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1
Introduction

This chapter describes the main ideas of the study of riverine flood in Indonesia, precisely in Java Island.

1.1. Background
Flooding is a catastrophic natural disaster that leads to different type of damages. Such damages threaten
many aspects of human lives, for instance environmental, societal and/or economic. Globally, absolute dam-
age may increase by up to a factor of 20 by the end of century without any action taken [15]. Particularly,
countries in Southeast Asia face a severe increase in flood risk [15]. This rises the need to understand the risk
of flooding in order to alleviate the consequences of flooding, by quantifying the hazard.
By definition, flood risk is the combination of the probability of a flood event and of the potential adverse
consequences to human health, the environment and economic activity associated with a flood event [12].
Flood risk management is divided into three big parts, namely risk analysis, risk assessment and risk reduc-
tion [14]. In the early stage, risk analysis involves the hazard assessment, which provides the information on
the previous, current and future flood risks [14]. In a later stage, a better understanding toward flood hazard
enables to an early prevention of flood prone areas, also to increase the preparedness in combating the im-
pact of flooding. Accordingly, the role of flood hazard investigation is prominent to prevent more and more
damages to occur.

As one of five big islands in Indonesia, Java is the busiest island in terms of economic activity, as well as

Figure 1.1: Map of flooding occurrence in Indonesia. It shows that Java Island experienced more flooding in comparison to any other
islands. The scale shows number of occurence of flooding. (source:bnpb.cloud)

the most populous island in Indonesia. In contrast to that, flooding mainly happened in the Island of Java,
as depicted in figure 1.1 compared to the other parts of the country. The scale is expressed in number of
occurences, and East Java or in the graph Jawa Timur has more than 75 flooding cases. The expansion of
population, inadequate spatial planning and land management, and urbanization are mentioned as the ag-
gravated sources of flooding [1]. These are severely affected by the fact that climate change enhances the
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2 1. Introduction

uncertainty of the event. Currently, the flooding problem mainly was controlled by multipurpose reservoirs.
There are sixteen reservoirs in the entire island of Java that have also a flood control function [2], apart from
its main function as irrigation. Nevertheless, the application of flood hazard map in Indonesia, in general is
not well explored and widely utilized. Certainly, a proper study needs to be carried out, to analyse the flood
hazard potential in Java Island, especially riverine flood, as an early stage to have a better understanding
regarding the flood risk.

1.2. Scope of the Research and Objectives

A stochastic model, like Bayesian Network, permits the flexibility to evaluate different datasets in order to esti-
mate annual maximum daily discharge. This study is carried out to evaluate the performance of the Bayesian
Network Model developed by Paprotny et al. (2017) in Europe, by implementing the BN configuration in the
case of Java Island, Indonesia. By doing so, it is possible to take a measure of the adaptability of the model
within a different environment as an input. Throughout this research, it is expected that it could be beneficial
to give a preliminary idea regarding flood hazard potential in Java Island, particularly for ungauged rivers. The
output of this research is a map of riverine flood hazard for the entire Island, which indicate extreme riverine
discharge within the catchment.

1.3. Methodology

In general, the provision of spatial datasets are mainly compiled from open sources.The spatial datasets will
be extracted using GIS as input parameters to the model, as depicted in figure 1.2. The detail of input param-
eters will be explained later in the section of spatial datasets.
The input parameters of will be bounded spatially to Java Island and temporally based on the availability of

Figure 1.2: Flowchart diagram for the research methodology

the datasets. Thereafter, the parameters will be applied in the Bayesian Network Model to generate the max-
imum discharge of the gauged river in Java Island. Thus, there will be two discharge values, one estimated
from the model and another one obtained from gauged from the site. In that sense, the validation through
difference in output could be done using different measures such as the coefficient of determination, R2 and
the Nash-Sutcliffe efficiency coefficient, (NSE). Such quantification allows evaluating the performance of the
BN in the Java Island. Finally, the whole process will be carried out again for the ungauged river, to generate
the riverine flood hazard map for the entire Java Island.
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1.4. Research Outline
In general, this report is divided into three parts. Chapter 2 presents the overview of the literature related
to the case study and theoretical background that has been used in the research. Chapter 3 describes the
application of the BN model in the particular case study and result and discussion of the model. Lastly,
Chapter 4 presents the conclusion and recommendation for future research.





2
Overview of the Literature

2.1. System Description
Java island is one out of five major islands in Indonesia. It is situated on the equator precisely between E 105◦
and E 114◦, as depicted in figure 2.1. The size of the island is approximately 132,107 km2 [2]. Java Island is
home to almost 140 million inhabitants, and considered as the most densely populated island in Indonesia
[5]. It means that 50% of the population of the country is mainly concentrated only in Java Island.

In general, Indonesia experiences two distinctive seasons, wet season from December to March and a dry

Figure 2.1: Maps of Indonesia (source: www.freeworldmaps.net)

season from June to September, with temperature ranges between 21◦ C to 33◦C and humidity between 75%
and 100% [2]. These characteristics relatively reflect the general weather in Java Island. In addition to that,
based on Köppen-Geiger Climate Classification, it is also categorised as AF which defines as equatorial rain-
forest and fully humid climate [8]. These bases generate a reasonably large precipitation flux all over the year.
The average annual rainfall in Java Island is circa 2,680 millimetres/year [2]. The topography of the island
in itself is very diverse, laying from east to west within the island’s spine and is flanked by limestone ridges
and lowlands [5]. Besides that, it is also surrounded by volcanoes, and some of them are still active, which
result the soils are very fertile by the volcanic ash [5]. Due to abundant of rainfall events, most of the land
use are occupied as a crop land. This in return, led to many construction of hydraulic structures, especially
reservoirs. There are 87 reservoirs with irrigation as the main the function; moreover, sixteen of it built for
multipurpose, including flood control [2].

2.2. Bayesian Network
Bayesian Networks (BN), as a probabilistic graphical model, are directed acyclic graph (DAG) that consists
of nodes and arcs. The nodes resemble random variables that can uptake on two or more possible values in

5
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6 2. Overview of the Literature

discrete or continuous, whilst the arcs represent the existence of direct casual influences between the linked
variables (nodes). The significances of the influence are shown by the quantification of conditional proba-
bilities. The strength of these direct influences are quantified by assigning to each variable Xi a link matrix
P (xi |∏Xi

), which represents judgemental estimates of the conditional probabilities of the events Xi = xi ,
given any value combination

∏
Xi

of the parent set
∏

Xi
.

P (x1, x2, ..., xn) =
n∏

i=1
P (xi |∏Xi ) (2.1)

As a brief explanation of DAG and parent cells, figure 2.2 demonstrates several simple BNs. In general, these
graphs present the acyclic relation, which imply the joint probability function between variables. In the hier-
archical perspective, the immediate predecessors are the parents of the immediate successor nodes, whereas
the successor nodes are the children. Referring to the same figure, the second graph shows that node F as
the child, has two parent variables, namely node D and E in order of importance. Therefore, it is able to
be concluded that node D has a direct dependence to node F. Meanwhile, the correlation between node E
and F will be known, given we know the correlation between node D and F. This condition is so-called the
conditional correlation. Another interesting information that could be inherited is from the third graph in

Figure 2.2: Example of directed acyclic graph of Bayesian Network. Courtesy of Couasnon [4]

figure 2.2. The information of Variable I will be obtained from G given one knows the H. It means that having
more information about G will not give you more information about I without having H. In other word, G
is conditionally independent of I. Later in the application, these type of graphs will be constructed in more
robust networks. The advantages of network representation is that it allows people to express directly the
fundamental qualitative of "direct dependency". The network then displays a consistent set of additional di-
rect and indirect dependencies and preserves it as a stable part of the model, independent of the numerical
estimates. Bayesian Networks have been applied in many projects in different fields [7], e.g. risk analysis,
reliability analysis, prediction model, etc. BN has shown a compelling model in statistical analysis, in combi-
nation with the conceptual studies, to understand the risk.

2.2.1. Non-Parametric Bayesian Network
In Bayesian Network, Non-Parametric Bayesian Network (NPBN) is a part of continuous BN which was de-
velop under the assumption without defining the marginal distribution [7], or in other word there is no joint
distribution is assumed. Initially, the BN arcs are expressed using joint normal distribution for continuous
variables. However, in many of the cases joint normal distribution fails to represent the arcs especially when
normality does not hold. Therefore, Hanea et al. [7] proposed to use Copula to avoid this limitation.

COPULA– Hydrological modelling requires multivariate analysis which is really complex. In a smaller scale,
it is common to use bivariate analysis to test the dependency between two random variables. Generally, this
analysis is easier to perform if two variables follow the same distribution. However, this is not always the
case. This problem could be solved using Copula, that avoid this restriction. The copula approach to de-
pendence modelling is rooted in a representation theorem due to Sklar in 1959 [6]. Copula normalized the
variables into a unit square distribution. Assuming under bivariate analysis of continuous random variables,
cumulative distribution function (c.d.f) of this copula is formulated in the following equation

H(x, y) =C {F (x),G(y)}, x, y ∈R (2.2)

where H(x, y) is the c.d.f.; F (x) and G(y) are the marginal distribution of two random variables; C [0,1] repre-
sents the copula.
Based on above definition, random variables are transformed into uniform square unit [0,1]. By doing so, the
dependence of two variables in the model could be obtained using Pearson Correlation Coefficient, regard-
less its marginal distribution. Till date, the most renowned copula is Gaussian or Standard Normal Copula,
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due to its rapid calculation in large multivariate model. The Bivariate Gaussian Copula is presented in the
following equation:

Cρ (u, v) =Φρ

(
Φ−1 (u) ,Φ−1 (v)

)
(2.3)

where Φ is the standard normal distribution, Φ−1 is its inverse and Φρ is the bivariate Gaussian cumulative
distribution with (conditional) product moment correlation ρ between two marginal uniform variates u and
v in the interval [0,1].

CORRELATION COEFFICIENT – As discussed regarding the relationship between nodes under conditional rank
correlation, thus the concept of conditional rank correlation will be demonstrated in this section. The condi-
tional rank correlation of xi and x j given random vector Z = z is the rank correlation calculated in the condi-
tional distribution (xi , x j |Z = z). The arc J between variable xi and its n parent Pa1 (x1), . . . ..,Pan (xi ),P a j (x j ) →
xi is parametrized as follow: {

r (Xi ,Pa j (xi )) j = 1

r (Xi ,Pa j (xi )|Pa1 (x j ), . . . ,Pa j−1 (xi )) j = 2, . . . ,n
(2.4)

where j is the index in the non-unique sampling order. The empirical normal rank correlation r (Zi , Z j ) ap-
proaches the empirical rank correlation r (xi , x j ) if the normal copula assumption holds and given a large
enough number of observations:

r
(
xi , x j

)= ρ
(
Fxi (xi ) ,Fx j

(
x j

))
(2.5)

The benefit of using joint normal distribution is that the conditional and partial correlation are equal [7].
Therefore the matrix correlation could be computed from the partial correlation. Partial correlation defines
the correlation between two variables given certain circumstances to be hold, as this is relevant to the condi-
tional rank correlation. Partial correlation is formulated in the following equation:

ρ12;3...n = ρ12;3...n−1 −ρ1n;3...n−1 ·ρ2n;3...n−1√
1−ρ2

1n;3...n−1 ·
√

1−ρ2
2n;3...n−1

(2.6)

Under bivariate normal copula assumption, a simple characteristic relation between the Spearman's rank
correlation r and the Pearson's product moment correlation coefficient ρ exist:

r = 6

π
·arcsin(

ρ

2
) (2.7)

2.2.2. Inference
As defined previously in section 2.2.1 regarding the definition of non parametric model, thence, there is no
analytical form of joint distributions involved in NPBN [7]. Performing inference in NPBNs could be handled
by sampling it. In the case that BBN becomes more complicated with more DAGs involve, the numerical
evaluation will be more time consuming. This condition may lead to a big drawback when it comes to a real-
time decision making. However, this problem could be solved if one use the normal copula. Using normal
copula allows the user to operate the joint normal distribution with the same rank correlation structure as
the original one [7]. Therefore, the properties of the joint normal distribution could be used to transform
the conditional rank correlation into the conditional product moment correlation. As mentioned earlier in
section 2.2.1, the conditional and partial correlation are equal. Furthermore, one could sample from these
normal joint distribution given the correlation matrix, then transform it back to the marginal distribution.
By performing this method, a sample from the joint distribution of the original variables and the depen-
dence structure realized by the normal copula become attainable. Another important remark is regarding the
number of sample, in which related to the sensitivity of the result. The bigger the number of sample being
generated, of course, will lead to higher confidence of mean of estimation . Nevertheless, it has to be com-
pensated with the performance of the computer. For example, in the case of European BBN, 1000 samples
were used each time of conditionalisation.

2.3. Method for Result Validation
As explained in previous section, the validation of the model will be quantified by estimating the true error
value, as it is also aimed to set a threshold for indicating the realization of the model. There are many per-
formance measures to validate the result of the model, however, in this research, two methods will be used,
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namely coefficient of determination (R2) and Nash-Sutcliffe Efficiency (NSE). The coefficient of determina-
tion represents the linear relation between the estimated and the observed data. It describes the proportion of
the variance measured data explained by the model [9]. R2 has 0 to 1 value range, with higher value indicates
the less error variance. Nash-Sutcliffe Efficiency defines the relative values of the residual variance compared
to the measured data variance [9]. NSE ranges between -∞ to 1.0, a value between 0 and 1.0 represents an
acceptable performance, as 1.0 is the optimal value, meanwhile less than 0 signifies a poor performance [9].
The both error measurements are formulated in the following equations:

R2 =
∑n

i=1(Q̂i −Q̄)2∑n
i=1(Qi −Q̄)2

(2.8a)

N SE = 1−
∑n

i=1(Qi −Q̂i )2∑n
i=1(Qi −Q̄)2

(2.8b)

where Q̂i is the estimated value of the discharge from the model, Qi is the measured value of the discharge,
and Q̄ is the mean value of the observed value.

2.4. Development of BN Model in Europe and USA
A Bayesian Network Model for quantifying riverine flood was first constructed based on the case of Europe;
it has shown a satisfactory performance. This model later was also applied in the United States, where the
result was not as well as the predecessor case. A brief description of both research area will be elaborated in
the following section.

2.4.1. Extreme river discharge in Europe
BN model in Europe is used to statistically estimate the discharge, using all parameters, on a continental scale.
The study of BN model in Europe would be the groundwork of the model for quantifying the riverine flood
in this case. At the initial stage, many hydrological and climatic variables were involved in the extreme river
discharge. However, using the sensitivity analysis, it has pinned down into seven nodes, such as precipitation
and snowmelt flux, surface runoff, steepness, three different types of land use, and the size of the catchment;
the model is shown in the figure 2.3. Those variables are the most influential variables in representing the
estimation of the extreme discharge. It has also given an intuitive sequence and order of importance to the
estimation of maximum discharge – as the benefit of using the Bayesian network. Due to its wellness most
of the time, the Gaussian copula is also the ground basis of the conditionalisation of the river discharge. In
addition to that, if the model performs accurately, it is possible to estimate maximum river discharge in the
ungauged basin. The BN model that applied in Europe yielded an adequate result in estimating the annual

Figure 2.3: Bayesian Network Model for European Region (source: Paprotny and Morales-Nápoles [11])

maximum river discharge. In the table 2.1, the validation shows a very satisfactory measure, when compared
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to the observation of the river discharge. Additionally, It is also emphasized that regions like Scandinavia,
western Europe and the Danube basin, delivered a better result compared to southern Europe, especially in
the Iberian Peninsula. However, since this model is designated for large catchment, it shows less precision

Table 2.1: Validation measure of Europe (source: Paprotny and Morales-Nápoles [11])

QM AX M Q per catchment area
R2 0.92 0.52

NSE 0.92 0.41

of performance in the smaller catchment. In the following, table 2.2, the performance measures are getting
lower proportionally to the size of the catchment. The study of BN in Europe has also proved reducing time

Table 2.2: Validation measure of Europe per catchment area (source: Paprotny and Morales-Nápoles [11])

Area R2 NSE
< 100km2 0.47 0.41

100−1000km2 0.55 0.38
1000–10,000km2 0.64 0.43
> 10,000km2 0.90 0.89

to perform a flood-hazard analysis, both continental-scale and local, as long as annual extremes are relevant
for a particular study [11]. It is also possible to configure by adding another node that might be relevant to
a particular case, in which has been done in the case of United States. This model shows the flexibility to
integrate another aspect such as climate change or other land use variables.
Apart from its benefits, there are also several drawbacks of the model itself. Firstly, this model makes use a
natural flow in the catchment, in which not always the case in the presence of the hydraulic structures. The
BN model includes reservoirs indirectly as the contribution of the lakes and have a negative influence of the
extreme discharge [11]. Nevertheless, the impact towards the result of the model is not demonstrated clearly
in the study. Secondly, the temporal variability of the spatial datasets is in a daily time step. In consequences,
this model is not applicable to such cases like flash flood or a flood of short duration. Thirdly, even though
the availability of the data, in general, is sufficient, in contrary such data still contains slight inaccuracies or
errors. This fact leads to an error generation of the final result, that might not be seen explicitly. Further-
more, in some developing countries, like Indonesia, the rare availability with poor quality data might have an
unfortunate result.

2.4.2. Application of a Bayesian Network in the USA
After a satisfactory result of a Bayesian Network in Europe region in estimating river discharge, this model
was also applied in the contiguous U.S. by Couasnon [4] in 2015. In principle, the structure of the model from
Europe is the groundwork for the implementation in the U.S., which has a slightly decreased performance.
However again, it is proved to be efficient regarding time process, and favourable method to obtain the an-
nual maximum daily discharge. The result of the application of BN model in the U.S. is presented in the table
2.3 and table 2.4.

In the case of the U.S., several innovations, for instance, adding relevant nodes and saturating the struc-

Table 2.3: Validation measure of the United States (source: Couasnon [4])

QM AX M Q per catchment area
R2 0.858 0.139

NSE 0.757 0.108

ture, were conducted to enhance the performance of the model. Nevertheless, the result did not showed a
significant improvement. Later in the discussion of the research, several conclusion on the result were men-
tioned, as a result of unique characteristic of the U.S. topography. Concordant reasoning also took place on
the available database for the U.S. for small drainage area. The delineation of a small catchment area is still
inadequate, hence give an unfortunate result. As mentioned beforehand, the BN structure was built explic-
itly for riverine flood, which leads to the inability to predict other types of flooding. Precisely, more extensive
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Table 2.4: Validation measure of the United States per catchment area (source: Couasnon [4])

Area R2 NSE
< 100km2 0.258 0.247

100−1000km2 0.319 0.262
1000–10,000km2 0.345 0.331
> 10,000km2 0.906 0.747

climatic and geographical diversity which favours other flooding mechanisms is not accounted for with the
current structure [4]. Thus later, the model also considered the effect of seasonality in the run-off coefficient
and did improve the model performance. The same conclusion also appears in the human influence of the
model in getting the estimation, due to local control such as hydraulic structure. Furthermore, another hu-
man activity such as agricultural practices could also contribute to the error that occurred. Another remark
is related to the probabilistic distribution for the frequency analysis. It is found that some stations demon-
strated an unrealistic estimate of the high return period, due to its sensitivity towards the selection of the
parametric value.



3
Quantifying Bayesian Network Model

This chapter describes spatial datasets that used in the model and the result and discussion of the model.

3.1. Spatial Data Sets
As mentioned in section 2.4.1, seven nodes were taken into account in quantifying the maximum discharge.
In general, spatial datasets are extracted for two purposes, for validation measures and flood hazard map. The
main difference is that for the former, drainage basins are delineated based on the location of the observed
discharge; the latter, drainage basins are taken from HydroSHEDS database. Nevertheless, all procedures
of extraction are identical, using Matlab and QGIS. The summary of the spatial datasets is tabulated in the
following table.

Table 3.1: Table of Data Source

Data Type Units Nodes Data Source Year Resolution
Maximum Daily Precipitation
Flux

kg /m2/s MaxEvent CORDEX EAS-44 1951-2005 1584 arc-second

Surface Runoff kg /m2/s Runoff Coefficient CORDEX EAS-44 1951-2005 1584 arc-second
Maximum Daily Discharge m3/s Maximum Discharge GRDC varies between

1970 and 2010
N/A

Elevation m Steepness SRTM (void-fill DEM) 2000 3 arc-second
Buildup km2 Buildup 0.5 km MODIS- based Global Land

Cover Climatology (USGS)
2001-2010 15 arc-second

Marshes and Lake km2 Marshes and Lake

0.5 km MODIS- based Global Land
Cover Climatology (USGS)

2001-2010 15 arc-second

Globcover2009 2009 10 arc-second
Global Lakes and Wetland
Database

2004 30 arc-second

3.1.1. Precipitation Flux and Surface Runoff
Precipitation flux and surface runoff are both taken from CORDEX under the period of 1951 until 2005. There
are several options for the products of these variables. However, the selection pinned down to model r3i1p1
HIRHAM5 from DMI (Danish Meteorological Institute), that has a more logical order of magnitude of precip-
itation flux compared to the updated product. HIRHAM5 is a regional atmospheric climate model that devel-
oped by the combination of HIRLAM and ECHAM [3]. The driving of the Regional Climate Model is based on
ICHEC-EC-EARTH. The raw data is presented in three-dimensional matrices, in which the first and second
dimension resembles the location in coordinate, longitude and latitude; whereas the third dimension is the
timescale. The timescale of the raw data is on a daily basis, hence need to be clipped into annual maximum
daily data. Conversion of the raw data from kg /m2 is also conducted to obtain the real value of maximum
yearly daily data [mm/day] for both variables. Since the domain of Indonesia lies in the East Asia Region,
therefore the translated data will also be bounded spatially to the drainage basin. Throughout this process,
the final data obtained with the temporal distribution of 50 years on the Java Island. These procedures are
schematized in figure 3.1.

11
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Figure 3.1: Flow diagram process of precipitation flux and surface runoff

3.1.2. Drainage Basin
A drainage basin is the most crucial part in determining the boundary condition of the extraction of spatial
datasets. Such data will give the information about the area and the elevation of the watersheds. On the part
of validating the datasets in Java Island, the drainage basins are delineated based on the availability of the
daily discharge data from GRDC. The delineation of these catchments is rendered using the flow accumu-
lation raster file from HydroSHEDS with 3 arc-second resolution, with the measured location of the stream
flow as the pour point of the watershed provided by GRDC. Moreover, in creating the flood hazard map, the
drainage basins were taken from HydroSHEDS basin product with 15 arc-second resolution. These basins are
also clipped with the existing river network, with resulting only 384 unit-catchments in estimating 100 years
riverine flood discharge. However, the disadvantage of the product is that the basin is merely delimited in
the primary river network, especially in the Java Island. It will affect a coarser estimation of the riverine flood
discharge, and therefore the flood hazard map will be limited to at most the stream-flow per catchment area.
In that sense, the result is not comparable to the previous study in Europe and the Contiguous of USA.

3.1.3. Land Use Data
The Europen BBN model makes use of three different types of land use; those are Build Up, Marshes and
Lakes. The land use types are selected based on the sensitivity analysis that was conducted in the study of
flood discharge in Europe by Paprotny and Morales-Nápoles [11] and have the higher influence to generate
the maximum riverine flood discharge. Several land cover products will be utilised and combined to acquire
for each variable, that is also validated visually with the real map data. Build up is an urbanised area and
extracted from 0.5km MODIS-based Global Land Cover Climatology (USGS) with 15 arc-second resolution.
This raster data is a combination of several land cover products in between the year 2001 and 2010. In con-
trast with precipitation flux and surface run-off, build up remains as a constant value in the BN model, also
for other land use data. However, land cover does change in a certain period of time. Including the tempo-
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(a) Delineation of unit catchment

(b) Drainage catchment of hydroSHEDS

Figure 3.2: Drainage basin on the top was delineated for validation purposes; On the bottom, the drainage basin was taken from
HydroSHEDS

ral variation of the land cover might be a future reference for the development of the model. Based on the
precursory study of Couasnon [4] for the case study of US, the lake and marshes land cover was solely taken
from GLWD (Global Lake and Wetlands Database). On the other hand, marshes and lake data in Java Island
are composed of the mixture of several products, due to the limitation of the outcome of GLWD. Hence the
blend compilation between three different data sources is adapted to obtain a better land cover data. Despite
the fact that 0.5 km MODIS-based GLCC does not show a clear distinction between marshes and lake in the
layer of wetland permanent, nonetheless, it does cover most of the water bodies inside the island. Indeed,
a validation to all compiled data is done to ensure the data by comparing the standard general maps from
QGIS.

3.1.4. Discharge Data
Discharge data were taken from GRDC (Global River Discharge Center). Fourteen recording stations mea-
sured maximum daily discharge that ranges between 1970 and 2010 spread throughout the entire island, as
depicted in figure 3.3. The raw data of discharge is a measure of maximum value on daily time scale per sta-
tion. The annual maximum discharge could be obtained by taking the maximum amount of each year per
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Figure 3.3: Station River Discharge Map of GRDC

station. It is critical to take into account that the missing record of the discharge is discarded during this pro-
cess. The time series of data is available in the appendix A. This information used at a later stage to assess the
performance of the BN. Consequently, the more time series available for the island, and widely spread out on
the entire island, it should give a better representation for the validation of the model. In this case, there are
229 observations of discharge that are used to validate the performance of the model.

3.2. Result and Discussion
3.2.1. Inference Model
To start with the validation stage, one should ensure that the time scale of spatial datasets is as precise as the
available annual maximum discharge data. In doing so, all spatial datasets should be imposed to the time
of the annual maximum discharge data, especially the data that varies in time, such as rainfall flux, surface
run-off. The remaining data will be merely altered based on spatial differences. In this case, it left the spatial
datasets in a total of 229 data configurations to evaluate. Therefore, there will also be 229 estimated annual
maximum river discharge to compare with the GRDC data. Once the time and spatial frame of each variable
are identical, it is possible to proceed to the conditionalisation part. Table 3.2 shows the equation and unit
of the variables, which hold in the assumption of the model. As stated in section 1.3 that the objective of the

Table 3.2: Equations table of spatial datasets

BN Node Equation Unit
Area (-) km2

MaxEvent max(Rainfall flux) mm/d ay
RunoffCoef max(Total Surface Runoff)/ MaxEvent (-)

Marsh AreaMarsh/Area x 100 %
Lake AreaLake/Area x 100 %

Buildup AreaBuildup/Area x 100 %
Max Discharge (-) m3/s

Steepness (Elev.Max - Elev.Min)/ sqrt(Area) m/km

study is to evaluate the performance of the BN model that has been built previously, validation part would
be a matter of conditionalisation, once the spatial datasets are ready. On the other hand, 100,000 samples
were generated to ensure the consistency of the mean sampling value. In this way, the performance indicator
will be more consistent every time the sampling is performed. Table 3.3 shows the summary of each node of
the station based on the equation table before. It is noticeable that the size of the area is below 1,000 km2.
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The variation of the land use type is fairly diverse, with some of the stations were located in the urbanised
area, viz. Station 5141300 and 5141450. Whereas another station, like Station 5141250 has thirteen percent of
marshes within the catchment.

Table 3.3: Table of station

Station Code Area Steepness Buildup Marshes Lakes # Data
[m2] [m/km] [%] [%] [%]

5141050 183.92 148.95 0.81 9.22 0 25
5141150 183.56 138.02 0.76 2.59 0 19
5141201 3182.05 53.36 6.68 0.42 2.21 15
5141250 438.17 89.34 4.12 13.43 0 28
5141300 158.41 264.58 16.14 3.88 0 14
5141350 52.34 85.70 3.22 2.03 0 30
5141400 34.65 290.51 0 0 0 30
5141450 187.70 140.87 16.74 0.82 0.10 16
5141500 43.34 39.49 0 0 0 17
5141550 468.87 130.23 4.15 0.37 0 10
5141600 388.68 155.21 0.38 2.05 0 27
5141650 544.79 49.70 0 0.16 0 26
5141700 698.92 111.96 2.87 10.58 0.08 21
5141750 157.22 202.57 0.56 7.01 0 21

3.2.2. Result
INFERENCE RESULT – Figure 3.4 shows the result of the annual maximum discharge of estimated plotted
against the observed annual maximum discharge for all stations. From the normal plot, it could be con-
cluded that the estimated value is overestimated. In general, the performance indicator shows an inferior
result. It has 0.25 of the coefficient of determination, while -5.32 for NSE value. It results in a very poor Nash-
Sutcliffe Value as it involves the mean value of the actual data. Based on the R2 analysis, it has shown a low
correlation due to the slope of its trendline. The slope resembles the overvaluation of the x-axis, which is the
estimation of annual maximum discharge.

COMPARISON WITH THE PREVIOUS STUDY – The study of BNs in Europe and USA has shown a satisfactory
result. Hence it is essential to compare the result with the predecessor study. In table 3.4, it shows the perfor-
mance measures for a different case study. The study in Java Island has shown the lowest measured compared
to Europe and USA. All validation is done using the same European BBN model, which was built from the Eu-
rope datasets. However, that number of data that were used to validate the result is way less compared to
Europe and the US.

Table 3.4: Compared validation measures

Measures Europe U.S.A Java Island
R2 0.92 0.858 0.25

NSE 0.92 0.757 -5.32

This comparison does not seem relevant due to the different size of the catchment. Therefore we need to
indicate the measures of Europe and US based on the size of Java Island. The appropriate size to compare
with the case of Java Island is the class area between 100 km2 and 1,000 km2, which is presented in the table
3.5. As the literature study conducted in the previous chapter, it is agreed that the smaller the catchment is,
the less accuracy the model results will be. This hypothesis is reflected in the result in the following table.
This follows with the fact that the model was initiated under the large size of catchment assumption.

RETURN PERIOD OF EACH STATION – This section will discuss the adequacy of the model result for each sta-
tion by comparing the return period, as this is commonly used in measuring the result of the estimation. The
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(a) Logarithm scale

(b) Normal scale

Figure 3.4: Plot of estimated and observed annual maximum discharge with x-axis represents the estimated Qmax and y-axis represent
the observation Qmax

Table 3.5: Compared validation measures for related catchment size area

Measures Europe U.S.A Java Island
100−1000km2 100−1000km2

R2 0.55 0.319 0.25
NSE 0.38 0.262 -5.32

ground basis of the frequency analysis is using the generalised extreme value (GEV) distribution. GEV is the
condensed parametric form for three limiting distribution for maxima, such as Gumbel, Weibull and Ferchet
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[10]. In general, GEV distribution is preferable due to the importance of uncertainty, if the case is a shortfall of
data, compared to Gumbel distribution [10]. Based on table 3.3, the number of data for each station is below
30. Figure 3.5 and 3.6 show the plot of maximum discharge on different return periods between the estimated
and measured data for fourteen different stations.

(a) Station 5141300 (b) Station 5141050 (c) Station 5141201

(d) Station 5141250 (e) Station 5141550 (f) Station 5141600

(g) Station 5141700 (h) Station 5141750

Figure 3.5: Plot of Discharge [m3/s] to Return Period in years for all stations with a better result

Figure 3.5 shows the station with a better result, despite the fact that it still depicts the overestimation of
the annual maximum discharge, except for Station 5141300. Station 5141300 presents the best agreement
of all, the result of the model has almost the same distribution compared to the observation value. Thus, a
further optimisation towards the model is worth to be analysed to improve the result. On the other hand,
figure 3.6 shows the station with low performance of the model. It could be concluded that almost all of the
fit-distributions do not behave consistently between the model and the actual data. In contrast with the pre-
vious figure, figure 3.6 demonstrates the underestimation of the model; the red line is depicted above the
estimated value.
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(a) Station 5141150 (b) Station 5141350 (c) Station 5141400

(d) Station 5141450 (e) Station 5141500 (f) Station 5141650

Figure 3.6: Plot of Discharge [m3/s] to Return Period in years for all stations with a poor result
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3.2.3. Discussion
This section present the discussion of the result form the model using the help from literature study and also
to find an alternative improvement to gain a better result.

APPLICATION TO THE UNGAUGED BASIN – Understanding the characteristic of the catchment through model
would give a good representation of hydrological processes in the basin. Once the model is accurate enough
to represent the entire area, it is possible to apply it to the ungauged basin, in which related to the purpose of
modelling. It is also applicable in this case, after validating the result in the gauged basin, we could produce
the flood hazard map in the entire area. In figure 3.7, it shows the annual discharge map for 100 year return
period per catchment area in the Java Island. It exhibits that most of the basins in Java Island have 0.10 to
0.30 m3/s per m2, in which classified as fairly critical area. Due to the limitation of the delineation of the
catchment area, as has been stated in the section of the drainage basin, this is the minimum result that could
be generated from the data. One possible solution to improve the result is the delineation of secondary river
network, to obtain higher resolution of the result.

Figure 3.7: Discharge per catchment area of Java Island with 100 year return periods

One of a good example to discuss is the Brantas river basin, which is one of the most significant catchment
in the Java island. Brantas river basin is a crucial basin in the East Java, as it has been invtervened by hu-
man for irrigation purposes and water supply, including the flood control. Within Brantas river basin, eight
reservoirs and several hydraulic structures -such as weir and sluice- are still operating to control the river
streamflow [13]. As depicted in figure 3.8, Brantas River Basin has about 0.08 to 0.10 m3/s per m2 riverine
discharge for return period of 100 years, in which shows a moderate potential hazard compared to the other
catchments. This condition becomes reasonable supported by the fact of many hydraulic structures were
built in the catchment. In addition to that, an alternative to merely evaluate Brantas River Basin would be
a valuable future research. Throughout this illustration, it could be concluded that this map is reasonably
useful to present a preliminary flood risk assessment.
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(a) Discharge map of Brantas River Basin (b) Network Brantas River Basin (Courtesy of Ramu [13])

Figure 3.8: Brantas River Basin, where is located in the East Java, has about 0.08 to 0.10 m3/s per m2 riverine discharge for return period
of 100 years, in which shows a moderate hazard compared to the other catchment. It could be evaluated by the presence of many

hydraulic structures within the basin

MEAN AND MODE SAMPLING RESULT – In order to solve the analytical copula, one way is to do a sampling
of the distribution and averaging the sampling result to get the final result. However, inferencing the model
using the mean data of the estimation might not be the best representation of the result. Instead of the using
mean sampling, the mode or most frequent value in the sampling would be used to represent the result of the
model. Figure 3.9 shows the generation of mean and mode sample as the result of the model.

The provision of Annual of Maximum Discharge with the most common data compared to the observation
shows a very similar coefficient of determination compared to the average value. However, the obtained order
of magnitude for the estimated discharge is underestimated in the mode system. On the other hand in the
mean system, the estimated discharge is overestimated. The NSE shows a significant change in the mode sys-
tem, with ten times smaller result. In conclusion, using mode as the estimator does not give any satisfactory
result compared to the mean with the same number of simulation generated in the script.
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(a) Mean sampling value

(b) Mode sampling value

Figure 3.9: Plot discharge with different sampling estimator method with x-axis represents the estimated Qmax and y-axis represent the
observation Qmax

CORRELATION BETWEEN AREA AND DISCHARGE – An alternative way to validate is to check the data dis-
tribution to ensure the quality of measured data, by plotting the area with respect to the discharge. Since
it is assumed to use natural flow, hence the larger catchment area results in higher discharge. From the BN
model, the highest hierarchy of another node for Maximum Discharge is the area of the catchment. It means
that area gives the highest influence in estimating maximum discharge. Hence it is worth to analyse the de-
pendency between two variables using semi-correlations to give an idea of the relationship between these
two variables. This is done by transforming the set of data into standard normal and dividing them into four
different parts. Then, computing the correlation of each part of the multivariate plot. Data is taken from the
yielded datasets that have been mentioned earlier and plotted in figure 3.10.

Based on figure 3.10, in general, the partial correlation behaves in favour with the hypothesis, and shows
a positive overall correlation of 0.78. Accordingly, it agrees that the larger the size of the catchment, it yields
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Figure 3.10: Correlation factor between area and maximum discharge

bigger river stream flow. On the other hand, a peculiar plotting data depicts on the North-West part, that has
a negative correlation of -0.33. It is also noticeable that there are two outliers, that could be reconsidered to
be included in the model. Apart from these variables, another nodes could be worth to be analysed in the
future research, to have an insight toward the behaviour of the spatial datasets.



4
Conclusion and Recommendation

4.1. Conclusion
BN as a robust statistic method has a powerful methodology to relate many aspects, in this case, related to
the estimation of maximum discharge. However, BN showed inferior performance on the application in Java
Island, especially compared to its predecessor cases like Europe and USA. The estimation of annual maxi-
mum discharge is overly valued, with R2 of 0.25 and NSE of -5.32. This might arise due to several reasons.
Bayesian Network model for the riverine flood was initiated based on larger catchment scale-based. On the
other hand, the size of Java Island is not as considerable as Europe and the US, in which against the assump-
tion of the model. Therefore, the model does not execute at its maximum performance. Furthermore, merely
229 discharge were used to evaluate the performance of the model. The number of data that been used to
validate is not adequate enough to represent the model. Apart from the performance of the model, several
points could be derived, such as:

• Six out of fourteen stations shows an underestimation results in the frequency analysis, which relatively
poor. On the other hand, the remaining stations show an overestimation.

• The resolution of the spatial datasets of Java Island is below par. In that sense, the derivation of the
flood hazard map which depends on this data, yield an inferior resolution. Nevertheless, the flood
hazard map is able to illustrate a very coarse representation of flood risk quantification.

• By changing the system of the sampling using mode – the value that appears most often – to generate
the result does not increase the performance of the model, compared to the mean sampling value.

4.2. Recommendation
There are still rooms for improvement for the further research. Throughout the process, several recommen-
dations could be mentioned out, as follow:

• BN model lies on the assumption of Standard Normal Copula or Gaussian due to its rapid calculations;
however, it may affect the behaviour of the model. Evaluating another type of copula would be another
solution to enhance the model.

• The exisiting land use nodes might not well contributed in Java Island. Adding more node that in favour
with the mechanism of the flood in Java Island would be another alternative to improve the perfor-
mance of the model. This approach was performed in the case of USA and did slightly improve the
model performance.

• Another flooding mechanism that takes place in Java Island might be different compared to the built
model. Most of the flooding problem that occurred was a flash flood that happens in a very short
duration. This is against the assumption of the model that is not suitable for the short duration.

• The most common issue working with the spatial datasets is the resolution that leads to the accuracy
of the model. It bestows more uncertainty to the model performance. Thus, quality assurance towards
the spatial datasets is a rewarding solution to ensure better performance of the model.
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A
Appendix - Time Series of River Discharge

In the chapter 3.1.4, it is mentioned that the discharge observation data were taken from GRDC (Global River
Dicharge Centre). In Java Island, there are fourteen recording stations spread throughout the island. The
initial time scale of the data is daily measurement, in contrary, we are intrested in annual maxima. Hence,
an extraction of annual daily maximum was perfomed to all stations. Each station has different period of
recording. In these following figure, the time series are plotted for each station with different time period. By
doing so, it gives the user a broad idea towards the order of the magnitude of annual daily river discharge in
the respective station.

(a) Station 5141050 (b) Station 5141150

(c) Station 5141201 (d) Station 5141250

Figure A.1: Time series of annual maximum river discharge
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(a) Station 5141300 (b) Station 5141350

(c) Station 5141400 (d) Station 5141450

(e) Station 5141500 (f) Station 5141550

(g) Station 5141600 (h) Station 5141650

Figure A.2: Time series of annual maximum river discharge
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(a) Station 5141700 (b) Station 5141750

Figure A.3: Time series of annual maximum river discharge
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