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Abstract

Online advertising is a multi-billion dollar industry, forming the primary source of income for many
publishers offering free web content. Serving advertisements tailored to users’ interests greatly
improves the effectiveness of advertisements, and is believed to be beneficial to publishers and users
alike. The privacy of users, however, is threatened by the widespread collection of data that is required
for behavioural advertising. In this paper, we present BAdASS, a novel privacy-preserving protocol
for Online Behavioural Advertising that achieves significant performance improvements over the
state-of-the-art without disclosing any information about user interests to any party. BAdASS ensures
user privacy by processing data within the secret-shared domain, using the heavily fragmented shape
of the online advertising landscape to its advantage and combining efficient secret-sharing techniques
with a machine learning method commonly encountered in existing advertising systems. Our protocol
serves advertisements within a fraction of a second, based on highly detailed user profiles and widely
used machine learning methods.

Keywords: Behavioural advertising, Machine learning, Secret sharing, Privacy, Cryptography

1 Introduction

Online advertising is a pervasive phenomenon on the Internet, forming one of the driving economic factors
behind free web services. With a global spend of $178 billion in 2016 [2], online advertising forms a
primary financial pillar supporting free web content by allowing publishers to offer content to users free
of charge [3]. In recent years, however, an increasing number of people object to advertisements being
shown on web pages they visit, resulting in a sharp increase in the use of technological measures to block
advertisements. According to a 2017 report, an estimated 615 million devices have ad blocking tools
installed, amounting to 11% of the Internet population, and the use of such tools is expected to grow
further in the future [4]. The consequence of the increased use of ad blockers is that publishers experience
a significant loss of revenue from the advertising space they offer. The global loss of advertising revenue
due to ad blocking was estimated to be $41.4 billion in 2016, or 23% of the total ad spend [5]. Some
publishers request that users disable ad blockers on their web pages, or deny access to ad blocker users
altogether, in an effort to limit revenue loss due to ad blocking [6]. The consequence of such practices is
an arms race between ad blocking technologies, and circumvention of ad blockers. These developments
pose a threat to the business models of many free web services, necessitating measures to alleviate the
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objections against online advertising in order to attain a sustainable advertisement-supported Internet
economy.

One of the objections people have against online advertising is the widespread data collection by
advertising companies, which infringes on user privacy [7]. In a recent survey among users of an ad
blocking tool, 32% of respondents indicated that privacy concerns were among the reasons for their
use of an ad blocker [6]. A similar survey on privacy and advertising showed that 94% of respondents
considered online privacy an important issue, and 70% of respondents indicated that online advertising
networks and online advertisers should be responsible for users’ online privacy [8]. The widespread
collection of user information that raises privacy concerns is a key element of behavioural targeting, in
which a user’s browsing behaviour determines which advertisements are shown to the user. Although
such behavioural advertising is recognized as being beneficial to both users and publishers, a mistrust of
advertising companies and a lack of control hinders acceptance of behavioural advertising [7].

1.1 Online Behavioural Advertising

Online advertising is forming one of the driving economic factors behind free web services. With a global
spend of $178 billion in 2016 [2], online advertising forms a primary financial pillar supporting free web
content by allowing publishers to offer content to users free of charge [3]. In recent years, however, an
increasing number of people object to advertisements being shown on web pages they visit, resulting
in a sharp increase in the use of technological measures to block advertisements. According to a 2017
report, an estimated 615 million devices have ad blocking tools installed, amounting to 11% of the Internet
population, and the use of such tools is expected to grow further in the future [4]. The consequence of the
increased use of ad blockers is that publishers experience a significant loss of revenue from the advertising
space they offer. The global loss of advertising revenue due to ad blocking was estimated to be $41.4
billion in 2016, or 23% of the total ad spend [5]. Some publishers request that users disable ad blockers
on their web pages, or deny access to ad blocker users altogether, in an effort to limit revenue loss due to
ad blocking [6]. The consequence of such practices is an arms race between ad blocking technologies, and
circumvention of ad blockers. These developments pose a threat to the business models of many free web
services, necessitating measures to alleviate the objections against online advertising in order to attain a
sustainable advertisement-supported Internet economy.

A major concern for the users is their privacy which is threatened by the widespread data collection
of advertising companies [7]. The collected data is used in behavioural targeting to determine which
advertisements are shown to a user based on the user’s browsing behaviour. Although such behavioural
advertising is recognized as being beneficial to both users and publishers, a mistrust of advertising
companies and a lack of control hinders acceptance of behavioural advertising [7]. In a recent survey
among users of an ad blocking tool, 32% of respondents indicated that privacy concerns were among the
reasons for their use of an ad blocker [6]. A similar survey on privacy and advertising showed that 94% of
respondents considered online privacy an important issue, and 70% of respondents indicated that online
advertising networks and online advertisers should be responsible for users’ online privacy [8].

The practice of showing advertisements based on previously exhibited behaviour is known as Online
Behavioural Advertising (OBA). In OBA, user interests are inferred from data such as visited web
pages, search queries, and online purchases. Based on these user interests, advertisements are typically
personalized using campaign-specific supervised machine learning models that predict users’ responses
to advertisements. Behavioural advertising greatly improves the expected advertising effectiveness by
targeting advertisements at individual users [9]. Users benefit from OBA by being served more relevant
advertisements, and advertisers can reach a specific desired audience by using accurate targeting. Moreover,
publishers benefit from an increased value of their advertising space.

OBA utilises the Real-Time Bidding (RTB) model of buying and selling advertisements [10]. RTB
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facilitates real-time auctions of advertising space through marketplaces called ad exchanges (AdX),
allowing buyers to determine bid values for individual ad impressions. The real-time nature of such
auctions, in which bids are to be placed in a fraction of a second, allows fine-grained control over allocation
of advertising budgets, but also requires the whole auction process to be carried out programmatically.
Along with ad exchanges, other types of platforms emerged to manage the added complexity of RTB.
Demand-Side Platforms (DSPs) provide advertisers, who may not possess the expertise required to
accurately estimate impression values, with technologies to bid on individual impressions from multiple
inventories. Likewise, Supply-Side Platforms (SSPs) support publishers in optimizing advertising yield.

In existing literature, a number of methods is proposed to address privacy concerns in OBA. These
methods include blocking advertisements altogether [11], obfuscating browsing behaviour [12], and
anonymization [13], as well as exposing only generalized user profiles to advertising companies [14].
Limiting the data that is available to advertising companies, however, is expected to decrease the targeting
accuracy [15], and thus the value of advertisements to users, advertisers, and publishers. Other work
proposes cryptographic approaches to aggregate click statistics [14] or select advertisements using secure
hardware [16]. These approaches, however, are based on advertising models in which centralized networks
perform simple keyword-based advertisement selection, and as such are unsuitable for use within the
highly distributed RTB model. Recently, Helsloot et al. [17] proposed a protocol that uses threshold
homomorphic encryption to preserve privacy in OBA within the RTB model. However, the use of expensive
cryptographic operations throughout the protocol results in prohibitively large computational costs.

In this paper, we present BAdASS, a novel privacy-preserving protocol for OBA that is compatible with
the RTB mechanism of buying ads and supports behavioural targeting based on highly detailed user profiles.
BAdASS achieves significant performance improvements over the state of the art, using machine learning
on secret-shared data to preserve privacy in OBA tasks. Our protocol uses the highly fragmented nature
of the OBA landscape to distribute trust between parties, such that no single party can obtain sensitive
information. We achieve performance multilinear in the size of user profiles and the number of DSPs, and
perform the highly time-sensitive advertisement selection task in a fraction of a second.

In the rest of the paper, we summarize the preliminary methods in Section 2. In Section 3 we
explain BAdASS in detail. In Section 4 we provide the performance analyses for our protocol based on
communication and computation complexity and real-time experiments. We analyze the security of
BAdASS in Section 5 and, we conclude the paper in Section 6.

2 Preliminaries

2.1 Logistic Regression

Logistic regression is one possible technique for user response estimation which has been commonly used
by advertising companies such as Google [18], Facebook [19], and Criteo [20]. Given a d-dimensional
feature vector x and model parameters w, it estimates the probability of a binary outcome using the
sigmoid function:

ŷ = σ(w⊺x) = 1
1+e−w⊺x . (1)

In the concept of OBA, x contains the user profile while the binary output y indicates click or no click.
Although a variety of machine learning algorithms has been proposed for user response estimation tasks,
logistic regression has recently been used in production systems by many advertising companies, such
as Google [18], Facebook [19], and Criteo [20], and is considered a state-of-the-art model for response
prediction [21]. A logistic regression model is used to estimate the probability of a binary outcome y
(click or no click) based on a d-dimensional predictor vector x (the user profile) [10]. Given a feature

25



Preserving Privacy in Behavioural Advertising with Secret Sharing L.J. Helsloot et al.

vector x and model parameters w, the model predicts the click probability ŷ using the sigmoid function:
The model parameters are updated as w← w−ηg using the gradient of the logistic loss g = (ŷ−y)x as
in [18]. η in the update function is the learning rate which can be a constant or can be set to decay per
iteration and per coordinate of the gradient vector. After observing the actual binary click label y, we
use the gradient of the logistic loss to update model parameters w using an online Stochastic Gradient
Descent (SGD) method as in [18]. Given the gradient of the loss g = (ŷ−y)x, we perform the model update
w←w−ηg, where η is the learning rate. Note that the learning rate can be a constant, but may also be set
to decay per iteration and per coordinate of the gradient vector.

2.2 Feature Hashing

The feature space in logistic regression may become too large when categorical features with high
cardinality are used. To avoid a high dimensional user vector, we use the hashing trick in [22] which
enables to map the user profile into a lower-dimensional vector x by setting xi to a count of the values
whose hash is i. Many of the features considered in OBA are categorical. The high cardinality of some of
these features results in a very large feature space, particularly if feature conjunctions are used. To encode
categories from a user profile into a vector of fixed dimensionality for use in logistic regression, we use
the hashing trick [22], which showed promising results in e.g. [20]. The hashing trick maps values from
our high-dimensional user profile into a lower-dimensional vector x by setting xi to a count of the values
whose hash is i. The resulting d-dimensional vector x (in [20], d = 224 is used) is the input feature vector
to the logistic regression model.

2.3 Shamir Secret Sharing

Shamir’s secret sharing scheme [23] is a t-out-of-n threshold scheme in which a secret s ∈Zp for a prime
p is shared among n parties, from which any subset of size at least t can reconstruct the secret. We
use the notation ∐︀s̃︀ to indicate a (t,n) Shamir secret sharing of a value s, for some predefined t and
n, and ∐︀ṽ︀ denotes an element-wise Shamir sharing of the vector v. Shamir’s secret sharing scheme is
additively homomorphic, such that ∐︀s1̃︀+∐︀s2̃︀ = ∐︀s1+ s2̃︀. Parties holding shares of two secret values can
thus compute shares of the sum of the two values, without interaction with other parties. Furthermore, a
public value c can be added to a shared secret s without interaction by adding c to each of the shares, i. e.
∐︀s̃︀+c = ∐︀s+c̃︀. Likewise, a shared secret can be multiplied with a public value c by multiplying each of
the shares with c, i. e. ∐︀s̃︀ ⋅c = ∐︀cs̃︀.

Multiplication of the shares of two secret values s1 and s2 results in a (2(t −1) ,n) sharing of s1 ⋅ s2,
thus requiring 2t −1 shares to reconstruct the secret. Ben-Or et al. [24] describe a multiplication protocol
in which the resulting polynomial is reduced to degree t −1 and randomized. Given a sharing of a value s,
where ∐︀s̃︀i is held by party i, the degree reduction step is performed by each party splitting their share ∐︀s̃︀i
into a new (t,n) sharing ∐︀s̃︀i,1, . . . ,∐︀s̃︀i,n. Each party i distributes their subshares among all parties, such
that party j is given the subshare ∐︀s̃︀i, j. Each party j then combines the received subshares ∐︀s̃︀1, j, . . . ,∐︀s̃︀n, j
into a new share ∐︀s̃︀′j. The resulting sharing ∐︀s̃︀′ is a new (t,n) sharing of the value s. Gennaro et al. [25]
simplify the degree reduction and randomization steps into a single step, requiring a single round per
multiplication. Note that n needs to be at least 2t −1 for degree reduction to work.

2.4 Universal Re-encryption

Universal re-encryption, presented as a technique for mix networks by Golle et al. [26], allows re-
randomization of a ciphertext without access to the public key that was used during encryption. In BAdASS,
we use the universal re-encryption technique presented in [26], based on a multiplicatively homomorphic
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cryptosystem such as ElGamal [27]. We use the notation JxKu to denote the encryption of a value x under
the public key of user u using a universal re-encryption scheme.

3 Protocol Design

In designing a privacy-preserving online advertising system, we aim to satisfy three goals. The first goal
is to ensure profile privacy, such that information from which the interests of a user can be inferred is not
revealed to any party other than the user. Moreover, we aim to ensure model privacy, such that model
parameters used by a bidder are not revealed to any party other than the bidder. Finally, the system must
be applicable to the RTB model and integrated into the online advertising landscape, allowing bidders to
estimate the value of an ad impression based on historic observations.

Our protocol is based on a semi-honest security model. Since some existing companies act as both
AdX and DSP, we assume that the AdX colludes with DSPs. To assist in privacy-preserving computations in
the presence of colluding parties, we introduce an additional entity into our setting called Privacy Service
Provider (PSP). The PSP is not trusted with private data in unencrypted form, but is assumed to follow
the protocol specification without colluding with any other party. We assume that targeting is performed
only by DSPs, such that DSPs are the only parties that operate on user data. The AdX only collect bids, and
from these bids select the winner. SSPs only offer advertising space to multiple ad exchanges, and are not
considered in our protocol.

Parties collaboratively compute bid values based on a logistic regression model using secret-shared
user profiles and model parameters. We define a DSP group Γi to be a set of DSPs of size at least m = 2t −1
for a given reconstruction threshold t. Computations on behalf of a DSP γi, j ∈ Γi are performed entirely
within Γi. In our protocol descriptions, any operations performed by DSPs on secret-shared values are
assumed to be performed by all DSPs in a DSP group Γi. Plaintext values and encrypted values are generated
by the DSP responsible for the campaign on which computations are performed and, where necessary,
published within Γi.

BAdASS is divided into four different phases: user profiling, bidding, auction, and model update. Prior
to protocol execution, advertisers set up campaigns such that DSPs can bid on their behalf, and the PSP splits
DSPs into groups of at least m parties. Moreover, each DSP shares campaign-specific parameters among
the DSPs in their group. Finally, each user generates a key pair using any multiplicatively homomorphic
asymmetric cryptosystem and publishes their public key. In the following subsections, we explain the four
phases of BAdASS. A summary of symbols used in the description of the protocol is provided in Table 1.

3.1 User Profiling Phase

To preserve privacy during the user profiling phase, browsing behaviour is recorded locally within the
user’s web browser using an existing technique such as RePriv [28]. The resulting profile is captured in a
d-dimensional feature vector x using feature hashing. To reduce the communication costs associated with
sending the full d-dimensional feature vector for each request, feature vectors are cached at DSPs. Caching
allows periodic background updates of feature vectors, minimizing delays experienced by the user during
the time-sensitive advertisement selection phase. To securely share a feature vector among DSPs without
knowing the topology of the OBA landscape, the user splits their profile into two additive shares, one of
which is given to the AdX, the other to the PSP. Both the AdX and the PSP, in turn, create Shamir shares
from their additive shares, which are distributed among the DSP groups for which the profile update is
intended. Every DSP within the group thus receives two Shamir shares, one from each additive share
created by the user, which are combined into a single Shamir share of the original value by calculating the
sum of the two shares. The user profiling phase is illustrated in Protocol 1.
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Table 1: Explanation of symbols used in BAdASS

Symbol Explanation

u Unique user identifier.
v Unique bid request identifier.
k Unique campaign identifier.
Γi DSP group i.

γi, j Unique DSP identifier, where γi, j is the j
th

DSP of DSP group Γi

KΓi Set of campaigns run by DSP group Γi.
x Input feature vector obtained by feature hashing.
wk Model parameter vector for a campaign k, where wk,i is the ith coordinate of wk.
ck Bidding function parameters for a campaign k.
ηk Learning rate parameter for campaign k.
bk Bid value for campaign k.
ak Advertisement associated with campaign k.
π(x) Random permutation function, which re-orders the elements of vector x.
π
−1(⋅) Inverse permutation of π(⋅), such that π

−1(π(x)) = x.
M List of vectors containing information associated with bid values for use in the auction

protocol.

Protocol 1 Profile update protocol, executed jointly between a user, AdX, PSP and DSP group, and initiated
periodically by every user.

1: procedure USER:SEND-PROFILE-SHARE(x,u)
2: Pick r ∈R Zd

p
3: ⎷x⌄1← x− r
4: ⎷x⌄2← r
5: invoke SHARE-PROFILE(u,⎷x⌄1) at AdX

6: invoke SHARE-PROFILE(u,⎷x⌄2) at PSP

7: end procedure

8: procedure SHARE-PROFILE(u,⎷x⌄m)
9: ∐︀⎷x⌄m̃︀ ← SHAMIR-SHARE(⎷x⌄m)

10: for all γi, j ∈ Γi do
11: invoke DSP:COMBINE-PROFILE(u,∐︀⎷x⌄m̃︀γi, j ) at DSP γi, j

12: end for
13: end procedure

14: procedure DSP:COMBINE-PROFILE(u,∐︀⎷x⌄m̃︀)
15: store ∐︀⎷x⌄m̃︀ for user u
16: if ∐︀⎷x⌄1̃︀ and ∐︀⎷x⌄2̃︀ are both stored then
17: ∐︀xũ︀ ← ∐︀⎷x⌄1̃︀+∐︀⎷x⌄2̃︀
18: end if
19: end procedure

Depending on the feature hashing method used, the feature vector x is either binary or contains only
small values. Assuming the use of a binary feature vector, it would be ideal from the user’s perspective to
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create additive shares of the feature vector in Z2, rather than Zp, as smaller shares reduce the required
communication bandwidth. Subsequent computations on the user profile, however, must be performed
in Zp to represent real values with sufficient precision. In our setting with two additive shares, securely
converting shares in Z2 to shares in Zp requires an invocation of the multiplication protocol for every
feature vector dimension, resulting in high computation and communication costs for DSPs. We therefore
favour sharing the user profile in Zp.

3.2 Bidding Phase

The bidding phase starts when a users contacts an AdX with an ad request. Receiving the ad request,
AdX sends a bid request to DSP groups each of which cooperatively calculates the bidding prices for
the campaigns they are responsible for. For each campaign, the user response ŷ is estimated using a
logistic regression model, and bidding values are derived from response estimations using linear bidding
functions B(ŷ) = c1ŷ+c2 for campaign-specific constants c1 and c2. A challenge in logistic regression is
to compute sigmoid function within the secret-shared domain. In existing literature the sigmoid function
is computed either by approximation [29, 30] or in clear [31, 32, 17]. In this work, we let the PSP compute
the sigmoid function in the clear, as approximation leads to a degradation of predictive performance and
incurs additional computational costs. The input to the sigmoid function w⊺x is thus revealed to the PSP.
In our setting, this is acceptable as the PSP knows neither the user, nor the campaign a value is associated
with. Therefore, the PSP cannot infer any more information than that there exists a user who is interested
in a topic. Moreover, a DSP group could submit additional randomly generated values to mask real inputs.

During the bidding phase, every DSP group cooperatively calculates bidding prices for each of the
campaigns the group is responsible for. When a user contacts an AdX with an ad request, the AdX sends a
bid request to every DSP group, each of which executes the bidding protocol.

The sigmoid function that is used to make predictions in logistic regression models is non-trivial
to compute within the secret-shared domain. In existing literature, two different approaches are used
to compute the sigmoid function: approximation [29, 30] or computation in the clear [31, 32]. Similar
to [17], we let the PSP compute the sigmoid function in the clear, as approximation leads to a degradation
of predictive performance and incurs additional computational costs. The input to the sigmoid function
w⊺x is thus revealed to the PSP. In our setting, this is acceptable as the PSP knows neither the user, nor
the campaign a value is associated with. Therefore, the PSP cannot infer any more information than that
there exists a user who is interested in a topic. Moreover, a DSP group could submit additional randomly
generated values to mask real inputs.

The bidding protocol is outlined in Protocol 2. The model parameters wk for campaigns k ∈ KΓi ,
where KΓi is the set of campaigns run within Γi, and the user profile xu of a user u, are shared within Γi.
The multiplications that are required for the calculation of the inner product of wk and xu in line 3 are
performed locally, without degree reduction. Since the results of these local multiplications are not used
in further multiplications, the sum of all multiplied values is a single sharing ∐︀sk̃︀ of degree 2t −2. As the
PSP subsequently collects and combines all m ≥ 2t −1 shares of sk, no degree reduction step is required in
calculating w⊺x.

Since campaign parameters ck,1 and ck,2 are private to the DSP responsible for campaign k, they are
secret-shared among the parties in the DSP group. Calculation of the bid price bk = ck,1ŷk +ck,2 therefore
requires a single invocation of the multiplication protocol for every campaign, which can be parallelized
such that all bid values are calculated in a single round of communication. To ensure profile privacy, each
advertisement ak is encrypted using the user’s public key. The encrypted advertisement is submitted to
the PSP, via the AdX such that the PSP cannot link the submission to a specific DSP, along with a random
number rk and the group descriptor Γi. Finally, the PSP stores a mapping rk→(JakKu,Γi), which is used in
the auction phase to retrieve the advertisement.
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Protocol 2 Bidding protocol, executed jointly by a DSP group Γi and the PSP, and invoked by the AdX for
a user u at every DSP group.

1: procedure DSP:CALCULATE-BID({∐︀wk̃︀,∐︀ck̃︀ ⋃︀ k ∈KΓi},u)
2: for all k ∈KΓi do

3: ∐︀sk̃︀ ←
d
∑
i=1
∐︀xu,ĩ︀ ⋅ ∐︀wk,ĩ︀

4: Pick a unique random value rk
5: Store mapping rk → (JakKu,Γi) at PSP via AdX

6: end for
7: Pick random permutation function π(⋅)
8: ∐︀s′̃︀ ← π(∐︀s̃︀)
9: invoke ∐︀ŷ′̃︀ ← PSP:CALCULATE-SIGMA(∐︀s′̃︀) at PSP

10: ∐︀ŷ̃︀ ← π
−1(∐︀ŷ′̃︀)

11: for all k ∈KΓi do
12: ∐︀bk̃︀ ← ∐︀ck,1̃︀ ⋅ ∐︀ŷk̃︀+∐︀ck,2̃︀
13: end for
14: end procedure

15: procedure PSP:CALCULATE-SIGMA(∐︀s̃︀)
16: s← combine ∐︀s̃︀
17: for all si ∈ s do
18: ŷi← σ(si)
19: end for
20: return ∐︀ŷ̃︀
21: end procedure

3.3 Auction Phase

The auction protocol uses a hierarchical auction in which each DSP group engages in a secure comparison
protocol to select the highest of the bids within the DSP group, along with associated information that is
used in the model update phase. Shares of the information associated with the highest bid are stored for
later use, after which each DSP group submits their highest bid to a global auction to select the final winner.
Note that, due to the use of secret sharing, the global auction cannot be performed by the AdX alone. In
order to maintain the same level of trust as in the bidding protocol, at least m parties are required in the
auction protocol. Therefore, the global auction is not performed by the ad exchange, but by a randomly
selected DSP group Γ

∗.
The auction protocol is shown in Protocol 3. The protocol relies on a secure comparison protocol

that takes as input shares of two values a and b, and gives as output shares of 1 if a ≥ b, and shares of 0
otherwise. Such a protocol is described by e. g. Reistad and Toft [33]. During the procedure to find the
maximum bid, shares of the highest bid and additional information associated with the highest bid are
obtained via multiplication with the result of the comparison. After the global comparison, shares of a
random identifier r associated with the highest bid are sent to the PSP, where the shares are combined
to retrieve the encrypted advertisement and group descriptor associated with the highest bid. To ensure
unlinkability between the encrypted advertisement retrieved from the PSP after the auction and the values
submitted prior to the auction, the PSP performs re-randomization of the encrypted advertisement on
line 30 using universal re-encryption. Finally, the encrypted ad and the group descriptor, as well as the bid
request identifier v, are sent via the AdX to the user, who decrypts and displays the advertisement.

30



Preserving Privacy in Behavioural Advertising with Secret Sharing L.J. Helsloot et al.

Protocol 3 Auction protocol, executed jointly by every DSP group Γi, an auction group Γ
∗, and the PSP.

1: procedure DSP:PREPARE-AUCTION(v,∐︀b̃︀,∐︀r̃︀,∐︀ŷ̃︀,∐︀η̃︀,∐︀k̃︀)
2: for all Γi do
3: ∐︀Mĩ︀ ← (∐︀rĩ︀,∐︀ŷĩ︀,∐︀ηĩ︀,∐︀kĩ︀)
4: (∐︀bmax

i ̃︀,∐︀rmax
i ̃︀,∐︀ŷmax

i ̃︀,∐︀ηmax
i ̃︀,∐︀kmax

i ̃︀) ← MAX-BID(∐︀bĩ︀,∐︀Mĩ︀)
5: Store mapping v→ (∐︀bmax

i ̃︀,∐︀ŷmax
i ̃︀,∐︀ηmax

i ̃︀,∐︀kmax
i ̃︀)

6: end for
7: invoke PERFORM-AUCTION(v,∐︀bmax̃︀,∐︀rmax̃︀) at Γ

∗

8: end procedure

9: procedure PERFORM-AUCTION(v,∐︀b̃︀,∐︀r̃︀)
10: (⊥,∐︀rmax̃︀) ← MAX-BID(∐︀b̃︀,∐︀r̃︀)
11: invoke PSP:SEND-AD(∐︀rmax̃︀) at PSP

12: end procedure

13: procedure MAX-BID(∐︀b̃︀,∐︀M̃︀)
14: ∐︀b̂̃︀ ← ∐︀b1̃︀
15: for j← 1, ⋂︀∐︀M̃︀⋂︀ do
16: ∐︀M̂ j̃︀ ← ∐︀M j,1̃︀
17: end for
18: for i← 2, ⋂︀∐︀b̃︀⋂︀ do
19: ∐︀ρ̃︀ ← ∐︀bĩ︀ ≥ ∐︀b̂̃︀
20: ∐︀b̂̃︀ ← ∐︀ρ̃︀ ⋅ ∐︀bĩ︀+(1−∐︀ρ̃︀) ⋅ ∐︀b̂̃︀
21: for j← 1,⋂︀∐︀M̃︀⋂︀ do
22: ∐︀M̂ j̃︀ ← ∐︀ρ̃︀ ⋅ ∐︀M j,ĩ︀+(1−∐︀ρ̃︀) ⋅ ∐︀M̂ j̃︀
23: end for
24: end for
25: return ∐︀b̂̃︀,∐︀M̂̃︀
26: end procedure

27: procedure PSP:SEND-AD(∐︀r̃︀)
28: r← combine ∐︀r̃︀
29: (JaKu,Γi) ← lookup r
30: Re-randomize JaKu

31: Send (JaKu,Γi) to user via AdX

32: end procedure

3.4 Model Update Phase

During the model update phase, the response prediction model associated with the shown advertisement
is updated using the update rule from Section 2.1. In order to ensure unlinkability between users and
campaigns, the model update protocol is split into three stages. During the first stage, the user identifier
is revealed to the DSP group responsible for the shown advertisement in order to calculate shares of the
update gradient g = η(ŷ−y)x. In the second stage, each DSP submits a set of multiple gradient shares to
the PSP, which mixes the received shares via random rotation. The PSP then re-shares the set of gradient
shares among the DSP group. In the final stage, the campaign identifiers of the set of gradients are revealed
to the DSP group, allowing the DSP group to apply the gradients calculated in the first stage to the correct
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parameter vector. Since the gradient shares have been mixed, the DSP group cannot link values revealed
in the third phase to values revealed in the first phase. The model update protocol, described in detail in
Protocol 4, is initiated by a user u, who reports shares of their response y directly to the responsible DSP

group based on the group descriptor Γi received along with the advertisement.

Protocol 4 Model update protocol, invoked by the user at the DSP group responsible for the displayed
advertisement.

1: procedure DSP:PREPARE-MODEL-UPDATE(v,u,Γi,∐︀ỹ︀)
2: (∐︀b̃︀,∐︀ŷ̃︀,∐︀η̃︀,∐︀k̃︀) ← lookup v
3: ∐︀δ ̃︀ ← TRUNCATE(∐︀η̃︀ ⋅ (∐︀ŷ̃︀−∐︀ỹ︀))
4: for i← 1,d do
5: ∐︀gĩ︀ ← ∐︀xu,ĩ︀ ⋅ ∐︀δ ̃︀
6: end for
7: (∐︀G̃︀,∐︀B̃︀,∐︀K̃︀) ← (∐︀G̃︀∪∐︀g̃︀,∐︀B̃︀∪∐︀b̃︀,∐︀K̃︀∪∐︀k̃︀)
8: if sufficient values are accumulated then
9: for all γi, j ∈ Γi do

10: Pick random ri, j

11: Rotate (∐︀G̃︀i, j,∐︀B̃︀i, j,∐︀K̃︀i, j) ri, j times
12: end for
13: invoke PSP:MIX-SHARES(Γi,∐︀G̃︀,∐︀B̃︀,∐︀K̃︀) at PSP

14: end if
15: end procedure

16: procedure PSP:MIX-SHARES(Γi,∐︀G̃︀,∐︀B̃︀,∐︀K̃︀)
17: if shares from all γi, j ∈ Γi have been received then
18: Rotate (∐︀G̃︀,∐︀B̃︀,∐︀K̃︀) by a random value
19: Re-share (∐︀G̃︀,∐︀B̃︀,∐︀K̃︀) as (∐︀G′̃︀,∐︀B′̃︀,∐︀K′̃︀)
20: invoke UPDATE-MODEL(∐︀G′̃︀,∐︀B′̃︀,∐︀K′̃︀) at Γi

21: end if
22: end procedure

23: procedure DSP:UPDATE-MODEL(∐︀G′̃︀,∐︀B′̃︀,∐︀K′̃︀)
24: for all γi, j ∈ Γi do
25: Rotate (∐︀G′̃︀i, j,∐︀B′̃︀i, j,∐︀K′̃︀i, j) back ri, j times
26: end for
27: K ← combine ∐︀K′̃︀
28: for all ∐︀g′̃︀ ∈ ∐︀G′̃︀, ∐︀b′̃︀ ∈ ∐︀B′̃︀, k ∈K do
29: for i← 1,d do
30: ∐︀wk,ĩ︀ ← ∐︀wk,ĩ︀−∐︀g′ĩ︀
31: end for
32: ∐︀b̃k̃︀ ← ∐︀b̃k̃︀+∐︀b′̃︀
33: end for
34: end procedure

In the first phase, each DSP in Γi calculates shares of δ = η(ŷ− y), which is multiplied with each
element of the user profile to form g. These multiplications are performed locally, without reducing the
degree of the result. The update gradient shares, bid value shares, and campaign identifier shares are
locally stored as lists ∐︀G̃︀, ∐︀B̃︀, and ∐︀K̃︀ until sufficient values are aggregated for mixing. When sufficient
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values are accumulated, each DSP sends its shares to the PSP for mixing. To prevent recombination of
shares by the PSP, each DSP γi, j rotates their lists of shares by a random number ri, j. Given a sufficiently
large aggregation threshold, the average number of attempts needed for the PSP to successfully combine
the received shares becomes prohibitively large. The PSP subsequently picks a random number rPSP, and
rotates each of the lists of shares rPSP times, such that the positions of output values cannot be linked to
the positions of input values.

The share values themselves need also be randomized before being sent back to the DSPs to prevent
linking input values to output values. Since the PSP does not know which received shares belong to
the same value due to the rotation by DSPs, randomization cannot be performed by adding shares of
zero. Instead, the PSP splits each received share ∐︀s̃︀i into a new sharing ∐︀s̃︀i,1, . . . ,∐︀s̃︀i,n. These subshares
are distributed among the DSPs in Γi in a manner analogous to the degree reduction step described in
Section 2.3, such that each party j receives subshares ∐︀s̃︀1, j, . . . ,∐︀s̃︀n, j. The DSPs then recombine the
received subshares to obtain new shares of the original values ∐︀s̃︀i. To match subshares originating from
the same value, each DSP rotates the subshares originating from DSP γi, j back ri, j times. After recombining
the rotated subshares, each DSP has lists ∐︀G′̃︀, ∐︀B′̃︀, and ∐︀K′̃︀, where each of the lists contains shares of
the same values as were submitted to the PSP, rotated rPSP times.

The DSPs combine ∐︀K′̃︀ to reveal the list of campaign identifiers to which the gradient and bid shares
belong. Due to the mixing of the lists, DSPs cannot link the campaign identifiers revealed in the third phase
to user identifiers revealed in the first phase, provided a sufficiently large mixing threshold is chosen.
Finally, each DSP locally updates their shares of the model parameter vectors with the list of gradient
shares, and adds the received bid shares to the bid value aggregates.

4 Performance Analysis

To evaluate the performance of BAdASS, we provide both a theoretical analysis of the computational and
communication complexities of the subprotocols, and a set of measurements obtained from a proof-of-
concept implementation. The theoretical analysis provides an overview of the performance impact incurred
by the use of secret sharing for each of the parties, whereas measurements from the implementation show
the actual performance of the protocol, taking into account all required computations.

4.1 Computational Complexity

The computational complexity of BAdASS depends on a number of variables, in particular the user profile
dimensionality d, the number of campaigns K, and the update aggregation threshold ζ . The used variables
are summarized in Table 2.

In the profile update protocol, the user creates d additive sharings, and the AdX and PSP both create d
Shamir sharings. Moreover, each DSP performs d additions. If the profile update protocol is invoked for
all DSP groups at once, the computational complexity is therefore O(dn), where n is the total number of
DSPs. In the bidding protocol, each DSP performs a multiplication for every campaign within its DSP group
to calculate the bid value, and an encryption of the advertisement for all its own campaigns. Calculation of
shares of the inner product ∐︀w⊺x̃︀ is performed locally, as explained in Section 3.2, and since the resulting
value is reconstructed by the PSP, no degree reduction step is necessary. The multiplications involved in
calculating the inner product are thus ‘free’. In the auction protocol, each DSP group Γi performs Ki−1
comparisons, where Ki is the number of campaigns of Γi, followed by a single DSP group Γ

∗ performing
g−1 comparisons, where g is the number of groups. Since the group Γ

∗ is chosen at random out of g
groups for every auction, the amortized complexity of the the auction phase is O(K). In the model update
protocol, the d multiplications to compute the update gradient need no degree reduction step because the
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Table 2: Symbols used in the computational analysis of BAdASS.

Symbol Description

d Dimensionality of user profiles.
n Number of DSPs.
g Number of DSP groups.
m Size of a DSP group.
κ Number of campaigns of a DSP.
K Total number of campaigns.
Ki Number of campaigns within a DSP group Γi.
ζ Number of model updates accumulated per DSP group.
σ Size in bits of a secret share.
ξ Size in bits of an advertisement tuple, consisting of an encrypted advertisement, a group

descriptor, and a random identifier.
λ Total number of comparisons required to find the maximum bid. Equal to ]︂log2 (Ki−1){︂+

]︂log2 (g−1){︂.
ρ Number of rounds required by a single run of the comparison protocol.
γ Number of bits transmitted in a single run of the comparison protocol.
T Number of rounds required by a single run of the truncation protocol.
τ Number of bits transmitted in a single run of the truncation protocol.

shares are mixed at the PSP, and are thus ‘free’. The mixing step is performed for a batch of ζ updates once
every ζ invocations, resulting in an amortized cost equal to that of processing a single update. To process
a single update, the PSP re-shares all m shares of the d-dimensional update gradients, where m is the size
of DSP groups, followed by the DSP performing d local recombinations of the created subshares. The total
cost of the re-sharing, in terms of sharing and reconstructing secrets, is equal to that of dm multiplications.
The group size m, however, can be considered a constant determined by the recombination threshold,
resulting in an amortized complexity of O(d) for the model update phase.

4.2 Communication Complexity

Table 3 lists the amortized number of bits transmitted by each party for each subprotocol, as well as the
number of rounds of communication required by each subprotocol. The round complexities of the profile
update and bidding protocols are constant. Since the group size m is bounded by a constant, and the
share size σ is constant, the communication complexity of the profile update phase can be considered
linear with respect to the profile size d. Note that if the user profile is distributed among multiple DSP

groups, the complexity of the user profiling phase becomes multilinear in the profile size and the number
of DSPs. During the bidding phase, the AdX acts as a proxy to transmit a total of K advertisement tuples,
and the PSP transmits K sharings of the estimated user response. Each DSP performs Ki multiplications,
each requiring m shares to be transmitted, sends Ki shares of inner products to the PSP, and sends an
advertisement tuple for each of its κ own campaigns to the PSP via the AdX. The total communication
complexity of the bidding phase is thus O(K), or linear in the number of campaigns.

The auction protocol consists of λ comparisons, where λ is logarithmic with respect to the number of
campaigns within a group and the number of groups. The round complexity of the auction phase is thus
O(log2 K), or logarithmic in the number of campaigns, provided the round complexity of the comparison
protocol is constant. Since each DSP performs an average of Ki comparisons per invocation of the auction
protocol and transmits a fixed number of shares for each multiplication, the communication complexity of
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Table 3: Communication bandwidth in bits and number of rounds of communication per invocation of each
subprotocol of BAdASS. γ and τ denote the number of bits transferred in the comparison and truncation
protocols. ρ is the round complexity of the comparison protocol, and T is the round complexity of the
truncation protocol.

Protocol Rounds User AdX DSP PSP

Profiling 2 2dσ dmσ dmσ

Bidding 2 Kξ (m+1)Kiσ +κξ Kmσ

Auction λ(ρ +1)+3 ξ (5Ki−3)mσ +Kiγ +2 1
g σ ξ

Update T +1 3
ζ

mσ (d+1)mσ +τ +(d+3)σ (d+2)m2
σ

the auction protocol is linear in the number of campaigns, provided the communication complexity of the
comparison protocol is constant.

The model update protocol contains a single invocation of the truncation protocol, of which the
number of rounds is considered constant, as well as one round of multiplication. Every ζ invocations,
three more rounds for mixing and combining are performed. The amortized round complexity of the
model update protocol is therefore constant. Although the amount of bits transmitted by the PSP contains
a factor m2, we can assume this to be a small constant due to the small upper bound on m. The average
communication complexity of the model update protocol is O(d), provided the communication complexity
of the truncation protocol is constant and the group size m is bounded by a constant.

4.3 Implementation

To measure the runtime of BAdASS, we made a proof-of-concept implementation of the protocol in C++.
The secure comparison protocol is based on the protocol by Reistad and Toft [33] as implemented in
VIFF1 [34]. Real values, such as model weights, are represented as 16-bit fixed-point numbers. All
operations using Shamir shares are performed in a prime field of order p = 231−1, such that share values
can be represented as 32-bit integers. The reconstruction threshold t is set to 3, resulting in a DSP group
size m of 5. The key length for the ElGamal cryptosystem is set to 2048 bits to achieve a sufficiently high
security level2.

The setup used for runtime measurements is similar to that used in [17]. The tests were executed on a
mobile workstation running Arch Linux on an Intel® Core™ i7-3610QM 2.3 GHz quad-core processor
with 8 GB RAM. Similar to [17], all parties are simulated within a single process thread, thus performing
all operations sequentially. Figure 1 shows a comparison between the runtimes of BAdASS and the state-
of-the-art AHEad protocol for the different protocol phases. The comparison makes it evident that, for a
realistically large profile size d = 220, BAdASS provides significant performance improvements over AHEad

for every subprotocol, with the time-sensitive bidding phase requiring less than 150 ms for a DSP group.
The computation time required by the model update protocol of BAdASS far exceeds that of the profile
update, bidding, and auction protocols, due to the large number of subshare recombinations performed by
the DSPs as well as the large number of sharings created by the PSP. Note that the computation time of the
model update protocol is averaged, since the expensive mixing and update steps are only performed once
every ζ = 10 invocations of the protocol.

1Virtual Ideal Functionality Framework. Available online at https://github.com/kljensen/viff/blob/master/viff/
comparison.py
2See e. g. https://www.keylength.com for key lengths as recommended by various organizations. The NIST considers a key
length of 2048 sufficiently secure until 2030.
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Figure 1: Performance comparison between BAdASS and the state-of-the-art AHEad protocol. The runtimes
are measured in similar settings, using profile dimensionality d = 220 for both protocols. Note that the
runtime measurements for AHEad are performed using a single DSP running a single campaign, whereas
5 DSPs with a total of 5 campaigns are simulated on a single process thread for BAdASS due to the
recombination threshold.

Specifically, as shown in Table 4, one invocation of these steps is more expensive than the preparation
step by a factor of 140 and 1400, respectively. The cost of performing the model update protocol when
the computation time is averaged becomes

10×16.87+2399.67+23406.70
10

= 2597.51 ms, (2)

which is approximately 2.6 seconds, as shown in Figure 1. Based on our measurements, we estimate that
if the computations performed by the DSPs are parallelized, the average time spent on the model update
protocol for a profile dimensionality of d = 220 drops from 2.6 seconds to about 750 ms per invocation.
The computation times of the bidding and auction phase and the profile update phase are both below 150
ms for large profile sizes, even when DSPs are simulated sequentially, and thus seem very well suited
for use in a real-time setting as required by the RTB advertising model. The relatively large amount of
computation performed in the model update phase is less time sensitive, and can thus be periodically
performed as a background task without harming the user experience.

In Table 5, we list the average communication bandwidth of our protocol for specific parameters used
in our implementation. We use a share size σ = 32 bits, and a group size of m = 5 DSPs. Each DSP is
responsible for κ = 10 campaigns, and with two groups the total number of campaigns is K = 100. The
profile dimensionality is d = 220, and the size of an advertisement descriptor is assumed to be 4160 bits,
of which 4096 bits are the encrypted advertisement, 32 bits the random identifier, and 32 bits the group
descriptor. From the table, it is evident that the profile update and model update require a significant

Table 4: Runtime measurements for each step of each model update for BAdASS in ms. Mix shares
and update model steps are executed once every ζ = 10 invocations while the update preparation step is
performed for every viewed ad. The total shows the average of ζ invocations.

Protocol DSP PSP

Prepare update 16.87 —
Mix shares — 2399.67
Update model 23406.70 —

Total 2597.51
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amount of communication, with up to 100 MiB per invocation, on average, of the model update protocol.
The time-sensitive bidding and auction protocols, however, require very little bandwidth. Moreover,
very little bandwidth is used by the user, with only the periodically executed profile update protocol
requiring more than a few dozen bytes at 8 MiB per invocation, making the bandwidth use of the user
very acceptable for modern unmetered connections.

Table 5: Bandwidth usage of BAdASS in KiB per invocation of each subprotocol, based on realistic
parameters used in our implementation of BAdASS.

Protocol Rounds User AdX DSP PSP

Profiling 2 8192 20480 0 20480
Bidding 2 — 51 6.25 2
Auction λ(ρ +1)+3 — 0.5 5+Kiγ 0.5
Update T +1 3

ζ
0.02 — 24576+τ 102400

5 Security of BAdASS

The security requirements of BAdASS are satisfied by the security of the underlying secret-sharing and
encryption schemes in the semi-honest setting. In the non-interactive phases of the protocol, both the user
profile and model parameters are shared among a DSP group using Shamir’s secret sharing scheme, which
provides information-theoretic security as long as no more than t −1 parties collude.

In the profile update protocol, the user profile is shared between the PSP and the AdX using a two-party
additive secret sharing scheme, which, given the assumption that the PSP does not collude with any party,
provides information-theoretic security. The additive shares are split into Shamir shares before being sent
to a DSP group, where the additive shares are combined into a single Shamir share. Since the PSP and the
AdX only receive additive shares, and DSPs obtain a single Shamir share of each additive share, the PSP,
AdX and DSPs gain no knowledge of the contents of user profiles.

In the bidding protocol, the PSP obtains values w⊺

k xu and ŷk from DSP groups, but does not know
the campaign k or user u to which the values belong, nor the specific DSP responsible for the campaign.
Since the PSP knows neither wk nor xu, inferring the individual values of wk or xu from w⊺

k xu is equivalent
to the hardness of solving the subset-sum problem. Given a set of positive integers S = {a1,a2,⋯an}
and an integer b, the subset-sum problem aims to find whether there exist a subset of S, for which the
summation equals to b [35]. Finding such a subset, however, is an NP-complete problem. In BAdASS, xu

is a vector with binary or small values, and wk contains 16-bit fixed-point numbers. Assuming a binary xu

the multiplication w⊺

k xu is actually a selection of indices of wk based on the value in every index of xu.
Finding a subset of wk, where the sum of the subset is equal to w⊺

k xu is hard, when wk and xu are private
and both of them have size d = 220.

If the PSP receives multiple values of w⊺

k xu for the same wk and xu, the PSP can link these values to
the same user, but cannot learn any information about the user’s interests as the PSP cannot link response
predictions to campaigns. The PSP also receives a mapping between a randomly generated number and an
advertisement encrypted using the universal re-encryption scheme, which is semantically secure under the
DDH assumption [26]. The use of universal re-encryption provides key privacy, such that the PSP does not
learn the identity of the user, and the randomization of ciphertexts in the ElGamal cryptosystem ensures
that different submissions of the same advertisement cannot be linked. During the auction protocol, the PSP

learns the random number associated with the winning bid in order to retrieve the winning advertisement,
but since the mappings are anonymized by the AdX, the PSP cannot link this value to a DSP.
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In the model update protocol, the PSP obtains rotated shares of update gradients, bid values, and
campaign identifiers. Given unbounded computational power, the PSP can perform an exhaustive search
of rotation coefficients until recombination of shares results in likely values. Choosing sufficiently large
values for the update period ζ and recombination threshold t makes exhaustive searches infeasible. After
the PSP mixes the shares, DSPs receive shares of the same values submitted earlier in the model update
phase. Since the shares are re-shared by the PSP, however, DSPs cannot link the shares received after
mixing to shares submitted before mixing. Moreover, the random rotation performed by the PSP prevents
DSPs from linking inputs to outputs.

6 Conclusion

In this paper we present a novel protocol using machine learning over secret-shared data to preserve
privacy in OBA with minimal user-noticeable delays. Trust is distributed among DSPs using threshold
secret sharing, allowing DSPs to collaboratively compute bid prices and determine the highest bid without
gaining any knowledge of a user’s interests. Reports of individual clicks and views of advertisements are
secret-shared among DSPs, where they are used to privately update model parameters via a mixing step at
the PSP. At no point are the contents of user profiles, shown advertisements, and actual user responses
revealed to any party other than the user, nor are model parameters revealed to any party other than the
DSP responsible for the campaign. Individual bid prices are not revealed to any party, but are aggregated
for billing purposes. Finally, the protocols are integrated into the RTB setting by forming DSP groups from
existing DSPs, with the addition of a single new party.

BAdASS achieves significant performance improvements over previous work. The AHEad protocol
presented in [17] requires more than 100 seconds of computation time to calculate a single bid value
in the time-sensitive bidding phase. In comparison, BAdASS simulates the calculation of 5 bid values
in less than 150 milliseconds in a similar setup, even without parallelization across DSPs. BAdASS is
even efficient enough to serve advertisements in real time as required by the RTB model, provided the
communication between DSPs incurs minimal latency. Despite the overhead of the model update protocol,
the results obtained with BAdASS show that by applying secret sharing techniques a level of performance
can be achieved in the time-sensitive bidding and auction phases that does not degrade the perceived
responsiveness.

To the best of our knowledge, BAdASS is the first protocol to allow sub-second behavioural targeting
of advertisements while preserving user privacy. The heavily fragmented shape of the online advertising
landscape lends itself particularly well to the use of efficient secret-sharing techniques, giving advertising
companies the opportunity to cooperatively move towards acceptable forms of behavioural advertising.
Although the presented protocol should be adapted to the malicious setting, as DSPs may have an incentive
to modify competitors’ bid values, the results obtained with BAdASS show that it is possible to serve
behaviourally targeted advertisements without disclosing those interests to any party, all within a fraction
of a second. We believe that these results provide a first step towards adoption of privacy-preserving
methods in the online advertising ecosystem.
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