
 
 

Delft University of Technology

Visual-Saliency Guided Multi-modal Learning for No Reference Point Cloud Quality
Assessment

Zhou, Xuemei; Viola, Irene; Yin, Ruihong; Cesar, Pablo

DOI
10.1145/3689093.3689183
Publication date
2024
Document Version
Final published version
Published in
QoEVMA'24

Citation (APA)
Zhou, X., Viola, I., Yin, R., & Cesar, P. (2024). Visual-Saliency Guided Multi-modal Learning for No
Reference Point Cloud Quality Assessment. In QoEVMA'24: Proceedings of the 3rd Workshop on Quality of
Experience in Visual Multimedia Applications (pp. 39-47). Association for Computing Machinery (ACM).
https://doi.org/10.1145/3689093.3689183
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1145/3689093.3689183
https://doi.org/10.1145/3689093.3689183


Green Open Access added to TU Delft Institutional Repository 

'You share, we take care!' - Taverne project  
 

https://www.openaccess.nl/en/you-share-we-take-care 

Otherwise as indicated in the copyright section: the publisher 
is the copyright holder of this work and the author uses the 
Dutch legislation to make this work public. 

 
 



Visual-Saliency Guided Multi-modal Learning for No Reference
Point CloudQuality Assessment

Xuemei Zhou
Centrum Wiskunde & Informatica
Amsterdam, The Netherlands
Delft University of Technology

Delft, The Netherlands
xuemei@cwi.nl

Irene Viola
Centrum Wiskunde & Informatica
Amsterdam, The Netherlands

irene.viola@cwi.nl

Ruihong Yin
University of Amsterdam

Amsterdam, The Netherlands
r.yin@uva.nl

Pablo Cesar
Centrum Wiskunde & Informatica
Amsterdam, The Netherlands
Delft University of Technology

Delft, The Netherlands
p.s.cesar@cwi.nl

Abstract
As 3D immersive media continues to gain prominence, Point Cloud
Quality Assessment (PCQA) is essential for ensuring high-quality
user experiences. This paper introduces ViSam-PCQA, a no-reference
PCQA metric guided by visual saliency information across three
modalities, which facilitates the performance of the quality pre-
diction. Firstly, we project the 3D point cloud to acquire 2D tex-
ture, depth, and normal maps. Secondly, we extract the saliency
map based on the texture map and refine it with the correspond-
ing depth map. This refined saliency map is used to weight low-
level feature maps to highlight perceptually important areas in
the texture channel. Thirdly, high-level features from the texture,
normal, and depth maps are then processed by a Transformer to
capture global and local point cloud representations across the
three modalities. Lastly, saliency along with global and local em-
beddings, are concatenated and processed through a multi-task
decoder to derive the final quality scores. Our experiments on the
SJTU, WPC, and BASICS datasets show high Spearman rank order
correlation coefficients/Pearson linear correlation coefficients of
0.953/0.962, 0.920/0.920 and 0.887/0.936 respectively, demonstrating
superior performance compared to current state-of-the-art meth-
ods. The code is available at https://github.com/cwi-dis/ViSam-
PCQA_MM2024Workshop.

CCS Concepts
• Human-centered computing → Visualization design and
evaluation methods; • Computing methodologies→ Percep-
tion; Model development and analysis; Image processing.
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1 Introduction
Digital representation of 3D models has gained increased interest
and has been used in prevalent 3D computer vision applications
such as social Virtual Reality (VR) [27, 32], cultural heritage [25] and
architectural models [17]. Point clouds play a crucial role in various
real-world applications. Hence, predicting the visual quality of point
clouds accurately and efficiently, in a way that correlates well with
the Human Vision System (HVS), is highly desired. The intricate
geometrical structure and densely packed points of point clouds,
complete with attributes such as color, normal, and transparency,
allow for detailed representations of environments, objects, and
humans. While this richness of information is valuable, it presents
challenges for the efficiency and accuracy of Point Cloud Quality
Assessment (PCQA) metrics. The different factors that contribute to
the visual quality of point clouds are not fully understood, adding
to the complexity of developing effective PCQA metrics.

Depending on the availability of reference information: PCQA
methods can be broadly divided into Full-Reference (FR), Reduced-
Reference (RR), and No-Reference (NR) PCQA methods [47]. How-
ever, the pristine reference point clouds are not always available
in real-world applications. According to the domain in which the
PCQA metric is computed, we categorize PCQA metric into two
categories: point-based and image-based. Point-based metrics eval-
uate the quality of the distorted point cloud directly on the 3D
point cloud itself, each point has its own quality score. Image-based
metrics evaluate the point cloud quality based on 2D projections.
The point-based model can better capture the geometry topology
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(a) (b) (c) (d)

Figure 1: Illustration to show the perceptual impact of distor-
tion in different areas on redandblack point cloud. (a) is the
reference version. (b)-(d) depict the effects of introducing ge-
ometry and color Gaussian noise with equal intensity on the
face, dress, and legs, respectively. Notably, (c) exhibits nearly
identical perceptual quality as the reference point clouds,
attributed to the chaotic background texture that effectively
masks the distortion. (d) ranks second in perceptual quality,
while (a) is observed to have the least favorable perceptual
quality.

of the point cloud at the cost of high computational cost, while
image-based models can take advantage of the well-developed Im-
age Quality Assessment (IQA) algorithms while introducing the
additional distortion due to the projection process. Considering
the above reasons, we focus on the image-based NR-PCQA in this
paper.

PQA-Net [22] takes 6 orthographic projections of point clouds
as inputs, features are extracted after Convolution Neural Net-
work (CNN) blocks, and they share a distortion identification and
a quality prediction module that assist in obtaining final quality
scores. IT-PCQA [38] utilizes the rich prior knowledge in images
and builds a bridge between 2D and 3D perception in the field of
quality assessment, a hierarchical feature encoder and a conditional
discriminative network is proposed to extract effective latent fea-
tures and minimize the domain discrepancy. pmBQA [36] proposes
an image-based blind quality indicator via multi-modal learning
by using four homogeneous modalities (i.e., texture, normal, depth
and roughness). MM-PCQA [43] partitions point clouds into sub-
models for local geometry representation and renders them into 2D
projections for texture. Geometry and texture features are extracted
separately using point-based and image-based neural networks. A
symmetric cross-modal attention module is used for integrating
quality-aware information. IT-PCQA [38] reveals the potential con-
nection between different types of media content in the field of
quality assessment. PQA-Net [22] and pmBQA [36] use the multi-
task decoder and multiple modality-related features on 2D; MM-
PCQA [43] proves the effectiveness of cross-modality perception
for PCQA.

The aforementioned NR metrics mainly consider the projected
images of the point cloud or are completed with 3D point cloud
modality. However, they do not consider the impact of visual saliency
on improving the prediction accuracy of media content [18]. As
illustrated in Figure 1, the impact of distortion in different regions
of the point cloud (RedandBlack) is evident. Recent developments
have seen certain metrics incorporating visual saliency into their
design paradigms [19]. Some directly extract visual saliency on the
3D point cloud [4, 14], while others employ existing saliency pre-
diction models on 2D projections [7], subsequently re-projecting
them onto the 3D point cloud. Visual saliency is utilized either
as a quality indicator or as a weight map for pooling extracted
handcrafted features [34], with the aim of selecting features under
the guidance of visual saliency. In contrast, our approach utilizes
the saliency map from a pre-trained 2D saliency prediction model,
to guide the selective learning of low-level features, which are
extracted by the image encoder. This aims to automatically iden-
tify visually salient areas that aid in perceptual quality prediction.
Specifically, we propose incorporating depth-related priors into
the 2D saliency map to inherently provide a sense of depth for
point clouds. Additionally, the low-level feature maps extracted by
a CNN-based image encoder, which preserve spatial information,
are weighted with the refined saliency map pixel-wisely. The high-
level features, which contain semantic information, are processed
through a cross-modality attention mechanism to obtain local cor-
respondence and global feature. By concatenating the corrected
visual saliency with the local and global embeddings, we generate
the final score through two branches: quality score regression and
distortion type classification.

As shown in Figure 1, the perceptual quality of point clouds
is dependent on distortion type since the HVS has different toler-
ances for different distortions, and where the distortion is located
can have a huge impact on the overall quality of point clouds [40].
Thus, the proposed visual saliency guided multi-modal learning can
estimate the perceptual quality of point clouds effectively and com-
prehensively. The main contributions of this paper are summarized
as follows:

● We propose a Visual Saliency guided multimodal NR PCQA
(ViSam-PCQA) metric. Visual saliency from the pre-trained
model is treated as pseudo-ground-truth, used to correct
low-level features that contain learned attention and spa-
tial information. The spatial information is crucial when
weighing the visual saliency map with the feature maps
from texture, depth and normal maps.
● We utilize the cross-modality attention to obtain the local
correspondence amongmodalities and global features within
the same modality, which can compensate for the stereo
spatial information loss during the 3D-to-2D projection.
● Extensive experimental evaluations demonstrate that ViSam-
PCQA outperforms other state-of-the-art methods. Ablation
studies elucidate the distinct contributions of each compo-
nent within the framework, with a particular emphasis on
highlighting the crucial role played by the corrected visual
saliency.
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Figure 2: The overall framework of our proposed method.

2 Related Work
Image-based PCQA. In the image-based approaches, firstly used

in [8] for point clouds, the rendered models are mapped onto planar
surfaces, on which conventional IQA metrics are applied to pro-
vide a quality score. The prediction accuracy of IQA metrics on 2D
views of point clouds is initially examined in [30]. Yet, enabling a
large number of views in denser camera arrangements may lead to
redundancies and extra computational costs, without guaranteeing
performance improvements, as indicated in [2]. Yang 𝑒𝑡 𝑎𝑙 . [37]
introduce a metric based on a weighted combination of global and
local features, which are extracted from 6 orthographic texture
and depth images. Wu 𝑒𝑡 𝑎𝑙 . [35] obtain the same projections, and
weight the contributions of each face based on the ratio of the size
of a plane to the sum of the area of six planes on the bounding
box. A final score is obtained as a weighted average between qual-
ity scores from geometry and texture information. In [21], point
clouds undergo translations, rotations and scaling before projection.
They suggested that the principle of information content-weighted
pooling provides a good framework and proposed the use of IW-
SSIM on the projected views. The mentioned methods are mainly
based on the projected texture information, without considering
the geometry structure of the point cloud.

Visual Saliency for PCQA. Bourbia 𝑒𝑡 𝑎𝑙 . [7] present an NR ap-
proach that incorporates the advantage of the transformer encoder
architecture and the visual saliency to predict the perceived visual
quality of distorted point clouds. They project the point cloud into
multi-view and weight each view with its corresponding calculated
saliency map through a pointwise multiplication to detect the re-
gions of interest, and then regress the weighted sub-images to a
quality score. However, the weighted sub-images are not guaran-
teed to be the saliency areas correlated to the perceptual quality.

RR-CAP [46] makes the first attempt to simplify reference and
distorted point clouds into projected saliency maps with a down-
sampling operation in an RRmanner. The objective quality scores of
distorted point clouds are produced by combining content-oriented
similarity and statistical correlation measurements based on the
saliency maps. PQSM [34] introduces a 3D point cloud saliency map
generating method, which integrates depth information to enhance
geometric representation. Three structural descriptors capturing
geometry, color, and saliency discrepancies are used to construct
local neighborhoods. A saliency-based pooling strategy refines the
descriptors, yielding a comprehensive quality score. Laazouf 𝑒𝑡
𝑎𝑙 . [15] firstly compute a 3D saliency map for each distorted point
cloud. Then, a threshold-based filter is used to select themost salient
points. Estimates of their statistical properties (Entropy, Standard
deviation, Skewness, Kurtosis, Median and Mean) form a features
vector from both geometrical and perceptual attributes. The sup-
port vector regressor is utilized to regress the feature vector as a
quality score. These three non-learning metrics consider mainly
one modality.

3 Proposed Method
The framework overview is exhibited in Figure 2. The point clouds
are first projected into three different modalities, texture map, depth
map and normal map. Then we use an image encoder 𝜃𝐼 to extract
the low-level features and high-level features, respectively. Since
the primary cues for visual attention often come from the 2D pro-
jections captured by the retina [6], depth and normal information
are crucial for spatial perception and object localization. We use
a pre-trained visual saliency model on the texture image and use
its output to correct the low-level feature after an image encoder.
At the same time, the texture image, depth image, and normal
image are put into the same image encoder to get the semantic
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feature. Subsequently, the semantic features are put into an intra-
and-inter modality attention module to get the global and local
features of the point cloud. Finally, the global and local features are
concatenated to the distortion type classification branch to learn
the distortion-oriented features. The corrected visual saliency with
the distortion-oriented features are concatenated and decoded into
the quality values via the quality regression branch.

3.1 Pre-processing
Consider one point cloud denoted as 𝒫 = {𝑝(1), 𝑝(2), ..., 𝑝(𝑖)}𝑁𝑖=1 ∈
𝑅
𝑁×6, where each point 𝑝(𝑖)=(︀𝑝𝐺

𝑖
,𝑝𝑇

𝑖
⌋︀ = (︀𝑥,𝑦, 𝑧,𝐺, 𝑅, 𝐵⌋︀ indicates

the geometry coordinates and the RGB color information, 𝑁 stands
for the number of points belonging to the point cloud. Let 𝒫 be
orthogonally projected onto M different 2D planes around the
bounding box, resulting in M texture maps, 𝒯 ∈ 𝑅𝐻×𝑊×3, M depth
maps, 𝒟 ∈ 𝑅𝐻×𝑊×1, and M normal maps, 𝒩 ∈ 𝑅𝐻×𝑊×3, where
𝑚 ∈ 𝑀 = ⋃︀{up, down, left, right, front, back}⋃︀ and 𝐻 ×𝑊 denotes
the resolution of 𝑚𝑡ℎ projected image after removing the back-
ground. For texture map 𝒯, we calculate the 2D saliency map based
on the current state-of-the-art perceptual saliency detection algo-
rithm [23], which is defined as 𝒱 = {𝐼𝑖,𝑚}𝐻×𝑊𝑖=1 ∈ 𝑅𝐻×𝑊×1, where
𝐼𝑖,𝑚 denotes for the importance value of the 𝑖𝑡ℎ pixel from the𝑚𝑡ℎ
texture map.

3.2 Corrected Saliency Map Generation
We select the CNN-based image encoder that can retain 2D spa-
tial information [16] at the shallow layers to extract the low-level
features from only the texture image. TranSalNet [23] is used to
extract the salient area of the texture image, which is defined as

V𝑚 = 𝜙(𝒯𝑚), (1)

𝜙 is the pre-trained TranSalNet model, V𝑚 ∈ 𝑅𝐻×𝑊×1 is the ex-
tracted saliency map. Intuitively, in the stereo scenes, human has
a preference to the area that is closer to themself [48]. So after
obtaining the saliency map, the corresponding depth image is laid
on the up of it, which is expressed as

V𝑑𝑚 = V𝑚⊗𝒟𝑚, (2)

where⊗ is the element-wise product. Subsequently, we utilize the
depth-guided saliency map V𝑑𝑚 to weight the low-level feature
map of all channels. By producing the element-wise product of
the pseudo-ground-truth visual saliency and the learned visual
saliency through the network [28], the effect of pseudo-ground-
truth saliency maps considering the HVS for intervening in the
saliency maps learned by the network is achieved, resulting in the
corrected saliency maps,

𝐹𝑉 = 𝐴𝑣𝑔(V𝑑𝑚⊗L𝐶𝑚), (3)

L𝐶𝑚 is the shallow layer output of the CNN based image encoder
with 𝐶 channels, 𝐴𝑣𝑔() is the average pooling along the feature
map and multi-view channels. Figure 3 shows the initial saliency
map through the pre-traind model, the depth-related saliency map,
the feature map and the corrected saliency map of the first and
last channel, respectively. Notably, we computed the saliency map
across the entire projection and integrated this global prior with
the feature maps from all channels. Each channel captures distinct

salient areas based on different filters, as observed in Figure 3.
For instance, the first channel highlights the texture on the dress
as salient, while the last channel emphasizes the contour of the
projected image. We enable the network to autonomously learn the
allocation of importance with the global saliency prior.

3.3 Multi-modal Feature Extraction
We next use the same CNN-based image encoder Ψ to extract the
high level features from the texture map, depth map, and normal
map, separately, resulting in:

H𝐾𝑚 = Ψ(𝐾𝑚), (4)

where 𝑘 ∈ {𝒯 ,𝒟,𝒩}, H𝐾𝑚 ∈ 𝑅𝑑 is a 𝑑-dimension representation.

3.4 Global Feature Aggregation and Local
Feature Correspondence via Transformer

Considering three distinct modalities and an image encoder han-
dling input as image patches, we utilize the Transformer architec-
ture to extract both global and local features. To extract the global
features within each modality, the self-attention module is applied
to each modality. Besides, similar to BERT [12] and ViT [10], we
introduce a learnable semantic token in the self-attention module.
The semantic token is shared among the multi-view projections,
serving as a global feature of the whole point cloud. For the cor-
respondence among different modalities, we use a symmetrical
attention module to explore the relationship of the image patches
from different modalities. Here, we take 3 modality-related features
as input, and obtain the intra-attention global features F𝑘𝛼 is defined
as

F𝑘𝛼 = Θ(Z𝑘 ,Z𝑘), (5)

Z𝑘 = (︀𝑇𝑘𝑠 , 𝐻𝑘1 , 𝐻𝑘2 , ..., 𝐻𝑘𝑀 ⌋︀ ∈ 𝑅(1+𝑀)×𝑑 , 𝑇𝑠 ∈ 𝑅𝑑 is the sementic
token. F𝑘𝛼 ∈ 𝑅𝑑 is a𝑑 dimensional representation. The inter-modality
local features among 3 different modalities F𝑎𝛽 , are defined as

F𝐻
𝒯
,𝐻
𝒟

𝛽
= Θ∗(𝐻𝒯 , 𝐻𝒟),

F𝐻
𝒯
,𝐻
𝒩

𝛽
= Θ∗(𝐻𝒯 , 𝐻𝒩 ),

F𝐻
𝒩
,𝐻
𝒟

𝛽
= Θ∗(𝐻𝒩 , 𝐻𝒟),

(6)

Likewise, F𝐻
𝒯
,𝐻
𝒟

𝛽
, F𝐻

𝒯
,𝐻
𝒩

𝛽
and F𝐻

𝒩
,𝐻
𝒟

𝛽
are 𝑑 dimensional rep-

resentation. The modality-related feature can express the local
relationship among the modalities. For example, the local region of
texture distortions related to facial features might exhibit a stronger
association with the front view rather than the back view of texture
distortion. The global feature is the feature map derived from the se-
mantic token. The final quality embedding can be concatenated by
the intra-modal global features and the inter-modal local features
obtained by:

𝐹𝑄 = 𝐹𝑔 ⊕ 𝐹𝑙 , (7)
where ⊕ indicates the concatenation operation, and 𝐹𝑄 represents
the final quality-aware features, the global feature 𝐹𝑔 and local
feature 𝐹𝑙 are defined as follows:

𝐹𝑔 = 𝜇(𝜇((︀𝐻𝑘1 , 𝐻𝑘2 , ..., 𝐻𝑘𝑀 ⌋︀) + F𝑘𝛼), (8)
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Object

Human

(a) (b) (c) (d) (e) (f)

Figure 3: Examples of the visual saliency related operations. From (a) to (f) are the saliency map detected by TranSalNet; the
depth-guided saliency map; the output of the 1st/256th channel of layer1 in ResNet; the corrected saliency map for the 1st/256th
channel, respectively.

and
𝐹𝑙 = 𝜇(𝐻

𝑘 + F𝐻
𝒯
,𝐻
𝒟

𝛽
+ F𝐻

𝒯
,𝐻
𝒩

𝛽
+ F𝐻

𝒩
,𝐻
𝒟

𝛽
), (9)

in which 𝜇 is the mean operation along multi-view channel. The
multi-task decoder consists of a Multi Layer Perception (MLP)-
based classifier and regressor. The regressor and the classifier are a
two- and three-layer ReLU-MLP respectively.

�̂� = 𝐷(𝐹𝑄),
𝑃 = 𝐷(𝐹𝑄 ⊕ 𝐹𝑉 ),
𝑃 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥(𝑃),

(10)

where �̂� is the predicted quality score, 𝑃 = {𝑝1, 𝑝2, ..., 𝑝𝐸} is the
predicted probability over 𝐸 distortion types, and 𝑃 is the output of
the fully connected layers for distortion type classification before
softmax.

For the quality regression task, we focus on minimizing the
average prediction error of all training samples and lay importance
on the ranking of the quality as [43]. Therefore, the loss function
for the regression task includes two parts: MSE and ranking error,
which can be derived as:

ℒ1 =
1
𝑛

𝑛

∑
𝑒=1

(𝑞𝑒 − 𝑞′𝑒)2, (11)

where 𝑞𝑒 is the predicted quality scores, 𝑞′𝑒 is the ground truth
labels of the point cloud, and 𝑛 is the size of the mini-batch. The
rank loss can better assist the model in distinguishing the quality
ranking even the point clouds in a mini-batch have similar quality
levels. To this end, we use the differentiable rank function described

in [29] to approximate the rank loss:

ℒ𝑖 𝑗2 =max(0, ⋂︀𝑞𝑖 − 𝑞 𝑗 ⋂︀−𝑒 (𝑞𝑖 , 𝑞 𝑗)⋅(𝑞′𝑖 − 𝑞′𝑗)) ,

𝑒 (𝑞𝑖 , 𝑞 𝑗) = {
1, 𝑞𝑖 ≥ 𝑞 𝑗 ,
−1, 𝑞𝑖 < 𝑞 𝑗 ,

(12)

where 𝑖 and 𝑗 are the corresponding indexes for two point clouds
in a mini-batch and the rank loss can be derived as:

ℒ2 =
1
𝑛2

𝑛

∑
𝑖=1

𝑛

∑
𝑗=1
ℒ𝑖 𝑗2 , (13)

cross-entropy lossℒ3 is used for distortion type classification. Then,
the loss function can be calculated as the weighted sum of MSE
loss, rank loss and distortion type classification loss:

𝐿𝑜𝑠𝑠 = 𝜆1ℒ1 + 𝜆2ℒ2 + 𝜆3ℒ3 (14)

where 𝜆1, 𝜆2 and 𝜆3 are used to control the proportion of the MSE
loss, the rank loss and distortion type classification loss.

4 Experiments
4.1 Datasets
● SJTU: It has 9 reference point clouds and 378 distorted sam-
ples. Each reference PC is impaired by 7 different types of
distortion under 6 levels. Detailed distortion types include
Octree-based compression, Color Noise (CN), Geometric
Gaussian Noise (GGN), downsampling, and combinations of
the CN, GGN and downsampling. SJTU includes 5 human
body models and 4 inanimate objects.

43



QoEVMA ’24, November 1, 2024, Melbourne, VIC, Australia. Xuemei Zhou, Irene Viola, Ruihong Yin, & Pablo Cesar

Table 1: Performance comparison with state-of-the-art approaches on the SJTU, WPC and BASICS datasets. Best in bold and
second with underline. State-of-the-art results for NR-PCQA are cited from the literature, employing varied training strategies
and splits, without independent validation by the authors.

Type Modal
Number Methods SJTU Dataset WPC Dataset BASICS Dataset

SROCC PLCC SROCC PLCC SROCC PLCC

FR

1 PointSSIM [3] 0.687 0.714 0.454 0.467 0.692 0.725
1 MSE-p2po [24] 0.729 0.812 0.456 0.485 0.799 0.005
1 PSNR-yuv [30] 0.795 0.817 0.449 0.530 0.510 0.543
1 PCQM [26] 0.864 0.885 0.743 0.750 0.810 0.888
1 GraphSIM [39] 0.878 0.845 0.583 0.616 0.773 0.801
1 PointPCA [5] 0.907 0.932 0.890 0.894 0.866 0.926

NR

2 IT-PCQA [38] 0.630 0.580 0.540 0.550 0.310 0.302
1 3D-NSS [42] 0.714 0.738 0.648 0.651 0.617 0.657
4 pmBQA [36] 0.900 0.932 0.912 0.898 / /
2 MM-PCQA [43] 0.910 0.923 0.841 0.856 0.831 0.882
1 GMS-3DQA [44] 0.911 0.918 0.831 0.834 0.855 0.930
1 Wang’s [33] 0.930 0.940 0.800 0.810 / /
1 PKT-PCQA [20] 0.932 0.912 0.557 0.560 / /
3 ViSam-PCQA(Ours) 0.953 0.962 0.920 0.920 0.887 0.936

● WPC: It contains 20 reference point clouds, and each is de-
graded under five types of distortions with different levels,
leading to 740 distorted samples. Distortions include down-
sampling, Gaussian noise contamination, G-PCC (Octree),
G-PCC (Trisoup) and V-PCC. WPC dataset collects objects
including snacks, fruits and vegetables, etc.
● BASICS: The BASICS dataset [1] comprises 75 point clouds
from 3 different semantic categories: (i) Humans & Animals,
(ii) Inanimate Objects, and (iii) Buildings & Landscapes. Each
point cloud is compressed with 3 compression methods
from the MPEG standardization field, i.e., Octree-RAHT,
Octree-Predlift and V-PCC; 1 learning-based algorithm, i.e.,
GeoCNN, at varying compression levels, resulting in 1494
processed point clouds. BASICS dataset is the current largest
available dataset for PCQA with human annotated labels.

4.2 Evaluation Criteria
The evaluation of performance relies on three standard criteria
including Spearman Rank Order Correlation Coefficient (SROCC),
Pearson Linear Correlation Coefficient (PLCC). Additionally, the
logistic regression recommended by standardization organization
[31] is used to map the dynamic range of the scores from the pre-
dicted score into the quality label range. Higher values of SROCC,
PLCC indicate better performance in terms of correlation with
human opinion.

4.3 Implementation Details
All the projections are rendered with the assistance of Open3D [45],
the number of projections for each modality is naturally set to 6.
Adam optimizer [13] is utilized with weight decay 1e-4, the initial
learning rate is set as 5e-5, the batch size is set as 18, and themodel is
trained for 100 epochs. The projected images are randomly cropped
into image patches at the resolution of 224×224 for all modalities
and corresponding saliency maps. The ResNet50 [11] is used as the
image encoder, which is initialized with the ImageNet dataset [9].

Table 2: Ablation study of ViSam-PCQA for key components,
i.e., corrected visual saliency, multi modalities that include
both the depth and normal map, and distortion type, DT is
short for Distortion Type.

Settings SJTU Dataset
SROCC PLCC ACC

ViSam-PCQA 0.953 0.962 0.762
(Visual Saliency)
/wo corrected saliency maps 0.951 0.962 0.751
(Modality)
/wo depth & normal maps 0.942 0.952 0.659
(Distortion Type)
/wo DT classification 0.950 0.965 /

The multi-head attention module employs 8 heads and the feed-
forward dimension is set as 2048. The weights 𝜆1, 𝜆2 and 𝜆3 for ℒ1,
ℒ2 and ℒ3 are set as 1.

For relatively small datasets SJTU (378) and WPC (740), the k-
fold cross validation strategy is employed to accurately estimate
the performance of the proposed method. 9-fold and 5-fold cross
validation is selected for SJTU and WPC, respectively. The average
performance is recorded as the final result. For the BASICS dataset,
we divide the dataset into train-validation-test as the ratio of 6:2:2.
There is no content overlap between the training and testing sets.
For the FR-PCQA methods that require no training, we simply
validate them on the same testing sets and record the average
performance.

4.4 Overall Performance
14 state-of-the-art PCQA methods are selected for comparison,
which consist of 6 FR-PCQAmethods and 8 NR-PCQAmethods. The
FR-PCQA methods include PointSSIM [3], MSE-p2point (MSE-p2p)
[24], PSNR_YUV [30], PCQM [26], GraphSIM [39], and PointPCA
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[5], these metrics construct and evaluate on a point-to-point com-
parison or local neighborhood to include the structural information.
The NR-PCQA methods include: GMS-3DQA [44], which takes the
projections from only the texture. 3D-NSS [42], PKT-PCQA [20],
and Wang’s metric [33] evaluate the quality directly on the point
cloud, the last two adopt multi-task learning which includes dis-
tortion type classification, distortion level regression/classification,
and quality regression, respectively. IT-PCQA [38], MM-PCQA [43],
pmBQA [36] resolve the PCQA problem with more than one modal-
ity.

The results, as detailed in Table 1, highlight ViSam-PCQA’s su-
perior performance across all evaluation criteria on both SJTU
and WPC datasets, representing a significant advancement. No-
tably, the SROCC/PLCC witnessed an increase of 2.2%/5.2% and
0.87%/2.4% when compared with the second-best metric for SJTU
and WPC datasets, respectively. Moreover, our model outperforms
all FR-PCQA metrics, underscoring its ability to capture essential
point cloud characteristics and align closely with the HVS. Sum-
marizing the outcomes, several key conclusions can be drawn: 1)
The incorporation of additional modalities (pmBQA) and height-
ened modality complexity (MM-PCQA) does not consistently result
in performance enhancement, suggesting the existence of redun-
dant information that may confound the network. 2) In contrast
to models like GPA-Net and Wang’s metric, which integrate two
auxiliary tasks (distortion type classification and distortion degree
regression), our emphasis on the quality regression task with visual
saliency related features, suggests that an excessive refinement of
auxiliary tasks may not necessarily bolster prediction accuracy.
3) The consistent performance observed on SJTU, WPC and BA-
SICS datasets, despite variations in distortion types and content,
underscores the robustness of ViSam-PCQA.

4.5 Ablation Study
The SJTU dataset encompasses a variety of contents, including both
human figures and inanimate objects, and exhibits a broad range
of distortion types. To gain a deeper understanding, we conducted
ablation studies on the SJTU dataset by systematically removing
key components one at a time.

Impacts of the corrected saliency maps. Quality assessment should
align with human perception. Saliency maps highlight regions in an
image that are perceptually more important or salient, it directs at-
tention to parts of the point cloud that may have a more significant
visual impact. The SROCC performance has a slight increase on
SJTU. Additionally, incorporating the pseudo-ground-truth saliency
map with the learning process enables to capture the details and
variations in quality that might be overlooked by a uniform weight-
ing approach guided only by the quality score regression. We can
see the visual saliency helps the auxiliary task, the accuracy of
distortion type classification improves 1.4% on SJTU. This, in turn,
can lead to a more nuanced and accurate quality evaluation.

Impacts of the modalities. Combining information from both
depth and normal contributes to a more realistic visual representa-
tion of the scene [41]. The depth map provides information about
the distance of each point in the point cloud from the camera, which

Table 3: Cross-dataset evaluation among SJTU, WPC and
BASICS datasets. Note the model is validated on the test
dataset with all the contents.

Testing Dataset

Training Dataset SJTU WPC BASICS
SROCC PLCC SROCC PLCC SROCC PLCC

SJTU – – 0.531 0.516 0.488 0.654
WPC 0.788 0.817 – – 0.608 0.646

BASICS 0.577 0.591 0.393 0.391 – –

can help in assessing the surface details and detecting discontinu-
ities. Normal maps encode surface normals at each point, which can
aid in evaluating the smoothness and geometric fidelity. Remov-
ing such information will result in an inaccurate estimation for an
overall perceptual experience. All criteria performance drops (1.2%,
1.0% and 13.5% for SROCC, PLCC and ACC) for the SJTU dataset.
Leveraging depth/normal maps in PCQA provides a multi-faceted
approach to evaluating geometric accuracy, surface details, and
visual realism.

Impacts of the distortion type classification. We assume that the
distortion type classification task can facilitate the quality regres-
sion task. However, from Table 2 we can see a the SROCC has a
slight drop for SJTU datasets after removing the auxiliary task. In
summary, depth and normal modalities contribute essential geo-
metric details to enhance the structural integrity of the point cloud.
Visual saliency functions as a refinement mechanism, elevating
prediction accuracy across all aspects. The efficacy of an additional
distortion type classification task is contingent upon the dataset’s
specific characteristics. Notably, within the proposed framework,
the multi-modal completion yields superior performance gains com-
pared to the other two components.

4.6 Cross-dataset Evaluation
To gauge the generalization capability of the proposed ViSam-
PCQA, cross-dataset evaluations were conducted. Our approach
involves training the model on the entire dataset and testing it on
all data from another dataset. The resulting performance metrics,
presented in Table 3, demonstrate the model’s ability to generalize
across different datasets. Notably, ViSam-PCQA exhibits superior
generalization compared to other learning-based models, for exam-
ple, GPA-Net and MM-PCQA, their performance for SJTU→WPC
and WPC→SJTU are 0.424/0.431 and 0.535/0.574, 0.430/0.459 and
0.769/0.778 respectively. Surprisingly, training on the WPC dataset
and testing on the SJTU dataset yields even better performance
than certain FR-PCQA and NR-PCQA metrics on the SJTU test set,
indicating a robust generalization tendency. However, training on
BASICS and testing on WPC gets the lowest performance, that’s
mainly because WPC only contains objects, and the BASICS dataset
contains learning-based compression distortion types.

5 Conclusion
In this paper, we introduce an innovative visual saliency-guided
multi-modal metric for image-based no-reference Point Cloud Qual-
ity Assessment (ViSam-PCQA). ViSam-PCQA incorporates a saliency
map derived from a pre-trained model into the learning process to
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enhance prediction accuracy. Specifically, we capture multi-modal
information in the form of texture, depth, and normal maps, which
are then fed into an image encoder to obtain low- and high-level fea-
tures, offering a comprehensive description of the point cloud. The
low-level feature map from the texture map is refined using a corre-
sponding depth-guided saliency map, enabling the neural network
to select the salient region by weighting the feature map instead of
directly applying it to the input texture map. The high-level feature
undergoes the Transformer to extract global features for individ-
ual modalities and establish local correspondence across the three
modalities. A quality regression and distortion type classification
are employed to generate an overall quality score for the distorted
point clouds. The proposed metric is evaluated on three publicly
available datasets, demonstrating a substantial improvement across
all evaluation criteria and achieving a new state-of-the-art perfor-
mance.
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