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• This study presents a scenario-based
flood risk assessment approach.

• There will be a substantial increase in
flooded urban areas in the future.

• Croplands and built-up areas are more
sensitive to the increased risk of floods.
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Scenario-based planning
Preparing cities for sea-level rise is one of the critical challenges of the twenty-first century. Extreme weather
events, natural hazards, and the failure of climate mitigation and adaptation are substantial risks. These risks
are especially significant in fast-urbanizing deltas, such as the Pearl River Delta in China, because the conflict be-
tween urbanization and flooding caused by climate changewill bemore significant in the future. This paper elab-
orates on an approach that employs a future land-use simulation (FLUS) model for scenario-based 100-year
coastal flood risk assessment. Storylines of future scenarios from the Intergovernmental Panel on Climate Change
(IPCC), called the representative concentration pathways (RCPs) 2.6 and 8.5, are utilized in the present study. The
GuangzhouMetropolitan Area (GMA) is used as a case study to explore the probable implications of future land-
use changes due to the ongoing urbanization process in the region in relation to projected environmental
changes (sea-level rise, storm surge, and land subsidence). The results indicate that there will be a significant in-
crease in flooded urban areas in the future. The simulations show that, as compared to 2015, the built-up area in
the GMAwill increase by 246.57 km2 in 2030 and 513.03 km2 in 2050. As compared to 2015, theflooding of built-
up areas in 2030 and 2050 will respectively increase by about 31.32 km2 and 48.49 km2 under the RCP 8.5 sce-
nario. It is also found that, as the main driving factor, urbanization will increase the flooding of built-up areas
in Guangzhou in 2030 and 2050 by about 1.9 km2 and 5.9 km2, respectively, under the RCP 2.6 scenario as com-
pared to 2015. Additionally, due to environmental changes, the flooding of built-up areas in Guangzhou will
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increase by about 24.2 km2 and 26.8 km2, respectively, under the RCP 8.5 scenario by 2030 and 2050 as compared
to 2015. This increasing flood risk information determined by the simulation provides insight into the spatial dis-
tribution of future flood-prone urban areas to facilitate the development and prioritization of flood mitigation
measures at the most critical locations in the region.

© 2020 Published by Elsevier B.V.
1. Introduction

Climate change and urbanization are critical challenges in the
twenty-first century (Carter, 2018; Hinkel et al., 2014; Pecl et al.,
2017;). Coastal flooding and waterlogging have produced widespread
and significant effects all over the world, especially in urban deltas
(Francesca-Huidobro et al., 2017; Jongman et al., 2012; Meyer et al.,
2017; Tessler et al., 2015). Due to the advantages of their geographical
positions and the availability of natural resources, such as fertile land,
deltaic areas have become prominent for human society and economic
and cultural activities (Meyer and Nijhuis, 2013). Currently, about 25%
of the world's population lives in coastal cities such as Lagos, Hong
Kong, Rotterdam, and Guangzhou, which are mostly located in deltas
and estuaries of significant rivers (Syvitski et al., 2005). The Fifth Assess-
ment Report of the Intergovernmental Panel on Climate Change (IPCC)
estimates a sea-level rise that ranges from 0.45 to 0.82 m in 2100, fol-
lowing the representative concentration pathway (RCP) 8.5 scenario
(Hinkel et al., 2015). Even if humans adopt measures to reduce emis-
sions, global sea levels will continue to rise (Meehl et al., 2012). Addi-
tionally, if the effects of land subsidence are taken into account, the
impact of sea-level rise in the future will be even more significant
(Vousdoukas et al., 2018). Globally, 85% of deltas have already experi-
enced severe flooding in recent years, with the temporary submergence
of approximately 260,000 km2 of land (Syvitski et al., 2009).

In fast-urbanizing deltas, such as the Pearl River Delta in China, the
conflict between urbanization and flooding caused by climate change
will be particularly significant in the future. Therefore, climate adapta-
tion andmitigation are priority issues to safeguard the economic devel-
opment and livability of urbanizing deltas, and there is a need for
knowledge and tools to address the conflict between urbanization and
flood risk (Carter et al., 2015; Haynes et al., 2018; Wang et al., 2015;
Wu et al., 2017). For example, current climate adaptation policies do
not address the spatial consequences of flooding (Berke et al., 2019;
Lai et al., 2016). Additionally, some of the spatial changes are associated
with the urbanization process, such as land-use change, as demon-
strated by Szwagrzyk et al. (2018) and Gori et al. (2019), both of
which consider future land-use change in theflood risk assessment pro-
cess. However, these studies do not take into account factors for land-
use change using multi-resources data (social economy data, traffic
data, points of interest (POI), environmental factors, and planning con-
straints) in relation to flood risk (Feng et al., 2018b; Long and Wu,
2016). The lack of awareness of the consequences of flooding results
in insufficient government investments in climate adaptation actions
(Gill and Lange, 2015; Reckien et al., 2018). Thus, there is an urgent
need for more comprehensive approaches that take into account the
complexity of the parameters involved in urbanization in relation to
flood risk.

As a basis for the planning and design of flood risk mitigation, com-
putational scenario-based assessment is a powerful and integrative ap-
proach bywhich to dealwith the complexity of the involved parameters
and to identify the most vulnerable locations (Feng et al., 2018a; Long
et al., 2014; Lai et al., 2020). For example, Muis et al. (2015) used a
land-change model based on GEOMOD to assess future flood risk and
adaptation strategies in Indonesia. Mustafa et al. (2018) studied the ef-
fects of spatial planning and future flood risk in the Wallonia region in
Belgium using an agent-based model (ABM). Cellular automata (CA)-
based Markov chain modeling, LUCIA modeling, and the Land-use
Scanner have also been successfully applied (Bouwer et al., 2010; Feng
and Liu, 2016; Hansen, 2010; Lang et al., 2018; Lu et al., 2018).

This paper elaborates on an approach that employs a future land-use
simulation (FLUS) model for computational scenario-based flood risk
assessment. The FLUS model interactively combines an artificial intelli-
gence approach (an artificial neural network, ANN) and a CA model to
simulate nonlinear land-use change while taking into account parame-
ters related to the environment, social economy, climate change, etc. (Li
et al., 2017). The model also employs self-adaptive and competitive
mechanisms to stimulate the complex interactions of different land-
use types, including neighborhood influence, weight factors, self-
adaptive land inertia, conversion costs, and roulette wheel selection
(Li et al., 2017). The FLUSmodel has a high simulation accuracy as com-
pared with other mainstream land-use change models, such as CA
models and CLUE-S (Liu et al., 2017). This study also exemplifies the in-
tegration of the FLUS model with environmental change-based storm
surge inundation. The Guangzhou Metropolitan Area (GMA) located in
the Pearl River Delta in China, one of the fastest urbanizing deltas in
the world, is used as a case study to explore the probable implications
of future land-use changes due to the ongoing urbanization process in
the region in relation to projected environmental changes (sea-level
rise, storm surge, and land subsidence). The findings of this research
can aid in the development of effective spatial strategies for climate-
adaptive urban development.

2. Materials and methods

2.1. Study area

The Guangzhou Metropolitan Area (GMA) covers an area of
7434 km2 (Fig. 1) and has a high population density as compared to
other metropolitan areas in the world. The area has a subtropical mon-
soon climate. From 1979 to 2013, the built-up areas in Guangzhou in-
creased by 1512.25 km2 (Wu et al., 2016). During the process of rapid
urbanization, dispersed urban development has a great impact on the
water management and ecological and cultural values of the
ecological-agricultural dike-pond system that is characteristic of the
western inner delta (Liu et al., 2020). The land reclamation and sand
mining activities in the estuaries reduce their ability to naturally cush-
ion storm surge flooding and absorb river water from the hinterland
(Xiong and Nijhuis, 2019). Due to subsidence, climate change, etc.,
Guangzhou flooding loss is projected to rank first of the 136 port cities
in the world in 2050 (Hallegatte et al., 2013). According to the Guang-
dong province 100-year coastal flooding comprehensive assessment,
the south area of Guangzhou was found to be at extremely high-risk
(LI and LI, 2013). Additionally, increasing sea-level rise, the increasing
frequency and intensity of storm surge, and land subsidence in combi-
nation with urban development in flood-prone areas make Guangzhou
one of themost vulnerablemetropolitan regions for flood risk in the up-
coming decades (Hallegatte et al., 2013; Han et al., 2010; Zhang, 2009).

2.2. Data

Social, economic, and transportation parameters, as well as impor-
tant POI, environmental factors, and planning constraints, were deter-
mined to be spatial factors of the flood risk assessment of the GMA.
Land-use data of the years 2010 and 2015 supplied by the Data Center



Fig. 1. The study area of Guangzhou City.
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for Resources and Environmental Sciences of the Chinese Academy of
Sciences was used as the basis for the analysis, and a manual visual cor-
rection of the raw land-use data was conducted. The classification
scheme developed by the Chinese Academy of Sciences was utilized,
and six types of land use, namely cropland, woodland, grassland,
water areas, built-up land, and unused land, were identified (Liu et al.,
2003). The Shuttle Radar Topography Mission (SRTM) digital elevation
model (DEM), which has a 30-meter resolution, served as the basis for
data on terrain heights and the calculation of slopes and aspects. Data
on the soil characteristics (e.g., clay content, slit content, sand content,
and type of soil), temperature, precipitation, gross domestic product
(GDP), and population were provided by the Data Center for Resources
and Environmental Sciences of the Chinese Academy of Sciences. Traffic
data were collected from open-source data retrieved from
OpenStreetMap (OSM). POI data were extracted from Gaode Map. The
limiting factors of space were considered to be the basic ecological con-
trol line and permanent basic cropland as outlined in the 2017–2035
Guangzhou City Master Plan. An unified coordinate transformation
was performed with ArcGIS. POI and traffic data were calculated using
the ArcGIS Euclidean distance. All materials were converted into
100 × 100-m grid data via resampling. All data sources are listed in
Table 1.

2.3. Methodology

The presented approach for scenario-based flood risk assessment in
urbanizing deltas is the integration of the FLUS model, a Markov chain
model, and ArcGIS. The FLUS model is an improved future land-use
change model proposed by Sun Yat-Sen University, which includes a
top-down land-use change prediction model and a down-top CA
model. It can solve complex land-use demand projection and land-use
allocation issues. Additionally, an ANNmodel is embedded to train non-
linear relationships between historical land-use types and complex
driving factors, which can be used to calculate the probability of distri-
bution. A self-adaptive inertia and competition mechanism is also de-
signed to stimulate the complexity of transformation between
different land-use types. A Markov chain model is used to predict
land-use demand in a business-as-usual (BAU) scenario, which is one
of the crucial data inputs in the FLUS model. Finally, the ArcGIS overlay
function is used to analyze coastal flooding and the impacts of urbaniza-
tion and environmental changes under the RCP 2.6 and 8.5 scenarios in
2030 and 2050. The overall framework of scenario-based future flood
risk assessment is illustrated in Fig. 2.

In the framework, the FLUS model and Markov chain model are
designed to stimulate complexity and dynamic land-use change pro-
cesses through 2050 while considering 25 factors, which include
planning policy factors and land-use data from 2010 and 2015.
Moreover, this study considers environment change factors (sea-
level rise, storm surge, and land subsidence), and the scenarios of
coastal flooding are divided into the RCP 2.6 and 8.5 scenarios in
2030 and 2050. Finally, via ArcGIS spatial analysis, the flooding of dif-
ferent land types are calculated employing different flooding scenar-
ios. The present work therefore provides an opportunity to
determine a comprehensive and adaptive path, such as flood risk
management, in delta areas based on the proposed scenario-based
flood risk assessment framework.



Table 1
The sources of data used in this study.

No. Data type Description Source Resolution

1 Land use 2010, 2015 land use www.resdc.cn 30 m
2 Social economy 2015 GDP and population data www.resdc.cn 1 km
3 Elevation DEM www.gscloud.cn 30 m
4 Traffic Highway, primary, secondary, and other roads www.openstreetmap.org
5 Points of interest Region centers, businesses, airports, bus stations, city center, gardens, education centers, residential areas,

subway stations, and train stations
https://lbs.amap.com/

6 Environmental
factors

Slope and aspect DEM 30 m
Clay content, slit content, sand content, type of soil, temperature, and precipitation www.resdc.cn 1 km

7 Planning
constraints

The basic ecological control line and permanent basic cropland 2017–2035 Guangzhou
City Master Plan

Fig. 2. The overall framework of scenario-based future flood risk assessment.

Table 2
Results of land-use forecast (grid of 100 × 100 m).

Year Cropland Woodland Grassland Water
area

Built-up
land

Unused
land

2015 210,224 304,329 9641 71,128 145,387 220
2030 195,407 297,158 9758 68,323 170,044 239
2050 180,780 288,087 9854 65,264 196,690 254
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2.3.1. Markov chain model
The Markov chain model is based on stochastic process theory (Lu

et al., 2018); it predicts dynamic variation characteristics and is charac-
terized by both high operational precision and high prediction accuracy.
It has beenwidely used in the prediction of land-use changes (Arsanjani
et al., 2013; Gounaridis et al., 2019; Keshtkar and Voigt, 2016).

In this study, land-use information from 2010 and 2015 was ex-
tracted, and the Markov model transfer matrix was used to analyze
the mutual transformation relationship of different land-use types,
from which the conversion probability matrix of land conversion was
calculated. The formula is as follows:

P ¼ P11 ⋯ P1n ⋮⋯⋮Pn1⋯Pnn½ � ð1Þ

where n is the number of land-use types and Pij is the transition proba-
bility that land-use type i is converted to land-use type j; Pij must meet
the following two requirements: 0 ≤ Pij ≤ 1, .

The total amounts of future land-use types in 2030 and 2050 were
predicted with five years as the step of the transformation matrix, and
the findings are reported in Table 2.
2.3.2. The FLUS model and accuracy verification
The FLUS model is a land-use change simulation model that com-

bines deep learningwith CA and neural networks. Liu et al. (2017) pub-
lished the working mechanism of the FLUS model, which considers
neighborhood influence, weight factors, self-adaptive land inertia, and
conversion costs; themodel was found to achieve higher simulation ac-
curacy than the CA and CLUE-S models. Since its proposition, the FLUS
model has been applied to research at different scales and for different
purposes, such as the delineation of urban growth boundaries, land-
use projections under global socioeconomic and emission scenarios,
and functional connectivity under urban expansion scenarios (Dong
et al., 2018; Huang et al., 2018; Liang et al., 2018).

http://www.resdc.cn
http://www.resdc.cn
http://www.gscloud.cn
http://www.openstreetmap.org
https://lbs.amap.com/
http://www.resdc.cn
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Therefore, the FLUS model was adopted for spatial simulation in the
present study. First, according to the land-use types in mainland China,
land usewas divided into six classes. Additionally, via the reverse neural
networkmodel, a three-layer BP-ANNmodel was adopted. Twenty-five
spatial driving factors (including data on the social economy, DEM, traf-
fic, points of interest, and environmental factors) were selected to train
the ANNmodel (see Table 1). Therewere 6 output layers corresponding
to the six types of land use. The model was trained on driving factors
and land-use data to obtain a probability distribution map. Second, the
adaptive inertial competition module of the FLUS model was used to
simulate the land-use change in 2015 with the land use in 2010 as the
starting year, and the simulation results were compared with the real
2015 land-use map via a Kappa test, as follows:

Kappa ¼ P0−Pcð Þ= Pp−Pc
� � ð2Þ

where P0 represents the correct proportion of the simulation, Pc repre-
sents the correct proportion of the model in the random case, and Pp
represents the proportion of the correct simulation in the case of ideal
classification. The verification results revealed that the overall accuracy
and kappa coefficient reached 94.25% and 91.81%, respectively. This
demonstrates that the accuracy of the simulationmet the requirements,
and that themodel can realistically reflect the rule of land-use change in
Guangzhou. The simulation results are therefore reliable and can be
used for future prediction in 2030 and 2050.
2.3.3. Design of future coastal flooding scenarios
Future coastal flooding is affected by numerous complex factors,

such as storm surge and sea-level rise. Storm surge is associated with
low-pressure weather systems, such as tropical cyclones and intense
extratropical cyclones, and sea-level rise is related to the future emis-
sion path, which is deeply uncertain. Therefore, the prediction of future
changes based on historical monitoring data is an effective way to re-
duce uncertainty. He et al. (2015) used the EEMD-BP (ensemble empir-
ical mode decomposition-back propagation) model to predict future
sea-level rises in the Pearl River Delta via historical sea-level data from
1959 to 2011 acquired from the Zhapo monitoring station. Li and Li
(2013) and Li and Li (2010) previously published articles about the
risks of storm surge in the Pearl River Delta based on historical monitor-
ing data. Based on this, Kang et al. (2016) integrated the findings to
evaluate future farmland losses via historical sea-level rise and storm
surge data in the Pearl River Delta, and categorized 1-in-100-year
storm surge data into low- and high-estimation scenarios in 2030,
2050, and 2100.

In the present study, the data from Kang et al. (2016)was employed
as the input of the scenario design. However, this data did not consider
land subsidence, which is an essential factor in delta areas. With refer-
ence to the research of Hallegatte et al. (2013) on flooding loss in the
major coastal cities, the values of land subsidence in 2030 and 2050
were selected to be 0.2 m and 0.4 m, respectively. In the 2015 scenario,
the height of the storm surge in a 1-in-100-year storm was 3.01 m (Li
and Li, 2010). This study utilized similar storylines of future scenarios
from the IPCC, namely the RCP 2.6 and 8.5 scenarios. For the 2030 and
2050 scenarios, the RCP 2.6 and 8.5 scenarios were respectively defined
to correspond to the low- and high-estimation scenarios of Kang et al.
(2016) (see Table 3).
Table 3
Different future coastal flooding scenarios in 2030 and 2050.

Scenario 2030 2050

RCP 2.6 3.43 m 3.69 m
RCP 8.5 4.70 m 4.98 m
3. Results

3.1. Future spatial-temporal land-use change in Guangzhou

Due to the construction of infrastructure, the effect of radiation in
the surrounding area, the flat terrain, and sufficient room for develop-
ment and utilization in terms of policy restrictions, there was urban
sprawl in the western and southern regions (see Fig. 3). Overall, the
built-up land areas in 2030 and 2050 were respectively projected to in-
crease by 246.57 km2 and 513.03 km2 as compared to 2015, accounting
for approximately 3.33% and 6.92% of the total area. Themost significant
reduction was found for cropland, which was predicted to decrease by
148.17 km2 and 294.44 km2 as compared to 2015, respectively, in
2030 and 2050, accounting for approximately 2.00% and 3.97% of the
total area. The mountain terrain in the northern region is not suitable
for large-scale development. Additionally, large amounts of mountain-
ous land and farmland in the region are listed as ecological protection
areas, so the growth of these areas is not expected.

3.2. Analysis of different scenarios

The elevation data was enhanced to improve the accuracy of the
flood prediction. In this study, 2-m contourswere created via the ArcGIS
“create contour” function from the 30-m evaluation. Then, 10-m-
precisionDEMdatawere created by the “Create TIN” and “TIN to Raster”
functions from the 2-m contour data. To prevent the overestimation of
the submersion values, only areas connected to a bodyofwaterwere se-
lected as the submerged range. Additionally, the ArcGIS “raster calcula-
tor” function was used to extract different land types inundated in the
GMA (see Fig. 4). From 2030 to 2050, with the consideration of sea-
level rise and storm surge, the inundations of various classes of land in
Guangzhou exhibited increasing trends, and the increase of agricultural
land was the most obvious. Specifically, the inundation of water land
was found to be the largest (297.64 km2, accounting for approximately
86.44% of the total inundation area) under the RCP 2.6 scenario in 2030.
Cropland and built-up land are the other two primary types of calcula-
tions used for submerged areas; the inundations of these land types
were calculated to be 27.28 km2 and 17.94 km2, respectively, account-
ing for approximately 7.92% and 5.21% of the total inundation area
under the RCP 2.6 scenario in 2030. Under the RCP 8.5 scenario, the
flooding of built-up areas in 2030 and 2050 was respectively calculated
to cover about 46.39 km2 and 63.56 km2, accounting for approximately
9% and 12% of the total flooded areas in these years. As compared to
2015, the flooding of built-up areas under the RCP 8.5 scenario was cal-
culated to increase by about 31.32 km2 and 48.49 km2 in 2030 and 2050,
respectively. Further, with the continuation of time and under different
scenarios, the exposure of various types of land was found to increase,
and built-up land and croplandwere predicted to be themost impacted.
The exposure of cropland in 2030 under the RCP 8.5 scenario was found
to be 101.91 km2 greater than that under the RCP 2.6 scenario. The ex-
posure of built-up land in 2030 under the RCP 8.5 scenario was found
to be 28.45 km2 greater than that under the RCP 2.6 scenario. In 2050,
the exposures of cropland and built-up areas were also predicted to be
the most dominant; under the RCP 2.6 scenario, the exposures of crop-
land and built-up land were respectively predicted to be 27.76 km2 and
22.52 km2. Additionally, as compared to the RCP 2.6 scenario in 2050,
the exposures of cropland and built-up areas were found to increase
by 101.76 km2 and 41.04 km2, respectively, under the RCP 8.5 scenario.

3.3. Impacts of urbanization and environmental changes on built-up land
exposure

By comparing the scenarios in 2015, 2030, and 2050, it is evident
that the exposures of various types of land exhibit increasing trends
with time, and the two most important factors of the exposure of
built-up land are urbanization and environmental changes. Therefore,



Fig. 3. Land-use simulation results.
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the impacts of these two factors were investigated, as presented in
Figs. 5 and 6. It was found that, as the main driving factor, urbanization
will result in the increase of the flooding of built-up areas in Guangzhou
by 1.9 km2 and 5.9 km2 under the RCP 2.6 scenario in 2030 and 2050, re-
spectively, as compared to 2015. Due to environmental changes, the
flooding of built-up areas in Guangzhou was projected to increase by
24.2 km2 and 26.8 km2 under the RCP 8.5 scenario in 2030 and 2050, re-
spectively, as compared to 2015. Whether under the RCP 2.6 or 8.5 sce-
nario, the impact of urban expansion was projected to increase over
time. Under the RCP 8.5 scenario in 2030, the land area that will be ex-
posed due to environmental change was found to be over 17.1 km2

greater than that which will be exposed due to urban development;
under the RCP 8.5 scenario, this gap was found to narrow to approxi-
mately 5.1 km2 in 2050. These two factors were found to be the primary
contributors to the exposure of built-up land, together accounting for
about 76% of the total. Overall, the impacts of urban expansion and en-
vironmental changes should be the foremost targets for future coastal
flood risk management. Under the RCP 8.5 scenario, environmental
changes are the priority for policy development and spatial planning.
Additionally, urban expansion restrictions are crucial for informing the
long-term goals of climate-adaptive governance.

4. Discussion

The analysis of the confrontation of future urbanization processes
and environmental changes, such as sea-level rise due to climate change
is essential for the development of more resilient urban deltas, and the
relationships between these factors are complex anddynamic. As exem-
plified by the present study, computational scenario-based assessment
is a powerful and integrative approach that can handle the complexity
of the involved parameters, and is a useful method for the identification
of themost vulnerable locations as a basis for the planning and design of
flood risk mitigation efforts.

4.1. Evaluation and related uncertainties of the proposed approach

The proposed approach provides a practical and comprehensiveway
to deal with the complexity and dynamics related to urbanization
(urban sprawl) and environmental changes (sea-level rise, storm
surge, and land subsidence). First, the FLUS model embedded with an
ANN can efficiently integrate the relationship between all driving fac-
tors and land-use changes, and can therefore obtain more realistic sim-
ulation results. Second, storm surge is affected by many factors,
e.g., climate change, tropical cyclones, sea-level rise, etc. Therefore, his-
torical sea-level monitoring data of the Pearl River Delta was employed
as input data for scenario design in the present study, which is a useful
way to consider these complex factors. Further, based on the scenario,
the analysis of future flood risk due to environmental changes and ur-
banism can offer new insight with which to adjust future spatial
targeting. Therefore, the efficiency of the proposed future coastal flood
risk assessment framework to guide future flood risk management is
guaranteed.

The uncertainties of this approach result from the DEM and flood
modeling. The SRTM DEM is a type of digital surface model, and the
model elevation is usually higher than the actual value in built-up
areas due to the effects of buildings, whichwill affect the simulation re-
sults. As compared to the prediction of future coastalflooding risk by the
statistical analysis of historical data, hydrodynamic models, such as
MIKE, will obtain different stimulation results due to their different
data computation processes (Wu et al., 2018). The uncertainties from
different data resolutions and data sources, such as transformation by
resampling, can also result in errors. Overall, although uncertainties
cannot be avoided in the assessment of coastal flood risks, the deviation
of the outputs of the proposed approach is acceptable, and scenario
analyses are deemed satisfactory for future coastal flood risk prediction.
4.2. Review of simulation results

By applying the proposed framework to data from Guangzhou,
China, it was found that both cropland and built-up land will be sensi-
tive to future changes. This is primarily because most of the low-lying
areas in the southern region are cropland, and urban expansion extends
to floodplain areas. Additionally, grasslands are primarily concentrated
in high-altitude areas, so they will not experience a significant impact
in future scenarios. Moreover, cropland is the main type of land in low-
land areas; thus, although the amount of cropland will decrease in the
future, the flooding of cropland will still inevitability increase.



Fig. 4. Simulation results of different scenarios in 2030 and 2050.
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As expected, the simulation revealed that the main flooding areas
are often near the main river. The reason for this is that current spatial
planning seldom considers flood risk, andmainly focuses on the protec-
tion of ecology such as permanent basic farmland. It was found that,
under the RCP 2.6 and 8.5 scenarios, urbanization and environment
changes (sea-level rise, storm surge, and land subsidence) are respec-
tively the main driving factors for the flooding of built-up land areas.

Thus, in consideration of the deep uncertainty related to future dy-
namic changes in the GMA, the results of the present study can help
decision-makers to understand future coastal flooding characteristics
and verify whether current preparation measures for climate adapta-
tion are sufficient. The findings can also promote interdisciplinary coop-
eration with all stakeholders and authorities to manage future flood
risks. Depending on the future development pathways of urbanization
and environmental changes, policies can be endowed with more resil-
ience and flexibility and thus greater cost-benefit characteristics,
which may be a process of nonlinear and review by repetition.
4.3. Flood adaptation strategies and policies

In the twenty-first century, preparing cities for coastal flooding is a
critical challenge, and the relevant authorities require guidance from
risk analysis to define flood adaptation strategies and policies. The pres-
ent study can support decision-makers to decide how to invest in adap-
tivemeasures that avoid unnecessary flood defenses and the limiting of
economic development (spatial limitation in inundation areas). In the
near future, the GMA must consider increasing engineering measures
and spatial planning, such as its drainage system, sluice gates, and
flood buffer zones, in the increasing inundation areas to support urban
development. Recently Liu et al. (2019) and Sajjad et al. (2018) argued
that nature-based and hybrid (nature engineering mixed) approaches
towards climate change adaptationmeasures have amultitude of bene-
fits. Therefore theGMAneeds to include and prioritize conservation and
restoration of coastal natural systems, such as coastal wetlands, man-
groves and dune ecosystems, in policy and regulations.



Fig. 5. Analysis of the impacts of urbanization and environmental changes on the exposure of built-up land in 2030.
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A flexible and multi-spatial-scale flood management scheme must
be considered for both current and developing built-up areas. Socio-
economic development and land-use functions also require dynamic
adjustment for future flooding scenarios. For example, the economic
model of agriculture may transform into a model of aquaculture. Re-
garding the planning of building types, it is suggested that the GMA im-
plement a compacted urban structure and develop innovations in
construction techniques, such as floating buildings. In addition, to en-
sure safety, the GMA must establish an emergency strategy for flood
risk management that includes evacuation routes, rescue systems, and
assistance mechanisms. Overall, the applicable approach for the GMA
may provide guidance for coastal flood risk management in other cities.

4.4. Limitations and future work

Because of the focus on estuaries and not on inner deltas,
waterlogging and the defense of the regional dike system, which are
also severe challenges to Guangzhou due to the change of future precip-
itation patterns, were not discussed in the present study. Additionally,
the FLUSmodel did not take into account future flood riskmanagement
in the urban environment, whichmay lead to anoverestimation offlood
risk. Thus, more research must be conducted in the future when solid
data is available. Additionally, land-use forecasts via socioeconomic
pathways (SSPs) will make this approach more realistic and able to as-
sume different urbanization scenarios.

5. Conclusion

For the development of more resilient urban deltas, computational
scenario-based assessment was found to be a powerful approach for
the determination of the locationsmost vulnerable to flood risk. By con-
sidering the effects of urbanization and environmental changes, the
model provided significant insights into the range and spatial distribu-
tion of flood risk in the GMA, and results indicate that there will be a
substantial increase of flooded urban areas in the future. The simula-
tions revealed that the built-up area will increase by 246.57 km2 in
2030 and 513.03 km2 in 2050 as compared to 2015. Under the RCP 8.5
scenario, the flooding of built-up areas in 2030 and 2050was calculated



Fig. 6. Analysis of the impact of urbanization and environmental changes on the exposure of built-up land in 2050.
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to cover about 46.39 km2 and 63.56 km2, respectively, accounting for
approximately 9% and 12% of the total flooded areas. As compared to
2015, the flooding of built-up areas was calculated to increase by
about 31.32 km2 and 48.49 km2 in 2030 and 2050, respectively, under
the RCP 8.5 scenario. It was also found that, as the main driving factor,
urbanization will increase the flooding of built-up areas in Guangzhou
by 1.9 km2 and 5.9 km2 under the RCP 2.6 scenario in 2030 and 2050, re-
spectively, as compared to 2015. Due to environmental changes, the
flooding of built-up areas in Guangzhou was predicted to increase by
24.2 km2 and 26.8 km2 under the RCP 8.5 scenario in 2030 and 2050, re-
spectively, as compared to 2015. This flood risk information determined
by the simulations provides insight into the spatial distribution of future
flood-prone urban areas in the region.

From the perspective of adaptive urban planning, scenario-based
flood risk assessment using the FLUS model not only facilitates a more
comprehensive understanding of the development of urbanizing deltas
and its related challenges, but also enables the prioritization of flood
mitigation measures at the most critical locations in the region.
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