
Proceedings of Meetings on Acoustics

  Volume 11, 2010 http://asa.aip.org 

 
 
 
 
 
 

160th Meeting
Acoustical Society of America 

Cancun, Mexico 
15 - 19 November 2010 

Session 1pBB: Biomedical Ultrasound/Bioresponse to Vibration

1pBB8.   Modeling nonlinear acoustic waves in media with inhomogeneities in the coefficient of 
nonlinearity

L. Demi*, Martin Verweij and K.W.A. Van Dongen

*Corresponding author’s address: Lab. of Acoustical Imaging and Sound Control, Delft University of Technology,
Lorentzweg 1, Delft, 2628 CJ, Zuid Holland, Netherlands, l.demi@tudelft.nl

  The refraction and scattering of nonlinear acoustic waves play an important role in the realistic application of medical 
ultrasound. One cause of these effects is the tissue dependence of the nonlinear medium behavior. A method that is able to
model those effects is essential for the design of transducers for novel ultrasound modalities. Starting from the Westervelt 
equation, nonlinear pressure wave fields can be modeled via a contrast source formulation, as has been done with the
INCS method. An extension of this method will be presented that can handle inhomogeneities in the coefficient of nonlin-
earity. The contrast source formulation results in an integral equation, which is solved iteratively using a Neumann
scheme. The convergence of this scheme has been investigatedfor relevant media (e.g., blood, brain, and liver). Further, as
an example, the method has been applied to compute the 1D nonlinear acoustic wave field in an inhomogeneous medium 
insonified by a 1 MHz Gaussian pulse propagatingup to 100 mm. The results show that the method is able to predict the 
propagation and the scattering effects of nonlinear acoustic waves in media with inhomogeneities in the coefficient of 
nonlinearity. This motivates a similar extension ofthe 3D INCS method.
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INTRODUCTION

Refraction and scattering of nonlinear pressure wave fields occur if inhomogeneities in the acoustic medium parameters
are present. As these phenomena play an important role in medical diagnostic and therapeutical applications [1, 2, 3, 4],
the design of new transducers and the development of novel applications requires the ability to model these effects
accurately.
The Iterative Nonlinear Contrast Source (INCS) method is an excellent method to model nonlinear acoustic wave
fields [5, 6, 7, 8]. Up to date this method has only been applied to homogeneous media. In this paper an extension of
the INCS method, such that it can handle inhomogeneities in the coefficient of nonlinearity, is proposed.
After formulating the theory and introducing the contrast source formulation for the Westervelt equation in section II,
the iterative Neumann solution method is presented in section III. In section IV the convergence of the iterative method
is investigated with respect to relevant media (i.e. fat, liver, brain, water and blood). Further, as an example, the method
has been applied to compute the one-dimensional nonlinear acoustic wave field in a medium with inhomogeneities in
the coefficient of nonlinearity. Results are shown and discussed in section IV, followed by the conclusion in section V.

THEORY

Let the vector x denote a position in a three-dimensional spatial domain and let the scalar x denote a position in a
one-dimensional domain. Let the scalar t denote the time coordinate. Let �t denote the time derivative, ∇ the Nabla
operator and ∇2 the Laplacian operator. The acoustic properties of a specific medium are defined via the ambient
speed of sound c0, the ambient volume density of mass �0 and the coefficient of nonlinearity � . Values are resumed in
Table 1 [9] for fat, liver, brain water and blood.
The nonlinear propagation of the pressure wave field p(x, t) is described by the Westervelt equation [10]. In order
to take inhomogeneities in the nonlinear behavior into account, a space dependent coefficient of nonlinearity � (x) is
included. The resulting generalized form of the Westervelt equation reads

∇2p(x, t)− 1
c20
� 2t p(x, t) =−Spr(x, t)−Snl [p(x, t)] , (1)

in which the primary source term Spr(x, t) is defined via the sources which generate the acoustic field; the volume
density of injection rate source q and the volume density of volume force source f [11], viz.

Spr(x, t) = �0�tq(x, t)−∇ · f(x, t). (2)

The nonlinear source term Snl [p(x, t)] describes the nonlinear behavior of the medium and reads

Snl [p(x, t)] =
� (x)
�0c40

� 2t p2(x, t). (3)

For the forward problem, equation (1) represents a contrast source problem with known primary sources and medium
parameters and unknown pressure wave field.

SOLUTION METHOD

The solution of the forward problem, represented by equation (1) is obtained by solving the integral equation [5, 6, 7, 8]
which reads

p(x, t) = G(x, t)∗x,t
{
Spr(x, t)+Snl [p(x, t)]

}
, (4)

with ∗x,t the convolution operator over space and time and G the Green’s function. The Green’s function describes
the field generated by a delta source � (x)� (t) in a homogeneous lossless linear background medium. For the
three-dimensional case G equals

G(x, t) =
�

(
t− ||x||

c0

)
4� ||x|| , (5)

Demi et al.

Proceedings of Meetings on Acoustics, Vol. 11, 020001 (2010)                                                                                                                                    Page 2



TABLE 1. Acoustic medium parameters for wa-
ter and several human tissues [9].

Medium � c0 [ms−1] �0 [Kgm−3]

fat 6.150 1430.0 928
liver 4.375 1578.0 1050
brain 4.275 1562.0 1035
water 3.480 1482.3 1000
blood 4.000 1584.0 1060
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FIGURE 1. Normalized error functional Err for water and relevant human tissues in configuration A.

with � (t) the Dirac delta function and ||·|| the length of a vector. For the one-dimensional case G equals

G(x, t) =
c0
2
H

(
t− |x|

c0

)
, (6)

with H(t) the Heaviside step function.
After discretization with respect to space and time, the Neumann iterative solution scheme [11] used to solve the
presented integral equation (4) reads

p(n) = 0 for n< 0, (7)

p(n) = G
[
Stot

[
p(n−1)

]]
for n≥ 0, (8)

Stot
[
p(n)

]
= Spr+Snl

[
p(n)

]
, (9)

in which the vector p(n) contains the n-th order approximation of the pressure field at discrete grid points. Further, G
is the operator that convolves the discrete Green’s function with the discrete total source. The latter is obtained by the
source operator Stot

[
p(n)

]
.

Convergence of the iterative solution

To investigate the convergence of the presented method, a normalized error functional is introduced. This error
functional is defined as

Err(n+1) =

∥∥∥p(n)−G
[
S

[
p(n)

]]∥∥∥∥∥p(0)
∥∥ , (10)
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FIGURE 2. Amplitude profile of the fundamental (F0), second harmonic (2H) and third harmonic (3H) component in
configuration B.

and indicates if the obtained solution converges toward a stable solution.

IN SILICO EXPERIMENTS

In this section the one-dimensional results obtained with the presented method are shown and discussed. First, the
convergence of the presented contrast source method is investigated for homogeneous fat, liver, brain, water and
blood. Second, in order to show the capability of the method to model scattering effects caused by inhomogeneities
in the coefficient of nonlinearity, results obtained for a pressure wave field propagating through an inhomogeneous
nonlinear medium are presented.

Configurations

Two configurations are used to demonstrate the presented method; configuration A, which is based on nonlinear
homogeneous media and configuration B, which uses liver as a linear homogeneous background medium and which
contains inhomogeneities in the coefficient of nonlinearity � . The coefficient equals

� (x) =
{

0, x< 20 mm or x> 60 mm,
4.375, 20 mm≤ x≤ 60 mm.

(11)

In both configurations the one-dimensional pressure wave field has been generated by a Gaussian pulse, resulting in a
pressure jump at the location of the source which reads

ΔP(t) = 2P0e−(2t/tw)2sin(2� f0t), (12)

with center frequency f0 = 1 MHz, time width tw = 3/ f0 and pressure peak P0 = 0.5 MPa.

Results

In Fig. 1 the normalized error functional Err, obtained for configuration A, is represented for fat, liver, brain, water
and blood. In each case the normalized error functional flattens after it reaches the value Err(n)≈ 10−16. This value is
related to the numerical precision of the computer. As expected the stronger the nonlinearity, and hence the contrast,
the more iterations are required to reach convergence toward a stable solution.
In Fig. 2 the amplitude profiles of the fundamental (F0), second harmonic (2H) and third harmonic (3H) component,
generated in configuration B, are shown with respect to depth x. The results clearly show that the harmonics start to
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FIGURE 3. Normalized space-frequency profile of the nonlinear pressure wave field in configuration B. Amplitude values in dB
relative to the maximum value of the fundamental.

t [ μs]

x 
[m

]

0 10 20 30 40 50 60 70

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1
20

30

40

50

60

70

80

90

100

110

FIGURE 4. Space-time profile of the nonlinear pressure wave field in configuration B. Amplitude values in dB re 1 Pa.
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FIGURE 5. Normalized error functional Err for configuration B.
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grow at 20 mm depth and remain constant after 60 mm. This is in agreement with the expectations as the coefficient
of nonlinearity is only non zero in the region in between this depths. The same analysis is valid for Fig. 3 where the
normalized amplitude profile of the pressure wave field generated in configuration B is plotted with respect to depth x
and frequency f . The amplitudes are normalized with respect to the maximum of the absolute value of the fundamental
component of the wave field in the frequency domain.
In Fig. 4 the amplitude profile of the nonlinear pressure wave field generated in configuration B is represented with
respect to depth x and time t. As the coefficient of nonlinearity � changes from 0 to 4.375 and from 4.375 to 0, at
respectively x= 20 mm and x= 60 mm, part of the pressure wave field is reflected at these points and propagates back
to the source.
Figure 5 shows the normalized error function for configuration B. In this case the scheme needs lees iterations to
converge with respect to the homogeneous nonlinear case as the part of the domain that contains the contrast is smaller.

CONCLUSION

In this paper, a method to compute the propagation of nonlinear ultrasound pressure wave fields through media with
inhomogeneities in the coefficient of nonlinearity � has been presented. The method is based on a generalized form of
the Westervelt equation in which a space dependent coefficient of nonlinearity � (x) has been included. The resulting
integral equation is solved using a Neumann iterative scheme.
The presented contrast source method has been developed from the INCS method which is known to produce accurate
results for nonlinear acoustic wave fields in the presence of weak to moderate nonlinearity.
The presented method has been tested for the one-dimensional case. In silico experiments show that effects related
to nonlinear propagation and scattering caused by inhomogeneities in the coefficient of nonlinearity are modeled
correctly.
This motivates a similar extension of the method to the three-dimensional case.
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