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Executive summary

The Netherlands is a northwestern European country. The location makes the Netherlands

an important entry for trade to the European continent resulting in high traffic intensities [1].

The Netherlands has one of the densest road networks in the world, having over 139.000km of

roadways [2, 3].

The understanding of the link between the functional properties and the behavior of the road

is crucial [4]. However, predicting such properties is still challenging, and expectations differ

from the results found in the field [5, 4].

Data-driven approaches have been part of pavement engineering for decades and have shown to

be a powerful tool for performance prediction [6]. This thesis aims to develop a machine learning

framework for predicting stiffness, fatigue resistance, resistance to permanent deformation, and

water sensitivity. Along with sensitivity analysis to understand the deviations from expectation.

The objective is to develop a framework to understand the applicability of machine learning

tools and the impacts of the composition parameters into the mix. The models developed

applied three different machine learning tools for regression: Support Vector Machine, Random

Forests, and Gradient Boosting. The models were compared to a statistical model to validate

the work. The statistical approach was a Multiple Linear Regression. All developed models

used the database from the NL-LAB project.

The machine learning models were compared, and the best-performing proceeded to a sensitivity

analysis. The sensitivity analysis used SHAP values, which derive from the Games Theory and

have shown to be powerful tools for complex model interpretability [7].

The models had good accuracy prediction. For most properties, machine learning had a higher

performance than the statistical model. Gradient Boosting performed the best from the machine

learning tools and was selected to finalize the research. The sensitivity analysis had good results,

confirming some of the expectations and setting a precedent for researching others.
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1
Introduction

This chapter aims to introduce the topic discussed in this thesis, the motive, formulate the

research questions and describe the methodology applied to answer them.

1.1 Motivation

Infrastructure plays an important role in economic growth [8]. It facilitates trades, powers

businesses, connects workers to jobs, and creates opportunities for struggling communities [9].

These factors are easily visible in the Netherlands, which has over 139.000km of roadways and

is heavily dependent on its transport and logistics [10, 11].

The road network in the Netherlands is assessed through the functional properties of asphalt

concrete [4]. Although the link between the functional properties and behavior of the road is

crucial, the trends expected in properties appear to deviate from expectations [4]. Moreover,

prediction of these properties is still challenging due to the complexity of its behavior for cyclic

effects and systematic changes throughout its life cycle [5].

Data analyses have been part of modern pavement engineering since the early stages [6].

Different machine learning models were applied to identify critical features and evaluate pavement

performance and proved to be powerful tools for predicting [6]. This thesis applies a data-driven

approach to developing a framework for performance prediction of asphalt mixtures to address

the challenges of functional properties prediction and deviation of expected behavior in the

field, focusing on stiffness, fatigue resistance, resistance to permanent deformation, and indirect

tensile strength (ITS).

1
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1.2 Problem statement

The scope of this research is to develop a machine learning framework for the prediction of

functional properties of asphalt mixtures. The model should incorporate a sensitivity analysis

to verify the impact of crucial mixing components. The key components were defined from the

NL-LAB project, explained in Chapter 2. The components were the following:

• Bitumen properties

• Bitumen percentage

• Density

• Aging

• Differences between field and laboratory

The developed models focus on stiffness, fatigue resistance, resistance to permanent deformation,

and indirect tensile strength prediction using the data from the NL-LAB project. The database

includes numerical and descriptive information about the samples. The data does not consider

the collected samples’ random effects, spacial or traffic information.

Developing a framework requires verifying the applicability of the different tools to the data

and its uncertainties. Machine learning models have sets of hyperparameters that, calibrated,

improve performance. Defining the optimal hyperparameters and loss function is essential for

the framework. Last, it is necessary to validate the final model. Statistical models are well

structured and frequently used for several studies and are great candidates for this comparison.

1.3 Research Questions

The available machine learning tools and their variants are vast. Literature review shows that

support vector regression, random forests, and gradient boosting are promising tools for this

research. Based on the development of the previously described framework, the main research

question was formulated as the following:

Does the machine learning framework/models developed in this research improve

the performance prediction of asphalt mixtures?

Optimization and validation of the models are necessary to answer the main research question.

Multiple linear regression was the selected tool for validating the machine learning models.

Therefore, the main question was divided into the following sub-questions:

• How does the machine learning model compare to the statistical model?

• What hyperparameters had the most relevance for the analysis?

• What are the optimal hyperparameter after applying different loss functions?

• Does the machine learning model capture the physical behavior of the mixture?
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1.4 Research Methodology

The approach adopted to answer the research questions and understand the effects of crucial

mixing components on the functional properties had three main stages. The first part includes

the data pre-processing, identification of relevant features, and splitting of the data. Second,

the development of the models using different approaches and predictive tools to compare

their performance and deal with the non-linearity of the data. In this stage, the models were

optimized and cross-validated. Later, a model was selected to proceed to the optimization.

After calibrating the model, the third stage was a comparison with the statistical model and

sensitivity analysis to identify the impact of the key features.

Figure 1.1: Research methodology flowchart

1.5 Thesis Structure

This thesis is divided into five chapters, as illustrated in Figure 1.2. Chapter 1 introduces

the topic discussed, motivation, problem statement, formulation of research questions, research

methodology, and the structure of the work. Chapter 2 is the literature review, providing

background knowledge on the analyzed properties and the models. Chapter 3 introduces the

steps and tools used for developing the models and their functionalities. Chapter 4 evaluate

the performance of the developed models and perform a sensitivity analysis. Chapter 5 are the

conclusions, answering the research questions and giving the recommendations.
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Figure 1.2: Thesis structure flowchart



2
Literature Review

This chapter aims to provide background information on existing literature. (i): An overview of

the Dutch pavements and the link to the NL-LAB project. (ii): The background information on

the functional properties of asphalt mixtures and binder. (iii): The impacts of the properties of

mixing composition in the asphalt mixture. (iv): An overview of the application of data-driven

methods in the field.

2.1 General Overview of Dutch pavements

The Dutch road network mainly comprises flexible pavement [3]. Different types of mixtures,

such as dense asphalt concrete (DAC), stone mastic asphalt (SMA), and porous asphalt (PA),

are used for different specifications [3]. Porous asphalt with two layers (2L-PA) represents more

than 80% of the Dutch roads [3]. High precipitation makes roads expected to be wet 13% of

the time, which led to the first application of porous asphalt (PA), in 1972 [12]. These mixtures

are expected to follow various standards and specifications as specified in CROW(2010) [13].

According to researchers, one of the Netherlands’ current challenges is finding the fundamental

indicators of in-field pavement performance [1]. It is necessary to cope with the fast changes in

mixing compositions caused by the scarcity of raw materials, leading to an increasing necessity

for reclaimed, recycled, and bio-based materials. In such case, empirical solutions relations

might become obsolete, and time-consuming [1]. As explained in Chapter 1, data-driven

approaches have been used in pavement engineering and could be a possible alternative to

this challenge.

5
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The scope regarding the challenges in the Netherlands is broad [1]. Companies, research

institutes, and the Dutch highway authority, Rijkswaterstaat (RWS), are working on projects

to provide solutions. The NL-LAB is one of the projects aiming to assess the functional

requirements for pavement performance [1]. The background information regarding NL-LAB is

given in the following section.

2.2 NL-LAB

The NL-LAB program uses the Dutch road system as a living laboratory to test materials

and monitor their performance [4]. It stands for National or Netherlands Living Lab, and LAB

stands for Langjarige Asfalt Bemonstering, which means long-term asphalt sampling in Dutch.

The project started in 2012 when it was realized that some trends expected from experience

did not match the ones observed in practice [4]. The initial goal was to verify if the applied

functional requirements were a good indicator of the behavior in the field. This data collection

also allowed the development of a reference framework for identifying changes and assessing

innovations [14].

The data was collected, initially from four different projects, and later,data from more projectes

were added. These different projects were named as Works in the study [14]. The samples

extracted from each Work were from binder/base layers of dense asphalt concrete with Reclaimed

Asphalt (RA), and different mixing designs [15]. After two and six years, tests were conducted

on the samples and the bitumen at the time of collection. For bitumen, tests were also conducted

after six and twelve months to assess the aging [14].

The samples were classified into three different groups. Phase 1, they were mixed and compacted

in the lab. In phase 2, the samples were mixed in the field and compacted in the lab. In phase

3, mixing and compaction were done in the field [14]. The samples tested after a few years

were kept in the laboratory at the Technical University of Delft at a temperature of 15◦C until

testing. The data collected over time does not consider the effect of traffic since the focus was

only on material properties [4].

The aim was to link the functional properties to materials properties categorized in three main

hypotheses, present in Table 2.1 [14]. The first hypothesis is based on the bitumen properties

and percentage in the mix. The second hypothesis is related to the density of the samples. The

third hypothesis is on the aging of the mixture.
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Table 2.1: Main Hypotheses

Hypothesis Effect Type test property

1 More and softer bitumen

Lower/Smaller Stiffness Modulus
Higher/Larger Resistance to fatigue
Lower/Smaller Resistance to permanent deformation
Higher/Larger Water sensitivity

2 Higher density

Higher/Larger Stiffness Modulus
Higher/Larger Resistance to fatigue
Higher/Larger Resistance to permanent deformation
Higher/Larger Water sensitivity

3 Aging

Higher/Larger Stiffness Modulus
Lower/Smaller Resistance to fatigue
Higher/Larger Resistance to permanent deformation
Lower/Smaller Water sensitivity

Following tests were carried out for the asphalt concrete mixtures according to the Dutch

Standard (RAW 2015):

• Stiffness - EN 12697-26, method B, with four-point bending test on prismatic beams

• Resistance to fatigue - EN 12697-24, method D, with four-point bending test on prismatic

beams

• Resistance to permanent deformation - EN 12697-25, method B, cyclical triaxial test with

signal

• Water sensitivity - EN 12697-12, method A and EN 12697-23.

Following laboratory tests on bitumen were conducted:

• Bitumen penetration - NEN-EN 1426 - penetration test

• Softening temperature - NEN-EN 1427 - ring and ball test

• Complex shear modulus and phase angle - NEN-EN 14770 (from -10 to 60◦C)

Background information on the tests and predictive models to determine the functional properties

is presented in the next section.

2.3 Functional properties of asphalt mixture

The determination of the functional properties of asphalt mixture is important in assessing the

performance of the overall pavement structure. Different test protocols are used to define this

properties. The following section focus on explaining existing predictive models and the norms

described in the previous section.

2.3.1 Stiffness

The modulus of elastic materials can be defined by the stress-strain relationship [16]. Visco-elastic

materials are frequency and temperature-dependent. Therefore, it is often characterized as a
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complex modulus [17]. It can be defined as the relationship between stress and strain for a

visco-elastic material [16]. The complex modulus can be divided into a real part that reflects the

elastic behavior and an imaginary part that is the internal damping of the material. The phase

angle (δ) relates to the damping properties of the material [17]. The stiffness of bituminous

mixtures is defined as the absolute value of the complex modulus [17].

E∗ = |E∗|(cosδ + isinδ) (2.1)

Predictive models and laboratory tests can predict the stiffness modulus of asphalt mixtures

reasonably well [18]. Shell nomograph uses the stiffness of the binder, volume percentages

of mineral aggregate, and bitumen to predict stiffness [19]. Witczak model uses a sigmoidal

function to fit the material and mixing properties to the stiffness [20]. Micro-mechanical models

consider the mechanical and geometrical properties of the constituents to predict stiffness [21].

However, most of them were designed for elastic materials, and several researchers, with limited

success, tried translation for visco-elastic materials.

Different tests have been standardized across Europe to define the complex modulus [18]. In the

Netherlands, bending tests, direct tensile tests, and indirect tensile tests are used to determine

the stiffness modulus [16]. Four-point bending test is one of the commonly used methods to

define the stiffness for a required temperature and frequency in prismatic beams [16]. The

modulus in the temperature of 20◦C and 8 Hz is commonly used in four-point bending [22]. A

master curve can be defined to determine the stiffness modulus at an arbitrary temperature,

and frequency [16]. The master curve can be fit in a sigmoidal shape for tests performed in at

least four temperatures separated by not more than 10◦C [16]. The results from tests following

the NEN-EN 12697-26 - method B guidelines at 20◦C and 8 Hz were used in this research as

indicators of stiffness.

Figure 2.1: Four-point bending test concept [16]
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2.3.2 Density

Density is considered one of the most important parameters for pavement construction [23].

The mix needs enough air voids to prevent rutting, water, and air from penetrating through

the structure [23]. High air voids lead to water damage, oxidation, and cracking. Lower voids

lead to rutting and shoving [23].

In general, when the density of a mixture is increased, the stiffness also increases [4]. However,

test results show that a threshold value could be achieved [24]. Tests performed with fine-grade

samples, 9.5mm mixtures, showed that, for density levels of 88 and 91%, the change of the

stiffness modulus was significant, while 94 and 97% were insignificant. For 12.5mm mixtures,

there was still a significant increase at 97% density [24].

Figure 2.2: Comparison of 9.5 mm dynamic modulus data (|E*|) [24]

Figure 2.3: Comparison of 12.5 mm dynamic modulus data (|E*|) [24]
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Tests to verify the impact of density on fatigue resistance were also performed in 9.5mm and

12.5mm mixtures [24]. The fatigue beam had inconclusive results [24]. Although, samples with

4% air void had longer fatigue life when compared to samples with 6 to 10%. In addition,

higher density reduces the air void percentage, which increases the initial stiffness, suggesting

a higher fatigue life [25]. The overlay tests showed that improving compaction, and increasing

the density, could improve the fatigue performance [24].

A study conducted by Brown and Cross (1989) [26], showed that when the air voids percentage

reached 3% or below, rutting was likely to occur. In many cases, insufficient compaction during

mix design and testing results in a larger amount of binder required to achieve the expected

density [26]. In addition, results from Asphalt Pavement Analyzer (APA) and flow number

indicate that higher densities reduce the susceptibility of rutting [24].

The density and air voids are directly correlated to ITS [27]. The increase in void content

reduces the ITS because it reduces the cohesion in the mixture. The cohesion is the mechanism

that supports the structure for this type of distress.

Performance indicators are also used to assess pavement deterioration over its lifetime. The

following section describes the indicators for asphalt mixture performance and the methods for

their determination.

2.4 Performance indicators of asphalt mixture

Many factors can cause the deterioration of roads, and indicators of this deterioration, such as

resistance to fatigue, resistance to permanent deformation, and water sensitivity, are used to

assess the overall performance of the structure.

2.4.1 Resistance to Fatigue

Fatigue of bituminous mixtures is an important factor in pavement design [17]. Fatigue cracking

is considered as one of the major types of distress. It is defined as the reduction of the strength

of a material subjected to cyclic loading compared to the strength under non-cyclic loading [28].

Predictive models and laboratory tests are used for fatigue testing [17].

Tests to understand the behavior are destructive, and time-consuming [17]. Shell prescribed

equations for constant stresses and strains using the fatigue line of several samples from different

types of mixes, bitumen, and testing conditions. [29]. The equations can be translated into a

nomograph, however, the accuracy of these equations is 40% for 90% of the constant stresses

and 50% for the constant strains [17].
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In the Netherlands, fatigue life is determined by bending, direct, and indirect tensile tests [28].

In a four-point bending test, the failure point Nf is defined as the number of cycles required

to reach half of the initial stiffness. Fatigue resistance is expressed by the strain level achieved

after one million load repetitions, and it is indicated as ε6 [µmm ] [28]. The results from tests

following the NEN-EN 12697-24 - method D guidelines were used in this research.

2.4.2 Resistance to Permanent Deformation

Permanent deformation is characterized by the non-reversible deformation under the wheel

path, also known as ruts[30]. Rutting is a major form of distress that can cause hydro

planning by water accumulation [30]. These deformations are accumulated incrementally over

the pavement’s life.

Tests to determine the resistance to permanent deformation consist of applying a constant static

confining pressure and measuring the axial deformation of a cylindrical specimen under cyclic

axial loading [31]. The resistance is expressed as creep rate fc [ µε
cycle .106], which can be measured

from the slope of the linear part of the creep curve, also known as turning point [31]. The creep

curve derives from the cumulative strain of the test specimen after n loading cycles.

εn = A1 +B1 · n (2.2)

Where:

εn: Cumulative axial strain of the test specimen after n loading cycles, in percent.

n: Number of loading cycles.

A1, B1: Regression constants.

fc is then derived from the (quasi)linear part of the curve:

fc = B1 · 104 (2.3)

Figure 2.4: Creep curve example [31]
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Where:

1: Stage 1 of creep curve.

2: Stage 2 of creep curve.

3: Stage 3 of creep curve.

4: Turning point.

5: Creep rate fc

The application of a friction reduction system between the plates that perform the axial

compression are advised for this test [31]. The friction reduction system is necessary to reduce

the friction stresses caused between the plate and the sample and they can have considerable

influence on test data [32, 14]. The results from tests following the NEN-EN 12697-25 - method

B guidelines were used in this research.

Figure 2.5: Testing apparatus [31]

Where:

1: Actuator for dynamic pressure.

2: Pressure cell.

3: Sealed test specimen.

4: Confining pressure.

5: Compressor.

2.4.3 Water Sensitivity

Pavements are often exposed to traffic and environmental loading combinations that could

damage and reduce their performance [15]. Moisture damage is considered as one of the major

causes of pavement distress for hot mix asphalt [33]. When the binding strength between

bitumen and aggregates is reduced, the susceptibility of stripping is increased [33].
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Water sensitivity can be determined by the ITS of cylindrical specimens [34]. The specimen is

divided into two identical samples that are subjected to different conditions. One specimen is

maintained dry while the other is saturated under elevated conditioning temperature [35]. After

conditioning, the ratio between the ITS defines the indirect tensile ratio (ITSR), expressed as

percentage [35].

The ITS test is performed by placing the subset into a compression machine and loading with

a constant speed, diametrically along the direction of the cylinder axis until it breaks [34]. The

tensile strength, expressed in MPa, is calculated from the peak load applied and dimensions

of the sample [34]. This research uses the results from tests following the NEN-EN 12697-23

guidelines to fit the indirect tensile strength, and an alternative to assess water sensitivity is

suggested.

ITS =
2P

π ·D ·H
.1000 (2.4)

Where:

P: Peak load, expressed in Newtowns (N).

D: Diameter of the sample.

H: Height of the sample.

Figure 2.6: Testing apparatus [34]

Where:

1: Testing head.

2: Loading strips.

3: Specimen.

W: Width of the loading strip.

h: Maximum height difference at the curved side of the loading strip.

F: Load.
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The functional properties of asphalt mixtures relate to the functional properties of the binder.

In Section 2.2, the tests performed on the bitumen were specified.

2.5 Bitumen functional properties

2.5.1 Penetration test

The consistency of asphalt binders can be determined by penetration test [36]. This test does

not measure the fundamental properties or control the loading rate [37]. The penetration test

measures the vertical penetration depth of a needle into a sample of bituminous material under

specific conditions of temperature, load, and loading duration [37]. For penetrations smaller

than 330 ·10−1mm, the testing temperature should be of 25◦C with the loading of a 100g needle

for 5s. For tests that expect higher penetration values, the testing temperature should be 15◦C

[36]. The results from tests following the NEN-EN-1426 guidelines were used in this research.

2.5.2 Softening temperature test

The softening temperature of the bituminous binders can be determined by Ring and Ball test

[38]. The test is performed by placing two horizontal discs filled with binder inside a liquid

bath with steel balls laying on top of the binder [38]. By heating the liquid at a constant rate,

the binder will start to deform. The softening point is the mean value in which both balls have

fallen a distance of 25mm [38]. The penetration test as referred in the previous subsection and

ring and ball tests can be used to determine the Penetration Index (PI), which are inputs for

Van Der Poel and Shell nomographs for stiffness determination [17]. In the research, results

from tests following the NEN-EN-1427 guidelines were used in this research.

2.5.3 Dynamic shear rheometer

Dynamic shear rheometer (DSR) is used to measure the dynamic visco-elastic properties of

asphalt binders [37]. From this test, it is possible to determine the dynamic shear modulus

(G∗), and the phase angle (phase lag, δ) [37]. G∗ is the ratio of peak shear stress to the

peak shear strain in harmonic sinusoidal oscillation, and the δ is the phase difference between

the stress and the strain under the same oscillation [39]. The test is conducted using a shear

rheometer which is fitted with parallel plates with a constant gap [39]. The diameter of the

plate depends on the binder’s stiffness [39]. Binders with stiffness ranging from 1kPa to 100kPa

require plates of 25mm diameter with a 1mm gap. From 100kPa to 10MPa, the diameter should

be 8mm with a 2mm gap. [39]. The test was conducted with temperatures ranging from -10

to 60◦C, and the master curve was built at a reference temperature of 20◦C and frequency of

10 rad/s [14]. In this research, results from tests following the NEN-EN-14770 guidelines were

used in this research.
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The properties of the components present in the mixture also impact the performance. The

following section provides an overview of the mixing composition and its impacts in its lifetime.

2.6 Mixing composition and properties

2.6.1 Bituminous binder

The bituminous binder is derived from the residuals of distilled crude oil [37]. They are

composed of a large number of hydrocarbon molecules [40]. The assessment of the properties

is done by the methods described in Section 2.5. The following subsections describe the effect

of bitumen content and properties on mixture performance.

2.6.1.1 Bitumen content

The binder content is defined based on the durability and stability of the mix [17]. For

continuous graded mixes, it is necessary to find the balance between stability and flexibility

[41]. More binder will help with the flexibility and less binder with the stability. The use of

high bitumen content can lead to bleeding, in which the material percolates and creates a film

on top of the layer [17]. On the other hand, with less binder, the susceptibility to rutting

reduces, but the material becomes more brittle and prone to crack [4].

2.6.1.2 Bitumen properties

For rutting prevention, it is desirable to increase the binder’s stiffness and decrease the phase

angle to decrease the viscous dissipation [37]. Increasing the stiffness of the binder also reduces

fatigue cracking for layers thicker than 125mm. Additionally, the increase of the stiffness

mixture is related to the increase of the stiffness of the binder [37].

Bitumen aging results in changes in the properties over time [14]. Aging is a complex phenomenon

caused by oxidation and volatilization [37]. Oxidation changes the structure of the molecules

leading to more brittle behavior [37]. Tests show that the stiffness of an asphalt mixture

increases with aging time over all of the frequency ranges leading to higher cracking potential

[42]. This cracking potential can lead to space for water to percolate in the binder-aggregate

interface, leading to water damage [43].

2.6.2 Reclaimed asphalt

The recycling of hot mix asphalt (HMA) is mainly the incorporation of reclaimed asphalt

pavement (RAP) [37]. The reuse of RAP in new mixtures reduces the need for raw aggregates

and fresh binders in the construction of new structures [44].
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The use of RAP was believed to be limit the ITSR and fatigue resistance [4]. However, results

from tests often indicate improvement on ITSR for a high reuse percentage. On the other

hand, research has shown that high percentages of RAP lead to a lower fatigue resistance [4].

Additionally, tests indicated that the increasing RAP percentage improves the complex modulus

of mixtures and resistance to permanent deformation [45].

Tests indicate that the aged bitumen in RA increases the softening point and viscosity and

decreases the penetration of the fresh binder [44]. Moreover, the viscosity can also increase in

proportion to the amount of RAP added to the mix [44]. With the increasing viscosity, the

workability of the mix is affected [44]. The viscosity reduction can be achieved by mixing the

reclaimed binder with a softer fresh binder [44].

2.6.3 Aggregates

Asphalt mixtures consist of bituminous binder, mineral aggregates, and air voids [46]. They

constitute 70 to 85% of the mixture’s weight [37]. The mechanical properties of aggregates,

stone, and sand, relate to the resistance to degradation, polishing, impact, or loading [37].

Even though this research does not consider these properties, it is important to highlight them

for a deeper understanding of the results.

Aggregates with higher stiffness are desired for most applications [37]. The angularity impacts

the rutting resistance of the mix because of the internal friction and the chemical properties

affect the stripping and raveling on the presence of moisture [37]. The aggregate’s quality

also affects the mixing and compaction stages of the design. Weak aggregates can fail during

these stages, reducing the project’s durability. The breakage can also occur due to traffic loads,

especially on gap-graded pavements that rely on stone-on-stone contact [37].

2.6.4 Fillers

The filler is part of the aggregate percentage and can be characterized as minerals passing

through a sieve 0.063mm [46]. The aggregates, larger than filler, are not only coated by the

binder but by the mastic [46]. Mastic is the mixture between the binder and the filler, which

has great significance in the performance of flexible pavements [46].

In the study by Huang et al, the indirect tensile strength of mixtures was found to increase

when the filler content was increased [46]. The increase in ITS could be because the strength

of the filler is higher than the strength of the binder, and by increasing the filler content and

reducing the binder content, the strength goes up. The water sensitivity ratio, on the other

hand, decreased. The reduction in ITSR could be explained by the reduced binder content with

the increased amount of filler [46].
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Resistance to permanent deformation decreased when the filler content was increased from 2%

to 5% [46]. However, when it increased to 10%, the rut depths were smaller when compared to

the smaller percentages, improving the resistance to permanent deformation. The reason could

be because of the increase in stiffness caused by the filler content [46].

Stiffness and fatigue life could also increase as the filler percentage increases [47]. Stiffer mastic

results in higher mixture stiffnesses, and the extra filler particles interrupt the crack propagation

[47].

The possibility of using data-driven approaches to predict the functional properties of asphalt

mixtures is an attractive alternative to diving into the applicability of models and understanding

their functionalities. The following section aims to provide a brief explanation of data-driven

approaches and their branches.

2.7 Data-driven approaches

The Cambridge Dictionary defines data-driven as something based on collected information

[48]. Machine learning and statistical models base the decision rules on the collected data [49].

Machine learning is a subset of artificial intelligence where machines improve in a specific task

with experience [50]. It is divided into three subsets [51]:

• Reinforcement learning

• Unsupervised learning

• Supervised learning

Reinforcement learning, the model that learns from a series of rewards or punishments [51].

The concept is to understand what caused the reward or punishment aiming to maximize the

total reward. In unsupervised learning, the model learns hidden patterns in the data without

labeling. A typical unsupervised learning technique is clustering [51]. In supervised learning,

the model learns patterns in labeled data to make predictions [52]. The predictions can be:

• Classification: categorizes observations in groups

• Regression: forecasts continuous values

This research applies regression models to predict the functional properties of asphalt mixtures

described in Chapter 1. The techniques applied are further explained in the following chapter.

2.8 Conclusion

This chapter presented the introduction to the research, along with an investigation of the

literature providing the background for the parameters being studied, the influence of components,



2.8. Conclusion 18

and different tools applied for the determination of the functional properties of asphalt mixtures.

The finding highlighted the applicability of tools and the impact that different material properties

have on the mixture. The following chapter describes the methods and tools utilized in this

research.



3
Methodology

The methodology of this research is structured in four main parts. (i) The first part consists

of data preprocessing and feature engineering. (ii) In the second part, regression analysis,

optimization, and cross-validation is present. (iii) The third part focused on sensitivity analysis.

(iv) The last part presents the tools used for the regression analysis. The first three parts of the

methodology follow the structure shown in Figure 1.1.

3.1 Data preprocessing and feature engineering

Data preprocessing and feature engineering are major steps in statistical and machine learning

models [53]. The data was used in this research gathered in raw form, and techniques were

applied to increase the quality of information given to the models. The following techniques

were applied:

• Data cleaning

• Data reduction

• Data integration

• Data transformation

• Feature creation

• Feature selection

Data cleaning consists of removing inconsistencies, filling in missing values, and smoothing noisy

data [53]. Data reduction filters the necessary data from the mater dataset [53]. Data cleaning

and reduction were covered in a single step. Data integration was used to avoid conflicts between

19
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variables [53].

Data transformation is a step that relates to both data preprocessing and feature engineering

[54]. In data transformation, the datasets are scaled and encoded [53]. Scaling of the data

is done to avoid large deviations [53]. In addition, in the dataset, there are numerical and

categorical variables, which nominal data that must be converted into numerical values.

In feature creation process, variables that better translate to the model were created [55]. In

feature selection, the final dependent and independent variables were selected. It is essential

to highlight that these processes are iterative, and no specific order was followed [54]. During

the modeling process, the preprocessing and engineering of the data were performed multiple

times. The following subsection focuses on explaining the above mentioned steps.

3.1.1 Data cleaning and reduction

The inputs collected from the master dataset consisted of type tests, material composition,

material tests, sample codes, mixing and compacting equipment, and age of sample. The raw

data extraction resulted in 79 features (see Appendix B.1).

Features with a large number of missing values and variables that can not be determined in

advance were removed. It is necessary to focus on parameters that are related to most of the

properties. The initially removed items were parameters that were simply for the organization

and bookkeeping of the samples, the regression coefficients from the tests were used to determine

the dependent variables, and the extracted and reference composition.

The data, even though gathered in the same master dataset, come from different tests and places

[15]. The different data sources can lead to conflicting conclusions [53]. The data integration

process that was followed in the research is explained in the next subsections.

3.1.2 Data integration

As explained in Section 2.2, the data come from various laboratory tests of asphalt concrete

mixtures, and their components [14]. Parameters in the analysis can become redundant by

translating information from other variables. In this step, the data incorporating information

from other parameters, was removed. Additionally, two correlation analyses were performed.

At first, the correlation between bitumen properties. In the second step, the correlation between

the density properties was obtained.

Before transforming, the data was split into the training set and testing set. The splitting

methods and transformation techniques are explained in the following subsections.
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3.1.3 Splitting

The process of fitting a regression requires splitting the data into two sets [56]. The concept is

to develop a hypothesis using the training set and test the hypothesis in the testing set [56].

The data was split into 80% for training and 20%, as commonly adopted in statistical analysis.

For this step, the distribution of the entire dataset was evaluated to make sure that the splits

respected the original distribution. The same dataset was used for the statistical and machine

learning to make reliable conclusions.

Figure 3.1: Splitting scheme

The split dataset was then used for feature transformation. In the following subsection, a brief

explanation of the transformations is given.

3.1.4 Data transformation

The transformation of the data was done in two main steps. The nominal data were converted

into numerical values [53]. Additionally, the numerical data was scaled as some models require

them to be scaled.

3.1.4.1 Categorical data

Some features were categorical, which means that they were labels and not numbers [50]. For

the analysis, it is required to transform them into numerical variables before fitting the model.

The most common approach is One-Hot-Encoding [22]. It transforms a single variable with n

observations and d distinct values into a binary value d with n observations, also known as

dummy variables [57]. An example of encoding is presented in Table 3.1.
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Table 3.1: One-Hot-Encoding example

Mixing set-up
Planetary mixer

Forced action mixer
Asphalt plant

Planetary mixer Forced action mixer Asphalt plant
1 0 0
0 1 0
0 0 1

Linear regressions require that one item from the encoded data be deleted [58]. However,

the values are still considered in the intercept of the linear regression equation [58]. One of

the dummy variables is deleted from the feature list to avoid multicollinearity between the

variables [58]. Table 3.1 represents the One-Hot-Encoding for random forests and support

vector machines since they are not affected by multicollinearity. It was obsorved that removing

the asphalt plant column exemplifies One-Hot-Encoding for linear regression.

Table 3.2: One-Hot-Encoding MLR example

Mixing set-up
Planetary mixer

Forced action mixer
Asphalt plant

Planetary mixer Forced action mixer
1 0
0 1
0 0

The transformed categorical features create a column for each unique value in the dataset [59].

The newly created columns reduce the model’s performance because it occupies more space.

Moreover, more data is required to distinguish the difference between them. The solution was

the aggregation of these unique values into reduced groups. A description of reduced data can

be found in Appendix B.

Different models applied in this research use different encoding techniques [60]. Target-based

encoding was applied, in which the data is replaced with the average target value of the

corresponding category [60]. The issue of this method is target leakage, in which information

about the value to be predicted is leaked to the model, and it tends to over-fit [60]. The solution

for target leakage can be achieved by using the average target value of the occurrences of a

specific category before the one being encoded [60]. This approach leads to a high variance in

the initial values [61, 60]. Multiple permutations are done to solve the high variance, and the

final value is the average of all permutations.

In addition to encoding, some models require numerical features to be scaled to avoid high

variances [53]. It is noted that the categorical features converted into numerical features do

not require scaling. The following subsection provides strategies used for scaling the numerical

data.
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3.1.4.2 Feature scaling

Some models generally struggle to deal with data with different ranges, and scaling becomes

a necessary step [62]. For instance, several components of a learning algorithm’s objective

function assume that all characteristics are centered around 0 and have a variance distributed

in the same order [62]. A feature may dominate the objective function and prevent the estimator

from successfully inferring from other features as expected if its variance is orders of magnitude

greater than that of other features.

In this research, linear regression and support vector machines were explored models that require

data scaling. The approaches for this step were different for machine learning and statistical

analysis. The statistical analysis projected the minimum value as -1 and the maximum as 1 to

be uniform, making it possible to compare the coefficients directly. For a continuous variable X,

with minimum Xmin and maximum Xmax, each value x ∈ [Xmin, Xmax], the scaled equivalent

xscaled is calculated using the following formula:

xscaled =
x−Xmin − 0.5 · range

0.5 · range
(3.1)

Where:

range: Xmax −Xmin.

In machine learning, only the support vector machines required scaling [63]. Standardization

was applied using the following formula:

Xnorm =
X − u

s
(3.2)

Where:

u: mean value of the sample.

s: standard deviation of the sample.

Features that contained relevant meaning for the analysis were created, and the final set of

variables was selected. Defining the relevant features for the analysis is explained in the following

subsection.
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3.2 Feature creation and selection

3.2.1 Fatigue resistance extrapolation

Fatigue resistance is measured based on the fatigue line fit from 18 samples and to generate

more data points, the available fatigue lines were extrapolated. From the fatigue life plot, a

horizontal line was drawn at the log 106 cycles point. Parallel lines, respecting the slope of the

original line, were drawn from the observations until they intercepted the horizontal line. The

strain level for these individual points at log 106 cycles was named ε6Individual.

Figure 3.2: Fatigue line extrapolation example

3.2.2 Target mixing composition

The target mass composition of aggregates was measured in percentage passing through the

sieves. The percentages were converted into the percentage retained in the sieves. Transforming

from passing to retained percentages allowed the creation of stone and sand percentage variables.

The two parameters were created to compare the model’s performance using group and individual

composition parameters. In addition, the target bitumen percentage was not incorporated

into the dataset. To incorporate, the total target mass percentage summed with the bitumen

percentage should result in 100%. Thus, the target bitumen percentage was calculated by

subtracting the total target mass percentage from 100%.

Originally, asphalt mixtures were designed using volumetric properties and later converted to

mass properties when being produced [32]. The mass percentages were converted into volume

percentages to analyze the behavior of the models. The composition did not specify all materials,

and the densities for the different components had to be assumed constant. Table 3.3 shows
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the assumed densities for each material. Models considering mass and volume percentages were

created to analyze their impact on performance.

Table 3.3: Assumed densities

Component Density [ kg
m3 ]

Stone 2700
Sand 2700
Filler 2500

Bitumen 1030

3.2.3 Compaction degree

The last parameter to be created was compaction degree. The compaction effort is considered

to be of major importance because it defined the air void percentage of the mixture [23].

Compaction degree can be determined by the following equation:

CompactionDegree =
Density

TargetDensity
∗ 100 (3.3)

In the next stage, the statistical and machine learning models were built for the regression

analysis. The models were later optimized and cross-validated. The following sections provide

an overview of regression analysis and the optimization and cross-validation process.

3.3 Regression analysis

Regression is a common statistical technique used to model systems defining a mathematical

relationship between a response variable (y) and explanatory variables (x) [50]. Regression

analysis can have different benefits [64]. They help in:

• determining if independent variables have a significant relationship with the dependent

variable

• estimating the effects of the independent variable on the dependent variable

• making predictions

The regression analysis consists of fitting the line into a group of observations that results in

the minimum sum of residuals [64].
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Figure 3.3: Fitting and residuals example

The steps to perform a regression analysis consists of defining the data, creating a mathematical

model, evaluating the goodness of the fit, and a fitting strategy [22]. The NL-LAB data was

used in this research, as highlighted in Chapter 1. The objective was that the mathematical

model selected should balance between over-fitting and under-fitting [50]. In under-fitting, the

algorithm does not gather sufficient information to accomplish the learning task [65]. It is

avoided by applying a mathematical model that matches the complexity level of the data and

selecting a sufficient number of features for the analysis [65]. On the other hand, over-fitting

means that the algorithm extracted more information than necessary from the data. Possible

techniques to prevent over-fitting are splitting the data into training sets, testing sets, and

applying cross-validation [66].

(a) Under-fit (b) Good-fit (c) Over-fit

(d) Under-fit prediction (e) Good-fit prediction (f) Over-fit prediction

Figure 3.4: Fitting Examples
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The balance between over-fitting and under-fitting is commonly measured by the coefficient of

determination [67]. The coefficient is a measure of the amount that the regression can explain

the target value [67]. The values can range from −∞ to 1 [22]. The results provided by

the mathematical model should balance between high and low [22]. The values aimed in this

research range from 70% to 98%. R2 is expressed as follows:

R2 = 1− SSres

SStot
· 100% (3.4)

SSres =

N∑
n=1

(yn − fn)
2 (3.5)

SStot =

N∑
n=1

(yn − y)2 (3.6)

Where:

SSres: sum of squared residuals.

SStot: sum of squares.

yn: response variable.

fn: predicted value.

y: mean value of response variable.

The models selected to perform the regression analysis were multiple linear regression (MLR) for

the statistical analysis and support vector regressor (SVR), random forests (RF), and gradient

boosting (GB) for the machine learning analysis. MLR has been part of pavement engineering

for a long time [6]. Showing good results for stiffness prediction [18, 22]. MLR underperformed

in predicting the creep rate and ITS. However, it is a common tool, relatively simple to apply

and interpret [7]. SVR has shown prediction performance superior to Witczak model [68]. RF

had high-performance accuracy for stiffness prediction [69] GB had a high performance for

stiffness, creep rate, and ITS prediction [22].

After the models have been built, optimizing and generalizing them is necessary. The optimization

process and cross-validation of the model are described in the following section.

3.4 Optimization

Optimizing the models, also known as tuning, is a critical step for any machine learning [70].

Hyperparameters are the parameters used to calibrate a machine learning model or reduce
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an objective function [71]. The hyperparameters to be tuned were set beforehand, and the

algorithm automatically found the optimum set. Hyperparameter is optimized by using the

following equation [71]:

x∗ = arg min
x∈χ

f(x) (3.7)

where;

f(x): the objective function to be minimized.

x*: set of hyper-parameters that yields the minimum value of f(x).

There are different methods to tune the model, such as, manual, Grid Search, Random Search,

and Bayesian Optimization [71]. The application of Grid Search and Random Search has been

found to be more efficient than the manual process. However, it is computationally demanding

since the model will iterate through the list of parameters and test all possible combinations

that minimize the previous function.

Bayesian Optimization concept, on the other hand, has shown superior results than random

and grid search [72]. It keeps track of past evaluations to decide which one will be done next.

It uses a probabilistic method to map the hyper-parameters to the probability of a score on

the objective function. This method is called the surrogate model, and it is represented by the

probability of a score y to the given hyper-parameters x (p(y|x)).

The application of such a concept consists of a Sequential model-based optimization (SMBO)

method [73]. In every trial, the model updates based on the previous trial. The surrogate

model used in this research consists of a Tree Parzen Estimator (TPE) with the Expected

Improvement criteria (EI) [73].

EIy∗(x) =

∫ y∗

−∞
(y∗ − y)p(y|x)dy (3.8)

Where:

y*: threshold value of objective function.

x: set of hyper-parameters.

y: the actual value of the objective function using x.

p(y|x): surrogate probability of y given x.

In this function, if the probability is zero, the result will not have any improvement [73]. In

order to have improvements, the output of the integral must be positive. TPE uses a Bayes

rule to describe p(y|x).
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p(y|x) = p(x|y) · p(y)
p(x)

(3.9)

p(x|y) can be defined by the following:

p(x|y) =

l(x) if y < y∗

g(x) if y > y∗
(3.10)

Where:

l(x): density of observation below threshold.

g(x): density of observation above threshold.

The algorithm defines the threshold as a quantile (γ) of the observed y values [73]. By

substituting into the EI function, it yields:

EIy∗(x) =
γy∗l(x)− l(x)

∫ y∗

−∞ p(y)dy

γl(x) + (1− γ)g(x)
∝ (γ +

g(x)

l(x)
(1− γ)−1) (3.11)

The last part of the equation means that to maximize the EI function, it is necessary to collect

the high probability points in l(x) and low in g(x) [73]. In summary, it makes a probability

model of the objective function and decides which are the most promising hyper-parameters to

test in the real objective function [73].

In addition to the optimization of hyper-parameters, loss functions play an essential role in the

performance improvement of machine learning models [74]. The next subsection highlight some

of the loss functions that were applied in the analysis. It is important to note that different loss

functions were only applied at the final stage of modeling on the selected model to perform a

sensitivity analysis.

3.4.1 Loss function

During the training and optimization process, the models need a reference function to minimize

the error [74]. The loss function selection affects the model’s accuracy, and efficiency [74]. All

models in the analysis were trained and optimized using the root mean squared error (RMSE).

Later, the models that yielded the highest performance were trained in two extra loss functions

to understand how it would impact the overall performance. Quantile loss and expectile loss

were also tested.
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The RMSE resembles the Euclidean distance [75], meaning that it can be defined as a distance

from the prediction to the actual value. By dividing by a factor N, the Euclidian distance is

re-scaled, allowing the estimation of the standard deviation.

RMSE =

√∑N
n=1(yn − fn)2

N
(3.12)

Where:

n: variable n.

yn: observation value.

fn: prediction value.

N: number of data points.

Quantile loss can provide a prediction interval, resulting in the range of prediction instead of

a single value [74]. The function adjusts the asymmetric weights, wn,α, based on the selected

quantile, α [74]. α values range from 0 to 1 and are used to penalize the prediction [76]. For

values of α above 0.5, the over predictions are penalized. Below 0.5, the under predictions are

penalized, and 0.5 penalizes equally.

Quantile =

N∑
n=1

wn,α|yn − fn,α| (3.13)

Where:

wn,α =

1− α, for yn < fn,α

α for yn ≥ fn,α

(3.14)

Expectile uses the same principle as quantiles. However, the distance (|yn−fn,α|) is a quadratic

term leading to asymmetric least squares [76].

Expectile =

N∑
n=1

wn,τ (yn − fn,τ )
2 (3.15)

Both Quantile and Expectile had α of 0.5.

The models had to be generalized together with the optimization process because during the

split process, the distribution of data was controlled. The generalization was made by using a

10-fold cross-validation method. An explanation of the cross-validation process can be found

in the following section.
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3.5 Cross-Validation

Cross-validation is the commonly used approach to generalize the models [77]. The training and

testing data distribution respected the original dataset’s distribution, as explained in Section 3.1.

However, controlling the distributions is not always possible, and cross-validation is required.

The dataset is divided into smaller samples that naturally will have different distributions. The

models are trained in these smaller samples, and the results are averaged [77].

In k-fold cross-validation, the data is split into k-equal samples [77]. The model is trained in k-1

samples, and the remaining set is used for validation. This process is repeated by exchanging

the validation set for one of the training sets. The process is repeated until all k-samples have

been used for training and testing [77].

Train Test

Figure 3.5: 5-fold Cross-validation Example

The cross-validation of the models finalized the last step of optimization. Next, a single model

for each functional parameter was selected, and a sensitivity analysis was performed. The

following section gives an overview of sensitivity analysis.

3.6 Model sensitivity

Sensitivity analysis identifies the important parameters in the analysis and their impact [50]. It

evaluates the changes in the result based on the change of inputs [50]. Linear regressions, for

example, are fairly simple to understand and interpret, and many times are selected because of

such ease. For more complex models, more robust methods to interpret the results are necessary

[7]. SHAP values can be used for interpreting more complex models [7]. It stands for Shapley

Additive exPlanations and is based on the game theory [7].

Lloyd Shapley introduced Shapley value in his publication [78]. The goal is to understand the

contribution of a specific member of a coalition to produce value. The contribution of a member
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of the coalition is calculated by comparing the differences between the values of this coalition

with and without the member. The differences yield the marginal contribution of the member

[7]. The Shapley value will be the mean contribution of the member considering all possible

combinations in which it is included.

Considering a model f(x) that is represented by the input x, has to be explained by an

explanatory model g(x′) represented by simplified inputs x
′ , which is the transformation of

a feature vector into a discrete binary vector [7]. It is explained in the following notation:

f(x) = g(x
′
) = ϕ0 +

M∑
i=1

ϕix
′

i (3.16)

where:

ϕ0: null output of the model.

ϕi: feature effect (attribution).

Three properties have to be respected [7]:

• local accuracy: states that if the input x ≈ x
′ then g(x

′
) ≈ f(x)

• missingness: states that if a feature is excluded from the model, its attribution must be

zero (x′

i = 0 −→ ϕi = 0)

• consistency: states that if a simplified input’s contribution changes or stays the same, the

input’s attribution should not do the opposite

The SHAP values can be represented in several types of plots [79]. In this research, summary

plots and scatter plots are used. In the summary plot, Figure 3.6, the features listed on the

left-hand side are ranked by their importance [79]. The mean absolute value of the SHAP

values for each observation defines the order. In the second, on the right-hand side is a color

bar representing the features’ real value. Blue color stands for the minimum value of the feature

in the dataset, red is the maximum, and the gradient changes while the values progress from

the minimum to the maximum. Grey values represent categorical features, which have been

converted from numerical values back to text values. The values for categorical features can

be expanded into a summary plot for each feature. The x-axis represents the impact of the

data points on the model. The more it shifts to the right, the higher the positive impact on

the prediction, and the more to the left, the higher the negative impact. Points located in the

middle represent that the individual contribution was zero.
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Figure 3.6: SHAP summary plot example

The values shown in summary plots can be translated into scatter plots. In Figure 3.7, the

x-axis has the feature values, explained as a color gradient in the summary plot. The y-axis is

the impact of the data point in the model, the same represented by the x-axis in the summary

plot.

Figure 3.7: SHAP scatter plot example [79]

The following section gives an overview of the background and mathematical formulation of

the regression tools used. The machine learning tools that were used has been divided into two

groups, support vector machines and ensembles.
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3.7 Tools

3.7.1 Multiple linear regression

The linear dependency between explanatory and response variables can be modeled by linear

regression [49]. Models with a single explanatory variable are called simple linear regressions,

while models with more than one are multiple linear regressions. However, MLR requires some

assumptions to be met[22]:

• Normal distribution of residuals

• No or little multicollinearity

• Homoscedasticity

A generic formulation of The MLR is formulated as the following [67]:

Y = β0 +

D∑
i=1

βi ·Xi + ε

Where:

β0: intercept in the y-axis.

βi: slope of the line

ε: model uncertainty.

Figure 3.8: Linear regression example

Ordinary least squares are commonly used for the model’s estimation (OLS) of a regression

analysis [64]. OLS is the distance between the observation and the fit line. These distances are

squared to prevent negative values from canceling positive values, and the line is fit to minimize

the sum OLS.
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Support vector machines can have similar outcome to MLR depending on the type of approach

being used [80]. The following subsection explains support vector machines and the different

approaches.

3.7.2 Support Vector Machine

Support vector machines (SVMs) are supervised learning algorithms that can be used for

classification, regression, and outlier detection [80]. It is based on Vapnik-Chernonenkis (VC)

theory. SVMs are originally structured for classification problems known as support vector

classification (SVC). Regression models are a generalization of SVC and are known as support

vector regression (SVR) and can be linear or non-linear depending on the type or kernel used

[81].

3.7.2.1 Linear SVR

In linear SVRs, the best fit for the model is not represented by a single regression line, as linear

regression, but by two lines offset vertically from the main line [81]. These lines create the

shape of a tube around the regression line, named ε-Insensitive Tube [81]. Points within this

tube have the errors disregarded, and the ones that fall outside the tube will have the errors

calculated until the boundaries, as shown in Figure 3.9. The error is calculated by minimizing

the sum of the distances, ξ∗, calculated by the following:

1

2
∥ w ∥ +c

m∑
i=1

(ξi + ξ∗i ) ⇒ min (3.17)

Figure 3.9: Support Vector Regression
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The name support vector comes from the slack variables (ξ∗), which are treated as vectors and

support the ε-Insensitive Tube, giving more flexibility compared to a linear regression [81].

3.7.2.2 Non-linear SVR

The application of linear or non-linear SVR comes from the method by which the data is divided.

Often, a single line does not describe the data and more advanced methods are required [81].

The kernel method is used to make a linear fit in non-linear data. One example of a kernel is

the Gaussian radial basis function (RBF) which is described as the following [63, 80]:

K(−→x ,
−→
li ) = e−

∥−→x −
−→
li∥

2σ2 (3.18)

Where:

K: kernel.
−→x : point in the dataset.
−→
li : center of the function.

i: different centers.

σ: decides how much curvature we want in a decision boundary.

Figure 3.10: RBF function Kernel [82]

The center, in RBF, is the point located in the (0,0,0) coordinate of Figure 3.10 [83]. The

vertical axis is the result of the kernel calculation. When there is a large distance between
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the data point and the center, the value in which Euler’s number is raised is also large, and

the equation tends to zero. For small distances, the result tends to be 1. From the kernel

equation, the original data points are projected into the 3D-shape of Figure 3.10 and often a

linear model is fit. The result of a linear model in three dimensions is a hyperplane where the

intersection between the hyperplane and function is the non-linear fit of the original data points

[81]. By offsetting this hyperplane by ε upwards and downwards, the non-linear ε-Insensitive

Tube is defined. The optimum values for ε and σ are defined through model optimization. The

mathematical formulation is expressed as the following [63]:

The training vectors xi ∈ Rp, i = 1, ..., n, and y ∈ Rn ε -SVR resolves for:

min
w,b,ζ,ζ∗

1

2
wTw + C

n∑
i=1

(ζi + ζ∗i )

subject to yi − wTϕ(xi)− b ≤ ε+ ζi,

wTϕ(xi) + b− yi ≤ ε+ ζ∗i ,

ζi, ζ
∗
i ≥ 0, i = 1, ..., n

(3.19)

Thus, the samples in which the predictions are outside ε are penalized by ζi or ζ∗i ,

depending on whether their predictions lie above or below the ε tube.

The dual problem is

min
α,α∗

1

2
(α− α∗)TQ(α− α∗) + εeT (α+ α∗)− yT (α− α∗)

subject to eT (α− α∗) = 0

0 ≤ αi, α
∗
i ≤ C, i = 1, ..., n

(3.20)

The vectors are mapped into a higher dimension space by the kernel function ϕ.

The prediction is:

∑
i∈SV

(αi − α∗
i )K(xi, x) + b. (3.21)

The analysis was also performed with decision tree-based ensemble methods. The following

subsection gives an overview of ensembles and decision trees. Later, random forests and gradient

boost models are explained.
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3.7.3 Ensembles

Ensemble models use multiple algorithms to create a better prediction [49]. Random forests

(RF) and gradient boosting (GB) algorithms use several decision trees to build the prediction

[49]. Decision trees are a non-parametric supervised learning method used for classification and

regression [84]. The objective of such trees is to learn decision rules derived from the features in

a piecewise constant approximation to build a model that predicts the value of a target variable

[84].

A tree structure is shown in Figure 3.11. It is composed of a root node that represents the

entire dataset, the internal node represents the conditions that must be met, branches provide

the decision rules, "yes/no", and the leaf is the decision [22].

Figure 3.11: Decision Tree

Decision trees tend to over-fit data with many features [84]. To avoid over-fitting, limiting the

amount of observation inside the splits is necessary so the model can stop once this threshold

is reached. The mathematical formulation is the following [84]:

Given training vectors xi ∈ Rn, i =, ..., | and the dependent variable vector y ∈ Rl, a

decision tree recursively partitions the dataset, grouping the samples with the same

labels or similar target values.

Let Qm represent the data at node m with nm samples. Each candidate split θ = (j, tm)

consisting of a feature j and threshold tm, partitions the data into Qleft
m (θ) and Qright

m (θ)

subsets

Qleft
m (θ) = {(x, y)|xj ≤ tm}

Qright
m (θ) = Qm \Qleft

m (θ).
(3.22)

A loss function H() is used to compute the quality of a candidate split of node m
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G(Qm, θ) =
nleft
m

nm
H(Qleft

m (θ)) +
nright
m

nm
H(Qright

m (θ)). (3.23)

Selects the parameters that minimize the function until maximum allowed depth is

reached

θ∗ = argminθ G(Qm, θ) (3.24)

The RF and GB models required the notion of decision trees. The following subsection aims to

provide background information on RF and GB models.

3.7.3.1 Random Forests

Decision trees are estimators that learn simple decision rules [84]. However, when the complexity

of such trees starts to increase, the results are a loss of accuracy, and it becomes hard to

generalize and add new data [85]. The construction of random forests overcomes these limitations.

The name random forests come from using multiple decision trees to predict [85]. The first

step to building a model is to construct a bootstrapped dataset [49]. The bootstrap concept

is to randomly select data points in the original dataset to generate a new dataset with the

same size as the original, in which observations can be repeated [50]. The trees are built by

selecting a random subset of features from the bootstrapped dataset and repeating this process

multiple times [85]. Building trees from the bootstrapped dataset gives variety to the model

since different combinations are integrated into the trees. The final prediction is the average of

all target values predicted by the trees.

Figure 3.12: Random forests structure

3.7.3.2 Gradient Boosting

The concept of gradient boosting was developed in 1990 by Robert Schapire when answering

the question if set weak learners (decision trees) could result in a good predictor [86]. This

question was first raised by Kearns and Valiant in 1988 [87].
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Gradient boosting algorithms initially build the first tree based on the average of the target

values [88]. The residuals between the first prediction and the target become the new value to

be predicted. In an iterative process, decision trees are built in series, reducing the error of the

previous tree [49]. The final result is the sum of all predictions with the average value. The

sum of all predictions could lead to over-fitting. Hence, the predicted residuals are scaled to

increment the averaged value in small steps. Figure 3.13 represents the structure of GB, where

the 0.1 factor multiplying the tree is the scaling, also known as the learning rate.

Figure 3.13: Gradient boosting structure

The mathematical formulation is the following [89]:

Gradient boosting regression trees regressors add the predicted ŷi for xi in the following

form:

ŷi = FM (xi) =

M∑
m=1

hm(xi) (3.25)

Where the hm are fixed-size decision trees, the constant M is the number of estimators.

The trees are built greedily:

Fm(x) = Fm−1(x) + hm(x), (3.26)

where the loss function defines l(yi, F (xi)). By applying a first-order Taylor

approximation, the value l can be approximated as follows:

l(yi, Fm−1(xi) + hm(xi)) ≈ l(yi, Fm−1(xi)) + hm(xi)

[
∂l(yi, F (xi))

∂F (xi)

]
F=Fm−1

. (3.27)
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[
∂l(yi,F (xi))

∂F (xi)

]
F=Fm−1

is the derivative of the loss function evaluated at Fm−1(x) allowing

it to be less computationally demanding. The derivative is denoted as gi and by removing

the constant terms, it yeilds:

hm ≈ arg min
h

n∑
i=1

h(xi)gi (3.28)

In an iterative process, h(xi) when it predicts negative value negative gradient −gi.

GB algorithms work well for heterogeneous, small, and non-linear datasets [60]. The library

chosen for the GB analysis was CatBoost, developed Yandex by in 2017. CatBoost outperformed

other boosting libraries in benchmarks, deals automatically with missing numerical values,

handles categorical features, runs in GPU, and is relatively faster than other libraries [60].

3.8 Conclusion

The processes required to deal with data and develop the models were described in Chapter

3. The process of making a regression analysis was explained, along with the tools utilized in

this research. After the models were built, the results could be computed and analyzed. The

following chapter aims to provide an overview of the main findings from the data preprocessing.

Later, the results from performance and sensitivity analysis are shown.



4
Results

The result chapter is divided into the three main stages of the methodology, shown in Figure

1.1. The stages were expanded to provide a better description of the results found, as shown

in Figure 4.1.

Stage 1 describes the main findings from the data preprocessing and feature engineering in

Section 3.1. The results from the correlation analysis and the final list of parameters are

provided, followed by an overview of the data used to implement the models.

In Stage 2, several steps were defined to determine the most suitable model for the sensitivity

analysis. With the initial performance, the type of analysis was selected to proceed to the

optimization, and the best-performing tool was compared to the statistical model based on its

accuracy.

In Stage 3, the SHAP values for the machine learning model were calculated, and the influence

of the different parameters was evaluated, as described in Section 3.6. The sensitivity analysis

considered the general impacts of the features for the models, the hypotheses collected from

NL-LAB, highlighted in Section 2.2, and the differences between field and laboratory results.

42
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Figure 4.1: Results structure
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4.1 Data preprocessing and feature engineering

With the data preprocessing and feature engineering, the final dataset was obtained. Table B.1

shows the entire extracted dataset. The filtering process removed all the features in Table B.2.

From the removed features, bitumen properties and RAP percentage data were incorporated

with the properties of another parameter. RAP percentage considered two different sources

and the sum of the sources. Therefore, in the model the sum of the sources were considered.

Additionally, tests were conducted to determine the bitumen properties of the fresh binder and

a combination of the fresh and reclaimed binder. The properties found for the compound binder

incorporated the properties of the fresh binder. Thus, the model considered only the properties

of the combined mixtures.

As a final step, the phases and works parameters were used to understand the differences

between the laboratory and the field. The works were the different roads on which the samples

originated.

The preprocessing and feature engineering results are presented as follows.

4.1.1 Correlation Analysis

The purpose of the correlation analysis, presented in Figures B.1 and B.2, was to allow the

removal of four parameters because of correlations above 0.8 as described in Section 3.1. The

selection was the following:

Bitumen correlation:

• Ring and Ball was highly correlated to all bitumen properties. Thus it was removed.

• Complex modulus (G*) was highly correlated to three properties, and phase angle (δ) was

highly correlated to two properties. For this reason, the G* was removed from the given

data.

Density correlation:

• Density was highly correlated to air void content, and compaction degree also incorporated

the density. Thus the density was also removed.

• Air void content was highly correlated to density, and compaction degree, and 74 missing

values were missing. Thus the air voids was removed in the final analysis.

4.1.2 Final selection of parameters

The final list of parameters in the analysis were divided into dependent and independent

variables. The dependent variables are predicted based on the independent variables. In this
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research, the dependent variables were stiffness, ε6 individual, fc lin, and ITS. The final selection

of independent variables is described in Table 4.1.

Table 4.1: Model’s Variables

Dependent variables
Name Description

Stiffness Stiffness @20◦C and 8 Hz [MPa]
ε6(Individual) Individual calculated ε6 value

fc lin Creep rate [ µε
cycles ]

ITS Indirect tensile strength @ 15◦C [MPa]
Independent variables

Name Unit
Year −

Bitumen penetration 10−1mm
Compaction degree %

Target density kg
m3

Phase angle ◦

RAP percentage %
Sample condition −

Mixing setup −
Compaction setup −

Friction reduction system −
Target filler percentage %

Target bitumen percentage %
Target percentage of aggregates

retained in 22.4mm sieve %

Target percentage of aggregates
retained in 16mm sieve %

Target percentage of aggregates
retained in 11.2mm sieve %

Target percentage of aggregates
retained in 8mm sieve %

Target percentage of aggregates
retained in 5.6mm sieve %

Target percentage of aggregates
retained in 2mm sieve %

Target percentage of aggregates
retained in 0.063mm sieve %

It is important to highlight that the aggregates and binder percentages were mass percentages.

The assumed densities of binder and aggregates allowed to transform the mass percentages into

volume percentages which were used to develop four different models. The target aggregate

percentage was divided into individual and group components to understand their impact

on the model’s performance. All individual fractions of aggregates were considered in the

individual components, and target stone and target sand percentages were considered for group

components. The target stone percentage was determined by the sum of aggregates retained

from the sieve 22.4mm to 2mm, and the target sand percentage was considered as the aggregates

retained in the 63mµ sieve. The following acronyms describe these percentages:

• IM: Individual Mass

• IV: Individual Volume
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• GM: Group Mass

• GV: Group Volume

It is highlighted that the analysis of the individual components consisted of all available

independent features, excluding sample condition and friction reduction system. Sample condition

was used exclusively for ITS and friction reduction system for permanent deformation. The total

number of independent features for stiffness and fatigue was 17 for the individual component

analysis and 12 for the group analysis. Permanent deformation and ITS were composed of 18

independent features for the individual component analysis and 13 for the group.

The final sensitivity analysis was incorporated with the Phases. The aim was to understand the

differences between the field and the laboratory. The mixing setup, compaction setup, and year

were removed from the last analysis because their values were incorporated into the Phases.

4.2 Data overview

The number of available data points for each functional property was different. Table 4.2 shows

the available data points, and Table 4.3 gives an overview of the data.

Table 4.2: Total number of data points

Datapoints Stiffness ε6 Individual fc lin ITS
Total 425 407 120 192

Training set 340 326 96 154
Testing set 85 810 24 38

Table 4.3: Data overview

Variable Minimum value Maximum value
Year 0 6

Target density 2360 2399
Compaction degree 97.35 103.31

RAP Percentage 50 65
Bitumen Penetration 11 53
Bitumen Phase Angle 39.96 66.57

Target Mass composition Stone 52.58 57.9
Target Mass composition Sand 32.12 36.81
Target Mass composition Filler 5.72 7.64

Target Mass composition Bitumen 4.25 5.4
Mixing set-up n/a n/a

Compaction set-up n/a n/a
Friction Reduction System n/a n/a

Dry / Wet Dry (0) Wet (1)

The categorical data was composed of multiple unique values, especially mixing setup, compaction

setup, and friction reduction system. Two values were assigned for sample condition as presented

in the last row of Table 4.3. Dry samples were defined as zero and wet samples were defined
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as one. Table 4.4 presents a data overview of the mixing and compaction setup, represented by

columns and rows.

Table 4.4: Mixing and compaction setup data points

Set-up Asphalt Plant Forced Action Mixer Planetary Mixer
Field roller 361 - -

Gyrator comp. 69 43 35
Hand roller 6 12 -
Mini roller 27 18 9

Segment comp. 76 62 -
Shear box 10 9 -

The compaction and mixing setups were also represented by the Phases. All the data points

related to the forced action mixer and planetary mixer were considered in Phase 1. All the

data points from the asphalt plant, excluding the field roller, were part of Phase 2. The field

roller and asphalt plant were included Phase 3. Table 4.5 presents the total data points used

for each Phase.

Table 4.5: Phases data points

Phase 1 Phase 2 Phase 3
188 188 361

Table 4.6 presents the different friction reduction systems used to determine the creep rate.

Table 4.6: Friction reduction system

Friction reduction system Data points
Two-layer rubber with silicon grease 79

2x Marshallpaper 17
PTFE gecoat vlies 12

Acre system 12

The following section presents the results that were obtained from the initial analysis.

4.3 Initial performance evaluation

The process of modeling a machine learning model can be time-consuming, mainly because of

the optimization stage [70]. Hence, the models were trained with the default hyperparameters

to avoid a long computational optimization process and to select one of the four analyses

described in Section 4.1.2. The statistical analyses were performed following the same steps. It

is important to highlight that the results shown in Table 4.7 were also the final R2 from the

statistical analysis.
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Table 4.7: R2 of the statistical models

Stiffness ε6 Individual fc lin ITS
IM 0.92 0.81 0.88 0.82
IV 0.92 0.81 0.88 0.82

GM 0.92 0.79 0.89 0.84
GV 0.92 0.79 0.9 0.83

The machine learning default hyperparameters provided R2 values superior to 0.70 for most

of the models, which correspond to a good accuracy. Although, some models showed poor

performance as well. For instance, RF performed poorly for the fatigue analysis, and SVR

did not perform well for the rutting analysis. Stiffness models provided the highest R2, with

minimum values of 0.94 and a maximum of 0.95, as shown in Table 4.8.

Table 4.8: R2 of the machine learning models

Stiffness ε6
Individual fc lin ITS

SVM RF GB SVM RF GB SVM RF GB SVM RF GB
IM 0.94 0.94 0.94 0.8 0.63 0.71 0.3 0.8 0.75 0.79 0.72 0.73
IV 0.94 0.94 0.94 0.81 0.64 0.71 0.33 0.8 0.81 0.83 0.74 0.74

GM 0.94 0.95 0.94 0.82 0.64 0.72 0.39 0.81 0.77 0.8 0.75 0.75
GV 0.94 0.95 0.94 0.82 0.63 0.7 0.41 0.8 0.82 0.79 0.74 0.71

Tables 4.7 and 4.8 show that the performance of different models are similar. The highest

variation in accuracy between the group and individual components was below 10%. Therefore,

GM was selected to proceed with the optimization process.

4.4 Optimization and cross-validation

The optimization process was the same for all the different tools used. However, different tools

use different sets of hyperparameters. Only the parameters listed below were chosen to reduce

the computational demands of the analysis. In the optimization process, the models were

generalized using 10-fold cross-validation. The computed R2 represented the model’s accuracy,

evaluating the training set, cross-validation of the training set and the testing set. It is noted

that the cross-validation accuracy was considered as the average of each fold.

The following subsections present the hyperparameters that were optimized.

4.4.1 Support Vector Regression

The SVR model was developed with the following four hyperparameters:

• Kernel: Defines if a linear or non-linear model could be applied.

• C: Penalty parameter of the error.

• γ: σ from the RBF kernel. Define the curvature of the function.
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• ε: Size of the ε-Insensitive tube.

The application of the RBF kernel resulted in the best performance for SVR in the given

dataset, which means that the non-linear model outperformed the linear. Most of the accuracies,

presented in Table 4.9, were higher than 70%, which was satisfactory. Although, the SVR model

poorly fitted the creep rate, poorly performing for the training and testing set. However, the

high accuracy found in the cross-validation shows that the model could fit different distributions.

Table 4.9 presents the resulting hyperparameters and R2.

Table 4.9: SVR hyperparameters and R2

Stiffness ε6 Individual fc lin ITS
Kernel RBF RBF RBF RBF

C 1.5 1.5 1.5 10
Gamma 0.1 0.2 0.3 0.1

ε 0.1 0.1 0.2 0.1
R2

train 0.959 0.762 0.404 0.869
R2

test 0.938 0.800 0.216 0.816
R2

CV 0.896 0.756 0.732 0.796

4.4.2 Random Forests

Random forests have different hyperparameters when compared to SVMs. The list of parameters

selected for tuning was as follows:

• Max depth: Maximum depth of the tree.

• Max Features: The number of features to consider when looking for the best split.

• Min samples leaf: The minimum number of samples required to be at a leaf node.

• Min samples split: The minimum number of samples required to split an internal node.

• Number of estimators: The number of trees in the forest.

Similarly to SVR, RF resulted in prediction accuracies higher than 70%, excluding the resistance

to permanent deformation, as shown in Table 4.10. For the resistance to permanent deformation,

the prediction for the training set and test set were higher than 70%. However, the cross-validation

was significantly lower. The low quality of the prediction indicates that the model found patterns

for the original split and did not find patterns for a new distribution. Table 4.10 shows the

hyperparameters and R2 from RF.

Table 4.10: RF hyperparameters and R2

Stiffness ε6 Individual fc lin ITS
Max depth 80 80 80 80

Max features 5 2 5 5
Min samples leaf 3 3 3 3
Min samples split 8 8 8 8

Number of estimators 1000 1000 200 1000
R2

train 0.954 0.723 0.815 0.867
R2

test 0.943 0.756 0.729 0.743
R2

CV 0.886 0.736 0.514 0.723
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4.4.3 Gradient Boosting

GB model has a similar structure to RF, with similar hyperparameters. The list of parameters

selected for tuning was as follows:

• Learning rate: Scales the contribution of each tree.

• Depth: Maximum depth of the tree.

• l2 leaf reg: Penalty parameter of the error.

• Min child samples: The minimum number of samples in a leaf.

• Odd type and odd wait: Over-fitting detectors.

The main difference between RF was the learning rate, which scales the predictions to advance

toward the target value in a stepwise manner. It is important to highlight that for gradient

boosting, over-fitting detectors were applied (od type and od wait) [90]. These over-fitting

detectors were hyperparameters set to stop the analysis for a number of iterations that did

not show improvement. Stopping prevents the model from "memorizing" the data because the

model does not proceed with the training while no improvement is visible. "Od type" and "od

wait" were set to "Iter" and 20, respectively. The "Iter" command stops training for a specified

number of iterations, and "od wait" is the specified number of iterations.

The results found by the model were good and consistent with similar findings for the training,

testing, and cross-validation, indicating that the model could capture the patterns for different

datasets. In addition, as described at the beginning of this section, GB can add the trees into

a single model, the models created in the cross-validation were added and the final prediction

was the average of all models. Table 4.11 presents the hyperparameters and R2 from GB.

Table 4.11: GB hyperparameters and R2

Stiffness ε6 Individual fc lin ITS
Learning rate 0.016 0.01 0.02 0.009

Depth 10 10 13 11
l2 leaf reg 2.5 1 1 4

Min child samples 8 32 1 32
R2

train 0.954 0.829 0.895 0.900
R2

test 0.951 0.802 0.812 0.824
R2

CV 0.919 0.762 0.794 0.823

The next step was the definition of the model to be further investigated. This selection is

necessary to narrow the analysis and focus on sensitivity analysis.

4.5 Model Selection

Final models were selected on the basis of accuracy and interpretability. However, more

aspects could be considered, for instance, time and preprocessing demands. Although the
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time and preprocessing were out of the scope of this research, it is important to highlight the

differences between the models. SVR training time was the fastest in all models with the highest

preprocessing demands. All the numerical features needed to be scaled and transformed, and

the categorical data encoded. GB required the least preprocessing and a longer optimization

process.

Comparing the R2 values in Tables 4.9, 4.10 and 4.11, GB outperformed all the models in most

of the analyses. In general, it was able to capture patterns of the dataset and make a better

prediction. Moreover, comparing the different sets of data, GB provided balanced results. Thus,

GB was selected to proceed to the sensitivity analysis. Table 4.12 provides a summary of the

best-performing models for the training, testing, and cross-validation processes.

Table 4.12: Performance comparison

Stiffness ε6 Individual fc lin ITS
R2

train SVM GB GB GB
R2

test GB GB GB GB
R2

CV GB GB GB GB

The accuracy was computed for different loss functions to check its impact. It is important

to highlight that the R2 presented in Table 4.13 resulted from the optimization process using

RMSE and cross-validation with the different loss functions to avoid the long optimization

process for all the different loss functions. Stiffness and resistance to fatigue models performed

the best with RMSE. ITS performed the best using quantile loss and rutting with expectile

loss. The accuracy increased by approximately 1% and 0.1%, respectively. The change in

performance for the different loss functions was negligible. Table 4.13 presents the accuracy for

the different loss functions:

Table 4.13: Performance for different loss functions

Loss function Stiffness ε6 Individual fc lin ITS
RMSE 0.951 0.802 0.812 0.824

Quantile 0.951 0.798 0.796 0.835
Expectile 0.949 0.79 0.813 0.814

In summary, the selected models used gradient boosting with GM as inputs. The following

section discusses the statistical and machine learning models’ prediction plots and highlights

the importance of hyperparameters.

4.6 Selected model

This section highlights the performance of the statistical and machine learning models, followed

by the importance of hyperparameters. Next, the sensitivity analysis is presented.
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4.6.1 Stiffness model

4.6.1.1 Predictive performance

The statistical model and machine learning model showed very high prediction accuracy above

90% (R2
Test,GB = 0.95 and R2

Test,MLR = 0.91), presented in Figures 4.2 and 4.3. GB’s predictive

accuracy was superior to MLR, better capturing the data patterns. In GB, the "min child

samples" was found to be the most relevant hyperparameter, followed by the tree depth, learning

rate, and l2 leaf reg, as shown in Figure 4.4.

R2 = 0.91 R2 = 0.91

Figure 4.2: Predicted-measured stiffness for MLR predictive model.

Figure 4.3: Predicted-measured stiffness for GB predictive model.
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Figure 4.4: Stiffness hyperparameter importance

4.6.1.2 General sensitivity analysis

The most important parameters for stiffness were found to be compaction degree, phase angle,

and mixing setup. Figures 4.5, 4.6, and 4.7 show the feature importance and their impact on

the model.

Compaction degree was found to be the most important parameter in the analysis, as shown in

Figure 4.5. It relates to the density and air void content, as a higher density generally results

in higher stiffness [23].

The phase angle is part of the complex modulus, which is expected to have high importance

to the stiffness because of its high correlation to stiffness, as described in Chapter 2 [16].

Additionally, materials with a higher phase angle can deform more easily and, therefore, be

less stiff.

In the mixing setup, the planetary mixer only positively influenced the stiffness, as shown in

Figure 4.6. However, the number of available data points was small to formulate a concrete

conclusion. The forced action mixer had similar data points impacting the stiffness positively

and negatively. Asphalt plants also had positive and negative impacts on stiffness. However,

the asphalt plant presented the most reliable conclusion because it corresponded to the most

available data points.

The results for some features disagreed with the findings in the literature review or were

inconclusive. Increasing the RAP content reduced the stiffness when it was expected to increase

[45]. The results for the target composition were found to be inconclusive. The low variability

of the data may not allow the model to capture their effects.
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Figure 4.5: Summary SHAP plot

Figure 4.6: Summary SHAP plot for mixing setup

Figure 4.7: Summary SHAP plot for compaction setup
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4.6.1.3 Hypotheses

The stiffness was divided into three main hypotheses determined in the NL-LAB, presented in

Section 2.2. Table 4.14 summarizes the hypotheses:

Table 4.14: Stiffness Hypotheses

Hypothesis Effect on the property
More and softer bitumen Lower/Smaller

Higher density Higher/Larger
Aging Higher/Larger

Figure 4.8 a to c shows the bitumen content and its tested properties. Figure 4.8 a and b shows

that a higher penetration and phase angle results in a lower stiffness. It is noted that the stiffness

of the binder is related to the overall stiffness of the mixture [37]. The phase angles crossing

the 45◦ margin reach the flow point, and the binder behaves more fluidly, which reduces the

stiffness once the binder stops behaving solid-like and moves towards a fluid behavior. Figure

4.8 c shows that a higher percentage of bitumen leads to higher stiffness. However, the data

points for the highest bitumen content showed opposite results. The bitumen content data

with 5.4% belongs to Work 6, which was polymer modified, which could be the reason for the

difference. Lower bitumen content results in stiffer mixtures. It is important to highlight that

bitumen content had low importance for the model.

Figure 4.8 d shows that the stiffness increases over the years. The aging of bituminous materials

leads to an increase in their stiffness [42].

Figure 4.8 e and f are plots based on the compaction degree and compaction degree considering

maximum density. Higher density results in higher stiffness, which was expected [23]. However,

the positive impact has limitations. For 101.5% compaction degree, the contribution to stiffness

reached a maximum, and above, there was no improvement. By plotting the impact of the

compaction degree with maximum density, the trend continued the same, meaning that there is

a maximum possible contribution from density to the stiffness [24]. Moreover, the SHAP plot

had an apparent sigmoidal shape, indicating that after a limit, the stiffness would not increase

anymore and would maintain constant even with the increase in density.

From a data perspective, the model has shown that the hypotheses relating to stiffness were

correct. Increasing the bitumen content and using softer binders reduces the stiffness. Increasing

the density increases the stiffness, and aging results in higher stiffness. However, the sigmoidal

trend suggests a limit to the positive influence of density on stiffness. The shape found for the

compaction degree plot could be potentially used to determine the target density of mixtures.

Fitting a sigmoidal function would make it possible to determine the point at which the density

stops improving the stiffness.
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(a) Bitumen penetration (b) Phase angle

(c) Bitumen content (d) Year

(e) Compaction degree (f) Max density compaction degree

Figure 4.8: Individual SHAP values - Density

4.6.1.4 Phases analysis

The phase sensitivity analysis resulted in two central readings. First, the change in stiffness

regarding the material’s aging is evident. Figure 4.10 shows a clear trend from "Phase 3-Year 0",

increasing the positive impact through the years. The second interpretation was the range of

influence on stiffness for the different phases. The different Phases presented different impacts

on the stiffness. However, the variability was small, meaning that the results found in the

laboratory were similar to the field.
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Figure 4.9: Summary SHAP plot

Figure 4.10: Summary SHAP plot for Phase

4.6.2 Resistance to fatigue

4.6.2.1 Predictive performance

The statistical and machine learning models showed good prediction accuracy. GB outperformed

MLR by a 1% margin (R2
Test,GB = 0.81 and R2

Test,MLR= 0.79), presented in Figures 4.11 and

4.12. Both MLR and GB provided the predictions spread in horizontal lines. The horizontal

lines were a possible indication of the systematic errors caused by the tests and problems caused

by the extrapolation. Fatigue lines are fit from the failure point of several samples, and this

single line provides a general indicator for fatigue life. In reality, each sample would have

different fatigue lives, and because of this generalization, the data points are spread in such a
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manner. In GB, the "min child samples" was found to be the most relevant hyperparameter for

the analysis. Followed by the tree depth, l2 leaf reg, and learning rate, as shown in Figure 4.13.

R2 = 0.81 R2 = 0.79

Figure 4.11: Predicted-measured ε6 for MLR predictive model.

Figure 4.12: Predicted-measured ε6 for GB predictive model.
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Figure 4.13: ε6 hyperparameter importance

4.6.2.2 General sensitivity analysis

The main features affecting the fatigue resistance were the target bitumen mass percentage,

target filler mass percentage, and target density. The combination of filler and bitumen results

in the mastic [47]. The stiffness of the mastic is related to the fatigue life of the mixture. Higher

mastic stiffness leads to higher fatigue life and reduces crack propagation [47].

The bitumen content influences the stiffness and brittleness of the mixture [4]. Mixtures with

lower volume content are more brittle and more prone to crack. The results from Figure 4.14

show that a higher bitumen content results in higher resistance to fatigue.

The results shown in Figure 4.14 indicate that low percentages of filler content decrease fatigue

resistance. However, the highest positive impact resulted from values below the maximum filler

content. Higher filler content leads to a stiffer material. The excessive use of filler leads to

brittleness compromising fatigue resistance [46].

The results from the target density indicate that higher values increase fatigue resistance. Higher

densities affect the air void content, increasing the initial stiffness [24]. Higher stiffness suggests

a higher fatigue life.

Similarly to stiffness, the target composition results were generally inconclusive. Target filler

mass percentage had high importance to the model, indicating that even low variability allows

capturing the patterns for features with high importance. The remaining target aggregate

percentages were inconclusive.
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Figure 4.14: Summary SHAP plot

Figure 4.15: Summary SHAP plot for mixing setup

Figure 4.16: Summary SHAP plot for compaction setup
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4.6.2.3 Hypotheses

The fatigue resistance was divided into three main hypotheses determined in the NL-LAB,

presented in Section 2.2. Table 4.15 summarizes the hypotheses:

Table 4.15: Resistance to fatigue Hypotheses

Hypothesis Effect on the property
More and softer bitumen Higher/Larger

Higher density Higher/Larger
Aging Lower/Smaller

Figure 4.17 a to c shows the bitumen content and its tested properties. Figure 4.17 a and

b show that higher penetration and phase angle results in lower resistance to fatigue. Softer

binder reduces the stiffness of the mixture, also affecting the resistance against cracking [37].

Complementary, the increase of the phase angle reduces the elastic modulus of the mixture,

resulting in a less stiff material reducing the resistance to fatigue. It is important to highlight

that referring to Figure 4.14, bitumen penetration and phase angle were found to have a low

overall contribution to the resistance to fatigue. Figure 4.17 c shows that higher bitumen

content results in higher resistance to fatigue. Low bitumen content makes the mixture more

prone to crack. Hence, higher content increase the resistance to fatigue [4].

Figure 4.17 d shows a downward trend with some outliers in years 3 and 6. The aging leads

to a stiffer binder [37]. The increased stiffness of the aged binder leads to a higher cracking

potential. Hence, lower resistance to fatigue [42]. It is important to highlight that referring to

Figure 4.14, aging showed the lowest overall contribution to fatigue resistance.

Figures 4.17 e and f are plots based on the compaction degree and compaction degree considering

maximum density. Higher density results in higher fatigue resistance. However, similar to

stiffness, the positive impact has limitations. For 101.5% compaction degree, the contribution to

the resistance to fatigue reached a maximum, and above, there was no improvement. The trend

gets more scattered by plotting the impact of the compaction degree with maximum density

but continued to develop asymptotically to the x-axis, meaning that, similarly to stiffness, there

is a maximum possible contribution from density to fatigue resistance. Moreover, the SHAP

plot showed an apparent sigmoidal shape, indicating that after a limit, the resistance would not

increase anymore and would remain constant for increasing densities.

From a data perspective, the model showed results disagreeing with some hypotheses. Higher

bitumen content improves fatigue resistance, while softer bitumen reduces it. The density and

aging hypotheses were in agreement with the results found. Higher density leads to higher ε6

and aging to a lower ε6. Moreover, similarly to stiffness, the shape found for the compaction

degree plot could be potentially used to determine the target density of mixtures. Fitting a
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sigmoidal function would make it possible to determine the point at which the density stops

improving the fatigue resistance.

(a) Bitumen penetration (b) Phase angle

(c) Bitumen content (d) Year

(e) Compaction degree (f) Max density compaction degree

Figure 4.17: Individual SHAP values

4.6.2.4 Phases analysis

The change in fatigue regarding the aging of the material was evident. Figure 4.19 shows a

clear trend from "Phase 3 - Year 0", increasing the negative impact in fatigue resistance through

the years. Regarding the differences between Phases, the impact variability on ε6 individual

for Phase 1 and 3 is small, meaning that results from the laboratory did not diverge too much

from the field. Phase 2 showed results with different ranges compared to Phases 1 and 3.
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Figure 4.18: Summary SHAP plot

Figure 4.19: Summary SHAP plot for Phase

4.6.3 Resistance to permanent deformation

4.6.3.1 Predictive performance

The statistical and machine learning models showed good prediction accuracy for resistance

to permanent deformation. MLR outperformed GB by 2% margin (R2
Test,GB = 0.81 and

R2
Test,MLR= 0.83), as shown in Figures 4.20 and 4.21. Figure 4.20 has a smoother distribution of

the data points on the 45◦ line than machine learning. The machine learning model overestimated

the predictions for low creep rate values, ranging from 0 to 0.12 [ µε
cycle .106], from 0.25 to 0.37

the predictions were smooth, and for values above 0.35 the predictions were underestimated. In

GB, the "min child samples" was found to be the most relevant hyperparameter for the analysis.

Followed by the learning rate, l2 leaf reg, and depth, as shown in Figure 4.22.
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R2 = 0.89 R2 = 0.83

Figure 4.20: Predicted-measured fclinear for MLR predictive model.

Figure 4.21: Predicted-measured fclinear for GB predictive model.
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Figure 4.22: fc linear hyperparameter importance

4.6.3.2 General sensitivity analysis

Resistance to permanent deformation resulted in compaction setup, friction reduction system,

and target bitumen mass percentage as the most relevant features. It is important to highlight

that the creep rate is the slope of the linear part of the creep curve [31]. The higher the slope,

the higher the fc lin, and the number of cycles to produce a higher strain is reduced. Therefore,

the higher the creep rate, the lower the resistance to permanent deformation. The readings

from Figure 4.23 show that positive values negatively affected performance.

The compaction setup was found to be the most important feature of the analysis. The

gyrator compactor negatively impacted the creep rate, improving the resistance to permanent

deformation. However, with a limited number of data points. Segment compactor and field

roller positively impacted the creep rate, reducing the resistance to permanent deformation.

The field roller had the most data point, resulting in the most reliable conclusions.

The friction reduction system reduces the friction losses in the triaxial test [31]. This system

should positively impact the creep rate [15]. Two-layer rubber with silicon grease had the most

data points, with the majority positively affecting the creep rate.

Target bitumen content showed that high bitumen percentages increased the creep rate of the

mixture. The increase of binder content in the mix increases the susceptibility to rutting [4].

The analysis also resulted in features that disagreed with the findings in the literature review or

inconclusive features. The target filler percentage and aging disagreed with expectations. The

increase in filler was expected to improve the resistance to permanent deformation. However,

it was composed by values lower than 8%, and according to the literature, improvement in

resistance to permanent deformation was seen from 10% [46]. The aging is discussed in the
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next section. The target composition and RAP showed inconclusive results, possibly caused by

the low variability in the data.

Figure 4.23: Summary SHAP plot

Figure 4.24: Summary SHAP plot for mixing setup

Figure 4.25: Summary SHAP plot for compaction setup
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Figure 4.26: Summary SHAP plot for friction reduction system

4.6.3.3 Hypotheses

The functional properties were divided into three main hypotheses determined in the NL-LAB,

presented in Section 2.2. Table 4.16 summarizes the hypotheses:

Table 4.16: Resistance to permanent deformation Hypotheses

Hypothesis Effect on the property
More and softer bitumen Lower/Smaller

Higher density Higher/Larger
Aging Higher/Larger

Figure 4.27 a to c show the impact of bitumen content and its tested properties. Figure 4.27 a

and b show that increasing the penetration and phase angle reduces the resistance to permanent

deformation. Stiffer binders and low phase angles are desirable for rutting prevention [37]. The

increase in penetration and phase angle increase the creep rate, reducing the resistance to

permanent deformation. However, after a certain point, the positive impact starts to reduce for

the increasing values. The bitumen content in Figure 4.27 c shows that higher bitumen content

results in lower resistance to permanent deformation [4].

Figure 4.27 d shows that the aging of the material leads to a higher creep rate, hence, lower

rutting resistance. Aging leads to a stiffer binder, expecting a higher resistance [37]. It is

important to highlight that referring to Figure 4.23, aging was found to have the second lowest

overall contribution to the rutting resistance.

Figure 4.27 e and f are plots based on the compaction degree and compaction degree considering

maximum density. Higher density results in higher resistance to permanent deformation. However,

in design, insufficient compaction can lead to the need for more binder to reach the desired

density, and the mix becomes more susceptible to rutting [23].

From a data perspective, the model showed the most results agreeing with the hypotheses.

Higher bitumen content and softer bitumen reduce the resistance to permanent deformation.
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Higher density leads to lower fc lin, agreeing with the density hypothesis. The aging results

in a higher fc lin, disagreeing with the hypothesis. The aging results were the opposite of

expectations.

(a) Bitumen penetration (b) Phase angle

(c) Bitumen content (d) Year

(e) Compaction degree (f) Max density compaction degree

Figure 4.27: Individual SHAP values

4.6.3.4 Phases analysis

The results from the model regarding resistance to permanent deformation showed that the

aging process increases the creep rate. Figure 4.29 shows a trend towards a positive influence in

the creep rate, meaning a reduction in rutting resistance. Aging should positively affect rutting

resistance because the material becomes stiffer [37]. The Phase difference showed different
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ranges for all Phases with a reduction of the resistance against permanent deformation from

the laboratory to the field. This indicates differences between the laboratory and the field.

Figure 4.28: Summary SHAP plot

Figure 4.29: Summary SHAP plot for Phase

4.6.4 Indirect tensile strength

4.6.4.1 Predictive performance

The statistical and machine learning models resulted in good prediction accuracy for the ITS,

as shown in Figures 4.30 and 4.31. GB outperformed MRL by approximately 10% (R2
Test,GB

= 0.84 and R2
Test,MLR= 0.75), as shown in Figures 4.30 and 4.31. The machine learning model

overestimates the predictions for low ITS values and underestimates values above 2.5 MPa. In
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GB, the "min child samples" was found to be the most relevant hyperparameter for the analysis.

Followed by the l2 leaf reg, learning rate, and tree depth, presented in Figure 4.32.

R2 = 0.87 R2 = 0.75

Figure 4.30: Predicted-measured ITS for MLR predictive model.

Figure 4.31: Predicted-measured ITS for GB predictive model.
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Figure 4.32: ITS hyperparameter importance

4.6.4.2 General sensitivity analysis

The indirect tensile strength model resulted in sample condition, bitumen phase angle, and

compaction degree as the most important features. Sample condition defines the sample as wet

or dry for the ITS test [34]. Sample condition reduces the binding strength of the bitumen with

aggregates, decreasing the ITS [33]. Figure 4.36 shows that wet samples negatively impact the

ITS.

Increasing the phase angle reduced the ITS, as seen in Figure 4.33. The high phase angles mean

that the material entered the viscous state reducing the elastic behavior.

The compaction degree affects the air void content of the mixture. Low compaction levels result

in high void contents leading to cracking and water damage [23]. The increase in density also

increases the cohesion of the mix, increasing the ITS.

The results for RAP content differed from expectations. The increase in RAP, according to the

literature, increases the ITS [45]. The results for the target sand and stone were inconclusive.

Similar to stiffness, fatigue, and rutting, the low variability of the data could be a possible

reason for the models not capturing the influence.

The following section aims to deal with ITS and water sensitivity. The ITSR measures water

sensitivity, and increasing the ITSR reduces the water sensitivity. The following explanations

focus on the phenomena of water sensitivity. Increasing water sensitivity is a negative factor

for the mixtures. Hypothesis one and two mean that the ITSR is improved, and hypothesis

three means that it has deteriorated.
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Figure 4.33: Summary SHAP plot

Figure 4.34: Summary SHAP plot for mixing setup

Figure 4.35: Summary SHAP plot for compaction setup
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Figure 4.36: Summary SHAP plot for sample condition

4.6.4.3 Hypotheses

The ITS was divided into three main hypotheses determined in the NL-LAB, presented in

Section 2.2. Table 4.17 summarizes the hypotheses:

Table 4.17: Water sensitivity Hypotheses

Hypothesis Effect on the property
More and softer bitumen Higher/Larger

Higher density Higher/Larger
Aging Lower/Smaller

Figure 4.37 a to c shows the bitumen content and its tested properties. The plots were divided

into different colors to distinguish the differences between conditioned and unconditioned samples

to describe the water sensitivity. Figure 4.37 a and b show that increasing the penetration and

phase angle reduce the ITS. On the other hand, the increase of bitumen content, Figure 4.37

c, shows an increase in the ITS. However, it is not clear the difference in the distance between

the conditioned and unconditioned data points. A higher binder content reduces the cracking

susceptibility of the material, avoiding water damage. Hence, a lower water sensitivity.

The aging of the material in Figure 4.37 d shows inconclusive results for ITS. However, the

data points cluster for year 0. By moving toward year six, there was an apparent increase in

the distance, indicating a higher water sensitivity. Aging leads to a stiffer binder with higher

cracking potential, leading to a higher water sensitivity [43]. It is important to highlight that

referring to Figure 4.33, aging was found to have the lowest overall contribution to the ITS.

Figures 4.37 e and f are plots based on the compaction degree and compaction degree considering

maximum density. Higher density results in higher ITS. For values above 100% compaction

degree, the data points grouped, reducing the space, indicating a reduction in the water

sensitivity with the increase in density. However, similar to stiffness and fatigue, there were

limitations to the positive impact on ITS. For 101.5% compaction degree, the contribution to

the ITS reached a maximum, and above, there was no improvement, meaning that, similarly

to stiffness and resistance to fatigue, there is a maximum contribution from density to the

ITS. Moreover, the SHAP plot also presented an apparent sigmoidal shape, indicating that the

resistance would not increase after a limit, remaining constant with the increase in density.
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From a data perspective, higher bitumen penetration and phase angles reduce the ITS of the

material, and higher content increases the ITS. The ITSR provided inconclusive results. The

density hypothesis agrees with the readings showing that higher density leads to higher ITS

and lowers water sensitivity. Moreover, similarly to stiffness and resistance to fatigue, the shape

found for the compaction degree plot could be potentially used to determine the target density

of mixtures. Fitting a sigmoidal function would allow determining the point at which the

density stops improving the ITS. However, more tests considering even denser samples should

be conducted to understand the impact of extreme densities on the ITS of asphalt mixtures.

The aging effect is inconclusive for ITS and ITSR. However, aging is the least important feature

in the analysis.

(a) Bitumen penetration (b) Phase angle

(c) Bitumen content (d) Year

(e) Compaction degree (f) Max density compaction degree

Wet Dry

Figure 4.37: Individual SHAP values



4.6. Selected model 75

4.6.4.4 Phases analysis

The ITS model showed inconclusive results regarding aging. There is no clear trend of improvement

or deterioration in Figure 4.38. However, comparing Figures 4.40 and 4.41, the different years

of Phase 3 provide similar impacts on the ITS. Moving towards year 3, the negative impact

is more significant for wet samples indicating a higher water sensitivity to aged samples. The

different Phases show a similar range of influence in the model, and a similar range means that

the differences between laboratory and field are not impactful for the ITS.

Figure 4.38: Summary SHAP plot

Figure 4.39: Summary SHAP plot for Phase
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Figure 4.40: Summary SHAP plot for dry samples

Figure 4.41: Summary SHAP plot for wet samples

4.7 Conclusion

Summarising Chapter 4, the applicability of data-driven approaches has shown positive results

for the NL-LAB data set. The summary plots could identify the key parameters for the

functional properties of asphalt mixtures, and more attention was given to the three most

important parameters. However, some target composition percentages provided inconclusive

results, while RAP and aging showed diverging results. The variability of These features was

low, and the target composition did not represent the real composition of the mixtures. These

issues are possible causes for the model’s lack of interpretation.

Regarding the sensitivity analysis focusing on the hypothesis. Most of the results agreed with

the hypotheses defined during the NL-LAB project. The remaining results disagreed or were

inconclusive, needing further investigation.
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The sensitivity analysis that was conducted to distinguish between laboratory and field showed

most differences between Phases for fatigue resistance and resistance to permanent deformation.

The remaining results were found to be similar, meaning that the differences found in the field

and laboratory were minimal.



5
Conclusion and recommendations

This chapter aims to provide the conclusions from the research, followed by recommendations

for further research.

5.1 General conclusions

The statistical and machine learning models provided similar results. The similarity between

approaches shows that machine learning models are useful tools that can provide reliable

predictions. From the author’s perspective, both models should be used to support the conclusions

and validate each other.

The usefulness of machine learning goes beyond making predictions. The models could be

used to help the industry. From the contractor’s perspective, the models could be used to

better understand the impact of mixing components into the mixture, and to improve the

quality of the mixture, providing more sustainable and robust pavement structures. From the

researcher’s perspective, machine learning models could be used to pinpoint the changes in

certain properties on different scales and focus on these properties. The models could also be

used to improve/develop type tests.

The framework was able to validate and invalidate the unknown hypotheses developed during

the NL-LAB project. Some hypotheses require further research to fully comprehend the impacts

of parameters and properties into the mix.

78
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5.2 Conclusion related to the initial hypotheses

Chapter 2 provided an overview of the hypotheses collected during NL-LAB, and Chapter

4 provided the models’ results based on the hypotheses. The hypotheses assessed were the

following:

Table 5.1: Main Hypotheses

Hypothesis Effect on the property Property

1 More and softer bitumen

Lower/Smaller Stiffness Modulus
Higher/Larger Resistance to fatigue
Lower/Smaller Resistance to permanent deformation
Higher/Larger Water sensitivity

2 Higher density

Higher/Larger Stiffness Modulus
Higher/Larger Resistance to fatigue
Higher/Larger Resistance to permanent deformation
Higher/Larger Water sensitivity

3 Aging

Higher/Larger Stiffness Modulus
Lower/Smaller Resistance to fatigue
Higher/Larger Resistance to permanent deformation
Lower/Smaller Water sensitivity

5.2.1 Stiffness

The hypotheses regarding stiffness, presented in Table 5.1, were in agreement with the results

found by the model (See Section 4.6.1.3).

(1) The increase in binder content and softer bitumen reduce the stiffness of the mixture.

The consistency of the bitumen was found to be of high importance in the model, while

the content was less important. The low influence resulted from the small range of binder

content used, which caused a low impact on the property.

(2) The increase in density increase the stiffness. The compaction degree was found to be

the most important feature of the model. However, there was an apparent limit to the

influence of density on stiffness. The SHAP plots, Figure 4.8 show a sigmoidal shape and

had no improvement after reaching 101.5% compaction degree.

(3) The aging process increased stiffness. However, the importance was relatively low as

compared to compaction degree.

5.2.2 Resistance to fatigue

The resistance to fatigue model shows results in agreement with the hypotheses presented in

Table 5.1. However, the bitumen consistency hypotheses showed the opposite behavior (See

Section 4.6.2.3.

(1) The bitumen consistency showed an opposite trend as the initial hypothesis. It was found

that softer bitumen leads to lower resistance to fatigue. On the other hand, a higher

bitumen content resulted in higher resistance to fatigue, agreeing with the hypothesis.
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The binder content had the highest importance in the model. Whereas the bitumen

consistency had very low importance for penetration and low importance for phase angle.

(2) The increase in density increased the fatigue resistance. However, similarly to stiffness,

the plot had a sigmoidal shape, with an apparent limit for a certain threshold. From the

scatter plot, values above 101.5% of the compaction degree had no apparent improvement,

and the compaction degree had relatively low relevance to resistance to fatigue.

(3) The aging affected fatigue resistance negatively. However, had low importance for the

overall model.

5.2.3 Resistance to permanent deformation

The model presented inconclusive results, as shown in Figures 4.23 and 4.27 (See Section 4.6.3.3.

(1) A higher penetration and phase angle values increase the creep rate and lower resistance

to permanent deformation. However, a decreasing trend was found for penetration value

above 20 and phase angles of 55◦, decreasing the creep rate. The bitumen content shows

that increasing the mass percentage increases the creep rate, and the quantity of bitumen

had a higher importance for the model than phase angle and penetration. This is in

agreement with the hypothesis.

(2) A higher density reduces the creep rate, increasing the resistance to permanent deformation.

This is in agreement with the hypothesis.

(3) Aging increases the creep rate. This is not in agreement with the hypothesis. However,

the aging process had very low importance to the model.

5.2.4 Water sensitivity

The ITS model shows most results in agreement with the hypotheses presented in Table 5.1.

However, the bitumen consistency hypotheses showed the opposite behavior (See Section 4.6.4.3.

(1) Softer bitumen leads to lower ITS. The increasing penetration and phase angle did not

show a conclusive change in the distance between the data points of wet and dry samples.

(2) The increase in density increases the ITS. Moreover, for values above 100% compaction

degree, the data points clustered, and the slope of wet samples was higher than dry

samples. The clustering and the increase of slope of wet samples result in an improvement

in the ITSR, reducing the water sensitivity. Similarly to stiffness and resistance to fatigue,

the improvement in ITS had a sigmoidal shape and had no improvement for values above

102%.

(3) Aging had inconclusive results. However, Figures 4.40 and 4.41 show that conditioned

samples had a higher impact on the ITS over the years, indicating that aging reduces the

ITSR, increasing the water sensitivity. This is in agreement with the hypothesis.



5.3. Answer to research questions 81

5.3 Answer to research questions

5.3.1 Answer to main research question

Does the machine learning framework/models developed in this research improve

the performance prediction of asphalt mixtures?

Yes, the models improved the performance prediction of asphalt mixtures. The improvement

can be seen by evaluating two main aspects:

• Accuracy

• Interpretability

Comparing the accuracy with the classical statistical model, Table 5.5 shows that gradient

boosting was outperformed only by the resistance to permanent deformation multiple linear

regression model. The remaining machine learning models provided higher accuracies, and by

increasing the number of data points, they would become even more robust and most likely

provide even better predictions.

The interpretability of the model was the main novelty in the analysis. The feature importance

could extract physical interpretation from most of the features of the mixture’s properties.

The SHAP values, even though no physical meaning was applied, could capture the impact of

different features in the analysis and its sensitivity. The hypotheses explained at the beginning

of the chapter highlight the interpretability of the model.

5.3.1.1 Comparison to existing machine learning model

The results found in this research could be compared to the machine learning model developed

by Martini (2019) because they also used the dataset from NL-Lab [22]. The differences between

models were the number of data points, the final selection of features, and the development of

a fatigue model. Even though the differences, the models could be compared because of the

similar approaches and type of data used. The accuracy of stiffness and resistance to permanent

deformation models were higher in Martini’s research. However, ITS and resistance to fatigue

were higher in this research. The models developed in this research had a more laborious

optimization and cross-validation. The cross-validation process resulted in more generalized

models. Moreover, the final models used the same mixing composition as Martini. However,

condensing the aggregates into group percentages reduced the number of features, reducing the

chances of over-fitting and making the models lighter.

Table 5.2: Comparison between machine learning models - 1

Stiffness ε6 Individual
Current model Martini’s model Current model Martini’s model

0.95 0.96 0.8 n/a
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Table 5.3: Comparison between machine learning models - 2

fc lin ITS
Current model Martini’s model Current model Martini’s model

0.81 0.86 0.84 0.82

The interpretability of Martini’s model was based on feature importance, where no physical

meaning could be read, while with SHAP values, it was possible.

5.3.2 Answer to sub-research questions

How does the machine learning model compare to the statistical model?

The prediction performance of the statistical model and machine learning model was similar.

The machine learning model outperformed the statistical model in most of the analyses. The

statistical model outperformed only for resistance to permanent deformation. From the author’s

perspective, the linear model outperformed machine learning for rutting prediction because the

creep rate is the linear part of the creep curve, and a linear model could fit the data accurately.

Moreover, the limited number of data points for creep rate and ITS decreased the learning

performance of the models. By increasing the number of data points, the data’s non-linearity

would be clearer, and more robust methods perform better than linear models.

The machine learning model had more functionalities for interpreting the results. Multiple

linear regression gives the weights of each parameter. However, the machine learning model

allowed better visualization by using SHAP plots. Moreover, SHAP plots provide a stronger

understanding of the impacts of each data point and feature in the analysis.

The differences in models make both valuable tools for prediction and interpretability. The

statistical model can be used for quick and simple predictions. The machine learning model

is more robust and can be used for deeper sensitivity analysis and to deal with the increasing

complexity of adding more data points.

Table 5.4: Model comparison

MLR Model GB Model
Property Train Test Train Test
Stiffness 0.906 0.908 0.954 0.951

ε6 individual 0.809 0.789 0.83 0.802
fc lin 0.89 0.833 0.896 0.812
ITS 0.865 0.748 0.892 0.835
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Table 5.5: Model comparison overview

Model comparison
Property Train Test
Stiffness GB GB

ε6 individual GB GB
fc lin GB MLR
ITS GB GB

What hyperparameters had the most relevance for the analysis? For all models, the

most important hyperparameters were min child samples. The hyperparameters optimized

in the models were learning rate, depth, l2 leaf reg, and min child samples. The choice of

hyperparameters was arbitrary. The number of parameters was limited to four to reduce the

computational demand to optimize the models.

What are the optimal hyperparameters after applying different loss functions? The

three different loss functions used in the analysis resulted in the hyperparameters in Tables 5.6

and 5.7. For different loss functions, the hyperparameters had slight changes. For the resistance

to fatigue model, the quantile loss was unable to finalize the optimization process. Although

the change of loss function impacted the hyperparameters’ values, the models’ accuracy had

a minor impact. In general, the selection of the loss function will have more impact on the

performance than the selection of hyperparameters. Different loss functions have different

optimum hyperparameters that could result in similar accuracy.

Table 5.6: Hyper-parameters for different loss functions - 1

Property Stiffness Fatigue
Loss Function RMSE Quantile Expectile RMSE Quantile Expectile
Learning rate 0.016 0.018 0.017 0.01

*

0.006
Depth 10 9 9 10 9

l2 leaf reg 2.5 4.5 3.5 1 4
Min child samples 8 32 32 32 32

* The fatigue model did not converge for the optimization utilizing quantile loss.

Table 5.7: Hyper-parameters for different loss functions - 2

Property Rutting ITS
Loss Function RMSE Quantile Expectile RMSE Quantile Expectile
Learning rate 0.02 0.018 0.014 0.009 0.017 0.003

Depth 13 10 13 11 15 10
Depth 13 10 13 11 15 10

l2 leaf reg 1 3.5 2.5 4 4.5 3.5
Min child samples 1 4 16 32 16 32

Does the machine learning model capture the physical behavior of the mixture?

Yes. The machine learning models could capture the mixtures’ physical behavior through

sensitivity analysis. Parameters with a high correlation with the properties of the asphalt

mixture were ranked highly in the analysis. The knowledge about the impacts of mixture
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components could be recognized. Some were in line with expectations, and some disagreed.

5.4 Recommendations

The recommendations were divided into two subsets. The first subset relates to the mixture’s

components and laboratory tests that had unexpected behavior. The second is recommendations

for the application of machine learning models.

Material level:

(1) Perform fatigue tests for asphalt mixtures of the same composition, varying only the

bitumen’s penetration and phase angle. The results found in this thesis diverge from the

expectations collected from NL-LAB, and further testing is required. The expectations

were that a softer binder would lead to higher fatigue resistance. Collect the data for later

application to machine learning tools.

(2) Perform tests to define the resistance to permanent deformation on more samples with

different aging. The results found in this thesis diverge from the expectations collected

from NL-LAB, and further testing is required. The expectations were that aging leads

to higher resistance to permanent deformation. Collect the data for later application to

machine learning tools.

(3) Perform tests to define the stiffness, resistance to permanent deformation, and ITS varying

the reclaimed asphalt content. The results found in this thesis diverge from the expectations

collected from NL-LAB, and further testing is required. The expectations were that

increasing RAP content would lead to higher stiffness, resistance to permanent deformation,

and ITS. Collect the data for later application to machine learning tools.

(4) Stiffness, fatigue resistance, and indirect tensile strength have shown a sigmoidal shape for

the SHAP plots. Testing samples of low and extreme densities to evaluate the importance

of density and if the sigmoidal shape continues or if another trend arises. Potentially, a

method to define the target density could be defined by fitting a sigmoidal curve for the

compaction degree plots to determine the point at which the density does not affect the

property anymore. Collect the data for later apply to machine learning tools.

Machine learning level:

(1) Application of the developed models to different datasets to verify the performance for

different compositions. In addition, apply continuous learning for the developed models

to understand the models’ behavior for adding more data.

(2) Development of a user interface for training the models, and the continuation of the

training could be applied. This user interface would allow each contractor to train the

models with their mixtures. Different models could be trained for single mixtures or

multiple mixtures. Models trained for single mixtures could be used to predict the
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functional properties, and a deep sensitivity analysis could be applied to improve the

mixture’s quality. For multiple mixtures, the models could be used to understand the

connection between the composition and the functional properties of asphalt concrete.

(3) Development of a physics-informed model. Physics-informed models apply prior knowledge

to improve the training of neural networks and reduce the number of data points required.

(4) Develop a machine learning framework for resistance to fatigue utilizing the number

of cycles to reach 50% of the initial stiffness. The current models used strain levels

extrapolated from the fatigue line, which is unadvised [22]. The proposed model does not

require extrapolated data.

(5) Develop a machine learning framework for resistance to permanent deformation utilizing

the rutting factor, G∗/sinδ, of the sample or the accumulated strain for 10000 cycles,

ϵ10000. These parameters are continuous values that do not originate from data fitting.

(6) Expansion of NL-LAB dataset for further improvement of the models and studies to be

conducted.

(7) Development of frameworks utilizing different types of asphalt concrete mixtures to verify

the applicability of machine learning tools.

(8) Switch the target composition to extracted composition in the training process. Models

trained on the real composition could better interpret the data and reduce the low

variability issue.

(9) Development of data frame with non-conventional materials to gather information for

later develop models in the early stages of material usage.
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A
Data overview

This appendix has the objective of giving an overview of the data. Including the relation between

the different features and their distribution.

A.1 Stiffness

Figure A.1: Composition stiffness overview - 1
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Figure A.2: Composition stiffness overview - 2
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A.2 Resistance to fatigue

Figure A.3: Composition resistance to fatigue overview - 1
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Figure A.4: Composition resistance to fatigue overview - 2
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A.3 Resistance to permanent deformation

Figure A.5: Composition resistance to permanent deformation overview - 1
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Figure A.6: Composition resistance to permanent deformation overview - 2
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A.4 Indirect tensile strength

Figure A.7: Composition ITS overview - 1



A.4. Indirect tensile strength 100

Figure A.8: Composition ITS overview - 2



B
Data preprocessing

This appendix has the objective of showing the tables and plots from the data preprocessing.

Including all the availables features, correlation analysis, split and categorical data reduction

The data described in the preprocessing section of Chapter 3 can be found in Table B.1.

Table B.1: Preprocessed raw data

Name Description

filename Filename

phase_tot Abbreviation Work-Phase-Lab-Year

work Work

phase Phase

lab Laboratory

year Year when measurement took place

monsternames Monster name

date_prod Date of production of asphalt

date_prep Date of specimen preparation

Densities Density specimen (bulk density)

VA Air void content

Bitumen 1_TRenK Temperature Ring and Ball of fresh binder

Bitumen 2_TRenK Temperature Ring and Ball of recovered binder

Bitumen 1_pen Penetration of fresh binder

Bitumen 2_pen Penetration of recovered binder

Bitumen 1_G* Complex Modulus @ 20řC and 10 rad/s of fresh binder

Bitumen 2_G* Complex Modulus @ 20řC and 10 rad/s of recovered binder
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Bitumen 1_delta Phase angle @ 20řC and 10 rad/s of fresh binder

Bitumen 2_delta Phase angle @ 20řC and 10 rad/s of recovered binder

Target density Target density

RAP percentage % Reclaimed asphalt percentage in the mix

RAP percentage 1 % Reclaimed asphalt percentage 1 in the mix

RAP percentage 2 % Reclaimed asphalt percentage 2 in the mix

Bitumen percentage % Bitumen in the mix

Fresh bitumen percentage % Fresh bitumen in the mix

AG1_percentage_PR % Bitumen in PR1

AG2_percentage_PR % Bitumen in PR2

AG1_pen_PR Penetration of PR1

AG2_pen_PR Penetration of PR2

AG1_TRenK_PR Temperature Ring and Ball of PR1

AG2_TRenK_PR Temperature Ring and Ball of PR2

Target_C22_4 Target composition 22/32

Target_C16 Target composition 16/22

Target_C11_2 Target composition 11/16

Target_C08 Target composition 8/11

Target_C05_6 Target composition 5/8

Target_C002mm Target composition 2/5

Target_C00063mu Target composition sand

Target_filler Target composition filler

Target_bitumen Target composition bitumen

Extraction_C22_4 Composition after extraction 22/32

Extraction_C16 Composition after extraction 16/22

Extraction_C11_2 Composition after extraction 11/16

Extraction_C08 Composition after extraction 8/11

Extraction_C05_6 Composition after extraction 5/8

Extraction_C002mm Composition after extraction 2/5

Extraction_C00063mu Composition after extraction sand

Extraction_filler Composition after extraction filler

Extraction_bitumen Composition after extraction bitumen

Reference_C22_4 Reference composition 22/32

Reference_C16 Reference composition 16/22

Reference_C11_2 Reference composition 11/16

Reference_C08 Reference composition 8/11

Reference_C05_6 Reference composition 5/8
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Reference_C002mm Reference composition 2/5

Reference_C00063mu Reference composition sand

Reference_filler Reference composition filler

Reference_bitumen Reference composition bitumen

dry_wet Dry of wet subset

type_setup Type of setup

descr_setup Descripton of setup

mix_setup Type of mixer

comp_setup Type of compactor

frict_red_system Friction reduction system

Stiffness Stiffness

ε Strain level

S50 Half of initial stiffness

N50 Number of cycles at half stiffness

ε6 Epsilon 6

ε6(Individual) Individual calculated Epsilon6 value

A1 lin A1 - constant linear fit

B1 lin B1 - constant linear fit

R2 lin Regression coefficient linear fit

fc lin fc (creep rate) µε
cycles

Alog A - constant logarithmic fit

Blog B - constant logarithmic fit

R2log Regression coefficient logarithmic fit

ε1000 log Permanent deformation after 1000 loading cycles

ITS Indirect tensile strength @ 15řC

Table B.2: Discarded Features

Name Reason Name Reason

filename Descriptive Extraction_C00063mu
- Missing values

- Tests needed

phase_tot Descriptive Extraction_filler
- Missing values

- Tests needed

Lab Descriptive Extraction_bitumen
- Missing values

- Tests needed

monsternames Descriptive Reference_C22_4 Missing values

date_prod Descriptive Reference_C16 Missing values

date_prep Descriptive Reference_C11_2 Missing values
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bit1_TRenK Incorporated Reference_C08 Missing values

bit1_pen Incorporated Reference_C05_6 Missing values

bit1_delta Incorporated Reference_C002mm Missing values

percentage_PR_1 Incorporated Reference_C00063mu Missing values

percentage_PR_2 Incorporated Reference_filler Missing values

percentage_bit Tests needed Reference_bitumen Missing values

percentage_fresh_bit Incorporated type_setup Descriptive

AG1_percentage_PR Incorporated descr_setup Descriptive

AG2_percentage_PR Incorporated eps Tests needed

AG1_pen_PR Incorporated S50 Tests needed

AG2_pen_PR Incorporated N50 Tests needed

AG1_TRenK_PR Incorporated EPS6 Tests needed

AG2_TRenK_PR Incorporated A1_lin Tests needed

Extraction_C22_4
- Missing values

- Tests needed
B1_lin Tests needed

Extraction_C16
- Missing values

- Tests needed
R2_lin Tests needed

Extraction_C11_2
- Missing values

- Tests needed
A_log Tests needed

Extraction_C08
- Missing values

- Tests needed
B_log Tests needed

Extraction_C05_6
- Missing values

- Tests needed
R2_log Tests needed

Extraction_C002mm
- Missing values

- Tests needed
eps1000_log Tests needed
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Figure B.1: Bitumen correlation

Figure B.2: Density correlation
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Figure B.3: Stiffness distribution

Figure B.4: ε6 distribution

Figure B.5: ITS distribution

Figure B.6: fc lin distribution
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Table B.3: Compaction set-up data

Original name Coherent group name
Field roller Field rollerWalsverdichting (HAMM drierol)

Gyrator Gyrator compactorGyrator compactor
Hand roller Hand roller

Plaatverdichter Segment compactorSegment compactor
Shear box Shear box

Table B.4: Mixing set-up data

Original name Coherent group name
Asphalt plant

Asphalt plantMolen gemengd
molengemengd

Wibau W.S.T. 150 charge menger Forced action mixerdwangmenger Lab
Forced action mixer Planetory mixerHobart planeetmenger

Table B.5: Friction reduction system data

Original name Coherent group name
2 maal Marshallpapier 2 maal Marshallpapier

2 rubbermembranen met siliconenvet per zijde

Two layer rubber with silicon greaselatex en silicoon film
Latexmembranen met siliconenvet

two layer rubber
PTFE gecoat vlies PTFE gecoat vlies

Acre system Acre system



C
SHAP importances

The SHAP importances are tables with the SHAP value from the feature importance located in

the results chapter.

C.1 Stiffness and resistance to fatigue

Table C.1: Stiffness and resistance to fatigue feature importance

Features Mean
SHAP Value

Compaction
Degree 348.977642

Bitumen
Phase Angle 335.374508

Mixing
Set-up 188.059042

Bitumen
Penetration 183.210488

Target Sand
Mass Percentage 149.857387

Target
Density 145.854286

Target Stone
Mass Percentage 141.713306

Year 133.742498
RAP

Percentage 100.641101

Target Filler
Mass Percentage 92.695177

Target Bitumen
Mass Percentage 64.116634

Compaction
Set-up 52.486127

Features Mean
SHAP Value

Target Bitumen
Mass Percentage 2.888558

Target Filler
Mass Percentage 2.328424

Target
Density 2.129955

Compaction
Set-up 1.717966

Compaction
Degree 1.338033

Bitumen
Phase Angle 1.12459

RAP
Percentage 1.069403

Mixing
Set-up 0.921308

Target Stone
Mass Percentage 0.76657

Target Sand
Mass Percentage 0.7636

Bitumen
Penetration 0.565547

Year 0.301376
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C.2 Resistance to permanent deformation and ITS

Table C.2: Resistance to permanent deformation and ITS feature importance

Features Mean
SHAP Value

Compaction
Set-up 0.026114

Friction Reduction
System 0.02114

Target Bitumen
Mass Percentage 0.015579

Target Filler
Mass Percentage 0.014584

Mixing Set-up 0.011891
Bitumen

Phase Angle 0.009859

Target
Density 0.007667

Bitumen
Penetration 0.007204

Target Sand
Mass Percentage 0.005161

Compaction
Degree 0.005105

RAP
Percentage 0.004332

Year 0.003837
Target Stone

Mass Percentage 0.003289

Features Mean
SHAP Value

Sample
Condition 0.108333

Bitumen
Phase Angle 0.102627

Compaction
Degree 0.08196

Target
Density 0.078112

Bitumen
Penetration 0.038085

RAP
Percentage 0.036806

Mixing
Set-up 0.030177

Target Bitumen
Mass Percentage 0.026631

Target Filler
Mass Percentage 0.02582

Compaction Set-up 0.023145
Target Stone

Mass Percentage 0.022866

Target Sand
Mass Percentage 0.022628

Year 0.01314



D
Sensitivity Analysis per work

This appendix has the objective to give an overview of the SHAP summary plots for each of the

works available in the dataset

D.1 Work 1

Figure D.1: Work 1 stiffness summary plot
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Figure D.2: Work 1 fatigue summary plot

Figure D.3: Work 1 rutting summary plot



D.2. Work 2 112

Figure D.4: Work 1 ITS summary plot

D.2 Work 2

Figure D.5: Work 2 stiffness summary plot
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Figure D.6: Work 2 fatigue summary plot

Figure D.7: Work 2 rutting summary plot
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Figure D.8: Work 2 ITS summary plot

D.3 Work 3

Figure D.9: Work 3 stiffness summary plot
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Figure D.10: Work 3 fatigue summary plot

Figure D.11: Work 3 rutting summary plot
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Figure D.12: Work 3 ITS summary plot

D.4 Work 4

Figure D.13: Work 4 stiffness summary plot
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Figure D.14: Work 4 fatigue summary plot

Figure D.15: Work 4 rutting summary plot
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Figure D.16: Work 4 ITS summary plot

D.5 Work 5

Figure D.17: Work 5 stiffness summary plot
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Figure D.18: Work 5 fatigue summary plot

Figure D.19: Work 5 rutting summary plot
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Figure D.20: Work 5 ITS summary plot

D.6 Work 6

Figure D.21: Work 6 stiffness summary plot
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Figure D.22: Work 6 fatigue summary plot

Figure D.23: Work 6 rutting summary plot
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Figure D.24: Work 6 ITS summary plot



E
Algorithm Examples

E.1 Code Example
Importing the libraries

[ ]: import pandas as pd

import seaborn as sns

import matplotlib.pyplot as plt

import os

import numpy as np

import shap

import optuna

from catboost import *

from sklearn.ensemble import RandomForestRegressor

from sklearn.svm import SVR

from sklearn.model_selection import train_test_split

from sklearn.preprocessing import StandardScaler

from sklearn.metrics import r2_score

shap.initjs()

from plotnine import *

Functions
[ ]: ### Importing datasets ###

def Training(file):

BASE_DIR = r'training CSV file path'
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if os.path.exists(BASE_DIR):

DATA_DIR = os.path.join(BASE_DIR,

"Training") # use this if the data is inside␣

↪→another folder inside the BASE_DIR

data_file_name = file

file_path = os.path.join(DATA_DIR, data_file_name)

df = pd.read_csv(file_path)

else:

BASE_DIR = r'Alternative path'

DATA_DIR = os.path.join(BASE_DIR,

"Training") # use this if the data is inside␣

↪→another folder inside the BASE_DIR

data_file_name = file

file_path = os.path.join(DATA_DIR, data_file_name)

df = pd.read_csv(file_path)

return df

def Testing(file):

BASE_DIR = r'Testing CSV file path'

if os.path.exists(BASE_DIR):

DATA_DIR = os.path.join(BASE_DIR,

"Testing") # use this if the data is inside␣

↪→another folder inside the BASE_DIR

data_file_name = file

file_path = os.path.join(DATA_DIR, data_file_name)

df = pd.read_csv(file_path)

else:

BASE_DIR = r'Alternative path'

DATA_DIR = os.path.join(BASE_DIR,

"Testing") # use this if the data is inside␣

↪→another folder inside the BASE_DIR

data_file_name = file

file_path = os.path.join(DATA_DIR, data_file_name)

df = pd.read_csv(file_path)

return df
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### Creating features ###

def Creating_Volume_Mass_Compaction(list):

# Separating into Stone, sand, filler and bitumen % v/v

list['stone_volume_percentage'] = list['Volume_Target_C22_4'] +␣

↪→list['Volume_Target_C16'] + list[

'Volume_Target_C11_2'] + list['Volume_Target_C08'] +␣

↪→list['Volume_Target_C05_6'] + list['Volume_Target_C002mm']

list['sand_volume_percentage'] = list['Volume_Target_C00063mu']

list['filler_volume_percentage'] = list['Volume_Target_filler']

# Separating into Stone, sand, filler and bitumen % m/m

list['stone_mass_percentage'] = list['Mass_Target_C22_4'] +␣

↪→list['Mass_Target_C16'] + list[

'Mass_Target_C11_2'] + list['Mass_Target_C08'] + list['Mass_Target_C05_6']␣

↪→+ list['Mass_Target_C002mm']

list['sand_mass_percentage'] = list['Mass_Target_C00063mu']

list['filler_mass_percentage'] = list['Mass_Target_filler']

# Changing names of columns

list.columns = list.columns.str.replace("_Target", "")

list.columns = list.columns.str.replace("bit2_delta", "Phase Angle")

list['year'] = list['year'].str.replace("yr", "")

# list['Phase_Year'] = list['phase'] + '_' + list['year'] #Use this for Phase␣

↪→analysis

# Creating Compaction Degree

list['compaction degree'] = list['densities'] / list['target_density'] * 100

return list

### Separating independent features ###

def Group_Mass_stiffness(list):

X = list.drop(

['stiffness', 'VA', 'filename', 'phase_tot', 'work', 'monsternames',␣

↪→'densities', 'bit2_TRenK',

'bit2_Gstar', 'percentage_bit', 'Volume_C22_4', 'Volume_C16',␣

↪→'Volume_C11_2', 'Volume_C08',

'Volume_C05_6', 'Volume_C002mm',

'Volume_C00063mu', 'Volume_filler', 'Mass_C22_4', 'Mass_C16', 'Mass_C11_2',
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'Mass_C08', 'Mass_C05_6', 'Mass_C002mm', 'Mass_C00063mu', 'Mass_filler',␣

↪→'stone_volume_percentage',

'sand_volume_percentage', 'filler_volume_percentage', 'lab', 'phase',␣

↪→'Volume_bitumen'], axis=1)

return X

### Defining the type of feature ###

def Stiffness(list):

categorical_data = ['phase', 'lab', 'mix_setup', 'comp_setup']

numerical_data = ['year', 'densities', 'VA', 'bit2_pen', 'Phase Angle',␣

↪→'target_density', 'percentage_PR',

'percentage_bit', 'Volume_C22_4', 'Volume_C16',␣

↪→'Volume_C11_2', 'Volume_C08', 'Volume_C05_6',

'Volume_C002mm',

'Volume_C00063mu', 'Volume_filler', 'Volume_bitumen',␣

↪→'Mass_C22_4', 'Mass_C16', 'Mass_C11_2',

'Mass_C08', 'Mass_C05_6', 'Mass_C002mm', 'Mass_C00063mu',␣

↪→'Mass_filler', 'Mass_bitumen',

'stone_volume_percentage', 'sand_volume_percentage',␣

↪→'filler_volume_percentage',

'stone_mass_percentage', 'sand_mass_percentage',␣

↪→'filler_mass_percentage',

'stiffness']

list[categorical_data] = list[categorical_data].astype(str)

list[numerical_data] = list[numerical_data].astype('float')

### Plotting functions ###

def chart_regression(pred, y,Title, sort=True):

t = pd.DataFrame({'pred': pred, 'y': y})

if sort:

t.sort_values(by=['y'], inplace=True)

plt.plot(t['y'].tolist(), label='expected')

plt.plot(t['pred'].tolist(), label='prediction')

plt.ylabel(Title +'Regression Chart')

plt.xlabel('0-100% of dataset')
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plt.legend()

plt.show()

def chart_regression_SVM(pred, y, sort=True):

t = pd.DataFrame({'pred': pred, 'y': y.flatten()})

if sort:

t.sort_values(by=['y'], inplace=True)

plt.plot(t['y'].tolist(), label='expected')

plt.plot(t['pred'].tolist(), label='prediction')

plt.ylabel('Regression Chart')

plt.xlabel('0-100% of dataset')

plt.legend()

plt.show()

def mix_scatter(y_train, y_pred_train, y_test, y_pred_test, r2_train, r2_test,␣

↪→Title):

data_val = pd.DataFrame({'y_truth': y_train, 'y_pred': y_pred_train, 'subset':␣

↪→'Training and Validation Data'})

data_test = pd.DataFrame({'y_truth': y_test, 'y_pred': y_pred_test, 'subset':␣

↪→'Test Data'})

data = data_val.append(data_test, sort=False)

text_val = pd.DataFrame({'r2': [r'\rm R^2= {:.2f} % '.format(r2_train)]})

text_test = pd.DataFrame({'r3': [r'\rm R^2= {:.2f} % '.format(r2_test)]})

p = ggplot(data=data, mapping=aes(x='y_truth', y='y_pred'))

p = p + geom_point(data=data_val, mapping=aes(x='y_truth', y='y_pred',␣

↪→color='subset'), alpha=0.7, stroke=0, size=3)

p = p + geom_point(data=data_test, mapping=aes(x='y_truth', y='y_pred',␣

↪→color='subset'), alpha=0.7, stroke=0,

size=3)

p = p + geom_line(mapping=aes(y='y_truth'), color='black')

p = p + theme(axis_text=element_text(size=10), axis_title=element_text(size=10))

p = p + labs(title=Title)

p = p + xlab('Measured ')

p = p + ylab('Predicted ')

p = p + scale_color_manual(values=["#F8766D", "#00BFC4", 'blue'])

p = p + geom_text(data=text_val, mapping=aes(x=6800, y=18000, label='r2'),␣

↪→color="#F8766D", nudge_x=-0.1, parse=True,

family='Palatino')
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p = p + geom_text(data=text_test, mapping=aes(x=6800, y=17250, label='r3'),␣

↪→color="#00BFC4", nudge_x=-0.1, parse=True,

family='Palatino')

print(p)

### Prediction + plotting function ###

def pred(model, X_train, y_train, X_test, y_test, Title):

y_pred_train = model.predict(X_train)

y_pred_test = model.predict(X_test)

r2_train = r2_score(y_train, y_pred_train)

r2_test = r2_score(y_test, y_pred_test)

print("Rš with validation data ", r2_train)

print("Rš with Test data ", r2_test)

mix_scatter(y_train, y_pred_train, y_test, y_pred_test, r2_train, r2_test,␣

↪→Title)

chart_regression(y_pred_train, y_train, Title)

def pred_SVR(model, scaler_y, X_train, y_train, X_test, y_test, Title):

y_pred_train = scaler_y.inverse_transform([model.predict(X_train)])

y_pred_test = scaler_y.inverse_transform([model.predict(X_test)])

y_pred_train = y_pred_train.reshape(-1, 1)

y_pred_test = y_pred_test.reshape(-1, 1)

y_train = scaler_y.inverse_transform(y_train)

y_test = scaler_y.inverse_transform(y_test)

r2_training = r2_score(y_train, y_pred_train)

r2_test = r2_score(y_test, y_pred_test)

print("Rš with training data ", r2_training)

print("Rš with test data ", r2_test)
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chart_regression_SVM(y_pred_train.flatten(), y_train, Title)

mix_scatter(y_train.flatten(), y_pred_train.flatten(), y_test.flatten(),␣

↪→y_pred_test.flatten(), r2_training, r2_test, Title)

Importing the dataset
[ ]: file = 'Train_stiffness.csv'

file_test = 'Test_stiffness.csv'

df = Training(file)

df_test = Testing(file_test)

Data Preprocessing
[ ]: df = Creating_Volume_Mass_Compaction(df)

df_test = Creating_Volume_Mass_Compaction(df_test)

[ ]: categorical_data = ['mix_setup', 'comp_setup']

Stiffness(df)

Stiffness(df_test)

[ ]: # This step one-hot-encode the categorical data. Only for SVR and RF

df_RF_SVR = pd.get_dummies(df, columns=categorical_data)

df_test_RF_SVR = pd.get_dummies(df_test, columns=categorical_data)

[ ]: # Independent Training variables

X = Group_Mass_stiffness(df)

X_test = Group_Mass_stiffness(df_test)

# Dependent Training variables

y = df.stiffness

y_test = df_test.stiffness

[ ]: # Separating into dependent and independent variables for encoded data. Only for RF␣

↪→and SVR

# Independent Training variables

X_RF = Group_Mass_stiffness(df_RF_SVR)

X_test_RF = Group_Mass_stiffness(df_test_RF_SVR)

# Dependent Training variables

y_RF = df_RF_SVR.stiffness

y_test_RF = df_test_RF_SVR.stiffness
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[ ]: # After the split the data should be scaled. Only required for SVR. The encoded␣

↪→data should not be scaled.

sc_x = StandardScaler()

sc_y = StandardScaler()

X_SVR = X_RF

X_test_SVR = X_test_RF

X_SVR.iloc[:, 0:9] = sc_x.fit_transform(X_SVR.iloc[:, 0:9])

X_test_SVR.iloc[:, 0:9] = sc_x.transform(X_test_SVR.iloc[:, 0:9])

y_SVR = y_RF

y_test_SVR = y_test_RF

# This step transform the data into 1D array. Only required for SVR

y_SVR = y_SVR.values.reshape(-1, 1)

y_test_SVR = y_test_RF.values.reshape(-1, 1)

y_SVR = sc_y.fit_transform(y_SVR)

y_test_SVR = sc_y.transform(y_test_SVR)

Splitting Data
[ ]: '''

This data was originally split in the beforehand. This step is required if the data␣

↪→still have to be split or further splitting/cross-validation required.

'''

# X_train, X_val, y_train, y_val = train_test_split(X, y, test_size=0.2,␣

↪→random_state=1237)

[ ]: ### Test and training pool for catboost ###

Pool_train = Pool(X, y, cat_features=categorical_data)

Pool_test = Pool(X_test, y_test, cat_features=categorical_data)

Fitting
[ ]: Model_GB = CatBoostRegressor()

Model_RF = RandomForestRegressor()

Model_SVR = SVR()
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Model_GB.fit(Pool_train, eval_set=Pool_test)

Model_RF.fit(X_RF,y_RF)

Model_SVR.fit(X_SVR,y_SVR)

Predicting
[ ]: pred(Model_GB,X,y,X_test,y_test, 'Gradient Boosting')

[ ]: pred(Model_RF,X_RF,y_RF,X_test_RF,y_test_RF, 'Random Forests')

[ ]: pred_SVR(Model_SVR,sc_y,X_SVR,y_SVR,X_test_SVR,y_test_SVR, 'Support Vector Machine')

E.2 Optimization and cross-validation
Importing libraries

[ ]: from catboost import *

import optuna

from sklearn.model_selection import train_test_split

from sklearn.model_selection import KFold

from sklearn.metrics import r2_score, mean_squared_error

Optimization function
[ ]: def Optuna_grid(X, y, categorical_data, title):

X_train, X_val, y_train, y_val = train_test_split(X, y, test_size=0.2,␣

↪→random_state=1861)

train_pool = Pool(X_train, y_train, cat_features=categorical_data)

val_pool = Pool(X_val, y_val, cat_features=categorical_data)

def objective(trial):

param = {}

param['learning_rate'] = trial.suggest_discrete_uniform("learning_rate", 0.

↪→001, 0.02, 0.001)

param['depth'] = trial.suggest_int('depth', 9, 15)

param['iterations'] = 10000

param['use_best_model'] = True

param['eval_metric'] = 'RMSE'

param['od_type'] = 'Iter'

param['od_wait'] = 20

param['logging_level'] = 'Silent'
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model = CatBoostRegressor(**param, loss_function='RMSE')

model.fit(train_pool,

eval_set=val_pool)

y_pred = model.predict(X_val)

score = model.score(y_pred,y_val)

return score

study = optuna.create_study(study_name=f'Catboost_{title}',␣

↪→direction="minimize")

study.optimize(objective, n_trials=100)

trial = study.best_trial

print("Number of completed trials: {}".format(len(study.trials)))

print("Best trial:")

print("\tBest Score: {}".format(trial.value))

print("\tBest Params: ")

for key, value in trial.params.items():

print(" {}: {}".format(key, value))

optuna.visualization.matplotlib.plot_param_importances(study)

return study

Cross-validation function
[ ]: def cross_val(X,y,categorical_data,study,):

kf = KFold(n_splits=10, shuffle=True, random_state=216)

models = []

scores = []

error_train = []

error_val = []

for train_index, val_index in kf.split(X, y):

X_train, X_val = X.iloc[train_index], X.iloc[val_index]
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y_train, y_val = y.iloc[train_index], y.iloc[val_index]

train_pool = Pool(X_train, y_train, cat_features=categorical_data)

val_pool = Pool(X_val, y_val, cat_features=categorical_data)

optimized_regressor = CatBoostRegressor(learning_rate=study.

↪→best_params['learning_rate'],

depth=study.best_params['depth'],

iterations=10000,

use_best_model=True,

loss_function='RMSE',

od_type='iter',

od_wait=20,

random_state=13,

logging_level='Silent')

optimized_regressor.fit(train_pool,

eval_set=val_pool)

pred_val = optimized_regressor.predict(X_val)

error_train.append(mean_squared_error(y_train, optimized_regressor.

↪→predict(X_train), squared=False))

error_val.append(mean_squared_error(y_val, optimized_regressor.

↪→predict(X_val), squared=False))

scores.append(r2_score(y_val,pred_val))

models.append(optimized_regressor)

models_avrg = sum_models(models,

weights=[1.0/len(models)] * len(models))

return models_avrg
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E.3 API

The machine learning analysis was programmed in Python with the assistance of several libraries.

A small summary of the used application programming interface (API) is represented in Figure

E.1.

Figure E.1: Libraries used in the research
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