<]
TUDelft

Delft University of Technology

Embedded Al Enabled Air-Writing for a Post-COVID World
Extended Abstract

Goedemondt, K.S.; Yang, J.; Wang, Q.

Publication date
2022

Document Version
Final published version

Published in
42nd WIC Symposium on Information Theory and Signal Processing in the Benelux (SITB 2022)

Citation (APA)

Goedemondt, K. S., Yang, J., & Wang, Q. (2022). Embedded Al Enabled Air-Writing for a Post-COVID
World: Extended Abstract. In J. Louveaux, & F. Quitin (Eds.), 42nd WIC Symposium on Information Theory
and Signal Processing in the Benelux (SITB 2022) (pp. 67-68)

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.



Extended Abstract: Embedded Al Enabled
Air-Writing for a Post-COVID World

Koen Goedemondt, Jie Yang, and Qing Wang
Delft University of Technology, The Netherlands
Emails: {k.s.goedemondt@student.tudelft.nl, j.yang-3@tudelft.nl, ging.wang @tudelft.nl}

I. INTRODUCTION

Touchscreens and buttons had became a medium for virus
transmission during the COVID-19 pandemic. We have seen
in our daily life that people use tissues and keys to press
buttons inside elevators, on public screens, etc. In the post-
COVID world, touch-free interaction with public touchscreens
and buttons may become more popular.

Motivated by the rise of visible light communication and
sensing, we design a real-time embedded system to enable
touch-free fingertip writing of the digits 0-9 with only ambient
light and simple photodiodes. We propose an embedded deep
learning model to learn the spatial and temporal patterns in the
dynamic shadow for air-writing digits recognition. The model
is devised with a lightweight convolutional architecture such
that it can run on a resource-limited device. We evaluate our
model using the LightDigit dataset [1] and report the results
in terms of accuracy and inference time.

LightDigit dataset. It is a new air-writing digits dataset
collected by a researcher going through 70000 images in
the MNIST dataset [2] and replicating them with air-writing
and ambient light to obtain time-series information. The
dataset contains 20880 instances of air-writing digits 0-9.
Each instance has 500 x 9 = 4500 samples (i.e., samples per
photodiode x number of photodiodes). For more details about
the LightDigit dataset please refer to [1].

II. EMBEDDED Al ALGORITHM

Data processing. The classification principle of our pro-
posed algorithm is image processing using a convolutional
neural network. Each instance in the LightDigit dataset is
compressed into a 50x9 image (see Figure 1 for illustrations).
Irrelevant samples in each instance are stripped from the
beginning and the end. A sample is considered relevant if the
variation of light across channels lies above a predetermined
threshold, i.e., a sample with all channels (almost) equally
lit will be removed. This is done to correct for different
writing speeds, as a user will generally not be writing for
the entire sampling time. Then, the samples are downsampled
either by averaging samples into one or by simply keeping
equally spaced samples, and removing the rest. In both cases,
50 samples are retained to form a 50x9 image. Finally,
the image is globally normalized, instead of each channel
independently. This is essential to compensate for continuously
lit or dark channel, which would otherwise significantly distort
the image.

—

Fig. 1: Converting each air-writing digit to a 50x9 image.
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Fig. 2: Proposed model architecture which is optimized for
various sizes. Note that dense softmax is the output layer.

Deep learning model. Our deep learning model is shown
in Figure 2. It is based on the widely-used LeNet-5 architec-
ture [3]. The goal is to keep the model as compact as possible
while maintaining high accuracy. The final model contains
two convolutional layers with ReLU activation followed by a
max-pooling and dropout layer. The output of these layers is
flattened and fed as input to a dense layer which then connects
to the final output layer.

III. IMPLEMENTATION AND EVALUATION

We implement and run our embedded deep learning model
on the NUCLEO-H743ZI2 STM32 board. This MCU board
has an ARM-Cortex M7 CPU running at a maximum of 480
MHz, 1| MB SRAM and 2 MB flash. For detecting light, the
system uses a 4 x 4 grid of OPT101 photodiodes, which are
spaced 5 mm apart. They are sampled by the MCU through
two MCP3008 ADCs at 100 Hz. We create the model in
TensorFlow 2.0 and use TFLM [4] to port it the MCU. The
model parameters are automatically quantized to 8-bit integer
values, which decreases memory footprint as well as execution
time. The model hyperparameters are optimized using the
Hyperband algorithm [5] in keras tuner [6]. The amount of
filters, kernel size and number of dense nodes were especially
relevant. Rectangular kernels are found to perform best on this
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TABLE I: Evaluation results of the within-subjects scenario.

Parameters | Dense nodes | Size (kB) | Accuracy | Inference time (s) gﬁgi;ﬁzgr?:)
Sk 96 9.9 0.885 0.72 0.08
8k 112 133 0.913 1.60 0.17
11k 80 16.2 0.936 1.48 0.16
14.7k 128 20.3 0.926 2.20 0.22

dataset. Both reference kernels! and CMSIS-NN [7] kernels
were used when for determining inference time. CMSIS-NN
is a deep learning library created by ARM consisting of highly
optimized kernels specifically for Cortex M processors.

The evaluation results are presented in Table I. We consider
a within-subjects scenario where we shuffle the data collected
from 24 participants and split into training (80%) and test
(20%). In addition, the training set is augmented with the
simulated data from LightDigit. We observe that by converting
the original time-series data from the LightDigit dataset to im-
ages and using a convolutional neural network with optimized
hyperparameters, the amount of parameters could be reduced
to 11k. After model quantization, this results in an embedded
deep learning model of only 16 kB. The achieved accuracy is
about 93.6% and the inference time using CMSIS-NN is only
0.16 seconds, running on the resource-limited ARM Cortex
M-7.

IV. CHALLENGES AND FUTURE WORK

Through experimenting in various different light conditions,
several major challenges were found which are listed below.

Clipping photodiodes. The OPT101 photodiodes are too
sensitive when connected with the standard 1 MQ feedback
resisitor and start clipping around 600 lux, depending on the
spectrum of the captured light as the photodiodes respond
different to red, green and blue light. In bright conditions this
may cause the shadow area not to be dark enough, resulting
in loss of information. The sensitivity of the photodiode can
be reduced by using a smaller value feedback resistor.

Distorted shadows. Multiple light sources cause the shadow
cast by the users’ finger to become distorted. This is especially
problematic since it is impossible to train the model for every
possible configuration. We attempt to tackle this problem in
two different ways. 1) An algorithm is proposed to extract
hand movement from relative changes in the shadow, and train
a new model on this data. The purpose of this algorithm is to
more accurately model hand movement over the sensing area,
avoiding the problem of brightness differences and light source
distribution. 2) An autoencoder based deep learning approach
in order to reconstruct distorted images. Autoencoders have
been used successfully in image denoising to increase model
robustness [8] and image restoration [9]. We intend to experi-
ment with modifying images from the source dataset in such a
way, they can be used to train an autoencoder. The hypothesis

Tn this context, kernel refers to the operations between tensors such as
convolution.
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is that this autoencoder can then be used to increase robustness
in different lighting conditions.

Trigger sampling. For practical application, the system does
not yet have way to start sampling automatically. This is
intended to be solved by fitting the system with a APDS-9930
short range IR proximity sensor. When a user moves their hand
over the sensing area, the sensor will send an interrupt to the
MCU to trigger sampling.

V. CONCLUSION

LightDigit previously used a resource-intensive LSTM
model for classification, which is too heavy to run on MCUs.
By converting the time-series data to an image and using an
optimized CNN, the amount of parameters could be reduced
to 11k, resulting in a final model of 16 kB. Running on an
ARM Cortex M-7 the inference time is 0.16 seconds using
CMSIS-NN, while maintaining an accuracy of 93.6%. The
inference time is 9x faster compared to reference kernels. Due
to challenges resulting from variable light conditions, practical
application of this system will require a more robust model.
Since the inference time with current models is relatively fast,
future work will include experimenting with larger models and
more advanced preprocessing. We plan to experiment with
denoising autoencoders and creating an improved algorithm
to more precisely locate the finger of the user in space.
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