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a b s t r a c t 

Recently, there is an increased interest in reactive flow in porous media, in groundwater, agricultural and 

fuel recovery applications. Reactive flow modeling involves vastly different reaction rates, i.e., differing 

by many orders of magnitude. Solving the ensuing model equations can be computationally intensive. 

Categorizing reactions according to their speeds makes it possible to greatly simplify the relevant model 

equations. Indeed some reactions proceed so slow that they can be disregarded. Other reactions occur so 

fast that they are well described by thermodynamic equilibrium in the time and spatial region of inter- 

est. At intermediate rates kinetics needs to be taken into account. In this paper, we categorize selected 

reactions as slow, fast or intermediate. We model 2D radially symmetric reactive flow with a reaction- 

convection-diffusion equation. We show that we can subdivide the PeDa II phasespace in three regions. 

Region I (slow reaction); reaction can be ignored, region II (intermediate reaction); initially kinetics need 

to be taken into account, region III (fast reaction); all reaction takes places in a very narrow region around 

the injection point. We investigate these aspects for a few specific examples. We compute the location 

in phase space of a few selected minerals depending on salinity and temperature. We note that the con- 

ditions, e.g., salinity and temperature may be essential for assigning the reaction to the correct region 

in phase space. The methodology described can be applied to any mineral precipitation/decomposition 

problem and consequently greatly simplifies reactive flow modeling in porous media. 

© 2020 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

The efficiency of improved or enhanced oil recovery (IOR/EOR)

rocesses is often influenced by the composition of the flowing

queous phase and is thus affected by the mass exchange between

uid and solid phases [1] . For example, the rheology of water-

oluble polymers or the magnitude of the interfacial-tension re-

uction by surfactants strongly depends on the ionic strength and

ardness (concentration of divalent cations) of the aqueous phase

nd strongly influence the displacement efficiency [2] . In recent

ears, the additional oil extracted by tuning the composition of the

njected water has led to more detailed investigation of the nature

f the interactions between the rock and the fluids residing in the

ore [3] . 

Additionally, dissolution and precipitation of minerals have a

onsiderable effect on the permeability of the reservoir [4] . The

ermeability impairment can lead to high circulation costs and loss

f injectivity [5] . Permeability impairment occurs both due to par-
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E-mail address: b.j.meulenbroek@tudelft.nl (B. Meulenbroek). 

s  

e  

e  

A  

ttps://doi.org/10.1016/j.ijheatmasstransfer.2020.119969 

017-9310/© 2020 The Authors. Published by Elsevier Ltd. This is an open access article u
icle release and subsequent retention [5] and precipitation of min-

rals [4] . 

When a fluid is injected into an oil reservoir, the chemical

pecies in the solution will interact with the species in the reser-

oir fluids contained in the pores and/or the substances on the

ock grains. As these species are subject to transport in the reser-

oir, in the numerical modelling of the process it is essential to

now the final composition of the solution at the end of each

imestep [6–8] . This is determined by how far the reactions are

ompleted within each grid cell during each timestep [7,8] . For fast

eactions, the front develops over a short distance, while for slow

eactions fronts develop over a longer distance from the injection

oint. 

Subsurface formations are composed of several minerals, which

dds another complexity in modelling of geochemical reactions

9,10] . The time required to reach equilibrium can vary from sec-

nds to (a few thousand) years for different minerals [11,12] .

herefore, in the numerical simulations, during a single time

tep, the concentration of some species could be over- or under-

stimated. There are two important methods in geo-chemical mod-

lling, viz., the Local Equilibrium Approach (LEA) and the Kinetic

pproach (KA) [13] . The LEA, which is the most common ap-
nder the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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proach in reactive transport modelling, assumes that the reactions

take place instantaneously and neglects the duration of the reac-

tion. This approach is preferred because of its simplicity and the

fact that it is computationally less expensive. However, the lo-

cal equilibrium approach may over- or underestimate the concen-

tration of the species in the solution, e.g., due to heterogeneity

[14–16] . 

Indeed, the reactions in nature do not always reach equilib-

rium within the time and space of interest. The Kinetic Approach

describes the time-dependency of the reactions. Some reactions

complete faster than others and therefore the assumption of lo-

cal equilibrium does not hold in some practical cases. For exam-

ple, in IOR/EOR applications, the injected fluid (which might be

in equilibrium itself) is usually out of equilibrium with the rock

(this is referred to as partial equilibrium) [1] . The reservoir rocks

consist of several components whose reactions with the injected

fluid have different rates. Therefore, the kinetics of the reactions

in this case determines the composition of the fluid (and conse-

quently the efficiency of the injected chemical). This poses chal-

lenges when the results of the lab-scale experiments are translated

to large-scale field applications, because different time and length

scales are involved. For this purpose, when the experiments are

modelled, special attention should be given to correctly calculate

the equilibrium time ( T eq ) and the equilibrium distance ( R eq ) of

the relevant minerals. These quantities are used as guidelines for

selection of the temporal and spatial resolution of the numerical

simulations. 

It is difficult (if not impossible) to develop a general upscal-

ing technique to account for the geochemical reactions in different

IOR/EOR processes. Apart from the geological uncertainties and the

intrinsic heterogeneity of the formations, the information on the

mineralogical composition of the rocks is scarce. Even if the miner-

alogy of the formation is partially known, the surface area available

for the reactions is hard to measure. Notably, the bulk mineralogi-

cal composition determined from X-Ray Diffraction (XRD) data can

significantly differ from the surface composition obtained by X-Ray

Photoelectron Spectroscopic (XPS) [17] . 

Therefore, it is suggested to follow a simpler approach, which

is process specific. In such an approach, only relevant minerals af-

fecting the efficiency of the process are listed. The main minerals

considered are Na (K, Ca) - silicate (carbonate) minerals (see [9–

12] for weathering rates). The particular interest is then to eval-

uate the time and distance that is required for the injected fluid

to reach the equilibrium state. The equilibrium time ( T eq ) and the

equilibrium distance ( R eq ) are indications of the temporal and spa-

tial resolutions of the simulations. 

It is therefore our objective to include mineral reactions in the

modeling of reactive flow in porous media. This problem can be

studied on two characteristic length scales R char : the well radius

and the reservoir size. This choice defines also a characteristic time

T char , see Section 2.3 . This gives the opportunity to study the equi-

librium length ( R eq ) and equilibrium time ( T eq ) of these reactions

with respect to the characteristic length and time. We distinguish

three possibilities (I) R eq � R char , the whole reservoir will be at the

injection concentration (II) R eq � R char , the reservoir will be at the

initial concentration and (III) R eq ~ R char , the concentration is vary-

ing throughout the whole reservoir. Note that in cases (I) and (II)

the reservoir can be considered at equilibrium and kinetics do not

have to be taken into account. 

The paper is organized as follows. Section 2 gives the physi-

cal model and model equations. In Section 2.6 the model equa-

tions are reduced to a second order ODE with boundary conditions.

Section 3 shows and compares analytical results for different val-

ues of the physical parameters. Section 4 computes R eq , and we

determine whether we are in case (I, II, III) for a given set of min-

erals. We end the paper with some conclusions in Section 5 . 
. Physical and mathematical model 

In this section we will present single phase transport and reac-

ion (dissolution and precipitation of the omni-present minerals),

sing a reaction convection diffusion model. In the model equa-

ions we will use capital letters for dimensional variables, variables

ith subscript c for characteristic scales and small letters for di-

ensionless variables. 

.1. Reaction rates 

The methodology presented in this work can be applied to gen-

ral dissolution/precipitation reactions. As illustration we consider

he following explicit reactions: 

K- feldspar: KAlSi 3 O 8 + 4 H 2 O + 4 H 

+ ↔ Al 3+ + 3 H 4 SiO 4 + K 

+ 

Kaolinite: Al 2 Si 2 O 5 (OH) 4 + 6 H 

+ ↔ H 2 O + 2 H 4 SiO 4 + 2 Al 3+ 

Anhydrite: CaSO 4 ↔ Ca 2+ + SO 

2 −
4 

Calcite : CaCO 3 ↔ Ca 2+ + CO 

2 −
3 

For the reaction rates S 1 we apply the often adopted simplifying

ssumption (see, however, [18] ) of using the law of mass action

nd obtain (see [10] ) 

 1 = κ(A 1 /V )(1 − IAP 

K 

) n , (1)

here IAP is the ionic activity product, K is the equilibrium con-

tant, 
A 1 
V [ m 

2 / m 

3 ] is the reactive surface area per cubic meter wa-

er; κ [ mol/ (m 

2 s ) ] is a temperature dependent rate constant. In

ractice the value of n is chosen to mimic experimentally deter-

ined reaction rates, and here chosen to be equal to one. The rate

onstant can be considered in its Arrhenius form 

= k 10 e 
−E a / (RT ) , (2)

here k 10 is the frequency factor, E a is the activation energy, R is

he gas constant and T is temperature in K . 

As concentration of interest, C , we use the dissolved ions, (e.g.,

l 3+ ) or dissolved molecules (e.g. H 4 SiO 4 ). Moreover we assume

hat the reactions occur independent of each other and that we

an single out one specific ion or molecule. This approach cannot

escribe the decomposition of the mineral, but does allow to clas-

ify reactions into slow, intermediate and fast reactions. 

We assume furthermore isothermal flow at constant pH , which

eans that we assume that the ion activity product is related to

he dissolved mineral concentration C , ”independent” of other con-

entrations, which are present in excess so that they can be as-

umed to be constant. Various temperatures and pH values can be

onsidered. Given its approximate nature it is not warranted to as-

ume non-linear dependences, and we assume that IAP is propor-

ional to C , i.e., 

AP ∼ C. (3)

We note that similar simplifying assumptions are made in the

iterature (see [7] ). We then lump the proportionality constant and

 together into the constant C 0 and obtain 

 1 = κ
A 1 

V 

(
1 − C 

C 0 

)
. (4)

etting A = 

A 1 
ρw V 

we have reactive surface in m 

2 /kg-water and S =
S 1 
ρw 

we obtain the reaction rate in [mol/kg-water / s] and we finally

btain 

 = Aκ
(

1 − C 

C 0 

)
. (5)

.2. Transport equations 

We assume incompressible flow, which means that we have the

ollowing equation for the interstitial velocity V 

 · V = 0 . (6)
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ransport is described with a reaction convection diffusion equa-

ion 

∂C 

∂T 
+ ∇ · (CV ) = D �C + S, (7)

here the reaction rate S is given in Section 2.1 . The concentra-

ion initially present in the reservoir is denoted by C 0 [mol / (kg-

ater)]; we assume that the reservoir initially is in equilibrium,

eaning that we disregard slow naturally occurring variations that

ake place after times longer than our timeframe of interest. This

eans that, from a practical point of view, the reservoir is initially

t the equilibrium concentration (at the initially present environ-

ental conditions). This means that reaction will take place if we

erturb the initial concentration C 0 to C . 

We are looking for radially symmetric solutions V =
 (r, t) ̂ r , C = C(r, t) , which means that equation (6) reduces to

1 

R 

∂ 

∂R 

( RV ) = 0 (8) 

nd equations (7) - (5) yield 

∂C 

∂T 
+ 

1 

R 

∂ 

∂R 

( RCV ) = D 

1 

R 

∂ 

∂R 

(
R 

∂C 

∂R 

)
+ Aκ(1 − C 

C 0 
) , (9)

hich reduces to 

∂C 

∂T 
+ V 

∂C 

∂R 

= D 

1 

R 

∂ 

∂R 

(
R 

∂C 

∂R 

)
+ Aκ(1 − C 

C 0 
) (10)

ecause 

∂ 

∂R 

( RCV ) = RV 

∂C 

∂R 

+ C 
∂RV 

∂R 

= RV 

∂C 

∂R 

(11)

ue to equation (8) . 

Equations (8) and (10) are made dimensionless using the char-

cteristic length R c , characteristic time T c (discussed below) and

he initial equilibrium concentration C 0 as follows: 

 = 

R 

R c 
, T = 

T 

T c 
⇒ v = V · T c 

R c 
(12) 

 = 

C − C 0 
C 0 

, (13) 

.e., c = 0 corresponds to the equilibrium concentration.

quation (8) reads in dimensionless form 

1 

r 

∂ 

∂r 
( rv ) = 0 ⇒ 

∂ 

∂r 
( rv ) = 0 (14)

nd equation (10) reads 

∂c 

∂t 
+ v 

∂c 

∂r 
= 

1 

P e 

1 

r 

∂ 

∂r 

(
r 
∂c 

∂r 

)
− Da I c, (15)

here we used the Peclet number 

 e = 

R 

2 
c 

DT c 
= 

V c R c 

D 

, (16)

hich denotes the ratio between convection and diffusion. We also

sed the first Damkohler number 

a I = 

AκT c 

C 0 
= 

AκR c 

C 0 V c 
, (17) 

hich denotes the ratio between reaction and convection. Further-

ore we will also use the Damkohler number II 

a II = P eDa I = 

AκR 

2 
c 

C 0 D 

, (18)

hich denotes the ratio between reaction and diffusion. 
.3. Discussion of the scales 

Two scales have to be chosen: the characteristic length R c and a

haracteristic interstitial velocity V c (or a characteristic time T c ).We

re mainly interested in clogging around the inlet, which means

hat we will set R c = R w 

(well radius) in our computations for the

eld scale. For reasons of flexibility we will maintain a general R c ,

o allow other choices, like R c = R res (reservoir radius). 

Solving equations (14) yields v = 

K 1 
r (where K 1 is a constant),

hich is in dimensional form 

 = V c R c 
K 1 

R 

;

his means that V varies throughout the reservoir and multiple rea-

onable choices for V c can be made. However, choosing the charac-

er velocity as the velocity at R w 

, i.e., V c = V (R w 

) implies that the

onstant K 1 = 1 which simplifies our expressions; in this work we

ill make this choice. 

Using the characteristic velocity V c and the characteristic length

 c we have the characteristic time 

 c = 

R c 

V c 
. (19) 

ote that the characteristic time depends on whether we choose

he reservoir radius or the well radius as our characteristic length. 

In Section 4 we will discuss the behaviour of four minerals (an-

ydrite, calcite, kaolinite, K-feldspar) under two conditions (low

alinity and alkaline flood) both at low injection velocity/low Pe

named ”field”) and higher injection velocity/higher Pe (named

experiment”). The field and experimental parameters are given in

ables 2 and 3 ; the parameters concerning the four minerals are

iven in Table 4 . 

.4. Summary of the mathematical model 

The governing equations are 

∂ 

∂r 
( rv ) = 0 (20) 

nd 

∂c 

∂t 
+ v 

∂c 

∂r 
= 

1 

P e 

1 

r 

∂ 

∂r 

(
r 
∂c 

∂r 

)
− Da I c. (21)

e inject a solution at concentration C = C in j 	 = C 0 at a constant

njection velocity at r = r w 

, i.e., 

 = V c 
R c 

R w 

at r = r w 

, (22)

.e., 

 = 

1 

r w 

at r = r w 

, (23)

his means that we have a Danckwerts boundary condition for the

oncentration at the well r = r w 

R w 
R c 

(note that rv is constant due to

quation (20) ) 

(rv ) c − 1 

P e 
·
(

r 
∂c 

∂r 

)
= (rv ) c � at r = r w 

, (24)

here c � is the dimensionless injection concentration 

 

� = 

C in j − C 0 

C 0 
. (25) 

or large values of Pe , the boundary condition (24) can be approx-

mated by 

 ≈ c � at r = r w 

, (26)
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Table 1 

Nomenclature; capital letters are used to denote dimensional variables, small letters are used to denote the 

corresponding dimensionless variables. 

variable description unit subscript 

A reactive surface area m 

2 /(kg-water) 0 initial 

C concentration mol/(kg-water) inj injection 

D diffusion coefficient m 

2 /s ss steady state 

Da I Damkohler number I (see Eq. 17 ) - tr transient 

Da II Damkohler number II (see Eq. 18 ) - 

Pe Peclet number (see Eq. 16 ) - w well 

R (radial) distance m res reservoir 

S reaction rate ( Eq. 5 ) [mol / (kg-water s)] 

T time [s] c characteristic 

V velocity m/s 

κ rate constant mol/(m 

2 s) 

Table 2 

Parameters and scales (field). 

well radius R w 10 −1 [m] 

reservoir radius R res 10 3 [m] 

characteristic length R c 10 −1 [m] 

characteristic velocity V c 10 −6 [m/s] 

diffusion coefficient D 10 −9 [m 

2 /s] 

Peclet number Pe 100 

Table 3 

Parameters and scales (experimental). 

characteristic length R c 10 −1 [m] 

characteristic velocity V c 5 · 10 −5 [m/s] 

diffusion coefficient D 10 −9 [m 

2 /s] 

Peclet number Pe 5000 
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which means that in this case the concentration is approximately

the injection concentration at r = r w 

. At r = r res we have 

∂c 

∂r 
= 0 , (27)

and at t = 0 we have the initial condition 

c = 0 at t = 0 . (28)

The dimensionless parameters Pe and Da I are given by 

P e = 

R c V c 

D 

, Da I = 

AκR c 

C 0 V c 
. (29)

Note that Pe is independent of the length scale chosen (because we

chose V c = V ( R w 

) and V ∼ 1 
R ), but that both Da I and Da II = Da I Pe

depend on the length scale. 

2.5. Final note on the length scale 

Besides that the Da I depends on the length scale, the location

of the boundary conditions depends on this choice as well. This

changes the nature of the solutions of our problem. 
Table 4 

Mineral parameters low sal. Alaska at 60 C (fiel

[19] . The Damkohler numbers are calculated us

mineral A [m 

2 /kgw] κ [m

Anhydrite (low sal.) 40 1 . 2 · 1

(alkaline) 40 1 . 2 · 1

Calcite (low sal.) 40 4 . 2 · 1

(alkaline) 40 4 . 2 · 1

Kaolinite (low sal.) 40 1 . 9 · 1

(alkaline) 40 1 . 9 · 1

K-Feldspar (low sal.) 40 3 . 11 ·
(alkaline) 40 3 . 11 ·
If we use R c = R w 

as our characteristic length scale, our bound-

ry conditions are at 

 = 

R w 

R w 

= 1 and r = 

R res 

R w 

≈ ∞ , (30)

hereas if we take R c = R res as our characteristic length scale we

ave our boundary conditions at 

 = 

R w 

R res 
≈ 0 and r = 

R res 

R res 
= 1 . (31)

his means that because the functional form of the solution will

hange - the problems at these two length scales should be treated

eparately. In this work we will focus on the R c = R w 

choice. 

.6. Analytical steady-state solution and transients 

In this section we will solve our problem (20) - (28) on the char-

cteristic scale R c = R w 

. 

The solution of the velocity profile is straightforward 

∂ 

∂r 
( rv ) = 0 , v (1) = 1 ⇒ v = 

1 

r 
. (32)

he solution of problem (20) - (28) is the superposition of a time

ndependent steady state profile and a transient profile, i.e., 

(r, t) = c ss (r) + c tr (r, t) , (33)

here the steady state satisfies a second order ODE 

dc ss 

dr 
= 

1 

P e 

d 

dr 

(
r 

dc ss 

dr 

)
− Da 1 rc ss , (34)

hich can be rewritten as 

d 2 c ss 

dr 2 
= 

(P e − 1) 

r 

dc ss 

dr 
+ Da 1 P ec ss . (35)

he boundary conditions (24) - (27) yield 

 ss − r dc ss = c � at r = 1 and 

dc ss = 0 as r → ∞ . (36)

P e dr dr 

d and experimental) and Alkali field, see 

ing equation (18) and Tables 2 and 3 . 

ol/(m 

2 s)] C 0 [mol/kgw] Da II 

0 −3 1 . 74 · 10 −2 2.7 · 10 7 

0 −3 4 . 7 · 10 −2 1.0 · 10 7 

0 −6 2 . 63 · 10 −3 6 · 10 5 

0 −6 9 . 4 · 10 −6 2 · 10 8 

0 −17 3 . 8 · 10 −6 2 · 10 −3 

0 −17 1 . 2 · 10 −3 4 . 7 · 10 −6 

10 −20 1 . 29 · 10 −4 1 . 1 · 10 −7 

10 −20 7 · 10 −4 2 . 2 · 10 −9 
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Fig. 1. Steady state concentration profile c ss as function of r (Regime A) for a fixed value of Pe = 10 5 and two values of Da II ; Da II = 10 −4 and Da II = 10 2 . 

Fig. 2. Steady state concentration profile c ss as function of r (Regime A) for a fixed value of Pe = 10 5 and Da II = 10 8 . Note the different scale on the r -axis compared to 

Fig. 1 . 
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or the transients we need to solve the initial value problem 

 

∂c tr 

∂t 
+ 

∂c tr 

∂r 
= 

1 

P e 

∂ 

∂r 

(
r 
∂c tr 

∂r 

)
− Da 1 rc tr (37)

ith boundary conditions 

 tr − r 

P e 

dc tr 

dr 
= 0 at r = 1 and 

dc tr 

dr 
= 0 as r → ∞ . (38)

nd initial condition 

 tr (r, 0) = −c ss (r) . (39)

he solution of the steady state problem is already sufficient to

nswer our research question; computation of the transients is not

ecessary in this paper. 

. Analytical steady-state solutions of the model equations 

Equations (35) - (36) determine c ss ( r ) for all values of Pe and

a II . Finding the complete explicit solution however is difficult due

he large variation in the values of the Pe and Da II . We will subdi-

ide the PeDa II − parameter space in three regimes and for each of

he three regimes we will determine (an approximation to) c ss ( r )

sing a different method. 

egime A Da II � Pe 2 , assumption A: c ss ( r ) ≈ c ss,A ( r ) 

Regime B Da II ~ Pe 2 , assumption B: c ss ( r ) ≈ c ss,B ( r ) 
2 
Regime C Da II � Pe , assumption C: c ss ( r ) ≈ c ss,C ( r ) W
Note that the assumption depends on the regime, i.e., we will

ave a different functional form of the approximation for each

egime. The solution for Regime A is given in Section 3.1 , the so-

ution for Regime B is given in Section 3.2 and the solution for

egime C is given in Section 3.3 . We then merge these results and

iscuss the full PeDa II -phasespace in Section 3.4 , using the appro-

riate approximations (A,B,C) for c ss in each point of the phases-

ace. 

.1. Regime a: Da II � Pe 2 

In Regime A the diffusion term 

d 2 c ss 

dr 2 
can be neglected and

quations (35) - (36) can now be simplified and solved (see

ppendix A.1 for details) and the final result is as follows 

 ss = c � e −α(r 2 −1) , α = 

Da II 
2(P e − 1) 

. (40)

n Figs. 1 and 2 we plot c ss ( r ) for a fixed Pe = 10 5 and three dif-

erent Da II numbers; Da II = 10 −4 , Da II = 10 2 and Da II = 10 8 . We ob-

erve three types of behaviour; for small Da II the whole reservoir is

lmost at the injection concentration, see the upper curve in Fig. 1 .

or high Da II the whole reservoir remains at initial concentration,

ee Fig. 2 and note the different scales on the r -axis. For intermedi-

te Da II we observe mixed behaviour, see the lower curve in Fig. 1 .

e will discuss this in more detail in Section 4 . 
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Fig. 3. Steady state concentration profile c ss as function of r (Regime B) for a fixed value of Pe = 10 1 and Da II = 10 2 . 

Fig. 4. Steady state concentration profile c ss as function of r (Regime B) for a fixed value of Pe = 10 4 and Da II = 10 8 . The figure seems similar to Fig. 3 . Note, however, the 

different scale on the r -axis compared to Fig. 3 . 
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3.2. Regime b: Da II ~ Pe 2 

In regime B we use the following rescaling of the radial coordi-

nate 

r = 1 + 

r̄ 

P e 
⇒ 

d 

dr 
= P e 

d 

d ̄r 
, (41)

to solve equations (35) - (36) . We find the following equation for c ss 

(see Appendix A.2 for a detailed derivation) 

c ss = 

c � 

1 − 1 
2 
( 
√ 

1 + 4 β − 1) 
e −

1 
2 ( 

√ 

1+4 β−1)(r−1) Pe , β = 

Da II 
P e 2 

. (42)

For small values of Da II we observe a non-horizontal profile (see

Fig. 3 ); for larger values of Da II the entire reservoir remains at the

initial concentration (see Fig. 4 ). 

3.3. Regime c Da II � Pe 2 

In Regime C the convection term 

(Pe −1) 
r 

dc ss 
dr 

can be neglected, as

we will show in Appendix A.3 . Solving equations ( (35) - (36) yields

(see Appendix A.3 for a detailed derivation) 

c ss = 

c � P e √ 

Da II 
e −

√ 

Da II (r−1) (43)

In this case we observe that the whole reservoir is at the ini-

tial concentration. Note that the width of the concentration layer
1 √ 

Da II 
; this width may become in the order of the pore length,

hich means that application of our Darcy scale model is ques-

ionable in this part of regime C. 

.4. Phase space 

In order to discuss the behaviour of c ss ( r ) we introduce the fol-

owing two distances: r 0.99 and r 0.01 (see Fig. 6 ). 

The distance r 0.99 is defined as follows: the reservoir is al-

ost at the injection concentration (99% of the injection concen-

ration or higher) until r = r 0 . 99 . This means that the whole reser-

oir is (eventually almost) at the injection concentration for large

 = r 0 . 99 . 

The distance r 0.01 is defined in a similar way: the reservoir is

lmost at the (zero) initial concentration (1% of the injection con-

entration or lower) after r = r 0 . 01 . Note that the parameter r 0.01 

s also a measure of the width of the concentration profile, see

ig. 6 ). This means that the reservoir remains at the initial con-

entration if this width r 0 . 01 − 1 is very small, i.e., r 0.01 ≈ 1. 

The distances r 0.99 and r 0.01 allow us to subdivide the full

eDa II -parameter space in four regions with distinct physical be-

aviour. 

For some values of ( Pe, Da II ) the reaction is so slow that the

hole reservoir is (eventually) at the injection concentration. We

ill call this subdomain of the ( Pe, Da ) phase space ”Region I”
II 
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Fig. 5. Steady state concentration profile c ss as function of r (Regime C) for a fixed value of Pe = 10 1 and Da II = 10 10 . Note the very fine scale on the r -axis, which runs from 

1.0 0 0 0–1.0 0 01. 

Fig. 6. The concentration profile c ss ( r ) for Pe = 10 3 and Da II = 10 2 (Regime B) The 

equilibrium distances r 0 . 99 = 1 . 4 and r 0 . 01 = 10 . 6 are shown as well. For 1 ≤ r ≤ r 0.99 

we have c ss ≈ c ss (1); this part of the reservoir is at injection concentration. For 

r ≥ r 0.01 we have c ss ≈ 0; this part of the reservoir is at the initial concentration. 
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1  
”no reaction”). Region I is characterized by high values of r 0.99 ;

or our figures we will use r 0 . 99 = 100 as boundary for Region I. 

High reaction rates lead to a situation where all reaction takes

lace at the inlet; almost no reaction takes place in the remain-

er of the reservoir, which remains at the initial concentration. We

ill call this subdomain of the ( Pe, Da II ) phase space ”Region III”

”equilibrium”). Region III is characterized by values of r 0.01 close

o one; for our figures we will use r 0 . 01 = 1 . 01 as boundary for Re-

ion III. 

The range of values of Pe and Da II in between Regions I and

II in the phasespace is called Region II (”kinetics”). In this part of

he phasespace c ss ( r ) is neither at the initial nor at the injection

oncentration but varies between these values. In this Region II ki-

etics has to be taken into account. 

Very high reaction rates may lead to a situation where the re-

ction takes places over distances over the order of a single pore

 char r 0 . 01 ∼ 10 −6 m. In this case the Darcy-approximation may be

uestionable. We will call this subdomain of the ( Pe, Da II ) phase

pace Region IV (”Darcy-Brinkman”). 

In summary: 

Region I (”no reaction”) The reaction rate is so low that

the reaction can be neglected. The

whole reservoir is eventually at the

injection concentration. 
Region II (”kinetics”) Intermediate reaction rate; kinetics 

have to be taken into account in the

whole reservoir. 

Region III (”equilibrium” High reaction rate; all reactions 

take place very close to the in-

let, where the concentration varies 

from injection to initial concentra- 

tion. Most of the reservoir remains

at the initial concentration. 

Region IV (”Darcy-Brinkman”) The width of the reaction zone be-

comes of the order of the poresize,

which means that our Darcy-scale 

equations may not hold anymore. 

. Quantitative behaviour of minerals in three regions of the 

hase space 

By way of example we choose three minerals that are represen-

ative for the three regions I, II, ad III. For all regions we introduce

 eq , being the time needed to reach the steady state. For regions II

nd III, we also introduce the equilibrium distance r eq ≈ r 0.01 . This

quilibrium distance r eq is the distance beyond which the reservoir

s (almost) at the initial concentration, see Fig. 6 . 

For an exact computation of the equilibrium time t eq the tran-

ient problem (37) - (39) has to be solved. We will not do so in this

aper; instead we estimate t eq using the solution of the velocity

rofile (32) . 

 = 

1 

r 
⇒ t = 

1 

2 

r 2 − 1 

2 

, (44)

hich means that we can associate a dimensionless equilibrium

ime t eq to an equilibrium distance as follows 

 eq = 

1 

2 

(r 2 eq − 1) . (45)

e will use equation (45) to estimate the equilibrium times in this

ection. 

In regions I-III, we observe the following three types of be-

aviour 

Region I no reaction; the reservoir is (depending on r and t ) ei-

ther at injection or at initial concentration. 

Region II r eq ≈ 1; kinetics have to be taken into account until

t ≈ t eq . However, for t � t eq the concentration profile

may be approximated by the steady state profile c ss ( r ). 

egion III r eq � 1; the whole reservoir remains at the initial con-

centration. 

.1. Discussion of K-Feldspar (regions i and II) 

For K-Feldspar we have Da II = 1 . 0 · 10 −7 (low sal) or Da II = 2 . 0 ·
0 −9 (alkaline pH > 7) (see Table 4 ). Using Fig. 7 (yellow dots)
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Fig. 7. The full PeDa II -phase space is subdivided in four regions, viz., region I (re- 

action can be neglected), region II (kinetics has to be takes into account), region III 

(fast convergence to chemical equilibrium) and region IV (application beyond Darcy 

scale). The red dotted lines only indicate the different mathematical approximations 

used. (For interpretation of the references to colour in this figure legend, the reader 

is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8. The position of four different minerals in the PeDa II -phasespace under three 

different conditions. In some cases (K-Feldspar, Kaolinite) the minerals are in the 

same region for all circumstances investigated, whereas in other cases (Calcite, An- 

hydrite) the region has to be determined on a case-by-case basis. 
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we observe that K-Feldspar is (mostly) in Region I in the PeDa II -

phasespace. This is confirmed by the computation of r 0.99 ; using

equation (40) we find for Pe = 10 2 , Da II = 1 . 0 · 10 −7 

c � e −α(r 2 0 . 99 −1) = 0 . 99 c � ⇒ r 0 . 99 ≈ 4 . 5 · 10 

3 

(for the other two cases r 0.99 is even bigger). This corresponds to

a dimensional distance R 0 . 99 = 450 m, which is of the order of the

size of the reservoir: eventually the whole reservoir is at the injec-

tion concentration. 

We can approximate the full time dependent concentration pro-

file (using equation (44) by 

c ss (r, t) = 

{
0 t < 

1 
2 
(r 2 − 1) 

c � t ≥ 1 
2 
(r 2 − 1) 

. (46)

This means that at, e.g., r = 10 (corresponding to 1 m) the concen-

tration is equal to zero until t = 

99 
2 (corresponding to T = 

99 
2 T c ≈

12 days) and equal to c � afterwards. 

4.2. Discussion of kaolinite (region II) 

For Kaolinite we have Da II = 2 . 0 · 10 −3 (low sal) or Da II = 5 . 0 ·
10 −6 (alkaline) (see Table 4 ). Using Fig. 7 (purple dots) we observe

that Kaolinite is in Region II in the PeDa II -phasespace. This is con-

firmed by the computation of r 0.99 ; using equation (40) we find for,

e.g., Pe = 10 2 , Da II = 2 . 0 · 10 −3 , 

c � e −α(r 2 0 . 01 −1) = 0 . 01 c � ⇒ r 0 . 01 ≈ 6 . 8 · 10 

2 . 

and 

c � e −α(r 2 0 . 99 −1) = 0 . 99 c � ⇒ r 0 . 99 ≈ 33 , 

which means that kinetics have to be taken into account into a

part of the reservoir (between 3.3 and 68 m) until the steady state
s reached. The time required to reach the (spatially dependent)

quilibrium solution can be estimated using equation (44) by 

 eq ≈ 1 

2 

(r 2 0 . 01 − 1) ≈ 2 . 3 · 10 

5 , 

hich corresponds to T eq = 2 . 5 · 10 5 days. This means that kinetics

as to be taken into account. 

.3. Discussion of calcite (boundary regions II and III) 

For Calcite we have Da II = 6 . 0 · 10 5 (low sal) or Da II = 2 . 0 · 10 8

alkaline) (see Table 4 ). Using Fig. 7 (green dots) we observe

hat Calcite is either in Region II or in Region III in the PeDa II -

hasespace. This is confirmed by the computation of r 0.01 ; using

quation (42) we find for Pe = 5 · 10 3 , Da II = 6 . 0 · 10 5 that 

 0 . 01 = 1 . 04 . 

he time required to reach the (spatially dependent) equilibrium

olution can be estimated using equation (44) 

 eq ≈ 1 

2 

(r 2 0 . 01 − 1) ≈ 0 . 04 

hich corresponds to T eq ≈ 0.05 days, i.e., roughly 1 h. This means

hat for 0 ≤ T ≤ T eq kinetics need to be taken into account. For

 ≥ T eq the steady state saturation profile (42) may be used. 

For the alkaline case we find ( Pe = 10 2 and Da II = 2 . 0 · 10 8 ) us-

ng equation (43) 

 0 . 01 = 1 . 0 0 03 , 

hich means that Calcite remains at the initial concentration in

his case. 

.4. Discussion of anhydrite (region III) 

For Anhydrite we have Da II = 2 . 7 · 10 7 (low sal) or Da II = 1 . 0 ·
0 7 (alkaline) (see Table 4 ). Using Fig. 7 (red dots) we observe that

nhydrite is in Region III in the PeDa II -phasespace. This is con-

rmed by the computation of r 0.01 ; using equation (43) we find

or Pe = 10 2 , Da II = 1 . 0 · 10 7 that 

 0 . 01 = 1 . 001 
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and smaller for the other cases), which means that Anhydrite re-

ains at the initial concentration in all cases. 

. Conclusion 

Reactive flow modeling involves vastly different reaction rates,

.e., differing by many orders of magnitude. Consequently some re-

ctions proceed so slow that in the time frame considered they

an be disregarded. Other reactions occur so fast that they are well

escribed by thermodynamic equilibrium in the time and spatial

egion of interest. Very fast and very slow reactions can be decou-

led from the reactions that occur at intermediate rates; at inter-

ediate rates kinetics needs to be taken into account. It is possi-

le to categorize selected reactions as slow, fast or intermediate.

e model 2D radially symmetric reactive flow with a reaction-

onvection-diffusion equation. Using the solution of the steady

tate profile we subdivide the PeDa II phasespace in three regions.

egion I (slow reaction); reaction can be ignored and minerals are

onvected along with the flow. The minerals are either at the in-

ection or initial concentration, depending on location and time.

egion III (fast reaction); all reaction takes places in a very narrow

egion around the injection point. The reservoir remains at the ini-

ial concentration beyond this narrow region. Kinetics can be ne-

lected in (almost) all of the computational domain. Finally, Region

I (intermediate reaction); initially kinetics need to be taken into

ccount. Eventually, beyond an equilibrium time a spatially depen-

ent concentration profile is reached; after this equilibrium time,

hich can be much longer than the time of interest this concen-

ration profile can be used; so in general kinetics has to be taken

nto account. We show in explicit examples, the location in phase

pace of a few selected minerals depending on salinity, pH and

emperature. The computation of the Pe and Da II numbers for a

any) specific process makes it possible to determine in which of

he Regimes I-III a process is, i.e., for which time window kinet-

cs has to be taken into account. We note that the conditions, e.g.,

H, salinity and temperature may be essential for assigning the re-

ction to the correct region in phase space. The methodology de-

cribed can be applied to any mineral precipitation/decomposition

roblem and consequently greatly simplifies the model equations. 

ppendix A. Mathematical derivations and proofs 

1. Concentration profile in regime a 

In Regime A the diffusion term 

d 2 c ss 

dr 2 
can be neglected, as

e will show in equations (A .4) - (A .7) below. This means that

quation (35) reduces to 

 = 

(P e − 1) 

r 

dc ss 

dr 
+ Da II c ss , (A.1)

hich can be solved using separation of variables; we obtain 

 ss = Ke −αr 2 , α = 

Da II 
2(P e − 1) 

, (A.2)

here the integration constant K can be determined using the

oundary condition (BC) (36) . We compute c ss (1) and 

dc ss 
dr 

| r=1 

 ss (1) = Ke −α dc ss 

dr 
| r=1 = −2 αKe −α

nd substitute these expressions in the BC (36) to obtain 

e −α(1 − −2 α

P e 
) = c � . 

ote that 2 α
Pe = 

Da II 
P e (P e −1) 

� 1 which means that this contribution

an be neglected; solving for K yields K = c � e α which means that

e obtain 

 ss = c � e −α(r 2 −1) , α = 

Da II 
2(P e − 1) 

. (A.3)
e will now first show that the diffusion term can indeed be ne-

lected. Using the solution (A.3) we find 

dc ss 

dr 2 
= K(α2 r 2 − α) e −αr 2 , (A.4)

hich means that this term can be neglected with respect to the

eaction term (or equivalently with respect to the convection term)

f 

a II c ss = Da II Ke −αr 2 � K(α2 r 2 − α) e −αr 2 . (A.5)

his holds if both Da II � α and Da II � α2 , i.e., if 

a II � α = 

Da II 
2(P e − 1) 

⇒ P e � 1 , (A.6)

hich is always satisfied in our regime of interest and if 

a II � α2 = 

Da 2 II 

4(P e − 1) 2 
⇒ Da II � P e 2 , (A.7)

hich is satisfied due to our restriction on Regime A. 

2. Concentration profile in regime b 

In regime B we use the following rescaling of the radial coordi-

ate 

 = 1 + 

r̄ 

P e 
⇒ 

d 

dr 
= P e 

d 

d ̄r 
, (A.8)

hich means that equation (35) becomes 

 e 2 
d 2 c ss 

d ̄r 2 
= 

P e (P e − 1) 

1 + 

r̄ 
Pe 

dc ss 

d ̄r 
+ Da II c ss , (A.9)

hich reduces to 

d 2 c ss 

d ̄r 2 
= 

dc ss 

d ̄r 
+ βc ss , β = 

Da II 
P e 2 

, (A.10)

ecause 1 + 

r̄ 
Pe ≈ 1 and P e (P e − 1) ≈ Pe 2 because Pe is large.

q. A.10 is a second order linear ode with constant coefficients. The

olution of Eq. A.10 is 

 ss ̄r = K 1 e 
− 1 

2 ( 
√ 

1+4 β−1) ̄r + K 2 e 
1 
2 ( 

√ 

1+4 β+1) ̄r . (A.11)

ue to the second boundary condition (36) we have K 2 = 0 which

eans that we find 

 ss ( ̄r ) = K 1 e 
− 1 

2 ( 
√ 

1+4 β−1) ̄r = K 1 e 
− 1 

2 ( 
√ 

1+4 β−1)(r−1) Pe . (A.12)

sing the first boundary condition (36) we can determine K 1 

 ss (1) − 1 

P e 

dc ss 

dr 
= K 1 (1 − 1 

2 

( 
√ 

1 + 4 β − 1)) = c � ⇒ K 1 

= 

c � 

1 − 1 
2 
( 
√ 

1 + 4 β − 1) 
(A.13) 

nd we find 

 ss = 

c � 

1 − 1 
2 
( 
√ 

1 + 4 β − 1) 
e −

1 
2 ( 

√ 

1+4 β−1)(r−1) Pe (A.14) 

3. Concentration profile in regime c 

In Regime C the convection term 

(Pe −1) 
r 

dc ss 
dr 

can be neglected.

his means that equation (35) reduces to 

d 2 c ss 

dr 2 
= Da II c ss , (A.15) 

hich can be solved 

 ss = K 1 e 
−
√ 

Da II r + K 2 e 
√ 

Da II r , (A.16)
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where K 2 = 0 due to the second boundary condition (36) . The in-

tegration constant K 1 can be determined using the first boundary

condition (36) as follows 

c ss (1) − 1 

P e 

dc ss 

dr 
| r=1 = K 1 (1 + 

√ 

Da II 

P e 
) e −

√ 

Da II = c � . 

Note that 
Da II 
Pe 2 

� 1 in Regime C which means that the contribution

of 1 + 

√ 

Da II 
Pe ≈

√ 

Da II 
Pe ; we obtain 

K 1 = c � e 
√ 

Da II 
P e √ 

Da II 
, 

and we finally find 

c ss = 

c � P e √ 

Da II 
e −

√ 

Da II (r−1) . (A.17)

We will now first show that the convection term indeed can be

neglected. Using solution (A.17) we find 

dc ss 

dr 
= −P ec � e −

√ 

Da II (r−1) , (A.18)

which can be neglected with respect to the reaction term Da II c ss if

(or equivalently with respect to the difussion term) if 

Da II c ss = P e 
√ 

Da II c 
� e −

√ 

Da II (r−1) � P e (P e − 1) c � e −
√ 

Da II (r−1) . (A.19)

This holds if 
√ 

Da II � Pe − 1 , i.e., if Da II � Pe 2 , which is indeed

satisfied due to our assumption on regime C. 

Appendix B. Analysis of the PeDa II -phasespace 

Using the notion of the distances r 0.99 and r 0.01 , we can subdi-

vide the ( Pe, Da II )- phase space in four regions. 

The first distance r = r 0 . 99 is associated with Region I and is de-

fined as follows 

c ≥ 0 . 99 c � for 1 ≤ r ≤ r 0 . 99 , (B.1)

i.e., the reservoir is at injection concentration until r 0.99 . This

means that if r 0.99 ≈ r res the entire reservoir is (eventually) almost

at injection concentration. We define our Region I now as follows:

Region I = { (P e, Da II ) | r 0 . 99 ≥ r res } , (B.2)

where the dimensionless reservoir size r res = 10 3 with our choice

of scales. 

The second distance r 0.01 is defined similarly 

c ≤ 0 . 01 c � for r ≥ r 0 . 01 , (B.3)

i.e., the reservoir is at initial concentration beyond r 0.01 . This means

that if r 0.01 ≈ 1 most of the reservoir is at the initial concentration.

We define our Region III now as follows: 

Region III = { (P e, Da II ) | 1 + 10 

−5 ≤ r 0 . 01 ≤ 1 + 10 

−2 } . (B.4)

The region in between Region I and Region III is Region II, i.e., 

Region II = { (P e, Da II ) | r 0 . 01 > 1 + 10 

−2 , r 0 . 99 < r res } . (B.5)

For very small values of r 0.01 we have to be careful. If r 0 . 01 < 1 +
10 −5 , the dimensionless width of the reactive region equals 10 −5 ,

which in full dimensions equals 10 −6 m with our length scale. This

is of the order of the pore size; the validity of our model equations

becomes questionable. This leads to the definition of region IV: 

Region IV = { (P e, Da II ) | r 0 . 01 < 1 + 10 

−5 } . (B.6)

Using the explicit analytical expressions for c ss derived in

Section 3 we will subdivide the full PeDa II -phase space in each of

the three regimes in (up to) four regions in the following subsec-

tions. 
1. Regime a 

In regime A we have Da II � Pe 2 ; for our numerical pictures we

ill use Da II ≤ 10 −2 Pe 2 . We will first compute the boundary of Re-

ion I. Using the explicit formula (A.3) 

 ss = c � e −α(r 2 −1) , α = 

Da II 
2(P e − 1) 

nd combining the definition of r 0.99 and the definition of the

oundary of Region I as follows 

 ss (r = r 0 . 99 = 10 

3 ) = 0 . 99 c � , 

e can derive a relation between Da II and Pe on the boundary be-

ween regions I and II, i.e., 

a II = 

−2 ln (0 . 99) 

10 

6 − 1 

(P e − 1) ≈ 2 · 10 

−8 P e. 

his means that Region I is below the line Da II = 2 · 10 −8 Pe . 

A similar computation yields the boundary between Regions II

nd III, where we have 

 ss (r = r 0 . 01 = 1 + 10 

−2 ) = 0 . 01 c � , 

hich yields 

a II = 

−2 ln (0 . 01) 

(1 + ·10 

−2 ) 2 − 1 

(P e − 1) ≈ 0 . 5 · 10 

3 P e. 

e finally compute the boundary between regions III and IV, 

 ss (r = r 0 . 01 = 1 + 10 

−5 ) = 0 . 01 c � , 

hich yields 

a II = 

−2 ln (0 . 01) 

(1 + 10 

−5 ) 2 − 1 

(P e − 1) ≈ 0 . 5 · 10 

6 P e. 

ombining these three (blue) boundary lines we obtain the phase

pace in Fig. B.9 . The red line Da = 10 −2 Pe 2 denotes the boundary

f Regime A; the equations in this subsection are only valid below

he red line. 

2. Regime b 

In regime B we have Da II ~ Pe 2 ; for our numerical pictures we

ill use 10 −2 Pe 2 < Da II < 10 2 Pe 2 . We will first compute the bound-

ry between Regions I and II. Using the explicit formula (A.12) : 

 ss = K 1 e 
− 1 

2 ( 
√ 

Pe 2 +4 Da II −Pe )(r−1) , 

e can derive a relation between Da II and Pe , i.e., 

−2 ln (0 . 99) 

999 

= 

√ 

P e 2 + 4 Da II − P e, 

hich yields 
Da II 
Pe < 10 −6 which holds nowhere in Regime B. 

A similar computation yields the boundary between Regions II

nd III, 
 

P e 2 + 4 Da II − P e = 

−2 ln (0 . 01) 

10 

−2 
= N l , 

here the numerical value N l ≈ 10 3 . This yields the lower purple

urve 

 Da II = N 

2 
l + 2 N l P e 

n Fig. B.10 . The boundary between Regions III and IV is found sim-

larly; this boundary is given by the equation 

 Da II = N 

2 
u + 2 N u P e, 

here N u = 10 6 and is represented by the upper purple curve in

ig. B.10 . 

The red lines Da II = 10 −2 Pe 2 and Da II = 10 2 Pe 2 denote the

oundary of Regime B; the equations in this subsection are only

alid between the red lines. Note that the ”Region I” in Regime B

s out of our range of interest of ( Pe, Da ) values. 
II 
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Fig. B.9. The PeDa II -phase space in Regime A. The dotted red line denotes the 

boundary of regime A, i.e., Da II ≤ 10 −2 Pe 2 . The lowest blue curve denotes the 

boundary between region I (no reaction) and II (kinetics), the middle blue curve 

denotes the boundary between region II and region III (equilibrium), and the up- 

per blue curve denotes the boundary between region III and region IV (Darcy- 

Brinkman). (For interpretation of the references to colour in this figure legend, the 

reader is referred to the web version of this article.) 

Fig. B.10. The PeDa II -phase space in Regime B. The dotted red lines denote the 

boundaries of regime B, i.e., 10 −2 Pe 2 ≤ Da II ≤ 10 2 Pe 2 . The lower purple curve de- 

notes the boundary between region II (kinetics) and region III (equilibrium), and 

upper purple curve denotes the boundary between region III and region IV (Darcy- 

Brinkman). (For interpretation of the references to colour in this figure legend, the 

reader is referred to the web version of this article.) 

Fig. B.11. The PeDa II -phase space in Regime C. The dotted red line denotes the 

boundary of regime C, i.e., Da II ≥ 10 2 Pe 2 . The lower green curve denotes the bound- 

ary between region II (kinetics) and region III (equilibrium), and upper green curve 

denotes the boundary between region III and region IV (Darcy-Brinkman). (For in- 

terpretation of the references to colour in this figure legend, the reader is referred 

to the web version of this article.) 
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3. Phasespace in regime c 

In regime C we have Da II � Pe 2 ; for our numerical pictures we

ill use Da II > 10 2 Pe 2 . We will use the explicit formula (A.17) 

 ss = 

c � P e √ 

Da II 
e −

√ 

Da II (r−1) 

o compute the boundaries between Regions II and III and between

egions III and IV; the boundary between Regions I and II is out

f the range of our interest of ( Pe, Da II ) values. We observe that

he boundaries are at a constant Da II number. For the boundary

etween Regions II and III we have 

n (0 . 01) = −
√ 

Da II · 10 

−2 ⇒ Da II ≈ 2 · 10 

5 

nd for the boundary between Regions III and IV we find similarly 

n (0 . 01) = −
√ 

Da II · 10 

−5 ⇒ Da II ≈ 2 · 10 

11 . 

hese boundaries are denoted by the green lines in Fig. B.11 . Fur-

hermore the red line Da = 10 2 Pe 2 denotes the boundary of Regime

. Note that the ”Region I” in Regime B is out of the range of our

nterest of ( Pe, Da II ) values. 

upplementary material 

Supplementary material associated with this article can be

ound, in the online version, at 10.1016/j.ijheatmasstransfer.2020.

19969 
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