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SUMMARY 

The propagat ion of sma l l d i s t u rbances in a re lax ing or r e a c t i n g gas is 
governed by a t h i r d - o r d e r pa r t i a l differential equation for the velocity potential 
(the non-equi l ib r ium equation). A genera l i sed G r e e n ' s t h e o r e m which appl ies 
to th i s equation is es tab l i shed and G r e e n ' s functions a r e found for super son ic and 
subsonic s teady flows in two d imens ions . These functions a r e used to find solut ions 
for the flow past s l ender obs t ac l e s . F o r subsonic s t r e a m s , the flow field is a s a i m e d 
to be of infinite extent; for a supe r son ic s t r e a m one can cons ider fields of finite 
extent . In p a r t i c u l a r , the method p e r m i t s compara t ive ly ea sy ana lys i s of super son ic 
s t r e a m s which a r e not n e c e s s a r i l y in equi l ib r ium or of uniform veloci ty ahead of 
the body. T h r e e examples of such flows a r e worked out. 
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1. Introduction 

This examination of Green's function methods for solution of the non-
equilibrium equation was motivated by the appearance of a recent paper on 
this topic by Ryhming*^'. Certain aspects of this latter work were felt to be 
unsatisfactory and we hope to clear the matter up in the present paper. In 
particular, in the example given by the aforementioned author for the flow velocity 
on a two-dimensional wedge in a supersonic non-equilibrium stream, the velocity 
is of the wrong sign: i . e . the pressure would be diminished on a wedge of positive 
turning angle according to this result, instead of increased as it should be. The 
reasons for this e r ro r in sign are quite fundamental, as we hope to point out below. 
In order to set about the task before us it is advisable to begin by establishing the 
appropriate generalisation of Green's theorem which applies to the non-equilibrium 
equation. 

2. Green's Theorem 

Restricting our attention to the two-dimensional steady flow case, the non-
equilibrium equation satisfied by the perturbation potential q)'(x' , y') can be written 
in the form (Vincenti^"') 

^ ^f ' x ' x V +<Px' y y e ^x X y y 
(1) 

where r is the relaxation length and 

2 2 2 2 
^ . = 1 - M . ; iS = 1 - M 
• ^ f f CO e eoo 

(2) 

M 
f. 

and M are the frozen and equilibrium free stream Mach numbers, respectively. 
eoo 

The free stream is assumed to be of velocity U directed along the x ' - axis from 
left to right. It is convenient to define dimensionless co-ordinates x and y, such that 

X = x ' / r ; 3 

whence, writing 

cp'(x', y') = cp(x, y) , 

equation 1 becomes 

y'/r (3) 

(4) 

LT J f Tcxx ^xyv e ^xx ^ y y 
(5) 

Equat ion 5 defines the o p e r a t o r L in t e r m s of x , y c o - o r d i n a t e s . The ope ra to r which 
is adjoint to L is wr i t ten as L where 

f ax' axay" ^ dx" ay* 
(6) 

We shall write r for the vector whose components are x, y and r^ for the vector 

whose components are x , y , etc. where it is convenient to do so. Thus we can write 



G = G ( r / r ) (7) 
~ ~o 

for the Green's function, representing the influence at a field-point x which 
results from a source located at a source-point _r . G satisfies the equation 

L FG] = - 4«- 6 (r - r ) , (8) 

where 6 is the impulse function (an even function of its argument). (The (-Air) 
te rm is not absolutely necessary here but is used in the book by Morse and 
Fesbach'^ ' , from which the basic theory of this section is taken. To make 
reference to this work easier we therefore retain it). 

We can also define the adjoint Green's function, written as G, where 

G = G ( r / r ) . (9) 
~ ~o 

G satisfies the adjoint equation 

L [G] = - 4ïr 6 ( r - r ). (10) 

In the current notation the disturbance potential <p is a function <p(r). Let us 
therefore consider the quantity 

G (r/r ) Lrcp(r)"l - (p(r) L [^(r/r )"I a F . (11) 
~ ~o L ~ -I ~ L ~ ~o J 

Using the definitions of the operators in equations 5 and 6, writing out F in full 
and grouping the te rms suitably, we see that 

F = T- iS' G<p + (pG - G 9 + p ' G<p - cpG - (p G 
a x L "^f L ^xx XX x x J ' ^ e L ^ x x - l y y J 

Clearly F can be re-written as the divergence of a vector £ whose components, 
P and P , are just the first and second bracket terms in equation 12, respectively. 

That is to say 

F = 7 . P (13) 

where V is the gradient operator. Equations 11 and 13 constitute the necessary 
generalised Green's theorem, namely 

G L [cp] - cp L [ G ] = ^ . P . (14) 

P is of course a function of m and G . 

Equation 14 can now be used to find an expression for the potential cp within 
a closed surface in te rms of the boundary values of cp, and its derivatives, and 
the adjoint Green's function. To do so we shall first interchange r and r in 
equation 14, so that it now reads 
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G L fq) 1 - <P L [ G ~| = 7 . P , (15) 

o o L o J o 0 1 oJ ~ o ~ o 

where 

m B cp(r ) : G = G ( r / r ) : P ^ P (cp (r ), G (r / r ) ) (16) 
^o ^ ~ o o ~o ~ ~o ~ ~o ~o ~ 

and L L and ^ a r e now o p e r a t o r s involving x and y . We a s s u m e that the 
o o ~o ^ o •'o 

equat ions 

L Ftp 1 = O ; L T G 1 = - 47r 6 (r - r ) (17) 
o ^ o-" ' o L o-l ~ ~o 

a r e sat isf ied within a region V bounded by a l ine S (see F ig . 1). The vec to r r 

m a y or may not be inside S . 

Multiplying the f i r s t of equat ions 17 by G and the second by cp , sub t rac t ing the 

r e s u l t s and using equation 15, we find upon in tegra t ing throughout the region V that 

/ G L fcp 1 - cp L F G 1 dv = i V . P dv (18) 
•̂  L o o L o J ^o o L o J j o v ~ ° ~ ° ° 

o o 

= 4jr <p(r) if r i s inside S 
~ ~ o 

= 0 , if r i s outside S . 
~ o 

(The l as t two r e s u l t s follow from the pro{ier t ies of the 6- function). But G a u s s ' 
t h e o r e m shows that 

/ V . P dv = / n P ^ ds , (19) 
. ̂  M/ o M o o • ~o ~ o o 

o o 

w h e r e n is the unit ou twards n o r m a l vec to r to S and d s i s an e lement of a r c 
o o o 

s 
length on S ; P is the value of vec to r P on th is l ine . Equat ions 18 and 19 show that 

" o ~ o ~ o 

4jr cp(r) = / n . P ds , 
~ J ~o ~ o o 

S 
o 

or 

4w- (p(r) = / n . P (cp(r^), G ( r ^ / r )) ds . (20) 
^ J .̂ o ~ ^ ~o ~o ~ o 

S 
o 

g 
if r i s within S . r i s the value of r on S , and equation 20 is ce r ta in ly one form 

~ o ~o ~o o 
of the d e s i r e d r e s u l t for cp(r). 

However , it i s m o r e usual to e x p r e s s the value of (p(r) in t e r m s of G r a t h e r than 
i t s adjoint G, so that a re la t ion between these two l a t t e r functions is r e q u i r e d . In 
o r d e r to de r ive such a r e l a t ionsh ip it i s only n e c e s s a r y to r e l a t e the boundary conditions 
which m u s t be sat isf ied by G and 8 , s ince we a l r eady know the different ial equations 
sat isf ied by each function. F o r example we have 



L r G ( r / r ) 1 = - 4ïr 6(r - r ) ; L F G ( r / r , ) 1 = - 4«-ö(r - r , ) . (21) 
L_ ~ ' ^O «J <N/ /wQ L r« ^ .J ^ ^ 

Multiplying the f i r s t of equat ions 21 by 6 ( r / r ), the second by G ( r / r ), sub t rac t ing 
r*̂  *ŝ  ' ' ^ ' ^ O 

and in tegra t ing over the reg ion V sur rounded by the line S (which a r e just V and 

S in x , y r a t h e r than x , y co-ordinates- , see F ig . 1) we find that o "̂  o •'o ' & 

/ G ( r / r , ) L FG ( r / r ) 1 - G ( r / r ) L F G ( r / r H i dv 
• L .̂^ ~ i i_ ~ ~ o J ~ ~ o L ~ ~ i J J 

= - 4ir\ G (r / r , ) - G ( r , / r ) 
L ~o ~ ~ ~o J 

provided both r and r , a r e within S. Using G r e e n ' s t h e o r e m (equation 14 with 

G ( r / r ) in place of ip(r)) and, subsequent ly . G a u s s ' t h e o r e m , we see that 

/ n . P rG(r^/r ), G (r^/r ) 1 ds 

= - 4jr G ( r / r , ) - G ( r , / r ) 
I. ~o ~^ ~' ~o 

The s imple ( rec ip roc i ty ) re la t ion 

G ( r / r . ) = G ( r , / r ) (22) 
~o ~ ' ~ ' ~o 

now ex i s t s between the G r e e n ' s functions, provided that we choose the re la t ionsh ip 
between the i r boundary va lues so as to make 

n . P F G ( r ^ / r ), G ( r^ / r , ) " ] = 0 (23) 

eve rywhere on S. Thus the re la t ion 23 l imi t s the choice of boundary conditions 
for G and G. F o r example , cons ider ing a r ec t angu la r boundary S made up of 
l ines p a r a l l e l to the x and y a x e s , equation 12, which defines the components 
P and P of P , enab les us to deduce the following fac ts . On a l ine of constant y 

(so that n . p t he reon i s p ropor t iona l to P ) one can choose e i the r homogenous 
~ y ,v, 

Dir ich le t o r homogeneous Neumann condit ions for G and G, thus making n . P vanish 
on such a l ine . On a line of constant x (involving only P , t he re fo re ) , one mus t 
employ addit ional conditions in o r d e r to make n . P z e r o . It i s not enough to make 
G and G z e r o , for example . One m u s t , in addit ion, choose e i the r G or G to be 

•̂  * X X 
z e r o (G or G will be z e r o au tomat ica l ly if G and G a r e z e r o on a line of constant x). 

Al te rna t ive ly , one could make n . P z e r o on such a line by choosing G, G and G 

equal to z e r o , and s imply ensur ing that the appropr ia te t e r m s in G did not behave 
so badly as to make a product , like G G for example , o ther than z e r o on the l ine 

in quest ion. The p a r t i c u l a r choice of conditions on l ines of constant x wil l depend 
to ^ome extent on the p rob lem in hand, but the data cer ta in ly must be of the. Cauchy 
type. We may a lso r e m a r k he re that if the boundar ies of S a c r o s s the free s t r e a m 
should happen to be inclined to th i s d i r ec t ion , so that a fract ion of P e n t e r s into 

n . P in addition to a fract ion of P , Cauchy data i s s t i l l r e q u i r e d . One can a l so 

make n . P vanish on l ines a c r o s s the free s t r e a m by invoking a causa l i ty condition 
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such as >ivould apply in supersonic flow. That is to say, one requires that 
G(x, y /x , y ) should be zero for all points x , y ahead of the downstream 

pointing characteristic lines through the source point x , y . The adjoint 
'̂^ s s s s 

condition on G(x , y /x , y ) makes this function zero for all x , y ahead of •' o o 
the upstream-facing characterist ics through x y (since the direction of x is 

reversed in the adjoint problem). The appropriate parts of n . P then vanish 
because the source points are inside S. These particular causality conditions 
apply to downstreanti propagating waves of course; we shall use them in the 
section to follow. We remark that a causality condition is sufficient to find G, 
where it may apply ; one does not need additional data in such a case. 

Using the reciprocity condition 22, we can now write equation 20 in the form 

4«- cp(r ) = / n . p ((p(r^) , G(r/r^)) ds . (24) 
^ ^ «J ~o ~ ^ ~o ~ ~o o 

o 
s The Green's function G(r / r ) satisfies the inhomogeneous equation ~ ~o 

L r G ( r / r ^ ) l = - 47r 6 (r - r^) ; 
|_ rv/ »vO _| ~ ~ 0 

(25) 

i . e . as we would infer from elementary physical reasoning, the boundary value 
problem can be solved by distributing 'sources ' of some kind along S . The type 

of "source', or equivalently. the form of the Green's function will depend on the 
given data concerning cp(r ) and we shall say more about this later on. 

s 
Meanwhile we note that the function P in the integrand in equation 24 is P , so 

that it involves derivatives of cp and G with respect to XQ and y evaluated for 
x = x^, y = y®, (see the definitions of P and P in equations 12 and 16 for o o •'o •'o .s- ~ o 
example). We can not find such derivatives of G(r / r ) from equation 25 as it 
stands: indeed we cannot solve 25 as it stands, because our boundary value data 
on G(r / r ) in equation 24 is given in te rms of derivatives with respect to x , y 

and not x, y, so that we have no boundary value data for G(r / r ) applicable to the 

operator L, which is an operator in x, y co-ordinates. The proper evaluation 

of G(r / r ) with boundary value data given in r co-ordinates can be accomplished 

as follows. The second of equations 17 is 

L rG(r /r) 1 = - 4 TT 6 (r - r ) , o [_ ~o ~ J ~ ~o 

which, using equation 22 with r, there written as r , is equivalent to 

C rG(r/r ) 1 = - 4 7 r 6 ( r - r ) . (26) 
o [_ ~ ~ 0 J r^ ^O 

We can now solve equation 26 for G(r / r ) in r co-ordinates and, having satisfied 
~ ~o ^o ° 

the requisite conditions for G(r / r ) on S , then let r -• r to find the appropriate 
~ ~ 0 0 ~ 0 ~ 0 i - r i -

value for use in equation 24. Of course r in equation 26 must lie within S . 
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(5) 
Ryhming used a form of equation 24, which we can write as 

q)(r) = A(r^) G(r / r°) ds , 
O »^ f^O o 

(27) 

the function A being undefined but eventually evaluated from the boundary 
conditions oncp(r). The result 27 was quoted by him without proof; he found 
the Green's function from equation 25. From what has gone before here, it is 
clear that a result like 27 above can only be true if G(rlr^) satisfies appropriate 

boundary conditions. How these conditions were ensured by solving equation 25 
and taking only the particular solution is not entirely clear, although we do not 
imply that it is incorrect. We shall proceed with our analysis here, using the 
general results developed above, and find the solution for cp(r) in the half-plane 
y > 0, for supersonic flow in the first instance. ~ 

3. The Supersonic Problem 

Consider the following problem; Find the potential (p(r) in the half-space 
y >0, -co < X < oo , for a supersonic flow, fi « ^ . < 0, when cp is given 

everywhere along the line y = 0; for example 

(28) (p ( x , 0 ) = U h' (x) , - " < X < <» 
y 

y = h(x) represents the shape of a solid boundary adjacent to the flow in y > 0; 
equation 28 is then the linearised tangency condition. We shall assume that the 
supersonic flow is originally parallel, with velocity U along the x-axis direction, 
at some upstream location x. 

Assume that the surface S is made up of the line y = 0 and straight lines 

parallel to the x and y axes (as shown in Fig. 2). Writing out equation 24 in full, 

and remembering that n is an outwards unit normal vector, we find that 

0) +(p (x , 0)] G ( x . y | x , 0) 
^oYo o J • -̂  ' o 

4«-q,(x.y) = - j [ [«Py^'^o 

- F G (x,y/x , 0) - G (x,y/x , 0)1 cp(x , 0) i dx 
|_ yo -̂  o x^y^ -̂  o j o •> o 

Ĥ  

+ / fm (x , H j + (p (x , H ) l G(x,y/x , H ) 
-̂ H *- L ô ° ' Xyo ° ' J ^ o 3 

2 

- [ G ^ ^ ( x . y / x ^ H , ) -G^^^^(x.y/x^, H3)]cp(x^, H,) ]^^ 6y 

H •• to 

+ j [ G(x,y/H , y,) [<P,^,^ (H . y X ^ V " " ^°^^e] " V ' ^ / H - ^ o V " " ^o^ 

° -G^ (̂x,y/H,.y )̂[<P^ (̂H,,yX-,p(H,. y ^ ] " Vo^"'̂ ^"''̂ o^^"'' ̂ °̂ f̂ h ^ 
H^ — 

- ƒ ' [ G(x.y/ -H^,y^) [q',^,^('H^ • y , )^ ; + <P,^(-H,.y^)^: ] - G^^(x, y / -H, . y^>p^^(-H,y^) 

- G^Jx ,y / -H, ,y^ ) [^cp^^( -H„yX -<p(.H, y ^ J "G .^ . ^x , y/-H^. y^)p(-H . y ^ ^ J d y ^ 

>(29) 
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The boundary value data given in equation 28 sugges ts that we should set 
G (x ,y /xQ,0) equal to z e r o : we observe that specification of m (x ,0) paeans 

yo yo ° 
that cp (x , 0) i s a l so known and s i m i l a r l y that , if G ( x , y / x ,0) i s z e r o , 

G ( x , y / x , 0) i s z e r o too. We may anticipate that it should prove poss ible to 

find u ( x , y / x ,H ) and G ( x , y / x .H^) equal to ze ro as Hj ••<»> for fixed y < H , 
yo 

t he reby making the second in tegra l in equation 29 equal to z e r o in the l imi t . In 
fact v/e can, s t r i c t ly speaking, only choose one of e i ther G(x ,y /x , H^) or 
G (x, ylxp,iyequal to ze ro on y = H,; we shal l have to confirm our anticipation 

J O 
l a t e r on. In view of the na ture of the problem one would cer ta in ly se lect G 

yo 
to be z e r o , s ince it i s always poss ib le to specify 9 on y = Hj. 

yo ° 
As far as the r emain ing in tegra l s in equation 29 a r e concerned, we shal l 

invoke the causa l i ty condition that G ( x , y / x , y ) must be z e r o for a l l x > x in a 
super son ic flow with down s t r e a m - p r o p a g a t i n g waves . Then the third in tegra l 
will vanish because the point x , y i s within S With a sui table choice of Cauchy 

data for cp(x , y ) in the las t in tegra l we can make this vanish too: e. g. we can 

setcp, cp , qp equal to ze ro when x = -H for all y in th is in tegra l , q) andip 
^O ^o'^O o » o XQ 

a r e z e r o on x = -H^ by hypothes is ; the additional r equ i rement on cp is 
° ^o^o 

in te res t ing , and we shal l comment upon it at a l a te r s t age . 

On the assunaption that it will be poss ib le to verify a l l of t he se r e m a r k s about 
boundary value da ta , the final form for (p will read s imply 

47r<p(x,y) = - J L (x , 0)+(p (x , 0 ) l G ( x , y / x ^ , 0) dx , (30) 
/ [^y^ o x^y^ o J 0 0 

-H2 

for - H < x < H , 0 < y < + < » . 
2 1 •' 

The t a sk is now reduced to that of finding a G r e e n ' s function which sa t i s f ies 
equation 26 and the boundary value data mentioned above. In conformity with the 
usual p r a c t i c e , we f i rs t find the G r e e n ' s function for an unbounded domain and 
then find the function satisfying the requ i red conditions on S by the method of 
i m a g e s . 

Noting the definition of the adjoint opera to r in equation 6, and wr i t ing out 
equation 26 in full, we solve 

- ^ ^ G ' - G ' +)3* G ' + d = - 4 ï r 6 (x - x ) 6 (y - y ) (31) 
•̂ f X x„x^ Xr,y y„ e x^x,^ y y^ o '̂  o 

o o o o^ Q.' o 0 0 . ^ o o 
in the region - o o < y < o c . ^ - « - « x «s"» , where G'= G ' (x ,y /x , y ) i s the 

unbounded domain G r e e n ' s function. We use the F o u r i e r t r a n s f o r m s 

00 - i e 

g < x . y / y ^ : S ) = ^ J G ' ( x , y / x ^ , y ^ ) e ' ^ ^ O d x ^ : G ' = ^ ^ f g ( x , y / y ^ : 4 ) 

J-00 ^ •'-cx.-ie 

e'^^o'^d^ . (32) 



In the first of these 5 has a negative imaginary part, equal to - ie ' where 
e' > e >0. Convergence of the integral for g(S) is thus secured as x - - " ; 

the behaviour of G as x .«+00 is assumed to be suitable for convergence 
o 

purposes*. We remark that the integration contour in the second of ecjuations 
32 runs below the real ^-axis . Multiplying equation 31 by exp(igx )/ V2ir 
and integrating the result from x equals -" to + " gives the following equation 

for g (since x = x lies within the range of integration): 

Both /3 and ^ are negative in supersonic flow; accordingly equation 33 can be 
re-arranged so as to read 

Vo^i^fi't^)'' ""«''^-V' 
where 

and 

^ + a 
+ 1 

(34) 

f(S) - - -é= r3—.V (35) 
^ 7 <5- i ) 

a « ĝ /^J > 1 . (36) 

We shall also write 

in what follows. 

A general solution of equation 34 can be written in the form 

g = Ce 
-iByp JByp 4^f(^ [ -iB(yo-y) iB(yo-y) ] 

where H(y - y) is the Heaviside unit step function (=0, y <y; = 1, y > y). 

C and D are two quantities independent of y (they do depend on x,y, and S in 
general) which must be chosen for fit conditions on G ' . We simply ask that g 
should remain bounded as y •• ± » for fixed x and y. 

Before the values of C and D can be settled, we must decide which branch of 
the two-valued function B is to be used. Writing 

we see that the function B(S), which will occur in the second integral of equations 
32, has two branch points, at ^ = ia and 4 = i. Fig. 3 shows the cut complex 
5 -plane; g(5) is regular for all Im 4 < -e < 0. If we let Vé - ia and Vig - i 
both behave like VJ^ as ^ - + «> then - IB (where B is now taken as a function 

This is in fact guaranteed by the causality condition, as we verify below. 
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of 5 rather than of 5 ) will have a negative real part everywhere on the 5 
integration contour. Converseley +iB will have a positive real part and so, 
as y (>y, fixed) •• + «>, g will behave like : -

g . jyj^yo _ 4^(^)e-^^y ^iByo 

To make g bounded in these circum^stances we take 

When y " • - < " . g behaves as follows (note that now y < y): 

g ~ C e 

Hence we must take 

C = 0 . (41) 

The appropriate solution for g is therefore 

g 
47rf(S)r ^B(yQ-y) F -iB(yo-y) iB(yo-y)-] ] 

= ^ # L " -̂ L" -« jH(y^-y) J. (42) 
The corresponding value of G' is found from equation 32 

" -i« iè(x-Xo) 
^ , , . . f ^__I_[ '^<yo-y) r -iB(yo-y) iB(yo-y)-i 
G(x .y /x^ ,y^) = -j (^ - i)B l ^ \ ^ " ^ J 

H(yQ-y) ids . (43) 

We may close the contour ± <«> - ie in the region Im ^ < 0 with an infinite semi­
circle, on which ^ = Re^°, R •• «> , -Tr<e<0. For j^] = R •• " it is easy to show that 

B = Re'® I J3^| +0(1). 

Since g(4) is regular in Im 5 < e, we can replace the integration with respect to 
4 from - " -ie to + «» -ie by an integration with respect to 6 from 6 = -»r + 
to 6 = 0- ; sin 6 < 0 in this interval, so that IRe has a positive real part . 
Each of the three exponential te rms in equation 43 has a dominant part of the form 

+ i R e ' ® [ x - x ^ + l^^l (y^ - y), or x - x^ - | ^ j | ( y ^ - y ) , or x - x ^ + | ^A(yQ-y), 

respectively j . 

When y < y only the first term appears; when y >y the first and third te rms 

cancel, leaving only the second te rm. Thus, when y < y, G'(x,y/x ,y ) will 

be zero if x-x^ " I/S l̂ I y^-y I < 0 ; i . e . if x^> x - | ^^ | ly^-y I . When y^> y, 
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G ' ( x , y | x , y ) wi l l be z e r o if x > x - | ^ J (y - y) . In gene ra l then G ' i s 

z e r o for al l x > x - lö„ | | y - y | and the s a m e will be ttrue of al l of i t s 
o "^f ' 'o 

de r iva t i ve s with r e s p e c t to x or y . Since the min imum value of | y - y | 

i s z e r o , the case i s covered comple te ly by demanding x >x . We have 

the re fo re verif ied that G ' sa t i s f ies the causa l i ty condition which we had 
e a r l i e r r equ i r ed it to do. We can a l so wr i t e G in the form 

- ic ig[x-Xo) - i B | y o - y | 

G'(x,y x^,y„)= - / ^ - i) de 
)B 

Now the r e c i p r o c i t y condition (equation 22) mus t be sat isf ied, so that 

G ' ( x , y | x ^ , y ^ ) = Q' ( x ^ , y j x . y ) . 

Changing x , y for x, y and vice v e r s a , th is means that 

'• iS(Xo-x) - i B | y o - y | 

G' (X. y|x^. y,) - - I _ (^r7)B d^ 
-le 

so that Q ( x , y X , y ) i s z e r o if x > x . But the in tegra l expres s ion for G 

above sa t i s f ies the equation 

\ [ G ' ( x . y | x ^ , y ^ ) ] = - 47r6(x - x^) 6 (y - y^) 

and it follows that the in tegra l expres s ion for Q ' (x .y jx ,y ) mus t sat isfy 

L [ 8 ' ( x . y | x ^ , y ^ ) ] = -47 r6 (x - x^) 6 (y - y^) . 

s ince we m e r e l y wr i t e x , y for x , y and vice v e r e a , and use the fact that the 6 

functions a r e even functions of the i r a r g u m e n t s . This l a t t e r equation i s indeed 
the c o r r e c t one for 8 ' ( r / r ) (note the l as t of equations 21), and so all the 

~ ~o 
conditions of Section 2 a r e sat isf ied on account of the causal i ty condition ( i . e . in 
p a r t i c u l a r , condition 23 is confirmed on th is account) . Equat ion 43 is thus the 
p r o p e r choice for outgoing, or downs t r eam propagat ing, waves . 

We mus t now set about finding the p r o p e r value for G ( x , y | x , y ) for use in 

equation 29. Suppose we place another source of the form given in equation 43 
at the image of the sou rce point x , y in the y 

Wri t ing G. for i t s potent ial we have (with y > 0), 

at the image of the sou rce point x , y in the y = 0 plane, namely at x , - y 

1 

oo-ie 

' - - f e^^^^""""^ . i B | - y o - y l 
i " / ( S - i)B • 

ie 

G ; = - [ ^TT—^- e ' ^ ' - y o - y ' d g . (44) 
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Adding Gf to G' g ives 

r-/ , \ r e^^'""^o' r -iB(y +y) iB(y -y) 
G(x,y|x^,y^)= - j .^-_-^g_| e ^o ^ + e ^o ^̂  

"'S5(x-x J 

+[^e-^«<yo-y)_e^B<yo-y^H(y„-y) d5 (45) 

Differentiat ing th is function with r e s p e c t to y (which i s p e r m i s s i b l e because 

the r e su l t i ng in t eg ra l i s s t i l l convergent ) shows at once that G ( x , y | x o) i s 

z e r o for all x and Xo, and y > o. We a lso obse rve that both G(x ,y |Xo,yQ->+«> ) 
and Gy ( x , y |x ,yQ-*«>) go to z e r o in the l imit y -•<» , y > y. G in equation 
(45) a l so s a t i s i i e s the causa l i ty condition for X Q > x and hence it i s jus t the 
G r e e n ' s function we r e q u i r e for equation (29). The th i rd in tegra l in equation (29) 
van i shes ident ical ly from causa l i ty , because x = H^ > x, x being e s sen t i a l l y 
within S^; the second in t eg ra l van i shes because G and G both vanish as 
yo = H3-»» for y^> y ( i . e . point x , y within SQ again); a l so pa r t of the f i r s t i n t eg ra l 
van i shes because Gy = o when y = o, y < y. We can the re fo re wr i t e 

Hi 

4n<p (x,y)=-J (py^(xQ,o)Kpx^y^(x ,̂o) jG(x,y|xQ.o)dxQ 

-H = 

ƒ 
O 

P ^ ( x . y : - H ^ , y ^ ) d y ^ (46) 

where Pj^(etc.) i s wr i t ten for the long group of t e r m s in { ) b r a c k e t s in the fourth 
in t eg ra l of equation (29). C lea r ly P^^ is z e r o if cp , cp „ and cp a r e al l z e r o 
for X = -Hg and al l y : equation (46) is then identical with equation (30). F o r the 

In th is connection we note that se t t ing cp , cp and cp equal to z e r o eve rywhe re 

on a l ine of constant x for y > o we imply a l so that cp shal l be z e r o . If 

we take <p ( x , o ) , cp (x ,o) equal to z e r o for x < o the f i r s t i n t eg ra l in equation 

(46) e x e r t s no influence on cp for these values of x. Thus the s ta t ion x = -Hg 
mus t be u p s t r e a m of x = o ( i . e . Hg pos i t ive) , o r , m o r e genera l ly , x = -H2 mus t 
be ahead of the nose of the body in o r d e r for the conditions on q), cp and cp 

to hold that l ine . 
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moment we shall assume this to be the case; therefore we only need to evaluate 
G(x,y|x ,0) to complete the solution. From equation (45), keeping y> y and 

letting y -» 0, we have 

i-G(x,y|x ,0) = - i - / 2 ^^^ 
2« ^^jPfll J l ^ d -i) 

di (47) 

having written in the full value for B as a function of 6 . We can use the 
arguments following equation (43) to show that G(x,yl x , 0) is zero for all 

X > X - I p I y. Going further, and writing 

XQ = X - | P f | y - 8 , 

and then letting & -» o from above ( i . e . B is essentially positive) we can show 
from the integral in equation (47) that 

G(x,yJx^.O) = 0 ; x^> X -|^^| y, (48) 

so that the Green's function is continuous across the downstream - facing frozen 
Mach line through the source point, 

Let us now suppose that the solid boundary, whose shape has been given 
by 

y = h(x) 

(see the tangency condition 28), really has the form 

y = h(x) H(x), 

where H(x) is the unit step function and h(x) is a smooth continuous function of x 
which is zero when x = o. Then equation (28) is modified so as to read 

cp (x,o) = Uh'(x) H(x) , -00 « X 4 CO (49) 
y 

Consequently, 

9 (x,o) = Uh"(x) H(x) + Uh'(x)5(x) (50) 

xy 

If h'(0) should happen to be zero, the last term in equation (50) vanishes. 

Equation (30) for the potential cp will now become 
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x-lPjl y-
<|)(x.y) = - f U[h'(x )H(x )+h'(x )B(x )+h'' (x )H(x )]- i -G(x,y |x , o)dx 

"^ J o o o o o o 4 j t o o 
- H a 

or 

^- iPf ly-
<p(x.y) = - Uh'(o) j ;G(x ,y |o,o) - T U [h'(x^)+h"(x^)] ^ ( x , y | x^,0)dx^, (51) 

o+ 

if x - | P ^ | y > 0. 

We can now find, for example, the streamwise disturbance velocity on 
the solid surface y -•o+. The general expression for this quantity, from equation 
(51), is 

X -

(p (x.o) = -Uh'(o) ^ G (x.ol o,o) - f U[h'(x )+h"(x ) ] i - G (x ,o | x ,o)dx X 4« X I J o o 4« X ' o o 
o+ 

(52) 

and G can be found directly by differentiating equation (47) (since the resulting 

integral is convergent), i . e . 

0» - ie . , . 

1 i r e'S^^'^o^ 
i - G (x.olx ,o) = - ^ / . ° , , • d£ (53) 
4« X I o 2« J lftj. |v£-i ' ,'£-ia 4"i''"'VtT 

For x-x > o the integral in equation (53) can be reduced to an integration around 

the dumbell contour (depicted as ABCD in Figure 3). The contributions from the 
circles around the two branch points clearly vanish in the limit of vanishing 
radius; on the straight parts DA and BC we set 5 = + iv and take care to see 
that the phases of Vj - ia and Vj -i are correct . In transferring to the dumbell 
contour fronn the ±» - ie contour, the latter is clearly achieved if we set: 

onBc, ^6^^ = ^^^^^ r""^% •• ^/Pr- =-i[^ 

On DA, A-ir = /i-TT e"'"/^ \ : . (j^-^if^ 

* 
There is no contribution from differentiation of the upper limit in equation (52) 

since G(x ,o |x - ,o ) = o, see equation (48). This result should be compared with 
Ryhming's whose Green's function has an imaginary part in these circumstances. 
This part is then discarded for no other reason than that it is imaginary'. 
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With these r e s u l t s we see that 

1 1 r r e'^'^^'o^^ re"^''"''o)'' -̂  
I P , | T — G ( x , o | x , o ) = - 5 — - ^ / r—u •\ idv + / ,-: :\, :. , idv )• 
' fi 4« X ' o 2n I J ( iv- i ) ( - i ) a-v J (iv-i)(+i) la-v J 

1 N J V - I a N / V - I 

« J / a - v v'vT 
1 

dv, 

o r , in o ther words 

—- G (x .o l x^,o) = ; 
4 M X ' ' I o' |p ^1 

^ - ( X - X Q ) ( — ) 

I (X -XJ (^ ) (54) 

where I i s the modified B e s s e l function of the f i rs t kind and ze ro o r d e r (Watson, 
(8) ° 

). We have gone through the ana lys i s leading up to equation (54) in some 
m o d e r a t e deg ree of de ta i l in o r d e r to e m p h a s i s e that G he re is a posi t ive function, 
a r e s u l t which should be cont ras ted with Ryhming ' s solution which, whils t a g r e e ­
ing with the p re sen t ana lys i s in r e s p e c t of the sign and form of the sou rce s t reng th 
(in equation (51) for example) , makes G negat ive . F u r t h e r m o r e , and of equal 

i m p o r t a n c e , t he r e i s no question of G or G (or indeed any other der iva t ive of G) 

being anything o ther than pure ly r e a l : Ryhming is forced to d i s ca rd sundry 
e m b a r r a s s i n g imag ina ry p a r t s in his ana ly s i s , which s e e m to have a r i s e n as a 
r e s u l t of an i n c o r r e c t choice of 5 - in tegra t ion contour and phases for the r a d i c a l s 
appea r ing in the quanti ty B when a t tempt ing to solve for G. 

The value of cp (x ,o) for a wedge, which has h(x) equal to 6 . x , is 
found at once from equat ions (52) and (54): it i s 

cp (x .o) = 
U0 

IP '-J e ' ' '^ 2 ' l ( x ( ^ ) ) + 
o d I 

, a+ l . 
-w(-5-) , , 

« I (w ( 
o ^ ) ) « » } (55) 

following an obvious change of var iab le in the in tegra l . Eciuation (55) a g r e e s in 
a l l r e s p e c t s with the e a r l i e r r e s u l t s of C l a r k e * ^ ' and Der^^ ' obtained by using 
different t echn iques . 

To s u m m a r i s e the r e s u l t s a r r i v e d at so far for the super son ic non-
equ i l ib r ium p rob l em, we have shown, by using a genera l i sed G r e e n ' s t h e o r e m , 
that it i s poss ib le to find the d i s tu rbance veloci ty potential in a half-plane by 
employing homogeneous boundary conditions along one edge of the half-plane (in 
the p r e s e n t ca se homogeneous Neumann conditions) and Cauchy-type data along 
a boundary extending a c r o s s the on-coming s t r e a m . The boundary value data 
i s t he re fo re adequately specified on an open sur face ; s ince the super son ic non-
equi l ib r ium equation for cp i s of the hyperbol ic type th is conclusion comes a s no 
s u r p r i s e . It i s i n t e re s t ing to note that the t h i r d - o r d e r c h a r a c t e r of the potential 
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equation requires that we should specify not only cp and cp in the Cauchy 

conditions, but 9 too. (Just cp and cp are adequate for second-order 
XX X 

hyperbolic equations). We can also take note of the fact that, for a solid 
surface which only begins to deviate from a free stream direction in the 
region x > o, the Cauchy data can be specified anywhere ahead of or on the 
line x- | p j y = o, and not just on x -» -Hg. We shall exploit this fact in the 
following section (where we shall also note the physical significance of 
specifying cp in non-equilibriunn problems). Finally we remark that the 

homogenous Neumann data specified along the solid boundary here is the 
same as that required for the more familiar second order hyperbolic 
equation; that is to say, no extra data than that required for a second order 
problem is necessary. However, we do remark that whilst cp will be a 
smooth continuous function of x and y if only the boundary slope is smooth 
in the second order case, the present third-order non-equilibrium equation 
requires that boundary curvature (h*'(x)) should be smooth too for the same 
result in <p. ( N B . Although we have stated that h(x) is a smooth continuous 
function of x, see equation (49), we may still find h" (x) discontinuous. 
Equation (51) shows that q)(x,y) will not be a smooth function in the event of 
a sudden jump in this quantity). In physical te rms , a sudden change in 
boundary curvature can influence the disturbance field in the linear approximation. 

4. Supersonic Free Streams Which Are Not in Equilibrium or Are Not Uniform 

The solution obtained in the previous section was for the case cp , cp and 

9 = 0 on the line x = - Ho (constant). It follows that all y-derivatives of 
XX 

these quantities are zero on the same line and therefore that the basic equation 
for fp, namely L[{p] = 0, is satisfied there. In deriving the equation for cp a 
relation which ar ises during the analysis can be written for supersonic flow in 
the form 

Ip f l cp ' , ,-cp' , + -3a— ^ ^ - ^ ^ = 0 , (56>* 
IP f I * x ' x ' ' P / y ' p^h T^ ' 

00 

(see, for example, Vincenti ). Here h is the specific enthalpy, p the density, 
q the non-equilibrium variable (e .g . degree of dissociation or internal mode 
temperature) and q its local equilibrium value. T is the relaxation time, 

and suffix » refers to the basic "undisturbed" state from which cp represents 
the degree of perturbation, h and h are the appropriate partial derivatives of 

h. If <p = o, as is the case if q) = o everywhere on x = - H^ for example, 

then setting cp = o means that the initial s tream, at the location x = - Ha, 

must be in equilibrium since q will equal q ( T being assumed finite and non­
zero). 

The variables x ' , y ' are the dimensional variables, see Section 2, 
equations (1 to 5). 
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Now we shall attempt to relax the conditions 9 > 9 . <p all zero. If, 

as we shall find, this can be done, then equation (56) indicates that we shall be 
studying free s t reams which may not be in equilibrium (the "free s t ream" here 
being taken as the flow crossing the boundary of our region S at x = -B^). It 
is of course necessary to ensure that any conditions that we do impose on 9 , 
9 , 9 , 9 etc. are consistent with the equation L [9] " 0 , since this must 

X y XX 
be satisfied throughout the region bounded by S. 

Let us first write equation (56) in the dimensionless variables x and y 
(see equation 3); 

r^h 
3 ^ 9 + 9 = yp^ (q - q) ^ Q, say (57) 

f XX ^yy P„,l\3„To 
and rei terate equation (5) for convenience; 

(58) i - 0 ^ 9 + 9 ) + ? ^ 9 + 9 = 0 
°x f * x x ^yy e ^xx * y y 

With equation (57), an alternative form for equation (58) is 

3 + Q + (p2 - P3 9 =0 (59) 
ox e I XX 

We shall now suppose that 9, 9 and 9 are all specified on the line x = - H^ ' 

= constant. Let us write 

9(-H2,y) = V(y) ; V j - H ^ . y ) = W(y) ; \J-ii S-Y) = X(y) (60) 

Then we shall also know 9 and 9 :-
yy y 

<P = VMy) ; «P = V'(y) (61) 
yy y 

where each prime denotes a differentiation with respect to y. We have assumed 
that 9 is zero on y = 0 ahead of the nose of the body in the previous section and 

we shall do so again here; thus 

V'(o) = 0 (62) 

We must also note that, whilst 9 is given by V* , <P is given by W" , i . e . 

\yy<-Ha.y) = W"(y) (63) 

In general then, we are saying (from equation (57) et. seq) that 

file:///J-ii
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Q = p ^ ( y ) + V" (y) (64) 

Equation (58) is satisfied with this value for Q(-Ha , y) if 

Pf «P^^ -̂Hg ,y) = - W" (y) - p^x(y) - y" (y), (65) 

and there is no reason why this should not be so. Using equations (64) and 
(60) in (59), we see that 

| ^ ( - H 2 . y ) = -p^X(y) - V"(y) (86) 

Equations (64) and (66) show that in general both Q and ^ ^ differ from zero 

if one of them does; if V* (y) should happen to be zero (meaning that V' (y), and 
hence, reasonably enough, V(y) is equal to zero too because of condition 62), 
then Q . ^Q/-. depend only on X(y) and are only both zero if X(y) = 0. 

The latter case is the equilibrium stream, of course. However, we can make 
either Q or öQ/v zero independently of the other if V'(y) 4" 0. That is to 
say 

Q = 0 if p^(y) = - VMy) : 1 ^ = (a-l)V'(y) (67) 

^ = 0 if0^^X{y) = - VMy) : Q = (l- ^ ) V ' ( y ) (68) 

where a is defined in equation (36). 

We may certainly select a variety of values for Q therefore, and it 
is important to note that nowhere does the value of 9 = W(y) interfere with 

this selection; it merely serves to determine 9 from equation (65) once 

the other quantities are specified. 

Referring to the last integral in equation (29) (which is also the second 
one in equation (46)), we see that selection of 9, 9 , 9 , 9 o n x = - H g 

y X XX 
for all y is all that is necessary to find 9(x,y) in y> 0, -Hg<x < + » , once 
9 on y = 0 has been chosen. In addition we see from the form of equation 
(46) that the non-equilibrium, non-uniform, free stream conditions at 
X = - H2 sinnply add a part to 9(x,y) over and above that due to the boundary 
shape (namely the first term in equation (46)). The latter we may write as 
4«9 , since it is all that remains of 4it9 when the free stream is a uniform, 

equilibrium one. 

We may now write a general result for a non-uniform, non-equilibrium 
free s t ream in the form 
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9(x,y)= ^gq(x.y) - ~ f | G ( x , y | - H 2 , y ^ ) [ p ^ ( y ^ ) + p^W(y^) ] 

o 

-Gy^(x,y|-H3,y^V'(y^) - G^Jx.y] -H^ , yo)[p^jW(y^) - p^V(y^) ] (69) 

-Vo^^'^''''^'^°^^f''^^°^}'^°' 

the Green's function being given by equation (45) with x = -H , . It is now 
time to consider some specific examples. 

(i) A Parallel Non-Equilibrium Stream of Constant Velocity. 

For a parallel, constant velocity stream at x = -Hg we can set 
V(yo) ' 0 = W(y ). The stream speed ia then equal to U on this line, and 
equation (69) reduces to 

9(x.y) = 9 (x,y) - ^— ƒ p^(y^)G(x,y | - H ^ , y^)dy^ (70) 

An especially simple case occurs if X(yQ) is a constant (and hence Q = constant, 
see equation 64). Integrating equation (45) we readily show that 

"- ie _i(x+H ) t 
9(x.y) = 9eq(^.y)+ l ^c ƒ i | pa, j ^ 5-ia) ^1 ^ 

-00 - i e 

••• 'P<^.y)= % < ^ . y ) + ^ { i - « • ^ ' ' • ' " ^ ^ ^ - ^ < ^ + H 2 ) } . <7i) 

where Q is thé constant value of Q (defined in equation (57)). The simple 
non-equilibrium free s t ream therefore has the effect of adding on an x-wise 
velocity component equal to 

over the entire flow field. Since e ^ ^ 1 for x > - H 2. the velocity 
is negative for positive Q^,. Referring to equation (57), Q ,̂ is positive if 
q > q (since the other quantities are positive). The gradual excitation of 
the internal energy mode up towards its equilibrium value drains kinetic 
energy from the gas stream, and tends to slow it down. Any body (whose 
disturbance field is summarised by 9 ) which is immersed in such a flow, 

*' ^eq 
will therefore lie in a region of gradually increasing pressure . Taking 
(for example) a wedge, for which 9 on the surface is given by equation (55), 
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we could reach an asymptotic state in which the streamwise velocity on the 
wedge surface was exactly U (namely 9 = 0) if we made 0 = -Q^/U|P | . 

(The right-hand side of equation (55) - • - ( U 9 / | p | ) ( l / / a ) = -U0/ |p | as 

x-» + i» ). Figure 4 in fact shows |P-|<P /U0 plotted against x, 9 being 

evaluated on y = 0, for this special relation between 6, Q etc. Two values 
of H2 (namely 0 and 1) are used, and the curve for Q^ = 0 is drawn for 
comparison purposes (this solution is precisely the one previously obtained 
by one of us; Clarke ^ '). Figure 4 is enough to show that the possible effects 
of a lack of equilibrium in the oncoming stream may be quite profound, 
completely altering pressure variations on a wedge, for example. 

It is also of interest to see how 9 behaves on the characteristic 
^x 

X = |P»I y through the nose of the body. 9 on this line follows at once 
from equation (51); it is 

% x = - U h ' ( o ) f ^ G ^ ( | p ^ | y , y | 0,0) 

U h l ( o ) ^ - è ( a - l ) | P ^ | y ^^3j 

|Pfl 

as one may readily show from the expression 47, for example, for G. In 
the particular non-equilibrium stream considered above we therefore find 
at once that 

(74) 
(For the wedge h '(o) = 0 ). 

These few remarks about the behaviour of 9x on the first character­
istic through the corner lead us naturally on to a consideration of a different 
type of non-equilibrium free stream. 

(ii) Vincenti's Non-Equilibrium Free Stream Problem. 

(7) 
Recently Vincenti dealt with a particular type of non-equilibrium 

free stream which has some of the attributes of a real flow about a wedge of 
positive opening angle. Briefly, the idea is that the free supersonic stream 
approaching a wedge-like obstacle may be in a non-equilibrium state and 
additionally may well be frozen in this condition. The compressive distur­
bance across the leading edge shock wave is then assumed to "trigger off" 
the non-equilibrium processes ( i . e . one assumes that the relaxation length r . 
see equation (1), jumps from infinity to some finite value across the shock 
front), and that subsequently the disturbances propagate according to equation 
(1), or its equivalent for finite V, equation (5). This situation is an ideal­
isation of what may really occur in practice with a frozen non-equilibrium 
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oncoming flow; clearly the objection on practical grounds is that such a dramatic 
change of P would hardly be expected for an obstacle of sufficient slenderness 
to render equation (5) applicable, but the gas model is at the very least of peda­
gogical interest and certainly helps one to assess the possible effects in a real 
situation. It will therefore be of some interest to attempt to repeat Vincenti's 
results here using the Green's function approach. (The original results were 
obtained by standard Laplace transform techniques). 

A basic assumption in Vincenti's treatment is that the shock wave lies 
along the frozen characteristic x - |p | y = 0 passing through the nose of the 

obstacle to a sufficient order of accuracy. The non-equilibrium free stream 
is connected with the region downstream of x - | p | y = 0 by linearised Rankine-
Hugoniot conditions (assuming no change of value of the non-equilibrium variable 
q, see equation (56) et seq). We shall not repeat this analysis here, but simply 
note that the following conditions on 9 emerge; 

9(0 +, n) = 0, (75) 

2 - | p + a - 1] 9^ (0 +, r,) = - i ^ > Ii, q^ U (76) 

We have written 9 as a function of the semi-characteristic co-ordinates a 
and T|, where 

a = X - | p ^ | y ; T, = | P j | y (77) 

H„ is defined (Vincenti, loc. c i t . ) a s 

m \^ 
" - = " u p„bp^To(iPj-iP,r) • ^''^ 

the subscript <» implying evaluation in the free stream, and we write 

00 00 00 

Thus q^ is the extent to which the oncoming stream departs from an equilibrium 
state. 

To use the Green's function technique we must now make up the boundary 
SQ from the lines yo= 0, 0 + « XQ < <» and XQ - | p^| y^ = 0 +, 0 € y^ < 00 ; or 
what is equivalent in the latter case, the whole of the line 0!̂  = 0 +, with an 
obvious choice of nomenclature. The unit outwards vector normal to ojj = 0 + 
is given by 

1 |Pf| • 
So ' " Mj -i "̂  Mj i ' 
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(where i , i ,are the unit vectors along Ox^, Oy^ respectively) and the element of 
S on this line is clearly dy^Mf. Accordingly, equation (20) shows that 

00 

4«9 (x,y) = - / [9yQ(x^,0) + 9xQyQ(Xo, 0) ]G<x,y |xo,o)dx^ 

o + 

- / { ^ X o < 'f <0+' 1o>'^<*'yl 0+. ^o>) -|Pfl Pyo<<? (0+,n^),G(x,y| 0+, Ti^))}dy^ 

o 
(80) 

where P , Py are the components of jf along Ox , Oy , respectively, and we 

have replaced the x , y functional dependence of 9 and G here by a (which 

muBt equal 0+) and T) . The Green's function is given in equation (45). 

It is convenient to express P^ - | p | P in terms of quantities involving 

derivatives with respect to ct and 1^; noting that 

dx " ^ ' 3y IP, 

this ia readily carried out and we find that 

|P„ Gq)a„- 'PGaJ-|Pj|^9^^-<;^^jG^^-Ga^] 

\h\^ ' ^ o - "P%^"P«o1o ' "̂ «o^o 

+ |P. G I0 ' ^ « o "'^"ono ^ ^«o^o] 

G 

9 . 

(81) 

Certain terms in equation (81) cancel in the general case; we note in particular 
however that all terms in 9 and cpn will vanish on account of condition 75 when 

equation (81) is put into the integrand in equation (80) and hence specialised to 
its value on the line a = 0+. For inclusion in equation (80) then, we can 
rewrite equation (81) in the form 

^ o ' l ^ f l ' ^ y o ^ - | P e r ^ ^ < ^ o - ^ iPfl^ «too^T,^ 

+ | P / «Pâ G - iPfl^'too'lo*^ 
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or 

iPfl^yo = - i P f l ' i ^ ^ +(a-l)},^,^G+|P^|^^^(9„^G) 

Thus equation (80) becomes 

4« 9 (x, y) = - ƒ" l9 y^(Xo, 0) + •l'xoyo<Xo. 0) 3 G(x, y| XQ , 0)dx^ 

o + 

•a 

•iPfl ƒ I^ST ^^^ ' ^ }̂'̂ o<° '̂ \>G(x,y|0+.,, Jd,,^ 

iPfirw^^'^^^^^-yi^-^-io^ 
\=0. 

(81a) 

(82) 

(In evaluating equation (80) to give equation (82) we have set dy^ = dt) / | p J 

and integrated the last term in equation (81a) directly). Using condition 76 
the second integral in equation (82) becomes 

«0 

(a - l )H«q'„U ƒ G(x,y|0+,, ,^)d,)^. 

One must remember to split the integration from 0 to •» into two parts , from 0 
to|P I y and from |p„| y to «i ; after a little tedious manipulation, using equation 

(45) for G, we find that the integral is equal to 

« -ie •0 - l e 

^ '.' ,^\^ '' , (e -DB V l y J 
- «0 - l e 

(83) 

The first integral in expression 83 gives simply -2it (x- |P | y ) / |p - | ; the next 

integral we identify from equation (47) as ^G(x,y| 0,0) and the third and last 
integral is easily shown to be equal to 

x - | ^ f | y 
i ƒ G(x.y|x^.O)dx^. 

0+ 

We note that the value of au (0+. TI ) is needed in order to evaluate the last term 
^"o o 
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in equation (82); it can be found by integrating condition 76 directly and putting 
in the value 

This latter result comes directly from the shock relations and surface boundary 
(7) condition (see Vincenti ), and clearly is consistent with the physical notion 

that immediately behind the shock at the corner, the flow is completely frozen, 
even though r there is finite. The value of 9̂ ^ (0+, oo ) is zero, as indeed is 

the value of G(x,y | 0+,<» ). All that remains of the last term in equation (82) 
is therefore, the quantity - Uh' (o)G(x,y| 0,0). 

With the first term in equation (82) it is important to note that, because 
the surface S lies just downstream of the leading characteristic, the lower 

integration limit is equal to 0+. Accordingly, the first term in equation (82) 
is equal to 4« times the right-hand side of equation (51), without the term in 
h* (o). The term in 8(x ) in the first version of equation (51) does not contri­
bute, indeed its effect has been included in the boundary conditions applied along 
the line x - | p , | y = 0+, and we have just seen that it is recovered from the 

o ' f' o 
last term of equation (82). 

Collecting together all of these resul ts , we find that 

9(x,y) = - U [h'(c) - I^ q '„] T-<3(x,y|o,o) 
4jt 

x- |P^ |y 

ƒ U [ h ' ( x J + h ' ' ( x ^ ) - H ^ q ' „ ] ^ G ( x . y | x ^ , o ) d x ^ 

(84) 

for the appropriate non-equilibrium flow over a body whose shape is given by 
y = h(x)H(x). 

Insofar as the results given by Vincenti for the small disturbance conditions 
behind the leading edge shock wave apply to a body of any shape (following on 
behind the initial positive opening angle), equation (84) represents a mild general­
isation of his solution, which was for a wedge of constant angle 8 (equivalent to 
our 0 in the previous section) only. Putting h ' (x^) equal to 8 and h" (XQ) equal 
to zero, equation (84) can be recognised at once as exactly equivalent to Vincenti's 
transform relation in equation (56) of his paper; that is to say, the equilibrium 
free stream result (which has q'„ = 0) is simply multiplied by the factor 
1 - {B.„cfa, / 6 ) and the last term in equation (84) added on. There is no need to 
proceed further with the development of this kind of flow, since all aspects of it 
have been covered in the paper cited several times above. The agreement 
between the results of that work and those of the present analysis obtained by 
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very different techniques is , at the least, reassuring. 

(iii) A Non-Uniform, Non-Equilibrium Free Strea|n. 

Finally, in this brief treatment of supersonic non-equilibrium oncoming 
streanas, we shall consider a case which combines some of the aspects of the 
previous cases, (i) and (ii), together with a certain amount of non-uniformity. 
Let us suppose that on the line x = o-, immediately ahead of the nose of the 
obstacle, the non-equilibrium parameter Q (see Equation (57)), has the constant 
value Q^ (as in case (i)). In addition, let us suppose that öQ/èx = o every­
where on this line. This last supposition makes our flow bear a remote 
relationship to Vincenti's case, for which èQ/Sx = o everywhere ahead of the 
line X - |p I y = o. The two cases are dissimilar in the sense that our speci­
fication of zero reaction rate is a statement of a purely local phenomenon; 
immediately downstream of the line x = o - we may expect 5Q/èx to change. In 
order to have Q = Q^, SQ/öx = o on x = o-, eq. (68) shows that j p | | X(y) must equal 
+V" (y) and 

Thus 

v'<y) = ( ^ ) Qcy. 

since V'(o) is zero, and we can take 

(86) 

2 

a v(y) = {frj) Q, I . (87) 

Reference to equations (60) and (61) shows that, in particular, the oncoming 
stream at x = o - has a divergent character, since 9 increases linearly with y. 

We shall take 9jj(o,y) = o for simplicity, as we are entitled to do. Clearly 

we should not allow 9 to go on increasing indefinitely with y, since the basic 

small disturbance hypothesis would eventually be violated. However, there is 
no reason why we should not stop the oncoming flow at y = L, say, and deal only 
with the segment of the flow lying between x = o -, y = o and x = |P | (L-y). 
The latter line is the "rightwards-running" frozen characteristic through x = o, 
y = L; we may state from a knowledge of hyperbolic equation behaviour (or indeed 
infer directly from the nature of the Green's function in equation (45)) that any 
variations of cp, 9 , etc. above y = L will not interfere with the flow in the seg-

y 
ment mentioned. 

From a practical point of view, the oncoming flow that we are dealing 
with here may be thought of as a crude estimate of the flow from a straight-sided 
divergent nozzle. 

We have only to deal with the addition to 9 , as in case (i), and can 
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therefore write, from equations (69) and (85) to (87); 

L 

4« [9 (x.y) - 9eq 1 = " ƒ { " ^G 'V" (yo) ' Gy,V'(y,) - |p| | G,^V(y,) 

+ IP? G^^^^V(y„)]dy„ 

L L ^ L 

= IG-V5 - ( ^ ) ƒ ^̂ '̂ ^̂ o-̂  IM'{^5^, - Sl̂ } ƒ «-̂ -̂ V 

(88) 

Dealing only with the case y< L, one must remember to split the integrals from O 
to L into the two parts , o to y and y to L. The product GV is zero when yQ = o 
and is continuous at y = y (see eq. (45)): the upper limit y = L gives terms in 
G(x,y| o,L), which do not contribute for x<|^. |(L-y): hence the first term in (88) 
is zero for present purposes. The remarks about contributions from terms 
evaluated at y^ = L apply also to the other integrals in eq. (88); with this in mind 
one may show, after a little analysis, that for x< l^.((L-y) we have 

" -ie . , 
1 s X 

4* [q . (x ,y ) - 9 e q ] = ^Q^ ƒ f^^-^ 
00 - j E 

- - le 

i^?(^)^{»i;-^J{^/ f i w -
^iUx-xJ 

oo - l e 

" "ie .»/ \ 
. e'6(x-x^) . 

- 2y J (6-i)iB« ^ 6 1 
-» -ie x =o 

o 
(We have used equations (45) and (85) to (87) in deriving this result). The x^ • 
derivatives can be taken inside the integrals in equation (89) and, after some 
manipulation, we find 

eo - i e 

r e^*"" r 1 1 1 1 
4« [ 9 ( x , o ) - 9^q] = 2Q^ J - | ^ - ^ - p + ^ . ^ ^ _ _ | d e 

(89) 

-«-ie 

oo-ie 

/

i ' x r J . ~j 

n W 1" i ^ "• ^ " a2(5 -ia) ^ i ( a - l ) e = J ^ ' ' ••o-ie 
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whence 

2Qc f , -ax 1 Qc 2 ». / V ^ ^^c f , -ax 1 
a|P| | V -ax j - 2 ( a - l ) | p 5 X , (90) 

having set y = o. 

The similarity between this result and equation (71) in case (i) is apparent; 
the first term here is precisely twice the value of 9 - 9 in the earl ier case. 

Since the first integral in equation (89) is exactly the same as the integral in 
equation (71), we infer that the doubling of the non-equilibrium effect here ar ises 
from the divergence of the free stream; i . e . since this stream is expanding the 
rate at which energy must be supplied to the relaxingmode is reinforced. In 
addition of course, one has the primary effect of the s t ream's divergence to add 
on; this is represented by the last term in equation (90). (N.B. Q ,̂ is essentially 
positive here). We note from equation (68) that Q = Q^ = 0 if a = 1, leaving 
V* (y) etc. finite and non-zero; i . e . aQ^/(a-l) remains finite as a -• 1. When 
a = 1 there are no relaxation effects, the first term on the right-hand side of 
equation (90) vanishes, but the last term remains and expresses the effect of 
the diverging stream. 

The previous three examples show what can be done with some simple 
non-uniform, non-equilibrium streams. Problems of considerable generality 
could be worked out, but it may not always be possible to evaluate analytically 
the integrals involved in more complex cases. 

5. Subsonic Flow 

The subsonic flow regime is defined by requiring that both Mf and M 
^ eoo 

shall be less than unity. Since IV^^ » M^ this means that p „2> p > o 
and the quantity a, defined in equation (36), is always positive, but less than or 
equal to unity, i . e . 

0 < (a = P^ /6 ^) « 1- (91) 
^' f 

As before, we set out to find the Green's function in the infinite domain 
" " ^ y o ^ " ' " " * XQ <OO for some fixed x,y lying within this region. 

That is to say, we wish to solve equation (31) with p and p both positive, 

in contrast to the supersonic case, for which these parameters are boih negative. 
We shall use Fourier transforms for this purpose, defining g(5 ) as the appropriate 
transform of G ' , as in the first of equation (32), but with reservations here about 
the quantity ^ • Iti particular we shall say nothing for the moment about the 
imaginary part of this variable; the range of variation which is permissible for 
Im 5 is clearly associated with the behaviour of G' for I x^l ->oo and we hope 

to pronounce on this question shortly. Meanwhile, let us formally apply the 
first of equations (32) to equation (31) and assume that G' , G'X . G 'X X > ^tc. , 

times exp (i^ XQ) all vanish for | x j -*oo • The result is similar to equation (34), 
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except that, in view of the behaviour of Pf, we should now write this in the form 

gyoyo • P?5' ( F H T ) S = - 4« f(C) 5 (y-yo). 02) 

f( g ) is exactly as written in equation (35), since x lies within the range of 
integration over XQ. 

Clearly the general solution of equation (92) will be identical with equation 
(38) except that the quantity IB in this equation will be replaced by B ' , where 

B̂ a ^ pa C ^ ( ^ ) (93) 

With this form of solution it would appear that g ( 0 i^ regular from Im^ < 0 
(there is , apparently, a pole at 5 = o), for o<Im5<a, for a<Im5< 1 and for Im^> 1, 
since there are branch points at 5 = ia and i. Not all of these latter regions 
of regularity will occur together, since the ^ -plane must be cut in some fashion 
from 5 = ia and i in order to render g(t, ) single-valued. However, we must 
take note of the theorem regarding Fourier transforms which states that, if 
g( 5 ) is a transform, regular in a strip T_ < Im^ < T, of the ^ -plane, then G' 

its inverse, behaves in such a way that |G ' | < exp(T_+ 8 )XQ as XQ-» + oo and 
IG'I < exp(T+ - 8 )XQ as X -» - oo where 6 is an arbitrari ly small 

° (4) 
positive number, (see, e . g . . Noble, p. 24). If both T and T are negative, 
I G'l may increase without limit as x -• - oo, whilst it must vanish exponentially 
as X "• + » . The converse must be true if both T _ and T ^ are positive. 
Neither type of behaviour is what we should expect for G' , since the vanishing 
of the function at one extreme and not at the other is at variance with the physical 
idea that a source in a subsonic stream should exert both upstream and down­
stream influences. These remarks are certainly true for the "non-relaxing" 
case, a = 1, since it is then easy to prove that G' will vanish for all x > x 

if •'•_ < T^ < 0 and all x^ < x if T ^ > T_ > 0. Behaviour of this kind is 
very much more "supersonic" in character than subsonic. The situation in a 
relaxing gas can hardly alter too radically from that just described for a = 1, 
if any of the previously nnentioned strips of regularity are used for the inversion 
of gCC ), and we must of course ensure that the relaxing gas solution goes over 
properly into the non-relaxing case as a -• 1 anyway. Since we have eliminated 
all those regions of the ^'Pl^^^^ fo^ which T and T are both of one sign, we 

can only conclude that g(5 ) must somehow be inverted in a strip for which 
T < 0 and T > 0. The form of g( 5) found by solving equation (92) is 

apparently not regular in such a strip, however, on account of the pole at 5 = 0> 
but we can find our way out of this dilemma as follows. 

Consider the equation 

'̂yoyo -̂ f̂ '̂" ^'^ ( K f - ) ^ ' = -^^W^iy-Yo) (94) 
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whose general solution is 

g' =Ce~^^yo + De^^ ^^ + ^ ie'^. (yo-y>-eB^ <yo-y)j H(y^-y), 

where 

(95) 

Bf = P^,(S=+ e-=) ( )—^) (96) 

We can take e real , positive and less than a: in the limit e -• 0, equation (94) 
reduces to equation (92) and equation (95) reduces to the general solution of the 
latter equation. However, g' has branch points at 5 = ± ie , ia and i, and is 
therefore regular in the strip -e < Im^ < e. From the theorem quoted above 
this implies that the function of x (of which g' is the transform) is less than 
exp(- e + 8 )x as x^ -* + co and less than exp( e - 8 )x^ as x -» - oo , (since we 

identify T with -e and T with + e ) . In the limit as e -» o, the function 
represented by g ' -» g has the proper behaviour for a Greenes function in sub­
sonic flow. That is to say, it need not vanish at either extreme location of the 
source point x , y in relation to the field point x,y; just how it does behave 
at these extremes we must investigate later on. 

With the t, -plane cut between the branch points at ia and i, from ie to 
ico in the upper half-plane and from -ie to -i«> in the lower half-plane, we 
choose the phase of the radicals in Bg , where 

Bg = Pf i^F~i^ ^^T^^ / ^ - ia , (97) 

to be such that they all behave like y\ï\ as 5 ~* + •• • Then it is easy to 
see that the real part of Be remains positive everywhere on the real -f axis. 
Using this line for the inversion contour, we can now find G' from the integral 

•0 

^ = n^ F g ' ( t )e~ '^ ' 'od£ (98) df g'<S>̂ ' 
- 0 0 

in the limit as e -» 0. 

It is of course necessary to find the constants C and D in equation (95). 
We require that g' should not increase without limit as | yol "*" » with y > ŷ j 

it is clear that C must be zero since exp(-By ) does not fulfil this condition. 
Letting y -» + oo with y < y^, the proper behaviour of g' is assured by setting 

D = H ^ e-B^y; (99) 
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thus 

{e^'>'o-^'.[e-««"'°->"-e'^'^°-'"]H(y„-,)} 

(100) 

Al t e rna t ive ly , g ' can be wr i t ten as 

4 n f ' ^ e I ^o '^l (101) 
S' = 2 B 7 ^ 

In any case we can now wr i t e , from equations (98) and (101), 

00 

ê = - i r e *̂ <^"^o) - Be I yo-y| ^j . (io2) 

This in tegra l i s not in a pa r t i cu l a r ly sui table form for fur ther invest igat ion 
and we mus t now at tempt to r e - a r r a n g e it somewhat in o r d e r to make fur ther 
p r o g r e s s . F igure 5 shows the cut | - p l a n e , with the s t r i p within which g ' ( 6 ) 
is r e g u l a r . When X-XQ < 0, integrat ion in the s t r i p - e < Im | < e i s 
equivalent to in tegrat ion round the loop contour marked " X - X Q < O" in F igure 5 
and l ikewise , for the case x-x > 0, it i s equivalent to in tegrat ion along the con-

0". 

_Firs t cons ider the case X-XQ < 0: on the contour shown the phases of 
y g - i a and V̂ | - i a r e both equal to - rt/4 and the phase of I't - i^ is equal 

to - It/4. The phase of V| +ie changes from 3 « /4 to - jt / 4 on rounding the 
b ranch point at { = - ie and integrat ion around the c i r c l e about th i s point vanishes 
in the l imit a s the c i r c l e ' s r ad ius approaches z e r o . With these r e s u l t s we can 
wr i t e 

e -v(x„-x) - Pji Vv^ - e2 ^ — | y ^ - y | 

^X-XQ < 0) = - i { ƒ 5 ,rTg (-i)dv 
W ( - i ) ( v + l ) P j i V v 2 - e W ^ 

» -V(XQ-X) + P ^ VV2 - ^ ^ ^ | y ^ - y | 

+ \ - . = ( - i ) d v 
ê  ( -1 ) e ^ - i ) ( v + l ) p ^ ( - i ) Vv^ - e2 /X±S. 

"^ ' °"^os [Pf^-^-^N/ ; ;Tr i^o-yi] 

f e " ( v + l ) y v 2 - e ^ / ^ 
'dv. (103) 

The in tegra l in equation (103) cannot be evaluated sintiply in t e r m s of known 
functions, indeed it is not apparent as it s tands how one may pass to the l imit 
e -• 0. However, the in tegra l i s absolutely and uniformly convergent and so 
it can be differentiated with r e spec t to e i the r x -x or | y -y | under the in tegra l 
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sign. Let us choose the l a t t e r cou r se , we have 

,00 -v(x -x) ^. pOo - v \ x - x ; r=-;— , 
°^ o / o • ra J^ a /v+a , J 1 dv 

Ni r = - 2 / e s i n [P „ vv - e ^ / — - y -y^ J — -
d y -y J ^ f «yjv+l l-'o ''I v+1 

Let t ing e -• 0 in th is in tegra l will give the cor responding der iva t ive of the 
G r e e n ' s function for x -x^ < 0, i . e . 

(104) 

o 

J G ' r " -v(x„-x) 
è |y 

'— --2 J e B^n[p^v^— l y ^ - y l ] ; ^ . (105) 

In th is form we can find how G ' behaves for l a rge values of x -x. Before 

doing so , we can make one slight modification which will help l a t e r on, that is to 
say we shal l look a t ( - è G ' / ö x + G ' ) r a t h e r than at G ' d i rec t ly . C lea r ly 

O 

(106) 

Now, wr i t ing the sine t e r m in complex exponential fo rm, we can expand the 

quantity y(v+a)/(v+l) for sma l l values of v and develop the in tegra l to give an 
asymptot ic r ep resen ta t ion of the left-hand side for x - x » 0 . The dominant 
t e r m gives 

| G ' - I ^ U -2Pe|yo-y| 
Sly -y l \ " ÖX J - , ^ 2 — - 1 2 - r— ' ^^^"^^ 

i - ' o - ' i •- o (XQ-X) + P e ( y o " y ) 

whence it follows that 

G ' - ^ - - ^ log{ ( X Q - X ) 2 + p ^ % ^ - y ) 2 | . (108) 

Before comment ing on this r e su l t , let us examine the case a = 1. 
Refe r r ing to equation (31) in th i s event, we see that G ' - ö G ' / è x ^ is r e a l l y 

the G r e e n ' s function for the subsonic , non- re lax ing , sma l l -d i s tu rbance equation, 
which is Laplac ian in form. Equation (106) can be evaluated exactly in this case 
and gives r e s u l t s like (107) or (108) with the "asymptot ica l ly equa l s " sign rep laced 
by an " equa l s " sign. (With a = 1 we can wr i te e i ther p or p-, s ince they a r e 

equal) . Equat ion (108) with = wri t ten in place of ~ is the well known re su l t for 
G r e e n ' s function in the subsonic flow mentioned above and so we infer that at a 
field point x , y a long way ahead of a source at x , y in a re lax ing flow, the 
effect is s i m i l a r to that produced by a sou rce operat ing under fully equi l ibr ium 
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conditions (since it is essentially Pg which occurs in this case). We are, of 
course, entitled to say that, asymptotically, G' is given by the logarithm in 
equation (108), since ÖG ' / hx would behave like lUx^-x) in this case and would 
be negligible for x^-x » 0. It is the fact that G' behaves in this way which 
makes it necessary for us to use the Fourier transforms described earlier and 
which, in the limit e -• 0, are regular in an infinitesimally thin strip which just 
embraces the real | - ax is . 

Let us now turn to the case X-XQ> 0. The contour marked "X-XQ > O" 
in Figure 5 is not particularly suitable for the case | y -y| 4 0, since the term 
(I - i) 2 which appears in the exponential in equation (i02) behaves rather badly 
on the small circle surrounding | = i. However, the contour is quite adequate 
for the case | yQ-y| =0 , and we shall consider this situation in more detail 
below. Before doing so, it is interesting to note that G' for x„ < x will be of 
radically different form from G' for x > x in a relaxing flow , as is evidenced 
by the direct intrusion of the branch points at ia and i in the former case, but 
not in the latter. One may contrast this with the non-relaxing case, a = 1, 
for which we may readily show that 

o e ^ J 

for X-XQ> 0, which is precisely the same as its value for x-x < 0. This 
symmetrical behaviour of the Green's function in a non-relaxing subsonic flow 
is symptomatic of the simple reciprocity relation G(X:/XQ) - G(x„/jr) which exists 
in such a case, and which demonstrates a lack of directionality in both the basic 
equation and the boundary conditions. The introduction of the relaxation equation 
into the basic set describing the flow does introduce a specific direction (the 
streamwise one) into the equation for G' , and we are therefore not surprised to 
observe the differences in G ' mentioned above. 

In order to help with the re-writing of the function é in terms of integrals 
on the contour "X-XQ > 0 " , we tabulate the phases of the various square root terms 
which appear in equation (102) (the contour is lettered suitably in Figure 5). 

phase 
^u of on the 

section 

AB 

CD 

E F 

GH 

JK 

LM 

•/i+ ie 

I t / 4 

n / 4 

rt/4 

« / 4 

rt/4 

K / 4 

A - i e 

- 3„/4 

- 3n/4 

- 3rt/4 

W4 
rt/4 

rt/4 

•/i- ia 

- 3 „ / 4 

- 3rt/4 

-rt/4 

-rt /4 

rt /4 

rt/4 

A - i 

- 3rt/4 

-rt/4 

-« /4 

-rt/4 

-rt /4 

rt/4 

But see below for the case when | x-x | » 0. 
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Writing +iv for i it is now easy to show that 

1 -v(x-x^) 
é 

v(x-x^) 

^ i i(v-l)Sj(-i) Jv' - 8 ^ J i ( v - l ) e j ( i ) / v S - 6 ^ K 5 ^ 
idv 

f — 
i i(v-l)Pj(-i)^v2 - e 

-v(x-Xo) ^ -v(x-Xo) 
idv + f ^ — 

(-i). T ^ ^ i(v-l)P,(i v-a 
1-v H^v-eMiK,.^ 

idv 

-v(x-Xo) - V ( X - X Q ) 

2 "•• • • 'r-g-^- idv + / — : p = -
^ i ( v - l ) P ^ ( - i ) i / ; ; ^ ^ ^ ^, i ( v - l ) P f ( i ) ^ v a - e 3 ^ J I ^ 

idv 

Clearly the third and fourth integrals cancel and the remainder combine to give 

IJ 7. 
-v(x-Xo) 

v ^ - e ^ (v-1) 
dv - — 

a w p 
1-v 

; / . 

-v(x-Xo) 

: ^^^^y-^'^M 
dv. (109) 

Differentiating this expression with respect to x and letting e -> 0, we find 

G ̂ J x . y | x ^ , y ) = . ^ j V(a-v){l-v) " " ' P~ J V(v-a)(v-l) '^- ^^^^^ 

An alternative form of this result which may prove useful for computational purposes 
can be found by changing the variable from v to i(a+l) - T^(l-a)t in the first integral 
here , and from v to i(a+l) + ^(l-a)cosh0 in the second. We find that 

G 
' / I X ^ 2 - i ( a+ l ) (x -x jƒ r 
K (x .y lx^ .y) = + -p- e ^̂  o j j 

(a.l)/(l-a),^^_^j^^ 

7 t ^ ^ 
dt 

- K è(l-a)(x-x J } (111) 

where K is the modified Bessel function of the second kind and zero order (Watson). 

We may compare the results just obtained for x-x > 0 with the correspond­
ing value for Gĵ  (x ,y | x ,y) when x-x < 0. Referring to equation (103), the 

latter is found to be given by 
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a r" e'̂ '̂ '̂o-̂ ) 
G' ( x . y | x y) = - ^ / . .„ .- dv , 

Xo ' " f "̂  V'(v+a)(v+l) 
o 

o 1/ . iw \ r" ^ - i ( l - a ) ( x -x)t = _ 2 ^i(a+l)(Xo-x) r e o _ _ ^^ ^^^^^ 

Pf ^ ^ t^ -1 
a+l 
1-a 

The ve ry different fo rms of ups t r eam (eq. 112) and downs t ream (eq. I l l ) influences 
a r e at once apparent One should compare these r e s u l t s (pa r t i cu la r ly equation (111) 
and the second equation (112) with Ryhming 's r e s u l t s for G . F i r s t of a l l , Ryhming 's 
G r e e n ' s function G should, for his subsonic problem, be such as to make Gy ( x . o I x , o) 
= o. As we shal l see below, this l a t t e r condition int roduces a factor of 2, by which 
G ' should be multiplied to give G. In addition, noting that equations ( H I ) and (112) 
a r e exp re s s ions for G ' XQ and not G'^, it appea r s that Rhyming 's expres s ion for G 
is addit ionally in e r r o r in r e spec t of i ts sign for the case x-x > o. 

We have shown (in equations (105) to (108)) how G' behaves for x ^ - x » 0 
and have found that it t akes on the form of an equi l ibr ium G r e e n ' s function in th is 
reg ion . Since it will be of i n t e r e s t i n some developments to follow, we should 
a l so at tempt to find out how G' behaves a s I yo"y|~*+ " and any value of XQ-X, 
posi t ive or negat ive, and also for X - X Q » 0 ror any values of y^ and y. Since the 
in tegra l in equation (102) i s absolute ly and uniformly convergent for all yo ^ y 
(and hence for | yg-yj > o ),we can form the function 

A a ^ ^ ^ = r \ i t (x-x„) - Be |y,->i 
V ÖX / S|yo-y| J 

dl (113) 

Now on either side of the point 1 = 0, the exponential exp(-Be ) yo"y| ) decreases 
very rapidly if | yQ-y] » 0 . Accordingly the left-hand side of equation (113) will 

differ negligibly from 

r"^-i|(x-x„)-ep Jy„-y|^^ + rV«(*-^o)-6 Pe ko-yldj 

in these circumstances (having let e -» o here). Accordingly, we find that 

ƒ a 1 OG' -''Pe |yo-y| 

1 " "^^JSTyo-yl ~ (x-xj^+ ^Hy^-yf 
(114) 

in these circumstances. Not surprisingly, the result is the same as that found 
for X Q - X » O, and we can also show that the same behaviour is found for X - X Q » O 
too. In other words, G ' looks like an equilibrium flow source at large radial 
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distances from the source point. The particular significance of this is that, 
whilst all derivatives of G' vanish in these regions, G' itself becomes logarith­
mically large. These conclusions do not conflict with the remarks at the end 
of the previous paragraph, since there we are comparing exact values of 
G '(x,y| X ,y) in the two regions of XQ for any values of |X-XQ| ; indeed, examining 
the integrals in equation (110) and the first version of equation (112) shows how 
G 'jj will be roughly equal as | x-x^l -»ca in either case. Of course the precise 

manner in which they tend to their asymptotic values will be quite different in 
each case. 

We can now attempt to solve a half-plane ("thickness") problem like that 
considered in Section 3 for supersonic flow. Thus, let us find 9 (x,y) in a region 

y> o, -oo« X § 00 with Neunfiann data (namely 9 (x,o)) specified on the line y = o. 

(We choose to find m here rather than 9 because it ia slightly easier to do so). 
X 

Reference to equation (29), which applies equally well here if we let Hĵ  and 
Ha -*a>, shows that we should ask for a G such that Gy (x,y |x , o) = o. Using 

image methods, let us place another source like G (x,y| x , y ) at the reflection 

of the point x . y in the plane y =0, i.e. a t x . - y . With v> o, this means '^ o - ' o o o* o J ' 
(see equation (102)) that we should consider the function 

/^^{^"*'^°"'-"' l^°- '">' 

When yQ< y it is clear that è^' / by = o when yo = o and, accordingly, the 
appropriate value of G should follow on taking the limit e -* o in ^ ' . Since we 
are solving for 9 rather than 9 , we are more interested in Ĝ^ (see equation 
(29) once again). Then we can write directly from equation (115), 

where B' (see equation (93)) is the proper limit of Bg (equation (97)) as e -> o. 

(The I - plane must remain cut as in Figure 5 as e -> o). From the results of 
the previous paragraph we note that all the terms in G^, G^^^ etc. etc. , which 

appear in the last three integrals in equation (29) will vanish asHj^, H^, H3 -*oo 
Since G„ (and hence Gy „ ) vanishes on y = o, we are left with the result; 

yo •̂ oJ'o 

4« 9x<^'y) = - j t'Pyo<^o'0)+ "Px^yo^^o-o^l G^(x,y|xo,o)dx^, (117) 

- to 

where 
. " iUx-Xo)-B'y 

^^-•y\^o'°^-^J ( , - i ) (B ' /n "' ^'''^ 
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Let us assume that the body shape is given by the equation 

y = h(x)H(x){ l-H(x-L) ) , (119) 

where h(x) is a function which is zero at x = o and x = L. Then the tangency 
condition is 

9 (x ,o ) = Uh'(x)H(x){i-H(x-L)) , (120) 

and we easily find that 

9 (x.o) = Uh" (x)H(x)(l-H(x-L)) + Uh'(x) 8(x) l l-H(x-L)) 

- Uh'(x)H(x) 8(x-L). (121) 

Then, putting equations (120) and (121) into equation (117) we have 

4rt 9^(x,y) = - Uh' (o)G^(x.y| o,o) + Uh'(DGj^Cx.yj L.O) 

L-

- ƒ U[h ' (x^) + hMx^,)]G^(x,y|x^.o)dxQ. (122) 

o+ 

We must note that G is different in the two regions x-x^ < o, so that integration 

from O to L may have to be split at x^ = x if we want to know 9̂ ^ for 0 < x < L. 

In fact let us examine tp (x,o) for x< o. In equations (110) to (112) we have found 

G ' „ for y^ = y (in particular y = o then) and, noting from equations (102) and 
X Q U 

(115) that é' is just twice the value of i when y^ = y = o, we can find the required 
values of G by multiplying equations (110) to (112) by -2, the minus sign arising 
since ö / Sx = -h/^x^ for G or G' . For x < o we require equation (112), and find 
that 

4n 9 (x,o) = - U h ' ( o ) ^ / ^ dv + U h ' ( L ) | - j - dv 
^^ Pf J ><v+a)(v+l) Pf J V(v+a)(v+i) 

o o 

r 4 r"e-'^^''o+1*') 
/ U[h ' (x ) + h ' ' ( x J ] | - / ., - d v . d x (123) 

J o ' o Pj J V(v+aMv+l) ° 
o o 

This result is not particularly tractable and it would appear to be necessary to 
evaluate 9 numerically in the final analysis. (The integrals from o to o» in 
equation (1*3) can be related to the K -type Bessel functions). When a = 1, 
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equation (123) can be simplified by integrating the last term (involving h" (x^)) 
by parts . The terras in h(o) and h(L) cancel and one is left with the result that 

L 

4K 9 (X,O) = 

x<o;a=l 

y r h ' ( x o ) 
J X Q + I X 

dx, 

since the infinite integrals are easily evaluated in this case. It is easy to see 
from this that |9 | -»oo like 1/ | x | as | x | -*o and also that 9y is essentially 
negative in this region. The velocity disturbance given by equation (123) appears 
to be of the proper sign and provides a partial check on the foregoing analysis. 

We conclude this short look at subsonic relaxing flow Green's functions 
by remarking that, in order to find 9(x ,y) , a closed boundary is necessary, in 
line with the elliptic nature of the problem. It is also necessary to prescribe 
data for 9 everywhere on this closed boundary; more strictly, we need to specify 
9 on Ines y = constant and 9 on lines x = constant. In the particular case of 

the semi-infinite domain, one must set 9 = 0 for Ixl -»oo. 
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