components of solar and lunar accelerations roughly
cancel. A similar effect can be seen in the along-track and
cross-track components for a paneled target, although the
lunar radiation needs some time to build up: The along-
track component peaks at a subsolar angle of 33◦, the cross-
track component above the subsolar point. The cross-track
component increases secularly over the 2.5-day arc, similarly
to solar radiation.

Comparing the accelerations of cannonball and paneled
targets for both arcs, it is clear that a single Cr cannot capture
the complex and changing spacecraft geometry. While the
solar accelerations for the September arc are just off by about
a constant factor, this is not the case for the June arc or any
of the lunar accelerations. In fact, the sign may even be
different, particularly for lunar along-track and cross-track
accelerations in September. This is likely caused by the
solar array tracking the Sun. On smaller scales, the effect
of target panels of different sizes and reflective properties
becoming illuminated as LRO revolves around the Moon can
be seen in the kinks of the solar cross-track accelerations of
the September arc.

All accelerations are inversely proportional to the
spacecraft’s mass. While we chose the end-of-mission mass
for all simulations, the begin-of-mission mass is 17% higher
and all accelerations are thus 15% lower (see Section 3.4).
This only changes magnitudes, not patterns.

Lunar albedo and thermal radiation In the previous
subsection, lunar radiation was regarded as the sum of albedo
and thermal radiation. In this subsection, we look at the

separate contributions and the differences between albedo
distributions. The accelerations on a paneled target are shown
in Figure 12.

For both arcs and all components, thermal radiation is
far larger than albedo radiation (up to sixfold). This is
even though the albedo is likely overestimated by 25% as
described in Section 3.1. In terms of behavior, the thermal
radiation and constant albedo radiation are very similar:
smooth and dependent on the subsolar angle. However,
albedo radiation vanishes in the eclipse region of the
September arc. The thermal irradiance at LRO on the
nightside is 6W/m2, which leads to a small total acceleration
of 1× 10−9 m/s2.

The accelerations of the constant and DLAM-1 albedo
distributions are of very similar magnitude (in non-zero
regions, rRMSE of 14% for June and 16% for September),
although DLAM-1 exihibits irregular variations. The
largest difference of 3.7× 10−9 m/s2 occurs in the radial
component for the September arc at t ≈ 0.45. Interestingly,
DLAM-1 albedo radiation peaks before the subsolar point,
whereas the thermal and constant albedo radiation peak above
it. This behavior can be explained by Figure 13, which shows
the DLAM-1 albedo irradiance along the ground track over a
map of the difference between DLAM-1 and the constant
albedo. In this figure, the maximum albedo difference
also appears before the subsolar point in a region where
DLAM-1 has an albedo that is 0.043 higher or 29% more
reflective than the constant albedo of a = 0.150. All irregular
differences between the albedo distributions seen in Figure 12
are explained by this map. Note that larger differences than
those seen in June and September may occur for other arcs.
However, because the thermal radiation is so much larger, the
effect of these differences remains overall limited. Therefore,
a constant albedo may be sufficient for most applications.

4.3 Change in final position

The goal of orbit determination is to estimate the state, and
particularly the position, of a spacecraft over time. Therefore,
the difference in position at the end of the arc between models
is highly relevant. As mentioned in Section 1, the maximum
allowable error for LRO is 50m to 100m in total position
and below 1m radially. Since the true position is not known
and this paper is rather concerned with relative differences,
we used a simulation without solar and lunar radiation as a
baseline reference.

The differences in final positions with respect to the
baseline simulation are shown in Table 4. The first number
is the mean, secular difference over the final orbit (32nd
revolution), and the second number gives the amplitude of
periodic variations around that mean over the final orbit. Note
that the periodic variation is quite large in some cases despite
zero secular change.

The June arc shows a large along-track difference (more
than 1 km) for the paneled target with solar radiation (A).
This is likely due to accumulation of the consistently
large along-track acceleration of about −15× 10−9 m/s2.
However, this acceleration is of lower magnitude than the
constant acceleration of +47× 10−9 m/s2 expected to result
in this position difference, and of the opposite sign. For the
cannonball, the along-track accelerations have a zero mean
and thus the position difference is also zero. This, again,



Short-term orbital effects of radiation pressure on the Lunar Reconnaissance Orbiter 14

0.0

0.2

0.4

0.6

0.8

R
ad

ia
l [

m
/s

²]
×10 9 June

0

20

40

60

80
×10 9 September

0.4

0.3

0.2

0.1

0.0

Al
on

g-
tra

ck
 [m

/s
²]

×10 9

10

0

10

×10 9

0.0 0.2 0.4 0.6 0.8 1.0
Revolutions

0.00

0.25

0.50

0.75

1.00

C
ro

ss
-tr

ac
k 

[m
/s

²]

×10 9

0.0 0.2 0.4 0.6 0.8 1.0
Revolutions

0

1

2

3
×10 9

Albedo (DLAM-1) Albedo (constant) Thermal

Figure 12. Accelerations due to lunar thermal and albedo radiation on a paneled target. Thermal radiation dominates at all times
and the difference between constant and DLAM-1 albedo is small. Note the different scales of each subplot.

Table 4. Difference of final position in m with respect to the no-RP baseline, given as mean over the final orbit plus/minus periodic
variations around that mean. The largest changes are in the along-track position. A: solar only; B: lunar only (thermal + constant
albedo); C: lunar only (thermal + DLAM-1 albedo); D: solar + lunar (thermal + DLAM-1 albedo).

Cannonball Paneled
Radial Along-track Cross-track RMSE Radial Along-track Cross-track RMSE

A +0.0± 0.2 −0.5± 0.5 +0.1± 0.1 0.6 −7.5± 6.7 +1066.1± 39.3 +0.1± 0.2 1033.5
B +0.0± 0.0 −0.3± 0.0 +0.0± 0.0 0.3 −0.2± 0.2 +24.4± 0.9 +0.0± 0.0 23.6
C +0.0± 0.0 −0.3± 0.0 +0.0± 0.0 0.3 −0.2± 0.2 +24.6± 0.9 +0.0± 0.0 23.9
D +0.0± 0.2 −0.8± 0.4 +0.1± 0.1 0.8 −7.7± 6.9 +1090.7± 40.2 +0.1± 0.2 1057.4

(a) June

Cannonball Paneled
Radial Along-track Cross-track RMSE Radial Along-track Cross-track RMSE

A +0.2± 12.4 −36.4± 25.1 +0.0± 0.5 40.3 +0.3± 23.7 −61.8± 47.7 +0.0± 0.9 70.3
B +0.1± 2.9 −12.2± 5.9 +0.0± 0.1 12.7 +0.1± 6.1 −11.6± 12.4 +0.0± 0.2 14.6
C +0.1± 2.9 −12.6± 6.0 +0.0± 0.1 13.1 +0.1± 6.2 −20.1± 12.8 +0.0± 0.2 21.8
D +0.2± 9.5 −49.0± 19.8 +0.0± 0.4 50.0 +0.4± 17.5 −81.9± 36.3 +0.0± 0.6 84.1

(b) September

reveals how the cannonball cannot account for asymmetry;
with symmetric accelerations, no secular changes occur.
Interestingly, the large cross-track acceleration does not lead
to a large cross-track difference in the final position. Positions
with constant and DLAM-1 albedo (B and C) do not differ
significantly.

For the September arc, the cannonball and paneled targets
give more similar results. Again, the largest secular difference

is in the along-track position. However, in contrast to the June
arc, LRO is shifted back in the track this time. Due to the
large variations in radial and along-track accelerations over
each orbit, there are large periodic variations in the radial and
along-track positions too. For the paneled target with solar
and lunar radiation (D), these have amplitudes of 18m and
36m for the radial and along-track differences, respectively.
The periodic variations have higher amplitudes when not
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Figure 13. Ground track for September arc, colored by the
irradiance due to DLAM-1 albedo. The map shows the difference
between DLAM-1 and the constant albedo (a = 0.150). The
maximum irradiance does not occur above the subsolar point
(✖) but above the local albedo maximum 12◦ north of it.

including lunar radiation (A), which otherwise cancel solar
accelerations partially (see Section 4.2). There also is a
7m RMSE difference for the paneled model in September
between constant and DLAM-1 albedo, the only of the four
cases where the choice of albedo model influences the final
position.

These differences in position emphasize the importance
of RP models for precise orbit determination. The best
approximation of the true effect of RP is given by setup D
(solar + lunar radiation) with a the paneled target. For both
arcs, the maximum allowable total error would be exceeded
by the superposition of secular and periodic variations if RP
were neglected. The radial requirement of sub-meter accuracy
would be violated by periodic variations alone.

4.4 Performance

Choosing the appropriate model is not only a consideration
of accuracy but also one of computational effort. The aim is
to find the most efficient model that is sufficiently accurate.
To determine how much less efficient complex models like
paneled targets or DLAM-1 are, we measured wall time
durations for different model combinations. We ran each
simulation 100 times in random order on a server with 2
Intel Xeon E5-2683 v3 CPUs (14 cores each, two threads
per core with hyperthreading) while no other loads were
present. 27 simulations ran in parallel such that all but one
core were used. More parallelism would have triggered
hyperthreading, which would have skewed measurements.
Tudat was compiled in release configuration with GCC 7.5.0
at optimization level -O2. No other steps such as CPU
pinning were taken. Note that software performance can be
influenced by many, seemingly innocuous aspects [54]. Still,
the results show the general tendency.

The wall time durations when including solar or lunar
radiation are shown in Figure 14. Again, the baseline
simulation without radiation serves as a reference. The
median baseline time of 4.3min includes computations
for general integration and propagation, the lunar spherical
harmonics gravity model, and point gravities from Sun and
Earth. Solar radiation has a negligible complexity, even for a
paneled target. Lunar radiation with constant albedo increases

the duration by about 20%, but slightly more for the paneled
than the cannonball target. These values depend highly on the
number of source panels. The spherical harmonics expansion
of DLAM-1 is computationally expensive and increases the
duration by up to 80% compared to the baseline. This is
a significant performance penalty, which may not always
be tolerable. Other authors even report increases of several
hundred percent for DLAM-1 albedo [10].

The durations are relatively consistent as indicated by the
inter-quartile range of at most 5 s. Still, all distributions have
a long tail toward longer durations: the difference between
maximum and median is between 9 and 21 times higher than
the difference between minimum and median. This skewness
is typical for software performance.

5 Conclusion
We described a collection of RP models of varying levels
of complexity, then examined the differences in short-term
orbital effects of RP on LRO between these models. There
are large seasonal differences in the RP accelerations: for
small β (e.g., around September), the accelerations are mainly
radial and along-track, while they are predominantly cross-
track for β ≈ ±90◦ (e.g., around June). After 2.5 days, the
position diverged from the no-RP baseline by 1100m in
June and 80m in September. Periodic variations of up to
40m are superimposed on the secular differences over one
orbital revolution. In September, the periodic variations are
damped by lunar accelerations that oppose solar accelerations.
Large differences also exist between the representations of
LRO as a cannonball and a paneled target: due to the
cannonball’s symmetry, accelerations are more uniform and
generally smaller than those of a paneled target, which can
have the solar array track the Sun. Asymmetric effects,
which a cannonball cannot represent, can lead to qualitative
differences. Thermal radiation dominates the lunar emissions,
and a constant albedo distribution is both sufficiently accurate
and computationally cheaper than the spherical harmonics
expansion DLAM-1.

Our results showed that RP is essential for precise
orbit determination. Both the total and radial accuracy
requirements of LRO would be violated otherwise. However,

Baseline

Solar

Lunar (Constant)

Lunar (DLAM-1)

Cannonball

0 2 4 6 8 10
Wall time duration [min]

Baseline

Solar

Lunar (Constant)

Lunar (DLAM-1)

Paneled

Figure 14. Wall time duration of simulations with different RP
models. The statistics come from 100 runs for each model.
Evaluation of DLAM-1’s spherical harmonics expansion
increases the duration by up to 80%.
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not all models are worth the computational effort. We
recommend the following setup:

• Solar radiation should be included since it is significant
yet computationally cheap.

• Lunar thermal and constant albedo radiation should
be included since it only increases walltime duration
by 20% and affects secular and periodic variations
significantly. To reduce the performance impact, fewer
rings could be used, although the lunar irradiance may
then be underestimated.

• The spatial variations in albedo from DLAM-1 do not
increase the accuracy much despite the performance
penalty of 80%. Therefore, it should not be included
unless the utmost accuracy is desired (particularly in
September). The spherical harmonics expansion could
also be truncated to improve performance.

• The paneled target should be included since the
cannonball underestimates accelerations and does not
account for Sun tracking of the solar array. The
performance impact of the paneled target is negligible.

• The cannonball target should only be included if its
coefficient is estimated since a constant coefficient
cannot represent changes in geometry and orientation.
Even then, consistent estimation of the coefficient is
difficult at small β [7].

While we restricted our investigation to a small number of
relatively simple models, the short-term orbital effect of these
more involved models should also be investigated:

• Self-shadowing, particularly for solar radiation, can
reduce the effective cross-section by up to 40% for
large β [9].

• Moon topography can advance eclipse onset by up
to 480 s for β > 70◦ [9]. The conical shadow model
should be replaced by one that evaluates lines of sight
based on topography.

• DLAM-1 was published in 1999 based on miscali-
brated Clementine imagery, which overestimates the
actual albedo. A new spherical harmonics model
should be fitted from more recent, properly calibrated
imagery.

• Accelerations due to thermal reradiation by the
spacecraft itself can be significant. Instantaneous
reradiation should be replaced by a model that accounts
for heating and conduction.

• The lunar opposition effect increases albedo radiation
for low phase angles much more than Lambertian
reflectance predicts. Such phase angles occur for small
β. The Hapke BRDF with spatially resolved parameter
maps [39] should be used for albedo reflection.

• Post-sunset lunar thermal radiation is underestimated
because gradual cooling to nighttime temperatures
is not reflected in our thermal model. It should be
replaced with a more physical model due to the large
magnitude of thermal compared to albedo radiation.

Code availability

The code is available at https://github.com/

DominikStiller/tudelft-hpb-project.
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