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Adaptive AI-based surrogate 
modelling via transfer learning 
for DEM simulation of multi-
component segregation
Ahmed Hadi1, Morteza Moradi2, Yusong Pang1 & Dingena Schott1

Segregation of granular materials is a critical challenge in many industries, often aimed at being 
controlled or minimised. The discrete element method (DEM) offers valuable insights into this 
phenomenon. However, calibrating DEM models is a crucial, albeit time-consuming, step. Recently, 
using machine learning (ML)-based surrogate models (SMs) in the calibration process has emerged as a 
promising solution. Nevertheless, developing such SMs is challenging due to the high number of DEM 
simulations required for training. Additionally, choosing a suitable ML model is not trivial. This study 
aims to develop SMs that effectively link particle-particle and particle-wall DEM interaction parameters 
to segregation of a multi-component mixture. We evaluate several ML models, ranging from artificial 
neural networks to ensemble learning, that are trained on a very cost-effective dataset, employing 
Bayesian optimisation with cross-validation to tune their hyperparameters. Next, we introduce a 
novel transfer learning (TL)-based approach that leverages knowledge from a few scenarios to handle 
new “unseen” ones. This method enables the construction of adaptive SMs for unseen scenarios, 
such as a new initial configuration (IC) of granular mixtures, without the need for a full-sized dataset. 
Our findings indicate that Gaussian process regression (GPR) efficiently builds accurate SMs on a 
very small dataset. We also demonstrate that only a few samples are required to build an accurate 
SM for the unseen IC, which significantly reduces the data preparation burden. By incorporating 
one and five samples from unseen scenarios to update the TL-GPR-based surrogate model, the SM’s 
performance (based on R2) on unseen scenarios improves by 17 and 47%, respectively. The insights 
and methodology presented in this study will facilitate and accelerate the development of accurate 
SMs for DEM calibration, assisting in developing reliable DEM models in a shorter timeframe.

Keywords Machine learning, Transfer learning, Granular materials, Segregation, Discrete element method, 
DEM calibration

Granular segregation is an occurrence in which flowing particles with similar properties (such as size, density, or 
shape) accumulate in specific areas. Segregation is regarded unfavourable in the majority of applications because 
it might reduce the homogeneity of the granular mixtures and, consequently, is aimed at being controlled/
minimised1. To achieve this goal, a thorough understanding of segregation and the factors influencing it is 
required.

Numerous experimental studies have aimed to unravel the segregation phenomenon since the 1970s2–5. While 
these studies provided useful insights into segregation, the experimental approaches to studying segregation 
generally suffer from several limitations6. These include the difficulty in collecting the required samples for 
segregation measurements, limitations in obtaining particle-scale data, as well as being expensive and time-
consuming.

Recent advancements in computational power have led to widespread usage of the discrete element method 
(DEM), initially introduced by Cundall and Strack7, as a useful alternative to experiments for studying granular 
materials. Especially for segregation, DEM has major advantages over experiments, as it allows for the modelling 
of granular mixtures with any combinations of size, density, and shape while providing comprehensive particle-
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level information that is difficult or impossible to obtain in physical experiments6. While DEM is widely used, 
achieving a balance between model accuracy and computational efficiency remains a challenge8. The accuracy 
of the DEM model heavily depends on the proper determination of its parameters through a process called 
calibration. However, the calibration process can be time-consuming, particularly for multi-component 
mixtures, where the number of DEM parameters significantly increases.

Trial and error is still extensively employed for calibrating DEM models9–13. However, it is not only inefficient 
but also depends on the user’s expertise and barely results in an optimal parameter set14. To systematically 
calibrate the DEM model, several approaches have been proposed. Typically, these approaches use optimisation 
techniques to update the parameters and determine the calibrated parameter set. Examples include using 
advanced design of experiments (DoE) in combination with simple optimisation algorithms15, particle swarm 
optimisation16, and genetic algorithms17,18. However, these methods are still not computationally efficient due to 
the high number of simulations required14.

Richter et al.14 conducted a thorough literature review on various optimisation techniques, concluding 
that surrogate-based optimisation is the most suitable approach for DEM calibration. A surrogate model 
(SM) is an approximation of a more complex and computationally expensive model (such as DEM) aimed 
at mapping the relationship between the model’s input(s) and output(s)19. They can be built using advanced 
mathematics or machine learning (ML). Surrogate-based optimisation is effective at finding a global optimum, 
is computationally efficient, and can handle parameter limitations and multi-objective problems14. Additionally, 
ML-based surrogates can take advantage of the rapid progress in the field of machine learning in other fields13,20. 
Several studies have used surrogate-based optimisation for DEM calibration. This includes using Gaussian 
process regression (GPR) and Kriging14,21–24, multi-objective reinforcement learning25, Bayesian filtering26,27, 
multi-variate regression analysis28, neural networks29–31, and random forest (RF)13.

Despite the advancement of surrogate-based DEM calibration, several challenges remain to be addressed. 
Firstly, the vast array of available algorithms can make it challenging to choose the most suitable approach, 
often leading to subjective decision-making. Secondly, while using the SM reduces the computational cost of 
the DEM calibration, training the SMs themselves, especially when employing sampling techniques such as 
Latin Hypercube Sampling (LHS), requires a substantial number of simulations. Thirdly, most of the studies 
consider only a limited number of DEM parameters to construct the SM, potentially overlooking significant 
DEM parameters. Lastly, most studies aim at single granular materials, and to the best of the authors’ knowledge, 
no study has yet explored surrogate modelling for multi-component granular mixtures. This study attempts 
to address these challenges by developing SMs that effectively link particle-particle and particle-wall DEM 
interaction parameters to segregation. We demonstrate this on the basis of a case study for reliable estimation of 
radial segregation of multi-component mixture in a heap.

The objective of this paper is twofold:

 1.  We evaluate several ML models to develop surrogate models for DEM simulations involving a two-compo-
nent mixture (i.e., pellet-sinter) that flows from a hopper through a chute into a receiving bin. Our goal is 
to develop SMs that capture the relationship between all particle-particle and particle-wall DEM interaction 
parameters to radial segregation in the heap. To investigate the effect of the initial configuration (IC) of the 
mixture within the hopper on heap segregation, we vary the mixing degree, pellet-to-sinter mass ratio, and 
layering order within the hopper. For each individual IC, we use the definitive screening design (DSD), a 
cost-effective three-level DoE technique, to efficiently create our dataset. To construct effective SMs, we 
encode ICs, which consist of a combination of categorical and numerical variables, to prepare them as input 
features for the SMs.

 2.  Following the identification of the most effective SMs, we innovatively implement a transfer learning (TL) 
approach to transform the surrogate into an adaptive SM tailored for new, unseen ICs, named the ‘trans-
fer learning-based surrogate model (TL-SM)’, thereby addressing our second objective. In pursuit of this, 
we systematically exclude one IC from the training-validation dataset, designated as the ‘unseen IC’, which 
serves as the target domain for TL. Subsequently, we train and cross-validate the SM coupled with Bayesian 
optimisation (BO) using the remaining dataset as the source domain for TL. Utilising the TL methodology, 
we deploy the pre-trained ML model as the surrogate for the unseen target IC. We then update and retrain 
the SM by integrating new data points from the unseen IC while monitoring performance enhancements. 
The effectiveness of the proposed data-driven SM is assessed through nested cross-validation (NCV), which 
involves iteratively excluding each IC. Additionally, the stability of the TL-SM is evaluated using distinct 
random seed numbers for weight and bias initialisation.

Achieving these two objectives will pave the way for efficiently building generalised SMs for various scenarios. 
These SMs, in turn, will facilitate and speed up the DEM calibration process, contributing to the development of 
more robust and reliable DEM models in a significantly shorter time.

Simulation method and established dataset
Discrete element method
We used the Hertz-Mindlin (no-slip)32 contact model with an elastic-plastic spring-dashpot rolling friction 
model (referred to as “type C” in33) in our DEM model. This contact model has been successfully employed 
in past studies on pellets and sinter34,35. Detailed equations and more information on the contact model are 
addressed in the relevant literature32–34,36. We developed the DEM model using the commercial software EDEM 
version 2022.3, where all of the simulations were performed on the DelftBlue high-performance cluster37.
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We simulated the mixture of sinter and iron ore pellets, as an example of a multi-component mixture used in 
blast furnace. The intrinsic material properties as fixed and varied interaction parameters were employed, which 
are listed in Tables 1 and 2, respectively.

System and geometry
A system of geometries composed of a hopper, a chute and a receiving bin was used, as shown in (Fig. 1a). The 
sequence of the simulations’ steps is as follows: First, a mixture of pellets and sinter was generated in the hopper. 
Next, the outlet of the hopper was opened, allowing the materials to discharge from the hopper under the 
influence of gravity. Finally, the materials were accumulated in the receiving bin after a chute flow (see Fig. 1b).

Since the IC of the mixture within the hopper significantly influences the final segregation in the heap, we 
used various initialisations in the hopper, as illustrated in Fig. 2.

Quantifying segregation in heap
At the end of the simulations, a heap of the mixture of pellets and sinter was formed, as illustrated in Fig. 3a. 
Segregation in the heap can be measured in different directions, namely radial, vertical, and circumferential. This 

Factor Low level (-1) Middle level (0) High level (+ 1)

Pellet-pellet

µ s,pp 0.2139 0.455 0.740

µ r,pp 0.0541 0.145 0.2438

Cr,pp 0.342 0.5 0.743

Sinter-sinter

µ s,ss 0.4344 0.595 0.7638

µ r,ss 0.0835 0.23 0.3838

Cr,ss 0.0145 0.18 0.3538

Pellet-sinter

µ s,ps 0.21 0.485 0.76
µ r,ps 0.05 0.215 0.38

Cr,ps 0.01 0.355 0.7

Pellet-geometry

µ s,pg 0.3142 0.405 0.546

µ r,pg 0.0542 0.2 0.3540

Cr,pg 0.243 0.41 0.6238

Sinter-geometry

µ s,sg 0.3834 0.64 0.947

µ r,sg 0.0835 0.14 0.234

Cr,sg 0.0547 0.275 0.545

Table 2. Investigated DEM parameters with their low, middle and high values ( µ s = coefficient of sliding 
friction, µ r = coefficient of rolling friction, Cr = coefficient of restitution). The underlined values for pellet-
pellet and sinter-sinter parameters used for pellet-sinter interactions.

 

Table 1. Intrinsic material properties used in DEM simulations.
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study specifically targets radial segregation. To measure the radial segregation, the heap was first divided into a 
number ( m) of radial bins (see Fig. 3b). Next, the mass ratio of one component such as pellets within each bin 
( Cpm) was determined. Then, the segregation was quantified using the relative standard deviation (RSD):

 
RSD =

σ

µ
 (1)

where σ  and µ  are the standard deviation and the mean of Cpms, respectively.

Fig. 2. Various initial configurations (ICs) of pellets and sinter in the simulations (copper and black particles 
represent pellets and sinter, respectively).

 

Fig. 1. (a) The geometry employed in the simulations and their dimensions, (b) the flow of the mixture of 
pellets and sinter from the hopper to the receiving bin through the chute.
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Established dataset and feature engineering
Because there is a high number of DEM parameters (15, as listed in Table 2) to vary, we aimed to use a sampling 
strategy that minimises the number of DEM simulations required. To achieve this, we employed the definitive 
screening design (DSD), a unique three-level design that was first presented by Nachtsheim and Jones48. The 
power of DSD is that, in addition to the main effects, it can identify two-factor and quadratic terms. For an odd 
number of k variables (as in this study), 2k + 3 runs are needed. Furthermore, to increase the DSD design’s 
power, Jones and Nachtsheim49 suggested adding four extra runs. Therefore, only 37 simulations were required 
to establish a DSD design for 15 DEM interaction parameters. The DSD design is presented in Table A.1 in the 
Appendix.

As we conducted the DSD for five different ICs in the hopper (see Fig. 2), the generated dataset comprised 
a total of 185 simulation samples. To effectively distinguish between these ICs, it was essential to perform 
feature engineering to create additional features that describe these configurations. This feature engineering 
could potentially enhance the performance of ML models50. We specifically selected three features: segregation 
index, pellets mass ratio, and layering mode, which can distinguish between the five ICs used. Since the layering 
mode is a categorical variable, we employed the label encoding technique, which is known for its computational 
simplicity, to convert it into a numerical format51. Table 3 presents these three features along with their values 
for all ICs.

Data-driven surrogate models
The overall proposed framework for designing data-driven SMs is illustrated in Fig. 4. The dataset underwent 
nested cross-validation (NCV), one of the most rigorous validation approaches, which involves two other 
cross-validation (CV) steps. In this section, the ML models employed in this study to build surrogates for 
DEM are briefly described. These models include linear regression, support vector machine (SVM), regression 
tree, ensemble learning, Gaussian process regression (GPR), and artificial neural network (ANN). Subsequent 
sections elaborate on NCV and hyperparameter optimisation for the aforementioned ML models.

Linear regression
Linear regression is a widely used statistical tool for modelling the linear relationship between independent 
(inputs) and dependent (output) variables. In the case of only one independent variable, it is called a “simple 

Initial configuration Segregation index Pellets mass ratio Layering mode

IC1 1 0.5 1

IC2 1 0.5 2

IC3 0 0.5 3

IC4 1 0.75 1

IC5 1 0.25 1

Table 3. Three features used to describe the initial configurations (see Fig. 2) along with their values.

 

Fig. 3. (a) Side view of the heap formed within the receiving bin, (b) radial bins used to quantify radial 
segregation.
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linear regression model”, and when there is more than one independent variable, it is referred to as a “multiple 
linear regression model”52, which is the case in the current work. Considering the original dataset composed of 
n data points as D = {(xi, yi) , i = 1, 2, . . . , n}, the linear regression model is expressed as:

 y = β 0 +
∑

n
i=1(β ixi + ϵ i) (2)

where y is the vector of dependent variables (i.e., observed response), β  is the coefficients vector, β 0 is the 
intercept (or bias in machine learning), and ϵ i is the random error term. The objective in the linear regression 
is to minimise the sum of squared errors (SSE) between the predicted ( ŷi) and actual ( yi) values, which are 
calculated using the following equation:

 SSE =
∑

n
i=1(yi − ŷi)

2 (3)

There are several techniques to improve the interpretation of linear regression models, including linear regression 
with interactions, robust linear regression, and stepwise regression. Linear regression with interactions takes the 
interactions between the independent variables into account, allowing for modelling of complex relationships 
among them. Robust linear regression helps mitigate the impacts of outliers, leading to more reliable estimates53. 
Stepwise regression aids in refining the model by iteratively adding or removing them based on statistical criteria, 
ensuring that the most significant variables are included in the model. All these techniques contribute to the 
development of more accurate linear regression models across various scenarios54.

Support vector machine (SVM)
Support vector machines (SVMs) are efficient statistical learning models for classification and regression 
tasks55. SVMs are known for finding the optimal decision boundary, known as the maximum-margin, which 
can effectively separate various classes in the data. Because of this feature, SVMs are very effective at handling 
complicated datasets.

In training data, where xi is the multivariate set of n observations, the goal in support vector regression is to 
determine the estimating function f (x), which takes the form56:

 f (x) = wTG (x) + b (4)

where w is the weight vector, b denotes the bias term and G (x) is a set of linear or non-linear kernel functions 
(e.g., quadratic, cubic, etc.). To determine w and b, the following objective function is to minimise57:

 
1

2
wTw + C

∑
n
i=1(ξ i + ξ ∗

i ) (5)

subject to:

Fig. 4. The overall proposed framework to design data-driven SM leveraged by TL.
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wTG (xi) + b− yi ≤ ϵ + ξ ∗
i

−(wTG (xi) + b− yi) ≤ ϵ + ξ i

ξ i, ξ
∗
i ≥ 0, i = 1, 2, . . . , n

 (6)

where C  is the box constraint, xi and yi are the input and output vectors, respectively, and ξ i and ξ ∗
i  are 

positive slack variables. SVMs utilise kernel functions ( k (x, x′ ), where x and x′  are two data points) to handle 
non-linear relationships between the input and output vectors. Even if the original input space is not linearly 
separable, kernel functions enable SVMs to implicitly transfer input vectors into a higher-dimensional space 
where the data may be more separable. In this case, the decision function (Eq. (4)) takes the form:

 f (x) =
∑

n
i=1 (α i − α ∗

i ) k (xi, x
′ ) + b (7)

where α i and α *
i  are Lagrange multipliers. For example, the decision function for the radial basis function 

(RBF) kernel is as follows:

 
f (x) =

∑
n
i=1 (α i − α ∗

i ) exp
(
−γ ?xi − x′ ?

2
)
+ b (8)

where γ  is a parameter for the RBF kernel.

Regression tree

Decision trees are predictive models that partition the feature space to predict the label associated with an 
instance by traversing from the tree’s root to a leaf58. Regression trees are a specific type of decision trees 
designed for predicting numerical values. They recursively divide the input space ( xi) into J  number of 
disjoint regions ( R1, R2, . . . , RJ) using splitting rules. Regression tree splitting rules are derived from 
the minimisation of the sum of squared errors inside each division:

 
(j, s) = argmin

[∑
(yi − cm)

2 +
∑

(yi − c′m)
2
]

 (9)

where j and s are the index and the threshold value of the feature used for splitting, respectively. cm and 
c′m are the constant predictions for regions Rm and R′

m. The main parameter in regression trees is the 
minimum leaf size, which represents the minimum number of samples required to create a terminal node 
(leaf) in the process of building the tree.

Ensemble learning

While regression trees are easy to interpret and fast for fitting and prediction, like other weak learners, 
they are susceptible to overfitting and have sensitivity to training data. Integrating several weak learners 
makes the model more resilient and less prone to overfitting, as each learner depends on a different set of 
data points. Ensemble learning in ML is the process of combining several weak learners. Given regression 
trees, one way to overcome this issue is to construct a weighted collection of multiple regression trees 
to build models called ensembles of trees. Combining many regression trees generally improves the 
prediction capability and accuracy. Several ensemble learning methods exist, including bagging and 
boosting.
Bagging (bootstrap aggregation) involves training many weak (base) learners (parallelly) 
simultaneously and integrating them using averaging techniques59. Considering the original data set as 
D = {(x1, y1) , (x2, y2) , . . . , (xn, yn)}, first, a number of bootstrap samples (Di, i = 1, 2, ., B)  is 
created by randomly choosing n samples from D with replacement. Then, a base learner fi is trained 
based on Di to minimise the error between y and fi (x). Finally, the aggregated prediction model f (x) 
is obtained by averaging the predictions:

 
f (x) =

1

B

∑
B
i=1fi (x) (10)

By training each learner with the output of the preceding learner, the boosting approach progressively 
boosts the model’s overall performance. One boosting technique used for building regression ensembles 
is least-squares boosting (LSBoost)60. This technique successively fits a set of weak learners (e.g., decision 
trees), with each new learner trained to reduce residual errors from the ensemble’s total predictions. 
The approach iteratively improves the ensemble’s predictions by including fresh weak learners. First, the 
ensemble prediction is initialised as the mean of the target values ( yi, i = 1, 2, . . . , n):

 
f0 (x) =

1

n

∑
n
i=1yi (11)

Then, for iteration m (m = 1, 2, . . . , M), the residuals between the target values and the accumulated 
prediction ( fm−1 (xi)) for each observation is calculated as:

 rim = yi − fm−1 (xi) 1 ≤ i ≤ n (12)
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Next, a new weak learner ( hm) is trained by fitting it to the residuals:

 
hm = argmin

h

(
1

2n

∑
n
i=1[rim − h(xi )]

2

)
 (13)

Finally, the ensemble model is updated:

 fm (x) = fm−1 (x) + η mhm (14)

where η  is the learning rate (the shrinkage parameter), which controls the contribution of each weak 
learner and ranges from 0 to 1.

Gaussian process regression (GPR)
Gaussian process regression (GPR) is a probabilistic and non-parametric kernel-based machine learning 
regression model61 rooted in Bayesian principles. Due to its simplicity of use and flexibility in obtaining 
hyperparameters, GPR is well-suited to handle small-sized datasets and nonlinear problems62. A Gaussian 
process (GP) is a collection of random variables having Gaussian distribution and is fully defined by its mean 
function µ (x) and covariance kernel function k (x, x′ ).

Considering xi and yi as the input and corresponding output vectors, respectively, the GPR model with 
Gaussian noise is formulated as:

 yi = f (xi) + ϵ i (15)

where ϵ i denotes a constant additive noise term assumed to follow a Gaussian distribution with a mean of 
0 and a standard deviation of σ  (i.e., ϵ i ∼ N (0, σ 2)). The objective of GPR is to infer the function f  in a 
non-parametric and Bayesian approach, utilizing the provided training dataset {(xi, yi) ; i = 1, 2, . . . , n}. A 
prior distribution on f  needs to be established in order to learn this function. Typically, this prior is utilized to 
encapsulate qualitative attributes of the function such as continuity, differentiability, or periodicity. In GPR, the 
prior distribution for f  as the regression function is represented by:

 f (x) ∼ GP(µ (x) , k(x, x′ )) (16)

In this formulation, while the mean function µ (x) is often set constant, the covariance kernel k (x, x′ ) varies. 
When the values of the function f (xi) have a joint Gaussian distribution defined by µ (x) and k (x, x′ ) for 
every finite set of inputs xi, then the function f (x) is a GP, implying:

 




f (x1)

?

f (xn)


 ∼ N






µ (x1)

?

µ (xn)


 ,




k (x1, x1) · · · k (x1, xn)

? . . . ?

k (xn, x1) · · · k (xn, xn)




 (17)

which using the notation below:

 

µ ≜




µ (x1)

?

µ (xn)


 ; K ≜




k (x1, x1) · · · k (x1, xn)

? . . . ?

k (xn, x1) · · · k (xn, xn)


 ; ∥ (x) ≜




k (x1, x)

?

k (xn, x)


 (18)

the equations can be simplified. In the process of learning functions through GPR, the implications of expanding 
Eq. (17) by including a new data point x∗, separate from the training data, are being considered. The objective 
is to predict the value of the function at this particular location, i.e., f (x∗). To do so, given the already observed 
values Y = [y1 . . . yn]

T , the relationship can be expressed by incorporating Eqs. (15)–(18):

 

[
Y

f (x∗)

]
∼ N

([
µ

µ (x∗)

]
,

[
K + σ 2In ∥ (x∗)
∥ (x∗)T k (x∗, x∗)

])
 (19)

Here, In is the N×N identity matrix. Conditioning on the new data based on observations, the posterior 
probability distribution for f (x∗) can be estimated as:

 f (x∗) |Y ∼ N
(
µ ∗, σ

2
∗
)

 (20)

where:

 µ ∗ = µ (x∗) + ∥ (x∗)T
(
K + σ 2In

)−1
(Y − µ ) (21)

 σ 2
∗ = k (x∗, x∗)− ∥ (x∗)T

(
K + σ 2In

)−1∥ (x∗) (22)

The posterior probability distribution is Gaussian once more, allowing for Bayesian reasoning on the function f . 
One noteworthy aspect of these formulations is that the function’s posterior expected value, E (f (x∗) |Y), could 
be stated using a weighted sum of kernel functions:

Scientific Reports |        (2024) 14:27003 8| https://doi.org/10.1038/s41598-024-78455-7

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


 E (f (x∗) |Y) = ∥ (x∗)T
(
K + σ 2In

)−1
(Y − µ ) =

∑
n
i=1k (x∗, xn)α i (23)

where:

 




α 1

?

α n


 ≜

�
K + σ 2In

−1
(Y − µ ) (24)

To delve into the GPR model, the weighted sum in Eq. (24) is advantageous as it facilitates computations that 
would otherwise be challenging.

The details on the kernel functions used in this study are presented in Table B.1 in the Appendix. It is possible 
to use either isotropic or non-isotropic kernel functions with GPR. In contrast to isotropic kernels, non-isotropic 
ones give each predictor variable a distinct correlation length scale. This results in an improved accuracy at the 
cost of slowing down the fitting process.

Artificial neural network (ANN)
An artificial neural network (ANN) is an ML model inspired by neuronal organisation in animal brains. ANN 
is composed of interconnected nodes which are arranged into several layers. These layers are typically organised 
into three groups: the input layer, hidden layers, and the output layer. Each node (or neuron) conducts a basic 
computation, and the connections between nodes transport weighted signals from one layer to the next63,64.

The output of the NN is computed through feedforward propagation65. Considering the input vector as x, 
the activation of each neuron in layer l as a(l), the weight matrix linking layer l to layer l + 1 as W (l), and the 
bias term for layer l as b(l), the feedforward computation is as follows:

 z(l+1) = W (l)a(l) + b(l) (25)

 
a(l+1) = g

(
z(l+1)

)
 (26)

where z(l+1) is the input to layer l + 1 and g (z) is the activation function which is applied element-wise to the 
input. In this study, we used the rectified linear unit (ReLU), Tanh, and sigmoid activation functions, whose 
formulas are provided in Table B.2 in the Appendix.

Hyperparameters optimisation and model validation
Overfitting is a common challenge in ML models, requiring the use of cross-validation (CV) methods to validate 
the effectiveness of the model. As illustrated in Fig.  5, we employed nested cross-validation (NCV), which 
consists of two CV steps:

 I.  An external loop conducts CV on the dataset based on the number of ICs, excluding one IC at each iteration 
to create a distinct test set of “unseen ICs”.

 II.  An internal loop performs CV on the remaining dataset after the execution of the external loop to tune 
hyperparameters and mitigate overfitting.

This NCV technique properly estimates model performance by combining 5-fold outer loops based on the 
number of ICs with 10-fold inner loops. In the outer loop, model performance assessment occurs through the 
partitioning of the dataset into a training-validation set (comprising four ICs) and a distinct test set (comprising 
one IC). The outer loop is also referred to as leave-one-out cross-validation (LOOCV)66 on ICs. The training-
validation set undergoes further subdivision into diverse folds using a 10-fold CV to estimate the generalisation 
error and fine-tune hyperparameters. To this end, Bayesian Optimisation (BO) algorithms67 were employed 
to adjust hyperparameters. To determine the minimum or maximum of a function, BO combines Bayesian 
inference with optimisation techniques. BO constructs a prior distribution over parameters, updates it with 
data, and selects promising parameters using an acquisition function. This iterative process efficiently explores 
the function space until it converges on the optimal parameters. Compared to exhaustive search techniques 
such as grid search or random search, this method effectively explores the hyperparameter space and frequently 
requires fewer trials.

Transfer learning (TL) for unseen ICs
In this section, we explore the application of transfer learning (TL) to enhance the performance of the SM when 
confronting a new, previously unseen IC. TL is a powerful technique that leverages knowledge gained from 
related tasks or domains to improve performance on a target task68–70. TL is specifically advantageous when 
providing a sufficient number of training samples is costly.

In the context of granular material segregation, the IC is crucial as it can significantly influence segregation 
outcomes6. Consequently, if the IC changes, the DEM model must be recalibrated, which is very time-
consuming. To address this challenge, we can leverage prior knowledge gained from previously encountered ICs 
as the source domain to pretrain the SMs. Subsequently, we can transfer the pretrained SMs as base learners for 
new, unseen ICs, treating them as the target domain in TL. In the next stage, the pretrained SMs are updated 
by incorporating a small number of samples from the target domain through model retraining while retaining 
the prior information from the source domain. This approach allows TL to expedite the learning process, as the 
SMs require fewer samples from the unseen ICs to achieve effective learning. Additionally, it eliminates the need 
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for full retraining and cross-validation, coupled with BO, using data from both the source and target domains, 
thereby reducing computational demands.

Considering xi and yi representing the input and output vectors, TL involves extracting knowledge from the 
source domain ( Ds = {(xsi , ysi )}

Ns
i=1, ), and use it to pretrain the model for the target domain ( Dt = {(xti, yti)}

Nt
i=1

). Here, we investigate the effectiveness of TL in updating the model by varying the number of samples from the 
newly unseen IC. This includes the following steps:

• Initial model training: Initially, the SM model is trained using cross-validation on data from four out of the 
five ICs, yielding a baseline model fs. This baseline model provides a starting point for the TL approach.

For example, the training of the source model for GPR can be expressed as:

 {fs (x,ws,θ 0) ∼ GP(µ (x) , k(x, x′ )| (w0,θ 0)) : x ∈ Ds} (27)

where the initial learnable parameters are denoted as w0 and the trained learnable parameters are denoted 
as ws. If we denote initial hyperparameters of f (x) with θ 0, the BO algorithm – given x ∈ Ds – is 
applied to tune hyperparameters of fs (x), after which they can be denoted by θ s.

• Testing the unseen IC: Subsequently, the performance of the pretrained baseline model is evaluated on the 
data from the new unseen IC.

 {fs (x,ws,θ s) : x ∈ Dt} (28)

However, the results indicated suboptimal performance, highlighting the need for further model 
refinement.

• TL with limited samples: To address the limitations in performance, the transferred model is updated using 
limited samples from the target domain Dt = {(xti, yti)}

Nt
i=1 alongside the source domain data Ds. For exam-

ple, the updating of the source model for GPR can be expressed as:

 {ft (x,wt,θ s) ∼ GP(µ (x) , k(x, x′ )| (ws,θ s)) : x ∈ (Ds ∪ Dt)} (29)

Specifically, we experimented with Nt values of 1, 5, 10, and 20 samples available from the new unseen IC 
to investigate the impact of varying sample sizes of the target domain on model improvement.

Fig. 5. The process of nested cross-validation (NCV), given LOOCV in the outer loop and 10 folds in the 
inner loop.
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Evaluation metrics
We used several metrics to compare the performance of the trained ML models. These metrics can be categorised 
into two groups: metrics that evaluate the accuracy of the models and those that assess the speed of the training 
and prediction processes. Regarding the first group, we used root-mean-square error (RMSE), coefficient of 
determination (R-squared or R2), and mean-absolute-error (MAE), with the following equations:

 
RMSE =

√∑ n
i=1(yi − ŷi)

2

n
 (30)

 

R2 = 1−
∑ n

i=1(yi − ŷi)
2

∑ n
i=1

(
yi −

−
yi

)2  (31)

 
MAE =

∑ n
i=1 (yi − ŷi)

n
 (32)

where n is the number of data points, y is the actual value vector, ŷ is the predicted value vector, and 
−
y is the 

mean of actual values.
In addition to the metrics used to assess accuracy, we also employed two additional metrics: training time 

and prediction speed. The former indicates the time required for the model to be trained (in seconds), while the 
latter represents the number of predictions the model can make per second. Therefore, models with low training 
times and high prediction speeds are preferred.

Results and discussion
In this section, the performance of various ML models (mentioned in Section 3), considered as the SM, is 
first compared in the subsection “surrogate model selection”. The influence of including or excluding initial 
configurations (ICs) as complementary input features through label encoding is investigated to select the 
best models and determine the optimal approach for shaping the feature input. This step is crucial for further 
evaluations and subsequent steps toward nested cross-validation (NCV) on unseen ICs and updating the SM 
using TL, as will be discussed in the subsection “Transfer Learning (TL) for Unseen ICs”. We used MATLAB 
2022a on a laptop with an Intel Core i7-8665U CPU and 16 GB of RAM to train and evaluate ML models.

Surrogate model selection
We trained various ML models to compare and select those showing the best performance for the next steps. The 
models were trained under two distinct scenarios with respect to ML inputs: (1) using only DEM interaction 
parameters, and (2) considering extra inputs to characterise the ICs of the mixture within the hopper (see Fig. 2). 
Figure 6 illustrates an example of the regression tree model’s performance for both scenarios. Obviously, the 
model’s performance is significantly enhanced in the case of the extra inputs related to ICs. This improvement 
is anticipated as the segregation (or degree of mixing) of multiple materials heavily depends on their ICs6. The 
results for the first scenario (i.e., excluding ICs as ML inputs) are given in Table B.3 of the Appendix, where it 
is evident that the model’s performance is unsatisfactory even with optimised hyperparameters. As a result, we 
proceed with the second scenario to train the models.

The training results of various ML models are presented in Table 4, where ICs were included as complementary 
features. The training was performed with 5-fold cross-validation on 185 samples and 18 features. Optimisable 
models were fine-tuned using the Bayesian optimisation (BO) algorithm with 50 iterations. Notably, the 
performance of the models significantly improved when the hyperparameters were optimised using BO, 
underscoring the importance of fine-tuning hyperparameters in the ML training process. It is also worth 
mentioning that despite increasing the number of hidden layers and neurons, the performance of ANN did not 
improve, possibly due to overfitting or vanishing gradient problems71.

Based on the evaluation metrics employed in this study, the optimal model is characterised by minimal error 
(i.e., RMSE and MAE), maximal R2, low training time, and high prediction speed. According to Table 4, we 
identify two models that fulfil the majority of these criteria simultaneously: Gaussian process regression (GPR) 
and ensemble of trees, with GPR being superior across all metrics.

Transfer learning (TL) for unseen ICs
In this section, we present the outcomes of the TL method and updating process utilised in this study, as 
explained in Section 5. Results for TL-based ensemble learning (TL-Ensemble) and GPR (TL-GPR) are given in 
Tables 5 and 6, respectively. To ensure stability and repeatability, we used five different random seed numbers to 
initialise the ML model’s parameters during training. This strategy ensures a reliable assessment of the model’s 
performance. The results in Tables 5 and 6 are reported as (mean ± standard deviation) resulting from these five 
repetitions. All training procedures were performed with 10-fold cross-validation and 18 features. Additionally, 
hyperparameters were fine-tuned using the BO algorithm. The hyperparameters of these models together with 
their search space are provided in Table B.4 and Table B.5 in the Appendix.

Initially, we cross-validated the models (i.e., Ensemble learning and GPR) using all 185 available samples 
given ten folds to establish a benchmark for comparison. The results are displayed in the first row of Tables 5 
and 6, labelled as “All ICs were seen”. Then, we iteratively applied the transfer learning approach across all ICs. 
For each iteration, one IC was excluded, and the model was pretrained on the remaining four ICs (i.e., on 
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4 × 37 = 148 samples) via a 10-fold cross-validation coupled with BO fine-tuning of hyperparameters. The results 
of the validation phase are presented under “Validation”, excluding the training phase’s results. Next, we tested 
the model’s performance on the “unseen IC” as the target domain of TL that was previously excluded. We ran 
tests where the pretrained model was retrained with 0, 1, 5, 10, and 20 samples from the unseen IC, monitoring 
its performance each time. These test results are shown under “Unseen IC”. For an overall assessment of the 
model’s performance across all unseen ICs, we calculated the average of the TL-based outcomes across all unseen 
ICs for retraining with different available samples of 0, 1, 5, 10, and 20 from the target domain. These averages 
are displayed at the bottom of Tables 5 and 6, indicated as “Mean”.

To visually illustrate the impact of the updating process on the pretrained TL-SMs, Fig. 7 shows predicted 
versus true responses for two different unseen initial configurations, IC1 and IC3, where they were updated 
with 0 (no update), 1, and 5 samples from the target domain. The models’ predictions were initialised using the 
first random seed number in this figure. As illustrated, providing even a few samples from the unseen IC—the 
target domain—for updating leads to a significant improvement. Comprehensive results for various unseen ICs, 
random seed numbers, and the model updated with different numbers of samples (0, 1, 5, 10, 20) from the 
unseen IC under test are provided in two videos in the supplementary material for both TL-Ensemble and TL-
GPR. These videos allow easy tracking of the updating process and the effect on targeting different unseen ICs.

Figure  8 illustrates a comparison between the “mean” performance of TL-Ensemble and TL-GPR across 
different numbers of available samples from the unseen IC. As shown, TL-GPR consistently outperforms 
Ensemble-TL across all available sample sizes, highlighting the superiority of TL-GPR over TL-Ensemble. 
Consequently, we focus our attention on TL-GPR for further analysis of the results.

Figure  9 illustrates the reduction in RMSE in percentage for different sample sizes used to update the 
TL-GPR model. The reduction was calculated as (|RMSEICi −RMSEIC0| /RMSEIC0)× 100, where 
(i = 1, 5, 10, 20) corresponds to different numbers of samples to retrain SM, and IC0 denotes the case where 
no update happens to the pretrained model. The bar graph demonstrates that updating the TL-GPR model with 
just one sample from the unseen IC results in a significant reduction (~ 50%) in the RMSE. Figure 8a also shows 
that by updating the model with only a few new samples (e.g. 5 samples) from the unseen IC, its accuracy for the 
new IC can approach that of the validation set. This finding underscores the efficiency of updating the SM with a 
minimal number of new DEM simulations to achieve improved accuracy of the SM for unseen IC.

It is important to note that the results and analyses discussed above are based on the average performance 
of the TL-based model across all ICs. However, according to Table 6, the model’s performance varies depending 
on which IC is considered as unseen. To facilitate a clearer comparison, Fig. 10 presents the RMSE and R2 of 
TL-GPR across all ICs and for different numbers of samples used to update the pretrained model. It reveals that, 
when the model is not updated (i.e., 0 sample), the TL-GPR model exhibits the poorest performance for IC3 and 
IC2, characterised by the highest RMSE and lowest R2.

The observed performance for IC3, where materials within the hopper are fully-mixed (see Fig.  2), was 
anticipated. This is because there is no comparable data in the training dataset; the other four initial configurations 
(IC1, IC2, IC4, and IC5) have fully segregated initial configurations, leading to a far different data distribution 
for IC3. Similarly, the relatively less optimal performance of the model for IC2 can be attributed to its unique 

Fig. 6. Comparison of the impact of input features with (w/) and without (w/o) initial configurations (ICs) on 
fine-tuned regression tree outcomes using Bayesian optimisation (BO), assessed via 5-fold cross-validation.
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feature, i.e., having a reversed layering order, opposite to IC1, IC4, and IC5. Nevertheless, in both IC2 and 
IC3 cases, after updating the model with only a few data points, a significant improvement in performance is 
observed. For instance, in IC3, updating the model with only 1 and 5 samples results in a remarkable reduction 
in RMSE by 68% and 85%, respectively.

Conclusion
In this study, we successfully demonstrated a framework for developing surrogate models (SMs) that effectively 
link particle-particle and particle-wall DEM interaction parameters to the segregation of a multi-component 
mixture. We first examined various ML models to develop SMs capable of estimating radial segregation in the 
heap based on DEM parameters and the initial configuration (IC) of the mixture. We found that developing 
accurate SMs requires consideration of features describing IC through feature engineering. Moreover, we 
emphasise that fine-tuning hyperparameters is crucial to obtaining the optimal performance of ML-based SMs. 
Among the six ML models tested, Ensemble learning and Gaussian process regression (GPR) demonstrated the 
best performance.

Next, we developed an adaptive SM leveraging a transfer learning (TL)-based approach using Ensemble learning 
and GPR. Cross-validation, coupled with Bayesian optimisation for fine-tuning the SM’s hyperparameters, was 
conducted using four ICs as the pretraining phase of TL, while predictions and a retraining phase made for a 
fifth “unseen IC”. Model performance was monitored after updating and retraining the TL-SMs with access to 
different numbers of samples from the unseen IC. We observed that TL-GPR consistently outperformed TL-
Ensemble.

Our findings indicate that the performance of TL-SMs varied depending on the specific unseen IC. When 
testing the pretrained TL-SMs with new ICs possessing specifications not included in the source dataset, their 
performance appears to be relatively lower. For instance, IC3 is the only configuration out of five in which the 

Model Adjustments

Metrics based on 
validation

Training time (sec) Prediction speed* (≈ observation/sec)RMSE R2 MAE

Linear Regression

– 0.0506 0.91 0.0406 9.98 1600

Interactions 0.0244 0.98 0.0200 33.32 620

Robust 0.0509 0.91 0.0404 31.00 910

Stepwise 0.0237 0.98 0.0188 539.56 3000

Regression Tree

Fine 0.0423 0.93 0.0301 28.25 3400

Medium 0.0420 0.94 0.0293 27.12 3700

Coarse 0.1288 0.39 0.1048 25.35 3000

Optimisable (BO) 0.0390 0.94 0.0277 34.97 5600

SVM

Kernel: linear 0.0505 0.91 0.0388 19.18 3500

Kernel: quadratic 0.0310 0.96 0.0245 17.22 2800

Kernel: cubic 0.0384 0.95 0.0300 14.18 3400

Kernel: Fine Gaussian 0.1616 0.04 0.1325 43.12 4700

Kernel: Medium Gaussian 0.0642 0.85 0.0478 42.76 4500

Kernel: Coarse Gaussian 0.0755 0.79 0.0585 41.94 3000

Optimisable (BO) 0.0251 0.98 0.0201 461.24 5900

Ensemble of Trees

Boosted 0.0362 0.95 0.0265 41.19 790

Bagged 0.0703 0.82 0.0590 40.11 650

Optimisable (BO) 0.0231 0.98 0.0173 472.77 260

GPR

Kernel = Exponential 0.0485 0.91 0.0370 36.89 2100

Kernel = Squared Exponential 0.0239 0.98 0.0184 38.62 1100

Kernel = Rational Quadratic 0.0239 0.98 0.0184 36.13 2200

Kernel = Matern 5/2 0.0255 0.98 0.0197 37.68 3400

Optimisable (BO) 0.0162 0.99 0.0119 348.61 4600

ANN

One layer with [10] neurons 0.0378 0.95 0.0282 34.86 1000

One layer with [25] neurons 0.0452 0.93 0.0349 34.10 2300

One layer with [100] neurons 0.0703 0.82 0.0560 33.43 1200

Two layers with [10,10] neurons 0.0719 0.81 0.0541 32.68 3300

Three layers with [10,10,10] neurons 0.0921 0.69 0.0637 31.86 2800

Optimisable (BO) 0.0245 0.98 0.0201 602.92 9400

Table 4. Performance comparison of regression models, including 3 features representing initial 
configurations (ICs). Optimisable models’ hyperparameters were fine-tuned using the BO algorithm. *For 
reference, each DEM simulation takes approximately 3 h (10,800 s), highlighting the significant speed 
advantage of the surrogate models.
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materials are fully-mixed, and the TL-SMs’ performance for IC3 was inferior compared to other ICs. However, 
the performance significantly improved after updating the model with a few samples from the “unseen IC”. 
For instance, the RMSE of TL-GPR was reduced by an average of 50% by retraining the model with just one 
additional sample, highlighting the adaptability and effectiveness of our proposed adaptive TL approach.

To overcome the challenge encountered by the TL model for IC3 (i.e., fully-mixed configuration), additional 
intermediate initial configurations between fully-segregated and fully-mixed ones can be incorporated. 

Fig. 7. Predicted and true responses for unseen initial configurations IC1 and IC3 with TL-Ensemble and TL-
GPR, updated with varying numbers of samples: (a) 0 (no update), (b) 1, and (c) 5 from the unseen IC.
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Additionally, our surrogate model is currently constrained to predicting segregation for pellets and sinter with 
specified material properties and certain geometrical properties of the system. To improve the generalisability 
of the model, it is essential to vary and include these material- and geometry-related properties in the training 
phase. Furthermore, our surrogate model is developed for only one response variable. However, in DEM model 
calibration problems, multiple responses are typically considered simultaneously. Future research endeavours 
could focus on addressing these challenges, including incorporating multiple response variables and exploring a 
broader range of material and geometric properties to improve model performance and applicability.

Fig. 9. Reduction in RMSE of TL-GPR model following updating with different numbers of samples from 
unseen ICs.

 

Fig. 8. Comparison between the mean performances of TL-Ensemble and TL-GPR during validation and test 
phases for different numbers of available samples from unseen IC to update in terms of (a) RMSE, (b) R2, and 
(c) MAE.
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