High accuracy machines on factory floors

Anthonie Boogaard

What are high accuracy machines?

- Photolithographic tools
- Healthcare machines
- Large printers

What is the problem?

- Electronic products getting smaller
- Production technique of desktop processors by Intel
 - 3 µm in 1978
 - 32 nm in 2010
- Disturbances from the floor
 - Dynamic coupling
 - Floor vibrations

Research topics

- 1. Investigate the dynamic behavior of factory floors and propose a method to properly predict the dynamic coupling between the machine and the floor it is placed on.
- 2. Develop a method to predict the new vibration level of the floor, based on the dynamic response and the free vibration level.

Presentation outline

Introduction

- Existing methods for floor disturbances
- Frequency Based Substructuring
- Ground Vibration Transmission
- Experimental validation
- Results
- Comparison
- Conclusion and recommendations
- Questions

Existing methods Dynamic coupling

Fixed •Simple •Only true for infinitely stiff floors

Challenge the future 6

Existing methods Floor vibrations

Directly on the mounts •Simple •Only true for infinitely stiff floors

Frequency Based Substructuring

Compatibility

Frequency Based Substructuring

• Dynamic equilibrium of the machine:

Frequency Based Substructuring

- Summarizing:
- $egin{bmatrix} egin{aligned} egin{aligne} egin{aligned} egin{aligned} egin{aligned} egin$

 Solving this set of equations and neglecting the applied forces on the floor yields

$$egin{bmatrix} oldsymbol{u}_{i}^{m}\ oldsymbol{u}_{c}^{m}\ oldsymbol{u}_{c}^{m} \end{bmatrix} = oldsymbol{Y}^{m}oldsymbol{f}^{m} - oldsymbol{Y}^{m} \begin{bmatrix} oldsymbol{0}\ oldsymbol{0}\ oldsymbol{I} \end{bmatrix} ig(oldsymbol{Y}_{cc}^{m}+oldsymbol{Y}_{cc}^{f}ig)^{-1}ig[oldsymbol{Y}_{ci}^{m} &oldsymbol{Y}_{co}^{m} &oldsymbol{Y}_{cc}^{m}ig] igg[oldsymbol{f}_{i}^{m}\ oldsymbol{f}_{o}^{m}\ oldsymbol{f}_{c}^{m} \end{bmatrix}$$

Frequency Based Substructuring Dynamic flexibility

- For the machine
 - Full matrix is needed, as if it is floating free
 - Can be easily obtained from the model
- For the floor
 - Can be obtained from a model of the building
 - Difficult to model a building accurately
 - Only interface flexibility is needed
 - Solution: dynamic measurements

Ground vibration transmission

$$oldsymbol{u}_{c}^{m}-oldsymbol{u}_{c}^{f}=oldsymbol{\delta}^{free}$$

Challenge the future 12

Experimental validation Test case model

Coupling with rotations

Coupling with translations

Experimental validation Test case construction

Experimental validation Measurements

- **1.** Floor measurement
 - Impact measurement on a flexible floor
- +:*ff* fl 2. Test ca
 - Assum
 - Obtain
- 3. Validat
 - Test ca

Floor measurement

Experimental results Coupling

Experimental validation Vibration measurement

- Measure vibration level of the flexible floor with and without test case.
- Shaker with a small mass to provide equal excitations for both measurements
 - Shaker excitation: 12 and 16 Hz

Experimental results Ground vibration transmission

Challenge the future 19

Comparison coupled response Recap

Fixed

Floor stiffness

SDOF floor

Comparison coupled response Fixed and floor stiffness

Comparison coupled response Fixed and SDOF floor

Comparison coupled response SDOF floor measurement

Comparison floor vibrations Vibrations of the tool

When should this method be applied?

Conclusions

- It is possible to predict the coupled response of a machine using the FBS technique and dynamic floor measurements.
- Single driving point coupling is a very good approximation
- Simple SDOF floor is a good approximation.
- Assuming a linearized floor stiffness is not always a good approximation
 - In most cases it is no better approximation than assuming an infinitely stiff floor.
- Ground vibration transmission technique was not validated.

Recommendations

- Always use the FBS method for floors with a low eigenfrequency, or when the mounting stiffness is equal to the floor stiffness.
 - Specify a floor stiffness and a fundamental frequency for the floor, to ensure proper operation of the machine.
 - Build a database with floor measurements.
 - Perform a model study with typical machinery.
- Validate ground vibration transmission technique on a much simpler test case.
 - Design a test case where one has more control over the test conditions.

Questions?

