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A B S T R A C T   

Norovirus infections are among the major causes of acute gastroenteritis worldwide. In Germany, norovirus 
infections are the most frequently reported cause of gastroenteritis, although only laboratory confirmed cases are 
officially counted. The high infectivity and environmental persistence of norovirus, makes the virus a relevant 
pathogen for water related infections. In the 2017 guidelines for potable water reuse, the World Health Orga-
nization proposes Norovirus as a reference pathogen for viral pathogens for quantitative microbial risk assess-
ment (QMRA). A challenge for QMRA is, that norovirus data are rarely available over long monitoring periods to 
assess inter-annual variability of the associated health risk, raising the question about the relevance of this source 
of variability regarding potential risk management alternatives. Moreover, norovirus infections show high 
prevalence during winter and early spring and lower incidence during summer. Therefore, our objective is to 
derive risk scenarios for assessing the potential relevance of the within and between year variability of norovirus 
concentrations in municipal wastewater for the assessment of health risks of fieldworkers, if treated wastewater 
is used for irrigation in agriculture. To this end, we use the correlation between norovirus influent concentration 
and reported epidemiological incidence (R2=0.93), found at a large city in Germany. Risk scenarios are subse-
quently derived from long-term reported epidemiological data, by applying a Bayesian regression approach. For 
assessing the practical relevance for wastewater reuse we apply the risk scenarios to different irrigation patterns 
under various treatment options, namely “status-quo” and “irrigation on demand”. While status-quo refers to an 
almost all-year irrigation, the latter assumes that irrigation only takes place during the vegetation period from 
May - September. Our results indicate that the log-difference of infection risks between scenarios may vary 
between 0.8 and 1.7 log given the same level of pre-treatment. They also indicate that under the same exposure 
scenario the between-year variability of norovirus infection risk may be > 1log, which makes it a relevant factor 
to consider in future QMRA studies and studies which aim at evaluating safe water reuse applications. The 
predictive power and wider use of epidemiological data as a suitable predictor variable should be further vali-
dated with paired multi-year data.   

1. Introduction 

Quantitative microbial risk assessment (QMRA) has been developed 
to support risk-based decision making by quantifying health risks 
resulting from the exposure to pathogenic microorganisms (WHO, 
2016). QMRA supports the assessment of the performance of a system to 
achieve pre-defined health targets, and can be used to explore various 

risk management alternatives. In QMRA, the source water concentration 
of pathogens is an essential model input, because source water con-
centrations and exposure scenarios determine operational health targets 
in terms of required log-removal values (LRV). Therefore, the better the 
understanding of source water pathogen concentrations, including its 
variability (e.g. seasonal) and uncertainty (e.g. parameter uncertainty), 
the better risk reduction measures can be tailored to the local 
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circumstances. 
In Germany, norovirus (NV) infections are the leading cause of re-

ported cases of viral gastroenteritis among all age groups. Pathogenic 
noroviruses are subdivided into three groups (GI, GII, and GIV) with NV 
GII.4 being currently responsible for 70-80% of all reported gastroen-
teritis cases (Bernard et al., 2014; de Graaf et al., 2015). NV GII are 
highly infective, and resistant in the environment, are considered rele-
vant pathogens for water related infections, and are included in multiple 
studies related to water reuse applications (Sales-Ortells et al., 2015; 
Soller et al., 2018, 2017). Despite criticism towards using NV as a 
reference pathogen in QMRA, which origins from the fact that Norovirus 
is not readily culturable from environmental samples (Nappier et al., 
2018), Norovirus was included as a reference pathogen in the 2017 
WHO guidelines for potable water reuse, which underlines its relevance 
for water reuse applications (WHO, 2017). 

In probabilistic QMRA studies, sources water pathogen concentra-
tion are described as random variables. Distributions fitted to pathogen 
data in the source water, aim at representing the existing variability of 
these pathogens over a specific period, usually one year. In this context, 
a potential source of variability, whose relevance has rarely been 
addressed in water related QMRA studies, is the within and between- 
year-variability of NV concentrations in wastewater and how these 
variations might affect risk management alternatives. In most studies, 
NV concentration are measured over periods of <= 1 year (Huang et al., 
2022). Therefore, the question arises about how inter-annual NV vari-
ations might affect risk assessment results and thus risk management 
alternatives for longer periods. To address this question approaches for 
deriving plausible risk scenarios are needed. 

Additionally to inter-annual variations, in moderate climates, like e. 
g. in Germany, NV outbreaks and water demands in agriculture, show an 
inverse seasonality, meaning that NV incidences are lowest in summer 
(Bernard et al., 2014) where water demands in agriculture is at its peak 
and vice versa. Seasonal differences, i.e. intra-annual variations, of 
wastewater concentrations have been confirmed in a review of NV in 
wastewater by Eftim et al. (2017). Therefore, for the special case of 
agricultural water reuse, adapting irrigation periods to low incidence 
periods may be a feasible, low-tech and cheap risk-reduction measure 
complementing other, more obvious risk reduction measures like 
wastewater disinfection, protective farming practices or the use of 
exposure reduced irrigation technologies (e.g. drip irrigation). 

For NV, there is a direct causal relationship between infection, and 
virus shedding (Atmar et al., 2008; Teunis et al., 2015), and therefore 
the presence of these viruses in municipal wastewater. While virus 
concentrations in wastewater have been used to estimate the variability 
of incidence in the population (Hellmer et al., 2014; Medema et al., 
2020), long-term reported incidence has not been used to derive plau-
sible risk scenarios for addressing the relevance of intra- and inter 
annual variations, for irrigation related exposure of fieldworker in 
agricultural water reuse. 

Therefore, the objectives of the present study are to: 

(a) apply this technique to an existing reuse site to assess the po-
tential relevance of inter annual variations of NV concentrations 
for the assessment of health risks for fieldworkers exposed via 
sprinkler irrigation, 

(b) derive practical implications of the estimated inter-annual vari-
ations of NV GII concentrations for the derivation of local LRV 
values, and  

(c) assess the risk reduction potential of adapting irrigation periods 
to low incidence based on the expected intra-annual/within year 
variability. 

2. Methods 

The city of Braunschweig is considered a suitable location to inves-
tigate the formulated questions, as  

(a.) it is a large water reuse location in Germany (nominal WWTP 
size: 275,000 p. e., applied load: 350,000 p. e.), so that popula-
tion incidences of virus infections are potentially represented in 
the wastewater composition  

(b.) it uses treated water to irrigate agricultural areas almost during 
all the year, and  

(c.) long-term epidemiological data on reported norovirus cases are 
available on a weekly basis for the district of Braunschweig (cf. 
Section 2.1.2) by public epidemiological databases. 

Wastewater is treated by standard primary treatment with subse-
quent activated sludge treatment. To this day, no disinfection unit is 
implemented. Therefore, irrigation is restricted to energy crops or 
products which are consumed only after further industrial processing. 
However, current research activities explore the potential benefits of 
upgrading water quality to “Class A” according to European standards 
for water reuse, which would allow to diversify the products grown on 
the area. In Braunschweig, irrigation takes place all year round except 
for a short period between December and January. Irrigation is con-
ducted via sprinkler irrigation and is organized by the Wastewater As-
sociation Braunschweig (AVB), which matches the water demands of 
farmers with the quantities provided by the wastewater treatment plant. 
Irrigation itself is conducted by irrigation managers and workers asso-
ciated with the AVB. They are responsible to placing and operating 
irrigation machines on the specific sectors of the agriculture areas. These 
workers represent the group of people, which is at risk of being regularly 
and directly exposed to pathogens via spray of treated wastewater (cf. 
Section 2.3.2). 

2.1. Data collection 

2.1.1. Influent data of Norovirus GII 
Norovirus samples were collected from October 15th to December 

3rd, 2014. Manual grab samples were taken from the influent of the 
wastewater treatment plant once per week on Wednesdays during 
morning peak flow. Samples were collected into sterile plastic bottles of 
1L. After sample collection, samples were frozen and sent to the Uni-
versity of Barcelona for subsequent NV RNA-analysis. NV have been 
shown to keep intact for several freezing and thawing cycles (Richards 
et al., 2012), which justifies freezing as a sample conservation strategy. 
NV in water samples were concentrated with the skimmed milk floc-
culation protocol (Calgua et al., 2013a, 2013b). The viral RNA con-
centrations were quantified by specific qPCR assays for NoV GII 
(Kageyama et al., 2003; Loisy et al., 2005). 

2.1.2. Collecting epidemiological data 
Epidemiological data were collected from the publicly available 

epidemiological database SurvStat, which summarizes illness caused by 
any NV genogroup and –type as norovirus gastroenteritis. Only cases 
which fulfill the reference definition were included in the query, which 
includes cases confirmed by either PCR test, antigen tests or electron 
microscope detection. This definition and the comparatively mild illness 
of NV infections are known to cause high numbers of underreporting 
caused by asymptomatic infections of NV, differences in tolerance levels 
before consulting a physician, and difference in testing and reporting 
practices between physicians when gastroenteritis is diagnosed (Ber-
nard et al., 2014). 

From SurvStat we queried weekly data on reported NV cases for the 
district of Braunschweig on a NUTS 2 level (Nomenclature des unités 
territoriales statistiques). The NUTS-2 level includes the city of 
Braunschweig and surrounding districts. It is larger than the catchment 
of the WWTP, whose geographic boundaries would better match the 
boundaries at a NUTS-3 level. We prefer the NUTS-2 level of geographic 
boundary over the more detailed NUTS-3 level, because of the high 
expected underreporting for NV. Increasing the population size makes 
the observed incidence more robust against the detection of single 
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outbreaks. Moreover, as Braunschweig is a regional economic center 
commuting back and forth the city from outer districts is common, so 
that inhabitants of these districts are likely to contribute to the city’s 
wastewater composition and incidence dynamic. In their annual sea-
sonal reports about NV infections, health authorities of Lower Saxony 
underline that annual spatial differences of reported incidence between 
neighboring districts are more likely to be caused by differences in 
specific diagnose regime and reporting behavior rather than other cau-
ses like e.g. age structure. Therefore, staying at the NUTS-2 level is 
considered the best choice for balancing the robustness of the incidence 
estimate while accounting for regional behavior of norovirus infections. 
The specific query is attached to the supporting information (SI). For 
detailed evaluation (cf. Section 2.2) we only consider the years between 
2001 (first year of reporting) and 2019, as 2020 and 2021 are influenced 
by the corona pandemic, and thus a potentially overburdened health 
reporting system. 

2.2. Data analysis 

2.2.1. Data preparation 
For an initial quality check, the collected epidemiological data were 

plotted for detecting any obvious, visual irregularities. Moreover, the 
dataset was checked for completeness by counting the number of ob-
servations in each calendar year. We applied an inclusion criterion of 
maximum 5% (2 data points) of missing data for each year. If missing 
values existed, values were imputed by linear interpolation, which we 
prefer over alternative imputation methods like mean or median 
imputation due to the expected auto-correlation in the data set. The 
years 2004, 2009, and 2015 have 53 calendar weeks. To align the 
periodicity between years, and ease computations, incidence values 
were added to the values of week 52, and week 53 was removed from the 
dataset. This adjustment has no effect on the risk calculation as 
December and January are not included in any risk modelling scenario. 

2.2.2. Descriptive analysis 
The reported norovirus incidence is grouped by year and calendar 

week, which, after the application of the inclusion criterion (cf. Section 
5) leads to 14 observations. For each week the summary mean, median, 
minimum, and maximum are calculated. Additionally, negative bino-
mial distributions are fitted to each dataset, and 95% credible and 
prediction intervals are simulated from the posterior distribution. For all 
statistical analyses, we apply a Bayesian approach to statistical inference 
using the programming languages R (R Development Core Team, 2008), 
Stan (StanDevelopmentTeam, 2017), and the interface between R and 
Stan, brms (Bürkner, 2017). For the negative binomial regression, brms 
implements the following parameterization, which allows the negative 
binomial to be interpreted as a Poisson distribution whose variance 
parameter µ is complemented by an additional factor for overdispersion 
ϕ scaled by µ2. 

NegBinomial(y | μ,ϕ) =
(

y + ϕ − 1
y

)(
μ

μ + ϕ

)y ( ϕ
μ + ϕ

)ϕ

(1)  

E[Y] = μ and Var[Y] = μ +
μ2

ϕ
. (2)  

2.2.3. Bayesian regression modelling for developing risk scenarios 
In the present study, we use reported incidence as a relative index to 

create plausible risk scenarios for the variability of NoV GII concentra-
tions in municipal wastewater using statistical regression models. Due to 
the continuous evolvements of NV genotypes and existing under-
reporting, it is not likely that the correlation between wastewater con-
centrations and reported incidence observed in one year remains exactly 
constant over time. Thus, using the reported incidence to predict NV 
wastewater concentration for a specific point in time may not always be 
accurate. However, we argue that the longer-term variability in reported 

incidence reflects the longer-term variability of norovirus infections and 
illness within the population. For example, Stegmaier et al. (2020) 
compared differences in spread dynamics of influenza and NV in the 
population based on data provided by the SurvStat database. Therefore, 
we further argue that generating scenario predictions under the 
assumption of a constant correlation, leads to estimates which might not 
necessarily be correct for each specific year, but which can be consid-
ered realistic scenarios of unobserved situations. The latter is a key 
element of risk assessment studies. To emphasize this distinction, we 
will write e.g. 2008 if we refer to the year and its related data, and use 
the term incidence scenario (IS08) if we refer to the risk scenario derived 
from reported incidence. 

In the literature, different information can be found regarding 
whether wastewater concentrations correlate best with the incidence 
reported in the same week (Kazama et al. (2017) or whether there is a 
delay in reporting rates. Hellmer et al. (2014) reported peak concen-
trations of NV, 2 weeks before an increase in incidence could be 
observed. Therefore, we checked the correlation and goodness-of–fit (cf. 
Section 3.1) for both the incidence of the current reporting week as well 
as to a 2-week rolling average, which aggregates of the incidence of the 
present and the 2 subsequent weeks. 

For the paired data, first, the Pearson’s correlation coefficient is 
calculated. Second, three regression models, which make different 
distributional assumptions, are fitted and compared. Since both inci-
dence and NoV GII concentrations are all positive quantities, we fit the 
relation on a logarithmic scale. As candidate models a lognormal, 
negative binomial and gamma regression are fitted to the paired data. 
The parameterization of the negative binomial distribution follows the 
example above Eqs. (1) and ((2)) so that the location and scale param-
eters can be addressed separately. The one for the gamma regression is 
shown in Eqs. (10) and (11). For the scale parameters φ, σ, and φ default 
prior distribution provided by the brms package were chosen, which uses 
heavily tailed distributions, to only introduce minimal information (see 
Eqs. (5), (8), (13)). 

Lognormal regression 

cNoV ∼ Lognormal(μ, σ) (3)  

log(μ) = β0 + β1log( incidence) (4)  

σ ∼ half − t(ν = 3, λ = 0, ς = 2.6)
ν = degreesoffreedom
λ = location
ς = scale

(5) 

Negative binomial regression 

cNoV ∼ negBinomial(μ,ϕ) (6)  

log(μ) = β0 + β1 log(incidence) (7)  

ϕ ∼ Gamma(0.1, 0.1) (8) 

Gamma regression 

cNoV ∼ Gamma(α, β) (9)  

α =
μ2

φ
(10)  

β =
μ
φ

(11)  

log(μ) = β0 + β1 log(incidence) (12)  

φ ∼ Gamma(0.1, 0.1) (13) 

For fitting the models we use Bayesian estimation methods based on 
Markov Chain Monte Carlo (MCMC). For every model we ran four in-
dependent Markov Chains, with 10,000 iterations and a warm-up phase 
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of 5000. Thereby, 20,000 independent posterior samples were created 
for further evaluation. We chose this high number of samples as the 
posterior samples are not only used for estimation but also for subse-
quent risk simulation (cf. Section 2.3.2). Convergence of the Markov 
Chains were checked by inspecting whether the traceplots of the four 
chains were well-mixed and by checking whether the Gelman-Rubin 
diagnostic statistic (R̂) has converged to 1. The traceplot and conver-
gence diagnostics of the selected model is shown in the SI. 

2.2.4. Model selection 
For selecting between models the expected log-predictive density 

(elpd) is used. The out-of-sample elpd is calculated using leave-one-out 
cross-validation, following the approach published by Vehtari et al. 
(2017). To this end, the implemented function “loo” of the brms package 
is used. The elpd is preferred over other methods for model comparison 
like e.g. MSE or RMSE as it explicitly accounts for different distributional 
assumptions, by calculating the probability density of the held out data 
point and not only assesses the distance to the estimated mean. The 
higher a model’s elpd the better it is expected to predict new data. 
Additionally, the Bayesian approximation of R2 is simulated according 
to Gelman et al. (2019). The model with the highest elpd is selected. 

2.3. Risk modeling 

2.3.1. Problem formulation 
Risk modeling focuses on quantifying the risk reduction potential for 

fieldworkers of an “irrigation on demand” scenario in comparison to a 
“status quo” scenario. Under the scenario status quo irrigation takes 
place from February to the end of November, thus from calendar week 5 
to calendar week 47. Under the scenario irrigation on demand, we as-
sume that irrigation to take place from May to September, thus from 
week 16 to 36. This adaption is expected to reduce the risk in two ways. 
First, a reduction of irrigation period reduces the risk by a reduction of 
the number of exposure events per year (cf. Eq. (13)), given an average 
weekly exposure rate. Secondly, the risk of infection is reduced by 
avoiding irrigation during the peak season of NV infections. To compare 
the practical relevance of the difference between scenarios we assess 
both the relative risk between scenarios given the same wastewater 
treatment performance, and the required log-reduction to achieve the 
same level of health protection (cf. Section 2.3.4). For the latter, a health 
benchmark is needed, for which we apply a value of 10− 2 per person per 
year (pppy). This value is arbitrary, as no level of acceptable risk exists 
for fieldworkers in Germany. However, it follows the rational that water 
related exposures should be considered safe and should not contribute to 
the overall disease burden. The latter was quantified for acute gastro-
intestinal illness (AGI) in Germany among adults in a representative 
survey by Wilking et al. (2013). They found that that 9 out of 10 adults in 
Germany experience a case of AGI per year. Therefore, the applied 
threshold of 10− 2 is approximately 2 orders of magnitude below the 
existing disease burden and thus, considered to be sufficiently safe, or at 
least hardly detectable. Applying a disease per infection ratio of 0.7 and 
a disease burden of 5 × 10− 4 disability adjusted life years (DALYs) per 
case (WHO, 2017), results in a tolerable disease burden of 3.5 × 10− 6 

DALYs pppy, which is close to the threshold of 10− 6 DALYs pppy applied 
for drinking water. 

2.3.2. Exposure assessment 
For modelling infection risks for the two irrigation and 14 incidence 

scenarios we use the weekly incidence and the model selected in Section 
3.2 to generate scenario predictions for NV concentrations for every 
week of every incidence scenario. To this end, we sample from the 
posterior predictive distribution (PPD) for every week during this period 
using the obtained parameter distributions. From the simulated PPD, the 
population distribution of the expected dose per exposure event is 
calculated by: 

d = 10
cinfluent −

∑n

T=1
LRVT

∗ Vingested (14) 

Where d is the dose per exposure event, cinfluent is the PPD of NoV GII 
in lg GC/L, LRV is the log-removal value for treatment step T, n is the 
number of treatment steps, and Vingested is the ingested volume in L. 

To isolate the effect of different annual irrigation periods we assume 
the remaining model inputs to be known without variation. For the log- 
reduction of the wastewater treatment plant, before irrigation, we run 
simulations for the range between 1 and 8. This allows to determine the 
sensitivity of derived risk indicators (cf. Section 4.3.4) between sce-
narios as a function of the installed level of wastewater treatment. For 
the volume ingested by fieldworkers (Vingested) per exposure event via 
sprinkler irrigation and the frequency of exposure events, we assume an 
ingestion of 0.1mL of treated wastewater to happen once a week. This 
leads to 42 exposure events per year for the “status quo” scenario and 20 
for the “irrigation on demand” scenario. To assess the sensitivity of our 
result to these assumptions we additionally ran simulations for:  

(a.) A volume 1mL, once per week  
(b.) A volume of 0.1, twice per week 

In brief, for risk simulation we follow the following algorithm:  

1 For each incidence scenario, filter the scenario-specific irrigation 
periods (status-quo, irrigation on demand) from the generated array 
of PPDs.  

2 sample a random sample from each distribution of weekly NV GII 
simulation (42 for "status-quo", 20 for "irrigation on-demand") 

3 for each sample apply the assumed log-reduction and assumed vol-
ume per exposure event to estimate the dose per exposure event (Eq. 
(14))  

4 calculate the infection probability per exposure event by applying 
the dose-response of NoV GII for disaggregated viruses (cf. section 0) 
(Eq. (15))  

5 aggregate the calculated event probabilities into an estimate for the 
annual risk (Eq. (16)), and  

6 repeat steps 2-5 for 1000 times to generate an uncertainty estimate 
for the average annual risk. 

To further estimate the generated Monte-Carlo error we repeated this 
simulation under the initial assumptions (0.1mL, 1/week) for 25 times. 

2.3.3. Health effect assessment 
The dose-response model for norovirus is subject of ongoing dis-

cussion. Until recently, QMRA studies which assessed the risk of nor-
ovirus infection relied on the dose-response relation published by 
Teunis et al. (2008), which was simplified by Messner et al. (2014) and 
criticized to be highly uncertain and overly conservative for low con-
centrations by Schmidt (2015). The dose-response model was derived 
only for norovirus of genogroup I, so that subsequent QMRA studies had 
to make the inherent assumption that this dose-response relationship 
would apply for all norovirus genogroups and genotypes. A summary of 
the discussion and practical recommendations was provided by Van 
Abel et al. (2017). Recently, Teunis et al. (2020), summarized the in-
formation from challenge studies and outbreaks, using a Bayesian hi-
erarchical modelling approach to derive an updated generalized 
dose-response relationship for norovirus of genogroups I and II, using 
the secretor status of the exposed person as an additional predictor 
variable. We consider the latter study as the most comprehensive study 
on this topic so far, so that we base our risk estimate on the parameters 
reported there. We also chose this study as it provides specific estimates 
for the dose-response parameters for NoV GII, which our study focuses 
on. The dose-repose model is based on gene copies which is in line with 
the data measured at the WWTP. As secretor negative (SE-) persons are 
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widely protected against norovirus infections, we focus our analysis 
secretor positive people and assume all fieldworkers to be SE+. Thus, we 
calculate the population distribution of risk outcomes per exposure 
event as the probability of infection Pinf from the population distribution 
of simulated doses d by: 

Pinf|exposure = 1 − 1F1(a, a+ b, − d) (15) 

As parameter values we use the median of their posterior distribu-
tions as reported in Table A13 of Teunis et al. (2020), namely a = 0.23, 
and b =5.04. 

For solving the confluent hypergeometric function we use the func-
tion hyperg_1F of the gsl-package of the R-programming language. We 
aggregate the individual event probabilities (Pi … PN) to an estimate of 
the annual infection risk (Pannual) by: 

Pannual = 1 −
∏N

i=1

(
1 − Pinf|exposure[i]

)
(16)  

2.3.4. Risk characterization 
To characterize the risk we assess both the statistical and practical 

significance of the obtained results. To assess, whether the difference 
between the simulated risk distributions are statistically significant, we 
derive a Bayesian p-value from the simulated average annual risk. To 
this end, the average risk distributions for the status-quo scenario are 
subtracted from the distribution of the irrigation of demand scenario for 
each incidence scenario. The proportion of samples of the resulting 
difference distribution > 0, is used as an approximation for the proba-
bility of the two distributions coming from the same underlying popu-
lation. If the calculated probability is < 0.05, the two distributions are 
considered statistically different. Since we simulated 1000 annual risk 
samples of for each incidence scenario, the lower limit for this approach 
is 0.001**, which is sufficiently low. 

For an assessment of the practical significance we calculate the risk 
ratio and log difference in risk between scenarios for each incidence 
scenario and each applied log-removal. 

Risk ratio =
Riskannual, status quo

Riskannual, irrigation on demand
(14) 

This corresponds to the differences in risk, assuming the same level 
of wastewater treatment for both irrigation scenarios. 

Additionally, we deduce the log-removal needed to obtain the same 
level of health protection given the applied exposure scenario. For each 

scenario the required log-removal for achieving a value Pinf <= 1% is 
deduced by linear interpolation between of the closest points of the 
discrete evaluations of the resulting risk function in the range 1–8 LRV. 
Subsequently, the difference between scenarios is calculated as measure 
of additional health benefit due to changes in irrigation patterns. 

3. Results 

The results of the initial quality control are shown in Fig. 1-A in the 
SI. From the data no obvious trends in the development of reported 
norovirus incidence can be determined, which would indicate an un-
derlying systematic effect. Instead, peaks of norovirus outbreaks during 
the winter months reoccur annually with differences in amplitude. The 
quality check for data completeness revealed complete datasets from 
2009-2019. 2001-2003 and to a lesser extent 2004 and 2005 showed 
relevant data gaps, and were removed. The years 2006 (2 missing), 
2007, 2008 (1 missing each) stayed within acceptable limits. 

3.1. Descriptive analysis 

Fig. 1 shows the distribution of weekly reported norovirus of inci-
dence in the district of Braunschweig from 2006-2019. Incidences show 
a pronounced seasonality. They start rising in early winter around weeks 
47-48 (December) and reach maxima during weeks 1-8 (January- 
February). Lower numbers of reported cases during week 52 are 
considered artifacts caused by Christmas and New Year’s vacations. 
Results show that during winter the median incidence varies between 4 
and 7 per week. Single peak observations reach values of up to 37. In 
summer, the reported incidence stays at lower numbers between 0.4 and 
2. The peak incidences of 37 were reported outside both irrigation 
scenarios and thus do not affect risk calculations. 

Table 1 shows the raw NV measurements, paired number of reported 
cases, the incidence, the rolling two week incidence, the calculated 
Pearson correlation factors, the posterior mode of the distribution of the 
Bayesian R2, and the values for the calculated log-predictive densities 
for the lognormal, gamma, and negative binomial regression, respec-
tively. Results show that during the sampling period between week 42 
and 49 2014, an increase in both the incidence, ranging from 0.37 to 6.7 
and norovirus concentrations ranging from 104.3-107 GC/L can be 
observed. Results show a strong positive correlation with a Pearson 
correlation factor of 0.96. Combined with the known causality between 
the number of infected people and norovirus wastewater concentration, 

Fig. 1. Overview over reported norovirus cases in the district of Braunschweig. Individual boxplots include the weekly data from the selected 14 years between 
2006-2019. 
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this observation provides support for the hypothesis that the variability 
of reported epidemiological provides information for generating plau-
sible risk scenarios for the potential variability of wastewater 
concentrations. 

3.2. Model selection 

Regarding the candidate models, the negative binomial approach 
indicates a slightly better (higher elpd) predictive performance than the 
lognormal, and gamma approach. Since the negative binomial distri-
bution is also the most logical choice for modeling over-dispersed 
discrete data, the negative binomial model is selected for simulating 
Norovirus influent concentrations. The models developed with the 
rolling 2-day mean performed slightly better than the models developed 
with the incidence reported in the same week. Although the difference is 
very small the negative binomial model based on the 2-day rolling mean 
incidence is used for subsequent estimations. Fig. 1-D in the SI shows 
model predictions against NV data. 

3.3. Simulated influent concentrations 

Results of the predicted weekly norovirus concentrations based on 
the mean 2-day rolling average incidence are shown in Fig. 2. Results for 
the individual incidence scenarios are shown in the SI. The results show 
that following the dynamic of norovirus incidence, the highest concen-
trations are expected to occur during winter (week 48-12). Prediction 
intervals cover peak concentrations of up to 109 genome copies per liter. 
The highest measured concentration during the sampling period was 1.1 
107 genome copies / Liter. Norovirus concentrations of up to 109 GC/L 
have been reported for noroviruses in European wastewater treatment 
plants before (Eftim et al., 2017; Seis et al., 2020). Thus, the upper range 
of expected unobserved observations is considered plausible and in line 
with existing knowledge about norovirus concentrations in wastewater. 

Average concentrations during the peak season are expected to lie at 107 

GC/L, while during summer average concentrations are expected to lie 
1.5-2 order of magnitude below, with minima at 103 GC/L in for sce-
nario IS06, and maxima at 106 e.g. in summer of scenario IS14. 

3.4. Annual risk for different irrigation scenarios 

Fig. 3 (upper graph) shows exemplarily the distribution of the 
average annual risk simulated for the two irrigation scenarios and 14 
incidence scenarios assuming an installed pretreatment of 6 LRV. The 
results indicate that within the same irrigation scenario result may vary 
by more than 1 order of magnitude. For example, with a LRV of 6 the 
mean annual risk of the “status quo” scenario ranges between 2.1 × 10− 4 

for IS06 and 2.8 × 10− 3 for IS08, for the irrigation on demand scenario 
between 1.7 × 10− 5 for IS17 and 1.9*10− 4 for IS10. The minimum and 
maximum incidence scenarios do not correspond between irrigation 
scenarios because winter peaks, dominating risk simulations under 
status quo conditions are cut off from the risk simulation in the irrigation 
on demand scenario. This leads to different risk patterns. Fig. 3 (lower 
graph) shows exemplarily the simulated annual risk as a function of the 
installed log-removal for the incidence scenario IS08. Since the graphs 
from the individual incidence scenarios look very similar, the remaining 
ones are provided in the SI. The calculated Bayesian p-values are sta-
tistically significant (Bayesian p-value < 0.001**) for every single 
incidence scenario and installed pretreatment. 

Regarding the practical significance, Fig. 5 shows that the effec-
tiveness of a change in irrigation patterns depends on the installed 
pretreatment. For the assumed exposure volume and frequency, the 
calculated risk indicators (risk ratio and log-difference) increase until 
the pre-treatment reaches a value between 3 and 4 LRV and stay at an 
approximately constant level afterwards. The sensitivity assay (cf. SI 
Fig. 1-G, 1-H) reveals that the level of required pre-treatment to reach 
stable conditions increases with the assumed exposure. Note, however, 

Table 1 
Overview over measurements, reported cases, incidence, correlation factor and model performance indicators.  

Repor-ting 
week 

# cases / incidence / rolling mean 
incidence 

Sampling 
Date 

NoVGII [GC/ 
L] 

Pearson 
correlation 

R2 / elpd log- 
normal 

R2 / elpd gamma R2 / elpd negative 
binomial 

42 15 / 0.93 / 0.9 2014-10-15 1.8 × 104 0.96 0.5 / 0.5 -109.1/- 
107.6 

0.9/0.93 /-108.4/- 
106.2 

0.9/0.93 / -108.5/- 
106.1 43 14 / 0.87 / 0.62 2014-10-22 1.19 × 105 

44 6 / 0.37 / 0.71 2014-10-29 3.45 × 105 

45 17 / 1.05 / 1.43 2014-11-05 7.82 × 105 

46 29 / 1.80 / 2.45 2014-11-12 6.93 × 105 

47 50 / 3.09 / 3.62 2014-11-19 6.66 × 106 

49 108 / 6.69 / 5.89 2014-12-03 1.09 × 107  

Fig. 2. Predicted norovirus concentration and uncertainty intervals for calendar week 1-52 for based on median weekly reported incidence over all incidence 
scenarios. Shaded areas indicate irrigation scenarios. 
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that once stable conditions are reached, risk indicators between sensi-
tivity scenarios stay within the margin of Monte Carlo error of the 
original exposure scenario. This indicates that overall conclusions about 
the magnitude of expected differences/ratios and thus the relevance of 
the inter- and intra-annual variability of NV remain valid against vary-
ing exposure assumptions. 

Lower risk indicators at lower pre-treatment are caused by the fact 
that if the pretreatment is too low, the simulated annual risk is very close 
to 1 for both scenarios. If the constant level is reached the highest ratio is 
calculated for the IS08 and IS12 with risk ratios between 35 and 50, 
which corresponds to a log-difference of 1.5-1.7. The lowest risk ratio 
and log-difference is observed for IS13 with values of 6-7 and 0.8, 
respectively. The mean and median of the median log-difference are 
1.15 and 1.1, respectively, making in it on average 10-15 times more 
likely to become infected under the status quo scenario in comparison to 
the irrigation on demand scenario once stable condition are reached. 

Regarding the required log-removal to achieve the same level of 
health protection of 1% we calculate median LRV between 0.9 and 1.9 
between incidence scenarios with a median of 1.2 LRV (Fig. 4). Note, 
that while the absolute required LRV values increase with increasing 
exposure in the sensitivity assay, the derived difference between irriga-
tion scenarios stay within the Monte Carlo error and thus do not affect 
the overall conclusion of the analysis. That means that the between year 
variability of the required treatment performance may be up to 1 order 
of magnitude and that an on average an additional order of magnitude 
can be achieved by adapting irrigation patterns to an irrigation in the 
demand scenario. As a side note, our results also illustrate the difference 
between statistical and practical significance, as even the difference 
between scenarios at a pre-treatment level of LRV equal to 1 is statisti-
cally significant, while from a practical perspective this difference is 
irrelevant. 

Fig. 3. Risk of infection. The upper graph shows the between incidence scenario comparison at a LRV value of 6. The lower graph shows the differences between 
scenarios as a function of installed pre-treatment. Vertical arrow: values used for calculating the risk ratio at a LRV = 6. Horizontal arrow: difference of necessary pre- 
treatment for achieving the same level of health protection. 
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4. Discussion 

In the present study, we used epidemiological data to assess the 
potential relevance of seasonal and between-year variability of NV 
concentration in WW for risk assessment and management of field-
workers in agriculture. To this end, we derived plausible risk scenarios 
from weekly incidence data on reported NV cases in the district of 
Braunschweig. Several studies before confirmed both seasonal varia-
tions of NoV GII concentrations as well as the positive correlations be-
tween wastewater concentrations and the number of reported NoV GII 
cases / incidence (Eftim et al., 2017; Hellmer et al., 2014; Huang et al., 
2022; Kazama et al., 2017; Miura et al., 2016). In previous studies, the 
relation between pathogen concentrations in wastewater and incidence 
in the population was used to estimate the incidence in the population, 
proposing that regular pathogen monitoring might function as an early 
warning system for diseases spreading in the population (Hellmer et al., 
2014; Medema et al., 2020). To the best of our knowledge, our study is 
the first attempt to use this relationship to estimate the relevance of the 
between-year variability of NV risk in water-related QMRA studies, and 
eventually its potential practical implications regarding risk reduction 
potentials and performance requirements. 

Our results suggest that within and between year-variability is likely 
to have a relevant impact on risk assessment results and thus should be 
considered a relevant factor to consider when evaluating local data for 
local QMRA studies. Thereby, our approach addresses a very common 
problem in QMRA studies, namely an assessment of the potential impact 
and relevance of the lack of multi-year data for local risk management. 

Due to the low sample size (n=7) of norovirus our own study has to 
be seen as a first attempt to use epidemiological data to estimate the 
relevance of inter-annual variability of Norovirus infections. Further 
validation of this approach with multi-year data (including seasonality) 
on NV in wastewater versus reported NV infections is warranted. Low 
sample sizes are a common cause of uncertainty in QMRA studies. 
Sales-Ortells et al. (2015) based a risk estimate for NV from consumption 
of lettuce on a sample size similar to ours (n = 8). Others based risk 

estimates on even smaller dataset, e. g. Amoueyan et al. (2019) or 
McBride et al. (2013) (n = 4). Complementing NoV GII observations 
with additional information, like long-term reported incidence, most 
likely leads to a more realistic estimate of the existing variability of NoV 
GII risk in comparison to deriving input distribution for source water 
concentration solely from the data collected over a limited period of 
time. Using incidence to estimate variation of NoV GII concentrations 
certainly constitutes an interesting alternative to only grouping nor-
ovirus data by season, as seasons may be quite different, as our results 
indicate. In one of the single studies, which measured NV over three 
years and correlated NV concentrations to reported AGI cases, Kazama 
et al. (2017) also found a significant positive correlation, which in-
dicates that correlations may hold for more than one year and gives 
some support for generating plausible risk scenarios from reported 
incidence. Therefore, if epidemiological information is available it 
might be beneficial to check whether collected NV wastewater data 
come from a low, average, or high incidence year. If data have been 
collected under- low incidence conditions only, an additional safety 
factor could be considered. 

However, our result also underline that there is a need for more long- 
term monitoring data, to better characterize the between year variability 
as a source of variation. Local multi-year wastewater data are still the 
preferred source of information for risk assessment in comparison to 
deriving scenarios from epidemiological data and are also needed for 
further validating existing modelling approaches, like ours. In this 
context, it is important to note, that the relation, i.e. regression pa-
rameters, between wastewater concentrations and reported incidence 
cannot be transferred to other locations as reporting systems and prac-
tices may be different between countries. Even within Germany, the 
federal governmental structure of the reporting system, makes the 
transfer of derived regression coefficients questionable. 

Next to inter-annual variability we also assessed the practical rele-
vance and the risk reduction potential of adapting irrigation periods to 
low incidence periods taking into account intra-annual variations. Our 
results suggest that cutting off peak concentrations of NoV GII from the 

Fig. 4. Difference in required LRV for achieving a risk level of 1% per person per year. Boxplots indicate the Monte Carlo uncertainty derived from 25 independent 
risk scenario evaluations. 
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exposure period may function as an additional effective risk reduction 
measure complementing wastewater treatment and disinfection. 

However, our result also indicate that, depending on the exposure 
level, a minimum level of wastewater treatment is necessary in order for 
this adaption to be most effective. These results may be of practical 
importance because studies, which aim at deriving required log- 
reduction values, may account for this additional source of variation. 
Moreover, while our scenario is tailored to locations in moderate cli-
mates, where irrigation is only partially necessary during the vegetation 
period, the obtained results may also be relevant for seasonal adjust-
ments of pre-treatment options in cases where irrigation is applied all 
year (e.g. greenhouses), as well as for risk assessments in areas where 
water use is particularly seasonal, like e.g. bathing water management. 
Note, however, that for risk management decisions other reference 
pathogens, like protozoan and bacterial pathogens would need to be 
considered as well. 

Our study makes several simplifying assumptions and disregards 
several factors. For example, no consideration is given to a potential 
immune adaption of workers. NoV GII rapidly expresses new variants, 
which affects immunity, but might also affect infectivity. Indeed, many 
of the peak incidence seasons can be linked to the occurrence of new 
variants of Norovirus becoming dominant. For example the high inci-
dence in season 2007/2008 can be attributed the variant 2006b 

becoming the dominant norovirus variant; another steep and early rise 
in Germany is in winter 2016 is connected to a new recombinant variant 
GII.P16-GII.2 (Niendorf et al., 2017). The effect of new norovirus vari-
ants and immune adaption on risk calculations has not been explicitly 
addressed in water-related QMRA so far and remain subject of future 
research. A further simplification in our study is that, for isolating the 
effect of norovirus variation we assumed a constant treatment perfor-
mance over the whole season. However, log-removal of viruses via 
biological wastewater treatment may be affected by other factors, like e. 
g. temperature. Both the under-estimation of large outbreaks by the 
reporting system, which pre-dominantly occur in winter and the tem-
perature effects are likely to further increase the calculated risk ratios as 
viruses are known the be more recalcitrant under cold conditions. Thus, 
while our study already indicated the relevance of seasonal effects, the 
true effect might be even more pronounced, and should be considered in 
future research. 

5. Conclusion  

• Risk scenarios derived from epidemiological data and NoV GII 
wastewater concentrations indicate that between-year variability is a 
relevant factor for assessing health risk resulting from NoV GII 
exposure. 

Fig. 5. Risk ratio (upper graph) and log-difference (lower graph) of the simulated median scenario risk. Different colors refer to different incidence scenarios. In-
dividual points refer to the Monte-Carlo error. 
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• Annual mean infection risk may vary by > 1log between years under 
the same exposure scenario.  

• Reducing irrigation to low incidence periods may reduce the risk 
infection > 1log units given sufficient pre-treatment.  

• The log-removal to achieve the same level of health protection of 1% 
per period per year is at least 0.9 log between scenarios  

• Additional safety factors may be applied in future QMRA studies to 
account for between-year variability.  

• The predictive power and wider use of epidemiological data as a 
suitable predictor variable should be further validated with paired 
multi-year data. 
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