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Influence of noise on power-law scaling functions and an algorithm for dimension estimations
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The influence of Gaussian noise on power-law scaling functions of interpoint distances has been investi-
gated. These functions appear in the estimation of the correlation dimesasibrihe attractor of a chaotic
dynamical system, where the relative number of pairwise distances smaller tharrelation integraltheo-
retically scales as®. Assuming the noise added to each measurement is independent and the distribution of the
distances is governed completely by the power-law scaling rule in the noise-free case, the scaling functions of
the perturbed distances have been calculated exactly. By considering the limiting cases for small and large
distances, a method is presented to estimate the variance of the added noise and approximations of the scaling
functions, which are suitable for data analysis, are derived. Dimension estimation can be improved by applying
a nonlinear fit procedure to histograms of interpoint distances instead of the usual linear regression on log-log
plots.[S1063-651X97)04506-6

PACS numbegp): 02.70—c, 05.45:+b, 82.40.Bj

I. INTRODUCTION Figure 1 shows an example of the influence of Gaussian
noise, with standard deviation varying from zdrmise-free
casg¢ to 0.1, on correlation integral curves of the e at-

In the analysis of chaotic behavior of dynamical systemstractor (a well-known numerical example that we will use
the correlation dimension of an attractor is an importantere, witha~1.22). It can be observed that the scaling be-
characteristic. Of the various definitions of fractal dimen-havior is almost entirely destroyed for the biggest noise
sions (see, e.g.[1]), it is the most accessible one for an |evel.
experimentalisf2,3]. The concept of correlation dimension  |n this paper, equations are derived for the deviation from
is based on the fact that the pairwise distancbetween the power law caused by adding uncorrelated Gaussian noise
points of the attractor satisfies the scaling rule to the measurements. In contrast with many numerical ex-

a1 periments to determine the statistical properties of dimension
n(ryere =, (1) estimationgsee, e.g.[10,11), a statistical approach is used
here, assuming the power law to hold exactly in the unper-
which holds for small values af. Heren(r) is the number turbed case. A useful review of statistical methods in dimen-
of pairs of points with distance and « is the correlation sion estimations is given by IshaihZ2].
dimension. The correlation dimension is a measure of the
geometric complexity of the dynamics of the systghb|.

In experiments, the attractor is reconstructed from a time
series of measurements of a certain variable, being “repre- In Sec. II, analytical expressions will be derived for the
sentative” for the state of the system, using the method ofnon-normalizeyiprobability density function$PDF9 of the
delay-time embeddingg5,7]. The correlation dimension is distances in the presence of independent Gaussian noise,
then often calculated by determining the relative number ofidded to the measurements. These expressions give a more
pointsC(r) with a range smaller thanfor various values of ~ correct description of the scaling behavior than Eq.does
r and plotting IrfC(r) against Im. This should yield a graph of
a straight line with slopex. If the points are reconstructed 1n[c(r)]
from a time series, the dimension of the reconstruction space
d, called embedding dimension, should be big enough for a
good representation of the state of the system. In theory, the 12
slope of the graph will converge ta with increasing em-
bedding dimensiof8].

For small values ofr, a deviation from the power-law
behavior is observed because measurements are perturbed by

A. Spatial correlation of reconstructed attractors

B. Outline of the approach

noise [9]. The curves bend off to a larger slope with an 0=0 i

associated dimensiath, which can be explained by the fact 1
that, on small scales, the dynamics is determined by noise, / -3 /2 -1 1 n(x)
which has an infinite dimension if it is uncorrelated noise. 0=0.05 0=01

FIG. 1. Correlation integral curves for a time series of 10 000
*Present address: Joh. Ensch@d¥., POB 464, 2000 AL Haar- points of the Heon map with added Gaussian noise
lem, The Netherlands. (0=0,0.05,0.1). The embedding dimensidr 6.
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and simulations can be made when the properties of the at- f (\/g) 1
tractor and the standard deviation of the noise are knawn g(s)zfr(\/g)’ =— =_—g¥271
priori. In the rest of this paper we will refer to the non-

= o5 2
normalized PDFs as “scaling functions.” We say, that o .
f (x) is a scaling function of the quantityif the PDF of the In the present study it is assumed that each coordinate of

variablex is proportional tof,(x) on a certain interval, say, €V€TY Pointéach measuremeris perturbed by adding inde-

0<x<Xq. Outside this interval, the PDF is unknown. p‘;”de”t normally distributed noise \.N'th mean 0 and variance
Asymptotic approximations for large and small values of? ° H(_are the _ﬁ)letr)turdbed qu dagtltu(?w_mch fare obser\lled In-an

r are then derived, which can be useful in the analysis of*Perimentwill be denoted by a tilde, for example,

measured data. As we shall see, the approximations are of —
the form X=X+ €y, ®)

dv's
ds 4

r\? with e, ~N(0,0%). The observed value of the squared dis-
A(d,a,0)r® P\ —| | (0<r<r) '

tance is
fr(r)~ 2 2
ralQ((g) ) (rh<r<r0). ~ ~5 d ~ ~. d 2
r s=r 221 (X —Yi) 221 (Xi—Yi+€)
Here o is the standard deviation of the nois&,is some d d
constant, andP(x) and Q(x) are polynomials(truncated =s+2> (X—VYi)e&+ > €, (6)
i=1 i=1

power seriesof the form 1+ p;x+ p,x?, where the coeffi-
cientsp, are dependent od and «. The boundaries, and L . N il
r, demarcate the validity of the two approximations. All nec- "WNereei - = & — €y, which has aN(0,20%) distribution. The
essary input for the nonlinear regression procedure, adjustingecond and third terms on the right-hand ig&iS) of this
Eq. (2) to fit the data, is given in Sec. III. equation describe the perturbation of the square of the Eu-
Section IV presents numerical experiments. The methodslidean distance due to the addition of the noise. We de-
of estimatinge and « are applied to a time series of the duce directly from the distribution of; that
Henon map and to a time series of pressure measurements in _ 5
a fluidized bed column. Finally, in Sec. V conclusions are E(s)=s+20d,
drawn about the usefulness of the analysis. _
Var(s)=8c?(s+ a?d). (7
Il THEORY In this calculation we have used the fact that the odd
A. Perturbation of fixed Euclidean distance by added noise moments of a standardized normal variable N(0,1) van-

It has been illustrated above that the distribution of dis-S"_and the even moments are given b (6°")
tances is governed by a cumulative distribution function=(2n—1)!":=Ip_,(2m—1). _
(CDF) that is proportional ta® on the intervalr<r,, the So, on average, the square of the distance between two
“scaling region.” In dimension estimations it is usual to POINts increases due to the addition of noise. This can be
compute the sample CDfor “correlation integral’) C(r) checked easily for the cagk=1. Each direction has a con-

: gt 2
from the data and obtair as the slope of a log-log plot. tribution of 20,
Alternatively, a maximum likelihood estimate far as a
function ofr, can be found4]. B. Derivation of perturbed scaling functions

In these procedures, all distances larger tharre dis- Until now, the distance had been assumed to be fixed.

carded. However, the introduction of this cutoff length is\ye know, however, that it satisfies the scaling rii. (1)

somewhat artificial. In this theoretical treatment the power d find th di ling law o
law is assumed to hold exactly for all distances. We want t or (3)] and try to find the corresponding scaling law for
i Ihe perturbed distance.

calculate the effect Of the addition of noise on the scaling For convenience, a coordinate transformation is applied
behavior. Thereforea,q is supposed to be infinite and we use
’ . such that
the (unboundey scaling functions
_ r (i=d)
f(r)y=re 1 (3 X — Vi) = )
r =10 (iza). ®
Any fractal dimension is invariant to the choice of the _ - _

norm. There are, for example, practical advantages in takinghis means that the difference vectory is taken in an
the L norm[13,14. However, the Euclidean norior L2 arbitrary directionthe x4 direction. This is allowed because
norm) is preferred because its square VaElg‘:l(Xi—Yi)z, there is rotation invariance on account of the independence
considered as a stochastic variable, has a known distributio?f the noise. The expression for the observed squared dis-
in many cases. Herg, ,y; are the Cartesian coordinates of tance of Eq(6) can then be simplified to

the pointsi,)? in d-dimensional space. In the case that the d—1
points are.not perturbzed by noise, the scaling function of the S=(r+e)?+ 2 6i2, (9)
squared distance =r~ equals =1
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2

where the indexd has been omitted for notational conve- (20)*°1 ae?e| @ al u
nience. To investigate scaling propertiesfwe will first fu(u)= Iz FzM 22252 9

calculate the scaling function of the quantity

ur=|r+el (10 Though the RHSs of Eqé13) and(14) are identical, in some

i , _calculations it is more convenient to use the more compli-
und_er the assumption thatande are independent stochastic ;i expression of E¢13), which avoided artificial singu-
variables. Subsequently, the second term on the RHS of Egities USINGMATHEMATICA , version 2.0.

(9 is considered. The PDF afis given by Note thatu equals the observed distance in the case
d=1; see Eqgs(9) and (10). Ford>1, the influence of the
1 22 remaining noise termse,...,eq—; Will be taken into
p(e)= 20\/;6 1D account. The scaling function ofi’=(r+€)?>=:w fol-
lows from Eqg. (14) by the transformation f,(w)
and the scaling functiorf,(r) follows from Eg. (3). Al- =fu(\W)/(2w):
though this is no PDF, the influence of the additionecto w1
r can be studied by treating it as being a probability density fL (W)= (20) ew/4ozr(f) (f 1 i) (15)
function. Our basic assumption is thataind € are indepen- W 27w 2 2'240%)"

dent stochastic variables. Therefore, to obtain the scaling
function f,(u) of u, the functionp(e)f,(r) is integrated The sum of the remaining noise terms in E§) is denoted
along curves of constantin the (e,r) semiplane. A constant py ;. The quantityv/20? has ay? distribution with d— 1

value ofu corresponds to two half lines in this plane, leaving degrees of freedom. The PDF ofis given by
the € axis from the points { u,0) and (1,0) at an angle of

3m/4. The integral is v p(d=3)2 ,
f,v)=5=f2 |5=|= g /4o,
B v 207 Xd-1\ 20 d-1
u u (20_)dflr
= “pet(-u-ader [ petu-ee 2
—w —x (16)
=f fr(r)p(—u—r)dr+f f.(r)yp(u—r)dr This is called a gamma distribution with scale parameter

0 0

1/40® and shape parameted € 1)/2.

1 = The observed squared distance is the sum of the non-
f ra-ife  (rtwo? L o= (r-wo?1qp negative quantitiess andv. They are independent because it
20\mlo has been assumed that the noise contributions are indepen-
(12) dent of each other and of Consequently, the scaling func-

tion is calculated from

Although f,(r) is not bounded, these integrals do converge
because for large values ofthe exponential functions de-

crease faster than the reciprocal of the power funatitnt f~("s'):J'§f (w)f,(5—w)dw= jgf (5—v)f,(v)dv.
(for any >0). Note that sincel is non-negative, the second  ° o MY o " v
term on the RHS is much larger than the first because the (17

exponential function attains its maximumrat u. The inte-
gral has been solved usimpTHEMATICA [15]:
Substitution of the functions of Eq&l5) and(16) in Eq.(17)

finally gives an expression for the scaling functiongfthe

o1, Lu 1+a 3 Uu? observed squared distance:
fu(u)=—=e UM — F(a)U(—,—,—Z)
2\Jm o 2 '2'40
o
N 1+« 1+a 3 Uu? - F(E) 42
et T) (TEH) - )= e _ja-11°
ks
2

HereU(a,b,z) [sometimes denoted &5(a,b,z)] is the con- 5 (a1l w)\(s—w)@372
fluent (or degeneraje hypergeometric function and XJ M(E’E’W)wa
M(a,b,z) [sometimes denoted aB(a,b,z) or ;F4(a,b,z)] 0 w
is Kummer's confluent hypergeometric functitsee[16], p. o
504, and[17], pp. 337 and 1064 Using a relation between Sd-1 F(E d—a d 3
the functionsU(a,b,z) andM(a,b,z) and the doubling for- = — M( =, — _2) (18)
mula of the gamma functiofsee[17], pp. 1058 and 9383 2(20) F(E) 2 '2° 4o
the functionf ,(u) is written in a more compact form 2
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FIG. 2. (a), (b), and(c) Graphs off(s), the scaling function of the observed squared distancey fot.2, 2.4, 4.8, and various values
of d with ¢=1/2. Also g(s)=1/2s*>"1, the scaling function of the exact squared distafeg. (4)], andf,(s), the scaling function of
(r+¢€)? [Eq. (15)], are plotted(For a=1.2, the two functions are too close for both to be showa), (e), and(f) Graphs ford=3,5,8,
plotted on a double logarithmic scale.

Figure 2 shows graphs of this function for various values ofscale. This should be a straight line with slopdor o—0,
a andd (with d>a); o is kept constant at 1/2 because the as confirmed in the graphs of Fig. 2.

only effect of changings is a rescaling of the graphs: If

fz(s) for =13 is denoted byf(s), then it follows that

~ on= ) ) C. Limiting behavior of scaling functions
f3(s)=(20)* “f(sldo“). The distance has the same units

as the measured variable in this text, however, for gener-  1he expression of Eq(18) is rather complicated. Al--

ality, the distance and the scaling functions are treated a§'ough some presently available fit programs can deal with

dimensionless variables. almost any model function, it is useful to obtain some insight
It is common to visualize the scaling function in the global properties of the scaling functions by consider-

ing their asymptotic behavior. In doing so we gain further

understanding of the general shape of the curves in Fig. 2.
Here we will give approximations of the scaling function,

_ which are valid for small(<r,) and large (>r}) values of

as a function of the distance, with a double logarithmic the distance, compared to the noise level. For the moment,

fr(r)=2rf3(r? (19
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we do not specify the values of andr,, exactly in terms of The boundary (, the distance below which the power-law
o andd, but we assume that they are both “of the order ofscaling rule is valid, is generally unknown. It is certainly

o.” By using the Taylor-series expansion of Kummer's much smaller than the total diameter of the attractor

function (see[16], p. 504, we obtain the approximations of max,, .|x(m)—x(n)|, which is, of course, a function of the
the scaling functiorf(s) of Eqg. (18) in both regionsf(r)  embedding dimension. We determingby inspection of the
then follows from the transformation of EGL9). From now  ysual correlation integral curves.

on, the tilde is omitted and we will only consider the ob-  |f the approximated scaling functions are used instead of
served quantities: So denotes the observed distance and the exact model function, we also need values rfar the
its square. The resulting approximations are distance below which the distribution is “governed” by the
noise, and,, the distance above which the influence of the
F(%) noise becomes negligible. The boundarniggndr,, depend

f.(r)= rdl[l—d_—a( i) ond ando. The latter dependence makes things complicated
' e d \40° becauser is one of the parameters to be estimated.
(20)°°T 2 In our analysis, the boundaries have been determined by
using global properties of the? distribution. If the distances
(d=a)(d—a+ 2)( r2\2 were caused by noise alone, which can be assumed to be true
2d(d+2) 402 tee (200 for the distances that are originally very small, then the quan-
tity x: =r2/20 has ay? distribution withd degrees of free-
for small distances (€r<r,) and dom. ThenE(x)=d and Vark)=2d. This means that the
) “typical noise distance” isr, =0 2d and _its “spread
f(r)=ra1 1_(a_2)(d_a)‘f around the mean” is approximated by
r r2 Ar =20 A\x~20Ax/2\/x, which just equalsr if x is

replaced by its mean antix by the standard deviation. The

_ _ _ _ 4
+(“ 2)(a—4)(d-a)(d—a+2)0 n } (21  following boundary values now appear to be plausible:

2r4

s/s,

for large distancesr(,<r<rg). Note that the lowest-order o8

approximation isr~! for large distances and a constant
timesr9~! for small distances, as expected. The constant in
Eq. (20) is the scale factor between the short-distance andthe ¢
long-distance power relation. This factor is a functiondof
a, ando.

For large distances, the first two terms of the expansion of  0-4
the scaling function of the squared distance,

sa’H[ ~ (a—2)(d—a)o?

fs(s)= > [l s +---0, (22

are equal to the first two terms of the expansion of the  vd2)RSE(?)
function  s—(d—a)20?]%?>"t.  This is  just
g(s— (d—a)20?), whereg( ) is the unperturbed scaling

function as introduced in Ed4): 1>

g(s—(d—a)20%)=g(s)—g'(s)(d—a)2¢°+ - - - 10

s (a—2)(d—a)20?
== L;|__ 75 + ..., 5
(23

It follows that, in the first-order approximation for large dis- 0.5 1 1.5 2
tances, the scaling functions are shifted versions of the noise- (b)
free scaling function of Eq(4), the shift being equal to -
(d—a)20?. This property can be verified by inspection of ~ FIG. 3. (a) Plots ofs/s, againsty=40?/s, for various values of
Fig. 2. the embedding dimensiah [see Eq(28)]. Using these curves, the

In an application, numerical values for the boundaries ofnmaximum likelihood value of the variance can be determined from
the regions, in which our approximations are valid, have tohe cutoff value of the squared distanggand the corresponding
be chosen. Because no general directives exist, we have usgdmple mears. (b) Plots of the RHS of Eq(29) multiplied by
some more or less heuristic arguments. JYMd/2 as a function ofj=40?/s;.
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rlzrnplzg\/ﬁpl ’ the cutoff version of the gamma distribution with scale pa-
rameter 1/42 and shape parametdf2. The functiony, ap-
Fh=Tn+Ar,Fr=o(y2d+Fp), (24)  pearing in the normalizing constant, is the incomplete

gamma function(see[16], p. 260. The estimation of both
whereF;<1 andF,>1 are constant factors. The choice of parameters of a gamma distribution simultaneously from
these factors is a trade-off between being safe concerning tHewest-order statistics is described by Wékal. [18]. Here
validity of the Taylor-series approximation, on the one handwe have the special case that the shape parantézeis
and including enough data points, on the other hand. In Se&nown.
IV we assume thatr is much smaller thang such that both We choose the maximum likelihood estimat@viLE)
regions of interest exist. (see, e.g.[19], p. 309, which is found by maximizing the
log-likelihood function
D. Estimation of the variance

Consider the region of small distancesr, . In this re-  L(a?)=In]] fy(s)
gion, the value of the observed distance is almost only de- !

termined by noise. Equatio{®) then becomes d

—CM|dS°MI2—zlE 2
4 “CTMIY g g2 M e s (2D
s~ €. (25)

=1 with respect too?. HereC is a constant independent of

and M:=#S, the number of samples smaller thgn The
As mentioned before, the RHS of this equation divided by, " P o

S ) “result is an implicit relation for the maximum likelihood
20?2 has ay? distribution withd degrees of freedom. This -~ P _ )
suggests that the smallest values of the squared distance c@fimatoro for the variancer®,
be used to estimate the noise variance

= — 1/
We take a large sampl&={sj|s;<s;} of measured E:q d e ™ 28)
squared distances. The upper bowspds the maximal value S¢ 2 4 [d1 '
of s, for which Eq.(25) holds. The PDF of each observation ay E'a
sis
S |d2-1 where ?z(llM)Eisi is the sample mean and
(m) q:=40?/s.. The theory of maximum likelihood estimators
T gslad? (0ss=<s,) also provides an expression for the minimum variance
fs(8)=1 4,2 d s (26)  bound, an asymptotic approximation for the variance of a
N2 402 MLE (se€[19], p. 308. The relative standard erroRFSE) of
0 (s>s,), a? is found to be
-~ var(o?) 1
RSE _2y. _ ~
R o?): = g y o 10 d . 1 o1 +d ' (29
w4 1)] 2 q ,(d1 2
Qv 5.3 Qv 5.3
2'q 2'q

Figure 3 shows graphs of the function on the RHS of Eques ofs, andd. For increasingd, the estimation will im-
(28) and the relative standard error of EQ9) for several prove because the influence of the noise is increased.
values ofd. Given a value ofs; and the corresponding The graphs of Fig. @) have a limitd/(d+2) for large
sample meass, the MLE of ¢* and the associated error can q. In this region they run almost horizontally and the estima-
be read from these graphs. tion is very sensitive to small changes in the sample mean.
The formulas above are valid if the only component in theThe estimate is most reliable if it corresponds to a point in
signal is the n_oise_. In Sec. llE itis shown that, in t_he first-the steep part of the graph, says 1. Sos, cannot be taken
orzder approximation, tge, value estimated here is really,q gmall, which means thaf? cannot be estimated from the
T d/(d_.a) instead ofo” itself. Th_|s |mplles_that from an leftmost part of the distribution. On the other hasdmust
observation of and Eq.(28) an estimate foq is found and be small enough for Eq25) to hold. If s, is taken too big,

~ sdd—a) the s values are not governed by the noise with dimension
o?= —g & (30 d, but by the scaling law of the underlying attractor. Then the
limiting value of s/s; will be a/(a+2), independent of the

To check the result, this should be repeated for various valembedding dimension and the noise level. Consequently, a
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constant value of the MLE of the variance can only be ex-scaling rule underlying théunperturbegl values of the dis-

pected in a limited region of; values. tance was neglected because the correlation dimension was
unknown. However, it is possible to correct the result of the
E. Influence of scaling behavior on variance estimation estimation by taking into account the influenceaof

To derive a MLE, the scaling function has to be trans-
The determination of the variance of the noise by theformed into a PDF by cutting off a, and normalizing. If
maximum likelihood estimate is only correct in order of only the zeroth- and first-order terms of the polynomial in
magnitude. There are two sources of error. First, the estimazq_ (20) are taken into account and the truncated result is
tion is calculated from a limited number of observations,yritten as an exponential function having the same terms up

which is inevitable; this statistical error is given by EB9). 11 first order, only the first-order influence afis calculated.
In addition, we have assumed that the distance on sm he normalized PDF becomes

scales is only determined by the noise; see %). The

e [(d-a)/d](si40®)  (0<s<s,)
fs)=1 42 4 | [d d-a s i (3D
d—a) 712

0 (s>5s¢).

This approximation is only valid if the first-order term is that completely characterizes the state of the system. Then
small compared to unity, so thatdo?<d/(d— a). It is easy the state space vectori(n)=[x1(n), o Xg(n)T (with

to check, by comparing with the derivation following Eq. n=1 ... N) can be used in the dimension calculations
(26), that the MLE foro? resulting from this PDF is just andd is the proper embedding dimension. Hexeis the
(d—a)/d times the value calculated before. Sb{(a)/d is  |ength of the recorded time series. For the practical case of a
the “first-order correction factor.” This factor is close to univariate time series(n), reconstruction vectorsi(n)
unity for larged, as expected. For small, it improves the —[x(n),x(n+1), ... x(n+oi—l)]T can be composed for

tehsélréw)?;;o:‘e?e variance considerably, as can be seen frO(}%wious values ofl. In the case of reconstruction vectors, the
ples. assumption that all noise contributions are independent is not
Ill. COMPUTATIONS strictly true because thkth coordinate ofi(n) equals the

TO ANALYZE EXPERIMENTAL DATA (k—1)th coordinate of>2(n+ 1) (k=2,...d) and so on.
Consequently, the corresponding noise contributions are
qual. However, this will only affect =|x(m)—x(n)| if
m—n|<d. These pairs are excluded from the distance simu-
lations to avoid this “diagonal effect.”

A typical time series consists of 46 10° data points. It is
sometimes necessary to omit the first fraction of the data t
avoid the influence of transients. The procedure is as fol

lows:
(i) Compose a series of reconstruction vectors from the ) _ )
time series by the method of delay-time embeddings and B. Inspecting the MLE for the noise variance
generate a sample of distances. The MLE method above gives a pre-estimate of the noise

(ii) Determine the MLE noise variance with E§8) from
only the short distances.
(i) Use the short-distance data and long-distance da

variance. From a large sample of distanc;n?%js calculated
{for various values o$; by solving Eq.(28). If we plot o as

together to estimate the variance and the dimension with & function ofs; (on a logarithmic scale three regions with
nonlinear regression method. different behavior can be expectel The left part of the

In the second step, the actual distances are utilized. Afted"@Phs(" S too small”) will be capricious as a consequence
that, the data are sorted in equidistant bins. The actuall¢f the finite number of events simulated) in the center of
fitted observations are the number of occurrences in each bi€ 9raphs we have the “plateau” we are looking for, and
and the error is its square root, implying conventional Pois{iil) the right-hand part* s; too big”) is an exponentially
son statistics. The fits can be made for each embedding difcréasing function due to the underlying power-law scaling.
mension separately, but also for all embedding dimensiongN€ interpretation is done by visual inspection, which is suf-
simultaneously. This section describes the computationd|Cient here, as itis only used for an initial guess.

implementation of these steps.
C. Nonlinear fit procedure

A. Reconstructing the attractor In an experimental situation, a large sample of interpoint

In the ideal case, for example, with known system equasdistances is generated. A histogram of these distances can be
tions, a multivariate time series with dimensiois available  compared to the scaling function found above:
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FIG. 5. Comparison of sample histograms with the model func-

) ) tions, for the Haon map @=1.22). In this exampler=0.05,
FIG. 4. Sketch of the general behavior of the PDF of the |nter-d:3,415y6, andr,=0.5. The sample sizedp=5><106. The bin

point distances of the attractor of a chaotic system in the presencgiyin of the histograms is 0.002.
of noise.

IV. EXAMPLES
n(r)=cf.(r) (r<ro), (32) o : :
The following simulations and calculations have been
wheren(r) is the number of distances between or and  done with the help oMATHEMATICA andMATLAB .
r. In addition to the two parameters of the scaling function
a and o, also the factor of proportionalitg is unknown. It A. The Hénon map
depends on the embedding dimensbrand the bin width

5 A well-known example of a dynamical system exhibiting
r.

i , o i , ) chaotic behavior is the Hen map[22]. The correlation di-
Since the scaling function is essentially nonlinear in théension of the Hieon attractor is approximately 1.22. It has
parameters, a nonlinear fit procedure is required to determingaan calculated numerically lgmong othersGrassberger
the parameters from the sample histogram. We have used thg,q Procaccié5].
nonlinear fit progranPASTIFIT, which is based on the algo-  the numerical experiment consisted of generating a time
rithm of Marquardt[20]. As mentioned in Sec. IIC, it is gqaries of 16 points by iteratingx(n)=1—1.4x(n—1)]2

possible to fit the data using the exact scaling function of Eq-+0.3x(n—2). To each point, independent normally distrib-

(18) as the model. Because Kummer’s function is not com-seq noise has been added. Subsequently, a large sample of

monly available, _it is re_placed by it; integral representatiorbquared distances has been generated by repeatedly picking
(see[16], p. 509 in the implementation, two pointsm,n at random, taking into account the above-
mentioned diagonal effect, and calculating the Euclidean dis-
¢ tance for various values af.
(20)9* [d—a In Fig. 5, plots of the sample histograms of the distances
r T2 for c=0.05 andd=3,...,6 areshown(jagged curves The
) bin width is 0.002(.)6The histograms contain approximately
(12402t (d—a)2—1, 9 _ gyal2—1 0.39 up to 1.3K10° events, smaller than 1, from a total
% fo € t 1=y dt, (39 sample size ofN;=5X 10°. A comparison with the scaling
functions requires appropriate normalization. The smooth
which involves numerical integration. This is a time- curves in Fig. 5 are model functions, calculated from Egs.
consuming process when many data points are concerned. T88) and (19), with @=1.22 ando=0.05, and normalized
obtain a procedure that is easy to use on a routine basis, tt§Ich that the area under the curve between 0rgnid the
approximated scaling functions given in EG80) and (21)  same as that of the histogram:
are applied. Because they are valid in certain regions, we get )
a piecewise nonlinear model functig@1]. The fit can be Cf Ofr(r)dr:C(ro)ar, (34)
optimized by repeating it for various values of the region 0
boundaries by adjusting the parametérsand F, in Eq.
(24). which givesc for eachd. HereC(r) is the number of dis-
The global behavior of the PDF of the distances istances smaller tharn,. The graphs exhibit a good match with
sketched in Fig. 4. For a nonlinear fit to succeed, prethe sample histograms.
estimates(initial valueg are needed, which are correct at  As an illustration, Fig. 6 showon-normalizegl model
least in order of magnitude. The initial value of the propor-functions fora=1.22 and various values df[with ¢=0.05,
tionality factorc is not very critical, but those ok ando  Fig. 6@], and o [with d=6, Fig. 6b)]. Of course,o=0
are. We usda) the usual estimate aof from the slope of a gives the unperturbed scaling functioh?2 All these func-
log-log plot and Eq(1) and(b) the MLE of o® as described tions have been calculated by evaluation of the RHS of Eq.
above. (18) and the transformation of E¢L9). The influence on the

rdfl

cf ()=
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FIG. 7. Graphs of the ML estimate of the variance of the noise
as a function ofs., for various values ofi, for a time series of
10* points of the Haon map. The estimates have been calculated
from a random sample of %10° interpoint distancegof which
approximately 1.3%¥10° are smaller than 1 ford=3 and
0.39x 10° for d=86).

B. Fluidized bed data

The experimental time series that we have investigated
consists of pressure measurements in a cylindrical fluidized
bed (FB) column. Recent studieg24—26 have suggested
that the hydrodynamics of a fluidized bed can be character-
ized by deterministic chaotic characteristics such ag¢be
relation dimension and the entropy. In this context, the di-
mension can be used to characterize the hydrodynamic

FIG. 6. Examples of numerically calculated model functions, regime.
with @=1.22 for (a) d=3,4,5,6 andor=0.05 and(b) o=0 up to In the experiment, the FB column, with a diameter of 10
0.05 with steps of 0.01 and=6. cm, was filled with spherical polystyrene particles with a
diameter of 0.56 mm and a density of 1100 kg§/mir was
used as fluidization gas. The fluidization velocity was 20
cm/s. The sample frequency of the pressure sensor was 500

shape of the curves of changingis big. This is also caused
by the small value ofr (compared td).
In the case of an experimental time seriasand o are
) ) . Hz.
unknown. This case can be simulated by regarding the avalf:| In the dimension analvsis. we have used a time series. to
able Heon time series as a series of successive measurg-” . oted by “FB.” cor)1/sist,in of everv tenth point of thé
ments of some physical variable, whose generating mecha- y ! 9 y P

nism is investigated. The unknown parameters can then bgeasured time series. So the time step between the points

. . . i . .ot is 0.02 s. The length of the time seridsis again 10
ggﬁgzmgiig%’ :L]ﬁcrsi%r:llmear fit procedure with the IOIeceW'S%oints(or 200 3. The first 500 point$10 9 of the time series

: . — are plotted in Fig. 8. The same analysis as in the previous

The pre-estimate a# is 1.3 from a plot as in Fig. 1. The . . )
pre—estilranate ob2 is found from Fig 7p which shogvs a plot example has been applied to the FB time series. Plots of the
of the MLE of o as a function of, (6n ’a logarithmic scale sample histograms of the distances and the MLE of the vari-

The behavior of these curves has been explained before. 1 1°° of the noise are shown in Fig. 9. The results of the

is observed that the plateau decreases with increairg plecewisg nonlinear fit. are summarized in Table'l. To obtain

agreement with the correction factdf(d— a) of Eq. (30) a good fit for the FB time series, the data for different em-
9 A @ a- ' bedding dimensions had to be fitted separately; therefore, we

The result iso?~0.0024, almost exactly the true value. The have different values oft and . A simultaneous fit using

results of the piecewise nonlinear fit are listed in Table I. Itisthe exact model function of Eq33) gives a~1.777 and
rewarding that the simulation parameters are recovered.( 257, which is in the same order. These results indicate
within a few percent of their actual values. that in this case single fits at higher embedding dimension

In this case, the data of Table I can be used for furthegeng 1o overestimate the correlation dimension and underes-
analysis of the system. The factor of proportionatitgon-  {imate the noise variance.

tains information on the correlation entropy, which is a
measure for the rate of divergence of initially nearby trajec-
tories[5,14,23. It quantifies the unpredictability of time evo-
lutions. For small Euclidean distanceand larged, we have It must be repeated that the above is an idealization. In
f (r)=cre t=c’e Kdd~*2re=1 Applying this to the data practice, the scaling rule is only an approximation of a part
gives K~0.30, which agrees reasonably with the valuesof the real PDF of the distances. For large distance it is only
found in[5,23]. known that the PDF will have a maximum, beyond which it

V. CONCLUDING REMARKS
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TABLE I. Fitted parameter values for lden time series with added noise£0.05) and FB time series.

Time series d ro F Fn c a o

Henon 3 0.5 0.5 15 2991 1.1868 0.0039 0.0522+ 0.0003
4 1883
5 1204.2
6 799.0

FB 3 2.0 0.6 1.2 2174 1.6466 0.0073 0.2046+ 0.0034
4 1357 1.8946+ 0.0089 0.1798t 0.0033
5 817.4 2.2466+ 0.0111 0.1561+ 0.0047
6 485.4 2.5595+ 0.0153 0.1610t 0.0063

will decrease to zero, as in Fig. 4. For small distances there is (i) The expression of Eq18) describes the reality in the
always the problem of discretizatidnausing “steps” in the idealized case of perfect scaling and normally distributed
correlation integral curves; s¢8]). Furthermore, in practice noise (if the standard deviation is a fraction of the scaling
noise can be correlated or depending on the measurementregion boundary ).

By inspection of the graphs of Fig. 2, it can be observed (i) In the Heon example, it is observedee Fig. 5 that
that althoughf,, deviates considerably from, the function the width of the scaling region increases with increasing em-
f3 approximatesy very closely ford~a. (Exact equality —bedding dimension, approximately wit{d. This is under-
cannot be achieved becauseis generally a noninteggr. standable because Euclidean distances calculated from the
This effect was explained in Eq&22) and(23). The conse- same data are on average proportionalth Therefore, it
quence is that, if the embedding dimension is chosen as clog®uld be sensible to usg(d)=r,/d, with r; fixed.
to a as possiblei.e., d=[«]), the effect of noise on the (i) In the fluidized bed example, the correlation dimen-
scaling function is minimized. Sauer and Yor&] proved  sjon does not converge. For these data the model is not cor-
that theoretically, in reconstructing an attractor from experirect. This could mean that the FB system cannot be described
mental datad>« is indeed a sufficient condition for the
power law to hold. Numerical limitations caused by lack of
data are treated by Dingt al. [28].

Smith [29] has derived an approximation of the correla-
tion integral based on a linearization of system equations.
His approach is different, but he comes to an integral form of
Eq. (18). This work shows that his approxiamtion is a special
case of a more generally valid equation. A similar approach
is followed by Schreibef30], who derives an analytic ex-
pression for the perturbation of the correlation dimension as
a function ofr, using theL”™ norm. The parameter is then
determined by fitting this function to the data for various
values ofd. Another interesting algorithm is the one by Diks
[23]. Here a modified definition of the correlation integral, 0.5 1 1.5 2
containing a kernel function specially tailored to Gaussian
noise and having the same power law property as the “stan-
dard” correlation integral, is used to fit, «, andK.

From the numerical experiments, the following conclu-
sions can be drawn.

n(r)

2000

1500

1000

500

pressure

.
=

logiq(sc)

FIG. 9. (a) Graphs of sample data histograms for the FB time
series. The bin width of the histograms is 0.0Q3). Graphs of the

FIG. 8. Detail of the time series of pressure measurements in ML estimate of the variance of the noise as a functiorsof for
cylindrical fluidized bed. The time interval is 0.02 s. various values ofl, for the same time series.
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by a low-dimensional chaotic attractor or that the noise is ofcated. More advanced statistical methods such as those used
a different nature than assumed here. by Cheng and Ton{31] have to be applied.
(iv) The nonlinear fit procedure based on limiting behav-
ior is a fast and useful method to recover the values ahd
o. However, the method can still be cumbersome in choos-
ing the limits of the validity regions. Nonlinear regression  The development of the data analysis method described
with the complete functiofEq. (33)] is then an alternative. here originates from research on the hydrodynamics in flu-
The case of autocorrelate@r even dependentnoise idized bed reactors, carried out in the Chemical Reaction
could be investigated separately, but it is obvious from theEngineering Group of the Delft University of Technology
foregoing that the expressions involved will be very compli-and supervised by C.M. van den Bleek and J.C. Schouten.
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