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ONLINE FUNCTION MINIMIZATION WITH CONVEX RANDOM RELU EXPANSIONS

Laurens Bliek, Michel Verhaegen, and Sander Wahls

Delft Center for Systems and Control, Delft University of Technology,
Mekelweg 2, 2628 CD, Delft, Netherlands

ABSTRACT

We propose CDONE, a convex version of the DONE algo-

rithm. DONE is a derivative-free online optimization algo-

rithm that uses surrogate modeling with noisy measurements

to find a minimum of objective functions that are expensive to

evaluate. Inspired by their success in deep learning, CDONE

makes use of rectified linear units, together with a nonnega-

tivity constraint to enforce convexity of the surrogate model.

This leads to a sparse and cheap to evaluate surrogate model

of the unknown optimization objective that is still accurate

and that can be minimized with convex optimization algo-

rithms. The CDONE algorithm is demonstrated on a toy ex-

ample and on the problem of hyper-parameter optimization

for a deep learning example on handwritten digit classifica-

tion.

Index Terms— Deep learning, surrogate modeling,

Bayesian optimization, derivative-free optimization

1. INTRODUCTION

Many practical optimization problems do not satisfy the as-

sumptions that are present in traditional continuous optimiza-

tion algorithms. Examples of these assumptions are that the

derivative of the function to be optimized is known, or that

there is at least a mathematical expression for the function,

or that the function can be evaluated quickly and accurately.

But the outcome of a simulation or algorithm, for example,

can depend on many parameters and can suffer from noise. In

many cases it is undesirable to try a new set of parameters and

check for improvement multiple times, which is what happens

in grid search or random search techniques.

Several paths have been taken in alleviating this prob-

lem. Most derivative-free optimization algorithms [1] are

able to operate without the assumptions mentioned above.

The ones that seem most fit to deal with noisy and expensive

measurements are in the class of Bayesian optimization algo-

rithms [2, 3, 4]. These algorithms use the available data and

a prior to fit a probabilistic surrogate model and then use this
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model to decide where the next measurement should be taken.

Hyper-parameter optimization is just one of the many exam-

ples where Bayesian optimization algorithms have shown

their potential.

Another algorithm that is based on surrogate models is

the DONE algorithm [5]. The surrogate model used in this

algorithm is a random feature expansion (RFE) [6], which is

updated every time a new measurement comes in. At each

iteration of the algorithm a measurement of the objective is

taken, then the surrogate model is updated, and then a new

measurement location is proposed based on the minimum of

the surrogate model. Using RFEs as a surrogate model makes

it possible to get a fixed computational complexity per iter-

ation by using recursive least squares updates. In compar-

ison, Bayesian optimization algorithms become slower over

time. The DONE algorithm was shown to outperform a pop-

ular Bayesian optimization algorithm on several tasks, such

as the tuning of an optical beam-forming network [5].

This paper proposes an adaptation of the DONE algorithm

called CDONE that has several advantages:

• There are less hyper-parameters to tune.

• The surrogate model is convex.

• The surrogate model is evaluated faster.

• The surrogate model is inherently sparse.

The DONE algorithm already had few hyper-parameters to

tune, but having even less is a big advantage. The convexity

allows convex optimization algorithms to be used to find the

global minimum of the model, as opposed to finding a local

minimum. The last two advantages make it possible to find

the global minimum efficiently.

The convex model used in this paper is a combination of

RFEs and rectified linear units (ReLUs) [7], which will be ex-

plained in the next section. Section 3 describes the CDONE

algorithm. A comparison with the DONE algorithm is given

in Section 4. The results of both algorithms on an artificial

example and on a hyper-parameter tuning problem for deep

learning are described in Section 5. Finally, Section 6 con-

tains conclusions and recommendations for future work.
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2. RANDOM RELU EXPANSIONS

RFEs [6] have gained popularity recently due to their abil-

ity to approximate kernels with low dimensionality. They are

defined as a weighted sum of basis functions with random

parameters, and can be trained with conventional regularized

linear least squares techniques. Since the number of basis

functions and the values of the random parameters stay fixed,

these models are particularly fit for problems with many data

samples. Theoretical approximation guarantees for RFEs are

available for the L2 norm [8] and for the L∞ norm [6]. Prac-

tically relevant results for the L2 norm with models trained

with regularized least squares are also available [5]. In short,

any continuous function on a compact domain can be approx-

imated arbitrarily well if the number of basis functions are

large enough. The approximation error scales with the inverse

square root of the number of basis functions. In practice,

however, the approximation accuracy is sensitive to hyper-

parameters such as the probability distribution of the random

parameters. Recommendations for these hyper-parameters in

the case of random cosine features are given in [5].

At the same time, ReLUs [7] have become a popular ac-

tivation function in deep neural networks because of the in-

herent sparsity and the ability to circumvent the vanishing

gradient problem. Even shallow ReLU networks can act as

universal approximators [7]. In this work we use random fea-

tures based on ReLUs, to make use of the advantages of both

principles.

Define the ReLU φ : R → R as

φ(z) =

{
z, z > 0,
0, z ≤ 0.

(1)

Then, a Random ReLU expansion (RRE) is a model of the

form

RRE(x) = cD − cD−1 +

D−2∑
k=1

ckφ(w
T
k x+ bk), (2)

with wk ∈ R
d and bk ∈ R being realizations of i.i.d. ran-

dom variables from continuous probability distributions. We

assume ck ≥ 0 ∀k, so the first two terms are required for a

bias that also allows the model to approximate negative val-

ues. With this assumption, the model is a convex function of

x.

In the area of neural networks, the parameters ck,wk and

bk are trained with stochastic gradient descent or similar al-

gorithms. In the RRE model, however, wk and bk are chosen

randomly, and finding the optimal parameters ck is a convex

optimization problem.

3. THE CDONE ALGORITHM

We present an adaptation to the DONE algorithm [5], with

ReLU basis functions and a convexity constraint ck ≥ 0 ∀k,

to find the minimum of an unknown function f using noisy

measurements yi. To initialize the CDONE algorithm, an ini-

tial guess x1 is needed, together with its corresponding mea-

surement y1. The random parameters wk and bk are drawn

independently from their probability distributions and remain

fixed for the whole duration of the algorithm. In this paper

we have used the uniform distribution on [−1, 1] for both wk

and bk. The algorithm then repeats the following three steps:

3.1. Fitting the surrogate model

To fit the RRE to the data (xi, yi) for iterations i = 1, . . . , n,

while imposing a convexity constraint, the following regu-

larized nonnegative linear least squares problem needs to be

solved:

min
c

n∑
i=1

(yi − RRE(xi; c))
2
+ λ||c||22, (3)

s.t. ck ≥ 0, k = 1, . . . , D. (4)

Here, λ is a regularization parameter, which can be chosen

quite small in practice (e.g. λ = 10−8) because the convexity

constraint already helps in preventing overfitting. Being less

sensitive to this parameter is a big advantage over the DONE

algorithm. The above optimization problem is a nonnegative

least squares problem. This problem is convex and can be

solved with, for example, an active set method [9].

3.2. Finding the minimum of the surrogate model

After fitting the RRE model with optimal coefficients c∗, we

find the minimum of this model:

x∗ = arg min
x∈X

RRE(x; c∗). (5)

Here, X is a convex compact set, e.g. X = [−1, 1]d. In

the original DONE algorithm, only a local minimum of the

surrogate model is found. The initial guess provided to the

solver is the current measurement xi, plus a small perturba-

tion to aid in exploration. However, because the RRE in the

CDONE algorithm is convex, we can find the global mini-

mum in this case with a convex optimization algorithm. There

is also no need to add an extra exploration step by perturbing

the initial guess.

The original DONE algorithm uses second-order opti-

mization methods like the L-BFGS method [9]. Because

of the structure of the RRE however, we propose a steepest

descent method with a backtracking line search and gradient

projection [9] for the CDONE algorithm. It can be seen that

the RRE is a piecewise linear function, so first-order approx-

imations are exact in a certain set, and the line search should

help in taking the largest possible step within this set.
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3.3. Choose a new measurement point

The found global optimum of the RRE is used to determine a

new measurement point. Although the RRE model is convex,

the original objective f might be non-convex, so a small ran-

dom perturbation ξ is added to x∗ for exploration purposes.

Only a local approximation of f around its (local) minimum

is needed, and the RRE becomes more accurate around this

point as new measurements are added. A new measurement

is taken at xi+1 = x∗ + ξ (after projecting onto X), which

leads to a new value yi+1, and the algorithm repeats at step 1.

4. COMPARISON WITH THE DONE ALGORITHM

Several factors influence the computational costs of the

CDONE algorithm, compared to the DONE algorithm. First

of all, the basis functions used in the DONE algorithm are

cosines, whereas the CDONE algorithm uses ReLU basis

functions. Although this has no influence on the order of

complexity, some computation time can be saved by imple-

menting the ReLU basis function with a simple IF-statement

as in (1). This is faster than calculating a cosine. Another time

saver is the sparsity of the RRE model, which occurs in two

ways: sparsity of the basis functions, and sparsity of the non-

negative weights ck. The first case occurs if wT
k x + bk ≤ 0,

in which case a scalar multiplication and addition do not have

to be computed. This inherent sparsity is one of the reasons

ReLUs are used in deep learning. The second case occurs if

ck = 0 after fitting the model. In this case, φ(wT
k x + bk)

does not have to be computed, saving a vector-vector multi-

plication of the same size as the input x, a vector addition,

and an IF-statement. The next section illustrates how often

this happens in practice.

The convexity of the model used in the CDONE algorithm

allows convex optimization algorithms to find the global min-

imum of the model. In the DONE algorithm, finding the

global minimum is an intractable problem due to the non-

convexity of the model. Furthermore, unlike the DONE algo-

rithm, the CDONE algorithm does not include an exploration

step by perturbing the initial guess of this convex optimiza-

tion algorithm. For each iteration, this saves on computation

time equal to the time required to draw a random vector of the

same dimension as the input x.

The only part of the CDONE algorithm that could in-

crease its computation time when compared to the DONE

algorithm, is the fitting of the surrogate model. Step 1 of

the CDONE algorithm, fitting the surrogate model, is the

most computationally expensive step of the algorithm. In the

original DONE algorithm, a recursive least squares update

was used to reduce the computation time of this step. In

the CDONE algorithm, this should be changed to a recur-

sive nonnegative least squares update. Several algorithms

exist for this purpose [10, 11, 12, 13], all with varying nu-

merical stability, accuracy, and computational complexity.

The approach in [13], based on time-, order-, and active-

set-recursion, seems the most fit for this problem. With this

implementation, the nonnegative least squares problem (3)-

(4) can be solved recursively in O(D2), just like in the DONE

algorithm, provided that the active set recursion can be carried

out in O(1) steps. In this paper, we did not use a recursive

algorithm to solve (3)-(4), but applied the active set method

directly for ease of use. We do plan to investigate a recursive

implementation in the future.

In Section 5 we note that the active constraints between

two subsequent iterations of the CDONE algorithm differ

only by 2 on average in a simple test case. This implies

that the average order of complexity of the fitting step of

the CDONE algorithm could indeed be reduced to O(D2) in

practice.

5. NUMERICAL EXAMPLES

In this section we test the CDONE algorithm on two numeri-

cal examples: finding the minimum of a convex function per-

turbed by noise, and finding the optimal hyper-parameters of

a deep learning classification problem.

5.1. Minimizing a noisy convex function

As a test case, consider the function

f(x) =
√
xTx− 5, (6)

with x ∈ R
2. We have access to this function via noisy mea-

surements y(x) = f(x) + 0.01η, where η has a standard nor-

mal distribution.

The minimum of f is found with four variations of the

DONE algorithm: the standard DONE algorithm, the DONE

algorithm with ReLU basis functions instead of cosines

(DONE RELU), the CDONE algorithm as presented in this

paper, and the CDONE algorithm with exponential linear

units [14] (ELUs) as basis functions (CDONE ELU). The

comparison with the smoother ELUs is made to determine the

effect of the smoothness of the basis functions. All algorithms

used D = 500 basis functions and N = 500 measurements,

with a regularization parameter of λ = 10−2 for DONE and

DONE RELU, and λ = 10−8 for CDONE and CDONE ELU.

The convexity constraints of the latter two algorithms reduce

the risk of overfitting to noise, so they need less regularization

as a consequence. The variance of the exploration parameter

was set to 10−4 for all algorithms. The DONE and DONE

RELU algorithms used the standard normal distribution for

their respective wk parameters, which is the default approach

that works well in practice [5]. The experiment was repeated

100 times starting from random initial guesses in [−1, 1]2.

Table 1 shows the distance of the found minimum x∗ to

the true minimum, with the mean and standard deviation from

100 runs, as well as the average computation time in seconds.

Please note that the computation time can be improved for all
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DONE DONE RELU CDONE CDONE ELU

Mean 0.0132 0.0150 0.0155 0.0244
Std 0.0074 0.0073 0.0091 0.0148

Time 55.735 64.266 27.991 34.427

Table 1: Final distance to the true minimum of the convex

function, averaged over 100 runs, and average computation

time in seconds.

0 100 200 300 400 500
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DONE RELU
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CDONE ELU

Fig. 1: Distance to the true minimum of the convex function,

averaged over 100 runs.

four algorithms, as we used (adaptations of) a slower version

of the DONE algorithm available online [15]. Furthermore,

the CDONE and CDONE ELU implementations do not yet

use a recursive algorithm for fitting the surrogate model, as

mentioned in Section 4. Figure 1 shows how the average dis-

tance progresses over time. It can be seen that the CDONE

algorithm achieves a similar accuracy as the other variations,

with CDONE ELU performing slightly worse. However, a

larger difference between the variations can be seen in Fig-

ure 2. This figure shows the mean number of nonzero coef-

ficients ck, k = 1, . . . , D. The CDONE algorithm uses only

about 16 out of all 500 available basis functions. Furthermore,

the set of basis functions that are used remains fairly constant

as can be seen in Figure 3. On average, the difference between

the active set of coefficients {k : ck = 0} for a particular iter-

ation and the next is less than 1, although this difference can

go up to around 15 in one of the earlier iterations. We con-

clude that the CDONE algorithm has a high accuracy com-

pared to the number of used basis functions, and that there

is potential for efficient implementations of the minimization

step of this algorithm by exploiting the sparsity.

0 100 200 300 400 500

0

50

100

150

200

250

300

DONE

DONE RELU

CDONE

CDONE ELU

Fig. 2: Average number of nonzero coefficients per iteration.
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Fig. 3: Nonzero coefficients pattern for one of the runs of

CDONE. Yellow indicates ck > 0 for a particular basis func-

tion k at that iteration, while blue indicates ck = 0.

5.2. Hyper-parameter optimization for deep learning

In our second experiment we consider the problem of hyper-

parameter optimization. The task we consider is a handwrit-

ten digits recognition example [16], where a deep neural net-

work is trained to classify handwritten digits. We modify this

example so that the following eight hyper-parameters are con-

sidered unknown, even though values are given in the exam-

ple: height, width and stride of the filter of the convolutional

layer, height, width and stride for the max pooling layer, the
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Fig. 4: Accuracy of the current iteration of various algorithms, on the test set for the deep learning example. Ten individual

runs are shown. The last plot shows the accuracy of the best iteration of all the runs, where the last column shows the accuracy

given in the original example.

maximal number of epochs, and the initial learning rate. The

example ends by showing the accuracy on the given test set

after training.

The function we wish to minimize takes an 8-dimensional

input and converts it from the set [−1, 1]8 to realistic values

for the hyper-parameters. Hyper-parameters that should have

integer values are rounded. Then we run the example with

these values for the hyper-parameters, and we take −1 times

the accuracy on the test data as the output to be minimized.

Figure 4 shows the accuracy for the same four algorithm

variations as in the previous example, for 10 runs, starting

from 10 different initial guesses. The initial guesses were

shared by the different algorithms. Note that some initial

guesses were so bad that the accuracy was precisely 0, and

the algorithms had trouble getting out of this part of the hyper-

parameter space. The last plot shows the best result found by

each algorithm, as well as the result provided in the original

example [16]. All algorithms gave better results than the re-

sults given in the example. We used the same settings as in the

previous example, but the number of basis functions and mea-

surements were changed to D = 800 and N = 100, respec-

tively. We also make a comparison with a random search over

the hyper-parameter space. The random search can provide

good hyper-parameter settings in just a few iterations, and

so does the DONE algorithm. However, an advantage of the

CDONE algorithm is that it stays near the currently best found

solution and keeps improving. This allows the user to perform

the original task while the hyper-parameters are being opti-

mized. This is important in online applications, such as aber-

ration correction for fluorescence microscopy [17], where the

quality of the solution should not deteriorate during the op-

timization procedure. The most stable behavior, with a clear

convergence plot, is found in the CDONE algorithm, although

this algorithm had trouble with the worst initial guesses.

The number of nonzero coefficients in CDONE fluctuated

between 20 and 60 in this example. We again conclude that

the performance of the CDONE algorithm is very high com-

pared to the number of basis functions that are actually used.

We also conclude that the CDONE algorithm can be used for

non-convex optimization problems despite the convexity con-

straint, and that the convexity constraint gives rise to stable

behavior of the algorithm.
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6. CONCLUSION

The DONE algorithm, a derivative-free optimization algo-

rithm for finding the minimum of an objective using noisy

measurements, has been adapted by introducing rectified lin-

ear units and a nonnegativity constraint. The constraint makes

sure that the surrogate model of the objective is convex, al-

lowing its global minimum to be found with convex opti-

mization algorithms. The adapted CDONE algorithm has less

hyper-parameters to tune, since the convexity helps in reduc-

ing the need for regularization and exploration of the surro-

gate model. Having less hyper-parameters to tune is crucial

for certain tasks, especially when the algorithm is used for

finding the optimal hyper-parameters of another algorithm or

simulation. Furthermore, the surrogate model benefits from

sparsity and can be evaluated efficiently.

The CDONE algorithm has been tested on an artificial ex-

ample and on the problem of hyper-parameter optimization

for a deep neural network classifier for handwritten digits.

Using a lower effective number of basis functions because of

the sparsity, the CDONE algorithm still exhibited high final

accuracy and provided stable behavior, at the cost of slower

convergence. In the future we will further exploit this sparsity

in efficient implementations of all steps of the algorithm.
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