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SUMMARY

| The propagation of small disturbances in a relaxing or reacting gas is

| governed by a third-order partial differential equation for the velocity potential
(the non-equilibrium equation). A generalised Green's theorem which applies
to this equation is established and Green's functions are found for supersonic and
subsonic steady flows in two dimensions. These functions are used to find solutions
for the flow past slender obstacles. For subsonic streams, the flow field is assumed
to be of infinite extent; for a supersonic stream one can consider fields of finite
extent. In particular, the method permits comparatively easy analysis of supersonic
streams which are not necessarily in equilibrium or of uniform velocity ahead of
the body. Three examples of such flows are worked out.
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1. Introduction

This examination of Green's function methods for solution of the non-
equilibrium equation was motivated by the appearance of a recent paper on
this topic by Ryhming(5 . Certain aspects of this latter work were felt to be
unsatisfactory and we hope to clear the matter up in the present paper. In
particular, in the example given by the aforementioned author for the flow velocity
on a two-dimensional wedge in a supersonic non-equilibrium stream, the velocity
is of the wrong sign: i.e. the pressure would be diminished on a wedge of positive
turning angle according to this result, instead of increaseéd as it should be. The
reasons for this error in sign are quite fundamental, as we hope to point out below.
In order to set about the task before us it is advisable to begin by establishing the
appropriate generalisation of Green's theorem which applies to the non-equilibrium
equation.

2. Green's Theorem

Restricting our attention to the two-dimensional steady flow case, the non-
equilibrium equation satisfied by the perturbation potential ¢’(x’ , y') can be written
in the form (Vincenti(s))

g U R ¢ =
3 { ﬁf q)x,x,X, +(px,y,y, J +Be (pxlx, +(pylyl =0 (1)

where I' is the relaxation length and
By =1-M i B, =1-M . (2)

Mf and Me are the frozen and equilibrium free stream Mach numbers, respectively.
(-] o

The free stream is assumed to be of velocity U directed along the x’' - axis from
left to right. It is convenient to define dimensionless co-ordinates x and y, such that

x = x'[r sy = y'lr : (3)
whence, writing
x!, y) = olx, y), (4)
equation 1 becomes
s 2 2
L L¢J = Bf‘pxxx +¢ny + Be Qxx +(pyy =0 (5)

Equation 5 defines the operator L in terms of x,y co-ordinates. The operator which
is adjoint to Lh is written as L where

3 2 2
R - (6)
9x9y € ox dy

We shall write r for the vector whose components are x, y and r, for the vector

whose components are xo, yo, etc. where it is convenient to do so. Thus we can write




Gh= G(g/}:o) (7)

for the Green's function, representing the influence at a field-point x which
results from a source located at a source —point;o. G satisfies the equation

L[G] = -47 & (r - ), (8)

where & is the impulse function (an even function of its argument). (The (-4w)
term is not absolutely necessary here but is used in the book by Morse and
Fesbach!3 , from which the basic theory of this section is taken. To make
reference to this work easier we therefore retain it).

We can also define the adjoint Green's function, written as G, where

G = Glr/r ). (9)
G satisfies the adjoint equation
L[G] = -4wb(x -1 ) | (10)

In the current notation the disturbance potential @ is a function ’(E)' Let us
therefore consider the quantity

G/r)L[o)] - o) L{Gx/z)] = F. (11)

Using the definitions of the operators in equations 5 and 6, writing out F in full
and grouping the terms suitably, we see that

.2 [ g [ae, +ed_ -G |+ [Ge, 08 |0 & |
T oax £ L P T PNy T Ui ¥ e LU®x TP0, 179 Gy

a ~ ~
+ = + 6-1G -G } : (12)
ay {[q’y q’xyj [ vy Txy|?
Clearly F can be re-written as the divergence of a vector P whose components,
Px and P_  are just the first and second bracket terms in equation 12, respectively.

That is to say

F=vVv.P (13)

where V is the gradient operator. Equations 11 and 13 constitute the necessary
generalised Green's theorem, namely

GL9] - oL[G] = v.P. (14)
P is of course a function of ¢ and G.
Equation 14 can now be used to find an expression for the potential ¢ within
a closed surface in terms of the boundary values of ¢, and its derivatives, and

the adjoint Green's function. To do so we shall first interchange r and = in
equation 14, so that it now reads



- 3 -
Go Lo Epo] "% Lo [GOJ :30 "1?0 ’ (15)
where
o= olc) : G =G (30/'1;) : P = Pl) G (50/5)) (16)

and Lo’ L and Zo are now operators involving X and y_ . We assume that the
equations

SRLTE SRS S R an

are satisfied within a region Vo bounded by a line S0 (see Fig. 1). The vector r

may or may not be inside So.

Multiplying the first of equations 17 by 60 and the second by qJO, subtracting the
results and using equation 15, we find upon integrating throughout the region Vo that
/ { G L [o]- oL, [GO]}dvo / v, P, dv_ (18)

\'4 v
o o

1"

494 or) if r is inside S0

0, if r is outside So.
(The last two results follow from the properties of the &- function). But Gauss'
theorem shows that

vV .P dv_ = /n.Psds, (19)
o O

v ~0 ~ S ~0 ~0 (o]
o) o
where no is the unit outwards normal vector to S0 and d:so is an element of arc

length on S0 4 Pz is the value of vector P0 on this line. Equations 18 and 19 show that

47 ¢ (r) = [ n .P° ds ,
~ o~ ~0 o
S
o
or
-] b S
4w 9 (r) = / n - PAelr), Glx [r))ds , (20)
S

if r is within So' rg is the value of r,on So, and equation 20 is certainly one form

of the desired result for o(r).

However it is more usual to express the value ofcp(r) in terms of G rather than
its adjoint G so that a relation between these two latter functions is required. In
order to derive such a relationship it is only necessary to relate the boundary conditions
which must be satisfied by G and G, since we already know the differential equations
satisfied by each function. For example we have




L[Gl/z )] = -4wslz -z ); L [Clr/r)| = -dwdlz -1). (21)
Multiplying the firgt of equations 21 by é(r/r), the second by G(E/f,o)’ subtracting

and integrating over the region V surrounded by the line S (which are just V0 and

So in x,y rather than X ¥, co -ordinates; see Fig. 1) we find that

/ {5 ir) L [Geir)] -a ) D [Ear)] | av
: : .
- an| & lx) -Gz |

provided both £, and r are within S. Using Green's theorem (equation 14 with

G(E/E:o) in place of ¢(r)) and, subsequently, Gauss' theorem, we see that

| ».p [6a®rx). GSrz) |as

S
= - 47;{(; (x /x,) - Gnlz) }
The simple (reciprocity) relation

G Ir) = Gl /r) (22)

now exists between the Green's functions, provided that we choose the relationship
between their boundary values so as to make

n. P [G&r) Ga®ix)] =0 (23)

everywhere on S. Thus the relation 23 limits the choice of boundary conditions
for gwand G. For example, considering a rectangular boundary S made up of
lines parallel to the x and y axes, equation 12, which defines the components
Px and Py of E, enables us to deduce the following facts. On a line of constant y

(so that n.P thereon is proportional to Py) one can choose either homogenous

Dirichlet or homogeneous Neumann conditions for G and G, thus making n . P vanish
on such a line. On a line of constant x (involving only P_, therefore), one must
employ additional conditions in order to make n . P zero. It is not enough to make
G and G zero, for example. One must, in addition, choose either Gx or Gx to be

zero (Gy or Gy will be zero automatically if G and & are zero on a line of constant x).
Alternatively, one could make n . P zero on such a line by choosing G, Gx and Gxx

equal to zero, and simply ensuring that the appropriate terms in G did not behave
so badly as to make a product, like G Gxx for example, other than zero on the line

in question. The particular choice of conditions on lines of constant x will depend
to pome extent on the problem in hand, but the data certainly must be of the Cauchy
type. We may also remark here that if the boundaries of S across the free stream
should happen to be inclined to this direction, so that a fraction of Py enters into

n . P in addition tc a fraction of Px’ Cauchy data is still required. One can also

make n . P vanish on lines across the free stream by invoking a causality condition
~ =~




such as would apply in supersonic flow. That is to say, one requires that
G(x‘:i yslxo, yo) should be zero for all points x>, yS ahead of the downstream

pointing characteristic lines through the source point X Yy The adjoint
condition on G(xs, yS/xo. yo) makes this function zero for all xs, yS ahead of
the upstream-facing characteristics through X, Y, (since the direction of x is

reversed in the adjoint problem). The appropriate parts of n . P then vanish
because the source points are inside S. These particular causality conditions
apply to downstream propagating waves of course; we shall use them in the
gection to follow. We remark that a causality condition is sufficient to find G,
where it may apply ; one does not need additional data in such a case.

Using the reciprocity condition 22, we can now write equation 20 in the form

4w ofr ) = / n, - PlorD) , Glr/r))) ds . (24)
» S
o

'The Green's function G(’g/zz) satisfies the inhomogeneous equation

I [G(r/rs)] = -478(r -1 ; (25)
~ O ~ ~0
i.e. as we would infer from elementary physical reasoning, the boundary value
problem can be solved by distributing 'sources' of some kind along So' The type

of source!, or equivalently, the form of the Green's function will depend on the
given data concerning cp(ro ) and we shall say more about this later on.

Meanwhile we note that the function P in the integrand in equation 24 is 22, =To)
that it involves derivatives of ¢ and G with respect to x, and y, evaluated for

X, = xg; T y(s), (see the definitions of P and Po in equations 12 and 16 for

example). We can not find such derivatives of G(r/r ) from equation 25 as it
stands: indeed we cannot solve 25 as it stands, because our boundary value data
on G(r/nr:o) in equation 24 is given in terms of derivatives with respect to X Y,

and not x, y, so that we have no boundary value data for G(r/'r;o) applicable to the
operator L, which is an operator in x, y co-ordinates. The proper evaluation
of G(r/zi) with boundary value data given in ro co-ordinates can be accomplished

as follows. The second of equations 17 is

~ ~ _ B 6 B

I"0 [G(Eolf) ] b (E fo) ’
which, using equation 22 with r, there written as r , is equivalent to

£ [etwz)] - -avoiw -z (26)
We can now solve equation 26 for G(r/ro) in ro co-ordinates and, having satisfied

the requisite conditions for G(r/zo) on SO, then let T 32 to find the appropriate

value for use in equation 24. Of course , in equation 26 must lie within SO.




Ryhming(s) used a form of equation 24, which we can write as
olr) = / A(r®) G(r/r®) ds (27)
~ S o ~~0 0
o

the function A being undefined but eventually evaluated from the boundary
conditions ong{r). The result 27 was quoted by him without proof: he found

the Green's function from equation 25. From what has gone before here, it is
clear that a result like 27 above can only be true if G(r/ Eg) satisfies appropriate

boundary conditions. How these conditions were ensured by solving equation 25
and taking only the particular solution is not entirely clear, although we do not
imply that it is incorrect. We shall proceed with our analysis here, using the
general results developed above, and find the solution for ¢(r) in the half-plane
y > 0, for supersonic flow in the first instance. -

3. The Supersonic Problem

Consider the following problem; Find the2 potenatial @(r) in the half-space
y>0, -0 < X< e« , for a supersonic flow, Be < ﬁf < 0, when q)y is given

everywhere along the line y = 0; for example
Py (x,0) = Uh'(x), ~0<x < w (28)

y = h(x) represents the shape of a solid boundary adjacent to the flow iny > 0;
equation 28 is then the linearised tangency condition. We shall assume that the
supersonic flow is originally parallel, with velocity U along the x-axis direction,
at some upstream location x.

Assume that the surface S0 is made up of the line 0 and straight lines
parallel to the X, and y, axes (as shown in Fig. 2). Writing out equation 24 in full,
and remembering that n, is an outwards unit normal vector, we find that
B,
41r(x,)=-j{ (x , 0)+ (x , 00| Glx,y|x_, 0) T
oix,y Py, %o Poyo o ylx,

2

= [GYO (x,ylxo, 0) - Gx yo‘x’y/xo’ 0)] cp(xo, O)j dxo

(o]

Hi
+ ]H i. [q;yo (xo, H,) +cpxoyo (xo, H’)] G(x,y/xo, H,)
2

- [Gyo(x,ylx0 H,) - Gxoyo(x,y/xo. H,)J elx , Hy) ]H dx,

H ve N ?(29)
. 3
2 2
+ j Glx,y/H , y ) [q:xoxo (H , yO)Bfﬂpxo(H,. yo)ﬁe] = Gyo(X.y/H..yoBPyo(H,.yo)
[e]

2 )
- Gxo (x,y/H,y ) l:tpxo(H‘,yo)ﬁf -(H,, yo)Bze] * Gxoxo(X.y/H,,yob(H,.yo)ﬁf jdyo
H #=

3 v
. / | ey -H,.y) proxo(-Hz, Y6 9, Huy 6L |-G eyl -Huy oy (Hy )
(o]

2 2 2"
- Gxolx.y/ -Hz,yo)[q)xo(-Hz.yo)ﬂf -q’(-H,.yO)BeJ-Gxoxo(X.y/ -Hz.yo)W(-Hz.yo)ﬁdeyo

J



The boundary value data given in equation 28 suggests that we should set
Gy (x,y/xo, 0) equal to zero: we observe that specification of %, (x ,0) means

that cp& (x ,0) is also known and similarly that, if G (x, y/xo 0) is zero,
Yo
x - (x y/x ,0) is zero too. We may anticipate that it should prove possible to
find 8(}: y/x ,H ) and G (x, y/x H ) equal to zero as H, =« for fixed y < H

Yo
thereby making the second integral in equation 29 equal to zero in the limit. In
fact we can, strictly speaking, only choose one of either G(x,y/xo, H,) or

Gy (x, ylxo,l?equal tozeroony = H,; we shall have to confirm our anticipation
o

later on. In view of the nature of the problem one would certainly select Gy
o
to be zero, since it is always possible to specify cpy ony = H,.
o

As far as the remaining integrals in equation 29 are concerned, we shall
invoke the causality condition that G(x,y/xo,yo) must be zero for all X > x in a

supersonic flow with down stream-propagating waves. Then the third integral
will vanish because the point x,y is within SO. With a suitable choice of Cauchy

data for CP(xo,yo) in the last integral we can make this vanish too: e.g. we can

setQ, L e equal to zero when X, = -H, for all y, in this integral. o andCPx

o o"o o
are zeroonx = -H, by hypothesis; the additional requirement on P 5 is
o*o
interesting, and we shall comment upon it at a later stage.

On the assumption that it will be possible to verify all of these remarks about
boundary value data, the final form for @ will read simply

JH,
4 qlx,y) = - / E,,yo(xo, 0)+tpryo(xo, 0)] Glx, y/x , 0) dx_, (30)

for Hy<x<H , O<y<+e.

The task is now reduced to that of finding a Green's function which satisfies
equation 26 and the boundary value data mentioned above. In conformity with the
usual practice, we first find the Green's function for an unbounded domain and
then find the function satisfying the required conditions on S by the method of
images.

Noting the definition of the adjoint operator in equation 6, and writing out
equation 26 in full, we solve

- B -q! +p8° @& +d = -4wd(x-x)6(y-y) (31)
foxxox, Xo¥ Yo B e XX, : 0 o Y=Y,

i i - o - oo U e i i

in the region €Y ; < X< , where G'= G (x,ylxo,yo) is the

unbounded domain Green's function. We use the Fourier transforms
oo-ie
7 G (x,y/x .y )eiéxo dx : G's . glx,yly : )
' o'’o o Your 4 o)

<

n

i

glx, y/yo %)
. ~oo-ig
T (32)



In the first of these £ has a negative imaginary part, equal to -ie’ where
€’ > €>0. Convergence of the integral for g(¥) is thus secured as xo* ~¢0 .

. ’ . -
the behaviour of G as x ° + is assumed to be suitable for convergence

purposes*. We remark that the integration contour in the second of equations
32 runs below the real g-axis. Multiplying equation 31 by exp(iz.’.xo)/ 2w

and integrating the result from X, equals = to +* gives the following equation
for g (since X, =X lies within the range of integration):

2 .. : 2 eigx
= Bf (iz®)g -(-1()gy0y0 + Be(- %9g + gyoyo = - 41r‘/—_2-'r—_ . Sy - yo) ¢ (33)

Both B' and Ba are negative in supersonic flow; accordingly equation 33 can be
re-arranged 8o as to read

2 igta o )

&y Yo +lele ig+1) 8" 4R Sy -y ), (34)
where i ei@:

f TP i

= Yoy (g-1) (35)
and .

a = ﬂ.e /ﬁf » 1. (36)
We shall also write

: = A i.;iﬁ _ 2 ; = ia)
" leIf(iU 1>‘ 1Bel&* \z 3 (37)

in what follows.
A general solution of equation 34 can be written in the form

-iBy iB -iB(yo-y) iBlyg -y)
g = Ce ° 4 De y°+%’%('?{e yoy-e yoy}H(yo-y). (38)

where H(y0 - y) is the Heaviside unit step function (=0, I 15 Y,> y).

C and D are two quantities independent of y (they do depend on x,y, and & in
general) which must be chosen for fit condifions on G'. We simply ask that g
should remain bounded as Yo * %t for fixed x and y.

Before the values of C and D can be settled, we must decide which branch of
the two-valued function B is to be used. Writing

o RS @

we see that the function B(£), which will occur in the second integral of equations
32, has two branch points, at £ =iaand & =1i. Fig. 3 shows the cut complex
g -plane; gl(g) is regular for allIm & < -e < 0. Ifwe let VE - iaand VE-1i
both behave like \I’[E’[ as g + +e then - iB (where B is now taken as a function

This is in fact guaranteed by the causality condition, as we verify below.



of & rather than of % ) will have a negative real part everywhere on the &
integration contour. Converseley +iB will have a positive real part and so,
as yo(>y, fixed) » + « , g will behave like : -

iB : -iBy By
g ~ De YO_41rf()e e .
i2B
To make g bounded in these circumstances we take
4wf(%) a
D= B ' i

When Y, * "™ & behaves as follows (note that now g y):

C = 0. (41)

The appropriate solution for g is therefore

4 iB(y,-y) -iBlys-y) iBly,-y) 1
g = ?;(B [e ¢ +[e R T ]H(yo—y) J (42)

The corresponding value of G’ is found from equation 32 : -

o -1 ; "
' ) / € ele,(x Xo){ iB(y,-y) [ -iB(yo-y) iBly,-y)
G (X.y/xo.yo) S - ?_5—-_1—)5— e +l e - e :]

oo-]_e

H(yo-y) Jda . (43)

We may close the contour * «- ie in the region Im £ < 0 with an infinite semi-
circle, on which & = Rel®, R+®, -7<6<0. For|g| = R+ « it is easy to show that

B - Re‘elﬁfl +0(1).

Since g(g) is regular in Im g < ¢, we can replace the integration with respect to

E from -« -ie to +«-ie by an integration with Ligspect to 6 from 6 = -7 +

to € =0- ; s8in 6 <0 in this interval, so that iRe " has a positive real part.
Each of the three exponential terms in equation 43 has a dominant part of the form

;) L ) i )
+1iRe {x x + | Bgl (y, -y, orx -x | By -y), orx x| Bplty -y
respectively

When . PR only the first term appears; when D the first and third terms
cancel, leaving only the second term. Thus, when S G'(x,ylxo,yo) will

be zero if x-x -lﬁf] lyo-yl <0;ie ifx >x - Iﬁf Hyo“yl. Wheny >y,
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Gf(x,ylxo,yo) will be zero if X > X - IBfI (yo— y). In general then G’ is
zero for all X >X ~ IBf| lyo - yl and the same will be true of all of its
derivatives with respect to x_or y . Since the minimum value of | yo-yl
is zero, the case is covered completely by demanding X >x. We have

therefore verified that G’ satisfies the causality condition which we had
earlier required it to do. We can also write G in the form

w-ie igx-xg) - iB| y,-y]
. :

G'(x,y xo,y0)= - /
~®-j€

(Z-1B g

Now the reciprocity condition (equation 22) must be satisfied, so that
: - o
G(x,y| xo.yo) = G (xo,yolx,y) .
Changing X, Y, for x, y and vice versa, this means that
orie i&(xy-x) - iB|lyo-y|
e

~I _ B
Hix, yix . v ) = iy (¢ - i)B g

so that 6' (x,y xo, yo) is zero if x > xo. But the integral expression for G

above satisfies the equation
o i
£ [6(x, v x_,y,) 1= -amstx -x )60y - y,)

and it follows that the integral expression for g’ (x,y‘xo,yo) must satisfy
(4
ﬁ[a (x,y|xo,yo)] = - 4wd(x - x )8(y -y ),

since we merely write x, y for X0 Yy and vice versa, and use the fact that the &

functions are even functions of their arguments. Thise latter equation is indeed
the correct one for 5'(5/50) (note the last of equations 21), and so all the

conditions of Section 2 are satisfied on account of the causality condition (i.e. in
particular, condition 23 is confirmed on this account). Equation 43 is thus the
proper choice for outgoing, or downstream propagating, waves.

We must now set about finding the proper value for G(x, y|x0,yo) for use in

equation 28. Suppose we place another gource of the form given in equation 43
at the image of the source point X Y, in the L 0 plane, namely at ¥y
Writing GIi for its potential we have (with y > 0),

w-i€

ig(x-x0) .
. e ™ "o L iBl-yo-yl
G; - / e dg . (44)
SR ie



5]

Adding G{ to G’ gives

g Zig (x-x )

-o - ie

{ e-iB(yo+y) ¥ eiB(yO—y)

+[e -iB(y,-y) eiB(yo-y’]H(yo 3 s (45)

Differentiating this function with respect to ¥ (which is permissible because
the resulting integral is still convergent) shows at once that GYO(x, y|%g5.0) is

zero for all x and x5, and y> o. We also observe that both G(x,y [xo,yo—o+w )
and Gyo(x,y |x .y, =) go to zero in the limit Yo7® Yo> ¥ G in equation

(45) also satisfles the causality condition for x,> x and hence it is just the
Green's function we require for equation (29). The third integral in equation (29)
vanishes identically from causality, because x_ = H; > x, x being essentially
within So; the second integral vanishes because G and G - both vanish as

Yo = Hs»e fory >y (i.e. point x,y within S, again); also part of the first integral
vanishes because Gyo = o when Yo = % Y5 ¥ We can therefore write

. H,
4np (x,y) = -f [ ¢yo(xo,o)+q>xoyo(xo,o) ](.'i(x,yIxo,o)d:n(0
-H2
"f Px(x.y='H2:yo)dyo (46) .
o

where P_(etc.) is written for the long group of terms in{ } brackets in the fourth
integral of equation (29). Clearly Px is zero if ¢ , ¢ , and xx 2re all zero
for x = -H, and all y*: equation (46) is then identical wit’fl equation (30). For the

In this connection we note that setting ¢, ¢  and ¢ .  equal to zero everywhere
on a line of constant x for y> o we imply also that tpy shall be zero. If
we take q;y(x, o), q’xy(x' o) equal to zero for x < o the first integral in equation

(46) exerts no influence on ¢ for these values of x. Thus the station x = -Hj
must be upstream of x = o (i.e. H, positive), or, more generally, x = -H, must
be ahead of the nose of the body in order for the conditions on @, Py and cpy

to hold that line.
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moment we shall agssume this to be the case; therefore we only need to evaluate
G(x,y\xo, 0) to complete the solution. From equation (45), keeping y> . and

letting o 0, we have
g -ia

m_lgeig(x-xo) ~igNE-i ‘Bfly

i 1
r— G - = cSuwe— e B
o x,ylx_,0) = f o1t T oo dg (47)
-0 -i€ g -i
having written in the full value for B as a function of §. We can use the

arguments following equation (43) to show that G(x, y| X 0) is zero for all

~

X > X - |¢3f‘ y. Going further, and writing

X, = x-]ﬁf;y =55

and then letting 8 — o from above (i.e. 8 is essentially positive) we can show
from the integral in equation (47) that

Glx,y|x ,00=0;x >x-|B ]y, (48)
so that the Green's function is continuous across the downstream - facing frozen
Mach line through the source point,

Let us now suppose that the solid boundary, whose shape has been given
by

y = hix)
(see the tangency condition 28), really has the form
y = h(x) H(x),

where H(x) is the unit step function and h{x) is a smooth continuous function of x
which is zero when x = 0. Then equation (28) is modified so as to read

cpy(x,o) = Uh'(x) H(X) , - € ¥ € » (49)
Consequently,
cpxy(x, o) = Uh“ (x) H(x) + Uh’(x)5(x) (50)

If h’(0) should happen to be zero, the last term in equation (50) vanisles.

Equation (30) for the potential ¢ will now become
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X-|Byl ¥-
olx,y) = -f Ul h’(xo)H(xo)+h’(xo)6 (xo)+h” (xO)H(xo) ]llL,(Ci(x,ylxo,o)dxO
o5, H2

or

x-|Bfly-
1 1

o(x,y) = - Uh'(0) EG(x,y lo, 0) -f U [h‘(x0)+h”(x0)] 4—“{;(x,y| xO,O)de, (51)

o+

if x-|B  |y> O.

We can now find, for example, the streamwise disturbance velocity on
the solid surface y —o+. The general expression for this quantity, from equation
(51), is

X~
q:x(x, o) = -Uh’(0) :11_; Gx(x. 0| 0,0) - f Ul h'(xo)+h" (xo)] i—“ Gx(x, o| X o)dxo
o+

(52)"

and Gx can be found directly by differentiating equation (47) (since the resulting

integral is convergent), i.e.

o -i€
iglx-x )
e 0
f — dg (53)
(g-i) g-ia
~o0 -lleI Jg‘i

-

1
o Gx(X.OIXO,O) L

For x-x0> o the integral in equation (53) can be reduced to an integration around

the dumbell contour (depicted as ABCD in Figure 3). The contributions from the
circles around the two branch points clearly vanish in the limit of vanishing
radius; on the straight parts DA and BC we set £¢ = + iv and take care to see
that the phases of V¢ - ia and /¢ -1 are correct. In transferring to the dumbell
contour from the t» - ie contour, the latter is clearly achieved if we set:

H

s

Yya - v e_i“/4 : fg-ia__. a-v
'/é_:i '/F—i elﬂ/4} o g -i XV‘I

v e-in/4 : -ia -4y [BY
J ‘i31‘(/4} ",\ g -1 Afv -1
v-1e

On BC,

On DA, ¢-ia
Vg -i

There is no contribution from differentiation of the upper limit in equation (52}
since G(x,o0lx~,0) = 0, see equation (48). This result should be compared with
Ryhming's whose Green's function has an imaginary part in these circumstances.
This part is then discarded for no other reason than that it is imaginary!
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With these results we see that

a 1
i -(x-x )v e-(x-xo)v
'Bfl % G (x o| x ’0) T T 2x f (iv-1)(-1) ja-v 1) Lk (iv-i)(+i) [a-v 1dv}
1 v 1 a \/v-l
1 “ e-(x~xo)v
T X T Ay
1
or, in other words
a+l
P (x,0|x_,0) = (X T s )I ’-(x-x )(a—_-l—) (54)
4x x’ o’ |af| o o 2 '

where I is the modified Bessel function of the first kind and zero order (Watson,

(8)). We have gone through the analysis leading up to equation (54) in some
moderate degree of detail in order to emphasise that Gx here is a positive function,

a result which should be contrasted with Ryhming's golution which, whilst agree-
ing with the present analysis in respect of the sign and form of the source strength
(in equation (51) for example), makes Gx negative. Furthermore, and of equal

importance, there is no question of G or Gx (or indeed any other derivative of G)

being anything other than purely real: Ryhming is forced to discard sundry
embarrassing imaginary parts in his analysis, which seem to have arisen as a
result of an incorrect choice of g -integration contour and phases for the radicals
appearing in the quantity B when attempting to solve for G.

The value of @ (x,0) for a wedge, which has h(x) equal to 6.x, is
found at once from equat’fons (52) and (54): it is

a+l a+l
e s
q»x(x.o)=-"—{e"‘ 2 [T (—))d} (55)
¥
o
following an obvious change of variable in the mtegral csuation (55) agrees in
all respects with the earlier results of Clarke( and Der{2) obtained by using

different techniques.

To summarise the results arrived at so far for the supersonic non-
equilibrium problem, we have shown, by using a generalised Green's theorem,
that it is possible to find the disturbance velocity potential in a half-plane by
employing homogeneous boundary conditions along one edge of the half-plane (in
the present case homogeneous Neumann conditions) and Cauchy-type data along
a boundary extending across the on-coming stream. The boundary value data
is therefore adequately specified on an open surface; since the supersonic non-
equilibrium equation for @ is of the hyperbolic type this conclusion comes as no
surprigse. It is interesting to note that the third-order character of the potential
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equation requires that we should specify not only ¢ and Py in the Cauchy
conditions, but prx too. (Just @ and ?, are adequate for second-order

hyperbolic equations). We can also take note of the fact that, for a solid
surface which only begins to deviate from a free stream direction in the
region x > o, the Cauchy data can be specified anywhere ahead of or on the
line x-| Bf|y = 0, and not just on x - -Hs. We shall exploit this fact in the

following section (where we shall also note the physical significance of
specifying 2 in non-equilibrium problems). Finally we remark that the

homogenous Neumann data specified along the solid boundary here is the
same as that required for the more familiar second order hyperbolic
equation; that is to say, no extra data than that required for a second order
problem is necessary. However, we do remark that whilst ¢ will be a
smooth continuous function of x and y if only the boundary slope is smooth

in the second order case, the present third-order non-equilibrium equation
requires that boundary curvature (h “(x)) should be smooth too for the same
result in 9. (N.B. Although we have stated that h(x) is a smooth continuous
function of x, see equation (49), we may still find h” (x) discontinuous.
Equation (51) shows that ¢ (x,y) will not be a smooth function in the event of

a sudden jump in this quantity). In physical terms, a sudden c'hange in
boundary curvature can influence the disturbance field in the linear approximation.

4. Supersonic Free Streams Which Are Not in Equilibrium or Are Not Uniform

The solution obtained in the previous section was for the case ¢ , Py and
q’xx = 0 on the line x = - Hp (constant). It follows that all y-derivatives of

these quantities are zero on the same line and therefore that the basic equation
for @, namely L[p] = 0, is satisfied there. In deriving the equation for ¢ a
relation which arises during the analysis can be written for supersonic flow in
the form

h >
2 o . - 90 (q-9) _ x
1871 9™ @y g O (s8)

(see, for example, Vincenti(B)L Here h is the specific enthalpy, p the density,
q the non-equilibrium variable (e.g. degree of dissociation or internal mode
temperature) and q its local equilibrium value. To is the relaxation time,

and suffix » refers to the basic "undisturbed" state from which ¢ represents
the degree of perturbation. hq and hp are the appropriate partial derivatives of

h. If cpy = 0, as is the case if ¢ = 0 everywhere on x = - H2 for example,
then setting q)xx = 0 means that the initial stream, at the location x = - H,

must be in equilibrium since q will equal q ( LA being assumed finite and non-
Zero).

The variables x’, y’ are the dimensional variables, see Section 2,
equations (1 to 5).
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Now we shall attempt to relax the conditions @, cpx, (pxx all zero. If,

as we shall find, this can be done, then equation (56) indicates that we shall be
studying free streams which may not be in equilibrium (the "free stream" here
being taken as the flow crossing the boundary of our region S at x = -H,). It
is of course necessary to ensure that any conditions that we do impose on ¢,
L Py Py etc. are consistent with the equation L [p] = 0, since this must

be satisfied throughout the region bounded by S.

Let us first write equation (56) in the dimensionless variables x and y
(see equation 3);

- r°h _
B2p. _ + = —dm (q-q = Q, sa (57)
1%+ Pyy b o™ q-4q = Q, say

and reiterate equation (5) for convenience;

) 2 2 _
a;(ﬂf q>xx+ ¢YY)+B3 <Pxx+q>yy = (58)

With equation (57), an alternative form for equation (58) is

2Q 2 :
S T Q+ (B - Ble =0 (59)
We shall now suppose that @, q)x and 9 are all specified on the line x = - Hy -

= constant. Let us write
e(-H,,y) = V(y) ; <Px( -H,,y) = W(y) ; q>xx(-H 2 ¥) = X(y) (60)

Then we shall also know ¢___and ¢ :-
Y Af

= Vily) ; 9o_ = Vily) (61)
cPyy 4 y ¥

where each prime denotes a differentiation with respect to y. We have assumed
that (py is zero on y = 0 ahead of the nose of the body in the previous section and
we shall do so again here; thus

Vi(o) = 0 (62)

We must also note that, whilst cpyy is given by V" , (pxyy is given by W* | i.e.

Q’xyy(*Hz,y) = W' (y) (63)

In general then, we are saying (from equation (57) et. seq) that


file:///J-ii
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2
Q = BX(y) + V" (y) (64)
Equation (58) is satisfied with this value for Q(-H, ,y) if

B2 (Ha.y) = - W' (y) - B2X(y) - V' (y), (65)

and there is no reason why this should not be so. Using equations (64) and
(60) in (59), we see that

2 (H,y) - -pX(y) - V' (3) (66)

Equations (64) and (66) show that in general both Q and %— differ from zero

if one of them does; if V” (y) should happen to be zero (meaning that V' (y), and
hence, reasonably enough, V(y) is equal to zero too because of condition 62),
then Q , aQ/Bx depend only on X(y) and are only both zero if X(y) = 0.

The latter case is the equilibrium stream, of course. However, we can make
either Q or BQIax zero independently of the other if V’(y) # 0. That is to
say

3
Q= 0if pXly) = - V*(y) : ai} = (a-1)V* (y) (67)
§ =0 g Xly) = - V'(y) : Q=(1- %;)v' (y) (68)

where a is defined in equation (36).

We may certainly select a variety of values for Q therefore, and it
is important to note that nowhere does the value of q>x = W(y) interfere with

this selection; it merely serves to determine q’xxx from equation (65) once

the other quantities are specified.

Referring to the last integral in equation (29) (which is also the second

i i 6 lecti , ) =h
one in equation (46)), we see that selection of g, q;y P P O0NX H,

for all y is all that is necessary to find ¢(x,y) in y> 0, -H,<x< + =, once
‘py on y = 0 has been chosen. In addition we see from the form of equation

(46) that the non-equilibrium, non-uniform, free stream conditions at

x = - H, simply add a part to ¢ (x, y) over and above that due to the boundary
shape (namely the first term in equation (46)). The latter we may write as

4 np o since it is all that remains of 4xp when the free stream is a uniform,

equilibrium one.

We may now write a general result for a non-uniform, non-equilibrium
free stream in the form
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1 ©o
plx,y) = Q>eq(x,y) - f {G(X.yl -Hy, yo)[Bf,X(yOH B W(y,) ]
(o]

-Gy (x,y|-Ha, 3V () - Gy (%, 7| ~Ha,y,) [B5Wly,) - BZV(y,) ] (69)

. 2
e Gxoxo(x,y] -H,,y,) BfV(yo)}dyo,

the Green's function being given by equation (45) with X = -H,. Itis now
time to consider some specific examples.

(i) A Parallel Non-Equilibrium Stream of Constant Velocity.

For a parallel, constant velocity stream at x = -H, we can set
Vly,) =0 = W(yo). The stream speed is then equal to U on this line, and
equation (69) reduces to

1 (-]
RN RS A - VA TRTE AT (10)

An especially simple case occurs if X(y.) is a constant (and hence Q = constant,
see equation 64). Integrating equation (45) we readily show that

w=ie  j(x+H_ )¢
] 39 [ e )t
A P T THTE A

-0 -j€

lx,y) = tpeq(x,y) + B?Bcﬂ {1 - e_(JhLH‘?)a - a(x+H2)} ; (71)

where Q _ is thé constant value of Q (defined in equation (57)). The simple
non —equﬁibrium free stream therefore has the effect of adding on an x-wise
velocity component equal to

Q (.
|F5 . a(x+H,) 1} (72)
e
over the entire flow field. Since e-&(thH 2) € 1forx 2 - H, the velocity

is negative for positive Q,. Referring to equation (57), Q, is positive if

g > q (since the other quantities are positive). The gradual excitation of
the internal energy mode up towards its equilibrium value drains kinetic
energy from the gas stream, and tends to slow it down. Any body (whose
disturbance field is summarised by q)eq) which is immersed in such a flow,

will therefore lie in a region of gradually increasing pressure. Taking
(for example) a wedge, for which e on the surface is given by equation (55),



= 0 <

we could reach an agsymptotic state in which the streamwise velocity on the
wedge surface was exactly U (namely P, = 0) if we made 6 = -Qc/U|Be|.

(The right-hand side of equation (55) —-(U6/|p fl X1/7a) = -ue llbe[ as
x> +e), Figure 4 in fact shows ]Bfl tpx/UG plotted against x, ?, being

evaluated on y = 0, for this special relation between 6, Q_ etc. Two values
of Hy (namely 0 and 1) are used, and the curve for Q. = 0 is drawn for
comparison purposes Sthis solution is precisely the one previously obtained
by one of us; Clarke ( ).. Figure 4 is enough to show that the possible effects
of a lack of equilibrium in the oncoming stream may be quite profound,
completely altering pressure variations on a wedge, for example.

It is also of interest to see how P, behaves on the characteristic
X = lafl y through the nose of the body. q)eq < on this line follows at once

from equation (51); it is

?

eqx " U 1= Cxl|B] 7.5 0,0)

_ . Uh'(o) -#a-1)[B|y (18)
Byl '

as one may readily show from the expression 47, for example, for G. In
the particular non-equilibrium stream considered above we therefore find
at once that

. _Uh’(0) -Ha-1)|B |y _ Qe [, _ -a(|B|y+H2)}
cpx(’ﬂfly,y) ™ e f Iaeai{l e f

(For the wedge h ‘(o) =6 ). (74)

These few remarks about the behaviour of ¢y on the first character-
istic through the corner lead us naturally on to a consideration of a different
type of non-equilibrium free stream.

(ii) Vincenti's Non-Equilibrium Free Stream Problem.

Recently Vincenti(7)dea1t with a particular type of non-equilibrium
free stream which has some of the attributes of a real flow about a wedge of
positive opening angle. Briefly, the idea is that the free supersonic stream
approaching a wedge-like obstacle may be in a non-equilibrium state and
additionally may well be frozen in this condition. The compressive distur-
bance across the leading edge shock wave is then assumed to "trigger off"
the non-equilibrium processes (i.e. one assumes that the relaxation length I,
see equation (1), jumps from infinity to some finite value across the shock
front), and that subsequently the disturbances propagate according to equation
(1), or its equivalent for finite I', equation (5). This situation is an ideal-
igsation of what may really occur in practice with a frozen non-equilibrium
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oncoming flow; clearly the objection on practical grounds is that such a dramatic
change of I' would hardly be expected for an obstacle of sufficient slenderness
to render equation (5) applicable, but the gas model is at the very least of peda-
gogical interest and certainly helps one to assess the possible effects in a real
situation. It will therefore be of some interest to attempt to repeat Vincenti's
results here using the Green's function approach. (The original results were
obtained by standard Laplace transform techniques).

A basic assumption in Vincenti's treatment is that the shock wave lies
along the frozen characteristic x - |Bf| y = 0 passing through the nose of the

obstacle to a sufficient order of accuracy. The non-equilibrium free stream
.is connected with the region downstream of x - |B,| y = 0 by linearised Rankine-
Hugoniot conditions (assuming no change of value of the non-equilibrium variable
q, see equation (56) et seq). We shall not repeat this analysis here, but simply
note that the following conditions on @ emerge;

e(0+,1) =0, (75)
0 ] (a-l) Il

2 = ta -1 q>(0+,n)=-—|——l-11,°q,,U (76)

,: T\ e Bf

We have written ¢ as a function of the semi-characteristic co-ordinates a
and 7, where

a= x - 'Bfly A =|Bf|y (77)

H_ is defined (Vincenti, loc. cit.) as

Br h : r
Hoo- - 2 e , (78)
N U oy mollB o] % - (8] )

the subscript » implying evaluation in the free stream, and we write
ql = q - g (79)

Thus q; is the extent to which the oncoming stream departs from an equilibrium
state.

To use the Green's function technique we must now make up the boundary
S, from the lines y,= 0, 0+ € x5 <® and x, - |Bf| Yo =0+, 0€y & w;or
what is equivalent in the latter case, the whole of the line &, = 0+, with an
obvious choice of nomenclature. The unit outwards vector normal to g, = 0 +
is given by
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(where j, j are the unit vectors along 0x,, Oy, respectively) and the element of
S, on this line is clearly dy,.M;. Accordingly, equation (20) shows that

dnp (x,y) = - f [pyo(x,.0 + q)xoyo(xO,O)]G(x,y |x0,o)dxo
o+

- f{PxO( ?(0+, 1), Glx,y| 0+, 1)) -IBI.I Pyo(cv (0+,no),G(x,y| 0+, no))}dyo,
o

(80)

where Pxo’ Pyo are the components of P along Oxo, Oyo. respectively, and we

have replaced the x

o Yo functional dependence of ?, and G here by a, (which

must equal 0+) and 1, The Green's function is given in equation (45).

It is convenient to express Pxo » |ﬂf| Pyo in terms of quantities involving

derivatives with respect to @ and 0 ; noting that

fa_ = ?ﬁ— . §_ = l B l ( a - “-a_ )
xO o y0 . WO aao
this is readily carried out and we find that
- = - ak| =
Pxo 'pf| Pyo I Bfl [G¢a 0% ¢ wao“o cPao(}a o ]

) |Be|2[0cpao ) Q’Gao] "Byl {‘p'lo i q’aoj,[,g"‘o ) Gao]
'|Pf|2[ o Yo, t Payn, - q’aoao]ﬂ (81)
+Iﬂf| 101]0 - Gao = Gaono o Gaoao]¢.

Certain terms in equation (81) cancel in the general case; we note in particular
however that all terms in ¢ and Pne will vanish on account of condition 75 when

equation (81) is put into the integrand in equation (80) and hence specialised to
its value on the line a = 0+. For inclusion in equation (80) then, we can
rewrite equation (81) in the form

Pxo ) lafl P)’o - IBeF G"*’ao b IBfla ‘P%G*l Q

+|Bfl2 q’C’oG ) |Bflzq":‘o"oG




- 22 -

or

2 d 2 3
Pxo -|pf| Pyo = -|gf| {ZE +(a-1)}¢a0G+]Bf| Wo(cpaoG)

(81a)
Thus equation (80) becomes
4n @(x,y) = - f [oy, (%0, 0) + q’xoyo(xo,O)] G(x, y| X0, 0)dx
o+
T, 3
o [Tos - o gt o,
o o
; lafl[[q;ao(0+,qo)G(x,y|0+,qo)] (82)
no=0.

(In evaluating equation (80) to give equation (82) we have set dy, = dnoll ﬁf|

and integrated the Jast term in equation (81a) directly). Using condition 76
the second integral in equation (82) becomes

= l)Hooq,uU f G(x'y|0+’no)dn0

One must remember to split the integration from 0 to « into two parts, from 0
to|Bf| y and from lafl y to e ; after a little tedious manipulation, using equation

(45) for G, we find that the integral is equal to

®© -j€ ® -je

- ZH”q',.U{ f et|Pl ) gy L[ oMEX- lBy<1 -->dg}
éIBfl (t -i)B

- =i ;
(83)

The first integral in expression 83 gives simply -2x (x-le| y)|8 | the next

integral we identify from equation (47) as 3G(x, y|0 ,0) and the third and last
integral is easily shown to be equal to

X'Iﬂfl 5
3 f G(x,y| x_,0)dx .
0+

We note that the value of q;ao(O+, no) is needed in order to evaluate the last term
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in equation (82); it can be found by integrating condition 76 directly and putting
in the value

_ _Un'(o)
(Pao(O'l',O) = lel

This latter result comes directly from the shock relations and surface boundary

condition (see Vincenti(7)), and clearly is consistent with the physical notion
that immediately behind the shock at the corner, the flow is completely frozen,
even though I’ there is finite. The value of q)ao(0+, © ) is zero, as indeed is

the value of G(x,y | 0+,% ). All that remains of the last term in equation (82)
is therefore, the quantity - Uh’ (0)G(x, y| o,0).

With the first term in equation (82) it is important to note that, because
the surface So lies just downstream of the leading characteristic, the lower

integration limit is equal to 0+. Accordingly, the first term in equation (82)
is equal to 4x times the right-hand side of equation (51), without the term in
h’ (o). The term in 6(x0) in the first version of equation (51) does not contri-

bute, indeed its effect has been included in the boundary conditions applied along
the line X, " |ﬁf| T 0+, and we have just seen that it is recovered from the

last term of equation (82).

Collecting together all of these results, we find that

ox,y) = - Uh(A - B, aly] 7:G(x, y10,0)
x| 8| y
- [ w0 ) - a5 Gy x oldx
(0]
UH q'
= {x Salig ] gy eee &S W (84)
| fl IBfI

for the appropriate non-equilibrium flow over a body whose shape is given by
y = h(x) H(x).

Insofar as the results given by Vincenti for the small disturbance conditions
behind the leading edge shock wave apply to a body of any shape (following on
behind the initial positive opening angle), equation (84) represents a mild general-
isation of his solution, which was for a wedge of constant angle 8 (equivalent to
our € in the previous section) only. Putting h’(x,) equal to 8 and h” (x,) equal
to zero, equation (84) can be recognised at once as exactly equivalent to Vincenti's
transform relation in equation (56) of his paper; that is to say, the equilibrium
free stream result (which has q’, = 0) is simply multiplied by the factor
1 - (Hyq'w /8) and the last term in equation (84) added on. There is no need to
proceed further with the development of this kind of flow, since all aspects of it
have been covered in the paper cited several times above. The agreement
between the results of that work and those of the present analysis obtained by




-924 -

very different techniques is, at the least, reassuring.

(iii) A Non-Uniform, Non-Equilibrium Free Stream.

Finally, in this brief treatment of supersonic non-equilibrium oncoming
streams, we shall consider a case which combines some of the aspects of the
previous cases, (i) and (ii), together with a certain amount of non-uniformity.
Let us suppose that on the line x = o-, immediately ahead of the nose of the
obstacle, the non-equilibrium parameter Q (see Equation (57)), has the constant
value Q, (as in case (i)). In addition, let us suppose that 0Q/dx = o every-
where on this line. This last supposition makes our flow bear a remote
relationship to Vincenti's case, for which dQ/dx = o everywhere ahead of the
line x - [B| y = 0. The two cases are dissimilar in the sense that our speci-
fication of zero reaction rate is a statement of a purely local phenomenon;
immediately downstream of the line x = o0 - we may expect 3Q/dx to change. In
order to have Q = Q,, dQ/x = o on x = 0-, eq. (68) shows that |BS]X(y) must equal
+V” (y) and

Vv (y) = (aa_ 1> , Q= |Be|2X(y) (85)

Thus

a

V’(y)=< ‘3_1> Q. 7. (86)

" ' .
since V ‘(o) is zero, and we can take

2
Viy) = (aa_1> Q. . (87)

Reference to equations (60) and (61) shows that, in particular, the oncoming
stream at x = o - has a divergent character, since @ - increases linearly with y.

We shall take Cpx(o,y) = o for simplicity, as we are entitled to do. Clearly

we should not allow Py to go on increasing indefinitely with y, since the basic

small disturbance hypothesis would eventually be violated. However, there is
no reason why we should not stop the oncoming flow at y = L, say, and deal only
with the segment of the flow lying hetween x =0 -, y = o and x = |B_| (L-y).

The latter line is the "rightwards-running' frozen characteristic through x = o,

y = L; we may state from a knowledge of hyperbolic equation behaviour (or indeed
infer directly from the nature of the Green's function in equation (45)) that any
variations of @, pr, etc. above y = L will not interfere with the flow in the seg-

ment mentioned.

From a practical point of view, the oncoming flow that we are dealing
with here may be thought of as a crude estimate of the flow from a straight-sided
divergent nozzle.

We have only to deal with the addition to (Peq’ as in case (i), and can
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therefore write, from equations (69) and (85) to (87);

i
ax ey - o1 = [ {36V ) -6y Vi) - (83 Gy Viv)

2
+ 8% Gy x Viy) }dyo

L
[G.V]

Yo

(o] O

L
d 3%
|5f| { . ol }\/‘G.V.dyo.
o

(88)

Dealing only with the case y< L, one must remember to split the integrals from O
to L into the two parts, o to y and y to L. The product GV is zero when Yo

and is continuous at y, = y (see eq. (45)): the upper limit y_ = L gives terms in
G(x, y|o, L), which do not contribute for x <|ﬂ |{L-y): hence the first term in (88)
is zero for present purposes. The remarks about contributions from terms
evaluated at y, = L apply also to the other integrals in eq. (88); with this in mind
one may show, after a little analysis, that for x< |ﬁf|(L-y) we have

© -j€

ifx
4 oy - 9, 1= 2Q; f ?g -i)in;
-0 -
® -j€
1l(x =)
a Qc d
+ |5§l <a _1>—2—{a-3;—0 }{ f (t “iBe
-0 - 1¢g
o -je
1§(x X}
"%y f (¢-niB2 d‘} o
-0 -j€ 0=0

(We have used equations @5) and (85) to (87) in deriving this result). The x -
derivatives can be taken inside the integrals in equation (89) and, after some
manipulation, we find

o -i€ igx 3 .
4x [o(x,0) - 9.1 = 2Q, f 1[(3?: lae a3t 'aa(e-ia)}d‘

-» -ie

©-i€

+2Q, f e i - b }d!
i|pq iat® a2 a2(¢ -ia)  i(a-1)¢” :

-0 -i€
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whence
QC 2

_2Q¢ -ax
?(x,0) - q)eq— m{ l-e -ax} - m X, (90)

having set y = o.

The similarity between this result and equation (71) in case (i) is apparent;
the first term here is precisely twice the value of ¢ - (Peq in the earlier case.

Since the first integral in equation (89) is exactly the same as the integral in
equation (71), we infer that the doubling of the non-equilibrium effect here arises
from the divergence of the free stream; i.e. since this stream is expanding the
rate at which energy must be supplied to the relaxing mode is reinforced. In
addition of course, one has the primary effect of the stream's divergence to add
on; this is represented by the last term in equation (90). (N.B. Q_ is essentially
positive here). = We note from equation (68) that Q = Q, = 0 if a = 1, leaving
V”(y) etc. finite and non-zero; i.e. aQ./(a-1) remains finite as a =+ 1. When

a = 1 there are no relaxation effects, the first term on the right-hand side of
equation (90) vanishes, but the last term remains and expresses the effect of

the diverging stream.

The previous three examples show what can be done with some simple
non-uniform, non-equilibrium streams. Problems of considerable generality
could be worked out, but it may not always be possible to evaluate analytically
the integrals involved in more complex cases.

8, Subsonic Flow

The subsonic flow regime is defined by requiring that both My, and Mew
shall be less than unity. Since My, » M, this means that Bf2> B> ©

and the quantity a, defined in equation (36), is always positive, but less than or
equal to unity, i.e.

a2
0<(a = Be/ﬁfa) < 1. (91)

As before, we set out to find the Green's function in the infinite domain

- &y, € ®, -w & x, & wforsome fixed x,y lying within this region.

That is to say, we wish to solve equation (31) with 526 and 3? both positive,

in contrast to the supersonic case, for which these parameters are boch negative.
We shall use Fourier transforms for this purpose, defining g(t ) as the appropriate
transform of G’, as in the first of equation (32), but with reservations here about
the quantity . In particular we shall say nothing for the moment about the
imaginary part of this variable; the range of variation which is permissible for

Im ¢ is clearly associated with the behaviour of G’ for |x,| »w and we hope

to pronounce on this guestion shortly. Meanwhile, let us formally apply the
first of equations (32) to equation (31) and assume that G’ , G'xo, G ’xoxo’ etc. ,

times exp (it xg) all vanish for ] x0| — o . The result is similar to equation (34),
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except that, in view of the behaviour of Bgf, we should now write this in the form

Eyo¥o ﬁ?CE (i‘%{%) g = -4x ()5 (y-yo)- (92)

f(¢ ) is exactly as written in equation (35), since x lies within the range of
integration over xg.

Clearly the general solution of equation (92) will be identical with equation
(38) except that the quantity iB in this equation will be replaced by B’ , where

v - ()

With this form of solution it would appear that g({ ) is regular from Im¢{ < 0
(there is, apparently, a pole at { = o), for o<Img<a, for a<Im¢< 1 and for Im{> 1,
since there are branch points at { = ia and i. Not all of these latter regions

of regularity will occur together, since the t -plane must be cut in some fashion
from { = ia and i in order to render g({ ) single-valued. However, we must
take note of the theorem regarding Fourier transforms which states that, if

g t) is a transform, regular in a strip v_< Img < T, of the ¢ -plane, then G’

its inverse, behaves in such a way that |G‘| < exp(r_+ Bd)x,as Xxo—+ + w and
|G| < explry - 8)xpasx_ — - = where & is an arbitrarily small

(4)

positive number, (see, e.g., Noble, 'p.24). Ifboth T_and T 4 are negative,

|G‘| may increase without limit as x_— - «, whilst it must vanish exponentially
as x =+ ®. The converse must be rue if both T _ and T are positive.

Neit her type of behaviour is what we should expect for G’ , since the vanishing
of the function at one extreme and not at the other is at variance with the physical
idea that a source in a subsonic stream should exert both upstream and down-
stream influences. These remarks are certainly true for the "non-relaxing"
case, a = 1, since it is then easy to prove that G’ will vanish for all x, > x

if T.<Ty<O0andallx, < xif r, > r_> 0. Behaviour of this kind is
very much more "supersonic" in character than subsonic. The situation in a
relaxing gas can hardly alter too radically from that just described for a =1,

if any of the previously mentioned strips of regularity are used for the inversion
of g(t ), and we must of course ensure that the relaxing gas solution goes over
properly into the non-relaxing case as a — 1 anyway. Since we have eliminated
all those regions of the ¢-plane for which ¢ and T, are both of one sign, we

can only conclude that g(¢ ) must somehow be inverted in a strip for which
T_< 0O0and . > 0. The form of g( {) found by solving equation (92) is

apparently not regular in such a strip, however, on account of the pole at { = 0,
but we can find our way out of this dilemma as follows.

Consider the equation

oy PAE e (E :§a>g' = - 4x £(£) 8 (y-y,) (94)




whose general solution is

. Ce BT, . pBe Yo %ef e Be (y5¥)_ Be (yo-y)} H(y, -y),
(95)
where
B2 = p3(1+ €) <§L_%§ (96)

We can take € real, positive and less than a: in the limit € = 0, equation (94)
reduces to equation (92) and equation (95) reduces to the general solution of the
latter equation. However, g’ has branch points at § = *ie, ia and i, and is
therefore regular in the strip -e¢ < Im¢{ < ¢. From the theorem quoted above
this implies that the function of X (of which g’ is the transform) is less than

exp(- € +8 )xo as x, = +e and less than exp{€ -5 )xo as x, = -« (since we

identify T with -€ and T with + €). In the limit as € = 0, the function
represented by g’/ — g has the proper behaviour for a Green's function in sub-
sonic flow. That is to say, it need not vanish at either extreme location of the
source point x _, y, in relation to the field point x,y; just how it does behave

at these extremes we must investigate later on.

With the { -plane cut between the branch points at ia and i, from i€ to
iw 1in the upper half-plane and from -ie to -i® in the lower half-plane, we
choose the phase of the radicals in B, , where

PR —

B, = p, ViFie ;—1e\/ - ia , (97)

€ e

¢
L -1

to be such that they all behave like ¥|{| = as { = + . Then it is easy to
see that the real part of B¢ remains positive everywhere on the real -{ axis.
Using this line for the inversion contour, we can now find G’ from the integral

1 i
o /’z“;f g’ (g)e 8¥o gt (98)

in the limit as € - 0.
It is of course necessary to find the constants C and D in equation (95).
We require that g/ should not increase without limit as | yo' - ; with y > y,

it is clear that C must be zero since exp(-By ) does not fulfil this condition.
Letting ¥t te with y < y,, the proper behaviour of g/ is assured by setting

. 4nf -Bey,
D = 2B e 2 (99)




- 29 -

thus
Be (y,-v) -Be (yo-y) B, (y5-y)
g = ‘;;ef o € yoy+[e € YQY_e e Yo ]H(yo-y)}
(100)

Alternatively, g’ can be written as

g - At JBe 1Yol (101)

2B,
In any case we can now write, from equations (98) and (101},
©0
P felﬁ(x‘xo)‘Be | ¥oyl  4¢ . (102)

(¢ -1)B¢

This integral is not in a particularly suitable form for further investigation
and we must now attempt to re-arrange it somewhat in order to make further
progress. Figure 5 shows the cut &-plane, with the strip within which g (§)
is regular. When x-x5 < 0, integration in the strip -¢ < Img < e is
equivalent to integration round the loop contour marked "x-x < o' in Figure 5
and likewise, for the case XX, > 0, it is equivalent to integration along the con-
tour marked "x-x,> 0".

First consider the case x-x, < 0: on the contour shown the phases of
/¢ -ia and YE -1 are both equal to - n/4 and the phase of Y& - i€ is equal

to - n/4. The phase of Y& +i€¢ changes from 3 x /4 to - n /4 on rounding the

branch point at § = - i¢ and integration around the circle about this point vanishes

in the limit as the circle's radius approaches zero. With these results we can

write

. J=m . .8 |Vvta
) ¢ Vo) - Bl IV e T 1307
Axxo < 0) = - l{f S (-i)dv
’ J (- tvpidvE- e [ B2
. s [v+a
= vxo) + Bl ST 1y,

' e (- i)av

¢ (- i)v+1) ﬁf(- i) /v@ - 62\/;:1—

mVixges) ,/"5—_—2\/"_—*& )

AR cos P7V" "¢\ w1 1% e (103)

By ef (v+1) V2 - ez/v—i*f

The integral in equation (103) cannot be evaluated simply in terms of known
functions, indeed it is not apparent as it stands how one may pass to the limit

€ » 0. However, the integral is absolutely and uniformly convergent and so

it can be differentiated with respect to either x_-x or | yo-y| under the integral
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sign. Let us choose the latter course, we have

o4 © ’V(Xo—x) v+a d
o . JE oz v
a———l 5] 2f e sin [Bf LR el & 8 ]v+1
o €
(104)
Letting € — 0 in this integral will give the corresponding derivative of the
Green's function for XX < 0. i e.
® -vlx,-x)
oG’ o ol v+a
T =T 2 f e sm[afv,{ |y N e v+1 (105)

o}

In this form we can find how G’ behaves for large values of X, X Before

doing so, we can make one slight modification which will help later on, that is to.
say we shall look at (-3G*/ dx +G ‘) rather than at G’ directly. Clearly

® -y{x -x) —
d . _ 9G o /' o .
Tyo7! {G 5?(-) = 2\ e sin [va v+1 |y -y] 1 dv.
o
(106)
Now, writing the sine term in complex exponential form, we can expand the
g : p

quantity {v+a )/(v+1) for small values of v and develop the integral to give an

asymptotic representation of the left hand side for XX >>0. The dominant
term gives

) aG'} - 2 Be| yo-v| '
—_—{G! - ~ el Yo™Y > 107
TR G T (o

(x0 —x) e (yo-y)

whence it follows that

G' - gxi ~ - %—e log{ (x,-x)% + ﬁee(yo‘y)‘?}- (108)

(o]

Before commenting on this result, let us examine the case a = 1.
Referring to equation (31) in this event, we see that G! - 3G‘/3x, is really

the Green's function for the subsonic, non-relaxing, small-disturbance equation,
which is Laplacian in form. Equation (106) can be evaluated exactly in this case
and gives results like (107) or (108) with the "asymptotically equals' sign replaced
by an "equals" sign. (With a = 1 we can write either B, or B, since they are

equal). Equation (108) with = written in place of ~ is the well known result for
Green's function in the subsonic flow mentioned above and so we infer that at a
field point x,y a long way ahead of a source at x,, y, in a relaxing flow, the
effect is similar to that produced by a source operatmg under fully equilibrium




S CH

conditions (since it is essentially B, which occurs in this case). We are, of
course, entitled to say that, asymptotically, G’ is given by the logarithm in
equation (108), since G’/ d x_ would behave like ll(xo-x) in this case and would
be negligible for x -x >> 0. It is the fact that G’ behaves in this way which
makes it necessary for us to use the Fourier transforms described earlier and
which, in the limit € — 0, are regular in an infinitesimally thin strip which just
embraces the real §-axis.

Let us now turn to the case x-x,> 0. The contour marked "x-x, > 0"
in Figure 5 is not particularly suitable for the case |y_-y| # 0, since the term
(¢ - i)"% which appears in the exponential in equation (fOZ) behaves rather badly
on the small circle surrounding & = i. However, the contour is quite adequate
for the case | yo-yl = 0, and we shall consider this situation in more detail
below. Before doing so, it is interesting to note that G’ for x_, < x will be of
radically different form from G’ for x_> x in a relaxing flowg, as is evidenced
by the direct intrusion of the branch points at ia and i in the former case, but
not in the latter. One may contrast this with the non-relaxing case, a = 1,
for which we may readily show that :

. od :
G = 6;; = - b—e 10g {(XO‘X)2 + Bi (yo-y)}

for X-X,> 0, which is precisely the same as its value for x-x < 0. This
symmetrical behaviour of the Green's function in a non-relaxing subsonic flow

is symptomatic of the simple reciprocity relation Glx/g,) = G(x /¥) which exists
in such a case, and which demonstrates a lack of directionality in both the basic
equation and the boundary conditions. The introduction of the relaxation equation
into the basic set describing the flow does introduce a specific direction (the
streamwise one) into the equation for G’ , and we are therefore not surprised to
observe the differences in G’ mentioned above.

In order to help with the re-writing of the function ¢ in terms of integrals
on the contour "x-x, >0", we tabulate the phases of the various square root terms
which appear in equation (102) (the contour is lettered suitably in Figure 5).

phase
on the *f e+ i€ - ie Ji- 1a Jeo 1
section
AB n/4 -3x/4 -3;/4 -3n /4
CD n/4 - 3n/4 -3n/4 - /4
EF /4 -3n/4 -n /4 -x /4
GH nl4 n[4 -n [ 4 -n [4
JK 7 [4 n /4 /4 -n [4
LM n /4 x /4 n /4 n /4

But see below for the case when |x-x_ | >> 0.
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Writing +iv for § it is now easy to show that

1 -v(x-x ) © -vix-x )
4= -1 { = idv + f < idv

[ﬂv 1)B (i) /v2 - ¢ /3‘? 3 1(v-1)sf(i)/v2-ei/%

a -v{x-x4) 1 -v(x-x)

e . e A
+ f —— — idv + f = idv
1l i(V-l)ﬁf(‘i)"/Vz - €2 (-i)'\/iTV- . i(V-l)ﬂf(i)‘/Va' 2 (1! f-l—:

€ -v{x-x4) - ‘V(X‘Xo)
+f £ — idv + f e v
) iv-1)B i) A -ef/ - i(v-1)p (i) / ve-e2 [ 22X

Clearly the third and fourth integrals cancel and the remainder combine to give

“ -v(x ~Xo) -v(x -Xo)

’_-— -
f/v -e2 (v1){§° BffJ (vl)("a

(109)

Differentiating this expression with respect to x, and letting € — 0, we find

4 -vi{x-x,) -v(x-x4)

G;‘ (x, y| ,y)—+ de- f —?ﬁ.—dv (110)
(o]

An alternative form of this result which may prove useful for computational purposes
can be found by changing the variable from v to #(a+1) - $(1-alt in the first integral
here, and from v to #{a+1) + $(1-a)cosh® in the second. We find that

(a+1)/(1 _a)%(l-a)(x -x )t

' 2 -Ha+1)(x-x_) e o
Gxo(X.ylxo,y)=+-B; e - 0{f —— dt
1
K [%(l~a)(x-xo)]} (111)

wher_e Ko is the modified Bessel function of the second kind and zero order (Watson).

We may compare the results just obtained for x-x > 0 with the correspond-
ing value for G):O(x, vl xo,y) when x-x < 0. Referring to equation (103), the

latter is found to be given by
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-V(x -x)
G'. (x,y|x,,y) = f dv ,
Xo yl oY Hv+aﬂv+1§

o
- -3(1-a)x  -x)t
__ 2 HariMx,-x) e o
= B-; e o f W dt (112)
at1
1-a

The very different forms of upstream (eq. 112) and downstream (eq. 111) influences
are at once apparent. One should compare these results (particularly equation (111)
and the second equation (112) with Ryhming's results for G_. First of all, Ryhming's
Green's function G should, for his subsonic problem, be such as to make Gy (x, olx,,0)
= 0. As we shall see below, this latter condition introduces a factor of 2, {y wh1ch

G’ should be multiplied to give G. In addition, noting that equations (111) and (112)
are expressions for G’ X0 and not G',, it appears that Rhyming's expression for G,

is additionally in error in respect of 1ts sign for the case x-x > o.

We have shown (in equations (105) to (108)) how G’ behaves for x -x>> 0
and have found that it takes on the form of an equilibrium Green's function in this
region. Since it will be of interest in some developments to follow, we should
also attempt to find out how G’ behaves as J Yo-Y|—+ = and any value of x,-x,
positive or negative, and also for x-x,>> 0 for any values of y, and y. Since the
integral in equation (102) is absolutely and uniformly convergent forally, # y
(and hence for | y,-y| > o ),we can form the function

- ’ _ - ig (x-x) - B¢ |y o 113
(1 '3;;> é—l—yéo,? f e o o Yidg ( )

-00

Now on either side of the point §¢ = 0, the exponential exp(-Be |y,-y|) decreases
very rapidly if |y, -y| >>0. Accordmgly the left-hand side of equation (113) will

differ negligibly from

f o iElx-x0)-¢p | Yo ¥lgy + fei!(x-xo)- € Bg |¥,Y| dg

o (e]

in these circumstances (having let € = o here). Accordingly, we find that

{l K- } 3G’ N 28, |, (114)
3xg a-l_y:)-yl (x-x)%+ Bi(yo-y)a

in these circumstances. Not surprisingly, the result is the same as that found

for X, -x>> 0, and we can also show that the same behaviour is found for X-X,>>0

too. In other words, G’ looks like an equilibrium flow source at large radial
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distances from the source point. The particular significance of this is that,

whilst all derivatives of G’ vanish in these regions, G’ itself becomes logarith-
mically large. These conclusions do not conflict with the remarks at the end

of the previous paragraph, since there we are comparing exact values of

G '(x,yl X, y) in the two regions of x, for any values of |x-x,|; indeed, examining
the integrals in equation (110) and the first version of equation (112) shows how

G ‘xo will be roughly equal as | X-X,| -« in either case. Of course the precise

manner in which they tend to their asymptotic values will be quite different in
each case,

We can now attempt to solve a half-plane ('thickness') problem like that
considered in Section 3 for supersonic flow. Thus, let us find qax(x,y) in a region

y> 0, ~wg X< o With Neumann data (namely @ (x,0)) specified on the line y = o.
CP.Y
(We choose to find ¢ here rather than ¢ because it is slightly easier to do so).
X

Reference to equation (29), which applies equally well here if we let H; and
Hy — o, shows that we should ask for a G such that Gyo(x,ylxo, o) = o. Using

image methods, let us place another source like G'(x,yl X yO) at the reflection
of the point X ¥, in the plane L i.e. at XY, With y> o, this means

(see equation (102)) that we should consider the function

- ei§ (x-x.)
= "1 & Ds,

- &

{ e-Be (yoty) + e'Be |y0-y|}dg (115)

When y, < y it is clear that o9/ Byo = o when y, = 0 and, accordingly, the

appropriate value of G should follow on taking the limit ¢ - o in ¢4/ . Since we
are solving for ¢  rather than ¢, we are more interested in Gy (see equation
(29) once again). Then we can write directly from equation (115),

Y L8 (xmx,)

Gy | %090 = | @@ e ) e B 0ot o FIYo Il (116)

- 0

where B’ (see equation (93)) is the proper limit of B, (equation (97)) as€ - o.

(The & - plane must remain cut as in Figure 5 as € — o). From the results of
the previous paragraph we note that all the terms in Gx’ Gy etc. etc., which
o

appear in the last three integrals in equation (29) will vanishas H,, H;, H; —w
Since GYo (and hence Gxo)’o) vanishes on y = o, we are left with the result;

dx gy lx,y) = - f [9y (%o 0+ Px_y (x0,00] Gylx,¥| %o, 0dx,,  (117)

-

where
(<]

it (x-x.)-B'y
(¢ -iXB" /&)

-0

de (118)

Gx(x,yl Xoro) =2
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Let us assume that the body shape is given by the equation

y = h(x)H(x){ 1-H(x-L) }, | (119)

where h(x) is a function which is zero at x = o and x = L. Then the tangency
condition is

‘Py(x,o) = Uh'(x)H(x) (1 -H(x-L)}, (120)
and we easily find that
9y lx:0) = Uh’ (x)H(x) (1-H(x-L)} + Uh’(x) 8(x) (1~-H(x-L)}
- Uh’ (x)H(x) 8(x-L). (121)

Then, putting equations (120) and (121} into equation (117) we have

4 q cpx(x,y) = - Uh' (o)Gx(x,y] 0,0) + Uh'(L)G,(x,y| L,0)
L..

f 9) [h’(xo) +h*(x,)] Gx(x,y| xo,o)dxo. (122)
o+

We must note that G is different in the two regions x-x Z o, so that integration
from O to L may have to be split at x_ = x if we want to know ¢, for O< x< L.
In fact let us examine (px(x, o) for x<o. In equations (110) to (112) we have found
G 'xo for y, = y (in particular y = o then) and, noting from equations (102) and

(115) that ¢’ is just twice the value of # when y, = y = o, we can find the required
values of G by mu1t1p1ymg equations (110) to (112) by -2, the minus sign arising

since o/ ax = -9/9 X, for G or G’ For x <o we require equation (112), and find
that
-v(L+l x|)
4n ¢ (x,0) = - Uh' (o) fmdv+Uh (L) 5; f = dv
- 4 " wixgr |xl )
- f U [k (xo) + h"(xo)] -B—; f }/(m dv.dxo_ (123)
o o

This result is not particularly tractable and it would appear to be necessary to
evaluate @_numerically in the final analysis. (The integrals from o tow» in
equation (123) can be related to the Ko-type Bessel functions). Whena =1,
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equation (123) can be simplified by integrating the last term (involving h” (x_))
by parts. The terms in h(o) and h(L) cancel and one is left with the result that

L
h’(x,)
4x x,0)= -U f 0 dx_,
¢, (x,0) xor|x] X0
x<o0;a=1

since the infinite integrals are easily evaluated in this case. It is easy to see
from this that [@ | —e like 1/|x| as | x| —o and also that ¢_ is essentially
negative in this region The velocity disturbance given by equation (123) appears
to be of the proper sign and provides a partial check on the foregoing analysis.

We conclude this short look at subsonic relaxing flow Green's functions
by remarking that, in order to find ¢ (x,y), a closed boundary is necessary, in
line with the elliptic nature of the problem. It is also necessary to prescribe
data for ¢ everywhere on this closed boundary; more strictly, we need to specify
&on lires y = constant and ¢, onlines x = constant. In the particular case of
the semi-infinite domain, one must set ¢ = o for |X| —w.
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