TU Delft

Evaluating selection criteria for functions mapping objective speech
intelligibility predictions to subjective scores

Berken Tekin!

Supervisor(s): Jorge Martinez Castaneda', Dimme de Groot!

'EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfillment of the Requirements
For the Bachelor of Computer Science and Engineering
January 26, 2025

Name of the student: Berken Tekin
Final project course: CSE3000 Research Project
Thesis committee: Jorge Martinez Castaneda, Dimme de Groot, Przemyslaw Pawelczak

An electronic version of this thesis is available at http://repository.tudelft.nl/.



Abstract

Objective speech intelligibility metrics (OIMs) are
widely used in various fields, including public ser-
vice announcements. These metrics do not directly
predict the intelligibility of a speech (defined as
the ratio of understandable words in an audio sam-
ple), but produce values that tend to monotonically
increase with intelligibility. Several mapping func-
tions, typically logistic models, are applied to raw
objective scores to produce accurate predictions.
However, there exists no standard methodology
for choosing the best mapping curve, therefore,
researchers tend to reuse curves originally meant
for other datasets and OIMs. This research ap-
plies a method called Akaike Information Criterion
(AIC), specifically developed for model selection,
to existing candidate models as well as new ideas
based on simple heuristics. Afterwards, the mod-
els are evaluated using AIC. The new criterion
affirmed the logistic mapping functions chosen
for the objective intelligibility metrics STOI and
MIKNN, and highlighted alternative models for
the SIIB and SIIBg,,. However, with too few lis-
tening conditions on the dataset, strong inferences
could not be easily made from the data.

1. Introduction

Speech intelligibility can be described as a measure of the
understandable portion of a speech sample. High intelligi-
bility of speech is especially important when there is little
room for ambiguity and misunderstandings, such as critical
emergency announcements.

Measurement of speech intelligibility can be done by
conducting surveys with participants [1]. Listening tests
are well studied to the point that official institutions pro-
vide guidelines to facilitate scientifically sound subjective
measurements [2]. Usually, percent Word Correct Ratios
(WCR), words understood by a listener as a percentage
of all words in a speech sample, are used for scoring.
Unfortunately, collecting subjective word-correct ratios from
large groups are “time-consuming and expensive” [1], and
speech intelligibility cannot be evaluated on the spot with
this method.

Better computing capabilities allowed the development of
algorithms that mathematically approximate speech intelligi-
bility. These algorithms are known as Objective Intelligibility
Metrics (OIMs). Different OIMs utilize a variety of methods
to predict subjective speech intelligibility metrics, from
information-theoretic approaches [3] to (simpler) frequency
domain comparisons [4]. Nonetheless, they all aim to follow
a monotonic relationship with subjective data [5].

However, an ideal intelligibility metric would not just
rank different samples correctly; it would be able to reliably
estimate a word-correct ratio from a given speech sample.
The capacity of an OIM to predict WCRs is commonly
measured [4]-[13] by first fitting a monotonic function
with free variables (“the model”) to capture the relationship

between objective and subjective metrics. Afterwards, the
goodness of fit of the model is measured using several
performance metrics (the procedure is detailed in Section II).
However, a particular monotonic function is chosen based
on heuristics in many cases, and it is not always clear from
the research why a certain monotonic mapping function is
preferable to others for a given OIM.

Then how can researchers confidently use a provided
mapping function for a given OIM with their own dataset? If
a provided model is biased towards trends in the provider’s
dataset, performance metrics for different datasets would
also show a propensity towards rewarding features found
in the provider’s dataset, to the extent they are carried
through the mapping function. Such unintended effects may
be prevented with careful model selection.

In this paper, an information theoretical metric called
Akaike’s Information Criterion (AIC) [14] is explored for
its utility in selecting the most suitable model that can map
objective metrics to word-correct ratios. In Section II, the
data set and the proposed criterion are introduced. The model
selection criteria described in [6] are also compared with the
proposed criterion. In Section III, more detail is given on the
programming environment used to run the experiments. Two
experiments are done in section IV, and the AIC best fits
for given OIMs are compared to original mapping function
recommendations for each OIM. Section V explains the
results of the experiment. Section VI clarifies that all data is
licensed, ethically sourced and reproducible. In Section VII,
limitations related to the research are explained. Finally, VIII
shortly summarizes the research question, recommended
solution and the next steps.

II. Methodology

In this section, first, the contents of a data set with Word
Correct Ratios (WCRs) are summarized. The contemporary
methodology for selecting a function that maps objective
intelligibility scores to WCRs is then explained, and a
different methodology is proposed.

A. Dataset with subjective word correct ratios

An ideal data set for speech intelligibility evaluation would
have a variety of listening conditions that could be used to
perform more comprehensive tests on objective intelligibility
metrics. However, the only available data set with subjective
WCRs not used by other members of the project group is
the ALLSSTAR corpus (L1 Native Speakers):

o Data obtained from English speakers [15].

o The portion used for the project contains HINT sen-
tences uttered [16].

o 26 native English speakers with ages ranging from 18
to 23 years

o 120 sentences repeated by 23 native speakers, 110
sentences repeated by 2 more native speakers.

e 250 participants rate clean files and noised files with
signal-to-noise ratios (SNR) ranging from —4 to 8.
Only one type of noise is used (Speech-shaped white
noise). In total, 29980 speech samples (each with one
sentence) is rated.



Listening Conditions

The clean sentences are processed to create seven noisy
samples with different Signal-to-Noise Ratios (SNRs) before
being scored by 250 participants. As only one type of noise
is used, 7 different listening conditions can be reproduced
from ALLSSTAR, one for each level of SNR.

B. Current Model Selection Criteria

The correlation between objective intelligibility metrics
(OIMs) and word correct ratios (WCRs) is determined
by first fitting a monotonically increasing function (“the
model”) to the data with a nonlinear least squares (NLS)
procedure (see Section III for the NLS procedure used for
the experiments). Afterwards, OIM scores (F) are mapped
to estimated word correct ratios (P) using the fitted model.
Finally, performance metrics such as the root mean square
of prediction errors (RMSE) between P and actual word
correct ratios (S):
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and the Pearson Correlation Coefficient (p), a linear
correlation measurement!
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are calculated to test the goodness of fit achieved by a
given mapping function.

However, research does not always include a clear
roadmap to choose a suitable monotonic fit. The same
mapping function may be used for different metrics (see
[4], [8], [13]), or a later paper may suggest a new mapping
function for an earlier algorithm (see [4], [17]). However,
the reasoning behind such modifications is not always elab-
orated.

As a notable exception, in [6] it is suggested that due to
the logistic relation between signal-to-noise ratios (SNR) and
word-correct ratios (WCR), this shape could be composed
with the shape of the relationship formed by the SNR and the
OIM, to create a suitable candidate model for an adequate fit.
For example, OIMs that linearly correlate with SNR values
could comfortably utilize a logistic model to test the OIM.
However, the proposed guideline has certain drawbacks:

1) Although the logistic curve may be a good selection
for WCR-SNR graphs with one type of noise, as more
listening conditions are associated with each SNR
level, other monotonic relationships may better explain
the correlation. As an example: Speech intelligibility
algorithms are known to correlate less with enhanced
noisy speech [18], and if there is a monotonic relation-
ship between the OIM and the SNR, this means that
the WCR-SNR relationship would also be affected.

2) If such a transformation is applied to data with a single
listening condition per SNR, this essentially defeats

'The mapping function linearizes the WCR-OIM graph.

the purpose of OIMs, as the SNR measure itself would
be just as good at predicting WCRs.

3) Even if the WCR-SNR relationship is indeed logistic,
one would still need to select suitable candidate mod-
els for the OIM-SNR relationship for anything more
complicated than a linear or exponential relationship.
The shape of such a model would depend on the inner
workings of the OIM.

4) When the WCR value per SNR level is utilized as a
ground truth to derive accurate mapping functions, this
requires the SNR values to always be within the set of
listening conditions. This may not be too inconvenient
for researchers, but it is an arbitrary constraint.

Thankfully, there exists a model selection method that
makes no assumptions about any particular listening condi-
tion and provides an easy way to evaluate different candidate
models.

C. Akaike Information Criterion (AIC)

Akaike Information Criterion [14] is one of the most well-
known model selection criteria [19], and has been used in
speech intelligibility research [20], as well as a variety of
other applications [21]. AIC is developed to estimate the dif-
ference between a candidate model and a “true model” that
is assumed to generate the data fitted by the candidate model.
This difference is called the “Kullback-Leibler divergence”,
and AIC is able to estimate that parameter even without
information about the true model [19]. For models fitted
to the same data, the lowest AIC score indicates the model
that best captures the true model. However, for small sample
sizes, there exists a modified AIC with a corrective term to
prevent overfitting toward models with more parameters (e.g.
[22]):

2k% + 2k
n—k—1

where k is the number of free parameters in the model
and n is the number of data points [23]. If n/k < 40,
AIC, should be used instead of AIC [23]. For the database
at hand, n is 7 (see II-A), therefore, AIC, is used to evaluate
the models in this paper instead of AIC. However, the terms
will be used interchangeably for descriptions.

The value produced by AIC is not an absolute measure of
quality, it changes based on factors not related to the model
itself, including the sample size of the data [23]. The AIC
values make sense only in relation to the AIC values of other
candidate models fitted to the same data set. Therefore, for
all candidate models, the AIC value is normalized to obtain
a relative scoring w.r.t. the minimum AIC [23], [24]:

A,; = AIC; — AlCy,

Each A\; is a measure of “information loss” about the
underlying data compared to the best model among the
candidates, with the best model having A, = 0 [23]. A
model selection “rule of thumb” has been recommended for
AIC, where candidates with /\; < 2 are strong alternatives
to the best model, 4 < A; < 7 implies less support for
the candidates, and A; > 10 means the model is not a

AIC, = AIC +



suitable candidate [23]. However, the exact cut-off points
are controversial [25], and therefore the focus will be on
the “best model” (in the Kullback-Leibler sense) selected
by AIC.

A\; may also be used to calculate Akaike weights w; [23],
(26]

exp {—3A;(AIC)}
ZMj exp {—2A,,(AIC)}

m=1

which convert A; values into probabilities. w; weights add
up to 1, and each w; indicates the probability that the model
1 is the best model, in a Kullback-Leibler sense, among the
candidate models given (e.g. [27]).

D. Description of experiments

1) The objective intelligibility metrics STOI [4] and
MIKNN [8], despite using different theoretical frame-
works to calculate speech intelligibility, are mapped
using the same logistic curve. However, both authors
utilize a two-parameter logistic curve (L2) in their
papers. In experiment IV-A, several different logistic
functions with different parameters will be tested to
see whether Lo is indeed optimal.

2) There exist two related OIMs: SIIB and SIIBg,,. De-
spite both being based on information theory, different
models are suggested by the author to fit these OIMs
to the WCR data. In experiment IV-B, the proposed
criterion is used to examine how strongly each model
is preferred by the respective OIM for the data set at
hand.

ITI. Experimental Setup

Speech samples are processed with Praat software, version
6.4.25 (December 8, 2024) [28], and the objective metrics
are calculated using Python 3.13. The fittings and plots of
the model are made using R Statistical Software [29].

A. Praat

Praat is a free and open-source software that is used to
manipulate and analyze audio files. During the project, Praat
has been used for two purposes:

1) For ALLSSTAR database, a metadata file with a
.TextGrid extension is distributed for each audio sam-
ple. The samples contain 60 sentences each, and the
TextGrid file has timestamps for the beginning and
end of each sentence. Using the scripting functionality
of Praat, each file is split into 60 audio tracks, one
per sentence. However, instead of scripting in Praat
directly, the Parselmouth [30] API for Praat is used
inside Python.

2) The ALLSSTAR maintainers provide several Praat
scripts on their website. A script from the website that
mixes a provided noise file with clean speech given
at different SNR levels is used to generate degraded
(noisy) audio samples.

B. Python

Python has been used primarily for calculating objective
intelligibility metrics for clean and degraded speech samples.
For each objective speech intelligibility metric, the following
libraries are used:

o STOI: pystoi, based on MATLAB implementation of
STOI [7],

« MIKNN: Executed within MATLAB engine [31], code
available in an online repository, license permits aca-
demic use.

o SIIB & SIIB,,,: pysiib, ported from MATLAB im-
plementation [32]

For each calculated metric, a Polars [33] dataframe has
been created with the file name, the SNR, and the ob-
jective intelligibility score as parameters. Afterwards, each
dataframe is saved as a CSV file, before being merged with
the word-correct ratios provided into one big dataset in R.

C. R Statistical Software

R Statistical Software, along with RStudio GUI [34], has
been the main programming environment for the project.
All performance metrics and graphs in this paper have been
produced with R.

For fitting non-linear models into data, the n1sLM function
inside minpack.1lm package has been used [35]. R’s built
in nls uses Gauss-Newton algorithm by default, but the
Levenberg-Marquardt algorithm used in nlsLM combines
Gauss-Newton method with gradient descent, with more
focus on gradient descent when the coefficients are far from
the optimal parameters for the data [36]. The practical use
for this property is that it is easier to find convergent starting
parameters for n1sLM.

The graphs are drawn with ggplot2 [37].

IV. Experiments

A. Testing different numbers of parameters

For STOI [4] and MIKNN [11], the creators utilize a logistic
function to measure the performance of their OIMs:

1

La(d;a,b) = T cadit

where d is the raw objective intelligibility score. Using
the OIM and WCR values, the variables a and b are fitted
with a least-squares method to generate the most performant
logistic model Ly parameters for the given dataset.

For some OIMs exponentially related to SNR, a modified
logistic function is suggested that normalizes the OIM
variable [6]:

1

Taal ¢ 7. =
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One point of interest is that the subjective word correct
ratios (at least for the database at hand) are not 100%
even for clean speech, where OIMs get their theoretical
maximum value. This may be due to issues with clean audio
samples, momentary lapses of attention by the participants,
or other random effect. Despite that, the asymptote of the
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Fig. 1: A side by side view of models fitted for STOI and MIKNN
objective intelligibility metrics in Experiment IV-A.

given logistic function cannot be altered, and this limitation
may cause suboptimal fits as more data points are added.
Therefore, in this paper a different logistic model with three
parameters is proposed, where a new h variable is added to
allow calibrating the upper asymptote:

1-nh
Ls(d;a,b,h) = 1 adto

And the same idea is applied to L1*!:

1-h
Taal / 7. — _
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Finally, a four-parameter logistic function with an ad-
ditional variable to calibrate the lower asymptote h* is
evaluated to observe in more detail how AIC. scores models
as the number of parameters increases:

1-h
1+ead+b

The resulting fitted models are displayed in Figure 1, and
their corresponding performance metrics and AIC, values
are shown in Table 1.

La(d;a,b,h,h*) =h" +
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Fig. 2: Models in Experiment IV-B. The divergence between two
and three parameter models is clearly visible.

B. Validating provided models

The SIIB metric estimates speech intelligibility by cal-
culating how much information is shared between clean
and degraded signals [32]. For the classical version where
mutual information is estimated through a k-nearest neighbor
algorithm, the author suggests a custom monotonic function:

Sa(d;a,b) = (1 —e7%)"

Like in IV-A, a three-parameter version of the function
with a variable for the upper asymptote is also examined:

Ss(d;a,b,h) = (1 —h)(1 —e P

However, there exists another version of SIIB (SIIBgys)
in which a different method is used to estimate mutual
information [5]. Although written by the same author as
[32], a Lo model is used for all OIMs in [5], including
SIIBgguss- To gain confidence in the choice of models, the S
and L models are compared using AIC.

Figure 2 contains visualizations of the models fitted for
SIIB and SIIBg,. Table I contains the measured model
selection criteria.



TABLE I: Root Mean Square Errors, Pearson Correlation Coeffi-
cients, AAICc values and Akaike weights for Experiments ITV-A
and IV-B. K is the number of free variables in the model. Models
with x are suggested in the paper introducing the OIM, v" indicates
the best model according to AIC. . Bold results indicate selected
models where A\; < 2

Function K  Method | RMSE | p | AAICc  wAICc
STOI

Loxv 2 nsLM | 0,014 | 0,994 | 0,000 0,788
Ls 3 alsLM | 0,012 | 0,996 | 4,215 0,096
Ly 4 nlsLM | 0,012 | 0,996 | 17,839 0,000
L 3  nlsLM | 0,011 | 0,996 | 3,827 0,116
[Tl 4  qnlsLM | 0,011 | 0,996 | 17,820 0,000
MIKNN

Loxv 2 nlsLM | 0,020 | 0,990 | 0,000 0,400
Ls 3  nlsLM | 0,012 | 0,996 | 0,116 0,377
Ly 4 nlsLM | 0,012 | 0,996 | 14,108 0,000
LRl 3  anlsLM | 0,013 | 0,995 | 1,170 0,223
LTl 4  qnlsLM | 0,013 | 0,995 | 14,649 0,000
SIIB

S * 2 nlsLM | 0,026 | 0,984 | 4,192 0,082
S 3  nlsLM | 0,014 | 0,995 | 2,641 0,178
Lo 2 alsLM | 0,032 | 0978 | 7,115 0,019
Ls 3  nlsLM | 0,016 | 0,993 | 4,935 0,056
L v 3 nlsLM | 0,011 | 0,996 | 0,000 0,665
SIIB s

So v 2 nlsLM | 0,021 | 0,989 | 0,000 0,329
S 3  nlsLM | 0,013 | 0,995 | 0,685 0,234
Lo x 2 nlsLM | 0,026 | 0,984 | 2,907 0,077
Ls 3  nlsLM | 0,014 | 0,994 | 1,359 0,167
L 3  nlsLM | 0,014 | 0,995 | 1,056 0,194
V. Results

Table I visualizes all performance metrics used to evaluate
various mapping functions. RMSE and p values can be used
as a measurement for the goodness of fit of a model to
particular data points. However, such criteria would always
prioritize models with more parameters to have the best
possible fit for the specific dataset, with no penalty terms
for overfitting. On the other hand, the (corrected) Akaike
Information Criterion strikes a balance between parsimony
and goodness of fit, and estimates the model that is the most
generalizable to outside data.

In experiment IV-A, AIC, prefers a logistic two-parameter
fit for both STOI and MIKNN; however, Ly is more likely
to be the best fit for STOI. Examining Figure 1, one can
observe that the differences in two- and three-parameter fits
are more pronounced for MIKNN, which may explain the
larger set of candidate models for MIKNN. However, since
Lo is also selected by the authors, Lo can be thought of
as the best predictor (in the Kullback-Leibler sense) for
STOI and MIKNN among given models, despite yielding
the largest RMSE and the smallest Pearson correlation
coefficient p for both OIMs.

The results of experiment IV-B suggest that L% does
a particularly good job in preserving information on the
underlying relationship between SIIB and WCR scores.

However, that might also be the logarithmic transformation
of SIIB scores by L1*! resulting in a fitted model that simply
lines up with this particular the WCR-SIIB relationship.
According to the Akaike weight w;, there is a 33.5% chance
that L1*! actually performs worse (in the Kullbach-Leibler
sense) than a different candidate function. For SIIBggss,
interestingly, the criterion highlights all models except the
one chosen by the author for the metric. However, all values
are within close vicinity, and no conclusions can be made
about the best model for SIIBgqgs.

VI. Responsible Research

Objective intelligibility metrics aim to predict human re-
sponses. Both the voice sample datasets and subjective word
correct ratios are, in essence, sensitive data. For this reason,
it is important to ensure that all external data and code are
licensed for at least research purposes.

The ALLSSTAR database is licensed under a Creative
Commons Attribution 4.0 International License [38], allow-
ing everyone to process and share the given speech samples.
No other source for speech samples is used for this report.
According to the project manual published by ALLSSTAR,
all participants are paid, and are asked to sign a consent
form.

The MATLAB code for MIKNN [8] has a license that
permits use for research purposes.

Versions of all software used for processing and scoring
audio files are shared in Section III. For both Python
and R codes, virtual environments are used to guarantee
reproducibility, and the code can run on any supported
environment.

VII. Discussion

In Table I, only values with A; < 2 have been included
in the set of candidate models, to only have models with
“substantial support” that do not lose too much information
about the underlying data, as proposed in [23]. However,
a newer article by the same lead author actually relaxes
this cut-off [25], and suggests that models with A; < 7
should also be considered. Of course, the best model among
candidate models would not change; but researchers should
not be too quick to disregard alternative models.
Interpolating candidate models from a psychometric
WCR-SNR curve [6] is not the only model selection method
in the literature. A more complicated statistical method to
find a fitted model is described in [39]. However, such
measures have not been researched for this project.

VIII. Conclusions and Future Work

Currently, there is no agreed upon methodology for selecting
a model to linearize the relationship between an objective
intelligibility metric and subjective word correct ratios.
However, the Akaike Information Criterion (AIC) may be
a good candidate.

In encountered research, AIC has never been used to
choose the best model that combines objective intelligibility



scores with word correct ratios. And yet, it is a metric cre-
ated exclusively for model selection with a strong theoretical
basis, and it is used in a variety of fields. AIC and related
model selection criteria are promising helpers in the pursuit
of more accurate objective intelligibility metrics.

One of the first things that come to mind as future
work is to run the experiments for multiple databases, more
listening conditions, and combined datasets. If an OIM were
particularly performant with one mapping function across
different datasets, that would be an interesting observation.
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