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Summary

Introduction One of the main consequences of recent innovations in wind turbines, for improvement of
the cost effectiveness, is the scaling up of the rotor size and hence the turbine tower. The larger tower geome-
tries make wind turbines more susceptible to vortex-induced vibrations. Besides the higher probability of
vortex-induced vibrations with modern wind turbine structures, another factor that impacts the behaviour
of the phenomenon is the large Reynolds numbers. Typically, because of the large structure and considerable
wind speeds, the wind turbines may reach Reynolds numbers as high as Re > 3.5 · 106 (known as the su-
percritical Reynolds regime). It has appeared that the vortices behind the turbine tower may show different
features at these high Reynolds numbers. The following research objective was defined for this MSc thesis:
To help Siemens Gamesa define a more physically representative VIV model accounting for the large-scale ef-
fects by analyzing the critical parameters influencing VIV. From the literature study, it was concluded that
the combination of investigating an oscillating cylinder at supercritical Reynolds number is a novel research
area. Furthermore, the Reynolds number and the cylinder oscillations (fluid-structure interaction) are both
considered to be a critical influencing parameter causing VIV. Therefore, the following research question was
defined: What is the fluid-structure interaction effect of a transversely oscillating cylinder exposed to VIV at
supercritical Reynolds numbers?

The present MSc research has investigated VIV by conducting a computational fluid dynamics (CFD)
simulation with the open-source code OpenFOAM [1]. The following three canonical VIV cases have been
investigated in the present research: stationary, forced-vibrating and free-vibrating cylinder. All these three
cases have been analyzed for both the laminar regime (which was defined as 80 < Re < 200) and supercritical
Reynolds regime (Re > 3.5 ·106).

Laminar regime In the laminar regime, 80 < Re < 200, all three modelling set-ups (stationary, forced-
and freely-vibrating) have been verified by comparing the results with other numerical studies. All three
modelling configurations showed good agreement with literature. Grid and temporal convergence has been
achieved for the stationary and forced-vibrating cylinder cases. It was concluded confidence was obtained
on the three models to use them for the turbulent cases.

Supercritical regime: stationary cylinder The stationary cylinder case in the supercritical regime showed
the turbulence model was deemed as reliable, although no spatial convergence was observed. The verifi-
cation study demonstrated the presently used turbulence model performed well as the results fell within
the range of numerical data found in literature. The URANS performed well compared to two different DES
studies found in the supercritical regime. The validation study showed the predicted lift coefficient and sep-
aration angle by URANS agreed fairly well with the experimental values, while the mean drag coefficient and
Strouhal number deviated considerably. It was reasoned that URANS was not able to capture the separation
phenomenon well, leading to an inaccurate drag coefficient and Strouhal number.

Supercritical regime: forced-vibrating cylinder Firstly, a clear lock-in band has been observed for the
forced-vibration model by analyzing the predicted aerodynamic forces, phase angle behaviour and effective
added mass coefficient. It was shown by the forced-vibrating results that under certain operating conditions,
a unusual large lift magnification factor was predicted. This prediction has been explained by the added mass
effect. Just before the critical frequency, an unstable trajectory was observed where the aerodynamic damp-
ing increased for higher oscillation amplitudes. Around the critical frequency, the wake showed a change of
the vortex pattern which coincided with a phase angle switch. This in turn yielded a negative aerodynamic
damping. This ‘switching mechanism’ observed in the wake corresponded with earlier observations in liter-
ature. Then, after the switch the phase angle increased again and approached a value around zero degrees.

The comparison of the forced-vibration results with the wind-tunnel experiment of [2] showed the lift
magnification and aerodynamic damping predicted by the present CFD model agreed fairly well with the
experiment before the critical frequency for y∗

max = 0.015−0.025. The results for the lowest amplitude, y∗
max =

0.0035, showed bigger deviations between the experiment and the CFD model. Moreover, the experiment
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iv Summary

showed a sharper rise of the aerodynamic damping around the critical frequency which the CFD model did
not predict. Nevertheless, the predicted switching mechanism and timing of this mechanism was predicted
well by the CFD model compared to the wind-tunnel experiment.

Supercritical regime: free-vibrating cylinder The following operating conditions were investigated: 1.9 <
U∗ < 10.7; 2.8 ·106 < Re < 1.6 ·107; m∗ = 29.6 and ζ= 0.003. A lift magnification factor of MCL ≈ 10 and drag
magnification factor of MCD ≈ 1.5 were both found to be the largest magnifications. The maximum non-
dimensional oscillation amplitude was found to be y∗

max = 0.52. The typical characteristics of VIV found for
lower Reynolds number in the literature (see compilation in [3]) were found to be present for supercritical
Reynolds numbers.

During lock-in, the aerodynamic force signals did not show a constant amplitude over time. In fact, it was
demonstrated by the phase angle behaviour and changes in the wake pattern that a continuous alteration
between self-excitation and self-limitation of the FSI was present. The wake restructuring was found to be in
line with the ‘switching mechanism’ found earlier for the forced-vibration results. Because of the alteration,
no steady-state equilibrium was found where the energy transfer between the structure and fluid remained
constant over time. Closely before the critical frequency, divergence was observed. It was believed the diver-
gence was mathematically plausible and not a consequence of a numerical problem. This was supported by
the convergence of the relative transverse (cylinder) velocity error. The divergence was believed as realisti-
cally possible. The results from the forced-vibration cases from the present work and the wind-tunnel data
from [2] showed that unstable trajectories can occur under the operating conditions where divergence was
observed. The damping coefficient, it was concluded, was too small to suppress this unstable trajectory.

Besides these observations, the effect of the mass coefficient and damping coefficient on the fluid-structure
interaction was addressed as well in the present research. It was suggested that a sufficiently large mass co-
efficient would lead to a nearly stationary response (say m∗ > 59). For a very low mass ratio (m∗ < 3), the
cylinder supposedly showed a stronger lock-in response. When the mass ratio was in-between the critical
mass ratio and the very small mass ratio (10 < m∗ < 40), it appeared the system yielded a more dynamic FSI
response where the energy transfer between the structure and the fluid varied over time. These cases yielded
high aerodynamic peak forces and were the most susceptible to changes in response when the reduced ve-
locity was varied. The effect of the damping coefficient was considered to be less severe compared to the
effect of the mass coefficient as the time series remained more similar when the damping was varied. For
some of the operating conditions an increased damping coefficient lead to a significantly different response,
in magnitude and qualitatively in the time series signal.

Conclusion In conclusion, this research has aimed to open up the relative new research area for supercrit-
ical Reynolds numbers by demonstrating the current CFD infrastructure (OpenFOAM, URANS and FSI cou-
pling) is suitable for engineering work. Since no other numerical study has been found in the literature which
has performed a similar combination of supercritical Reynolds numbers with FSI, the present research has
delivered new insights and numerical data for this novel research area. Various typical VIV characteristics,
known from the literature, have been observed in the supercritical regime. In addition, the FSI at super-
critical Reynolds numbers has been investigated thoroughly by analyzing the aerodynamic damping, phase
angle and wake patterns. All these results have addressed the research question. These insights have served
to reach the research objective. From a practical perspective, relevant data was obtained by the CFD model
for potential optimisation of a phenomenological model predicting VIV. At the same time, more importantly,
the insights obtained regarding the fluid-structure interaction at supercritical Reynolds numbers have con-
tributed to a better understanding of the VIV phenomenon for Siemens Gamesa. The addressed research
question has provided a fundamental analysis of how the phenomenon originates and how it is influenced by
two of the main influencing parameters. Although no effort has been undertaken in the present research to
investigate the phenomenological models in more detail, this theory-oriented thesis indeed showed that the
Reynolds number and the fluid-structure interaction effects should be modelled carefully in a phenomeno-
logical model. Further practical improvements of the phenomenological model are within the capabilities
of the CFD infrastructure as has been demonstrated in the present research. This research has deliberately
shared its modelling experiences and possible recommendations for future work to further exploit the poten-
tial of CFD to improve phenomenological models.
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1
Introduction

1.1. Motivation
The interest in alternative energy sources to the conventional, polluting and depleting fossil fuels has in-
creased tremendously over the past decades. Off-shore wind has shown an impressive growth over the last 16
years, in which around every 3rd year the total capacity doubled [6]. While off-shore wind energy has proven
its high potential, improving the cost effectiveness is (still) highly important to ensure that the sector ma-
tures into an attractive alternative energy provider [7]. One of the main consequences of recent innovations
in wind turbines, for improvement of the cost effectiveness, is the scaling up of the rotor size. The scaling
up increases the power capacity of the turbine. This design motivation has led to increasingly larger turbine
towers.

As a consequence of these recent developments, the off-shore wind turbine towers of today can be as tall
as 150 meters. One of the major engineering challenges that has come along with these new turbines is deal-
ing with an aerodynamic phenomenon called vortex-induced vibrations (VIV). The larger tower geometries
make wind turbines more susceptible to vortex-induced vibrations. The larger structures lead to a higher
Strouhal number and decreased natural frequency of the system. These two effects reduce the critical wind
speed, i.e. the wind speed where VIV are most likely to occur. As this reduced critical wind speed is closer to or
falls within the typical wind speed envelope for off-shore wind, the large-scale structures will yield a higher
probability of VIV occurring. VIV may excite the towers in their eigenfrequencies. Such resonant circum-
stances are disastrous for the tower structure. Even when the eigenfrequency is not reached, the vibrations
could result in fatigue stresses which impact the designed lifetime.

Besides the higher probability of vortex-induced vibrations with modern wind turbine structures, another
factor that impacts the behaviour of the phenomenon is the large Reynolds numbers. Typically, because of
the large structure and considerable wind speeds, the wind turbines may reach Reynolds numbers as high
as Re > 3.5 ·106 (known as the supercritical Reynolds regime). It has appeared that the vortices behind the
turbine tower may show different features at these high Reynolds numbers.

Between the manufacturing and the final installation, the turbines undergo various stages of transport
and storage. During these stages, the turbine towers are in different configurations leading to different natural
frequencies for each of these systems. The structure is usually uncoupled from the rotor-nacelle assembly
during these stages, while it is being clamped at the bottom. Vortex-induced vibrations have appeared to
be the most critical in these stages prior to installation, when the eigenfrequencies can differ for which the
damping is not always optimal to phase out the aerodynamic excitation. Fig. 1.1 illustrates two examples
stages before final installation. On the left side of fig. 1.1, the tower is being installed. On the right side of the
same fig. 1.1, three turbine towers are grouped and being transported by a vessel.

Siemens Gamesa - Renewable Energy, one of the off-shore wind technology leaders, has shown a ded-
icated interest to improve their understanding of vortex-induced vibrations and to develop a more robust
solution which would mitigate the adverse effects of this phenomenon. At the same time, it seems this topic
has attracted plenty of research from various engineering backgrounds [8]. This master thesis report will
demonstrate that the phenomenon vortex-induced vibrations imposes great research challenges because of
its complexity and dependency on different engineering disciplines. At this moment there is still a clear need
from the body of science for more studies on this topic to fully understand the physics behind vortex-induced
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2 1. Introduction

Figure 1.1. Example load cases of the wind turbine tower with no rotor and nacelle mounted.

vibration at supercritical Reynolds numbers. With these research objectives in mind, from the engineering
and academical perspectives, the author of the present report has commenced a master thesis on the topic
of vortex-induced vibrations. The master thesis has taken place in close agreement between Delft University
of Technology and Siemens Gamesa.

1.2. Research approach
Three different approaches to investigate vortex-induced vibrations have been identified from the literature:
experimental research, numerical study and analytical (or phenomenological) modelling [9]. According to
[10], numerous efforts have been made in the last decades to improve the accuracy of analytical models
of predicting VIV. The phenomenon tends to be so complex that these phenomenological models are not
able to predict VIV very well. The analytical models were able to predict and clarify some of the physical
parameters involved in VIV, but they still require further calibration and improvements to fully capture the
phenomenon accurately. Experimental research, when executed properly, provides the most accurate results
as they capture the phenomenon closest to reality. Yet, these types of research require a lot of resources,
expertise and they can be tedious. On top of that, since a high Reynolds number is expected with the full-
scale of a wind turbine, experiments would become very complex and costly. The present MSc research
has therefore chosen to conduct its research in the computational domain, providing a good compromise
between accuracy and feasibility [11].

Vortex-induced vibrations have been addressed and modelled in many, different ways [8], [3], [10]. Pre-
sumably, most of the approaches in the literature have simplified and tailored the problem to their research
ambitions. All these modelling assumptions for the present MSc research have been pointed out clearly in
the present report. The first distinction, to simplify the problem, is to focus on a stand-alone tower instead
of grouped towers. It is believed the investigation of the stand-alone tower already provides a challenging
research case, especially in the supercritical Reynolds regime where the physics is not fully understood.

1.3. Research objective and question
To design an ideal engineering solution which eliminates all the risks from VIV, it is firstly required to ac-
curately capture and predict the phenomenon for the conditions relevant to the ever-growing modern wind
turbine towers. The phenomenological models that are available today still require input from experimental
or numerical work to allow useful predictions, since the underlying physics is usually missing in these models
[4]. For these reasons, this MSc research has been a theory-oriented project where the main influence param-
eters causing VIV were investigated. Understanding the influence of these parameters will help the industry
in developing a better understanding of the phenomenon, how it originates and how the fluid-structure in-
teraction (FSI) evolves. It will give the opportunity to critically test the theoretical assumptions behind the
existing phenomenological models. Therefore, the following research objective was defined for this MSc the-
sis: To help Siemens Gamesa define a more physically representative VIV model accounting for the large-scale
effects by analyzing the critical parameters influencing VIV.

Regarding phenomenological models, two modelling shortcomings were observed. The first modelling
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drawback is that fluid-structure interaction is considered in a very limited way. Furthermore, the models
usually fall short in taking higher Reynolds numbers into account. Relating these two modelling assumptions
back to the available studies in the literature, it seems no numerical study has simulated the effect of the
transverse cylinder displacement on the cylinder at supercritical Reynolds numbers so far. In fact, in the
thesis of [4], it was specifically mentioned that most of the numerical data has been generated only for low
Reynolds numbers which is of limited use for phenomenological models. The study [2] demonstrates that in
1969 only their experimental work was the first study ever to investigate the effect of a moving cylinder on the
lift force in the supercritical regime. In the more recent study of [12] in 2006, it has been shown that most of
the state-of-the art experimental and numerical work so far has focused on moving cylinder research cases
up to a Reynolds number of Re = 33000 and all at very low mass-damping. From an academic perspective, it
may be concluded the combination of investigating an oscillating cylinder at supercritical Reynolds number
is a novel research area. Furthermore, as will be shown in the literature review in chapter 2, the Reynolds
number and the cylinder oscillations (FSI) are both considered to be a main influencing parameter causing
VIV. Therefore, investigating these two influence parameters would be in the direct interest of the earlier
defined research objective.

As was rightly pointed out in the review of Bearman [13], the higher Reynolds numbers regime is impor-
tant to many practical applications. Furthermore, it was stated in the critical review of [14] that there is dedi-
cated interest from the (offshore) industry to investigate VIV at supercritical Reynolds numbers (to investigate
large-scale effects). The present MSc research aims to open up this research space in the supercritical regime
by conducting a computational fluid dynamics (CFD) simulation with the open-source code OpenFOAM [1].

All these findings have led to the following research question: What is the fluid-structure interaction effect
of a transversely oscillating cylinder exposed to VIV at supercritical Reynolds numbers?

1.4. Thesis Outline
The thesis report is organized as follows:

• In chapter 2 the literature on vortex-induced vibrations will be reviewed. Chapter 2 addresses the what
and the how of the research:

– What are the influencing parameters that play an important role in VIV?

– What has been done before on VIV experimentally and numerically?

– What knowledge does the MSc research wants to obtain?

– How is the research question addressed in the most efficient, complete and reliable way?

• In chapter 3 the modelling settings will be explained in more detail. Chapter 3 focuses on the how as
well, but more technical:

– How will the fluid be modelled?

– How will the fluid-structure interaction be modelled?

– How will the results be post-processed?

• In chapter 4 the results will be presented for the numerical simulations. The following two questions
will be emphasized:

– What do the results show?

– How do the results compare against other work in the literature?

• In the last chapter, chapter 5, the research question will be addressed and the progress towards the
research objective will be evaluated. The focus of this chapter is on the discussion, recommendations
and conclusions of the thesis research:

– How does the model perform?

– What can be done better for future work?

– What are the main outcomes of the results?



2
Literature review

In this chapter a literature review will be presented focused on the previously done studies on vortex-induced
vibrations (VIV). First, a brief introduction and explanation is given to the phenomenon vortex-induced vi-
brations. Then, in the interest of the research objective defined in the previous chapter, the main influence
parameters of VIV will be identified and elaborated. After that, previous relevant modelling experiences will
be reported. Since a numerical study will be performed in this MSc research, the focus of these modelling
experiences was mostly on previous computational fluid dynamics (CFD) studies. In addition, the fluid-
structure interaction modelling of VIV is briefly examined as well. Lastly, conclusions of the literature will be
shared. Based on these conclusions the research plan and methodology will be defined.

This chapter addresses the what and the how of the research:

• What are the influencing parameters that play an important role in VIV?

• What has been done before on VIV experimentally and numerically?

• What knowledge does the MSc research wants to obtain?

• How is the research question addressed in the most efficient, complete and reliable way?

2.1. Vortex-induced vibrations
At certain flow speeds (and hence Reynolds numbers) the flow around a cylinder separates. When the bound-
ary layer has separated from each side of the cylinder, two free shear layers will form which trail aft and border
the near-wake. Within the two shear layers (in the wake) the inner flow part has a lower flow speed (resulting
from the cylinder) compared to the outer part (which moves adjacent to the free stream). This momentum
difference causes the free shear layers to ‘roll’ over into the wake where they coalesce into swirling vortices
[15]. Under certain conditions, these vortices may shed regularly from an alternating side of the cylinder,
which creates a vortex pattern. This pattern is called the Kármán vortex street, which is named after Theodor
von Kármán [16]. The photograph in fig. 2.1 captured by Taneda from Van Dyke [17, p. 56, fig. 94] shows the
Vortex Street behind a cylinder at Re = 140.

The aerodynamic excitation force that is responsible for vortex-induced vibrations is caused by pressure
fluctuations around the cylinder. The flow field around a 2D cylinder is illustrated in fig. 2.2 [8].

Four flow regions are shown in fig. 2.2 (where V is the local time-averaged velocity and V0 is the free
stream velocity both in [m/s]):

i Retarded flow (in a narrow region at the front of the cylinder).

ii The boundary layer, which is attached to the cylinder wall.

iii Sidewise accelerated flow regions.

iv Region of separated flow, downstream of the cylinder (also known as wake).

After the flow has reached the cylinder, some of the fluid particles will continue to follow the cylindrical
shape and some fluid particles will retard. The fluid particles will attach at the stagnation point of the cylinder,

4
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Figure 2.1. A Kármán vortex street behind a cylinder at Re = 140. Photograph by S. Taneda from Van Dyke
[17].

Figure 2.2. Flow field around a 2D cylinder [8].

this is where the boundary layer starts to develop [3], region (ii). The pressure of the fluid will increase from
the free stream pressure to the stagnation pressure at the attachment point (meaning, C p = 1). At the widest
point of the cylinder (θ = 90°), the pressure minimum is reached and, from there on, the flow is subjected
to an adverse pressure gradient. In this part, the flow is highly prone to separate as the boundary layer is
not able to cope with the strong adverse pressure gradient (as a consequence of the high curvature of the
cylinder). While the theoretical curve (inviscid) remains attached in fig. 2.3, the subcritical and supercritical
experimental curves separate. This separation can be identified in fig. 2.3 by the constant pressure plateau.
In last region, (iv), the velocity is smaller than the free stream velocity, while the pressure is not able to recover
to the total pressure at the front of the cylinder (see experiments in fig. 2.3). This pressure imbalance results
in the in-line force: the drag force (x-direction).

It has appeared that the interaction between the shedded vortices from each cylinder side leads to a vary-
ing flow field around the upper and lower side of the cylinder. This variation generates a pressure distribution
around the cylinder which changes over time. Then, the fluctuating lift force results from the pressure imbal-
ance between the upper and lower part of the cylinder. The frequency of the lift force can be considered to be
equal to the vortex shedding frequency [3]. The drag force can also fluctuate over time when vortex shedding
is present.

Relating these forces back to the problem that was explained in section 1.1, an illustration of the turbine
tower is given in fig. 2.4 [18]. The circular cylinder in fig. 2.4 may be interpreted as a wind turbine tower, where
the cross-section serves as the cylinder body that is exposed to VIV in the transverse direction (y-direction).
The spring (with spring constant ks in [N /m]) and the damper (with damping constant c in [N s/m]) can be
applied in the transverse direction to measure the structural response .

Naturally, it is possible that VIV are initiated at a shedding frequency that is not necessarily equal to the
natural frequency [19]. When the shedding frequency is close to the natural frequency, the cylinder can ex-
perience short bursts of displacement motion in the transverse direction. If this motion is large enough such
that a correlated vortex wake is triggered along the span, the cylinder can suddenly jump to a larger displace-
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Figure 2.3. Pressure distributions around a 2D cylinder for the theoretical and experimental case [16].

Figure 2.4. The flow problem illustrated for a circular cylinder [18].
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ment amplitude. If the latter situation applies, the cylinder’s moving frequency will shift towards the natural
frequency and an harmonic oscillation is reached. After that, the wake is dictated by the cylinder frequency.
This phenomenon, because of the interaction between the cylinder motion and the wake is called lock-in, as
will be explained later in more detail.

This type of VIV initiation is typically referred to as free-vibrations or self-excitement in the literature.
Another way of investigating VIV is by actively controlling the cylinder displacement, i.e. by prescribing a
sinusoidal motion to the cylinder. This type of VIV is usually labelled as forced-vibrations in the literature. In
these types of experiments, the cylinder is not at rest initially but is always moving at the prescribed motion.

2.2. Main influencing parameters of VIV
2.2.1. The Reynolds number
The well-known Reynolds number, as will be shown in this section, is one of the main governing parameters
in the present MSc research. It is defined as:

Re = ρU D

µ
(2.1)

with ρ as the density of air [kg /m3], U as the freestream velocity [m/s], D is the diameter of the cylinder
(characteristic length of cylinder) [m] and µ the dynamic viscosity [kg /m · s]. The Reynolds number repre-
sents the ratio of inertial forces to viscous forces [16] and is an indicator of when transition from laminar to
turbulent flow can occur. J.H. Lienhard (see fig. 2.5 for an illustration) [20], [16] and [3] have all summarized
the qualitative aspects of the flow around a cylinder at different Reynolds regimes.

Figure 2.5. Various flow regimes over a 2D cylinder. Illustration from J.H. Lienhard [20].

It has to be noted that this transition point between laminar and turbulent flow depends on other influ-
encing parameters such as the cylinder roughness, free-stream turbulence level, measurement errors, wind-
tunnel circumstances (blockage ratio). Hence, these Reynolds number ranges are indicative.
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As was already observed in the closure of Farell on his own work [21], there has been some confusion
in the literature about the terminology concerning the different flow regimes. The terminology of the more
recent summary of the flow regimes provided in the book of Blevins [3] is adopted in the present work. Three
flow regimes have been listed in that work: the subcritical, the transitional and the supercritical Reynolds
number range.

The subcritical regime For very low Reynolds numbers (Re < 5), the flow remains attached to the cylinder.
In this regime (where the viscous forces dominate the inertial forces) the flow is called Stokes flow [16]. For 5 <
Re < 40, the flow separates from both sides of the cylinder. The two vortices at both sides can be considered
symmetric and stable. In the next flow regime, 40 < Re < 150, the wake becomes unstable and the vortices are
shed alternately from the cylindrical body. This alternating pattern of vortices is also shown in the photograph
by S. Taneda from Van Dyke in fig. 2.1 [17, p. 56, fig. 94]. In this regime, the vortex street is still laminar.
Between 150 < Re < 300, the flow transitions to turbulent in the vortex wake. Then, when the Reynolds
number is within 300 < Re < 3 ·105, the vortex street has become fully turbulent. The boundary layer is still
laminar. The Reynolds number range of 300 < Re < 1.5 ·105 is also known as the subcritical range, where the
boundary layer remains fully laminar and the drag coefficient is nearly constant (as can be seen in fig. 2.6).

The transitional regime From around Re > 1.5·105−3·105, it is possible that the turbulent flow in the wake
reattaches to the aft part of the cylinder. After reattachment, the flow will separate again. This phenomenon,
also known as the laminar separation bubble, will make the wake thinner and hence result in a lower pressure
drag on the cylinder. In this Reynolds number range, the flow still shows symmetric pressure distributions,
although the uniformity across the cylinder height decreases [22]. The reason for the thinner wake is that the
turbulent boundary layer has more energy to cope with the strong adverse pressure gradient experienced by
the flow compared to a laminar boundary layer [23]. This range, where multiple laminar separation bubbles
can occur is called the transitional range, which is 1.5·105 < Re < 3.5·106. This range can be spotted clearly in
fig. 2.6, where the drag coefficient starts to drop significantly (also known as the drag crisis). Multiple studies
have clearly shown that the laminar separation bubbles are causing the drag coefficient to drop rapidly [2].
Once these separation bubbles cease to exist, the drag coefficient starts to increase again (that is, the super-
critical region). This flow regime (where laminar separation bubbles are formed) is highly sensitive to inflow
turbulence and surface roughness, therefore measurements of Cd are more scattered in this region [24]. This
scatter can be seen in fig. 2.6, in the transitional range.

The supercritical regime The Reynolds number range from Re > 3.5 ·106 is called the supercritical range.
The transition point moves forward on the cylinder while increasing the Reynolds number [23]. At these
Reynolds numbers, the transition to turbulence will occur directly (meaning, no laminar separation bubbles
are observed at the cylinder). In the study of [25], it was found that the drag coefficient increases from 0.3
to 0.7 between a Reynolds number of 106 < Re < 3.5 ·106. After Re > 3.5 ·106, the drag coefficient becomes
constant. This is line with the curve observed in fig. 2.6. The same study was the first one to suggest no
laminar separation bubbles would occur any more in the supercritical range and that the transition would
be immediate. The increase of drag after the drag crisis was explained by [2] and it was reasoned that the
turbulent boundary layer thickens the wake compared to the laminar boundary layer. Hence, this upfront
moving transition point increased the low-pressure region behind the cylinder. On the other hand, increasing
the Reynolds number also makes the wake thinner (more momentum is added to the flow). This latter effect
will at one point trump the turbulent thickening effect at a certain Reynolds number. Therefore, as seen in fig.
2.6, the drag coefficients firstly increases after the drag crisis and then remains at a constant plateau again.
In the present work, the emphasis of the vortex-induced vibrations research is on Reynolds numbers in the
range of Re > 3.5 ·106. This range falls within the operating envelope of the wind turbine towers of Siemens
Gamesa and is therefore in the interest of the offshore industry.

2.2.2. The Strouhal number
The Strouhal number is the dimensionless ratio between the vortex shedding frequency times the character-
istic length and the flow velocity:

St = fshed D

U
(2.2)
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Figure 2.6. The drag coefficient of a cylinder with varying Reynolds number. Experimental data compiled in
[26].

where fshed is the (predominant) vortex shedding frequency [H z], U is the freestream velocity [m/s] and
D is the cylinder diameter [m] (which is the characteristic length in the case of a cylinder). Usually, in the
literature, the frequency in eq. 2.2 is defined as f rather than fshed . In the present research, fshed is used for
clarification purposes. It is found in the literature that the shedding frequency of the vortices are in phase
with the frequency of the corresponding time-varying lift force. Yet, the recurrence of the oscillating drag
force takes place at two times the shedding frequency [3].

Fig. 2.7 shows the Strouhal-Reynolds number relationship for smooth and rough circular cylinders, this
data has been compiled by Lienhard [20, p. 12, fig. 5]. The rough cylinder curve is the lower dashed line
in the transitional range, while the smooth cylinder shows the substantial jump in Strouhal number in the
transitional range.

The subcritical regime At very low Reynolds numbers, also called creeping flow [8], the flow remains at-
tached to the cylinder and hence no vortex shedding occurs (Re < 5). At higher Reynolds number, 5 < Re < 40,
the flow starts to separate. The near wake is closed (see fig. 2.5) in this range. Still, no vortex shedding is
present. Then, when the Reynolds number is increased to the range of 40 < Re < 150, vortex shedding starts
to occur. It starts with a sinusoidal wake oscillation of the shear layers [8] and then as Re is increased further
the flow develops into the well-known von Kármán street. So far, these ranges have been for fully laminar
flow. From Re > 150, the transition starts to occur in the wake and at Re > 350−400 the transition takes place
in the free shear layer. These different transition states can influence the eddy shedding mode and this could
lead to a small variation of the St number [8], as seen in the small jumps in fig. 2.7. Yet, it can be expected
that in the subcritical range, except for the very low Reynolds number, regular vortex shedding will occur.

The transitional regime Experiments from [23] showed no regular vortex shedding in the transitional range
with an aspect ratio of L/D = 3.38. Yet, with a higher aspect ratio of L/D = 6.75, the wake showed more pe-
riodic fluctuations. These periodic fluctuations were found at a broader fluctuation spectrum than the one
observed at lower Reynolds numbers in their study (meaning, did not show the consistent periodicity as was
observed at lower Reynolds numbers). They concluded, after careful testing, that vortex shedding at the lower
aspect ratio circular cylinder was suppressed because of 3D wake effects. For all roughness parameters that
have been tested in their study, the Strouhal number showed an increment in the transitional range, where the
drag coefficient showed a significant decrement as was explained before. Also, in the high Reynolds number
study of [25], no spectral peak frequency for vortex shedding was found in the transitional range (and hence
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no regular vortex shedding was observed). P.W. Bearman investigated why regular vortex shedding stopped
occurring in the transitional range in [24]. Out of his measurements it turned out that until Re = 5.5 ·105, reg-
ular vortex shedding was observed. After this Reynolds number, the power spectral density of the measured
vortex-shedding became broader, which would indicate that the shedding is less regular. Also, the observed
power of this broader spectrum was of smaller magnitude. That means that the fluctuating pressure around
the cylinder is not only less regular at this Reynolds number but also has a weaker effect on the cylinder com-
pared to the subcritical regime. These measurements are in line with the earlier indicated regions of irregular
vortex shedding. Oil flow patterns in the same study of [24] indicated that after placing any disturbances
on the cylinder (dust particle for example) would suppress the formulation of laminar separation bubbles.
These protuberances on the surface would not only lead to disrupted flow locally, but along a certain span
length of the circular cylinder. This effect was identified as the measured base-pressure coefficient along the
span became non-uniform. Once this non-uniform spanwise flow was triggered, the strong spectral density
peaks became weaker and of a broader-band type. Therefore, [24] suggested that regular shedding ceased
because laminar separation bubbles are disrupted at different locations along the span, caused by the three-
dimensionality of the potentially turbulent flow.

The supercritical regime For the supercritical flow regime, [25] found that regular vortex shedding is again
present. In the same study, a Strouhal number of 0.27 was found in this flow regime, which is higher than the
typical subcritical Strouhal number of 0.21. Other studies have found a smaller St number in the supercritical
range, which yielded St = 0.25 (lower bound of fig. 2.7). Referring back to the research of [2], for 3.5 ·106 <
Re < 6.0 ·106, the frequency response of the lift-time signal became more narrow-banded compared to the
transitional range. Lastly, for Re > 6.0 · 106, the response was very dense and quasi-periodic. The Strouhal
number found for the range of 8 ·106 < Re < 17 ·106, was approximately constant at St = 0.30, which was at
that time the first measured Strouhal number at this Reynolds number range.

Figure 2.7. The Strouhal number of a cylinder with varying Reynolds number. Experimental data compiled in
[20].

2.2.3. Other influencing parameters
Besides the Reynolds number and the Strouhal number, which are both governing parameters for VIV, there
are other influencing parameters that impact VIV as well. In fig. 2.8 all the influence parameters are illus-
trated, as they were brought together by [8]. The other influence parameters illustrated in fig. 2.8 tend to have
a smaller effect on VIV than the Reynolds number or Strouhal number, except for the cylinder oscillations
(see fig. 2.8(g) and (h)) [8], [3]. The reason why cylinder oscillations do have a more severe effect on VIV has
been explained in the next section. Besides the smaller effect of most of the influencing parameters, their
effects have been investigated already at high Reynolds numbers. The interested reader is referred for exam-
ple to studies of [27], [23], which addressed the surface roughness and free stream turbulence at supercritical
Reynolds numbers, respectively. Concerning the present research, all the known influencing parameters de-
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picted in fig. 2.8 have been monitored closely to make sure their effect is minimized or controlled.

Figure 2.8. Typical disturbances that have an impact on VIV [8].

2.2.4. Effect of cylinder motion on wake
In addition to the Reynolds number, the present research has focused on the effect of the cylinder oscillations
on vortex-induced vibrations. An oscillating cylinder (fig. 2.8g and h) can become a governing parameter,
while overriding all other disturbances from fig. 2.8 [8]. A distinction between in-line oscillations and trans-
verse oscillations has been made (in reality, both occur at the same time). The study of [28] found similar
response branches for a 2-DOF experiment as in transverse 1 degree-of-freedom (DOF) studies. It was con-
cluded that 2DOF XY motion studies do not lead to significant variations in maximum resonant amplitudes
compared to Y-only studies. Under the conditions when natural frequency is equal in both directions, it was
shown in the study of [28] that the response amplitude is 20% larger and the critical velocity range is also 20%
larger. It was reasoned that the transverse oscillations were the main driver of the response amplitude and
the critical wind speed range. Therefore, the effect of the in-line DOF on VIV was left outside the scope of the
present MSc thesis.

According to [3], there are five effects of the transverse cylinder motion on the wake. When the vortex
shedding frequency is in the vicinity of the cylinder vibration frequency, the following five effects can occur
(simultaneously):

1 The shedding frequency ( fshed ) can be shifted towards the transverse cylinder displacement frequency
(this is called lock-in/synchronization).

2 The strength of the shedded vortices increases.

3 The spanwise correlation of the wake increases.

4 The in-line force increases (drag component).

5 The phase, sequence and pattern of vortices in the wake is affected (qualitative analysis of vortex shed-
ding).

Lock-in In the literature, lock-in has been expressed in multiple, different ways in the literature [8]. In
the present research, the most classical definition of lock-in has been used, which was suggested by [29].
This definition of lock-in or synchronization is defined as the flow regime where the shedding frequency
( fshed ) and the cylinder vibration frequency ( fc yl ) are nearly equal to the natural frequency of the system
( fnat ). In that way, fshed / fnat = fc yl / fnat ≈ 1. In [30] the frequency, amplitude and phase angle between the
exciting force and displacement of cylinder have been measured for varying wind velocities in a free-vibration
experiment. A more detailed explanation on the phase angle definition can be found in the next chapter,
in section 3.3.6. These measurements have been plotted in fig. 2.9 with a dimensionless mass parameter
n = 0.00267 and dimensionless damping coefficient β= 0.00103. On the upper left y-axis, the frequency ratio
is plotted. From the frequency ratio, fn stands for the natural frequency ( fnat ) and f for either the shedding
frequency ( fshed ) or cylinder motion frequency ( fc yl ). On the lower right y-axis, the dimensionless transverse

displacement amplitude is plotted: Y = Ay /D . Then, on the upper right y-axis the phase angle between
the fluctuating surface pressure (exciting force) and cylinder displacement is plotted (φ°). U on the x-axis is
the reduced velocity: U = V

2π fnat D . It must be noted, that the definition of the dimensionless velocity may
differ in the literature. For example, in the present research the dimensionless velocity has been defined as:
U∗ = V

fnat D without the 2π reduction (see tab. 4.4).
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Figure 2.9. Oscillation phenomena for a free-vibration case with varying wind velocity (104 < Re < 5 · 104),
from [30].

By rearranging the Strouhal relation found in eq. 2.2, the vortex shedding frequency may be calculated by
the following equation:

fshed = U ·St

D
(2.3)

Combining the dimensionless velocity from [30] with eq. 2.3 results in the following linear relation:

fshed

fnat
= St ·2π ·U (2.4)

At a dimensionless wind velocity of U∗ = 1, the ratio between fshed / fnat = St ·2π. It was stated in [30],
that St = 0.198 at 104 < Re < 5 ·104. That means that at U∗ = 1, the frequency ratio with shedding frequency
should be: fshed / fnat = 0.198 ·2π = 1.244. This number is according to the linear Strouhal relation and this
number is one data point of the straight line observed in fig. 2.9. Hence, the straight line is a consequence of
the linear Strouhal relation.

As can be seen in fig. 2.9, the Strouhal relation does not hold for all wind velocities. At 0.8 <U∗ < 1.2, the
measured shedding frequencies deviate from the linear Strouhal relation (the straight line with St = 0.198). In
this region lock-in occurs (and this region is also called the lock-in band [3]). Indeed, both fshed and fc yl are
clearly equal to the natural frequency in this region ( f ∗ ≈ 1), which satisfies the classical definition of lock-in
expressed earlier. The reason that lock-in does happen at different wind velocities (while resonance does not),
is because of fluid-structure interactions. The cylinder motion dictates the eddy-shedding frequency, which
means that vortex shedding ‘locks on’ or ‘synchronizes’ to the cylinder motion [8]. Hence, the wake is directly
affected by the cylinder motion. Yet, as the shedding frequency moves further away from the cylinder natural
frequency (by a change of wind speed for example), the cylinder body loses its control over the shedding
process. At one point, the vortex shedding has detuned from the cylinder frequency and it follows the linear
Strouhal relation again. The cylinder displacement amplitude versus the reduced velocity is known as a lock-
in map or lock-in curve, where the operating range of lock-in is easily spotted by the occurring displacements.
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Increased strength of shedded vortices According to [3], at lower displacement amplitudes the motion of
the cylinder organizes the wake, increases the spanwise correlation and then enhances the vortex strength to
grow. This will lead to a higher lift coefficient, which is supported by the experimental results from the study
of [2]. In this study, forced-vibration experiments for a circular cylinder were done at supercritical Reynolds
numbers (Re > 5.5 · 106). This motion-dependent lift force increases with higher motion amplitudes. The
range of frequencies where the motion-dependent force was measured increased as well at higher ampli-
tudes. The highest amplification factor was measured at a cylinder motion frequency nearly equal to the

linear Strouhal frequency ( fh D
V /St = 0.99).

As the cylinder displacement amplitude increases, at one point the cylinder will outrun the shedded vor-
tices. This will suppress the vortex pattern and then the lift coefficient starts to drop considerably. Typically,
the maximum lift coefficient is reached at A∗ = 0.5. This means that vortex-induced vibrations have a self-
limiting property which eventually diminishes the lift force. This property is independent of the structural
damping, while it is dependent on the fluid-structure interaction [3].

An important relation within the VIV studies that has received a lot of attention is between the maximum
response amplitude of the cylinder and the system mass and damping [29]. Griffin et al. [31] were the first to
use the product of the mass ratio, the damping ratio and the Strouhal number:

SG = 2π3St 2(m∗ζ) (2.5)

This parameter is known as the Skop-Griffin parameter. The classical Griffin plot [29] is based on this SG

parameter. In this plot, the maximum amplitude is plotted on the y-axis and the SG parameter is plotted on
the x-axis. Ever since this plot was originally used in [32] by O. Griffin, the plot has been used extensively in
the literature for amplitude response data and was later labelled as the Griffin plot [29]. In the study of [33],
various experiments for air and water have been compiled and put in the classical Griffin plot, see fig. 2.10.
Yet, despite the various efforts and studies in the last 25 years there is still not a uniquely, well defined Griffin
plot that is able to collapse peak-amplitude data from different VIV cases (free vibration, forced vibrations,
etc.) [29], [12]. For example, when fig. 2.10 is plotted on a linear Y-axis scale significant scatter becomes
apparent [12].

Figure 2.10. The classical log-log Griffin plot, compiled with various experimental studies by [33].

The self-limiting response of VIV becomes apparent in fig. 2.10. If there would be no limitation, the
amplitude A∗ would go to infinity when the Skop-Griffin parameter was lowered to nearly zero. Yet, the
amplitudes stay within a bounded region, which implies that there is an effect of the cylinder vibrations on
the wake which suppresses the aerodynamic forces. In the numerical study of [34], the same reasoning was
found.
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Span-wise correlation One way to quantify the effect of the aspect ratio on the 2-dimensionality of the flow
is by calculating the spanwise correlation. To evaluate the coherence of vortex shedding along the span of
the circular cylinder, the pressure or velocity fluctuations can been measured at different locations along the
span [8]. When these measured signals show good correlation along the span, it can be concluded that the
flow behaves coherent along the span. The correlation coefficient between two spanwise velocity fluctuations
is for example expressed as follows:

R12 =
(v ′

1 + v ′
2)2 − (v ′

1 − v ′
2)2

4(v ′
1 · v ′

2)1/2
(2.6)

When the flow is fully 2D, the measured velocity fluctuations inherently will be in phase and show the
same magnitude, this will result in 100% correlation of the two signals: R12 = 1. Fig. 2.11 [10, p. 118, fig. 7.9]
shows the correlation coefficient along the circular cylinder height for a stationary and an oscillating cylinder
at three different vibration amplitudes (amplitude defined as a in fig. 2.11).

It was observed that for oscillating cylinders the correlation length is higher, which is seen back in fig. 2.11.
The reason for this increment is explained in [3] by the effect of the cylinder motion on wake. The cylinder
motion organizes the wake (since the vortex shedding is synchronized with the cylinder vibration), this in
turn enhances the spanwise correlation.

Figure 2.11. Effect of transverse vibrations on spanwise correlation coefficient at Re = 0.85 ·105, measured by
[35] and the figure is reproduced by [10].

Increment of in-line force Besides the increment of the lift force, the in-line force component will also
be influenced by transverse displacement motions of the cylinder [3]. In fig. 2.12 the drag multiplication
factor is plotted against the transverse vibration amplitude. These results were obtained at relatively low
Reynolds numbers. Multiple attempts have been made to describe the relation between the in-line force and
the transverse vibration amplitude in an equation, after careful experimental research. For instance, for low
Reynolds number the following three equations may be used:

CD,Ay>0

CD,Ay=0
=


1+2.1A∗ Curve fit of fig. 2.12, by [3]

1+1.043(2Yr ms /D)0.65 [36]

1+1.16([1+2A∗) fnat / fshed ]−1)0.65 [37]

These three equations compute the drag force within 15% when fnat = fshed [3].
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Figure 2.12. Drag increment with increasing transverse displacement amplitude of rigid cylinders during
lock-in. Experimental data compiled by [3]: #Re = 4000, äRe = 8000, 4Re = 15.000.

Phase angle, sequence and pattern As was shown in fig. 2.9 by [30], the phase angle between the exciting
force and the cylinder displacement jumps around the location where a maximum displacement amplitude
was measured. It was shown by [38] by visualizations of previous researches that this phase jump is caused
by a switch in the timing of vortex shedding.

Figure 2.13. Photographs of vortex shedding at different excitation frequencies ( fc yl ) relative to the stationary
shedding frequency ( fshed ), from [39]. All photos are taken at the maximum negative displacement of the
cylinder at 584 < Re < 1300.

In the studies of [39] and [40], extensive forced VIV experiments have been done to investigate the phase
jump. In fig. 2.13, five photographs are shown at different excitation frequencies ( fc yl ). These experiments
were done at relatively low Reynolds numbers. In fig. 2.13, the excitation frequency is detonated as fe and
the stationary shedding frequency as f ∗

0 . Before the cylinder motion frequency is equal to the shedding fre-
quency, the vortices are being shed initially at the upper side of the cylinder. From fc yl / fshed = 0.85 until
fc yl / fshed = 1, the vortices tend to shed initially from the lower side of the cylinder, as seen in fig. 2.13. As the
excitation frequency was increased to (to fc yl / fshed = 1.05), the vortices start to shed from the upper side of
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Figure 2.14. Map of identified vortex wake modes in the synchronization regime at 300 < Re < 1000, for
varying amplitude (y-axis) and wavelength (x-axis), found by [15].

the cylinder rather than the lower side, which explains the phase jump from [30] in fig. 2.9. Hence, the phase
jump is caused by the fact that the vortices tend to be shed at the alternative side of the cylinder body at a
certain cylinder vibration frequency. More recent studies, also by means of simulation or by PIV, have found
this switching phenomenon to be the reason of the phase jump [29].

The jump in phase angle is related to the sequence and pattern of the vortex wake. In the research of
[15], a forced-vibration experiment was carried out to study the vortex wake patterns behind a cylinder at
300 < Re < 1000 by flow visualizations. In this research, different type of so-called vortex wake modes have
been identified.

A periodic vortex was either observed as a single vortex (S) or a vortex pair (P). Different kind of patterns
can occur at different vibration conditions, for example P+S or 2S as plotted in fig. 2.14. These vortex regimes
can be linked to certain branches of free vibration. The jump in phase angle, observed by [30] in fig. 2.9,
can be explained by a changing from the 2S vortex mode to the 2P mode. This is also in line with the earlier
presented explanation, by [39] and other studies [29].

2.2.5. Oscillating cylinder at supercritical Reynolds numbers
As can be expected, which was also the case for the stationary cylinder, the available literature on high
Reynolds number studies on moving cylinders is limited. In fig. 2.16 the researches for stationary and mov-
ing cylinders was summarized in a graph for varying Reynolds number. At the y-axis, the forced cylinder

vibration frequency is non-dimensionlized by the diameter and the velocity ( fh D
V , fh is defined as fc yl in the

present research). Hence, the studies that were plotted at the bottom of the graph are for stationary cylinders
(since theW cylinder vibration frequency is zero). The parameter on the y-axis is highly similar to the Strouhal
number (see eq. 2.2). The typical Strouhal number for a large Reynolds number range is St = 0.21, which was
stated earlier in section 2.2.2. The ‘critical Strouhal number range’ in fig. 2.16 is based on the situation when
the forced cylinder frequency ( fc yl ) is nearly equal to the shedding frequency ( fshed ), which is where most
of the fluid-structure interaction can be expected. After 1969, not too many experiments have been done
at high Reynolds numbers for moving cylinders. C. Williamson and R. Govardhan compiled in [12] some of
the state-of-the-art VIV researches at different Reynolds numbers. In fig. 2.15, the amplitude responses of
cylinders against various Reynolds numbers were plotted. A logarithmic relation between the Reynolds num-
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ber and the peak amplitude was found. Also, as is clearly demonstrated in fig. 2.15, the response amplitude
is strongly dependent on the Reynolds number. Not enough experimental data was available to extend the
logarithm relation beyond Re = 40.000.

Figure 2.15. Compiled state-of-the-art experiments and CFD simulations for moving cylinders at different
Reynolds numbers in 2011. Figure from [12].

Figure 2.16. Available experiments for stationary and moving cylinders at different forced cylinder frequen-
cies and Reynolds numbers in 1969. Illustration and present investigation from [2].

2.3. Modelling of VIV
The complicated fluid-structure interaction effects seen for vortex-induced vibrations has attracted plenty of
numerical research. There is still an ongoing effort to further understand the complex interaction between
the flow field around the cylinder body and the structural motion. In addition, it has been observed in the
literature that this phenomenon serves as a test case for newly developed numerical codes. As has been stated
before in Chapter 1, a numerical approach was favoured above an experimental approach to investigate VIV
in the present MSc thesis. In the following sections, a brief summary has been presented on the experiences in
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the literature with the fluid solver and the fluid-structure interaction coupling. The fluid solver in the present
research is better known as Computational Fluid Dynamics (CFD).

2.3.1. Computational Fluid Dynamics
Before the modelling experiences will be reported, a small recapitulation on the governing equations of fluid
dynamics is presented. These fundamental equations have provided a clear and essential starting point be-
fore the models are treated in to more detail. Computational fluid dynamics rests on numerically solving
the full governing equations describing a viscous fluid [41]. The governing equations in present research are
reduced to the (incompressible) Navier-Stokes equations for a Newtonian fluid:

∂u

∂t
+∇· (uu)+ 1

ρ
∇p −∇· (ν∇u) = 0 (2.7)

∇·u = 0 (2.8)

With u = (uv)T where u is the x-velocity component and v is y-velocity component, respectively. The
flow around the cylinder is incompressible since typical wind speeds of 2[m/s] < U < 50[m/s] have been
expected. These velocities lead to a Mach number of M a < 0.3, which indeed supported the incompressible
assumption. The governing equations of fluid dynamics also consist of the energy equation, which ensures
conservation of energy. Yet, since the flow is incompressible and assumed to be isothermal (flow quantities
remain constant with temperature), only the kinetic energy will be of importance in the energy equation [42].
Hence, the energy equation is decoupled from the system of equations described in eq. 2.7 and eq. 2.8.

It is possible to numerically solve eq. 2.7 and eq. 2.8 directly at low Reynolds numbers (laminar flow).
Yet, at higher Reynolds numbers, when the flow transitions to turbulence, it is much harder to numerically
solve these equations as they are [42] with a direct numerical simulation (DNS). Turbulence introduces larger
flow fluctuations for a wider range of length and time scales compared to laminar flows. For all scales to be
resolved, the size of the grid scales with Re9/4, which would require massively high computational power at
Re > 3.5 · 106. Therefore, within CFD engineering, it is common practice to further simplify the governing
equations depicted in eq. 2.7 and eq. 2.8 to predict turbulent flows. One of the most widely used approaches
for turbulent flows is an unsteady Reynolds Averaged Navier-Stokes Simulation (URANS). In this approach,
the two governing equations are time-averaged while all the turbulence motion is modelled. Within URANS,
a lot of different turbulence models have been developed over the last decades.

Besides DNS and URANS, there is the third CFD option which is known as Large-Eddy Simulation (LES).
In this approach, parts of the flow are resolved while other parts of the flow are modelled by applying a filter
to the governing equations. The distinction between modelling and resolving is based on the turbulence
length scales. Since URANS only computes the average while the complete turbulence spectrum is modelled,
the computational time is greatly reduced compared to DNS or compared to the LES. At the same time, it
may be expected that URANS would lead to less accurate results compared to DNS and LES. Especially the
large turbulent scales are very hard to model properly since they tend to vary a lot in different types of flow
problems [43]. This is the main reason why in LES the large scales are simulated and the small scales are
modelled, since the latter ones are seen as more universal.

Then, as a combination of LES and URANS, detached-eddy simulation (DES) is a hybrid turbulent model.
In this model the attached boundary layer is being solved by URANS and the wake region is captured by the
LES approach. It has appeared that turbulent boundary layer flows tend to be captured better with some
of the reliable RANS turbulence models compared to sub-grid scale modelling of LES [43], [44]. This has
stimulated the use of a DES.

In the present research the objective is capture vortex-induced vibrations at supercritical Reynolds num-
bers (Re > 3.5 ·106). Because of the large Reynolds number, a very dense grid is required which would imply
high computational cost. Next to that, the inclusion of fluid-structure interaction would require a structural
solver and a moving mesh. This would also indicate a larger demand of computational power. Based on these
reasons it was concluded that modelling the governing equations with URANS would be the best suitable ap-
proach.

Turbulence models of URANS For the Reynolds Averaged Navier-Stokes equations, there is a need to model
the Reynolds stress tensor to fully close the set of equations. The derivation of the Reynolds stress tensor will
be done in chapter 3, section 3.1.1. Numerous models have been developed to estimate the Reynolds stress
tensor, which are known as the turbulence models. These closure approximations can be divided roughly into
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two models: the Eddy Viscosity Models (EVM) and the Reynolds Stress Models (RSM). The EVM introduces
the eddy viscosity, nut a scalar field quantity. It has been assumed that the eddy viscosity is isotropic, which
is a significant simplification. The different EVM are distinguished by the amount of transport equations
that must be solved. The Spalart-Allmaras (SA) model requires only one transport equation. This model
has proven to be good for boundary layer flows under a reasonable pressure gradient, while free shear layer
flows and flows with a sharp separation are less well predicted. The S-A model was included in the original
detached-eddy simulation method. Regarding the two-equation models, the most well-known models are:
k-ε, k-ω and SST k-ω. It is known that the k − ε model is suitable for external flows without a strong pressure
gradient or flow separation. At the same time, the k −ω model is better in capturing boundary layer flows
where pressure gradients are observed and possible flow separation. The k-ω SST model is based on two last
models: the k −ω [45] and k − ε [46] model. The idea of Menter’s k −ω SST turbulence model is to blend the
best properties of the k − ε and k −ω models in one turbulence model. Hence, the model applies the k −ω
model inside the boundary layer and switches to the k −ε model outside the boundary layer in the free shear
flow. The k−ω shear stress transport (SST) turbulence model [47] has been chosen for solving the turbulence
viscosity field quantity in the present research, because of it good capabilities in predicting flow separation.

In contrast to EVM, the Reynolds Stress Models directly solves the transport equations to obtain the
Reynolds stress tensor. This means that the isotropic simplification of the EVM is avoided. On the other
hand, RSM typically require more CPU time because of the extra transport equations to be solved. Further-
more, convergence can become an issue because of the closing of the coupled terms.

CFD studies at supercritical Reynolds numbers In the literature different experiences with URANS have
been shared by CFD studies. For example, scatter has been observed between the URANS from Catalano et
al. [48], Ong et al. [49] and Singh and Mittal [50]. These differences have been attributed to different wall func-
tion implementations between the URANS models or due to the choice of a 2D simulation of turbulent flow.
In most of the numerical studies at supercritical Reynolds numbers, the results deviated significantly from
the experiments, especially with URANS. Yet, [49] still suggested that for engineering purposes URANS would
lead to satisfactory results in the supercritical flow regime. Their simulation was done in 2D with the k−ε tur-
bulence model. In contrast with that, [51] argued that URANS is not able to capture the flow field of a cylinder
accurately because the eddy-viscosity turbulence models are based on an isotropic eddy viscosity and ho-
mogeneous Reynolds stresses. In the numerical study of [43] different turbulence models, three-dimensional
effects and different CFD approaches have been evaluated at two different Reynolds numbers, Re = 9.4 ·104

and Re = 5 ·105. Both these Reynolds numbers correspond to the drag-crisis region. It was concluded in the
study, when looking to quality of the results versus computational cost, that the 2D URANS k −ω SST model
is the best choice. In fact, it was shown in their study that a 3D URANS k −ω SST simulation compared to
2D URANS k −ω SST simulation increased the CPU time by a multiplier of 2.4. The study of [51] argued that
URANS in 3D would not contribute much to the accuracy as the predicted spanwise gradients of the Reynolds
stress tensors are likely not significant enough to yield production and transport of turbulent kinetic energy
in the z-direction. This is again caused by the fact that URANS embodies a homogeneous Reynolds stress
tensor in the modelling. Their statement was backed up by earlier studies. These experiences from the lit-
erature have motivated to use a 2D URANS model instead of 3D in the present research. It was expected
that adding the 3rd dimension would not lead to more accurate results and hence would not outweigh the
increased computational time.

Another observed modelling hurdle at supercritical Reynolds numbers is that the flow is usually laminar
and turbulent before separation, meaning transition is still present. With the standard URANS turbulence
models, the flow is assumed to be fully turbulent. Based on [8], it is not expected that a Reynolds number will
be reached in reality where the flow is fully turbulent at the attachment point. Indications show that a fully
turbulent attached flow is reached at 20 ·106 < Re < 50 ·106, which is far away from the aimed number in the
present research. It has been observed in the experimental work of [52] that even at Re = 3.6·106 the boundary
layer was still laminar for a big portion of the cylinder. In the study of [53], the flow around a 2D cylinder at
Re = 8.5·105 was simulated with the SST k−ω turbulence model coupled to the γ−Reθ transition model. The
augmented model lead to more accurate results than the standard k −ω SST model because transition was
simulated.

In the URANS and DES study of [54], a distinction was made between laminar and turbulent separation
in their simulations. The first type of separation implies presence of the drag crisis, while the second type
is found back in the supercritical regime. It appeared that URANS agreed very well with the DES for the
turbulent separation cases, while for the laminar separation there was a big difference. It was suggested in
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their study that for the turbulent separation, the wake was expected to be narrower and the shedding to be
weaker. Both developments would have reduced the size of large eddies which in turn enhanced the URANS
prediction. In line with these statements, in the numerical study of [49] it was found that the URANS k-ε
model captured more accurate results at higher Re after the drag crisis. The study concluded that a higher Re
moved the transition more upstream and hence this resulted in more overall turbulent flow along the cylinder
body, which comes closer to the turbulent modelling assumption of URANS.

Besides the Reynolds number, the turbulence intensity of the freestream flow could contribute to the
turbulence of the boundary layer around the cylinder, as was shown by multiple studies [27], [3]. However,
the effect of the turbulence intensity on the vortex shedding will not be addressed in the present research.

The experiences of LES applied to the flow around a cylinder are diverse at high Reynolds numbers. For
instance, [55] concluded that after more than 30 years of research, LES will eventually fall short because of
fundamental limitations in the sub filter eddy-viscosity model. However, other studies, like [56] showed good
agreement between a LES simulation and experimental work at Re = 1.4 ·105. Yet, the same study also noted
that at even higher Reynolds numbers it is expected that the computational cost will get closer to a DNS run
because the viscous sub layer height decreases. This was also noted by the study of [51].

Besides the computational argument for using URANS that was stated before, there is an additional argu-
ment to use this approach to see how well this computationally appealing approach performs in the super-
critical regime. It was observed in the literature that not many numerical simulations have been done before
to simulate and model the fluid flow around a cylinder at supercritical Reynolds number (this was also noted
by [49]). The present research aims to demonstrate the capabilities of the widely-used URANS approach and
to see if this approach is able to predict the flow field at these large Reynolds numbers with satisfactory accu-
racy.

It has been stated before that the relevant operating range for Siemens Gamesa is considered to be Re >
3.5 ·106. There are a few additional reasons to limit the MSc research on investigating the supercritical region
(Re > 3.5 · 106) rather than the transitional regime (1.5 · 105 < Re < 3.5 · 106) or the subcritical regime 300 <
Re < 1.5 ·105 . Firstly, during the drag crisis in the transitional regime, too many complex flow phenomena
are present as was explained in section 2.2.1. Complex flow features that might be present in this regime are
for example laminar separation bubbles or strong spanwise (3D) boundary layer interaction. As was rightly
pointed out and supported by results in the numerical study of [43], the modelling errors can become very
apparent in the drag crisis region when using the URANS approach. In the subcritical regime, while the
boundary layer might be fully laminar the wake is starting to become more and more turbulent in this regime.
This leads to either very large demands on computational power when using a DNS or to an intrinsically
wrong modelled flow when performing URANS. In other words, to get the most out of the URANS approach in
this fundamental cylinder problem, the flow field in the supercritical regime was expected to give the smallest
modelling errors as a big portion of the flow is becoming turbulent (in boundary layer and in wake). In fact,
it was stated before that the accuracy of URANS only improves when increasing the Reynolds number in the
supercritical regime.

It is clear now that the supercritical Reynolds number regime has been chosen as the regime of interest
for the present research. Hence, all the turbulent simulations have been performed in the regime where
Re > 3.5·106. Besides this regime of interest for the present research, the model has also been used to simulate
rather low Reynolds numbers. In fact, most of the model assessments have been performed at low Reynolds
numbers: 80 < Re < 200. This range has been defined as the laminar flow regime in the present research.
More information on the model assessments will be provided in the next two sections.

2.3.2. Fluid-structure interaction modelling
As was slightly introduced before, there is a clear distinction between two types of experiments when the
cylinder is no longer stationary: forced-vibration and free-vibration experiments. The pros and cons of these
two set-ups are discussed briefly in the following section. Then, the set-up chosen for the present research
is reported. After that, the different coupling strategies for the oscillating cylinder simulation is briefly dis-
cussed.

Forced and free-vibration experiments The forced-vibration experiment is achieved by prescribing a mo-
tion to the cylinder body while the Reynolds number (and hence the inflow velocity) is kept constant. Regard-
ing free-vibration experiments, the cylinder motion is not actively controlled and usually the wind velocity is
varied [14]. The forced-vibration experiments can be considered as a 1-way coupled fluid-structure interac-
tion problem. In these experiments, only the effect of the cylinder motion on the fluid is investigated and not
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the other way around. The free-vibration experiments can be interpreted as a 2-way coupled FSI problem. In
these experiments, the effect of the cylinder motion on the fluid is considered and vice versa as well.

In the review of [13], the pros and cons of forced and free-vibration experiments were presented. The
main advantage of forced-vibrations is that frequency and amplitude can be controlled very precisely. On the
contrary, when free-vibration is studied, a small wind speed increment can lead to significant changes in os-
cillation amplitude and phase jumps can occur. Such phenomena can be challenging to measure accurately
and can be become more complex than desired. However, in forced-vibration experiments, a lot of data needs
to be acquired to measure the effect of the fluid on the cylinder. This would imply that forced-vibration tests
will take up more running time. Also, self-exciting vibrations are closer to reality. For example, in reality, the
displacement amplitude is not constant and the motion is not pure sinusoidal. Furthermore, as was pointed
out by [14], the flow is history dependent. This means that separation points, pressure distributions and cor-
relation lengths are dependent on the flow history. Hence, comparing the instantaneous quantities between
forced and free-vibration experiments can lead to differences in the observed results. Based on these findings,
it might be concluded here that the forced-vibration experiment is expected to be less complex. However, the
forced-vibrating experiment simplifies the reality as well, by neglecting the effect of the wake on the cylinder
motion.

Another potential benefit of the forced-vibration experiments is the utilization of the output data to fur-
ther develop existing phenomenological models. One method of using forced-vibration experimental results
in a phenomenological model was carefully explained in the doctoral thesis of [4]. The concept behind this
method starts with the assumption that once the complete system is in steady-state, the structural damping
should be equal to the aerodynamic damping as the oscillation amplitude remains constant over time. If
this assumption holds, it is possible to solve the structural oscillation amplitude by only knowing the aerody-
namic damping from the forced experiments. The wake can be described by one single parameter which is
why this method is very pragmatic. Typically, the aerodynamic damping can be presented in a contour map
where the (prescribed) reduced frequency f ∗ is on the x-axis and the (prescribed) non-dimensional ampli-
tude A∗ is on the y-axis. This method will be illustrated and presented later in this report. Other studies in the
literature in which forced-vibration experimental data was used as input in a structural model and compared
against free-vibration experiments are: [57] and [28]. The study of [57] compared his forced-vibration data
with the experiment of C. Feng [30]. His study found various regions where the agreement was good but also
some regions where the comparison was not successful. From an engineering perspective, it would be highly
practical if the CFD results can be used to calibrate existing phenomenological models.

Furthermore, in contrast to the free-vibration experiments, the forced-vibration experiment is able to
provide insights into non-equilibrium operating points. It is possible to prescribe a structural motion which is
for example far away from the lock-in region. In the free-vibration experiments, the system would most likely
return to the equilibrium points found at the typical lock-in curve (see for example fig. 2.9). This equilibrium
in a 2-way coupled system is then guaranteed by the energy conservation between fluid and structure, while
in the 1-way coupled experiments the motion is forced. These non-equilibrium points can address more
fundamental answers on how the wake would react under artificial conditions. These insights can help in
obtaining a general relation between structure and fluid and to understand the sensitivity of the wake to
different operating conditions.

As summarized by [29] and [13], it is still an ongoing debate if forced-vibration experiments are useful to
predict the free-vibration situation. This is also in line with the review of [14], which addresses the importance
of determining whether forced and free-vibration cases are ‘sufficiently alike to extract reliable information
from each’. It was argued in the same review that many more experiments should be done for both cases to
address this. In the study of [58], forced and free-vibration experiments were performed at Re ≈ 3800 to com-
pare these two approaches. They found that the lift phase angle and lift amplitude agreed well for forced and
free experiments, while the cross-correlation coefficient showed differences. The study of [59] performed a
DNS on flow over a flexible cable at Re = 100,200 and Re = 300, where the cable was forced and free to vi-
brate. The authors concluded that the results of the two cases did not show good agreement. They observed
that the flow transition in the wake was delayed when the vibrations were forced compared to free-vibration
simulations. One of the plausible explanations found in the literature is that for the free-vibrating cases, the
cylinder motion is not necessarily purely harmonic. The study of [60] showed that frequency modulation (i.e.
a changing excitation frequency over time) can have a substantial impact on the wake patterns. In addition,
in a previous study from the same authors, it was found that the wake can also change significantly when the
amplitude of the cylinder motion is modulated over time [61]. A summary of more studies on the effect of the
cylinder motion modulation on the wake is given in the study of [61]. These studies suggest that a different
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harmonical excitation signal can already have a substantial effect on the wake. Typically, the prescribed mo-
tion for forced-vibration experiments or simulations is purely harmonic while the motion trajectory found in
the free-vibrations cases may not be purely harmonical.

In the present research both a forced-vibration and free-vibration set-up will be analysed. The following
reasons, based on the literature review of before, have supported the choice of using both an 1-way and a
2-way coupled set-up in the present research:

1 The data generated from the 1-way coupled model can be used as input data for phenomenological
models. It appeared the forced-vibration results were also useful to explain some of the phenomena
occurring in the free-vibration simulations. In addition, this type of coupling has allowed the fluid
solver to simulate the wake under non-equilibrium structural operating conditions which fall outside
the capabilities of the 2-way coupled model.

2 In order to get the full picture on the FSI effects described earlier in section 2.2.4, the main goal of the
thesis was to model the free-vibration experiment and to predict a realistic response of the system. The
free-vibration experiment has allowed to vary the structural parameters. The sensitivity of the wake to
different structural parameters could therefore be investigated.

3 The forced-vibration experiment provided a good intermediate research step between the stationary
and the freely-moving (2-way coupled) cylinder. The degree of modelling complexity was expected
to be smaller for the forced-vibration simulations compared to the free-vibration experiments. Fur-
thermore, the only FSI study found in the literature in the supercritical regime was a forced-vibration
experiment. The 1-way coupled model gave the possibility of using this wind-tunnel data for validation
in the supercritical regime.

4 It was aimed to include a comparison of the 1-way and 2-way coupled models to contribute on the
on-going debate how well these two canonical cases match (at supercritical Reynolds number).

Numerical modelling of FSI Considering the forced-vibration simulations, the FSI modelling is mostly done
by enforcing a prescribed motion to the cylinder body. This set-up is quite similar to the stationary set-up,
but for the forced-vibrations the cylinder evidently moves. The cylinder should be considered as a mov-
ing geometry within the computational domain. The moving cylinder has no mass and is not attached to a
damper/spring. Hence, there was no ‘structural domain’ and no structural solver, only the flow field has been
solved. Instabilities are therefore less likely to occur within the forced-vibration simulations compared to the
free-vibration set-up, since only one solver is active. This solver, the fluid solver, is configured as much as
possible in accordance with the stationary set-up.

There are two ways of setting up the coupling of the FSI scheme for free-vibration simulations: explicit
and implicit. In the former type of coupling (loosely-coupled), the structure and fluid are only solved once per
timestep. The other coupling strategy (strongly-coupled), implicit, multiple iterations between the structure
and fluid are employed per timestep. These iterations ensure that convergence criteria are satisfied for each
timestep and therefore provide an unconditionally stable system [62]. Because the explicit scheme does not
resolve the fluid and structure for multiple times at each timestep, this method is more economical. On the
other hand, this coupling strategy can become unstable under certain operating conditions. A more detailed
explanation on the differences between these two algorithms will be reported in the next chapter, in section
3.2.2.

According to [63], the stability of the explicit coupled system with an incompressible fluid solver is propor-
tional to the timestep, stiffness of the structure, thickness of the structure and the mass ratio m∗. The same
system’s stability is inversely proportional to the characteristic size of the structure, order of the numerical
scheme and the viscosity of the fluid [62]. These relations stem from the presence of an additional artificial
term, called ‘added mass’ in [62]. This term is not equal to the added mass typically known from fluid dynam-
ics. It is a different term arising from an instability at the fluid-structure interface. In the present research low
values for the viscosity were expected for air, implying enhanced stability. On the other hand, especially for
finer meshes and higher Reynolds numbers, a smaller timestep was required to satisfy the Courant condition
in eq. 3.22 (which is reported in the next chapter) and second order numerical schemes were used. In the
research, moderate values for the mass ratio and stiffness of the structure are used to evaluate the sensitivity
of the wake and overall’s system response to these parameters. It is hard to draw a conclusion based on these
implied operating conditions and settings regarding the preferred type of FSI solver.

Other VIV-FSI studies in the literature showed mixed experiences regarding the solvers’ stability and ac-
curacy. For example, the explicit FSI solver used in [64] showed good performance of predicting a transverse
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freely-moving cylinder at Re = 100 and for low mass ratios. It was stated in their study that the numerical
damping was reduced by an accurate prediction of the displacement. In the DNS study of [65], it was argued
that since the timestep was adequately low as a consequence of the Courant restriction for the fluid solver,
the explicit scheme was sufficient to yield stable simulations. Furthermore, the study of [66] also showed that
their loosely-coupled scheme was able to predict the lock-in phenomenon of vortex-induced vibrations. At
the same time, the study [67] argued that a strongly-coupled FSI solver is a necessity for low mass ratio cases.

Based on these experiences, it has been decided to start the present research with a weakly-coupled
scheme to save computational power. Stability and convergence criteria are monitored to check if the weakly-
coupled scheme is indeed sufficient.

2.4. Conclusions
Based on the findings in the literature, the research plan and methodology will be defined in this section. The
previously identified studies on VIV and the modelling experiences found in the literature have both helped
in determining the research plan and methodology. The literature review mostly addressed the questions:
What are the influencing parameters that play an important role in VIV? and What has been done before on
VIV experimentally and numerically?

The research plan emanated from the conclusions drawn from the literature review of this chapter. The
research plan, bearing in mind the research objective defined in 1, aims to address the what: What knowledge
does the MSc research wants to obtain? Then, the research methodology will address the how: how is the
research question addressed in the most efficient, complete and reliable way? It was observed in the literature
review that the reliability in numerical experiments on VIV is very crucial. For this reason, the verification
and validation plan will be highlighted in the research methodology.

2.4.1. Research Plan
It was explained in chapter 1 that the wind turbine towers are subjected to a flow with a Reynolds number
of Re > 3.5 ·106. As was pointed out earlier in section 2.3.1, not many numerical simulations have been per-
formed at supercritical Reynolds numbers. In fact, it was even pointed out by the recent review of Bearman
[13] and in the recent review of Sarpkaya [14] that it is important for the industry to conduct more studies at
high Reynolds number on VIV. Therefore, the first scope refinement is to focus the MSc research on supercriti-
cal Reynolds numbers, i.e. Re > 3.5·106 and to provide the body of science with new, state-of-art insights/data
in this regime. This Reynolds regime is also in the interest of Siemens Gamesa for full-scale applications on
wind turbine towers. Since the availability is limited and the results of current available research is scattered
in this regime, the present research has paid extra attention to the validation and verification process in this
regime.

Next to the Reynolds number, the transverse oscillating cylinder parameter has proven to be the next
relevant parameter for Siemens Gamesa to research. This parameter can become a governing parameter,
while overriding all other influence parameters (see section 2.2.4). Although the other influencing parameters
are also of interest, these tend to have a smaller effect on VIV as was explained in chapter 2. In addition,
most of these parameters have been investigated already at high Reynolds numbers, for example the surface
roughness and free stream turbulence (see section 2.2.3). Based on the compilations of [2] in 1969 and [12]
in 2006, it was concluded that there is still a lack of moving cylinder experiments/numerical studies at high
Reynolds number. The effects of the cylinder motion on the wake have been briefly discussed in section 2.2.4,
yet most of the researches mentioned there were conducted at relatively low Reynolds numbers. Hence, for
these reasons it has been concluded that the MSc research will zoom into the fluid-structure interaction at
supercritical Reynolds numbers.

It was stated in section 2.2.4 that the effect of the in-line displacement on the wake is expected to be con-
siderably smaller compared to the transverse displacement effect. Therefore, the in-line DOF is left outside
the scope of the MSc research and only the transverse cylinder motion effect is researched. Part of the MSc
research will focus on the qualitative aspects of these transverse cylinder motion effects and this will provide
new insights in to how the fluid-structure interaction behaves at higher Reynolds number. The other part of
the research will quantify the fluid-structure interaction and determine how big the effect is of the cylinder
motion on the lift force for example. All the other influencing parameters mentioned in section 2.2.3, besides
the Reynolds number and the cylinder oscillations, should be taken into consideration during the MSc re-
search. Their effects should be minimized to make sure that the two aimed relational studies are researched
independently.
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Considering the five effects of the cylinder motion on the wake, especially the lock-in effect and the effect
on the strength of the vortices are of primary interest to Siemens Gamesa. The lock-in region indicates what a
feasible operating envelope for the wind turbines and where VIV can be expected at high Reynolds numbers.
Once VIV is initiated, it is highly relevant to quantify the lift magnification factor caused by the transverse
cylinder motion. The lift force can have a detrimental impact on the design lifetime, as was stated in chapter
1. It is therefore of the absolute importance to estimate the additional effects of the cylinder motion on the
lift force.

2.4.2. Research Methodology
Research Stages URANS has been chosen for the supercritical Reynolds number simulations. This choice
is motivated firstly by the fact that for turbulence modelling, URANS has proven to offer a good compromise
between computational time and accuracy. Furthermore, the literature review showed that not many nu-
merical studies have been conducted in the super critical regime. For a moving cylinder, no other numerical
simulation was found in the literature. The present research has aimed to present new results in this regime
and to demonstrate the capabilities of the widely used URANS approach.

The FSI effects have been researched in three stages. In all these stages some influence parameters have
been kept constant and some varied (independent variable). Every stage resembles a different CFD case
that has been investigated, see fig. 2.17. In the first stage, the cylinder has been kept stationary (no FSI has
been modelled). This stage might be considered as the basic case, where most of the verification & valida-
tion (denoted as Ver. & Val. in fig. 2.17), spatial convergence (denoted as ‘conv.’ in fig. 2.17) and temporal
convergence studies were performed. These assessments evaluated the reliability and accuracy of the CFD
model. In addition to that, the first stage provided insights in to wake which is caused purely by the vortex-
shedding mechanism. Hence, the purpose of this stage was to address the ‘stationary’ wake and to provide a
reference perspective for later comparison when the cylinder was assigned to move in some way. The output
of this stage can be considered as a typical CFD output: all the flow field data (pressure, momentum and if
applicable k-ω) and the aerodynamic forces experienced by the cylinder body.

After the first stage, same way of coupling was added to the stationary model. As has been argued before in
the literature review, both a forced-vibration (1-way coupled) and free-vibration (2-way coupled) simulation
have been chosen to analyse VIV. The former simulation set-up has been done in the second stage. The 1-way
coupling has introduced two additional input parameters: the prescribed cylinder displacement amplitude
(ymax ) and frequency ( fc yl ). Eventually, the CFD simulations of this set-up would lead to the aerodynamic
damping and force magnification besides the flow fields. The aerodynamic damping, which summarizes the
fluid-structure interaction into one parameter, has appeared to be very useful to serve as calibration data for
phenomenological models predicting VIV. The force magnification is a consequence of the introduced 1-way
coupled cylinder motion. It has been observed that for some operating points, the motion usually magnifies
the aerodynamic forces compared to the stationary case (1st stage). Hence, this output has been called the
force magnification in fig. 2.17.
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Ver. & Val.
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Figure 2.17. Research Stages

In the 3rd stage, the system was set-up to be two-way coupled. A structural solver has been implemented
to predict the effect of the wake on the cylinder motion. In this stage, the additional input parameters are
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the structural mass, spring stiffness and damping coefficient. While in the 2nd stage the cylinder motion
was known a priori, in the 3rd stage this was variable which has been computed by the structural solver and
was therefore only known a posteriori. Similar to the 1-way coupled case, the 2-way coupling leads to an
aerodynamic damping coefficient, force magnification factor and flow fields around the cylinder. The lock-in
map, as was explained in 2.2.4, is a very important outcome of the 2-way coupled simulation as it provides
the operating range where lock-in occurs. In addition, if the aerodynamic forces are plotted on the y-axis
(in contrast to the plotted displacement in fig. 2.9), it also shows the force magnification factor for different
reduced velocities (and hence different wind speeds).

All three stages are executed at multiple Reynolds numbers, as indicated in fig. 2.17 by the ‘laminar’ and
‘supercritical’ detonation. The reason behind this distinction of flow regimes will be explained in the next
section and in chapter 3.

Based on the framework of fig. 2.17, the following two hypotheses have been tested in the MSc thesis:
H0: "FSI effects at supercritical Reynolds number caused by VIV of a 2D moving cylinder do not lead to an

increased lift force and critical wind speed range compared to VIV of a 2D stationary cylinder."
H1: "FSI effects at supercritical Reynolds number caused by VIV of a 2D moving cylinder lead to an increased

lift force and critical wind speed range compared to VIV of a 2D stationary cylinder."

Verification and Validation All the type of assessments of the present research are listed in tab. 2.1, for each
stage of fig. 2.17 and for the laminar/supercritical flow regime. The laminar flow regime has been defined be-
fore where the Reynolds number range is 80 < Re < 200. The verification studies were aimed to obtain an
indication of the numerical error (difference between the exact solution of the governing equations and the
iterative solution of the discretized equations) and validation studies to get an indication of the modelling er-
ror (difference between the real flow and the exact solution of the governing equations) [41], [42]. The spatial
convergence and temporal convergence study were both an assessment to guarantee that the discretization
process was done unambiguously right and that the level of refinement lead to an adequately small discretiza-
tion error. The discretization error is part of the numerical error which only describes the error because of the
spatial/temporal discretization (i.e., the truncation error). It appeared the VIV fluid problem considered in
the present research does not have an exact or perfect benchmark solution to compare to. The fluid problem
requires at least a CFD approach as it is too complex to be captured accurately by a lower fidelity approach
(analytical models for example). The numerical benchmark solutions found in the literature for VIV were all
obtained by CFD. The verification study was performed against multiple CFD studies to ensure the presently
obtained results fall within the ‘bracket’ of numerical results in the literature. However, it must be noted that
uncertainty is present in this comparison as the exact solution is not known. The same holds for the grid and
temporal refinement studies, where the solutions have been compared to the finest mesh (rather than a CFD
solution from the literature).

Case Flow Regime Verification Validation Spatial Convergence Temporal Convergence

Stationary
Laminar X X X

Supercritical X X X X

1-way coupled
Laminar X X X

Supercritical X

2-way coupled
Laminar X

Supercritical

Table 2.1: Assessment scheme

As was pointed out before and shown in fig. 2.17, the CFD model has mostly been assessed for the sta-
tionary case (1st stage). The first reason for this choice was supported by the observation that in the literature
most of the experimental and numerical work has been done for a stationary cylinder rather than a moving
cylinder. Besides that, the stationary case was deemed as the least complex case in the present research.
The fundamental stationary case allowed the present research to conduct a more thorough assessment. Still,
for the 1-way and 2-way coupled models verifications have been performed to ensure their reliability and
accuracy as well. In fact, the 2-way coupled model has been compared against two independent CFD studies.
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Like the stationary case, more assessments have been performed in the laminar regime as well. Numerical
studies on the stationary cylinder have been found for all the three Reynolds regimes, although the modelling
errors were sometimes significantly higher at higher Reynolds numbers. For laminar flows, the governing
equations have been solved directly which tended to reduce the modelling errors. Yet, for turbulent flows, it
was expected that the modelling error was larger because more modelling simplifications have been applied
to the governing equations. Furthermore, it has turned out that in the laminar regime, the flow can be de-
scribed adequately by 2D modelling [68]. This lower Reynolds number was also chosen based on the lower
implied computational cost for laminar flows compared to turbulent flows which would be computationally
more expensive as was explained before in section 2.3.1. The lower computational time allowed to run more
simulations, tweak the CFD model and look for the most optimal CFD settings for different flow problems
(stationary, forced and freely moving). In contrast to the numerical work, it has appeared that validation in
the laminar regime is troubled by the fact that not a lot of experiments have been carried out at these low
Reynolds numbers.

After the verification study in the laminar regime, the meshes and model have been adjusted to aim for
the supercritical range. Where there was a lack of experimental work in the laminar regime, the supercritical
regime attracted plenty of experimental research. Hence, no intermediate step between the laminar and su-
percritical regime has been taken to validate the CFD model. In fact, the validation study was only done for
the supercritical numerical studies. It must be noted that a significant modelling error is expected at these
large Reynolds numbers. 2D simulation, all flow falsely assumed by URANS to be turbulent and more tur-
bulent approximations are expected to contribute to the modelling error. Yet, the validation was performed
in this regime based on a couple of reasons. The first argument is that the modelling error caused by not
modelling the transition can also be expected in the other Reynolds regimes. For example, even in the sub
critical regime where the boundary layer is fully laminar the wake is in fact turbulent. Hence, a laminar CFD
validation in the sub critical regime after the laminar regime would inherently also lead to modelling errors
in the wake. Moreover, validation at supercritical Reynolds numbers gives the opportunity to draw conclu-
sions on the shortcomings of the present CFD turbulence model. It has been inventorized in the literature
that there are also some numerical studies available in the supercritical regime, all with their own modelling
shortcomings. These numerical studies provided the opportunity to review the performance of the present
turbulence model.

It has been reasoned that for every added coupling-complexity or when going from the laminar regime to
the more challenging turbulent flow, fewer assessments would suffice as the model has been assessed ade-
quately at the fundamental cases (laminar and stationary). Hence, the laminar flow regime and the stationary
cylinder were assessed more than the cases with turbulent flow or a moving cylinder to gain confidence on the
modelling. At the same time, while adding coupling or turbulence to the model, the available research peers
to verify or validate the model became scarcer. Hence, as the complexity of the model enhances, the research
progresses more towards novel research areas. Besides obtaining fundamental insights from the results and
providing new data to address the research question, the research also aimed to add value by sharing the
modelling experiences.
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Modelling

All aspects of the CFD model and the FSI model will be covered in this chapter. First, the fluid solver (com-
putational fluid dynamics) will be explained carefully. Then, the inclusion of the 1-way and 2-way coupled
FSI models to the fluid solver will be treated. As was stated in chapter 1, both the fluid solver and FSI solver
available within OpenFOAM [1] will be used in the present research. Finally, all the important post-processing
metrics will be discussed.

This chapter focuses on the following three questions:

• How will the fluid be modelled?

• How will the fluid-structure interaction be modelled?

• How will the results be post-processed?

3.1. Fluid Solver
The concept of computational fluid dynamics can be explained by the following aspects:

1 Physical modelling.

2 Mathematical modelling.

3 Numerical modelling.

In the physical modelling, the governing equations of fluid dynamics are considered as the basis of the
CFD model. Then, the resulting equations are discretized mathematically into a system of algebraic equations
to be solved by the computer (mathematical modelling). These equations are solved by an iterative method
to compute the flow quantities of interest, which is known as the numerical modelling. All three modelling
aspects are a necessity for the fluid solver to work. These three aspects will be explained in the next three
sections step by step.

3.1.1. Physical modelling
The physical modelling already started by cancelling out some of the terms of the three governing equations
for fluid dynamics: momentum equation (conservation of momentum), the continuity equation (conserva-
tion of mass) and the energy equation (conservation of energy). Some of these modelling choices have been
discussed briefly before in section 2.3.1 from the previous chapter. The fluid is assumed to be viscous, incom-
pressible, Newtonian, isothermal and unsteady. This resulted in the decoupling of the energy equation. The
assumed fluid properties are considered as the first physical modelling assumptions.

As has been argued before in section 2.3.1, for higher Reynolds number flows the flow will be predicted by
URANS (because of computational cost). For lower Reynolds numbers, the laminar flow field will be obtained
by solving eq. 2.7 and eq. 2.8 directly. Hence, no further modelling simplifications regarding the fluid physics
will be done for the laminar simulations except for the simplifications to the governing equations.

The Reynolds-Averaged Navier-Stokes equations are based on the idea of O. Reynolds where eq. 2.7 and
2.8 are time-averaged. It has been stated before in section 2.3.1 that the flow field will be solved in only in two

27



28 3. Modelling

dimensions, which is another simplification. For 2 dimensions, the Reynolds-Averaged approach assumes
that the flow variables can be decomposed into a mean and fluctuating component:

u(x, t ) = u(x, t )+u′(x, t ) with u′ = 0 (3.1)

where x = (x y)T is the position vector. In unsteady flows, typical with vortex shedding, the flow solu-
tion is obtained by ensemble averaging. The number of samples must be large enough to ensure that the
fluctuations can be disregarded [42]:

u(x, t ) = lim
N→∞

1

N

N∑
n=1

u(x, t ) (3.2)

After substitution of the decomposed quantities into equations eq. 2.7 and eq. 2.8 and applying an aver-
aging operator, the Reynolds-Averaged Navier-Stokes are obtained:

∂u

∂t
+∇· (uu)+ 1

ρ
∇p −∇· (ν∇u) =−∇·u′u′ (3.3)

∇·u = 0 (3.4)

While the linear terms of eq. 2.7 and eq. 2.8 give an identical term, the quadratic terms yield a non-
linear term. These non-linear terms are known as the correlations and can be found on the right-hand side
of eq. 3.3. This term is also known as the Reynolds stress tensor. Inspecting eq. 3.3 and eq. 3.4, it can
be seen that there are more unknowns than equations, which implicates a closure problem. Although it
is possible to further derive solvable equations, there will always remain more unknowns than equations.
Hence, the Reynolds stress tensor must be approximated partly by additional models to arrive at a closed set
of equations. The fluctuation terms that are still present because of the non-linearity in the Navier-Stokes
is then attributed to turbulence and should be modelled by a turbulence model. Because only the mean is
solved with URANS, a bigger timestep and mesh spacing is possible in contrast to when all the turbulence
scales are resolved. In hindsight, URANS resolves the mean flow field and the Reynolds stress tensors models
the effect of the turbulence on the mean flow. This saves a lot of computational time but implies that the
complete turbulence spectrum is modelled.

There are multiple turbulence models available to approximate the RHS of eq. 3.3. It was explained before
in section 2.3.1 that the k-ω SST model was chosen as turbulence model for the present research. This model
is categorized as a linear Eddy Viscosity Model (EVM). EVM is based on the observation that turbulence leads
to momentum exchange between fluid particles and eventually to chaotic movement of eddies. EVM models
these fluid element movements as increased viscosity [41]. The stress tensor is modelled to be proportional
to the shear in the mean flow by the eddy viscosity:

−u′
i u′

j = 2νT Si j − 2

3
δi j k (3.5)

with the shear rate equal to:

Si j = 1

2

(
∂ui

∂x j
+ ∂u j

∂xi

)
− 1

3
δi j

∂uk

∂xk
(3.6)

with k the turbulent kinetic energy:

k = 1

2
u′

i u′
i (3.7)

The last term in eq. 3.5 ensures that the equation is still correct when both indices are assumed equal
(i = j ) [42]. Model variations have been suggested by Menter and more researchers over time to the ‘standard’
k−ω SST model of Menter in 1994 [47]. OpenFOAM uses the version that is based on the k−ω SST model found
in [69] with a revised turbulence specific dissipation rate production term from [70]. For more information
on these turbulence model changes, the reader is referred to the NASA website [71].

The turbulence specific dissipation rate ω is described by the following partial differential equation:

∂ω

∂t
+ ∂u jω

∂x j
= γ P̃k

νT
−βω2 + ∂

∂x j

[
(ν+σωνT )

ω

x j

]
+2(1−F1)σω2

1

ω

∂k

∂x j

∂ω

∂x j
(3.8)
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The blending function F1 is given by:

F1 = tanh
[[

min
[

max
( p

k

β∗ωγ
,

500ν

γ2ω

)
,

4σω2k

C Dkωγ2

]]4]
(3.9)

and:

C Dkω = max
(
2σω2

1

ω

∂k

∂x j

∂w

∂x j
,10−10

)
(3.10)

The second transport equation describes the turbulent kinetic energy k:

∂k

∂t
+ ∂u j k

∂x j
= P̃k −β∗kω+ ∂

∂x j

[
(ν+σkνT )

∂k

∂x j

]
(3.11)

Where the limited production term P̃k is described by:

P̃k = min(Pk ,10β∗kω) (3.12)

with:

Pk = νT
∂ui

∂x j

(∂ui

∂x j
+ ∂u j

∂xi

)
(3.13)

The turbulence coefficients are:

Model coefficient Value [−]

σk1 0.85

σk2 1.00

σω1 0.50

σω2 0.856

β1 3/40

β2 0.0828

γ1 5/9

γ2 0.44

β∗ 0.09

a1 0.31

Table 3.1: Turbulence model coefficients for the k −ω SST model

If needed, the constants are blended (typically close to the boundary layer) by the following interpolation:

φ= F1φ1 + (1−F1)φ2 (3.14)

Where φ can represent any coefficient from tab. 3.1.
Once the two additional turbulence transport equations are solved, the eddy viscosity field is obtained by:

νt = a1k

max(a1ω,ΩF2)
(3.15)

WhereΩ is the magnitude of the strain rate tensor. F2 is the following blending function:

F2 = tanh
[[

max
( 2

p
k

β∗ωγ
,

500ν

γ2ω

)]2]
(3.16)
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3.1.2. Mathematical modelling
After the physical model is clear, either being URANS for turbulent flow or DNS for the laminar flow, the next
step was to define the mathematical model. In order for the computer to solve the equations defined before
(laminar: eq. 2.7 or eq. 2.8 or for turbulent flow: eq. 3.3 and eq. 3.4), these equations are discretized in a
system of algebraic equations. OpenFOAM uses the finite volume method, meaning that the conservation
laws are applied to a finite number of control volumes (also known as cells) within the defined computa-
tional domain. Within the CFD model, the governing equations are solved within an Eulerian framework
(fixed computational domain around flow field). Then, the conservation laws are solved numerically in the
integral form [42] for every cell for every discretized timestep. This means that the conservation laws are di-
rectly applied to each control volume inside the computational domain. The mass conservation should thus
be conserved locally in each cell and globally for the complete domain. The mathematical operations re-
quired to numerically solve some of the (non-linear) terms in the governing equations are handled by a set of
specified discretization schemes. To close the system of algebraic equations, a set of boundary conditions at
the boundaries of the computational domain and initial conditions must be defined. In this section, all these
steps involved within the mathematical modelling will be explained. This section starts with the definition of
the computational domain, after which the boundary conditions and initial conditions will be listed. Then,
the spatial discretization and temporal discretization are reported. Finally, the set discretization schemes
used in the CFD model will be covered.

Computational Domain The domain size can vary considerable between the different numerical studies
found in the literature on VIV. It is found in the study of [72] that the size of the computational domain can
affect the results of 2D flow simulations over a circular cylinder. Especially the aerodynamic forces and the
base-pressure coefficient (in contrast to the Strouhal number) are sensitive to different grids and blockage
effects. Hence, it was suggested that for verification purposes, the drag and base-pressure coefficient should
also be compared (rather than only comparing the Strouhal number). The same study focused on investi-
gating the effect of the inflow length and height of the domain on the CFD results (independent of grid size).
With a compromise between an adequately small error and reasonable computational time, an inflow length
of L1 = 50D and domain height of L3 = 100D was recommended by the study. It is worth mentioning that
for a moving cylinder it is possible that the blockage effects are more pronounced if the domain height is not
sufficiently large. In line with that, a domain upper and lower boundary height of 50D should minimize these
effects.

Concerning the outflow length, a length of L2 = 50D was chosen, based on the outflow length that was
also used in [72]. This outflow length was suggested after tests in the unsteady regime and yielded accurate
results when compared to experiments. On top of that, compared to the outflow lengths of other domain
studies (see [72, p. 484, tab. 1]), an outflow length of L2 = 50D can be considered as wide. This length may
be assumed as a safe distance where effects from the outflow boundary on the solution can be neglected. It
must be noted that the domain size study of [72] was only done in the laminar flow regime, for Re = 200. A
brief domain size study has been performed for the turbulent flow in the present research, as will be reported
in chapter 4.

The computational domain is illustrated in fig. 3.1. Five boundary patches are defined in the computa-
tional domain: inlet, outlet, sides, far field and the cylinder. Four of them are displayed in fig. 3.1. The only
boundary patch that is missing in the illustration is the ‘sides’ boundary patch. This patch represents the
front and back of the domain (in z-direction, normal to the x-y surface). Although the equations were solved
in 2 dimensions, OpenFOAM always works with 3D meshes. Hence, the computational domain has one cell
in the z-direction.
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Figure 3.1. Illustration of the computational domain used in the present research

Boundary and initial conditions To ensure closure of the discretized system of equations boundary con-
ditions for the flow parameters in eq. 3.3 and eq. 3.4 are required. The boundary conditions for the laminar
and turbulent cases are no different except that for the turbulent case additional boundary conditions were
applied to account for the turbulent properties. The boundary conditions did change when fluid-structure
interaction effects were included.

The following boundary conditions have been used for the CFD model:

Case Variable Unit Inlet Outlet Sides Far Field Cylinder Initial Field

Stationary Cylinder
p m2/s2 ∂p

∂n = 0 p = 0 Empty Symmetry ∂p
∂n = 0 p = 0

u m/s u = (1 0 0) ∂u
∂n = 0 Empty Symmetry u = (0 0 0) u = (1 0 0)

Moving Cylinder y m y = 0 y = 0 Empty Symmetry y(t ) y = 0

Turbulent Cases

k m2/s2 k = 0.00135 ∂k
∂n = 0 Empty Symmetry k = 1E −10 k = 0.00135

ω 1/s ω= 487.4 ∂ω
∂n = 0 Empty Symmetry Wall Function ω= 487.4

νt m2/s Calculated Calculated Empty Symmetry νt = 0 νt = 0

Table 3.2: Boundary Conditions

It must be noted that, since in all the CFD cases the flow is assumed to be incompressible, the pressure
unit is defined as m2/s2 which is equal to Pa/ρ. The fluid density was equal to ρ = 1[kg /m3] in the CFD cases,
but it is possible to scale the resulting fluid properties to a different density when necessary. The internal field
entails all the cells inside the computational domain, which are only used for the initialization (at t = 0[s]).
Most of the boundary conditions that have been used are constant in time, except for the moving meshes.

A Neumann boundary condition was applied for the pressure at the inlet and cylinder wall and for veloc-
ity at the outlet. The velocity at the cylinder wall and at the inlet and the pressure at the outlet were specified
with a Dirichlet boundary condition. The velocity at the cylinder wall was set to zero in all directions to ensure
the no-slip condition. The boundary condition empty has been used to define that the governing equations
normal to the sides boundary patch are not solved (z-direction). The symmetry boundary condition in Open-
FOAM should be interpreted as a wall patch with slip condition. This means the flow at the far field walls is
in parallel with the uniform inlet flow. This is a safe modelling assumption since the upper and lower height
of the computational domain is sufficiently large, 50D .
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For the moving cylinder cases, forced and free-vibration, the no-slip condition at the cylinder wall was still
active like the stationary cylinder. To ensure no flow rate m3/s went through the cylinder body, it was nec-
essary that vw all was exactly equal to the cylinder velocity at every time instant. OpenFOAM has a standard
boundary condition that has been built for moving meshes, which keeps the relative velocity zero during the
simulation. As can be seen in tab. 3.2, the variable y has been included as a boundary condition and initial
condition. Most of the boundary values and the initial values are set to zero, i.e. y = 0 as the cylinder is the
only patch that is supposed to move. For the cylinder the boundary condition y(t ) has been defined, which
will be worked out in the next section about the motion solver.

For the turbulent cases, the boundary conditions for u and p varied slightly. For the pressure, the outlet
boundary condition was defined as an ouletInlet boundary condition. This boundary condition is equal to
the boundary condition found in tab. 3.2 for the stationary case when there is no reversed flow. If there is
backward flow, the boundary condition is specified by the same condition as the inlet (zero gradient, Neu-
mann type). The same was done for the velocity boundary conditions in the turbulent case. This time the
boundary condition was the opposite of the pressure boundary condition. When there was no reversed flow
at the outlet, then the same Neumann condition as in tab. 3.2 was used (zero gradient). With reversed flow,
the velocity at the outlet was set equal to the inlet velocity.

Additional boundary and initial conditions have been included for the turbulent properties. The initial
turbulent kinetic energy (at t = 0[s]) is estimated by assuming isotropic turbulence with the following for-
mula:

k = 3

2
(T i umean)2 (3.17)

In eq. 3.17, T i is the turbulence intensity and umean is the mean flow velocity. In the present research
umean is equal to the uniform, freestream inflow velocity U = 1[m/s]. The turbulence intensity defines the
amount of freestream turbulence present at the inlet. T i has been assumed to be 3%, which resembles a
medium-turbulence case.

Besides the kinetic energy, the initial turbulence specific dissipation rate was estimated by:

ω= ρk

µ

(
µt

µ

)−1

(3.18)

where µt
µ is known as the eddy viscosity ratio, which was set equal to 10. The other flow quantities in eq.

3.18 have been reported before. The initial value of the eddy viscosity νt , from eq. 4.9, was set to zero (see tab.
3.2). The effect of the turbulence intensity (at the inlet) on the aerodynamic forces will be reported in chapter
4, section 4.2.1.

Regarding the boundary conditions for the turbulent properties in tab. 3.2, most of them were similar
to the boundary conditions used for the pressure and velocity fields. The boundary conditions for the eddy
viscosity for the inlet and outlet were calculated based on the boundary conditions specified for ω and k. At
the cylinder wall different boundary conditions have been used for the turbulent properties. These boundary
conditions depend on how the boundary layer is modelled. The following two dimensionless numbers are
typically used for boundary layer analysis, the dimensionless wall distance y+ and dimensionless velocity at
the wall uτ [41]:

y+ = yw all uτ
µ

with uτ =
√
τw

ρ
(3.19)

The region for y+ < 1 is called the viscous sublayer, which is mostly laminar. In the outer layer at higher
values of y+, the flow is expected to be fully turbulent. In between the viscous sublayer and the outer layer,
there is a buffer layer. There are roughly two ways to impose wall conditions for the turbulent quantities. In
the first option the turbulence in the boundary layer is modelled by wall functions, utilizing the predictable
dimensionless boundary layer profiles. The other option is to resolve with URANS up to viscous sublayer
which is adjacent to the wall. Both options influence the required cell size height applied to the grid at the
cylinder wall. Option 1 is commonly pursued for higher Reynolds number flows, since the viscous sublayer
becomes very thin with increasing Re [42]. This thin sublayer would require a smaller cell height at the wall
leading to more grid nodes and hence higher computational cost. Yet, in the present research no wall func-
tions have been used and the grid was constrained to a dimensionless wall distance of y+ = 1 with a prism
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layer type of mesh around the cylinder wall, increasing with a growth ratio of 1.2. In the present fluid dynam-
ics problem, the near-wall region treatment was essential, since a lot of different flow features (such as flow
separation) arise from the boundary layer [73]. This observation has motivated the choice for resolving up to
the viscous sublayer rather than using wall functions. Bearing in mind that the viscous sublayer is dominated
by viscous forces and is mostly laminar, the boundary conditions have to be chosen such that the turbulence
at the wall is suppressed adequately [41]. For the turbulence kinetic energy at the cylinder wall, k = 0[m2/s2]
is recommended by [47]. Yet, to prevent the solver from dealing with zeros, k was set to 1E −10[m2/s2]. For
estimating ω at the cylinder wall, eq. 23 of [74] has been used which is: f

ω= 6µ

β1 y2
w all

(3.20)

where β1 = 0.075. This wall function is recommended for estimating ω for in the viscous sublayer and in
line with the implemented turbulent wall function implemented in the OpenFOAM source-code. According
to [74], the models should give accurate results if ω is large enough near the walls. The eddy viscosity was
equal to zero at the wall, because the no-slip condition was active at the cylinder wall.

Spatial discretization For spatial discretization, a different mesh has been used for the laminar flow case
and the turbulent flow case. In both flow cases, the same computational domain was used. The grid genera-
tion was done within the commercial software ANSYS ICEM CFD 16.2. The computational domain has been
divided into blocks in which a structured hexahedral grid was created. The block around the cylinder was
based on an O-grid mesh. The grid topology is shown in fig. 3.2. All the edges surrounding the grid blocks are
shown in this figure. For the relevant edges, the number of cells are defined as N1−4, NT and NR as shown in
fig. 3.2. The mesh characteristics are listed in tab. 3.3.

Laminar cases Turbulent cases

Mesh Coarse Regular Fine Finer Finest Coarse Regular Fine Finer

Mesh Number m1.1 m1.2 m1.3 m1.4 m1.5 m2.1 m2.2 m2.3 m2.4

Number of cells 5.472 13.050 30.096 58.410 90.576 69.069 98.730 176.635 314.186

NR 20 30 45 60 90 125 150 200 266

NT 20 30 45 60 90 63 75 100 133

Cylinder wall cell height [m] 0.05 0.05 0.05 0.05 0.05 7 ·10−6 7 ·10−6 7 ·10−6 7 ·10−6

Minimum cell width [m] 0.0393 0.0295 0.0195 0.0145 0.0116 0.00166 0.00118 5.5 ·10−6 4.1 ·10−5

Mesh Quality 85−90% 24.6 0.4 0.2 0.1 0.141 0.1 0.2 0.149 0.122

Mesh Quality 90−95% 1.8 25.5 15.8 11.5 10.608 10.9 10.1 10.979 11.587

Mesh Quality 95−100% 73.6 74.1 84.0 88.4 89.251 89.0 89.7 88.872 88.290

Table 3.3: Mesh characteristics for different flow cases

The grid generation started at the cylinder wall by defining the cell height at the cylinder wall to ensure
y+ = 1. The cell height at the cylinder was estimated by using eq. 3.19 and solving for y with a desired
y+ = 1. The wall shear stress, required to calculate the dimensionless velocity, was approximated by using the
Schlichting skin-friction formula [75]:

C f = [2l og10(Rex )−0.65]−2.3 for Rex < 109 (3.21)

This equation is designed for flat plates and turbulent boundary layers. Yet, as will be shown later, the
formula served as a good approximation of the skin friction coefficient for the laminar CFD cases. For the
turbulent cases, this approach yielded a cell wall height at the cylinder of y = 7 ·10−6 which was considerably
lower compared for the laminar cases where y = 0.05. After the cell wall height at the cylinder was defined, an
exponential cell size growth was applied to the four radial edges in the O-grid block around the cylinder (NR ).
The corresponding length of these four radial edges attached to the cylinder wall was L4 ≈ 3.4D , taken from
the origin in the middle of the cylinder. NT in fig. 3.2 and in tab. 3.3 shows the amount of cells distributed
over the four tangential edges which enclosed the O-grid block. The O-grid block has been created to capture



34 3. Modelling

the expected large flow fluctuations around the cylinder caused by the curvature. In addition, uniform grid
block covering the wake was created until L5 = 10D . This block gave the possibility to locally increase the
mesh density in the wake, which would contribute to a better solution.

The grid has been generated by taking the following principles into account to reduce the numerical dif-
fusion [42]:

1 Grid is as nearly as orthogonal as possible.

2 The grid is dense in the regions where large truncation errors are expected.

3 The grid transition over different blocks is smooth.

N1 NT

NR

N3

N4

N2

NT

L4

L5

Figure 3.2. Illustration of the grid topology

According to [42], ‘it is important that the grid refinement is substantial and systematic’ in order to esti-
mate the discretization error. To ensure this, all the block edges have been increased with the same refine-
ment ratio of r = 1.5 for the laminar meshes and r = 1.33 for the turbulent meshes. In tab. 3.3 only the effect
of grid refinement on the radial and tangential O-grid block edges is displayed, however, all the other block
edges have been refined with the same ratio. The tutorial found on the website of NASA [76] suggested that
a refinement ratio of r > 1.1 is the minimum to allow discretization error estimation. Because all the block
edges have been refined with the same ratio systematically, the grid topology and relative spatial density has
been conserved as much as possible. The refinement ratio has been lowered for the turbulent meshes, since
their computational time was affected more severe with denser meshes compared to the laminar meshes.

The y+ value was constant in all the refined meshes, hence the wall cell height was equal in the laminar
and turbulent refined meshes. The effect of the y+ value on the solution is treated later in section 4.1.1.

The mesh quality was evaluated by the pre-mesh quality tool available within ANSYS ICEM. This quality
measure is based on a weighted diagnostic between the determinant, orthogonality and warpage of all the
hexahedrals. The determinant and orthogonality weight factor can have a number between −1 and 1, while
the warpage factor is normalized between 0 and 1. The orthogonality indicates the orthogonality of two
hexahedrals next to each other. If two cells deviate with more than 90° from orthogonality, the weighted
factor will be smaller than 0. The determinant checks the deformation of the cells, where the factor of 1
corresponds to perfect regular mesh element and negative values indicate inverted mesh elements. Lastly
the warpage indicates the skewness of the mesh elements, where a warpage of 0° is equal to a weighted factor
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of 1 and 180° is equal to a factor of 0 (indicated cell distortion). Finally, these normalized quality diagnostics
have been evaluated for each hexahedral and transformed into a histogram by ANSYS ICEM. For example, in
the turbulent fine mesh 112 cells show (which is equal to 0.1% of the total amount of cells) a quality between
85− 90%, 7.512 cells (equal to 10.9% of the total amount of cells) in the range of 90− 95% and 61.444 cells
(which is 89.0% of the total amount of cells) in the last, best category of 95− 100%. In other words, in this
example and in all the meshes that have been generated none of the cells fall within the quality range of
0−85%. This indicates that all the meshes are of good quality.

Temporal discretization In the present research, the timestep was not fixed. The option adjustable timestep
within OpenFOAM has been adopted in the CFD cases. Two constraints are imposed on the varying timestep:
a maximum allowable Courant number and a maximum allowable timestep size during the simulation. The
Courant number is defined as follows:

Co =U
∆t

∆x
≤ 1 (3.22)

where U is the velocity magnitude in [m/s], ∆t the timestep size in [s] and ∆x the cell width size in [m].
According to the Courant-Friedrichs-Lewy condition, Co should be equal to or less than 1 to ensure a sta-
ble run [41]. Within OpenFOAM, it is only required to specify the maximum Courant number. When this
maximum is specified, the solver ensures the timestep is adjusted accordingly to satisfy the desired Courant
number. Manual computations of the Courant number or the timestep size with eq. 3.22 were done by using
the minimum cell width listed in tab. 3.3 for ∆x.

Timestep scheme Comax ∆Tmean

m1.1 0.7 0.02793

m1.2 0.7 0.01830

m1.3 0.7 0.01226

m1.4 0.7 0.00927

m1.5 0.7 0.00745

Table 3.4: Timestep size variations for meshes m1.1−1.5 from tab. 3.3

The time-averaged timestep size for the refined meshes have been listed in tab. 4.1. In all the five cases,
the maximum Courant number was kept equal. This ensured that the Courant-Friedrichs-Lewy condition
was satisfied to same degree for all the refined meshes. It has been reasoned that when the mesh was refined,
smaller cell widths were generally expected. The adjustable times-step scheme was therefore forced to lower
∆T to achieve the same maximum Courant number as for the coarser meshes. This reasoning is supported
by the mean timestep sizes shown in tab. 4.1.

Discretization Schemes

Term Scheme

Temporal derivative Backward. 2nd order , implicit

Gradient Gauss linear. 2nd order

Divergence Gauss linearUpwind. 2nd order

Turbulent quantity k: Gauss upwind. 1st order

Turbulent quantity ω: Gauss upwind. 1st order

Laplacian Laminar: Gauss linear limited. 2nd order

Turbulent: Gauss linear corrected. 2nd order

Interpolation (cell to face values) Linear. 2nd order

Surface normal gradients Laminar: Limited

Turbulent: Corrected

Table 3.5: Discretization schemes used in the simulations
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The discretization schemes used in the present CFD model are tabulated in tab. 3.5. The laminar and tur-
bulent discretization settings are nearly the same except for the Laplacian scheme, surface normal gradient
scheme and additional schemes used for the turbulent quantities. For the turbulent transport equations, the
upwind convective discretization scheme has been used. The study of [77] showed that this scheme yielded
better agreement of the turbulent kinetic energy compared to the turbulent benchmark cases of NASA.

3.1.3. Numerical modelling
After the spatial and time discretization and after the equations have been discretized according to schemes
in tab. 3.5, a system of linear algebraic equations has been formed. This system of equations is then usually
solved by an iterative method [42]. The (linear) solvers used in the present simulations are tabulated in tab.
3.6.

Term Solver Pre-conditioner

p PCG DIC

u PBiCG DILU

ω PBiCG DILU

k PBiCG DILU

Table 3.6: Solver settings

The pressure has been solved by the preconditioned conjugate gradient (PCG) with the Diagonal-based
incomplete Cholesky (DIC) preconditioner. According to [77], the diagonal incomplete-Cholesky (DIC) ap-
peared to be the fastest solver while having the same accuracy as the other available pressure solvers. The
velocity and turbulence field are solved by the preconditioned bi-conjugate gradient (PBiCG) with simplified
Diagonal-based Incomplete LU preconditioner (DILU).

Considering the pressure-velocity coupling of eq. 2.7 and 2.8, the PIMPLE algorithm was used. This algo-
rithm is a hybrid between the two segregated pressure-based solvers called SIMPLE (Semi-Implicit Method
for Pressure-Linked Equations) and PISO (Pressure Implicit with Splitting Operators). Whereas SIMPLE is
considered as a steady-state solver and PISO as a transient solver, PIMPLE is more often referred to as a
pseudo transient solver. This indicates that the PIMPLE solver can cope better with larger timesteps or with
unstable end solutions. Whereas the PISO transient solver strictly requires the Courant condition to be ful-
filled (eq. 3.22), the PIMPLE solver can solve a transient flow problem with a timestep which implies Courant
numbers larger than one. Additionally, this solver has the ability of running with a variable timestep size over
time. It was observed this latter option significantly reduced the CPU time. Within OpenFOAM, there are two
criteria for the PIMPLE solver to complete one timestep:

1 The specified tolerance criteria for the fluid solver have been satisfied.

2 Or the specified maximum number of PIMPLE iterations has been reached.

Besides the linear tolerances that were specified for all these four quantities, it was also possible to spec-
ify additional tolerances for these quantities to control the fluid solver convergence over multiple iterations
within one timestep (criteria 1). Within OpenFOAM these additional iterations are called outer corrections.
The tolerances for the outer corrector have been called outer tolerances and criteria 1-2 the outer criteria in
the present report. For every outer correction (or iteration) it means that the complete fluid solver must run
again. If the relative error of the pressure and velocity field over multiple, successive outer corrections reaches
the specified tolerances, it may be concluded that the obtained solutions for the pressure and velocity were
consistent with each other. In other words, they would satisfy the equations eq. 2.7 and eq. 2.8 or for turbu-
lent flows eq. 3.3 and eq. 3.4. By employing these tolerances, the timestep continuity error should decrease
(i.e. the continuity equation should be satisfied for each timestep). Next to the pressure and momentum
outer tolerances, it was possible to specify these tolerances for the turbulent quantities k and ω to cope with
highly turbulent flows (i.e., where the turbulence may vary substantially for every timestep). If the specified
tolerances are not reached, the fluid solver runs again until the specified maximum number of iterations was
reached (criteria 2).

Besides the specified number of outer correctors, the number inner correctors, number of non-orthogonal
correctors and momentum prediction had to be specified for the PIMPLE algorithm. The number of inner
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corrections specified how many times the pressure had to be corrected for each outer correction. Then, the
number of non-orthogonal correctors specified how many times the pressure is additionally corrected within
each inner correction. The momentum prediction settings provided an additional momentum prediction
within each inner correction, providing additional stability for solving the velocity field. Lastly, the option
correctPhi was available within the PIMPLE solver. This option made sure that the interpolation error as a
consequence from mapping the pressure fields from the previous mesh to new mesh was minimized [78].
This latter option was therefore only used for the simulations with a moving mesh. Some additional PIMPLE
settings have been discussed in more detail in the next section on the FSI coupling, as these options were
more related to the motion coupling. A summary of all the settings for the PIMPLE solver is listed in tab. 3.7.

Setting Laminar Turbulent stationary Turbulent moving

Solver settings

momentumPredictor yes yes yes

nOuterCorrectors 2 1 100

nCorrectors 2 2 3

nNonOrthogonalCorrectors 1 1 1

correctPhi no no yes

Linear tolerances

u 1e −08 1e −08 1e −08

p 1e −08 1e −08 1e −10

ω,k − 1e −08 1e −10

Outer tolerances

u − − 1e −06

p − − 1e −06

ω,k − − 1e −06

Table 3.7: PIMPLE settings

All the simulations have been performed at a maximum Courant number of Comax ≤ 0.7 (with the ad-
justable timestep option, as was explained in section 3.1.2). Therefore, considering the robustness of the
PIMPLE algorithm pointed out above, it was expected only 1−2 outer corrector loops were sufficient to cap-
ture the flow field accurately. More outer corrector loops are only desirable when the Courant number is
higher than 1. Nevertheless, it appeared that for the turbulent moving cases, the fluid solver was more sen-
sitive to these solver settings. In those cases, it was required to use tighter PIMPLE settings to ensure energy
conservation at the fluid-structure interface was guaranteed (hereafter referred to ‘tight’ fluid solver settings).
Therefore, in tab. 3.6, the solver settings for the turbulent moving cases are different compared to the lam-
inar cases and the turbulent stationary case. The latter two case settings have been referred to as ‘loose’
fluid solver settings hereafter. The number of outer correctors was specified to such a large number for the
turbulent moving cases to ensure that the outer tolerances were reached. Typically, the required number of
outer correctors was therefore significantly lower than 100. More details on this observed sensitivity in the
turbulent moving cases can be found in chapter 4, section 4.2.3.

3.2. Moving cylinder
When the 1-way coupling or the 2-way coupling are introduced, the following steps take place every timestep
to incorporate this coupling in the fluid solver:

1 Determining the cylinder displacement: motion solver (2-way coupled) or prescribed motion (1-way
coupled).

2 Move the cylinder body.

3 Mesh diffusion: SLERP (2-way coupled) or Laplace (1-way coupled).

4 Convective term correction (ALE).

The second step and fourth step are identical for the 1-way and 2-way coupled model. The first step
and the third step differed for the 1-way and 2-way coupled model. For the 1-way coupled model, Laplace’s
equation has been used and solved to compute the displaced mesh cells. The SLERP interpolation method
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was used to compute the mesh diffusion for the 2-way coupled model. All these steps have been explained in
to more detail in the subsequent sections.

3.2.1. Forced-vibrations: 1-way coupling
Prescribed motion Concerning the forced-vibration cases (1-way coupling), the motion was prescribed by
a harmonical sinus wave:

y ′ = y(t ) = ymax · si n(2π fc yl t ) (3.23)

The motion prescribed by eq. 3.23 is only in the transverse direction (see fig. 3.1). This motion has been
implemented as a boundary condition, as was described in section 3.1.2.

Mesh diffusion Regarding the moving cylinder simulations, the mesh needed to change over time to cap-
ture the changing flow field caused by the cylinder motion. In the present research, the mesh velocity field of
the forced-vibration cases (1-way coupled) has been computed by Laplace’s equation:

∇· (γm∇z) = 0 (3.24)

Where γm is the diffusion coefficient and z is the mesh displacement field. OpenFOAM has calculated the
mesh displacement field z and the mesh velocity field w for every timestep. Since the outer boundaries of the
computational domain remain fixed during the simulation, the mesh motion had to be distributed through
the grid by mesh diffusion. The diffusivity model was chosen to be inverse. Hence, the mesh diffusion was
based on an inverse distance from the cylinder body. This diffusion model was considered as the most robust
model where the mesh quality conservation was better compared to the other available diffusion models in
OpenFOAM [79]. More information on mesh motion based on solving Laplace’s equation and also on other
dynamic mesh handlers in OpenFOAM can be found in the study of [80].

3.2.2. Free-vibrations: 2-way coupling
Regarding the free-vibration cases, the cylinder motion must be calculated at every timestep. While the
governing fluid equations are solved in 2D, the structural system was implemented with only 1 degree-of-
freedom (DOF) in the transverse direction. The structural system was constrained to allow movement only in
the y-direction, while the other 5-DOF (rotational and x-z direction) were left out of the problem analysis.

The equation of motion for a 1-DOF single cylinder, fixed in the transverse direction and attached to
spring and damper has been expressed as follows:

mÿ + c ẏ +ks y = Fy (3.25)

and as shown in appendix B this equation can be rewritten in to:

m
d 2 y

d t 2 +2mζωn
d y

d t
+ks y = Fy (3.26)

The natural frequency can be computed with the following relation:

fnat =
√

ks /m

2π
(3.27)

In the present free-vibration problem, eq. 3.25 can only be resolved if the external fluid force is known.
The fluid force in turn is dependent on the structural motion. Hence, the free-vibration can be interpreted as
a classical two-way coupled FSI problem.

FSI scheme In the present research, the FSI was modelled by a partitioned approached, where the flow field
and structural system are solved alternately at every timestep. This approach was favoured above the mono-
lithic approach, because it gave the opportunity to use the model for a wide variety of FSI cases. In addition,
the monolithic approach would have implied higher computational cost because of the expensive additional
derivatives required to solve the fluid and structure simultaneously. There are multiple algorithms available
today that support a partitioned approached, which are usually divided into three coupling categories: ex-
plicit, semi-explicit and implicit. In the present FSI code, both an explicit and implicit FSI scheme have been
employed. Both schemes fall within the capabilities of the standard pimpleFoam solver of OpenFOAM. Yet,
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it has to be noted that the implicit solver was only found in the latest OpenFOAM version (OFv1806+). The
schemes have been illustrated in fig. 3.3, which was adopted from [81].

Correct flux field Solve for u Solve for p

Final Iteraton

Yes

No

YesNo

Next iteration Final time-step

Calculate y , ẏ

Move body

Move mesh

Calculate ÿ

Yes

YesNo

End

Calculate F

Motion solver Fluid solver

ImplicitNo

Yes

Next iteration

Next timestep

Start

Figure 3.3. Block diagram of PimpleFOAM solver

When the solver has started for a timestep, the motion of the structure is solved before the fluid dynam-
ics. After the motion is computed (that is, y , ẏ , ÿ are resolved), the geometry was moved with the obtained
displacement from the motion solver, y . Then, the new (dynamic) mesh was evaluated by enforcing the
new position of the body as a boundary condition. As was stated before, OpenFOAM ensured no mass flow
through the cylinder and hence the relative fluid velocity was zero at the cylinder wall. From the new bound-
ary condition, the mesh diffusion was calculated. The mesh diffusion was based on the SLERP interpolation.
From here on, the fluid solver is taking over from the motion solver, still within the same timestep. The com-
puted mesh velocity field is plugged in the Navier-Stokes equations to cope with the mesh motion (arbitrary
Lagrangian-Eulerian formulation). After the alteration of the Navier-Stokes, the velocity, pressure and de-
pending if turbulence is modelled, k andωwere being solved. Based on these quantities, the solver evaluates
if the final iteration is reached or not (as was explained in section 3.1.3).

When the final iteration has not been reached yet, it would depend on the solver what happens in the next
iteration. When the weakly-coupled scheme within OpenFOAM was used, the solver returns right back to the
fluid solver where the alteration of the Navier-Stokes equations is still exactly the same as was for the previous
iteration. In this scheme, the motion is always only solved once per timestep and the mesh also only moves
once in each timestep. After the flow field has been recomputed by the fluid solver, the same final iteration
criteria are evaluated by the solver to see if a next iteration would take place or not.

Within the strongly-coupled solver, the next iteration starts again with the motion solver. After the motion
is solved in the next iteration, the mesh is being moved again and the fluid fields are re-computed for this
new mesh again as well. After the fluid solver, the solver evaluates again if either the maximum number of
iterations have been reached or if the outer tolerances were satisfied. The implicit scheme is characterized
by the fact that the motion has been solved and the mesh has been moved multiple iterations within each
timestep. These iterations are then referred to in the literature as subiterations, which define the additional
runs of the structural and fluid solver within one timestep.

After the final PIMPLE iteration has been reached (for both the weakly- and strongly-coupled solver), the
complete solver re-runs again for every timestep until the end of the simulation has been reached.

The explicit scheme and implicit scheme have been illustrated for one timestep in fig. 3.4 as well to clearly
demonstrate which information is exchanged between the two solvers.

In fig. 3.4, the S stands for the structural solver and the F for the fluid solver. Only the quantities that
have been exchanged between the two solvers are presented in fig. 3.4. The weakly-coupled scheme (left
subfigure of fig. 3.4) is also known as a serial, partitioned coupling scheme. The first step is that the computed
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Figure 3.4. Explicit (left) and implicit (right subfigure) FSI coupling scheme

pressure field and shear stress from the previous timestep of the fluid solver is sent to the structural solver S.
The structural solver uses these fields to compute the force exerted on the structural body and eventually to
compute the structural displacement for the next timestep (step 2). Then, the obtained displacement is sent
back to the fluid solver (step 3). The displacement is used to move the cylinder and the mesh subsequently.
The fluid solver computes the flow fields for this new mesh after which the pressure for the next timestep is
obtained (step 4). After that, the outer tolerances described earlier are evaluated. If the outer criteria are not
met, the flow fields will be solved for another time until the criteria are met (step 5-4).

Concerning the implicit scheme (right subfigure of fig. 3.4), the first four steps are identical to the explicit
scheme. Also, the outer criteria for the PIMPLE solver are identical for the strongly-coupled scheme compared
to the weakly-coupled scheme. In this case, when the criteria are not met, the pressure and shear stress is sent
back to the structural solver (step 5) for the next iteration. Based on these received quantities, the structural
solver computes the new force which is exciting the structure. From there on, the scheme repeats itself and
steps 2-3-4 are identical to the previous iteration. Steps 5-2-3-4 are repeated until the fluid solver has satisfied
either one of the outer criteria.

Motion solver The structural motion (eq. 3.25) has been solved by the implicit Newmark scheme. However,
this scheme was only found to be truly implicit when multiple iterations were employed during one timestep.
For a comprehensive explanation and review on the Newmark scheme the reader is referred to the dictate of
[82]. The subsequent steps for the motion solver are explained assuming that the strongly-coupled solver is
used. The first step is that all the forces exerted on the structural body are calculated according to:

fg l obal
n+1
i=1 =

bod y∑
j

p j
n
i=1 A j +

bod y∑
j
τ j

n
i=1 A j (3.28)

This equation shows the first iteration (i = 1) of the current timestep (n+1) where the g l obal force fg l obal

is evaluated. This force represents all the forces exciting the structural body. For the first iteration, the pres-
sure p and shear stress τ for each boundary face j have been obtained from the fluid solution of the previous
timestep n. Each boundary face is defined by its area A j . The force of gravitation has been disregarded in the
present simulation, otherwise this force would have been included in eq. 3.29. The evaluation of the global
force for the first iteration has been illustrated before by step 1 in the right figure of fig. 3.4. For all the next
iterations, the global force is based on the solution of the fluid solver of the previous iteration i of the current
timestep n +1:

fg l obal
n+1
i+1 =

bod y∑
j

p j
n+1
i A j +

bod y∑
j
τ j

n+1
i A j (3.29)

This latter equation resembles step 5 of the right figure in fig. 3.4, where the obtained flow field from the
last iteration is sent to the structural solver. After the force has been determined, the acceleration is readily
computed by:
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ÿn+1
i+1 =

fg l obal
n+1
i+1

m
(3.30)

To which a relaxation factor (ψ) is applied such that the change from the state of the previous iteration to
the state of the next iteration (or from the last iteration of the previous timestep to the first iteration of the
current timestep) is not too big for the FSI solver:

ÿn+1
i+1 =ψ · ÿn+1

i+1 + (1−ψ) · ÿn+1
i (3.31)

Then the predictor-corrector equations of the Newmark scheme [82] are used to compute the velocity and
displacement, respectively:

ẏn+1
i+1 = ẏn +χ(1−γn)∆T ÿn +χγn∆T ÿn+1

i+1 (3.32)

yn+1
i+1 = yn +∆T ẏn +χ∆T 2(

1

2
−βn)ÿn +χ∆T 2βn ÿn+1

i+1 (3.33)

Where χ is a numerical damping term which can be specified as an input in the FSI solver, ∆T was the
timestep value of the motion solver dictated by the timestep size used for the fluid solver, βn and γn are con-
stants related to the explicit/implicit character of the Newmark solver. In the present motion solver, γn = 0.5
and βn = 0.25 which is known as the average constant acceleration method. The average constant acceler-
ation algorithm was deemed as ‘the best unconditionally stable scheme’ [82]. To make sure that the higher
order frequencies were captured by the motion solver as well, a recommended timestep value for the motion
solver was ∆T ≤ T /4 [82]. It has been observed that for the laminar and turbulent simulations, the timestep
size of the fluid solver was adequately low to ensure that all the frequency content was captured by the mo-
tion solver. The artificial damping term χ was not actively used and set to χ= 1 . The artificial damping was
not used because this term ‘cuts off’ a piece of the acceleration and hence the end solution. In contrast to
the artificial damping term χ, the relaxation term ψ shown in eq. 3.31 does not affect the end solution of
the FSI problem, as long as there are enough subiterations. All the terms denoted with i or i +1 are chang-
ing with every PIMPLE iteration within each timestep. The terms which are not dependent on the number
of PIMPLE iterations but only on the previous timestep, always uses the obtained value in the last iteration
of the previous timestep (for example, ẏn). The motion solver is characterized by the continuously updated
acceleration for each iteration. From this newly derived acceleration, the velocity and displacement were
predicted/corrected by the Newmark scheme.

One of the findings here was that the Newmark scheme can only be used in the present research when the
strongly-coupled solver was used. In case of the weakly-coupled scheme, where the structural solver is only
being run once per timestep, the implicit character of the Newmark solver is lost. The ‘predictor-corrector’
feature in equations eq. 3.32 and eq. 3.33 is only using its predictions and corrections for the previous/next
timestep instead of the previous/next iteration within one timestep when the explicit FSI scheme was used.
This means the structural solver would already produce an intrinsic error for each timestep, which in turn
would lead to energy unbalances at the fluid-structure interface. Various simulations have indeed shown
poor energy conservation by using the Newmark scheme in combination with the weakly-coupled scheme of
OpenFOAM. It has to be noted here that in general, it is not necessarily true that a weakly-coupled scheme
with the Newmark’s scheme would always lead to a poor energy conservation. In fact, when the structural
solver is implemented separately from the fluid solver and if the Newmark solver can re-iterate its structural
evaluation for each timestep, then the problem described here should be resolved. Yet, within OpenFOAM,
the Newmark solver is only being used implicitly when the FSI coupling is implicit as well (they are integrated
with each other). Besides the implicit structural Newmark solver, there is also an explicit solver available
within OpenFOAM which is known as the Symplectic integrator [83]. This scheme is based on the leapfrog
method. The explicit character of this solver leads to a constant structural displacement for each iteration
within one timestep, while the acceleration and velocity may change each iteration. This is in line with the
theoretical formulation as was pointed out by [81]. The structural displacement of the current timestep is
only dependent on the acceleration found in the previous timestep (and not on the last iteration within the
current timestep). This explicit character means that employing multiple subiterations does not lead to a
strongly-coupled scheme since the displacement is constant over these subiterations. In other words, when
the symplectic solver is being used in combination with the implicit FSI scheme of fig. 3.3, the mesh will
only move one time for the first subiteration in each timestep. Therefore, the strongly-coupled scheme in
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OpenFOAM only works as a truly strongly-coupled scheme when the implicit Newmark solver is selected
as a structural solver. Based on these findings, the term ‘weakly-coupled’ scheme is from here referred to
the explicit FSI solver combined with the explicit structural solver (symplectic scheme). The term ‘strongly-
coupled’ scheme referred to the implicit FSI solver combined with the implicit structural solver (Newmark
scheme).

One of the drawbacks of the explicit scheme (see left figure in fig. 3.4) is that the phase lag between the
fluid and structural solver inherently leads to inconsistent solutions of the fluid and structure. Hence, con-
servation of the overall fluid-structure system might be lost. This is in turn, as described in the literature as
negative numerical damping [64] or artificial added mass [62], could lead to divergence of the system. This
problem of energy conservation is prevented by using the strongly-coupled implicit solver (see right figure
in fig. 3.4). Pressure-momentum (and for turbulent flows, also k-ω) convergence indicates that the obtained
structural solutions are converging as well. After all, within the implicit scheme, the mesh is moving for every
subiteration. Hence, if the pressure, momentum (and k-ω) are showing very low relative errors after a couple
of subiterations it may be concluded that the mesh is also not moving substantially over these subiterations
(and thus reaching a converged solution). Yet, as was pointed out earlier in the OpenFOAM study of [84] (sim-
ilar FSI solver), it is possible that the motion is converging to a different order since the overall convergence is
only dependent on the fluid solver’s tolerances. Hence, in the present research, the structural motion conver-
gence has been monitored as well to ensure that energy conservation is obtained for every timestep. Hence,
this solver is seen as a strongly-coupled scheme rather than a fully coupled scheme. Within a fully coupled
scheme, the number of subiterations would always be adequate such that convergence has been reached to
a monolithic solution (i.e. structural and fluid solver convergence and energy conservation between the two
solvers). Yet, since the structural convergence has been monitored and controlled indirectly by the number
of subiterations required for the fluid solver, the implicit scheme is deemed as very strong.

Mesh diffusion The mesh movements for the free-vibrations cases have been computed and performed
by a spherical linear interpolation scheme (SLERP). The SLERP interpolates the displacement and rotation
to compute the mesh deformation while taking the distance of the moving object into account. The ben-
efit of the SLERP algorithm is that it was possible to specify a mesh region where the cells preserved their
shape. From the cylinder body, up to a radius of 25D , the mesh was kept rigid throughout the entire simula-
tion. This rigidly defined region allowed the mesh to keep its initial high quality characteristics in the critical
O-grid block (described in section 3.1.2) constant during the simulation. The mesh deformation was then
applied to all cells in the region of 25D − 40D from the cylinder body. As the height of the domain was set
to 50D , it was argued that the radial distance of 40D was adequately far away from the far field which pre-
vented awkward mesh deformation (i.e. inverted cells). The rigid mesh region option was not available for
the forced-vibrations cases. In those cases, the mesh deformation started immediately from the cylinder wall.

3.2.3. Flux field correction
Regarding the reference frame for the FSI cases, the arbitrary Lagrangian Eulerian formulation has been used.
In this description, the Lagrangian (where grid nodes are connected to the moving fluid particles) and Eule-
rian perspectives (where the grid nodes are fixed in which the fluid moves) are combined. The use of this
framework has altered the convective term of the momentum equation (eq. 2.7) to cope for the relative ve-
locity between the fluid and mesh velocity [62]. Hence, eq. 2.7 has changed to:

∂u

∂t
+∇· (u(u−w))+ 1

ρ
∇p −∇· (ν∇u) = 0 (3.34)

where w is the mesh velocity field which was either computed by the SLERP algorithm or by Laplace’s
equation. This correction was thus performed for both the 1-way and 2-way coupled model.

3.3. Post-processing
In this section, all the important post-processing operations will be explained. It must be noted first that
for all the results, the transient part of the time series was always filtered out in the post-processing. The
amount of shedding cycles that were required before a steady-state solution was varied per simulation case.
For example, it was noted that a coarse mesh usually showed larger transient time histories. The forced-
vibration cases showed smaller transient time histories compared to the stationary cases.
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3.3.1. Power Spectral Density
The vortex shedding frequency, fshed , has been determined by extracting the power spectral density (PSD)
diagram of the lift force time series. The shedding frequency was identified by taking the frequency from
the PSD which corresponded to the dominant peak response where the magnitude was at its maximum.
In the present report, the timestep was not fixed during the simulation as was explained in section 3.1.2.
To ensure that the lift and drag data points were equally spaced along the filtered time series, the original
signals have been interpolated by the obtained time-averaged timestep size. This means that the lift and
drag force signals have been equally spaced and their distribution matched the time-averaged timestep size.
After the interpolation, the sampling frequency for the extraction of the PSD of the lift/drag signals was based
on the time-averaged timestep size. It must be noted that the interpolation has introduced a small post-
processing error. The interpolation has been considered as a robust method of extracting the PSD of the lift
and drag signal with originally a varying sampling frequency. As a sanity check, the sampling frequency for
the PSD was decreased with 20%. Without interpolation, this yielded an increment of 23.7% of the dominant
frequency. This would imply that without interpolation, the choice of the sampling frequency has a direct, big
influence on the extracted shedding frequency, which would make the post-processing unreliable. However,
with interpolation, decreasing the sampling frequency by 20% would lead to an increment of only 1% of the
shedding frequency. The timestep varied around 4% peak-to-peak, yielding an acceptable (indicative) post-
processing error of < 0.3% for the dominant frequency when interpolation was applied.

Besides the interpolation, the accuracy of the shedding frequency prediction was expected to depend on
two other factors. The first factor was the amount of vortex shedding cycles over which the PSD has been
taken (after the transient part). When more shedding cycles are obtained, more data points will be available
for the PSD extraction which would reduce the standard deviation. It has been attempted to always minimize
this variance by simulating an adequate amount of shedding cycles. The standard deviation of both aero-
dynamic forces has been monitored during all the simulations to see if the number of shedding cycles was
indeed adequate. Furthermore, when the results of different cases were compared, the filtered steady-state
timeframe was always kept equal (for grid convergence studies). The second factor was the timestep size. A
smaller timestep size with the same amount of vortex shedding cycles means more data points and hence a
finer signal for the PSD extraction. It was shown before that the spatial refinements lead to a smaller mean
timestep size, see section 3.1.2. In the spatial refinement study, this would mean that a finer mesh inherently
yields finer output signals of the aerodynamic forces. Hence, smaller post-processing errors were expected
for the dominant shedding frequency prediction with finer meshes (besides the smaller expected truncation
errors).

The usability of the Strouhal number as a metric for grid convergence studies has been troubled by the
choice for an adjustable timestep scheme. Although the interpolation of the time signals was robust, it still
yielded an (indicative) post-processing error of < 0.3% for the shedding frequency. The Strouhal number was
used one time in the present research for the forced-vibration grid convergence study. It turned out that the
grid was not converging based on the Strouhal number, while for the lift and drag coefficient convergence
was observed (as will be shown in chapter 4). It was seen in this specific grid convergence study that the
relative spatial error was found to reach values of < 0.04% for the drag coefficient for meshes m1.2−1.5 and
< 0.48% for meshes m1.4− 1.5 for the lift coefficient. The apparent relative spatial errors for the Strouhal
number also reached < 0.3%. Since these relative errors are reaching below the indicative post-processing
error, the Strouhal number was excluded from the grid convergence study. For future work on VIV and on
grid convergence studies it has been recommended to use a fixed timestep size to avoid the post-processing
error caused by the interpolation. The Strouhal number could be a usable metric for grid convergence studies
with a fixed timestep.

3.3.2. Force computation
The lift and drag force coefficient are defined as follow:

CL = Fy

0.5ρU 2DL
(3.35)

CD = Fx

0.5ρU 2DL
(3.36)

Where Fy is the transverse lift force in [N ], Fx is the in-line drag force in [N ], ρ is the air density in [kg /m3],
U is the velocity magnitude in [m/s], D the cylinder diameter in [m] and L the spanwise length of the cylinder
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in [m]. Both force coefficients have been computed at every timestep by one of the standard OpenFOAM
post-processing tools.

3.3.3. Skin-friction coefficient
The skin-friction coefficient around the cylinder was evaluated by using the following relation:

C f =
τw

0.5ρU 2 (3.37)

where τw all is the shear stress at the cylinder wall in [N /m2]. The wall shear stress has been computed by
one of the standard OpenFOAM post-processing tools. The time-averaged wall shear stress was taken over the
steady-state solution. Then, in the post-processing open-source programme paraView the wall shear stress
was filtered for only at the cylinder wall. The wall shear stress is proportional to the velocity gradient in the
boundary layer at the cylinder wall:

τw =µ
(
∂u

∂y

)
y=0

(3.38)

where µ is the dynamic viscosity, u is the velocity component in x-direction and y is the distance in y-
direction.

3.3.4. Pressure coefficient
The pressure coefficient was defined by this equation:

Cp = p −p∞
0.5ρ∞U 2 (3.39)

where p is the static pressure around the cylinder wall in Pa, p∞ the static pressure in the freestream in
Pa, ρ∞ the freestream fluid density in kg /m3 and lastly U the free stream velocity in m/s. The static pres-
sure in the free stream was zero. The pressure around the cylinder wall was filtered from the computational
domain by paraView, similar to the skin-friction coefficient. The time-averaged steady-state static pressure
around the cylinder wall was used for the calculation of the pressure coefficient. The base pressure coeffi-
cient, Cp,b is located at the most aft part of the cylinder, i.e. at θ = 180°.

3.3.5. Standard deviation of pressure coefficient
The variance of Cp has been calculated according to the following, statistical relation:

σ2 =
∑

(X −µ)2

N
= X ′X ′ (3.40)

where X is a variable of interest, in this case Cp . The most right side of the above equation is similar to the
Reynolds stress tensor which was reported in eq. 3.3. The standard function Prime2Mean within OpenFOAM
has computed the variance of the pressure distribution over time in the steady-state part. Then, the standard
deviation σ was easily derived by taking the square root of σ2. The unit of the standard deviation σ has the
same unit as the variable of interest X .

3.3.6. FSI metrics
In the 2-way coupled simulations, an output from the structural solver and an output from the fluid solver
were evidently expected. As will be shown later in the results section, it was very useful to relate the aerody-
namic quantities obtained with the motion trajectory observed for the cylinder body. These quantities have
been related to each other in a similar fashion as was done in the doctoral thesis of [4]. Three methods have
been explained in his thesis work: Fourier coefficient analysis (frequency domain), time lag analysis (time do-
main) and energy transfer analysis (time domain). These three methods will be recapitulated in this section.
The lift force of 3.25 in steady-state equilibrium can be characterized by the following equation:

Fy = Fc si n(2π fc t )+Fs si n(2π fs t ) (3.41)

which has been decomposed into two sinus signals. One of these is a consequence of the cylinder motion
dictating the wake (denoted with ‘c’ subscript in contrast to the earlier defined subscript ‘cyl’) and one sinus
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signal is representing the Strouhal shedding frequency (denoted with ’s’ in the subscript in contrast to the ear-
lier defined subscript ‘shed’). Usually, only the cylinder component is present during lock-in. Further away
from the lock-in region the Strouhal relation is valid again and the Strouhal sinus component is dominant. In
between these regions, i.e. the moment when the wake is locking out or desynchronizing, both components
are present of eq. 3.41. This phenomenon is usually referred to as beating, where two sinus signals can be
observed in the time series of the lift coefficient. It was more convenient to assume the eq. 3.41 only consisted
out of one component. Therefore, in the subsequent approach, the lift force signal only consisted out of one
sinus signal. T

The harmonical motion of eq. 3.25 in steady-state can be described by the following sinus signal:

y∗(t ) = y∗
max si n(2π fc t ) (3.42)

of which the derivative leads to the transverse velocity:

ẏ∗(t ) = 2π fc y∗
max cos(2π fc t ) (3.43)

It may be re-iterated that for the 1-way coupled model, the signal of eq. 3.42 is known a priori while for
the 2-way coupled model the motion displacement has been calculated for every timestep. Still, the following
theory is applicable for both models. In the literature, various attempts have been made to relate the aero-
dynamic excitation force to the left-hand side (LHS) of eq. 3.25, may it be for the development of analytical
models or to obtain better insights from wind-tunnel experiments and numerical simulations. The compre-
hensive summary of some of the analytical models which have utilized the relation between the aerodynamic
force and structural parameters has been given in the book of [3]. In the doctoral thesis of [4], the relation
was used to investigate the fluid-structure interaction of his forced wind-tunnel experiment. The FSI analysis
relies on the basic assumption that the harmonical lift force can be decomposed into a part which is in phase
with the cylinder velocity and a part which is in phase with the cylinder displacement. The part that is in in
phase with the cylinder velocity is referred to as the aerodynamic damping, the part in phase with displace-
ment as the aerodynamic stiffness and then lastly the part in face with the acceleration is the added mass.
Based on these assumptions, the lift force can be decomposed as follows [85]:

Fy = ka y + ca ẏ (3.44)

From eq. 3.44, it is readily seen that when the aerodynamic damping term is moved to the LHS of 3.25, it
has a negative effect on the overall system damping. Hence, positive values of ca would mean that the fluid is
exciting the structure (energy transfer from wake to the structural system). Respectively, when the sign of ca

is found to be negative, the wake is damping the structure (energy transfer from structure to wake).

First method: Fourier coefficient analysis Inspecting eq. 3.42, eq. 3.43 and eq. 3.44 leads to the conclusion
that the aerodynamic force in phase with the velocity should be in phase with the cosine and for the displace-
ment it should be the sine. The decomposition can be done by the Fourier coefficient analysis. A reference
wave signal can be represented as the following Fourier series:

x(t ) = a0 +
∞∑

n=1
ancos(

2πnt

T
)+

∞∑
n=1

bn si n(
2πnt

T
) (3.45)

where a0, an and bn can be computed by:

a0 = 1

T

∫ T

0
x(t )d t (3.46)

an = 2

T

∫ T

0
x(t )cos(

2πnt

T
)d t (3.47)

bn = 2

T

∫ T

0
x(t )si n(

2πnt

T
)d t (3.48)

By applying this series to the earlier expression of the lift force in eq. 3.41 (with only one sinus signal
which is in phase in this example with the cylinder frequency):

Fy = Fc cos(φc )si n(2π fc t )+Fc si n(φc )cos(2π fc t ) (3.49)



46 3. Modelling

where T = 1
fc

. Hence, the coefficients are b1 = Fc cos(φ0) and a1 = Fc si n(φ0). In non-dimensional form:

CL =CL,max cos(φc )si n(2π fc t )+CL,max si n(φc )cos(2π fc t ) (3.50)

where the lift force coefficient in phase with the velocity is:

CL,ẏ =CL,max si n(φc ) (3.51)

The lift force coefficient in phase with the displacement:

CL,y =CL,max cos(φc ) (3.52)

The lift force amplitude of eq. 3.49 is then found by:

Fc =
√

a2
1 +b2

1 (3.53)

and the phase angle by

φc = t an−1(
a1

b1
) (3.54)

The phase angle is the phase lag between the aerodynamic force vector (Fy (t )) and the motion displace-
ment (y(t )) vector. Positive angles would mean that the lift force is being led by the cylinder displacement.
The Fourier coefficient analysis is one way to determine the phase angle hence the part of the lift force which
is in phase with the velocity, see eq. 3.49.

Second method: Time lag analysis The second approach to determine the phase angle by computing the
time lag observed in the lift force signal and displacement signal between two successive peaks. For the
1-way coupled model, the displacement motion can simply be plotted against the lift force as the motion
trajectory is known a priori. For the 2-way coupled model, the transverse displacement and velocity values
have been obtained by the output log file of the FSI solver within OpenFOAM. Thus, for the 1-way and 2-
way coupled simulations the lift force output and motion trajectory were plotted in the same figure. Within
MATLAB, the time difference between two successive peaks was obtained. Knowing the period T for the lift
and displacement signal was equal and equivalent to 360°, the phase angle can be determined. Then, the
phase angle was computed for multiple peaks to see if the phase angle stayed constant over time during the
steady-state or if there is a big variation for the phase angle over time. From the phase angle vector for all the
peaks in the steady-state the time-averaged value was taken to minimize the numerical error.

Third method: Energy transfer analysis The third approach is based on the time-averaged power transfer
between the fluid and the vibrating cylinder, which has been used by other studies as well [86] and [4]:

CL,ẏ =
p

2 C ′
L ẏ ′√

ẏ2
(3.55)

The denominator of eq. 3.55 is also known as the root mean square (RMS) value. Similar expressions have
been defined for the aerodynamic stiffness (lift proportional to cylinder displacement):

CL,y =
p

2 C ′
L y ′√

y2
(3.56)

Then, similarly, the lift force in phase with the acceleration was taken by:

CL,ÿ =
p

2 C ′
L ÿ ′√

ÿ2
(3.57)

In the case of a pure sinusoidal signal, eq. 3.55 and eq. 3.56 are equivalent to eq. 3.51 and eq. 3.52,
respectively. Hence, with the third approach, the phase angle can be computed by the formula defined before:
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φc = t an−1(
CL,ẏ

CL,y
) (3.58)

The benefit of the third approach, where the time-averaged power transfer is computed, is that lift force in
phase with the velocity can always be computed, irrespective to the output signal. It was mentioned before,
that for beating, two sinus signals can be expected. This also implies that there are two phase angles to be
computed (for both sinus signals). It may be concluded that the first and second approach would have been
cumbersome for this operation while the third approach is very suitable to deal with such signals. With the
energy evaluation over the complete steady-state time signal of the lift force and structural motion, only one
time-averaged phase angle was computed. This means that, the two phase angles observed for the beating
signal, have been composed into one relative sinus signal with one phase angle. This ‘composed’ phase angle
represents the relation between the lift force and motion displacement on average over time, which is more
convenient for the FSI analysis compared to having two different phase angles. Furthermore, the dot product
in the time-averaged power analysis yields a higher data resolution for estimating the lift force in phase with
the velocity, since every element in the both output vectors are compared. For the second approach, only
the peaks have been compared which might be more susceptible for numerical noise. Therefore, the third
approach has been employed together with eq. 3.58 to obtain the ‘time-averaged’ phase angle in the present
work. For purely sinusoidal signals, the phase angles were computed by the second and third approach to
check if the phase angle of the two approaches agreed. It was observed that for all the harmonical signals that
were checked, the phase angle of the second and third approach agreed well. This has proven that the time-
averaged phase angle is a solid method of determine the relation between the lift force vector and cylinder
motion displacement.

Vector diagram An illustration of the cylinder motion, displacement and lift force vector has been adopted
from [4] in fig. 3.5. Firstly, it is evident that the cylinder velocity lags 90° behind the cylinder motion, because
of the differentiation of the harmonical cylinder displacement. Then, the phase angle (defined in eq. 3.54 and
eq. 3.58) is characterized by the phase lead of the cylinder motion compared to the lift force. This diagram
shows that positive phase angles imply that the lift force is in phase with the velocity while negative values
show an out of phase component. The fluid is exciting the cylinder when the lift force is in phase with the
cylinder, while it is damping the cylinder when the lift force is out of phase with the velocity. These two regions
are illustrated as well in fig. 3.5. In other words, a positive phase angle leads to a positive lift force coefficient
in phase with the velocity (see eq. 3.51) which indicates the fluid is exciting the cylinder to oscillate.

Fluid damping region

Fluid exciting region

Cylinder motion

Cylinder velocity

Lift force in phase
with velocity

Lift force in phase
Cylinder acceleration

with acceleration

Lift force

Phase angle

Figure 3.5. Vector diagram of cylinder motion and lift force, adopted from [4]

Added mass coefficient As was pointed out in the review of [87], a distinction can be made between the
potential added mass coefficient (C A) and the ‘effective’ added mass coefficient (CE A). The former coefficient
represents the added mass coefficient when a still fluid is exposed to an oscillation cylinder. Typically, the
value for this coefficient is C A ≈ 1 for small transverse oscillations [87]. This coefficient is usually considered
as the ‘true’ added mass. The other coefficient, the effective added mass, represents the lift force in phase with
the cylinder acceleration when the fluid has an inflow speed higher than zero. Therefore, this latter coefficient
also captures the fluid inertia effects caused by vorticity dynamics. The true added mass shows how much
air is moved by the cylinder just as a consequence of the surrounding fluid mass being moved by the cylinder
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body. Then, the effective added mass also takes the FSI effects into account leading to the additional fluid
inertia.

To compute the effective added mass, the cylinder motion has to be taken into account. This approach
has been adopted from [4]. The effective added mass can be computed by dividing the lift force in phase with
the acceleration (eq. 3.57), divided by the cylinder’s acceleration:

MA =
1
2ρDU 2CL,ÿ

y∗
max (2π fc )2 (3.59)

Then, the effective added mass coefficient is defined as the inertial fluid mass divided by the volume of
the displaced fluid:

CE A = MA

ρV
= MA

πρD2L/4
(3.60)

By rearranging these terms, the following relation can be obtained [4] [87]:

CE A =− 1

2π3

CL,ÿ

y∗
max

D2 f 2
c

U 2

(3.61)



4
Results

In this chapter, all the results will be reported on the laminar and turbulent flow cases. In line with the re-
search plan illustrated in chapter 2, fig. 2.17 and tab. 2.1, all the different assessments and outputs will be
covered in this chapter. The first section focuses only on the results of the laminar flow cases, while the sec-
tion after that on the results of the turbulent flow cases. In the laminar section, most of the work is focused
to assess the reliability and accuracy of the CFD model used in the present research. Some assessments are
performed for the turbulent cases, which are mostly for the stationary cylinder. A lot of experimental re-
sults and some numerical results from the literature is available in the supercritical regime for the stationary
cylinder to compare the present model against. This offered the opportunity to carefully assess the presently
used URANS model. The results for the forced- and free-vibration cylinder in the supercritical regime were
obtained to address the research question defined in chapter 1: What is the fluid-structure interaction effect
of a transversely oscillating cylinder exposed to VIV at supercritical Reynolds numbers?

The following two questions will be emphasized in this chapter:

• What do the results show?

• How do the results compare against other work in the literature?

The latter question provides some room for discussion. Hence, some discussion on the modelling will be
included in this chapter as well.

4.1. Laminar flow
In this section, all the numerical results and assessments in the laminar flow regime (defined in chapter 2 as
80 < Re < 200) will be presented. The results for the stationary, forced- and freely-vibrating cylinder set-up
will be treated respectively in this section.

4.1.1. Stationary cylinder
Grid refinement study In the present research, as was explained in the previous chapter and shown in
tab. 3.3, four successively finer grids have been created to perform a grid convergence study for the lami-
nar meshes. The discretization error is defined as the difference between the exact solution of the governing
equations and the exact solution of the numerical approximation of the differential equations [42]. The goal
of the grid refinement study was to evaluate if the grid was refined adequately such that the spatial discretiza-
tion error asymptotically reached zero. The same study was performed for the temporal discretization, which
is reported after this section. Since all the numerical schemes that have been adopted in the present simu-
lation are of second order, the order of the overall solver can be considered as second order. The theoretical
order of convergence was therefore equal to 2 [76]. When the higher-order terms are neglected, the relation
between the observed order of convergence, spatial discretization error and mesh size is defined as follows:

log (E) = log (C )+p · log (n) (4.1)

where E is the spatial discretization error, C is a constant, p is the observed order of convergence and n
is the mesh size in number of cells. Usually, the discretization error is estimated by comparing the obtained

49



50 4. Results

103 104 10510−4

10−3

10−2

10−1

100

1.1

1.2

1.3

1.4

1.1

1.2

1.3

1.4

Mesh Size ncells [-]

R
el

.E
rr

o
r

[-
]

CD,mean

CL,rms

10−1.9 10−1.8 10−1.710−5

10−4

10−3

Mean time step size [s]

R
el

.E
rr

o
r

[-
]

CD,mean

CL,rms

Figure 4.1. Stationary cylinder: log-log plot of the relative error of the mean drag coefficient and RMS of the
lift coefficient compared to the finest mesh m1.5 of tab. 3.3 versus the number of mesh cells (left subfigure)
and compared to the finest timestep scheme t1.4 of tab. 4.1 versus the time-averaged timestep size (right
subfigure).

solution to an exact solution of the numerical problem from the literature. Yet, it has been observed that at
this moment there is no exact solution available to flow problem of vortex-shedding in the literature. The
analytical models are far from capable of computing the exact numerical solution. Therefore, the grid refine-
ment study was compared to the finest mesh, mesh 1.4 in tab. 3.3. In the grid comparison, only the mesh
was changed and all other parameters and settings were kept the same. The maximum Courant number for
all these mesh refinement runs was Comax = 0.7. It was believed that the effect of the timestep size on the
truncation error would have been suppressed when the Courant number was kept equal in the grid conver-
gence study. The results of the grid convergence study are shown in a log-log figure, see the left subfigure in
fig. 4.1, which allowed the estimation of the observed order of convergence p of eq. 4.1. The numbers in the
left subfigure of fig. 4.1 next to the data marks correspond the earlier defined mesh numbers in tab. 3.3.

The slope becomes more constant between mesh 1.2−1.4 compared to the slope between meshes 1.1−1.2.
The convergence slope also increased after mesh 1.2. The estimated slope of mesh 1.2− 1.4 is p ≈ 1.68 for
CL,r ms and p ≈ 1.73 for CD,mean . Since the theoretical order of convergence was 2, it has been concluded
that the meshes 1.2−1.4 Approach 2 fairly good. The reason why the observed order of convergence is a bit
smaller compared to the theoretical order could be due to various factors. For example, grid quality, temporal
discretization, post-processing and boundary conditions could always contribute to a discretization error. In
fact, besides the finer spatial resolution the grid quality has increased considerably, see tab. 3.3. This could
explain the fact why the observed order of convergence has increased somewhat during every refinement, as
seen in fig. 4.1.

The observed slope between meshes 1.2−1.4 indicated that these meshes are in the asymptotic region,
which was the goal of this grid refinement study. At the same time, it may be concluded that the meshes
1.1− 1.2 are still in the non-asymptotic region, where higher-order terms are not negligible. Therefore, the
slope is smaller than the slope observed between mesh 1.2−1.4. Considering meshes 1.2−1.5 are all in the
asymptotic region, it is also important to see how close the meshes approaches a spatial discretization error
of zero. The relative error for mesh 1.3 compared to the finest mesh is 0.31% for the CD,mean and 1.91% for
the CL,r ms . These errors have been considered to fall within satisfactory accuracy. As the moving cases are
expected to increase the computational cost, mesh 1.3 has therefore been chosen to pursue the verification
and validation studies. This mesh has proven to be a good compromise between computational cost and
adequate refinements.

It may be re-iterated that the convergence observed for the laminar stationary case in the above figure
and table does not give any information if the obtained solution is converging to the correct, exact numerical
value. The error was taken relative to the finest mesh rather than an exact numerical solution. Yet, the grid
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refinement study showed that the flow solution obtained from the fine grid, is grid-independent and is in the
asymptotic range. Moreover, as will be shown later in this report, the results of the fine grid have been verified
to show that the present CFD simulation showed good agreement with the state-of-the art CFD simulations
available in the literature.

Temporal refinement study Besides the grid-independent solutions found in the previous section, it was
also important to make sure that the obtained solutions were timestep independent. In the present CFD
model, the timestep was varying over time (adjustable) as explained before. The timestep has been varied
indirectly by imposing a different maximum Courant number on the adjustable timestep scheme. The four
timestep schemes for the temporal refinement study have been listed in tab. 4.1. All these schemes have been
run with mesh 1.3. This mesh made sure that the contribution of the spatial error to the truncation error was
at satisfactory low values, as was pointed out in the previous section.

Timestep scheme Comax ∆Tmean

t1.1 1.3 0.0228

t1.2 1 0.0175

t1.3 0.7 0.0123

t1.4 0.4 0.0070

Table 4.1: The four timestepping schemes used for the laminar temporal refinement study

The evolvement of the four timestep schemes during steady-state are displayed in fig. 4.2. In the left fig-
ure, it is clear that the simulation did not violate the maximum Courant number constraint and stuck to the
input values of tab. 4.1. In the right figure, the effect on the timestep size becomes clear. Indeed, the desired
effect of the maximum Courant number on the timestep size has been achieved. For a smaller Courant num-
ber, the timestep size decreased accordingly (see eq. 3.22). Although variations of ∆T can be observed in fig.
4.2, they are rather small (variation peak-to-peak is < 3.5%) and hence the time-averaged value has been used
for the temporal refinement study. The time-averaged timestep sizes for the four schemes have been listed in
tab. 4.1.
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t/Tshed

The effect of the temporal refinement on the error relative to the finest timestep scheme t1.4 has been
plotted in the log-log form (similar to previous refinement study) in fig. 4.1. The average slope for CD,mean is
2.55 and for CL,r ms is 1.95. The slope is fairly constant and therefore the relative errors have been considered
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to be in the asymptotic range. The slopes are higher compared to the ones found in spatial refinement stud-
ies. In fact, for the drag force coefficient, it is noticeable that the observed order of convergence is higher than
the theoretical order of convergence of 2. The relative temporal discretization error for timestep scheme t1.3
was found to be 0.0015% for CD,mean and 0.01066% for CL,r ms . The timestep scheme t1.3 has been chosen
for the subsequent CFD simulations in the present research, based on the observed convergence and small
relative temporal discretization error. A couple of comments have been made on these observations. First
of all, the relative spatial discretization error is 0.31% for CD,mean and 1.91% for CL,r ms . Hence, the spatial
error contribution should not be disregarded in the present temporal refinement study. In addition, the ad-
justable timestep scheme is more prone to post-processing errors. Not only the metrics of interest are varying
with time now, but also the dependent variable (the timestep size). Since the observed relative temporal dis-
cretization errors have been found to be very small (< 0.04%) for all the schemes t1.1−1.4, it is reasonable
that these two effects could have affected the observed order of convergence (and explain why it is higher
than 2 for CD,mean). At the same time, the fairly constant observed slope in fig. 4.1 shows that these errors
did not affect the convergence of the timestep refinement and are more likely to be of a systematic nature.
Lastly, it was noted before that the mesh quality variations in the mesh refinement study might have led to
inconsistent refinements and therefore to an overall improvement of the order of convergence. Yet, in the
present temporal refinement study it is believed that the method behind the four timestep schemes is solid
(no inconsistencies between the schemes t1.1−1.4) as was shown in fig. 4.2. Hence, this could be the reason
why the observed order of convergence for the temporal refinement study is higher compared to the spatial
refinement study, because the timestep refinements were more systematic.

Influence of cylinder wall cell height Although the non-dimensional wall distance y+, defined earlier in
eq. 3.19, is more often used for turbulent flows the metric has been used in the present research for the
laminar flows as well. It was firstly used to see if the y+ estimation was indeed accurate by post-processing
the data and recalculating the real y+. Secondly, since the flow around the cylinder was interpreted as very
complex and highly dependent on the boundary layer, the effect of the wall cell height was considered to be
very important. Hence, four different wall cell heights have been applied to the mesh while the same amount
of mesh cells were used and the same Courant number. A wall cell height at the cylinder of y = 0.057 was
needed to achieve a y+ = 1 for Re = 100, as was stated before. All the wall cell height variations have been
done with the fine mesh m1.3, with N = 30.096 and a Courant number of Comax = 0.4. The only change
that has been made in the mesh was the cell distribution in radial direction from the cylinder while keeping
the total number of cells equal. The first mesh was based on a cylinder wall cell height of y = 0.05, which
is somewhat below the desired value of y = 0.057. Then, the maximum wall cell height that was possible
within the O-grid block, without disturbing the mesh quality too much, was y = 0.0846. This height was 1.7
times bigger compared to the mesh with y = 0.05. The cylinder wall cell height was decreased by this ratio as
well. These different distributions have led to four meshes listed in tab. 4.2. The mesh with the highest wall
cell height was expected to be the poorest performing mesh because the boundary layer was supposed to be
solved for a smaller portion.

Timestep scheme yw all Cell Distribution y+
pr ed y+

max,calc y+
mean,calc

y1.1 0.0846 Uniform 1.5 1.8 0.95

y1.2 0.0500 Exponential 1 1.1 0.55

y1.3 0.0295 Exponential 0.5 0.7 0.3

y1.4 0.0175 Exponential 0.3 0.4 0.19

Table 4.2: y+ and yw all variations for four different meshes

To achieve the highest cell distribution without affecting the mesh quality too much, a uniform cell dis-
tribution was required. This ensured that the cell size at the circumference of the O-grid block was kept at
adequate small levels for the transition to the other grid blocks. Next to the cell distribution, the predicted
y+ value, the calculated maximum y+ value and the calculated mean y+ value were listed as well. The calcu-
lated values were evaluated after the simulation by the using the locally computed wall shear stress for each
timestep. It is therefore shown that the predicted y+ value is in good agreement with the actual y+ value
found after the simulation (although the formulas defined earlier in eq. 3.19 are generally not for laminar
flow). Besides the fact that mesh y1.1 was expected to resolve a smaller part of the boundary layer, it was
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Figure 4.3. Stationary cylinder: log-log plot of the relative error of the mean drag coefficient and RMS of the
lift coefficient compared to the smallest cylinder cell wall height y1.4 of tab. 4.2 versus the cylinder wall height
yw all .

also found that this mesh quality was the poorest. In fact, the mesh quality seemed to increase between the
meshes y1.1− 1.4. The cylinder wall height and the computed error relative to mesh y1.4 are displayed in
a similar log-log plot as before, see fig. 4.3. The mean slope was found to be equal to p = 1.6 for CD,mean

and p = 1.5 for CL,r ms . These results showed that the influence of the cylinder cell wall height is significant
(considering that the mesh size was kept equal). The relative errors for mesh y1.2 were found to be 1.7% for
the drag and 6.5% for the lift coefficient. Although this relative error is still quite large for the lift coefficient,
this wall cell height has been chosen for the verification and validation studies. This wall cell height proved
to be well below the desired y+ value of 1 and showed results which agreed well with other numerical studies
as will be reported later.

Verification and Validation As was stated before, there is no exact analytical solution available at this mo-
ment for the fluid around a stationary cylinder. Still, comparisons against other CFD studies available in the
literature was considered as a good alternative to show the performance of the present CFD model. In the
literature, plenty of CFD studies simulating VIV have been done at low Reynolds number (laminar flow). For
example, see [88, p. 86, tab. 5] for a compilation of many CFD simulations at Re < 3 ·105. Yet, not a lot of ex-
perimental studies have been found in the literature for laminar flow. It was argued in [88] that experiments
for Re < 6 ·103 requires a small test section width and a large aspect ratio. These requirements are both seen
as a practical complication for laboratories. Only the experiment of Tanida et al. [89] relevant for the present
study has been found which measured the lift force, drag force and Strouhal number at 60 < Re < 110. The
Strouhal number has been measured in more experimental studies in the laminar Reynolds range. The CFD
work of O. Posdziech and R. Grundmann [72] was considered reliable as an extensive grid convergence study
and domain size convergence study were both completed in their work. The numerical studies of Placzek et
al. [64], Blackburn and Karniadakis [34], Shiels et al. [5] and the experimental study of Tanida et al. [89] also
investigated either a forced- or free-vibration case. Hence, these results have been included here to observe
how well the present CFD model agrees with these papers without the FSI features included. This compari-
son served as en extra verification to the moving results. The lift coefficient amplitude, mean drag coefficient
and Strouhal number as a function of the Reynolds number are shown in fig. 4.4 and fig. 4.5, respectively. All
the studies included in the figures were CFD studies, except for the ones which are denoted with (Exp.) in the
legend. Simulations of the present work have been completed for Re = 80,Re = 100,Re = 150,Re = 185 and
Re = 200.

The CL,max in the right subfigure of fig. 4.4 shows very good agreement with the other numerical studies.
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For low Reynolds numbers, Re < 150, the lift amplitude is in good agreement with the results of [72] which
was completed at a domain size of 70D . For Re >= 150 the results of the present simulation seem to be
higher than the lift amplitude predicted by Posdziech. At the same time, at Re = 200 the lift is nearly identical
compared to the work of [34]. The study of [34] was done at a computational domain with L1 = 12.5D and
L2 = 25D . The results of [90] show an under prediction compared to most of the other numerical results.
Their domain size was 20D , yet their grid refinement might have been the cause of this underprediction, as
was argued by [72].

At lower Reynolds numbers, Re < 150, the mean drag is again in the vicinity Posdziech and Grundmann’s
work. Although the mean drag increment for Re > 150 has been captured, the drag has been over-predicted
slightly. In line with the observations made for the lift amplitude previously, the mean drag at Re = 200 com-
pares well to the study of [34].

The predicted Strouhal number shows excellent agreement with the other numerical studies. It was ex-
pected that the Strouhal number would agree better with the other numerical studies as was pointed out
earlier in section 3.1.2. For all the flow metrics, it may be concluded that the experiment results of Tanida
et al. [89] show big deviations compared to the numerical studies. It was already stated by [88] that their
experiment was conducted at an aspect ratio of only 10, no end plates were used and oil was used as work-
ing medium. Therefore, these results should be interpreted with caution. However, the Strouhal number of
Williamson’s experiment [92] approaches the numerical results very close for Re < 170. His work was done
with endplates, a large aspect ratio and negligible cylinder vibrations. Hence, the experimental study of [92]
is more reliable compared to the one of [89]. For Re > 170, the results of Williamson’s work fall under the
numerically predicted curve of the other studies. This difference could be attributed to the fact the free shear
layer starts to transition to a turbulent vortex street (see fig. 2.6 and fig. 2.7) which impacts the wake and
hence the vortex shedding frequency component in the Strouhal relation. It is plausible that the CFD model
was not able to capture these secondary flow features located more downstream in the wake, where the mesh
resolution decreases.

4.1.2. Moving cylinder: 1-way coupling
Non-dimensional form of 1-way coupled VIV system In the forced-vibrations cases, the cylinder motion
was prescribed and known a priori. This type of experiments gives the ability to exactly define the motion
trajectory of the cylinder and to investigate the effect of these tightly controlled cylinder vibrations on the
wake. No feedback of the fluid forces on the wake is therefore included the forced-vibration simulations.
Referring to eq. 3.23, two additional input parameters were required compared to the stationary cylinder:
fc yl and the oscillation amplitude ymax . The cylinder frequency was made non-dimensional by the stationary
shedding frequency:

f ∗ = fc yl

fshed ,st at
(4.2)

The cylinder amplitude by the cylinder diameter:

y∗
max = ymax

D
(4.3)

and the non-dimensional time is given by (unless stated otherwise in the report):

t∗ = t/Ts (4.4)

The frequency ratio defined in 4.2 is typically used for forced oscillation studies to give an indication of
how close the cylinder vibration frequency is to the stationary shedding frequency. The cylinder has no mass
in this simulation and is purely a geometry which affects the wake. Therefore, the closest situation to lock-in
for a forced-vibration experiment is reached when f ∗ = 1, when the cylinder is moving at same frequency for
vortex shedding observed for a stationary cylinder.

Besides the non-dimensional motion parameters, the Reynolds number should be kept constant as well
when comparing to other numerical studies. Hence, to ensure similarity between two forced-vibration ex-
periments these three non-dimensional parameters should be constant: f ∗, y∗

max and Re. When inspecting
eq. 4.2, besides the non-dimensional frequency f ∗, fshed is also required to compute fc yl as a dimensional
input for the CFD model. It is not always the case forced-vibration studies present their stationary results in
the same work as well. In addition, it could be argued that since in the stationary and forced-vibration nearly
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the same computational set-up has been used, it would be more consistent to also use earlier obtained sta-
tionary results from the same CFD model for the moving cases. Hence, in the forced-vibrations studies, fshed

from the stationary runs of before are used. However, one can imagine that when the used fshed differs signif-
icantly from the numerical study to be compared, the comparison does not hold up any-more. In light with
that, it is therefore important that the stationary results of the moving studies is also compared in the present
research. This has been done previously in fig. 4.4 and fig. 4.5.

Grid refinement study Similar to the grid refinement study of the stationary cylinder results, a grid refine-
ment study was performed for the forced-moving cylinder. The same (laminar) meshes have been used as
for the stationary case. The details of these meshes can be found in tab. 3.3. The same method as before
has been used to determine the order of convergence, see eq. 4.1. The log-log plot for spatial convergence
for the forced-moving cylinder can be seen in the left subfigure of fig. 4.6. Again, as was observed for the
stationary cylinder, it seems that relative error between mesh 1.1−1.2 is still in the non-asymptotic region,
indicating the presence of higher-order terms. Inspecting meshes 1.2−1.4 may lead to the conclusion that
these relative errors are located in the asymptotic range, where the slope in fig. 4.6 and therefore the observed
order of convergence is more constant. The average slope for meshes 1.2−1.4 is found to be 1.91 for CL,r ms

and 1.37 for CD,mean . This indicates that the observed order of convergence for the lift coefficient is very
close to the theoretical order of convergence, while for the drag coefficient this is rather far away. Although
deviations from the theoretical order of convergence were expected, it is unclear how the observed order of
convergence deviated from the theoretical order of convergence. Especially since the grid quality improved
going from mesh 1.2 to mesh 1.5, it was expected that the slope would increase towards 2 like with the lift co-
efficient. The relative spatial discretization error for mesh 1.3 was found to be 0.011% for CD,mean and 1.78%
for CL,r ms . These errors have been deemed as satisfactory accurate and therefore mesh 1.3 has been used for
the validation and verification cases. While the relative error for CL,r ms is similar to the one found before for
the stationary case, the relative error for CD,mean is an order of magnitude smaller for the forced cases.

103 104 10510−5

10−4

10−3

10−2

10−1

100

Mesh Size ncells [-]

R
el

.E
rr

o
r

[-
]

CD,mean

CL,rms

10−1.9 10−1.8 10−1.710−4

10−3

10−2

Mean time-step size [s]

R
el

.E
rr

o
r

[-
]

CD,mean

CL,rms

Figure 4.6. Forced-vibration: log-log plot of the relative error of the mean drag coefficient and RMS of the
lift coefficient compared to the finest mesh m1.5 of tab. 3.3 versus the number of mesh cells (left subfigure)
and compared to the finest timestep scheme t1.4 of tab. 4.1 versus the time-averaged timestep size (right
subfigure).

As part of understanding the convergence behaviour of the two aerodynamic metrics, their fluctuating
signal has been plotted in fig. 4.7 for one period. The first observation is that for both the lift and drag force
coefficients, mesh 1.1 shows the largest deviations from the other results which confirms that higher-order
terms are probably still present. In addition, the drag coefficient peak shows small oscillatory behaviour for
mesh 1.1. These oscillatory results seem to disappear away with increased mesh size. The lift force coefficient
does not show these small fluctuations around the peak. Fig. 4.7 also indicates that meshes 1.2− 1.5 are
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Figure 4.7. Fluctuating lift coefficient (left) and fluctuating drag coefficient (right) for one shedding period

converging and are located in the asymptotic region.
The presence of the small peak oscillations for the drag coefficient implies that it was harder for the drag

coefficient to reach convergence compared to the lift coefficient. This would explain why the observed order
of convergence for CD,mean is found to be somewhat lower compared to the one for CL,r ms . The observed
slope for lift is found to be higher and for drag lower relative to the stationary grid refinement study. The
higher expected flow fluctuations locally around the cylinder body are possible additional error sources com-
pared to the stationary case. It was believed that the dynamic mesh preserved the initial mesh quality of the
stationary mesh well, this is shown in Appendix C. Another aspect that must be taken into account is the en-
ergy balance in the 1-way coupled FSI model. The grid convergence may have been troubled by the fact that
the oscillations were forced. By prescribing the cylinder motion, energy has been added to the wake contin-
uously. This makes it harder for the system to reach an equilibrium, where the energy input is equal to the
energy dissipation in the wake. In contrast to forced-vibrations, the two-way coupled FSI in free-vibration
would allow the energy transfer to develop in such a way that equilibrium is reached. The (artificial) reached
steady-state in forced-vibration cases could affect the observed order of convergence.

Temporal refinement study Like the temporal refinement study for the stationary cylinder, the temporal
discretization error for the forced-moving cylinder was also studied. Mesh 1.3 was adopted again for this
study. The timestep schemes are identical to the previous one used for the stationary cylinder, they have
been summarized in tab. 4.3. The mean timestep size was computed in the same manner as before and their
values are very close to the time-averaged timestep sizes found for the stationary cylinder.

Timestep scheme Comax ∆Tmean

t1.1 1.3 0.0225

t1.2 1 0.0173

t1.3 0.7 0.0121

t1.4 0.4 0.0069

Table 4.3: Forced-cylinder: timestep size variations

The results of the temporal refinement study has been plotted in the log-log form in the right subfigure of
fig. 4.6.

As fig. 4.6 shows, the slope is very constant and temporal convergence has been reached. The average
slope was found to be 2.26 for CL,r ms and 2.24 for CD,mean . The relative temporal discretization error for
timestep scheme t1.3 was 0.013% for CD,mean and 0.19% for CL,r ms . These errors were both considered to be
very accurate and hence timestep scheme t1.3 has been chosen for all the forced-moving simulations. Again,
the observed order of convergence is higher than the theoretical value of 2. This was also observed for the
temporal refinement study of the stationary cylinder simulations. The same reasoning why this observed
order of convergence turned out higher than 2 holds up for the forced-moving cases.
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The relative errors seem to be an order of magnitude higher compared to the stationary cylinder while the
order of convergence is in better agreement. The higher relative error is likely not caused by the contribution
of the spatial discretization error, since the same mesh was used and the relative spatial errors were found to
be smaller for the forced-vibration case. It is possible that the higher relative error is caused by the mesh de-
formations, imposing higher local Courant numbers in the regions where high flow fluctuation are expected.
This could have led to a higher truncation error, however this was not checked in the present study.

Verification and Validation The verification of the forced-moving cylinder has been done against the nu-
merical study of [64]. Their results for a stationary cylinder have been included before in the results. From
the stationary results, it turned out that the drag coefficient of the present work was somewhat lower com-
pared to their predicted drag coefficient. The lift coefficient amplitude agreed well with the lift coefficient
predicted by the presently used model for the stationary cylinder. All the simulations have been done at con-
stant Reynolds number of Re = 100 and non-dimensional amplitude y∗

max = 0.25. The reduced frequency,

f ∗ = fc yl

fshed
, has been varied between 0.5 < f ∗ < 1.5. According to the experiment of [93] for forced VIV at

low Reynolds numbers, lock-in was established for 0.87 < f ∗ < 1.18 (see [93, fig. 8, p. 508]). Therefore, it is
expected that the operating points which fall outside this region leads to different vortex shedding behaviour.

The results of the forced-vibration simulations are presented in fig. 4.8 for the aerodynamic coefficients.
Similar to the stationary cylinder, the drag coefficient was a bit lower compared to the results of [64]. The lift
coefficient agreed well with the predicted lift coefficient found in the study of [64]. The lift amplitude seems
to be a bit lower compared to the verification study for f ∗ = 1.5. It is noticeable that the lift coefficient for
f ∗ > 1 kept on increasing. For f ∗ < 1 it decreased and came closer to the stationary value. This trend was also
predicted by the numerical studies of [64] and [94]. This contrasts with the typical lock-in response, where
the lift and drag forces only show a magnification for a certain band-with around f ∗ = 1 (also called the lock-
in band with). At one point, the lift coefficient would decrease and approach the stationary lift coefficient
value again (see for example [2, fig. 21, p. 35]). Also, the mean drag force appeared to increase a bit for f ∗ > 1
but closer to the stationary mean drag force compared to the lift force. The added mass of the fluid is the
suspected cause of the continuous increment of the aerodynamic forces after the critical frequency, as will be
explained in section 4.2.2.
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Figure 4.8. The lift coefficient amplitude (left) and mean drag coefficient (right) for 0.5 < f ∗ < 1.5

Force time series inside the lock-in region The time series of the lift (left subfigure), motion (left subfigure)
and drag coefficients (right subfigure) for f ∗ = 1 are plotted in fig. 4.9. The drag and lift force coefficients
showed a harmonical response. Only two shedding cycles are shown because the signal remains like this
throughout the full steady-state simulation. The drag coefficients fluctuated around two times the shedding
cycle period, which is clearly shown in fig. 4.9, right subfigure. Based on fig. 4.9, it may be concluded that the
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Figure 4.9. Fluctuating lift coefficient (left) and fluctuating drag coefficient (right), both in steady-state and
for a multiple of 2 shedding cycles at f ∗ = 1

transverse velocity of the cylinder body was in phase with the lift coefficient, while the cylinder displacement
and acceleration were out of phase.

Indeed, the phase portrait on the left subfigure of fig. 4.10 shows an ovoid trajectory. When the cylin-
der has reached its maximum non-dimensional displacement, the lift force coefficient is equal to zero and
vice versa. This would confirm that the lift force is out of phase with the cylinder displacement. The non-
dimensional FSI coefficients were found to be: CL,y = 0.0134, CL,ẏ = 0.3228 and CL,ÿ =−0.0134 compared to
an amplitude of CL,max = 0.3117. From these numbers it may be stated that the lift force is very strongly in
phase with the transverse cylinder velocity. Since the lift force in phase with the velocity is positive, the fluid
is supplying energy on average to the structure. Hence, in this state with f ∗ = 1, the FSI is contributing to the
cylinder vibrations.

Force time series outside the lock-in region The lift and drag time history differed significantly for the
operating points outside the lock-in region. The time series of C ′

L and C ′
D are shown in fig. 4.11, which was

outside the lock-in region at f ∗ = 1.5. In contrast to the harmonical drag and lift history found before inside
the lock-in region, fig. 4.9, the time series now show a more chaotic behaviour and the signal is far from a
pure harmonical one. This phenomenon is known as beating within structural dynamics [95]. The beating
signal can be decomposed into multiple sinus signals, all operating at different frequencies. The occurrence
of multiple signals is caused by the prescribed cylinder frequency being too far away from the stationary
shedding frequency. Most of the time, the wake was dictated by the cylinder motion (lock-in). Yet, sometimes
the wake was characterized by the Strouhal relation (lock-out). When the driving frequency fc yl is prescribed
even further away from the stationary frequency, the wake would probably adapt even more to the Strouhal
relation and hence the flow is dominated by lock-out. These two wake frequencies have been reflected in the
time series of the lift time series, fig. 4.11, where multiple periodic signals can be seen.

It must be noted that the more chaotic nature of the lift and drag signal made the verification outside
the lock-in harder. Usually, in the literature, the lift amplitude and time-averaged drag has been reported.
Especially the lift amplitude may be very instantaneous during the beating phenomenon, as can be seen in
fig. 4.11. This could lead to different interpretations of the results. The harmonical signals found inside the
lock-in region have a constant lift and drag amplitude over time, which makes the verification more reliable.
For example, the slight under prediction of the CL,max at f ∗ = 1.5 could very well be caused by different post-
processing, see fig. 4.8.

The phase portrait and PSD of the lift time series are shown in fig. 4.12. In contrast to the unique, ovoid
shape found previously in fig. 4.10 for f ∗ = 1, the phase portrait is more chaotic now and multiple trajectories
can be identified. This phase portrait shows that the evolvement of the lift coefficient and non-dimensional
amplitude is rather chaotic and varies from vortex shedding cycle-to-cycle. The wake pattern is therefore not
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Figure 4.10. Phase portrait of non-dimensional cylinder motion amplitude against fluctuating lift coefficient
(left) and PSD of the lift coefficient time series (right), both at f ∗ = 1
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for a multiple of 23 shedding cycles at f ∗ = 1.5
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Figure 4.12. Phase portrait of non-dimensional cylinder motion amplitude against fluctuating lift coefficient
(left) and PSD of the lift coefficient time series (right), both at f ∗ = 1.5

stable and changes continuously. Again, it is believed that the intermittent stages where the wake follows
the Strouhal relation (lock-out) or the cylinder frequency (lock-in) is causing this chaotic behaviour in the
wake. On the right subfigure of fig. 4.12, the PSD of the lift coefficient indeed shows two peaks. The dominant
peak is reflecting the cylinder frequency and the second, smaller peak is located near the stationary shedding
frequency. These results are in line with the time series and phase portraits presented in the numerical study
of [64]. Because of the beating phenomenon, the wake changed continuously. This has shown that the CFD
model was able to capture more complex flow fields as well.

It was observed that the computed aerodynamic damping and other FSI metrics for the case of f ∗ = 1.5
were not reliable. As a sanity check, the coefficients computed for only one shedding period were compared
against the computed coefficient for a multiple of at least 10 periods. This comparison showed that these
quantities differed by > 10%. The presented FSI quantities before for f ∗ = 1 differed by less than 1% which is
deemed to be reliable.

4.1.3. Moving cylinder: 2-way coupling
Non-dimensional form of 2-way coupled VIV system Eq. 3.25 has been non-dimensionlized in appendix
B. This has led to the following equation:

d 2 y∗

d t∗2 +2ζ
d y∗

d t∗
+ y∗ =U∗2 CL

m∗ (4.5)

Based on this equation, it has become common practice to use the non-dimensional parameters U∗,m∗
and ζ to scale the system of eq. 3.25 [5], [85]. Solving the Navier-Stokes equations would lead to the pres-
sure field and velocity field in the computational domain. Once the pressure distribution around the cylin-
der is obtained, OpenFOAM is able to calculate the aerodynamic forces exerted on the cylinder body. Ac-
cording [16], dynamic similarity is achieved between different CFD simulations when the Reynolds number
is equal and when the geometry is similar. The derivation of the Reynolds number scaling for the Navier-
Stokes/URANS equations is shown in in appendix A. Hence, inspecting eq. 4.5, this would mean that CL =
f (Re) when the geometry is preserved. This means that the 2-way coupled problem scales with four non-
dimensional parameters: U∗,m∗,ζ and Re. In the present research, when validation and verification studies
were performed, these parameters will always be matched to the non-dimensional values used in the study
that is compared. This will ensure that the 2-way coupled system in the present model is operating under the
same circumstances as the studies which are used for comparison.

There are multiple definitions of the non-dimensional parameters which represent VIV, although they are
usually very similar and relatable. The first numerical study that has been used for verification was the one
from [65]. The amplitude and frequency response of their study was used as a comparison. Since the present
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research aimed to capture the aerodynamic forces, an additional verification study of the CFD model was
performed to two other papers which included the forces in their results. The studies of [5] and [64] both
predicted the lift and drag forces for a 1DOF transverse freely-vibrating cylinder. Their studies were found to
be reliable and were incorporated in the present research to verify the accuracy of the present CFD model to
predict the fluid forces. The non-dimensional parameters that have been used in all the incorporated studies
next to definitions used in the present research have been listed in tab. 4.4.

Non-dimensional parameter Present Work Williamson and Govardhan [29] Shiels et al. [5]

m∗ m

πρD2L/4

m

πρD2L/4

m

0.5ρD2L

k∗ − − ks

0.5ρU 2L

ζ
c

2
p

km

c

2
√

k(m +mA)

c

0.5ρU L

U∗ U

fnat D

U

fnat D

U

2π fnat D

f ∗ fc yl

fnat

fc yl

fnat

fc yl D

U

Table 4.4: Non-dimensional parameter definitions

The non-dimensional values in tab. 4.4 are in slightly different format than previously defined in eq.
4.5 and in appendix B. Still, these non-dimensional values have proven to be reliable. The dimensionless
numbers used in [29] have appeared in many free-vibration studies. In fact, the study of [65] used the same
non-dimensional values as the ones defined in [29], except that the damping ratio was slightly different. In
[29], the damping ratio was augmented with the added mass of the fluid mA . Regarding the two verification
studies reported in the present chapter, the definitions used were identical to the ones defined in the referred
study. After the verification studies, all the results of the present research have been expressed in the non-
dimensional parameter definitions of [29] without the added mass, as can be seen in tab. 4.4.

Verification of the cylinder motion prediction In the study of [65] of freely-vibrating 1-DOF structure was
coupled to a 2D CFD model. In their study, simulations have been performed of two circular cylinders in
tandem arrangement. Before the tandem arrangement, the 2D flow around a single cylinder was simulated
by employing DNS. Their FSI model was loosely-coupled, meaning an explicitly partitioned approach. The
non-dimensional parameters that have been used in their study were according to the non-dimensional pa-
rameters that were used in the present work as well (see tab. 4.4). The simulations have been carried out
at Re = 150, m∗ = 2, ζ = 0.007 for a reduced velocity sweep of 2.5 < U∗ < 16. The amplitude and frequency
response are displayed in fig. 4.13.

The non-dimensional amplitudes agree well with the results of [65], as is shown in fig. 4.13. The lock-in
region is clearly identified by the increased y∗

max for the range of 4 <U∗ < 7. All the results lead to fully devel-
oped harmonical steady-state solutions. Hence, the verification is deemed as reliable, since y∗

max was taken
over a multiple of periods rather than taking an instantaneous value. The results for y∗

max seem to agree even
better outside the lock-in region, where inside the lock-in region some of the results fall a little bit below the
results computed by [65]. Since their structural model also only involves an one-degree-of freedom system, it
is believed that no significant differences in the structural solver were present. No results of their stationary
cylinder have been included in their paper, which makes it harder to compare the fluid solver’s performance.
The further away from the lock-in region, the closer the aerodynamic forces would reach the stationary cylin-
der wake. This will be shown later, in the verification of the aerodynamic forces during free-vibration. This
means the better agreement outside the lock-in implies that the fluid solver is comparing well against the
fluid solver of [65]. The small under prediction inside the lock-in region is probably caused by the fluid-
structure interaction modelling. The study of [65] also used a weakly-coupled FSI scheme and the Newmark
scheme for the solving structural motion. These settings are similar to the presently used weakly-coupled
scheme for the laminar flow cases. Yet, as was pointed out earlier in section 3.2, within OpenFOAM the im-
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Figure 4.13. Non-dimensional amplitude (y∗
max ) (left subfigure) and frequency ratio (right subfigure) against

the reduced velocity at Re = 150, with m∗ = 2 and ζ= 0.007

plicit character of the Newmark scheme might be lost by using the explicit FSI algorithm. At this point during
the research, this complication related to the Newmark solver in OpenFOAM was not known. Therefore, the
simulations have been run under the assumption that the Newmark solver would solve the motion as how
the solver usually operates according to [82]. It is possible that this complication has caused the difference in
results inside the lock-in region. This has not been checked in retrospect by re-running the simulations with
a strongly-coupled solver.

Fig. 4.13 again demonstrates that the present model captures the motion response of the cylinder well.
The frequency response is in line with the earlier observed lock-in region of 4 < U∗ < 7, where it has be-
come clear now that the cylinder frequency fc yl tags along to the natural frequency of the system fnat (i.e.,
fc yl / fnat = 1). Outside this region, the cylinder frequency has followed the (linear) Strouhal relation accord-
ing to eq. 2.2. It has been noted that before the lock-in region, the cylinder frequency tends to follow the
Strouhal relation very tight, while after the lock-in region there is a systematic deviation. Although the lin-
ear relation was nicely predicted by the present CFD code and [65], the absolute values are a little below the
theoretical values obtained from the Strouhal relation.

These verified free-vibration cases show that the present weakly-coupled FSI model is capable of cap-
turing the motion response of light cylinder bodies exposed to VIV. All the simulations have been operated
successfully and no numerical instability has been observed. The next step was to verify the accuracy of the
aerodynamic force predictions.

Verification of the aerodynamic forces prediction In the numerical study of [5] a new non-dimensional pa-
rameter was introduced to collapse the non-dimensional mass m∗ and spring-stiffness k∗ into one effective
parameter k∗

e f f . This parameter was defined by the following relation:

k∗
e f f = k∗−4π2 f ∗2m∗ (4.6)

It has appeared that this parameter collapses the structural parameters well for undamped systems, even
when the mass was set to zero [5]. The study of [64] also supported the good representation of k∗

e f f for

multiple response branches. Hence, for the verification of the aerodynamic forces, the effective elasticity
parameter was used. Typically in VIV studies, the amplitude and force responses are plotted against the
reduced velocity U∗ or reduced frequency f ∗ as defined in tab. 4.4. Yet, as it turned out, the effective elasticity
parameter k∗

e f f produced similar lock-in shapes as the frequency ratio f ∗ or reduced velocity U∗. To give

an indication of how this new parameter worked out in terms of the non-dimensional parameters used in
the present work, the k∗

e f f parameter from [5] was translated to the reduced velocity and mass ratio found
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in the second column of tab. 4.4. Relating to those non-dimensional parameters, the reduced velocity in
this verification analysis was varied between 0 < U∗ < 7, the mass ratio between 0.5 < m∗ < 10 while the
damping ratio was equal to zero (ζ = 0). The Reynolds number (same definition for all cases) was in this
verification analysis equal to Re = 100. When comparing these relatable non-dimensional parameters with
the previous study, it may be concluded that the mass ratio of this analysis has the same order of magnitude
as in the previous verification analysis. In addition, the non-dimensional damping was set very low in the
previous analysis and this time it is even set to zero. The reduced velocity sweep is very similar and the
Reynolds number is very close compared to the previous analysis. Hence, the computed structural motion
was expected to be in the neighbourhood of the previous computed amplitude.

The amplitude response is shown in fig. 4.14 and the aerodynamic force responses in fig. 4.15.
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Figure 4.14. Non-dimensional amplitude (y∗
max ) against the effective elasticity [5] (k∗

e f f ) at Re = 100
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Figure 4.15. Lift coefficient amplitude CL,max and mean drag coefficient CD,mean against the effective elastic-
ity (k∗

e f f [5]) at Re = 100
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The first observation from fig. 4.14 and fig. 4.15 is the fine agreement of the presently obtained results
with the two numerical studies of [5] and [64]. Based on these figures, the lock-in region can be identified in
the range of 0 < k∗

e f f < 6, where the oscillation amplitudes and aerodynamic forces experience a clear magni-

fication. The maximum observed displacement amplitude was y∗
max = 0.58 at k∗

e f f f = 1.72. The simulations

in the outer lock-out regions all reached steady-state and positive cylinder displacement. The observed am-
plitudes for k∗

e f f < 0 and for k∗
e f f > 8 are relatively low: y∗

max < 0.05. In these ranges, the mean drag coefficient

tends to vary closely around the stationary mean drag coefficient found before. The lift amplitude shows the
same trend for a positive k∗

e f f , however, for negative values of the effective elasticity this does not hold up.

This reason for this difference is that Shiels et al. [5] assumed CL,max to be negative for k∗
e f f < 0, caused by

the observed phase shift of π between the cylinder displacement and fluctuating lift.

Self-limiting mechanisms As was explained before in section 2.2.4, the vortex-induced vibrations are self-
limiting at higher amplitudes. It was stated that this response is not caused by the structural damping but
by the fluid-structure interaction. The self-limiting fluid-structure interaction was mostly observed at lower
values of SG in fig. 2.10, which means lower values of m∗ or ζ. At these smaller values of the structural
parameters, the cylinder was more susceptible to oscillations caused by the wake. The CFD model that has
been used in the present research was verified under the circumstances of a relatively low mass ratio and
damping ratio to see if the CFD model was able to reproduce these more challenging FSI cases. The self-
limiting property of VIV has proven to be a very interesting feature which might appear at higher Reynolds
numbers as well.

Previous investigations of the self-limiting effect show that various flow mechanisms come into play to
limit the cylinder motion. It was found by Mittal and Kumar [96] that the self-limiting response is caused by
the reduction in aerodynamic forces, the development of multiple frequency peaks rather than one and by
having a soft lock-in [96]. Soft lock-in was defined in [96] as the operating range of the cylinder where the
dynamic shedding frequency is not exactly equal to the natural frequency of the cylinder, while y∗

max and the
aerodynamic forces are still considerably higher compared to the stationary case. It was stated by [96] that
this phenomenon is so far only observed for light structures.

The results of the present simulation for free-vibrations have shown the three mechanisms limiting the
cylinder motion amplitude, described by [96]. Fig. 4.16 (left subfigure), at K ∗

e f f = 0.28 (where y∗
max = 0.46),

shows a second high-frequency PSD peak which has a smaller magnitude compared to the dominant peak.
This second peak is located at exactly three times the dominant shedding frequency. The second PSD peak
can also be observed in the lift coefficient time series in fig. 4.17. It seems that during every real period
(which corresponds to the dominant peak) three secondary, weaker vortices are being shed. Two of these
secondary vortex shedding periods are clearly shown. It is possible that the third high-frequency shedding
period falls within the dominant shedding period which is why it is not shown in fig. 4.17. It was observed that
the second high-frequency peak was not observed for the cylinder motion, which showed a fine harmonical
trajectory. This second shedding peak was also seen in the numerical study [64, fig. 16, p. 96] for free-
vibration and [64, fig. 13b, p. 92] for forced-vibrations when the oscillation amplitude in both cases was high.
The study of [64] suggested that high amplitude oscillations can lead to additional high-frequency peaks. The
periodicity within one real period (cycle-to-to cycle periodicity) is not affected by these components, while
the shape is. Yet, it was found in the present study that this additional frequency component did not appear
in all the free-vibration simulations were high values of y∗

max were observed. In fact, the process of multiple
shedding peaks and the reduction of the aerodynamic forces appeared to go hand in hand. The detuning
mechanism because of the soft lock-in was not always coherently present with the two other mechanisms
described earlier. For example, the results of the two cases shown in tab. 4.5 and in fig. 4.16 and fig. 4.17 show
this contradiction. The non-dimensional parameters used in tab. 4.5 and for the analysis of these results are
based on the definitions of Shiels et al. [5], displayed in tab. 4.4.

Although both cases show considerably high steady-state amplitudes (y∗
max ) and their operating condi-

tions are close to each other (k∗
e f f ), the three self-limiting mechanisms are not present in both cases. Case 1 in

fig. 4.16 shows a clear second frequency component in the power spectral density of the lift time series which
agrees with one of the proposed self-limiting mechanisms of [96]. Case 2, right subfigure of fig. 4.16 does
not show this second PSD peak. In fig. 4.17 the right subfigure clearly shows that the lift has reached a fine
harmonical steady-state solution, with no additional shedding. Indeed, the lift amplitude for k∗

e f f = 1.72 is

found to be significantly higher compared to the case 1 with k∗
e f f = 0.28. So far these observations would lead

to the conclusion that case 1 has experienced a self-limiting structural feedback on the wake. This would also
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Figure 4.16. PSD of the lift coefficient time series, left for k∗

e f f = 0.28 and right for k∗
e f f = 1.72
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Figure 4.18. Phase portrait of non-dimensional cylinder motion amplitude against fluctuating lift coefficient,
left for k∗

e f f = 0.28 and right for k∗
e f f = 1.72

imply that case 1 suffers from a soft lock-in. Yet, the frequency ratio f ∗ in tab. 4.5 proves that this assumption
is not true. The detuning in case 2 has led to a softer lock-in compared to case 1. It is possible that this softer
lock-in suppressed the magnification of the lift force from going to even higher values than currently seen
in fig. 4.17 (right subfigure). It means that the proposed mechanisms of [96] causing the self-limiting prop-
erty of VIV are not necessary false. It shows that in every case the wake and the structural response is rather
unique and that the presence of the self-limiting mechanisms depends on the operating circumstances and
how the fluid-structure interaction develops until it has reached the steady-state solution. Hence, the three
self-limiting mechanisms described before are not always present simultaneously.

Parameter Case 1 Case 2

U∗ 1.03 0.76

m∗ 5 5

ζ 0 0

k∗ 4.74 8.74

k∗
e f f 0.28 1.72

y∗
max 0.46 0.58

CD,mean 1.71 2.17

CL,max 0.04 0.80

CL,y 0.0055 0.7125

CL,ẏ −0.0262 −0.06

f ∗ = fshed ,F SI
fnat

0.97 0.90

f ∗ = fshed ,F SI
fshed ,st at

0.92 1.15

Table 4.5: Results for two free-vibration cases in lock-in
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Lastly, when inspecting the phase portraits of both cases in fig. 4.18 the secondary vortex shedding is seen
back in Case 1. The two additional, smaller ovoid figures around the maximum non-dimensional displace-
ment show the secondary vortex shedding well. The phase portraits have been obtained over a multiple of 60
periods, which supports that both cases have reached equilibrium as their periodicity (and the trajectory of
the phase portraits) is constant over time. The phase portrait of Case 1 implies that the cylinder displacement
and lift force are out of phase while for case 2 the typical Lissajou figure shows that these two quantities are
in phase. Furthermore, the estimated aerodynamic damping is relatively higher for Case 1 when compared
against the lift force amplitude. This would imply that relatively more energy has been dissipated in the wake
for Case 1 compared to Case 2.

Beating phenomenon The red cross-marks in fig. 4.14 and fig. 4.15 have been marked with a different
colour than the other operating points because their time series of the aerodynamic forces and motion tra-
jectory showed a beating phenomenon. The cylinder body showed a considerable motion amplitude during
the beating, 0.29 < y∗

max < 0.4. Moreover, the lift coefficient amplitude is also found to be relatively high for
the beating range, as seen in fig. 4.15. Only the drag coefficient seems to fall within lower values, which are
closer to the stationary results. The fluctuating lift and the PSD of the lift signal of one of the beating operating
points have been shown in fig. 4.19. The reduced frequency was found to be f ∗ = fshed ,F SI / fnat = 0.74 (see
also right subfigure of fig. 4.19) and the other frequency ratio was fshed ,F SI / fshed ,st at = 1.13. The dominant
peak in the PSD figure corresponds to one single lift period, i.e. the time after which the signal reaches the
same magnitude of C ′

L again, independent of the varying amplitude. Yet, the left subfigure of fig. 4.19 would
suggest that the lift signal consists of multiple time periods. These other time periods have not been picked
up by the PSD extraction. The numerical study of [97] faced a similar situation. It was argued in their study
that the occurrence of an additional PSD peak depends on the degree to which the amplitude varies. The
amplitude variation would be an indication of the beating energy. When this variation is stronger the PSD
will more likely capture these secondary flow features. The amplitude variation of C ′

L of the present results
was not strong enough to yield additional PSD peaks. For more explanation on the decomposition of the lift
signal into multiple periods, the reader is referred to the study of [64].
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Figure 4.19. Beating phenomon for k∗
e f f = 4.58, left subfigure is the fluctuating lift coefficient for a multiple

of 18 periods and right subfigure is the PSD of the fluctuating lift coefficient

The frequency ratios f ∗ = fshed ,F SI / fnat = 0.74 and fshed ,st at = 1.13 show that wake is neither following
the natural frequency nor the stationary shedding frequency. The other operating points, the blue cross-
marks in fig. 4.14 showed that the wake either tagged along with the natural frequency (lock-in, 0 < k∗

e f f < 6)

or with the stationary shedding frequency (k∗
e f f > 8 and k∗

e f f < −2). In fact, it was observed that when the

beating was more pronounced in the time series, that the shedding frequency of the moving cylinder devi-
ated more from both the natural frequency and the stationary shedding frequency. This would suggest that
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Figure 4.20. Phase portrait of non-dimensional cylinder motion amplitude against fluctuating lift coefficient
when the cylinder is experiencing beating at k∗

e f f = 4.58

the beating phenomenon can be described as a phase where nor the natural frequency nor the stationary
shedding frequency dictates the vortex-induced vibrations. The operating range of k∗

e f f was established by

varying the natural frequency of the system. It can be concluded that during the beating, the natural fre-
quency reached a value where it is still close enough to the stationary shedding frequency to trigger cylinder
oscillations while at the same time not close enough to dictate the shedding process. This reasoning is in line
with the earlier explanations found in the literature for the beating phenomenon [95]. According to [98] and
[68], the beating phenomenon is related to intermittent stages of wake synchronization and desynchroniza-
tion. After the wake is disordered, the lift force drops which also reduces the oscillations amplitude. Then,
at a lower oscillation amplitude, the wake would become more stable again and more periodic. This would
lead to a positive interaction between fluid and structure where both the cylinder amplitude and lift force
rise again. These intermittent stages led to a non-harmonical time series of the lift and cylinder amplitude
time series. It can be seen as a continuous ‘battle’ where the shedding frequency either favours the natural
frequency or the stationary shedding frequency. This explanation of continuous (de)-synchronization during
the beating was also given in the numerical study of [64].

Fig. 4.20 demonstrates the irregularity caused by the beating in the phase portrait of the fluctuating lift
coefficient against y∗

max . For example, the phase portrait in fig. 4.18 (right subfigure) shows only one, unique
trajectory while during the beating multiple trajectories have occurred during steady-state. These different
trajectories are the consequence of the earlier observed changing behaviour of the lift force and cylinder
motion for every period. Evaluating the aerodynamic damping or stiffness with eq. 3.55 and eq. 3.56 was
therefore troublesome. In fact, the estimated CL,ẏ differed as much as ≈ 65% when comparing the evaluation
over just one period to a multiple of periods. Still, based on the phase portrait in fig. 4.20, the cylinder
displacement was overall in phase with the lift force which yielded the increased CL,max and y∗

max in fig. 4.14
and fig. 4.15 of the beating operating points.

The beating phenomenon tends to show more chaotic behaviour in the time series which makes the ver-
ification of the time-dependent metrics harder. Typically, the peak amplitude of the lift coefficient and peak
amplitude of the cylinder displacement are reported in VIV studies. These two quantities are therefore in-
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stantaneous and more susceptible to vary compared to a periodic RMS values or time-averaged value. It is
still possible to verify the outcome under such circumstances when comparing the time series directly. Yet,
it is first hard to reproduce the conditions of a certain time series. Secondly, not many time series figures
are available in numerical VIV studies. In the present report, the main goal of the laminar CFD cases is to
verify the CFD model and to build up confidence for the more complex cases. Hence, these beating operating
points might be more susceptible to false verification. Hence, the amplitude of the lift coefficient and cylinder
displacement was deduced by taking the time-averaged value of all the minima and maxima observed in the
time series. This has eliminated part of the arbitrariness nature of the beating signal. Although it is unknown
how the results have been post-processing in the studies of [5] and [64], the beating points seem to match
with their results in fig. 4.14 and fig. 4.15.

Lastly, two cases seemed to yield unstable conditions and lead to divergent results. These cases have not
been included in the present report. The suspected cause of these operating points was in fact the weakly-
coupled scheme, where the negative numerical damping resulted in an unstable coupling. Still, by manipu-
lation of the structural parameters it was possible to reproduce stable coupling simulations for the complete
range of k∗

e f f that was used in the other numerical studies of [64] and [5]. This might be another benefit of the

effective elasticity parameter. The same k∗
e f f was reached while using different structural parameters. This

gave more freedom to parametrize the VIV problem compared to for example the reduced velocity U∗, which
does not collapse the non-dimensional spring-stiffness or mass. Furthermore, the reason why these operat-
ing points eventually diverged was most likely caused by the complication of the Newmark implementation
within OpenFOAM, which was earlier explained in section 3.2. When the explicit symplectic structural solver
was used in combination with the weakly-coupled FSI scheme, the cases did not diverge. Similarly, when the
implicit Newmark structural solver was used in combination with the implicit FSI scheme, the cases did not
diverge either.

The preliminary conclusion based on the 2-way weakly coupled simulations of the present work is that
for a large part of the operating range, the VIV has been simulated accurately. In fact, it seems the model
was able to capture the beating phenomenon an some of the self-limiting mechanisms adequately. Since the
beating phenomenon is also expected for higher m∗, the verification of these operating points was important
to show that the weakly-coupled solver is capable of capturing this more challenging phenomenon as well.
Yet, the ‘beating results’ must treated with caution because of their more chaotic nature. Furthermore, the
FSI model was able to capture the operating points inside lock-in and further outside lock-in well, compared
to the literature. Lastly, it was noticed that some of the FSI scheme/structural solver combinations lead to
divergence. These combinations were avoided in the turbulent moving simulations.

Non-dimensional analysis The non-dimensional parameters that were used are tabulated before in tab.
4.4. It was noticed during the research that when the non-dimensional values (of the study to be compared)
were transformed into dimensional values, there was usually one degree of freedom left over. To see the
effect of this on the solution, two Approaches have been performed to acquire the dimensional values. In the
first Approach, the value of the inflow fluid velocity was assumed and was kept constant during the reduced
velocity sweep. In the second Approach, the value of natural frequency was assumed and was kept constant
during the reduced velocity sweep. These two assumptions can be seen as a starting point for obtaining all
the dimensional values required to run the simulations. Four simulations have been performed to determine
the reliability of the non-dimensional values and to see if there are differences in the results between the two
Approaches. These four simulations have been denoted as Cases 1.1,1.2,2.1 and 2.2, see tab. 4.6. Case 1.1
and Case 1.2 represented the first Approach and Case 2.1,2.2 represent the second Approach. All the four
cases have been simulated before as well for the verification of the freely-moving model with the study of
[65], see fig. 4.13. This time, the Approaches have been cross verified to see if the two Approaches affect the
aerodynamic and structural response.

In the first Approach it was assumed that: U = 1 = constant. This led to a variation of the structural
parameters of k and c while U∗ was varied. Consequently, the natural frequency varied accordingly. The
other relevant input parameters for OpenFOAM, m and ν were constant during the U∗-sweep. Case 2.1 and
2.2 have been used for the second Approach, where the natural frequency was assumed and kept constant in
contrast to the first Approach. The natural frequency was chosen to match the stationary Strouhal frequency
obtained earlier for Re = 150 (see fig. 4.5). In this Approach, all the structural parameters remained constant
during the sweep (c,k,m). On the other hand, the inflow velocity U and the kinematic viscosity ν did vary for
every U∗ in this Approach.
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Parameter Case 1.1 Case 1.2 Case 2.1 Case 2.2

U∗ 5 16 5 16

m∗ 2 2 2 2

ζ 0.007 0.007 0.007 0.007

Re 150 150 150 150

fnat [H z] 0.2001 0.0625 0.1841 0.1841

m[kg ] 1.57 1.57 1.57 1.57

ks [N /m] 2.481 0.242 2.1 2.1

c[N · s/m] 0.0276 0.0086 0.0254 0.0254

U [m/s] 1.0 1.0 0.9202 2.9456

ν[m2/s] 0.0066667 0.0066667 0.006134 0.01963733

CD,mean[−] 2.05 1.28 2.06 1.27

CL,RMS [−] 0.10 0.17 0.11 0.16

y∗
max [−] 0.52 0.07 0.53 0.07

fc yl / fnat [−] 0.95 2.70 0.94 2.65

fc yl / fshed [−] 1.03 0.92 1.02 0.90

Table 4.6: Results for two free-vibration cases inside (Case 1.1/2.1) and outside (Case 1.2/2.2) the lock-in band

The two Approaches can be summarized as follows:

1 In the Approach 1, the dimensional values are obtained by starting in the fluid domain and assuming a
constant value for the free stream velocity. Hence, the structural parameters must vary to cope with the
desired U∗ sweep. In this Approach, the natural frequency is varied around the stationary Strouhal fre-
quency. Lock-in was obtained when the natural frequency was close enough to the stationary Strouhal
frequency.

2 In Approach 2, the dimensional values are obtained by starting in the structural domain and assuming
a constant value for the natural frequency. This time, the fluid parameters must change for every U∗
variation. In this Approach, the Strouhal frequency is varied around the natural frequency by changing
the freestream velocity. If the Strouhal frequency is in the vicinity of the natural frequency, lock-in
occurred.

Both methods in theory should produce the same results if the non-dimensional values are equal. This is
one of the upsides of CFD: it allowed easy variation of different input parameters. In reality, it would be very
hard for example to vary the kinematic viscosity in a wind tunnel. The results have shown that indeed the two
Approaches yielded the same results. There are small differences observed but these seem to be acceptable.
This supports the reliability of the non-dimensional values listed in tab. 4.4. This non-dimensional analysis
is performed for the turbulent flow as well.
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4.2. Turbulent flow
In this section, the results for the supercritical regime Re > 3.5 ·106 will be presented. Similar to the previous
section, the results of the stationary, forced- and freely-vibrating cylinder will be treated respectively in this
section.

An important note must be made on the definition of ‘turbulence’ regarding the next section of this report.
From a fluid dynamics perspective, turbulence is characterized as the flow which is highly unsteady, 3D,
has fluctuations on a broad range of length and time scales and contains considerable vorticity levels [42].
Nevertheless, the term ‘turbulence’ has been used in the present report to identify the supercritical Reynolds
number simulations which have been performed. In the present research only two Reynolds regimes have
been investigated in which one of them the flow was mostly laminar (laminar regime) and one of them the
flow mostly turbulent (supercritical regime). In that sense, the term was turbulence was used sometimes in
this report merely to distinguish the ‘turbulent’ simulations performed at the supercritical Reynolds number
and the ‘laminar’ simulations performed before at Re < 200.

4.2.1. Stationary cylinder
Firstly, a spatial and temporal refinement study was performed. The meshes m2.1−2.4 in tab. 3.3 have been
used for the spatial refinement study. The temporal convergence study was done by using four timestepping
schemes, which are reported after the spatial convergence study. There is no ‘perfect’ solution or bench-
mark case in this Reynolds regime both experimentally and numerically, as was noted by [54]. Hence, the
convergence studies were performed relatively to the finest mesh or finest timestepping scheme. After the re-
finement studies, the results obtained with the present k-ω SST turbulence model were compared against the
experimental and numerical work found in the literature. A compilation of the experimental and numerical
work in the supercritical Reynolds regime is tabulated in tab. 4.12.

Study Re Turb. Model/Exp. Ti %

Roshko, 1961 [25] 1.5 ·105 −9 ·106 Exp. ?

Achenbach, 1968 [52] 4 ·105 −5 ·106 Exp. 0.7

Jones et al., 1969 [2] 5 ·105 −17 ·106 Exp. 0.2

Schewe, 1983 [99] 2.3 ·104 −7.1 ·106 Exp. 0.4

Travin et al., 2000 [54] 5 ·104 −3 ·106 3D DES ?

Catalano et al., 2003 [48] 0.5 ·106 −4 ·106 3D k-ε ?

0.5 ·106 −2 ·106 3D LES ?

Ong et al., 2009 [49] 1 ·106 −3.6 ·106 2D k-ε 0.8

Squires et al. [100] 8 ·106 3D DES ?

Present Work 3.6 ·106 2D k-ω SST 0.061

Table 4.7: Overview of experimental and numerical studies at supercritical Reynolds number.

Grid refinement study As was explained before in section 3.1.2, no wall functions have been used in the
present turbulent simulations to predict the boundary layer. The flow field was resolved up to the viscous
sublayer. For this reason, y+ must be located within the inner layer, i.e. y+ < 5 [101]. Increasing the Reynolds
number makes the viscous sublayer thinner. Hence, in order to keep y+ < 5 at even higher Reynolds num-
bers, the cell height at the wall had to be decreased. The present grid convergence study was performed at a
constant Reynolds number of Re = 3.6 ·106 and therefore the estimated yw all = 7 ·10−6 was kept constant in
all the meshes. This cell wall height aimed for a y+ = 1.
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Mesh Grid Size Comax ∆Tmean t y+
mean

m2.1 69.069 0.7 0.00425 150−350 0.399

m2.2 98.730 0.7 0.00381 150−350 0.401

m2.3 176.635 0.7 0.00303 150−350 0.404

m2.4 314.186 0.7 0.00228 150−260 0.407

Table 4.8: Timestep size and y+ variations for the four turbulent meshes

The mesh properties, the time discretization settings and other relevant CFD properties are summarized
in tab. 4.8. As was explained earlier in section 3.1.2, the meshes were refined by a factor of r = 1.33 applied to
the mesh edges. This led to roughly a doubling in the amount of grid cells. Like the laminar grid refinement
study, the timestep was set adjustable and was constrained to a maximum Courant number of Co = 0.7.
Except for the simulation with mesh m2.4, the other simulations have been carried out until t = 350[s]. Yet, it
was observed that the effect of this on the aerodynamic quantities obtained with mesh m2.4 was negligible.
Since in all four meshes the cylinder cell wall height was kept constant, the time-averaged mean y+ value was
also nearly identical in all four cases in tab. 4.8. This tabulated y+ value was calculated after the simulation.
The value was obtained by taking first the mean value of the y+ distribution around the cylinder. Then, this
mean value was time-averaged over the steady-state part of the simulation. It was thus concluded that the
wall cell height at the cylinder estimated before yielded a sufficiently low y+ value.
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Figure 4.21. Pressure (left) and skin-friction distribution (right) for the meshes m2.1−2.4

The pressure coefficient distribution and skin-friction distribution for the meshes m2.1−2.4 around the
cylinder wall are shown in fig. 4.21. The corresponding aerodynamic quantities have been tabulated in tab.
4.9. All the pressure and skin-friction curves around the cylinder wall show a nearly identical beginning part
for 0° < θ < 60°. The curves start to deviate more around the minimum pressure peak/maximum velocity peak
located at θ = 70−80°. The pressure recovery shows a similar curve for all four meshes. Both the skin-friction
and pressure distribution indicated that with every mesh refinement, the separation point was predicted
more aft. This indication has been confirmed by the obtained separation angle, see tab. 4.9. Furthermore,
the solution seems to converge to a more negative base-pressure coefficient. The standard deviation of the
pressure coefficient (see eq. 3.40) shows that most of the cycle-to-cycle pressure fluctuations have been expe-
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Figure 4.22. Log-log plot of the relative error of the mean drag coefficient and RMS of the lift coefficient
compared to mesh 2.4 of tab. 3.3 versus the number of mesh cells

rienced around the separation point. It is interesting to note that with every mesh refinement, the standard
deviation of the pressure coefficient increased. This can be explained by the fact that a finer mesh is able to
resolve the flow field better and is therefore better capable of capturing the fluctuations of the flow around
the cylinder wall. These variations in turn can lead to predictions of a varying separation angles over time
and hence to different pressure distributions over time.

Mesh CL,r ms CD,mean St −CP,b θsep

m2.1 0.0917 0.4114 0.323 0.4937 110.3

m2.2 0.1009 0.4171 0.324 0.5009 110.7

m2.3 0.1196 0.4255 0.323 0.5110 111.4

m2.4 0.141 0.4329 0.322 0.5195 111.8

Table 4.9: Aerodynamic quantities obtained for all four meshes

The RMS of the fluctuation lift coefficient and the mean drag coefficient have been used to perform the
grid convergence study for the meshes m2.1− 2.4. This study was done by the same approach as for the
laminar grid convergence studies. The log-log plot is shown in fig. 4.22. Again, since no ‘perfect’ solution has
been found in the literature to use as a reference value for the grid convergence study, the errors were taken
relative to results obtained with mesh m2.4.

It was observed that the grid convergence slopes for the base-pressure coefficient CP,b was identical to
the one shown for the mean drag coefficient CD,mean in fig. 4.21. This is in line with earlier observations
in the literature where the base-pressure coefficient was found to have a considerable correlation with the
mean drag coefficient [54]. The slope between meshes m2.2−2.3 are found to be p = 1.30 and p = 1.08 for
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the drag and lift, respectively. Although the theoretical order of convergence might be a little bit smaller
than p = 2 because of the first order convective turbulence discretization scheme used (see section 3.1.2),
the found slopes are still considerably lower than was desired. The lower slope for the lift compared to the
drag is in line with the earlier observations for the grid refinement study for the stationary laminar case.
Unfortunately, after many attempts, higher convergence slopes were not obtained. Yet, as has been reported
later, the obtained results do fall within the range of numerical data found in the literature. It might have been
worth to pursue an even finer mesh with a size of around ≈ 1.5 ·314.186 to see if the mesh would eventually
reach the asymptotic range. However, because of computational cost, mesh m2.2 has been chosen to pursue
the research. The implied relative discretization error for this mesh is 3.65% and 28.44% for the drag and lift
force, respectively. These high errors show as well that the asymptotic range was not reached with the grid
refinement study.

Discussion on grid refinement study In this paragraph, a few modelling aspects are reported which could
possibly explain why the grid convergence was not as good as desired. Based on decades of research it was
stated in [101] that resolving the flow field up to the viscous sub layer could lead to grid-dependent solutions.
It was argued that between the inner region and the outer (turbulent) region the flow field tends to fluctuate
severely. These flow fluctuations require a very dense grid. In addition to that, the near-wall flow in the
viscous sublayer is very viscous and therefore a wall damping function is required to model this correctly.
These two modelling constraints imply a numerically stiff set of equations to be solved. This could lead to
divergence of the linear pressure-momentum solvers or lead to grid dependent solutions. In the present flow
problem, the flow separation had a very big impact on the flow field around the cylinder which has most likely
introduced even more numerical difficulties for the turbulence model. All these imposed challenges made
the model more susceptible to (discretization) errors which affected the grid convergence slope.

In the numerical study of [77], the accuracy of the RANS model with OpenFOAM was compared against
the turbulent benchmark cases of NASA [71]. It has been concluded in their study that the grid convergence
observed for the OpenFOAM simulations was slightly outperformed by the benchmark cases of other CFD
solvers.

In the study of [102], values for the turbulent flow quantities reaching the cylinder wall were recom-
mended to enhance the performance of the two-equation turbulence model. It was not expected that by
achieving these recommended values the performance of URANS would have been enhanced significantly,
since the presently observed ambient turbulent values at the cylinder wall were already close to the recom-
mended values in the study of [102]. These ambient values and also the effect of the turbulence intensity on
the aerodynamic forces will be addressed further ahead in section 4.2.1.

CFD studies in the literature (see tab. 4.7) on vortex shedding also experienced difficulties in obtaining
grid convergence at these Reynolds numbers. In the study of [54], no grid convergence was achieved for their
DES, even when the mesh was refined with a factor of 2 in all directions. It was argued in their study that
they were running a ‘complex numerical-physical system with numerous sources of error’. With refining the
grid not all these errors were reduced which implied grid-dependence. Although the present URANS does
not resolve the larger turbulence scales as with the LES part in the DES, it is still likely that turbulence mod-
elling introduced additional discretization errors [76]. This could explain why the results are non-diverging
but not as good as with the laminar cases before. Other numerical studies, [100], [56] were also not able to
demonstrate a grid-independent solution for this complex flow problem. One study, [49], was actually able
to produce grid convergence with an URANS k − ε model simulating vortex shedding at Re = 3.6 ·106. Their
computational domain had dimensions of 27Dx14D and consisted out of 48.706 cells, according to [49]. In
the study of [49], wall models were used to predict the boundary layer flow. Since the Reynolds number is
very high it is plausible to use wall functions instead of resolving the flow field up to the boundary layer, as
the log-law layer extends far enough to be predicted by a model. Yet, it is known that wall functions do not
predict flow detachment correctly. It was therefore maybe possible that their grid convergence was obtained
because of the more robust wall functions (which are probably less susceptible to grid refinement). However,
it is the question whether these results have converged to the right solution. Hence, it is still believed that it
is the right choice not to use wall models for the present complex flow problem. The challenge should be to
achieve the grid convergence while resolving the boundary layer up to the wall. Two recommendations will
be suggested in the next paragraph which could be used in future work to overcome this challenge.
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Recommendations for improving the grid convergence The first recommendation is regarding the eddy
viscosity limitation in the URANS model. For vortex-shedding fluid problem, it is possible that the RANS
model might lead to larger errors when the eddy viscosity is too high. It was specifically mentioned in the
study of [102] that free vortices are a typical flow phenomenon where the accuracy might be affected by having
a too high eddy viscosity value. One way to deal with this is to include an eddy viscosity limit. Currently,
in OpenFOAM the eddy viscosity is unbounded. It was also noted by [102] this limitation should be done
carefully, as it scales with the Reynolds number proportionally. It was observed in the present simulations for
Re = 3.6 ·106 that the eddy viscosity ratio can become as large as νt /ν> 1 ·105. The option of a eddy viscosity
limiter has not been pursued in this research and is therefore marked as a recommendation for other studies
to look into.

Furthermore, it was believed that the mesh characteristics at the cylinder wall can be improved. Consid-
ering the mesh characteristics it was believed that the y+ value was equal in all four meshes and always below
1. Yet, besides the cylinder wall cell height the cell growth rate at the wall is also an important characteristic in
the present flow simulation. This ratio was equal to 1.2 in the present mesh, which was chosen such that the
gradients in the sublayer were adequately resolved. Especially since the boundary layer flow in the present
flow problem had such a severe impact on the overall solution, it makes sense to decrease this ratio to even
closer values of 1 to enhance the accuracy at the wall even more. This is an idea for future CFD work on this
complicated flow matter.

Domain Size The reason why this domain size has been used was explained before in the present report in
section 3.1.2. Where the domain size chosen before was based on a study for laminar flows, it was of interest
in the present research to investigate the effect of a smaller domain size on turbulent flow. For this reason, a
smaller computational domain was created with the same mesh topology as was present in mesh m2.3. The
same O-grid and mesh spacing was still in place in the smaller domain.

After inspection of the results obtained for the grid convergence studies, it became clear that the turbulent
flow fields stopped to develop after L2 ≈ 25D . After this, the wake field became constant. The eddy viscosity,
µτ, was most critical in the estimation of the wake length and took the longest distance to fully develop. An
outflow length of L2 = 20D was chosen such that the wake had a reasonable distance to develop. This time, a
second order scheme was used for the turbulence convective discretization which is in contrast to the earlier
settings for tab. 4.9. The results of this comparison are tabulated in tab. 4.10.

Domain size (L1xL2xL3) Grid Size CD,mean CL,RMS

50Dx50Dx100D 176.635 0.4551 0.2176

10Dx20Dx20D 176.635 0.4672 0.2393

Table 4.10: Effect of domain size on aerodynamic forces

Firstly, before the smaller domain was compared with the larger domain, it was already noticed that the
mean drag and lift RMS have differed from the previous case in tab. 4.9 while the domain size and the grid
size was equal to mesh m2.3. The reason for this difference is purely because of the turbulence discretization
scheme, since all other CFD settings were kept the same. When inspecting the results of the different domain
size in tab. 4.10, it was seen that the differences are considerable between the domain sizes. The mean drag
increased by 2.7% and the lift RMS by 10%. It is not expected that change of the discretization scheme would
change these increments. It is possible that an outflow length of L2 = 20D was not adequate for the turbulent
wake to develop as it did for the case where L2 = 50D . However, it is hard to explain how this has affected the
overall solution of the aerodynamic forces around the cylinder. In addition, as was explained in section 3.1.2
that a boundary condition was used which should prevent reversed flow. Nevertheless, it was concluded that
the domain size of 100Dx100D ensured the flow fields to fully develop. No further domain size studies were
performed as this was already done in the literature for laminar flows, see section 3.1.2.

Temporal refinement study The effect of the timestep size on the results was investigated and reported on
the turbulent case, with the same approach that was used for the temporal refinement study in the laminar
case, see section 4.1.1. This meant that the timestep size was varied indirectly by changing the maximum
Courant number. Four timestep schemes have been evaluated, i.e. Co = 1.3,Co = 1,Co = 0.7 and Co = 0.4.
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Mesh m2.2 has been used for the temporal refinement study. The resulting (mean) timestep sizes are tabu-
lated in tab. 4.11.

Timestep scheme Comax ∆Tmean

t2.1 1.3 0.00706

t2.2 1 0.00544

t2.3 0.7 0.00381

t2.4 0.4 0.00218

Table 4.11: The four timestepping schemes used for the turbulent temporal refinement study

The effect on the RMS of the fluctuating lift coefficient and the time-averaged drag coefficient were plotted
in the log-log format in fig. 4.23. The mean slopes are p = 1.87 and p = 1.79 for the lift and drag, respectively.
These slopes are located close to the theoretical order of convergence which should be a little bit below p = 2.
For the scheme t2.3, the relative errors are found to be 4.34% and 0.41% for the lift and drag, respectively. This
scheme is still computationally feasible while the implied errors are considered as acceptable. Therefore, t2.3
has been chosen as the standard timestep scheme for all the turbulent runs (moving and stationary).
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Figure 4.23. Stationary cylinder: log-log plot of the relative error of the mean drag coefficient and RMS of the
lift coefficient compared to the finest timestep scheme t2.4 of tab. 4.11 against the time-averaged timestep
size

As the slope is approaching p = 2 and as the relative errors are starting to stagnate, it may be concluded
that these errors are in the asymptotic range and hence temporal convergence was obtained. This converging
trend is in contrast with the outcome of the spatial refinement study before on the turbulent case. Although
in the laminar cases spatial convergence was obtained, it is interesting to note that the temporal refinement
in all cases (laminar and turbulent) showed a stronger convergence. These observations may imply that the
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designed mesh was not perfectly suitable for the vortex shedding fluid problem. As the slope of spatial con-
vergence in the laminar cases fell behind the temporal slopes, it is likely that this trend became more pro-
nounced in the turbulent cases as more sources of error were introduced affecting the spatial convergence.
Hence, in line with the earlier recommendations in section 4.2.1, it has been suggested for future research
to carefully pay attention to the mesh generation and be very critical about the details as the fluid problem
tends to be very sensitive. An example of the sensitiveness can be found in the previous section, where it
became apparent that after only changing the turbulent discretization scheme, the lift and drag coefficient
differed significantly. Also the change of these forces when the domain was made smaller was substantial.

Verification and Validation of Turbulence Model The experimental and numerical work used for verifica-
tion and validation are listed in tab. 4.7. The obtained results have been compared quantitatively and quali-
tatively against the numerical and experimental work tabulated in tab. 4.12. In the quantitative part, typical
aerodynamic quantities for vortex shedding have been evaluated. Differences between the present CFD sim-
ulation and the experimental work was expected a priori. Yet, it was deemed as important to see how big these
differences are and to obtain an understanding how the URANS k-ω SST model would fall within the avail-
able state-of-art studies in the literature. Concerning the qualitative analysis, the skin friction coefficient and
the pressure coefficient are evaluated around the cylinder body to analyze the boundary layer development.
These two parameters have provided better insights to spot turbulence modelling differences or modelling
errors between CFD and experiments. Besides the distinction between quantitative and qualitative analy-
sis, the simulations have been performed at two Reynolds numbers: Re = 3.6 · 106 and Re = 8 · 106. These
two Reynolds numbers have been evaluated because the operating range of the turbulent freely-moving case
started in the supercritical Regime (Re > 3.5 ·106) and extended up to a Reynolds numbers of Re > 10 ·106.
It was therefore deemed as necessary to assess the CFD turbulence model at two Reynolds numbers in the
supercritical Reynolds regime. In the literature, it was believed, the highest Reynolds number for a CFD sim-
ulation on vortex shedding was Re = 8 ·106 (see tab. 4.7). This has motivated to run an in-depth analysis at
Re = 8·106. Besides the assessment, it was indicated before that the supercritical regime is a rather novel CFD
research area because of its large implied computational cost. Hence, the detailed analysis allowed to offer
new insights in to the complex flow features present in these Reynolds numbers. For example, the effect of
the Reynolds number on the boundary layer in the super critical regime has been addressed. The observed
boundary layer development has been related back to trends postulated earlier by other studies or to classical
boundary layer theory.

The most relevant studies and their results are tabulated in tab. 4.12:

Study Re St CD,mean CL,r ms CP,b θsep

Exp. [52] 3.6 ·106 0.25 0.76 ? ≈−0.81** 115°

Exp. [2] 3.5 ·106 0.24 0.58 0.07 ≈−0.65** ≈ 125**

8.27 ·106 0.29 0.58 0.08 ≈−0.57** ≈ 106**

2D k-ε URANS [49] 3.6 ·106 0.31 0.46 0.08 ≈−0.54** 114°

DES [54] 3 ·106 0.35 0.41 0.06 −0.53 111°

DES [100] 8 ·106 0.37 0.37 ? ≈−0.48** 114°

Present Work 3.6 ·106 0.32 0.42 0.1 −0.5 111°

8 ·106 0.34 0.36 0.08 −0.45 114°

Table 4.12: Measured and predicted results by most relevant studies of tab. 4.7. The values marked with
** have been estimated indirectly based on the available pressure distribution where the constant pressure
plateau was reached.

From a first observation it is shown in tab. 4.12 that the obtained results from the present work are in
good agreement with the numerical studies. Especially with the two DES studies, the present URANS k-ω SST
simulation compared well. The Strouhal number and lift RMS quantities differed slightly. The reason why
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the two DES studies agreed better with the present URANS model rather than the other URANS model will
be explained in the subsequent section by visualizing the pressure distribution and skin friction coefficient.
With regards to the experimental studies, the measured Strouhal number was generally lower, the measured
mean drag coefficient higher while the lift RMS agreed fairly well. As the turbulent freely moving cases were
constrained to only move in the transverse direction, it was more important that the lift force had good agree-
ment with the experimental and numerical work. Besides the lift coefficient, the Strouhal number was also
of interest for the moving cylinder cases. The Strouhal number resembles the frequency of the lift force that
would excite the cylinder body to vibrate. It must be taken into account that this Strouhal number is lower in
reality, which could initiate different structural responses. The correlation between the base-pressure coef-
ficient and mean drag becomes clear again in tab. 4.12. Because of a lower base-pressure, the drag tends to
go up proportionally. The separation angles are all within an acceptable range, meaning the location of flow
separation was predicted well by the numerical simulations.

Skin-friction Distribution at Re = 3.6 ·106 The skin-friction coefficient distribution at Re = 3.6 ·106 is dis-
played in the left graph of fig. 4.24, together with the numerical studies of [54], [49], [48] and experimental
work of [52]. In [54], the flow field was predicted by a detached-eddy simulation. The one-equation Spalart-
Allmaras model was used as turbulence model for their URANS modelling (with wall functions). The S-A
model is known for its good prediction of boundary layer flows exposed to a pressure gradient. The results of
[48] were obtained by a 3D large-eddy simulation (LES) and by a 2D URANS model for the study of [49]. The
latter simulation was based on the two-equation k-ε turbulence model. It has appeared that the skin-friction
coefficient obtained with the present URANS model fell below the obtained values with the DES and the LES.
Also, the skin-friction coefficient does not reach negative values implying URANS did not simulate a reversed
boundary layer flow where all other simulations did predict negative values after separation. The skin-friction
coefficient showed an increment for θ > 140° which the DES did not predict. The same increment was pre-
dicted by the other LES and URANS model. Except for the other URANS of [49], the present URANS model
agreed qualitatively well with the LES and DES results. It seems that the LES simulation is closer to the DES
simulation in terms of magnitude, but it seems the LES predicted the separation phenomenon better. Never-
theless, the present URANS model and the other numerical simulations predicted a similar separation loca-
tion as the one seen in the experiment of [52](see tab. 4.12). The separation phenomenon has been predicted
similar with the present URANS model compared to the DES study.

One of the modelling errors, caused by a wrong modelling assumption, immediately comes to light when
inspecting the left graph of fig. 4.24. The predicted skin friction coefficient by all the numerical studies is
significantly higher compared to the measured values by the experiment for θ = 0−90°. The problem with the
present turbulence modelling is that all the flow is assumed to be turbulent (laminar flow or transition was not
considered in the model). The absence of the laminar flow prediction in the numerical studies is causing the
skin friction coefficient to be significantly higher compared to the real flow. In fact, it is well established (see
[16] and [103]) that for laminar boundary layers the skin friction coefficient is lower compared to turbulent
flow. This difference is caused because in laminar flow the velocity gradient at the wall tends to be lower while
the vortices in the boundary layer of turbulent flow lead to a higher velocity gradient and hence more shear
stress at the wall. It was also argued before by [54] and [48] that the over-prediction of the friction coefficient
is caused by the fact that laminar flow at the beginning part of the cylinder wall was not taken into account in
the modelling at all.

In contrast to URANS and DES, the transition point was captured by the experiment of [52] at θ = 65°,
‘indicated by a small rise and a following retarded drop of the skin friction distribution’. The small jump
is caused by the added vorticity caused by the transition to turbulence while after transition the coefficient
still drops because of the favourable pressure gradient. This transition point is located rather far from the
stagnation point, indicating a large modelling error for URANS. It must be noted that the relatively low inlet
turbulence intensity used in the experiment of [52] might have contributed to transition point being located
rather far away from the stagnation point (T i = 0.7%, see tab. 4.7). The transition point was not given in the
other experimental studies listed in tab. 4.7.

The skin-friction coefficient predicted by the URANS of [49] is about half the magnitude of the other sim-
ulations before separation which is surprisingly. Their results seem to have performed as best compared to
the experimental data. Yet, it is questionable whether this agreement is a good sign as in their modelling the
flow was assumed to be fully turbulent as well. The k-ε turbulence model is known for its poor performance
when predicting fluid separation and strong pressure gradients. This could explain why the URANS results of
[49] under-predicted the skin-friction coefficient for the turbulent flow which in fact enhanced the agreement
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Figure 4.24. Time-averaged skin-friction distribution around the cylinder compared to various numerical and
experimental work of tab. 4.7

with the experiment. Their predicted separation angle is closer to one measured by [52], see tab. 4.12. Never-
theless, the S-A model (even with wall functions) and the present k-ω turbulence model are better suitable for
boundary layer prediction and hence the predicted skin-friction distribution of [54] was interpreted as more
reliable for comparison. Tab. 4.12 shows that the predicted separation angle was equal to the one found with
the DES. It is believed that, although deviations with the experiment are present, the presently used URANS
k −ω SST model without wall functions was reliable. The numerical results of the DES and LES simulation
shown in the left graph of fig. 4.24 support this argument.

The numerical study of [53] investigated the usability of a transition model coupled to the k-ω SST model
for the flow prediction around a circular cylinder in the transitional Reynolds regime (Re = 8.5 ·106). In their
study, it was shown that the augmented CFD model indeed predicted the skin-friction coefficient better than
the standard k-ω SST model. On the other hand, the LES model in the study of [48] predicted the flow separa-
tion and recirculation region rather well while their upstream skin-friction was over-predicted as shown in fig.
4.24. This shows that the upstream modelling errors did not have a significant impact on the flow separation
prediction.

Skin-friction Distribution at Re = 8.0 ·106 In the right graph of fig. 4.24, the skin-friction coefficient at
Re = 8 · 106 was plotted together with the numerical work of K. Squires et al. [100]. In an attempt to asses
a new DES version, known as delayed detached-eddy simulation, [100] performed multiple simulation on a
circular cylinder at Re = 8 ·106. In their numerical study, the original DES version was based on the Spalart-
Allmaras eddy-viscosity turbulence model in URANS. The skin-friction coefficient was only computed for the
newer DES model. The skin-friction coefficient was overall higher predicted by [100] than the present URANS
k-ω SST simulation. The predicted separation angle again agreed well with the predicted one by [100], i.e.
θsep = 114°. This shows again that the present k-ω SST model is performing similar as the DES model with the
S-A URANS implementation. The rise and fall of the skin-friction coefficient seems to be in good agreement
as well. After the separation it seems that reversed flow has been simulated by the LES part in the DES of [100]
while with the present simulation this was not captured.
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Effect of Reynolds number on Skin-friction Coefficient With a higher Reynolds number, the air flow has
more momentum. This would lead to two effects [103]:

1 The higher momentum leads to a thicker boundary layer and hence the velocity gradient tends to de-
crease. This in turn would lower the skin-friction coefficient. When comparing the skin-friction distri-
bution for Re = 8 ·106 to Re = 3.6 ·106, there is indeed a decrement of the skin-friction coefficient.

2 At the same time, a higher Reynolds number would lead to earlier transition and more turbulence.
Hence, the boundary layer is more dominated by turbulent flow which would increase the skin friction.
Yet, in the present simulation this effect is not captured and therefore the skin friction coefficient only
decreased.

The decrement of the skin-friction coefficient with increasing Reynolds number was also observed in the
numerical studies of [49] and [48]. Yet, these decrements of the skin-friction coefficient are relatively small
and therefore it was deemed as plausible to compare the friction data found in [48] at Re = 2 ·106 with the
present results at Re = 3.6 ·106 as long as the drag crisis does not start to play a role in the simulation.

Pressure Distribution at Re = 3.6 ·106 The pressure distribution for Re = 3.6·106 has been plotted in the left
graph of fig. 4.25, together with the experimental work of [2], [52] and the numerical work of [54] and [49]. The
standard deviation of the pressure coefficient from the present work is shown as well in fig. 4.25. At θ = 0° the
pressure coefficient was found to be Cp = 1, which was expected at the stagnation point where the dynamic
pressure is equal to zero. When comparing the results to the numerical work of Travin et al., the agreement
is good. The predicted pressure distribution agreed better with the DES results of [54] compared to the skin-
friction coefficient. A small under-prediction is observed for the first 90° and after that for θ = 90−110° a small
over-prediction is observed. The same deviations between the URANS of [49] are present when comparing
to the DES. Flow separation is shown by the constant pressure plateau for θ > 110°. For the last part of the
cylinder body (θ = 110−180°), the pressure plateau is nearly identical to the one of Travin et al. except for the
very last part of the cylinder (the base-pressure coefficient). There, the pressure increased slightly obtained
with the present simulation while the other numerical simulations showed a constant plateau. The measured
base-pressure coefficient at θ = 180° is Cp,b =−0.5 for the present simulation and Cp,b =−0.53 was obtained
by [54], as show in tab. 4.12. This difference is caused by the pressure increment at the very last part of the
cylinder. It was not expected that this error was caused by the time filter or by the interpolation method
for obtaining the Cp -distribution. A time-averaged value during steady-state was taken and the obtained
standard deviation shows that at this part of the cylinder no significant deviation was present. The pressure
coefficient at the stagnation point was equal to 1 which supported that the interpolation method was right.
In fact, it might be an error which is more related to the turbulence model. The small pressure bump at
the base of the cylinder was also observed in the study of [54], see [54, fig. 8b, p.304]. The URANS of [49]
predicted a more constant pressure plateau after separation. Nevertheless, the three numerically obtained
base-pressure coefficients are close to each other (especially when the constant plateau value is compared).
This shows again that the obtained results from the present URANS model fall within the range of numerical
data at Re = 3.6 ·106.

Compared to the experimental work of [2] [52], the numerically predicted pressure coefficient agrees well
in the front part of the cylinder for θ = 0−63°. After that, the numerical values show an earlier pressure recov-
ery at θ ≈ 80° and a less negative Cp peak. It was shown before that the transition point of the boundary layer
was identified at θ = 65° for Re = 3.6 · 106 by [52]. It seems that the pressure distribution started to deviate
around this point, which could indicate that the transition had an impact on the pressure distribution. The
boundary layer in the experiment of [2] continued to decelerate further aft (at θ = 90°) which explains why the
separation also occurred later in their measurements. The numerically predicted base-pressure coefficients
were slightly higher than the experimental values and therefore they fell outside the range of experimental
data. This is also seen back in tab. 4.12 where the measured base-pressure coefficients by the experiments
were overall more negative. This also explains why the mean drag coefficients were overall higher for the
experimental measurements compared to the numerical studies in tab. 4.12. This might indicate the nu-
merical models still fall short in predicting the detached flow accurately. This in line with the observations
made in the study of [73]. There it was shown URANS failed to capture the separation phenomenon cor-
rectly, while their LES results were more promising. Comparing their study must be done with caution, as
their simulation was performed at a Reynolds number of Re = 48.000 which is a different regime. The LES of
[48] was performed in the transitional regime and also in their study the LES predicted the separation phe-
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Figure 4.25. Time-averaged pressure distribution around the cylinder compared to various numerical and
experimental work of tab. 4.7

nomenon better compared to URANS. Their predicted drag coefficient agreed better with the experimental
values, showing promising results for LES.

Although the flow was assumed to be fully turbulent, it was suspected URANS did not predict some of
the crucial larger turbulent detached eddies in the near-wake region. This possibly lead to a predicted wake
which was too thin for its Reynolds number (compared to the experiments). This in turn lead to a lower drag
coefficient (together with the larger base-pressure coefficient) and to a smaller bulk of recirculating flow in
the low-pressure wake. This latter effect could have led to a higher vortex shedding frequency, enhancing the
Strouhal number. The thinner wake predicted by URANS would explain the overall lower drag coefficients
and larger Strouhal numbers for the numerical studies compared to the experimental values in 4.12. The
suspected thinner wake has not been confirmed by comparing the flow field in the wake region between the
CFD results and the experiment.

Pressure Distribution at Re = 8.0 ·106 Inspecting the right graph of fig. 4.25, the predicted pressure distri-
bution agreed well with the DES of [100]. Except the negative pressure peak and the base-pressure coefficient
differed slightly. The deviation found around θ = 80−90° was found before for the skin-friction coefficient as
well. Again, the pressure decay predicted with the CFD simulations for the front part of the cylinder is similar
to the experimental data, as was for Re = 3.6 ·106.

It seems that the base-pressure coefficient of the numerical simulations did not fall within the range of
experimental data. For Re = 8.0 · 106 it appeared that the pressure plateaus observed for the experimental
data at the most aft part of the cylinder remained more constant compared to the experimental data at Re =
3.6 ·106. In the latter case, the pressure coefficient seemed the increase slightly at the aft part of the cylinder.
The numerical data at Re = 8.0 ·106 show a slight increment at the most aft part of the cylinder, in contrast
to the experimental data. This could explain why the base-pressure coefficients were overall higher for the
numerical studies compared to the experimental results at Re = 8.0 · 106. This might indicate that URANS
was not able to predict the more chaotic detached flow accurately, leading to a slightly inaccurately predicted
pressure-distribution at the aft part of the cylinder.
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It has been argued before in chapter 2 that the accuracy of the URANS model would improve with higher
Reynolds numbers. The portion of turbulent boundary layer flow around the cylinder becomes bigger when
the Reynolds numbers is increased. Yet, when comparing the left and right graph in fig. 4.25 it is difficult to
draw a conclusion on how well both cases agree with the experimental work. While separation was predicted
rather early compared to the experiments at Re = 3.6 · 106, the opposite was true for Re = 8 · 106. In this
case, the separation point was predicted more aft compared to the experimental work. Because there is still
laminar flow present in the experimental studies, it is possible that this made the boundary layer more prone
to separate compared to the fully turbulent flow in the CFD simulations. Yet, this effect was not present at
Re = 3.6 ·106.

Standard Deviation of Pressure Coefficient The cycle-to-cycle variation was mostly present around the
separation point, which was expected. It means that every cycle, the fluid separation angle slightly shifts front
and backwards on the cylinder which yields a slightly different pressure distribution. It has also been noted
that the standard deviation before separation generally seems smaller compared to after the fluid separation.
The flow field inside the wake has a more chaotic nature because of the low-pressure region which attracts
reversed flow and also because the larger eddies start to form here to trail aft. This flow field here is more
random over time, although the URANS equations inherently averages out these more fluctuating quantities
and models the complete turbulence spectrum. Hence, the output signals of the lift and drag force are still
harmonical.

Conclusion on Turbulence Model Although there is no prefect agreement with the experimental data in the
literature, the turbulence model was considered to be reliable. The pressure and skin-friction distributions
have shown that the presently obtained results agree well with the other state-of-the art numerical studies
in the supercritical regime. Only the skin-friction results obtained with the k-ε model differed considerably
with the presently obtained distribution. It was expected that these deviations are caused by the turbulence
modelling differences. The present URANS model agreed well with two different DES studies in the super-
critical regime and agreed fairly well with one LES study found in the transitional regime. So far, it therefore
seems DES is not able to provide more accurate results compared to URANS. When a higher fidelity approach
is desired than URANS, LES would be the recommended model. The LES of two different studies indeed
demonstrated this approach was better able to predict the separation phenomena, leading to more accurate
results for the vortex-shedding problem. No LES studies have been found in the supercritical regime (the
study of [48] was in the transitional regime).

Since the moving domain was only dedicated to the transverse degree-of-freedom, the lift force and
Strouhal number were considered to be the most important quantities. The predicted lift coefficient and
separation angle agreed well with the experimental values, while the drag coefficient and Strouhal number
deviated considerably. The Strouhal number predicted by the URANS model should therefore be treated with
caution in the moving domain. Overall, it was concluded the present turbulence model was reliable to pursue
further simulations in the moving domain.

Wake analysis The vortex wake pattern observed in fig. 4.26 is known as the 2S wake pattern, as defined by
the study of [15]. The 2S wake pattern compromises two single vortices, both being shed from the cylinder for
each oscillation cycle or shedding period Ts . This pattern is also known as the classical Von Kármán street.

The instantaneous wake vorticity has been plotted in fig. 4.26 for one shedding period Ts . It can be
observed that the top left subfigure is the mirror image of the bottom left subfigure and the same holds for
the top right and bottom right subfigure. Hence, there is a clear vortex pattern visible in these figures. Fig.
4.26a is in good agreement with the vorticity contour shown in the numerical study of [49] at Re = 3.6 ·106,
obtained with a 2D URANS k-εmodel, see [49, p. 149, fig. 6]. Fig. 4.26c is in good agreement with the vorticity
contours shown in the numerical study of [48] obtained with a 3D URANS k−ε model at Re = 1 ·106, see [48,
p. 466, fig. 4]. In the latter study, instantaneous vorticity contours obtained with a LES was also shown. It was
observed, although some coherent structures were visible, that the LES simulated a more chaotic wake with
no clear vortex pattern. This was because the LES captures more of the realistic flow features typically present
in the transitional regime 1.5·105 < Re < 3.5·106. Yet, since all the turbulence is modelled within URANS, these
rather complex flow features were not captured by URANS. It is for this reason that URANS predicts a more
coherent vorticity structure in the wake, both in the transitional and supercritical regime. In other words,
URANS is not sensitive to the drag crisis (which leads to large modelling errors). The numerical study of [100]
presented an instantaneous vorticity plot by their DES approach. The wake structure seen in the latter study
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Figure 4.26. Instantaneous (non-dimensional) vorticity magnitude (
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∣∣) for one shedding period starting

from top left to top right, bottom left and ends at bottom right. Vorticity range has been filtered to ξD
U∞ = 0−5.

The white line inside the cylinder indicates the zero-line (origin) of the computational domain. Time t0 is
taken at the instant where the lift coefficient is approximately zero and Ts is the reciprocal of the shedding
frequency.

was considered to be more coherent compared to the chaotic wake captured in the transitional regime by the
LES approach of [48]. This quick comparison would indeed imply that the supercritical regime is potentially
suitable for the URANS approach since the vortex street becomes stable again in this regime and the unstable
features typical for transcritical regime are less likely to occur. However, this suggestion should be further
crystallized by employing more of these higher fidelity CFD studies in the super critical regime.

Effect of turbulence intensity In the present CFD simulations, the inflow turbulence was assumed to be
T i = 3% and the eddy viscosity ratio µτ/µ= 10. One of the issues regarding the turbulence inflow quantities
is the decay of these quantities over the inflow length L1 (see fig. 3.1), as was rightly pointed out by the
study of [102]. In other words, the turbulent inflow quantities which have been set up at the inlet may be
significantly lower at the cylinder as they decay over the distance travelled. This decay has been evaluated
briefly in the present research, from a theoretical point of view and from the CFD data obtained with one
of the simulations. The theory has been explained well in the study of [102] and their formulas have been
adopted to estimate the decay rate. These formulas are as follows:

k = kF S

[
1+ (Cε2 −1)

( ε
k

)
F S

L1

U

] −1
Cε2−1

(4.7)

ε= εF S

[
1+ (Cε2 −1)

( ε
k

)
F S

L1

U

] −Cε2
Cε2−1

(4.8)



4.2. Turbulent flow 85

ω=ωF S

[
1+ωF Sβ

L1

U

]−1
(4.9)

εF S =Cµ
ρk2

µ

µτ

µ

−1
(4.10)

Where β= 0.09, Cε2 = 1.92, Cµ = 0.9. Although the k-ω SST model was used for the turbulence in the sim-
ulations, the k-ε equations have been ‘borrowed’ to estimate all the decay ratios. The other turbulence inlet
quantities were estimated by the equations stated before, eq. 3.17 and eq. 3.18. The estimated turbulence
quantities according to eq. 4.7 - eq. 4.10 at the cylinder wall (defined as ambient levels) for an assumed inlet
turbulence of T i = 3% and µτ

µ = 10 at Re = 4 ·106 have been listed in tab. 4.13. In addition to the theoretical

data, data obtained directly from a CFD simulation at Re = 4·106 with the same assumed turbulent inlet prop-
erties were listed in the same table. The values obtained from a CFD simulation were taken at a probe located
at x, y = (−4D,0). The turbulent quantities, k and ω remained constant over time during the steady-state
time frame at the probe location of x, y = (−4D,0), since the inflow turbulent inflow values were constant
throughout the entire simulation and evidently the flow was not impacted before reaching the cylinder.

Variable Free stream Decay ratio Ambient

Theory
k 1.02e −03 2.5e −04 2.56E −07

ω 470 4.86e −04 0.228

CFD Simulation
k 1.02e −03 3.97e −04 4.06E −07

ω 470 6.02e −04 0.283

Table 4.13: Estimated ambient turbulent quantities compared against actual CFD data.

As can been seen from tab. 4.13, the data from the simulation corresponds well with the estimated values.
The turbulence intensity T i and eddy viscosity ratio µτ/µ have been calculated backwards with eq. 3.17 and
eq. 3.18, which yielded ambient values of T ia = 0.061% and µτ/µa = 6.6. These are indeed significantly lower
than the assumed inlet quantities, T i = 3% and µτ/µ= 10. The most likely cause of this decrement is the large
inflow distance L1 = 50D of the computational domain. The impact of the turbulent inflow quantities on the
aerodynamic coefficients have been tabulated in tab. 4.14.

Study Case 1 (Standard Case) Case 2 Case 3

(Assumed) input
T i (%) 3 15 30
µτ

µ
10 25 50

Output from CFD
CL,RMS 0.0984 0.0996 0.101

CD,mean 0.4096 0.4105 0.4114

St 0.3247 0.3288 0.3288

Table 4.14: Impact of turbulent inlet quantities on aerodynamic quantities

The lift coefficient increased by ≈ 1.4% and drag coefficient by ≈ 0.3% between case 1−2 and 2−3. The
Strouhal number increased slightly in case 2 and remained constant between case 2− 3. It is possible that
the effect of the turbulence intensity on the Strouhal number did not became as apparent as for the aerody-
namic forces due to possible post-processing errors (these have been pointed out before in section 3.3). The
numbers in tab. 4.14 illustrate that with such a large inflow size, it is hard to do a proper investigation of the
turbulence inflow quantities. The only way to deal with such a large inflow distance is to use floor values, as
was suggested in the study of [102]. These floor values ensure that the inflow quantities will reach the cylin-
der front edge as desired, by enforcing a minimum limit. In the present research the turbulence intensity
T ia = 0.061% can be considered as relatively low when looking back to other researches listed in tab. 4.7.
However, the study of [102] suggested to use an ambient turbulence intensity T ia ≈ 0.1% and an eddy vis-

cosity ratio of
µτ

µ a
≈ 2 ·10−7 ·Re = 0.8 for external aerodynamical applications simulated with two-equation
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turbulence models. The presently observed eddy viscosity ratio at the cylinder wall might be a little bit higher
(µτ/µa = 6.6 compared to 0.8), the turbulence intensity ratio is nicely matched with the one suggested by
the study. A more thorough analysis on the effect of the turbulence intensity on the aerodynamic forces and
the vortex shedding fell outside the research scope of the present research. It is shown here that the ambient
values were reasonably close to the recommended values of [102]. It was therefore believed that the assumed
turbulent inlet quantities have facilitated the k-ω SST model to perform as desired.

4.2.2. Forced-vibrations: 1-way coupled
The results in this section are obtained to address the research question defined in chapter 1. The resulting
aerodynamic forces are presented first. Then, the obtained phase angles are analyzed. One specific case,
where beating occured, was analyzed into more detail. It appeared, as was expected, that the phase angle
varied over time for the beating case. Then, as a result of the phase angle development, the aerodynamic
damping results are shared. After that, the effect of the true and effective added mass coefficient on the aero-
dynamic response is discussed. By a detailed wake analysis, the ‘switching mechanism’ is shown which is
known from the literature. Furthermore, a validation study was performed by comparing the CFD results to
only wind-tunnel experiment found in the supercritical regime for a forced-vibrating cylinder. Lastly, the con-
tour map, extracted from the aerodynamic damping, is presented. This contour map illustrated the practical
use of the aerodynamic damping and the link between CFD and a phenomenological model.

Operating Grid The forced-vibration model has been used extensively to simulate the aerodynamic re-
sponses for a broad operating range of different cylinder amplitudes and oscillation frequencies. The op-
erating grid for the 1-way coupled model is defines as follows:

Parameter Value

y∗max (0.0035 0.015 0.025 0.05 0.1 0.175 0.25)

f∗ (0.58 0.74 0.89 0.95 1.01 1.07 1.23)

Re 3.8 ·106 −7.4 ·106

Table 4.15: Non-dimensional parameters and values for the mass coefficient sensitivity study

It may be re-iterated that the frequency ratio used here is equal to: f ∗ = fc yl

fshed ,st at
. Hence, seven different

prescribed oscillation amplitudes together with seven different frequency ratios are evaluated by the 1-way
coupled model. This broad operating grid gave the opportunity to obtain insights about the lock-in region,
force magnifications and aerodynamic responses under non-equilibrium operating conditions. Moreover,
as was argued in section 2.3.2, the generated data from CFD for the specified grid in tab. 4.15 is potentially
useful for calibration purposes regarding the development of phenomenological models. The aerodynamic
results of this section are all displayed in a 3D figure, where f ∗ is on the x-axis, y∗

max on the y-axis and the
aerodynamic quantity of interest on the z-axis.

Aerodynamic forces In fig. 4.27, the RMS of the lift force coefficient has been plotted against the frequency
ratio f ∗ and non-dimensional amplitude y∗

max . For every increment in y∗
max and f ∗, the lift force increased.

For the motion frequency sweep, it can be seen that in general, a higher cylinder motion frequency leads to
a higher lift coefficient. Based on the trend in fig. 4.27, the relation between cylinder frequency and lift force
almost looks linear, except around the critical frequency ratio of f ∗ = 1.

Especially after f ∗ > 1, the lift coefficient takes substantial values at y∗
max > 0.1. It was shown before

that the stationary RMS of the lift coefficient was found to be in the range of CL,r ms = 0.08−0.1. This would
imply that at the operating point of y∗

max = 0.25 and f ∗ = 1.2, the forced-vibration simulations yielded a
magnification factor of 19. The continuation of the lift coefficient increment after f ∗ = 1 was also observed
for the laminar forced-vibrations, see fig. 4.8. Hence, it was not expected that the turbulence model was
causing these high lift magnifications under certain conditions. It was believed that the force magnification
was caused by the added mass effect of the fluid, which will be reported further ahead in this section. This is
line with the earlier explanation of [4], where a lift coefficient rise for f ∗ > 1 was also observed.
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Figure 4.27. Forced-vibration lift coefficient (RMS) results for the specified operating grid
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Figure 4.28. Forced-vibration mean drag coefficient results for the specified operating grid
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The mean drag coefficient (see fig. 4.28) reached less substantial magnifications factors. For y∗
max = 0.25

and f ∗ > 1.2, the magnification factor was found to be 1.5. When comparing the lift and drag coefficient
directly, it seems that the lock-in effect on the drag coefficient is more apparent compared to the lift coeffi-
cient. There is a clear increment and small decrement for the drag coefficient, after which it starts increasing
again. The same trend was observed in the forced-vibration results for laminar flow. As will be shown later,
the drag coefficient was not impacted by the added mass coefficient since the cylinder was only forced to
move in the transverse direction. Yet, at higher frequencies the drag coefficient still seemed to rise as shown
in the results of fig. 4.28. This trend concerning the drag coefficient has not been investigated in to more de-
tail. The increased values of the lift coefficient RMS and mean drag coefficient around f ∗ = 1 were believed
to be a consequence of the wake lock-in on to the cylinder motion, which is in line with the literature (see
the second effect described back in section 2.2.4). Based on these (non-linear) force magnifications in fig.
4.27 and fig. 4.28, the following lock-in regimes were estimated: y∗

max = 0.015,0.05,0.10 : 0.9 < f ∗ < 1.1 and
y∗

max = 0.175,0.250 : 0.75 < f ∗ < 1.05. It must be noted that a denser operating grid could have given a better
estimation of the lock-in boundaries. These estimated lock-in boundaries firstly show that the lock-in band
increases with increasing amplitude, which is typical for VIV. The boundaries also show that the lock-in re-
gion starts to move to lower frequency ratios for higher oscillation amplitudes. It seems for higher oscillation
amplitudes the flow field tends to lock-in relatively earlier at lower frequency ratios.

Phase angle In fig. 4.29, the phase angle between the lift force and the cylinder motion was plotted for the
entire grid.
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Figure 4.29. Phase angle results for the specified operating grid

The following observations are made based on the phase angle results displayed in fig. 4.29:

• For the complete amplitude spectrum considered here, it seems that the phase angle showed more
agreement for either high or low frequency ratios. At lower frequency ratios, the phase angle is positive
in the range of 20° <φ< 30°. Then, the phase angle dropped significantly and switched sign to a range
of −22° <φ< 8°. For f ∗ > 1 the phase angle raised again and approached a value of approximately zero.

• It seems that the general trend of the phase angle to drop by from a positive value to a negative value
around the critical frequency is more pronounced at higher oscillations amplitudes (y∗

max > 0.10). The
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phase angle shows a larger drop for larger oscillations displacements and also the drops occurred ear-
lier. Whereas the phase angle drop for y∗

max = 0.10 became apparent at f ∗ = 1.01, for y∗
max > 0.10 this

drop already became apparent at f ∗ = 0.89.

• It has appeared that the frequency bandwidth where the phase angle fell and rose again corresponded
to the earlier defined lock-in ranges by the non-linear force magnification. Similar to the trend ob-
served for the aerodynamic forces, it appeared for higher oscillation amplitudes the phase angle switch
occurred relatively faster (i.e. at lower frequency ratios) indicating the flow field locked in earlier as
well.

It has been noticed for some of the simulations, the phase angle was found not to be constant over time.
An explanation to this can be found in the beating phenomenon. It was explained before in section 3.3.6 that
the beating signal usually consists out of multiple sinus signals. Under such circumstances, for each signal a
different phase angle can be identified. This means that the periodicity of the beating yielded a ‘harmonical’
varying phase angle over time. An example of a beating case is given in fig. 4.30 to illustrate the phase angle
development. This case was run under y∗

max = 0.015 and f ∗ = 1.23, which was marked by the ‘x’- symbol in
fig. 4.27, 4.28, 4.29, 4.32, 4.33. In the left subfigure of fig. 4.30, the obtained fluctuating lift coefficient and the
prescribed (non-dimensional) displacement motion was plotted. In the right subfigure, the computed phase
angle in the time-domain was plotted for each shedding cycle observed in the left subfigure.
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Figure 4.30. Fluctuating lift coefficient and (non-dimensional) displacement motion (left) and corresponding
fluctuating phase angle (right), both in steady-state for the prescribed motion of y∗

max = 0.015 and f ∗ = 1.23

The following observations have been made:

• While the prescribed motion is evidently harmonical, the lift force shows a varying frequency which is
therefore fluctuating relatively to the cylinder motion for every cycle.

• This can be seen back in the phase angle evolvement, which varied between 35° <φ<−40°.

• This implies the fluid is continuously changing from a damping source to an exciting source and vice
versa.

When looking towards the PSD plot of the complete lift time-series in steady-state, in fig. 4.31, two main
responses can be identified. These two peaks resemble the continuous ‘battle’ between the stationary shed-
ding frequency and the natural frequency both trying to dictate the wake behaviour. This is in line with earlier
observations in the laminar regime, see section 4.1.3.

In the present research, for convenience, it was decided to take the time-averaged phase angle of the
complete steady-state time signal. This phase angle describes the time-averaged relation between the lift
force vector and motion displacement. For example, the case of fig. 4.30 showed a time-averaged phase
angle of: φ=−2.5°. Overall, the wake was then considered to be damping the cylinder motion.
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Figure 4.31. Power-spectral density of the fluctuating lift coefficient in steady-state for the case with pre-
scribed motion y∗

max = 0.015 and f ∗ = 1.23.
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Figure 4.32. Aerodynamic damping results for the specified operating grid
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Aerodynamic damping In fig. 4.32, the results on the aerodynamic damping are shown. Similar to the de-
velopment of the phase angle, the aerodynamic damping showed a sudden drop and rise around the critical
frequency ratio. For f ∗ < 1, the aerodynamic damping was found to be within the range of 0 <CL,ẏ < 0.3. For
larger frequency ratios, f ∗ > 1.1, the aerodynamic damping was approaching a value of zero for all amplitudes
considered here. When the non-dimensional amplitude was increased, the aerodynamic damping inside the
lock-in range showed a decrease while just before the lock-in range an increase. The former trend is deemed
as stable and resembles the self-limiting behaviour earlier observed and described in section 4.1.3. Consider-
ing a free-vibrating system where the shedding frequency is close to the natural frequency, the cylinder would
inherently start to show a transverse displacement. The cylinder would start to move towards even higher
non-dimensional values, until the operating circumstances have led to a wake which starts to damp this mo-
tion. In a free-vibrating system, it would depend also on the structural damping at which non-dimensional
amplitude equilibrium would have been reached. Stability is considered when the aerodynamic damping
goes to even lower values when the oscillation amplitude grows. It provides a stable feedback system to pre-
vent the system oscillating towards infinity large displacements, regardless of the structural damping. The
unstable character is the exact opposite and can be spotted at f ∗ ≈ 0.7−0.8. This would imply that, for every
larger cylinder displacement, the aerodynamic damping started to excite the cylinder even more.

True added mass coefficient Firstly, the true added mass coefficient (section 3.3.6) has been evaluated. This
has been done by simulating the prescribed motion in a still fluid. Under such circumstances, the vortex ef-
fects should be minimized [87] and only the amount of surrounding air actually being displayed is measured.
Typically, this coefficient (as explained in section 3.3.6) was found to be close to one for small transverse os-
cillations. It was not clear what the effect of the cylinder frequency on the true added mass coefficient would
be. While the effective added mass coefficient is a function of the frequency andf the amplitude, the true
added mass coefficient is a different metric which should not be measured during flow-induced vibrations
[87]. Therefore, the effect of the prescribed frequency and motion amplitude of a cylinder body was investi-
gated when surrounded by an initially still fluid (i.e. the inflow velocity is equal to zero). The results of these
cases are tabulated in tab. 4.16. It must be noted that with a zero-inflow velocity, a Reynolds number of zero
and lift coefficient of zero may be expected. Yet, for convenience the inflow velocity was assumed to be equal
to the one which allowed a proper comparison between the cases.

Parameter Case 1 Case 2 Case 3

Re 5 ·106 5 ·106 4.5 ·106

f ∗ 0.89 0.89 1.01

y∗
max 0.025 0.10 0.10

CD,mean −3.4 ·10−8 −5.9 ·10−9 −2.3 ·10−9

CL,max 0.139 0.548 0.697

CL,ÿ −0.138 −0.544 −0.692

CL,ẏ −0.012 −0.014 −0.018

C A 1.019 1.005 1.006

Table 4.16: Results for forced-vibration cases with zero inflow velocity

Based on the results in tab. 4.16, the following conclusions have been drawn:

• The true added mass coefficients was found to be very close to one, which is in line with the classical
values taken in the literature [4]. Hence, without any vortex dynamics, the added mass is equal to the
displaced air volume by the cylinder motion.

• This was supported by the fact that the lift coefficient in phase with the acceleration was nearly equal
to the lift coefficient amplitude, implying that the cylinder displacement (or acceleration) was almost
entirely responsible for the resultant lift force vector.

• Evidently, since the true added mass coefficient is 1, the lift force caused by the air volume displace-
ment linearly scaled with the acceleration: ymax cos(2π fc yl )2. The cases with increased amplitude and
frequency therefore both shown an increment of the lift force.

• No effect was found on the mean drag coefficient by the transverse cylinder displacement.
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Effective added mass coefficient Regarding the 1-way coupled cases, where there is an incoming wind
speed, the ‘effective’ added mass coefficient (rather than the true added mass coefficient) is introduced to
capture the additional inertial effects caused by the FSI (apparent vortex dynamics for example) [87]. In
contrast to the case with a still fluid, the 1-way coupled cases with incoming wind speed have an unsteady
vortex-street trailing aft behind the cylinder. Because of the cylinder movement, this vortex street might be
affected. Some air molecules could in turn phase out with the cylinder’s acceleration while other fractions of
the air wake could synchronize with the cylinder’s acceleration. Therefore, it can be imagined that the total
apparent inertial component of the fluid force is different compared to the inertial component only caused
by the displaced air volume around the cylinder body. This latter effect is then captured with the effective
added mass coefficient, CE A . To summarize:

• CE A > 1 means that the vortex dynamics as a result of the FSI effects are causing the fluid inertia to
effectively increase.

• On the other hand, when the coefficient is lower than 1, it would imply that the FSI effects are reducing
the effective inertial effect of the fluid.

• A coefficient of 1 implies that the inertial effect is only a consequence of the displaced volume of the
fluid by the cylinder body (similar to the true added mass coefficient).

The reader is referred to section 3.3.6, [4] or [87] for a more detailed explanation on the added mass coef-
ficients.

The effective added mass coefficient, CE A , has been computed for all the simulations (see fig. 4.33). Based
on the results in fig. 4.33, the following observations were made:

• As f ∗ increases, the added mass coefficient shows an overall trend of growth. Especially in the lock-in
region, the FSI effects become apparent. Around f ∗ ≈ 1, there is a peak of the added mass coefficient.

• Outside the lock-in region, the FSI still has an additional effect on the effective added air mass. For
f ∗ > 1, the added mass coefficient is still higher than 1, although slowly decreasing. This is in contrast
for the operating regime of f ∗ < 1, where the added mass coefficient tends to be a bit below 1. It may
be concluded, that at higher frequencies, the vortex dynamics are increasing the additional inertial
component of the fluid while at lower frequencies they tend to reduce this inertial component.

• With increasing y∗
max , the effective added mass coefficient did not necessarily show an increment. The

development of the coefficient for a varying frequency ratio remained quite similar over the entire am-
plitude spectrum. The highest peak of the effective added mass coefficient was found inside the lock-in
region for y∗

max = 0.015. For higher amplitudes, it can be seen that the frequency range of increased
added mass coefficient became larger. This corresponds to the earlier observed lock-in regions.

It was argued before that the increased lift coefficient was caused by the added mass coefficient. This
reasoning was based on the following observations:

• Firstly, it was seen that the true added mass coefficient remained close to one for some of the operating
points in the grid: y∗

max = 0.025,0.10; f ∗ = 0.89 and y∗
max = 0.10; f ∗ = 1.01. For the entire operating

range of 0.0035 < y∗
max < 0.25 and 0.75 < f ∗ < 1.23 it was expected that the true added mass coefficient

would stay close to one.

• The effective added mass coefficient, except inside the lock-in region, stayed in the range of 0.9 <CE A <
1.14 for the entire operating grid. Hence, outside the lock-in region, it was not the effective added mass
MA (from eq. 3.60) that caused a magnification factor of M ≈ 19 of the lift forces. In fact, it was the
increment of the prescribed cylinder displacement amplitude and frequency that caused these high
magnification factors for f ∗ > 1 and y∗

max > 0.1 in fig. 4.27.

• The benefit of using the effective added mass coefficient to evaluate the FSI effects compared to the lift
force in phase with the cylinder displacement (or acceleration), is that this coefficient is a function of
the body acceleration (see eq. 3.61). This filters out the inertial effects caused by simply moving the air
volume around the cylinder body and shows the apparent inertial effects caused by the FSI.

• Inside the lock-in regime, the added mass of air increased significantly compared to outside of the lock-
in region. Therefore, in fig. 4.27 you see a small bump around the critical frequency ratio which disrupts
the earlier spotted linear trend.
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Figure 4.33. Effective added mass coefficient results for the specified operating grid

Wake analysis To further investigate the phase angle drop, the vorticity field has been investigated of the
following four cases: y∗

max = 0.05, 0.10, 0.175, 0.25, all at f ∗ = 0.89. These four cases have been detonated
in fig. 4.27, 4.28, 4.29, 4.32, 4.33 with the ‘o’-symbol. These four cases were picked because the phase angle
shows a clear drop when the non-dimensional amplitude was increased from y∗

max = 0.10 to y∗
max = 0.175.

In addition, the lift RMS, the effective added mass coefficient seemed to increase significantly between these
two operating points. The aerodynamic damping decreased substantially between these amplitudes. Hence,
the vorticity analysis has been performed to provide a more detailed insight in what is happening in the
wake between these operating points. The (non-dimensional) vorticity magnitude has been plotted for the
four selected cases in fig. 4.34. All the instantaneous vorticity plots were taken when the cylinder was at or
very near to its maximum displacement during their motion trajectory. The zero line of the cylinder motion
trajectory (or the origin) has been illustrated by the white line inside the black cylinder.

The following insights were obtained from the vorticity plots:

• For lower amplitudes, y∗
max = 0.05 − 0.10, the vortices were more stretched horizontally. For these

smaller amplitudes it was observed that the vortices separated from the cylinder body at the lower
side when the cylinder was at its positive amplitude. This can be seen best in the second subfigure of
y∗

max = 0.10, where the lower vortex is about to trail aft and separate from the vortex attached to the
cylinder body.

• When the amplitude was increased from y∗
max = 0.05 to y∗

max = 0.10, the vortex started to ‘roll up’ more
towards the cylinder body. This effect is most likely because of the higher acceleration of the cylinder
body, causing the fluid particles to rotate more in the transverse direction.

• At the cylinder amplitude of y∗
max = 0.175, the vortex pattern changed completely. The vortices are

less stretched than before and the vortices are more ‘rolled up’, leading to denser vortices close to the
cylinder body. The pattern is similar between the cases of y∗

max = 0.175 and y∗
max = 0.25, although the

magnitude of the vortices increased in the latter case.

• In these higher amplitude cases, the timing of the vortex shedding has changed. In these cases, when
the cylinder is moving upwards, the vortices trailed aft from the upper side of the cylinder body rather
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(a) y∗max = 0.05, f ∗ = 0.89 (b) y∗max = 0.10, f ∗ = 0.89

(c) y∗max = 0.175, f ∗ = 0.89 (d) y∗max = 0.25, f ∗ = 0.89

Figure 4.34. Instantaneous (non-dimensional) vorticity magnitude (
∣∣ ξD

U∞

∣∣) at the maximum, positive displace-
ment. From top left to bottom right, the following displacement amplitudes were prescribed: y∗

max = 0.05,

0.10, 0.175, 0.25, all four cases operating at f ∗ = 0.89. Vorticity range has been filtered to ξD
U∞ = 0−5.

than the lower side. It is believed that the change of vortex shedding pattern caused the phase angle to
drop.

• Compared to the stationary vortex wake pattern, the vorticity patterns in the wake presented here for
y∗

max = 0.05 and y∗
max = 0.10 looked similar to one seen in fig. 4.26 for the stationary cylinder. The

wakes observed for y∗
max = 0.175 and y∗

max = 0.25 looked different than the stationary vortex pattern.
This can be explained by the fact that for lower displacements, the wake is more dictated by the Strouhal
relation and hence the stationary wake pattern while for higher y∗

max the wake is more dictated by the
cylinder motion because of the FSI effects.

• It can be seen that in all these four cases the 2S wake pattern mode is active in the wake, similar to the
stationary wake of fig. 4.26.

As has been explained in chapter 2, section 2.2.4, the phase angle behaviour during lock-in has been re-
lated before to the change of vortex shedding timing by numerous studies. Several numerical studies have
shown the relation between the vorticity patterns observed in the wake and phase angle jump around the
critical frequency, [29] mentioned some of these. The switch was typically related to the side of the cylin-
der where the vortices shedded from. For lower frequency ratios, that is before the critical frequency ratio,
the shedding occurred when the cylinder is at its maximum displacement and it occurs on the opposite side
compared to the position of the cylinder [14]. Then, after the critical frequency has been surpassed and when
the phase angle ‘jumped’ or switched sign, the vortex started to shed from the same side as the cylinder’s
position when the maximum displacement is reached. Therefore, the present simulations have clearly cap-
tured the vortex shedding timing switch associated with the phase angle jump. Although in fig. 4.34 it is not
the frequency ratio that has been varied, but the amplitude ratio, the same trend was observed when the
frequency ratio was varied for a constant amplitude. As shown in fig. 4.29, the two middle operating points
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representing the cases in fig. 4.34 (y∗
max = 0.1, f ∗ = 0.89,; y∗

max = 0.175, f ∗ = 0.89) show a similar phase angle
drop compared to for example when the frequency ratio is increased from f ∗ = 0.89 to f ∗ = 1.01 at a con-
stant amplitude of y∗

max = 0.1. The change of vortex patterns in the latter two operating points was found to
be identical to the latter two operating points when the amplitude was increased. This is in fact caused by the
larger lock-in range observed for higher amplitudes. Therefore, two causes have been observed for the phase
angle to drop:

• Around the critical frequency, the phase angle drops. This drop is related to an observed change of
vortex shedding timing in the wake and is in line with several other numerical/experimental studies
[29], [14]. Because the phase angle has dropped, the aerodynamic damping also decreases substantially
inside the lock-in region. This latter effect causes the fluid to damp the cylinder motion.

• If close enough to the critical frequency, an increment of the amplitude can lead to a phase angle drop
as well. Again, this was related to an observed vortex pattern switch in the wake. This phase angle
drop caused the aerodynamic damping to become more negative as the amplitude was increased, as
shown in fig. 4.32. The latter trend was deemed as a stable operating path for the dynamic system. As
[4] suggested, this phase-flipping behaviour might therefore be one of the causes of the self-limiting
nature of vortex-induced vibrations.

Comparison with wind-tunnel experiment In the NASA wind-tunnel experiment of [2] a forced-vibration
experiment was performed at supercritical Reynolds numbers for the amplitudes of 0.0035 < y∗

max < 0.025.
This was the only forced-vibration experiment found at supercritical Reynolds. No forced-vibration CFD
studies at supercritical Reynolds numbers have been found. The lift magnification factor and aerodynamic
damping of the wind-tunnel experiment have been compared to the results of the present CFD model in fig.
4.35 and fig. 4.36. Based on the results in fig. 4.35, the following observations were made:

• It was firstly hard to identify the curve-fit in the number of data points incorporated from [2], especially
at y∗

max = 0.0035 and y∗
max = 0.0139. It seemed there was some agreement for y∗

max = 0.015 and y∗
max =

0.025 mostly before the critical frequency ratio of f ∗ = 1. This showed the CFD model predicted the
effect of the transverse motion amplitude on the lift magnification factor well.

• The lift magnification factor in the lock-in region for the lowest non-dimensional amplitude of y∗
max =

0.0035 was under-predicted by the CFD model. The wind-tunnel experiment predicted a higher mag-
nification there.

• It seemed the wind-tunnel experiment also predicted the continuation of the lift force increment after
lock-in, although slightly below the results obtained from the CFD model. This continuation was earlier
explained by the effective added mass in section 4.2.2.

Regarding the aerodynamic damping results, see fig. 4.36, the following conclusions have been drawn:

• Before the critical frequency, the aerodynamic damping appeared to rise from a non-zero value towards
a even higher positive value. In addition, this rise was even larger when the prescribed motion ampli-
tude increased, implying instability just before the critical frequency. These trends were observed for
the wind-tunnel results and the CFD model results.

• The magnitude of the predicted aerodynamic damping by the CFD model agreed well with the wind-
tunnel experiment before lock-in and after lock-in. Both the experiment and the CFD model predicted
positive values for the aerodynamic damping before lock-in (except for y∗

max = 0.0035) and values ap-
proaching zero after lock-in.

• The experiment predicted the rise of the aerodynamic damping considerably sharper leading to higher
peak damping values compared to the CFD results. The CFD model did predict a rise of the damping
coefficient just before the critical frequency, however, it was not as large as the experiment measured.
It is either possible the CFD model was not able to capture this sharp damping rise or the specified
operating grid was not dense enough and the peak was missed.

• Both the wind-tunnel experiment and the CFD model showed the ‘switching’ mechanism (see previous
section) to be present in the supercritical regime. The predicted timing of this aerodynamic damping
‘switch’ agreed well with the wind-tunnel experiment. Hence, the overall behaviour of the aerodynamic
damping under varying frequency ratio measured by the experiment was found to be similar to the
predicted behaviour by the CFD model.
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Figure 4.35. Lift magnification factor (RMS) caused by FSI. The bulllets represent the wind-tunnel data from
[2], at A∗ = [0.0035 0.0139 0.0278] for the purple, green and blue coloured-bullets , respectively.
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Figure 4.36. Aerodynamic damping magnification caused by FSI. The bulllets represent the wind-tunnel data
from [2], at A∗ = [0.0035 0.0139 0.0278] for the purple, green and blue coloured-bullets, respectively.
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Contour map The 3D plot of the aerodynamic damping for the specified operating grid has been converted
to a contour map, in fig. 4.37, by extracting the overlapping contour lines from fig. 4.32. In line with the earlier
observed trend for the aerodynamic damping, it can be observed in fig. 4.37 that the aerodynamic damping
is generally positive before the critical frequency and becomes negative afterwards. The ‘zero’ contour line
clearly illustrates the frequency ratio where the aerodynamic switched sign. This zero-contour line again
shows that the lock-in of the flow field occurs relatively quicker at lower frequency ratios for higher oscillation
amplitudes, as the contour line curves towards the left at higher oscillation amplitudes.

Figure 4.37. Contour map of CL,ẏ

It appeared the results at higher oscillation amplitudes showed more coherence over the grid. Hence,
the contour lines are denser around higher oscillations amplitudes. It has been reasoned that for lower non-
dimensional amplitudes, 0.0035 < y∗

max < 0.1 the aerodynamic damping curves (see fig. 4.32) showed bigger
changes for each increment of the amplitude. In this region, where the oscillations amplitudes are relatively
low, the flow field is still party following the Strouhal relation and partly impacted by the structural motion.
Then, at larger oscillations amplitudes the flow field is dominated more strongly by the structural motion,
suppressing the Strouhal relation. Hence, the probability of the flow field of changing wake patterns starts
to decay and the relation between fluid and motion starts to become more coherent. It must be noted that
the specified oscillation amplitudes were located relatively closer to each other at higher y∗

max , while the
increments between the amplitudes of 0.0035 < y∗

max < 0.1 were larger. This effect must not be ignored and it
is likely this has contributed to the observed coherences. Ideally, a denser operating grid at lower frequencies
and amplitudes could have been analyzed to see if indeed the coherence of the fluid-motion relation at lower
amplitudes decreases.

Assuming a structural damping of zero, the stable reduced frequencies can be deduced from fig. 4.37 as
well. The reduced frequency of f ∗ = 0.75 would imply an unstable operating point for the system. When there
would be no structural damping, the oscillation amplitude would grow because of the stationary vortex shed-
ding. When the cylinder has reached a sufficiently high oscillation amplitude, a positive aerodynamic damp-
ing would excite the cylinder to even higher amplitudes. Because the aerodynamic damping only seemed to
increase for this frequency ratio when the transverse amplitude rises (at least based on current data set and
fig. 4.37), it could lead to a continuous self-exciting system potentially growing to very large amplitudes. Be-
sides the assumed structural damping of zero, it would also require a low mass coefficient m∗ which allows
the vortex shedding to initiate and eventually resonate the cylinder because the frequency ratio is 25% off
from the critical frequency. The effects of the structural damping and mass coefficients are addressed in the
next section of this chapter in the free-vibration set-up.
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In contrast to the frequency ratio of f ∗ = 0.75, a stable system can be identified at f ∗ = 1. For this operat-
ing point, the aerodynamic damping becomes even more negative for every oscillation amplitude increment
leading to enhanced aerodynamic damping. Especially around the frequency ratio of f ∗ = 1 this self-limiting
property becomes very important. As has been shown in the next section, around a frequency ratio of f ∗ = 1,
a broader range of mass-damping system’s would be susceptible to resonate since the frequencies of the
vortex shedding and structure match so well. This means systems with a relatively low mass and damping
coefficient would most likely still reach a stable maximum amplitude around these stable frequencies.

These two trajectories, one stable and one unstable, illustrate the practical use of the aerodynamic damp-
ing. As was argued in the study of [4], the aerodynamic damping is capable of collapsing and summarizing
most of the FSI behaviour into one parameter. By taking the mass-spring-damper system described in eq.
3.25 and assuming the lift force consists out of two in-phase components as in eq. 3.44, the following relation
can be obtained [4]:

2SG y∗
max ⇐⇒ CL,ẏ (4.11)

where SG is the Skop-Griffin parameter defined in eq. 2.5. By using the obtained dependency of CL,ẏ on
the cylinder oscillation amplitude and frequency in fig. 4.37, the resulting equilibrium points where eq. 4.11
holds can readily be found. Eq. 4.11 shows the relation between the structural properties (collaped by SG ), the
FSI effects (lift force in phase with velocity) and the resulting cylinder displacement amplitude. This may be
seen as a simple method for utilizing the aerodynamic damping. Nevertheless, the study of [105] for instance
has demonstrated the usability of the aerodynamic damping in a more comprehensive phenomenological
model where the results were promising.

4.2.3. Free-vibrations: 2-way coupled
In this section the results have all contributed to addressing the research question defined in ch. 1. First,
the non-dimensional values used for the Standard Batch are presented. Then, the typical lock-in maps are
shown for the Standard Batch. After that, the results of the Standard Batch are categorized based on their
aerodynamic and motion responses. In some of these Categories, the wake of are analyzed into more detail
by displaying the vorticity contours. The effect of two structural parameters on the VIV response is addressed
as well: of the mass coefficient m∗ and the damping coefficient ζ. Lastly, similar to the laminar results section,
a non-dimensional analysis is presented for the turbulent cases.

Non-dimensional parameters for the Standard Batch In the laminar cases the mass ratio was kept rela-
tively low in both verification studies, to m∗ = 2 and 0.5 < m∗ < 10. The damping ratio was also very low or
even set to zero in the laminar free-vibration simulations: ζ= 0.007 and ζ= 0. In the turbulent free-vibration
studies, both these parameters have been increased for two reasons. The first reason was based on estimation
of a realistic mass and damping ratio, based on the modal mass and damping values of a wind turbine tower,
assuming that only the first mode of response would be relevant to vortex-induced vibrations. Without going
into further detail regarding these values, it was found that a non-dimensional mass of m∗ = 29.6 and damp-
ing ζ= 0.003 would be a good first approximation of the realistic values. These values represent the Standard
Batch for the analysis of the free-vibration phenomenon for turbulent flows. Yet, as will be reported later, the
effect of varying the mass ratio and damping ratio has been studied as well (relative to the Standard Batch).
The parameters have been varied according to Approach 1 in section 4.1.3, meaning that the dimensional in-
flow velocity was assumed to be U = 1[m/s] and from there the other (structural) parameters were obtained.
The reduced velocity has been varied from U∗ = 1.88 until U∗ = 10.74 such that the entire lock-in regime was
covered. The Reynolds number has been varied from 2.90 ·106 < Re < 10.74 ·106, which corresponds to the
reduced velocity sweep. All the non-dimensional values for the Standard Batch are summarized in tab. 4.17.

Non-dimensional parameter Value

U∗ 1.88−10.74

Re 2.80 ·106 −1.60 ·107

m∗ 29.6

ζ 0.003

Table 4.17: Non-dimensional parameters and values for the Standard Batch
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Results of the Standard Batch Similar to the results in the laminar case, the RMS of the lift coefficient, the
mean drag coefficient, the non-dimensional amplitude and the frequency ratios are shown for the turbulent
free-vibration simulations. The lift RMS coefficient amplitude and mean drag coefficient for a varying re-
duced velocity and Reynolds number is shown in fig. 4.38. As will be demonstrated in the next sections, in
some of the cases a non-harmonical lift/motion response is observed. In these cases, for comparison, it is
deemed better to deduce the RMS of the lift coefficient rather than the lift force amplitude. The maximum
lift RMS was found to be CL,r ms = 0.985 at U∗ = 3.22, compared to the stationary value this yielded a mag-
nification factor of MCL ≈ 10. The maximum mean drag coefficient was CD,mean = 0.588 which only lead to
a magnification factor of MCD ≈ 1.5 compared to the stationary drag coefficient. This latter magnification
factor was expected to be lower since the in-line DOF was suppressed in the present analysis.
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Figure 4.38. RMS of lift coefficient (left) and mean drag coefficient (right), both for the standard batch defined
in 4.17

In fig. 4.39, the amplitude and frequency response are shown against the reduced velocity and Reynolds
number. The maximum non-dimensional displacement was found to be y∗

max = 0.519 for U∗ = 4.30 and cor-
responding Reynolds number of Re = 6.40 ·106. The frequency response figure has been shown in a similar
fashion as was done previously for the laminar free-vibrating case in fig. 4.13. The bandwidth of the lock-in
region, illustrated by the frequency ratio of f ∗ ≈ 1, was considered to be quite large. It was concluded that
the observed lock-in region (by the classical definition) based on the frequency response corresponded well
with the region where an increased oscillation amplitude was found. Yet, when comparing the amplitude re-
sponse with the lift force, the curves were considered to be slightly different. The maximum RMS value of the
lift coefficient was found for a lower reduced velocity compared to the maximum displacement amplitude.
In line with that, the lock-in curve based on the lift coefficient seems to be located for a somewhat lower
range of reduced velocities compared to the motion amplitudes curve. Hence, it seems the higher oscillation
amplitudes have been achieved by a lower lift coefficient. The aerodynamic damping is the suspected cause
for this, meaning that a bigger portion of the lift force was in phase with the velocity for the reduced velocity
range of 4 <U∗ < 6.5. Therefore, relatively more energy was transferred from the wake to the cylinder. This is
supported by the observations for the forced-vibration simulations, as will be shown in the next section.
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Figure 4.39. Non-dimensional displacement amplitude (left) and frequency response (right), both for the
standard batch defined in 4.17

Results categorized Where for the laminar flow all the cases reached steady-state relatively fast (in 60 vortex
shedding cycles), this did not hold up for all the turbulent flow simulations. The turbulent simulations, in
some cases, required more than 200 shedding cycles until steady-state was reached. In some of the cases, a
periodic signal was obtained, but over a very long period.

The following four Categories are defined, based on the different VIV responses observed for the Standard
Batch:

1 Harmonical lift and transverse displacement signal with constant amplitude and a constant phase an-
gle, all reached within 40−50 shedding cycles. The results have been observed either before the lock-in
region or after the lock-in region. Both cases were located quite far away from the lock-in region such
that only the stationary shedding frequency (from the Strouhal relation) was dominant.

2 An eventually harmonical lift and transverse displacement signal with constant amplitude and con-
stant phase angle, reached after 125−250 vortex shedding cycles. These cases were located just before
the lock-in region (or in the transformation phase), the shedding frequency was lower than the natural
frequency, although closer compared to the previous Category.

3 A periodical lift and transverse displacement signal, both with varying amplitude over time. In these
cases the phase angle varied as well over time, although a stable behaviour was found. The ‘periodicity’
of these signals amounted to ≈ 40 vortex shedding cycles. These cases were typically located inside the
lock-in region.

4 A beating lift and transverse displacement signal, with multiple frequency responses and a varying am-
plitude. These cases were located close to the lock-in region, but for higher reduced velocities, where
the shedding frequency was higher compared to the natural frequency. In these cases, the beating
eventually transformed into a diverging behaviour of the cylinder motion. This Category showed an
unstable response, leading to divergence.

In these Categories, harmonical should be interpreted as a periodical signal with only one constant fre-
quency over time (for example, like a sinus signal). Still, although the frequency of the signal was constant
over time, the amplitude of the signals was observed to vary in some cases. These subtle differences between
the four type of results are shown in more detail in this section.
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Cat. 1: Outside the lock-in region In the first Category, the Strouhal frequency is located far away from
natural frequency. Hence, in this Category it is evident that the shedding frequency has been dominated by
the (stationary) Strouhal frequency. Although the frequency of the lift force was relatively far away from the
natural frequency, a structural motion was still observed. The peak amplitude only reached y∗

max = 4.29·10−4.
This motion is caused by the ‘stationary’ fluid forces acting on the cylinder which moved the cylinder slightly
at the Strouhal frequency. Since the Strouhal frequency and natural frequency are located too far-off each
other, no lock-in or resonant response was observed. The mean drag coefficient and lift force amplitude were
found to be very close to the stationary values found before, as shown in fig. 4.38.
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Figure 4.40. Fluctuating aerodynamic forces (left) and (non-dimensional) displacement motion (right), both
for the non-dimensional values of U∗ = 1.88, m∗ = 29.6, ζ= 0.003 and Re = 2.80 ·106

The phase angle development for each cycle and the phase portrait are shown in fig. 4.41. Besides the
initialization of the flow field and the transient part, the phase angle appeared to be constant: φ = 0°. This
constant phase angle is also reflected in the phase portrait, which showed just one fluid-motion trajectory for
the entire steady-state part (for the phase portrait, the transient part was filtered out). In addition, as seen in
the phase portrait, when the displacement showed a peak the lift force also showed a peak. The same holds
for when the displacement was near zero. In other words, the fluid and displacement are in phase with each
other. It is not surprising that a phase angle of φ = 0° was observed here. Since the wake was only governed
by the Strouhal frequency, it only makes sense that the structural motion (although very small) simply tags
along to this Strouhal relation assuming there is no fluid-structure interaction. The latter assumption should
be valid since no signs of lock-in were observed for this case in the phase angle development, wake or force
time-series. Hence, because of the Strouhal relation dictating both the wake and the cylinder motion, the fluid
and motion were found to be in phase. This statement was supported by the PSD plots of the fluid and motion
trajectory as well. Both the PSD’s of the lift and motion displacement time series yielded only one dominant
frequency peak at the (stationary) Strouhal frequency. The motion peak of the lift time series showed a higher
magnitude, implying that the lift force showed a stronger periodical behaviour corresponding to the Strouhal
relation.

The vorticity wakes for two cases outside the lock-in regime are presented in fig. 4.42. Both subfigures in
fig. 4.42 represent the Category 1. The left subfigure was taken before the lock-in (smaller U∗) band while the
right subfigure after the lock-in band (larger U∗). The angle for fig. 4.42a was constant over time and close to
zero, i.e. φ≈ 0° as shown in fig. 4.41. The phase angle for fig. 4.42b showed a similar development over time
but had a different magnitude: φ≈ 180°.
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Figure 4.41. Phase angle development over time (left) and (non-dimensional) phase portrait of the steady-
state signal (right), both for the non-dimensional values of U∗ = 1.88, m∗ = 29.6, ζ= 0.0033 and Re = 2.80·106

(a) U∗ = 1.88, m∗ = 29.6, ζ= 0.0033 and Re = 2.80 ·106 (b) U∗ = 10.7, m∗ = 29.6, ζ= 0.003 and Re = 1.6 ·107

Figure 4.42. Instantaneous (non-dimensional) vorticity magnitude (
∣∣ ξD

U∞

∣∣) outside the lock-in band at the

maximum, positive displacement. Vorticity range has been filtered to ξD
U∞ = 0−5.
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Based on fig. 4.42, the following observations were made:

• Both wake patterns look similar to the patterns of the stationary wake from fig. 4.26. In fact, the timing
of the vortex shedding relative to the computed lift forces was found to be identical to the stationary
cylinder case. In addition, the 2S wake pattern is present in this vorticity plot as well.

• Fig. 4.42a corresponded well with fig. 4.26b and fig. 4.42b with fig. 4.26d.

• While the timing of these wake patterns relative to their lift forces was the same, the timing relative to
the cylinder motion was not the same.

• Both images were taken when the cylinder was at its maximum displacement and appeared to be a
mirror image of each other. This mirror image confirms the phase angle difference of φ≈ 180°.

• The trend of a positive phase angle corresponding to a vortex being shed at the opposite side of the
cylinder oscillation’s side is again confirmed in this case. The phase angle of φ≈ 180 corresponding to
fig. 4.42b shows that the vortices indeed depart from the lower side of the cylinder while the cylinder is
at its positive maximum. Vice versa happened for the case with a phase angle of φ= 0°.

It seems that the phase angle has switched to the typical positive value of φ> 100° found in the literature
[106], [30] and [15] after the lock-in band is passed. The two former studies yielded a phase angle of around
φ ≈ 180°. Yet, other studies have also shown a different phase angle behaviour for the lock-in range, for
example [4] yielded a negative phase angle for higher U∗.

Cat. 2: Closely before lock-in Just before lock-in, the lift and cylinder displacement time series showed
a different response compared to the previous Category. In this Category, the motion displacement is sub-
stantially higher. Furthermore, the wake and cylinder motion showed two dominant frequency responses
in contrast to only one dominant peak in the previous Category. In fig. 4.43, the force (left subfigure) and
displacement history (right subfigure) are shown.
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Figure 4.43. Fluctuating aerodynamic forces (left) and (non-dimensional) displacement motion (right), both
for the non-dimensional values of U∗ = 2.95, m∗ = 29.6, ζ= 0.003 and Re = 4.40 ·106

The lift force became around 7 times larger compared to the previous Category, which was outside the
lock-in band. The motion amplitude increased by two orders of magnitude compared to the previous case.
These two increments already show a glimpse of how this Category is approaching the lock-in regime more
closely compared to the previous Category. The increased reduced velocity brought the natural frequency
closer to the shedding frequency (Approach 1 of section 4.1.3). These operating conditions enhanced the
energy transfer from the fluid to the structure, which in turn increased the motion response. Still, the two
PSD plots extracted from the lift and motion time series yielded only one dominant peak at the Strouhal
frequency and hence the wake was governed by the Strouhal relation. A very small, second frequency peak
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Figure 4.44. Phase angle development over time (left) and (non-dimensional) phase portrait of the steady-
state signal (right), both for the non-dimensional values of U∗ = 2.95, m∗ = 29.6, ζ= 0.003 and Re = 4.40 ·106

was found in the motion PSD around the natural frequency. This relatively small natural frequency response
was already enough to increase the cylinder motion by two orders of magnitude.

The development of the lift force coefficient and cylinder displacement over time in fig. 4.43 also differed
compared to the previous Category. In these time series, the lift coefficient and non-dimensional amplitude
are showing a varying amplitude over time. The amplitudes showed a continuous alteration of increment
and decrement while slowly converging towards a constant amplitude. Because of the limited computational
resources, these simulations were not finished. Yet, it was expected that the amplitude would reach a con-
stant level at a certain t∗ for t∗ > 250. When this latter condition is reached, equilibrium may be expected
between the fluid and structure. In the timeframe of fig. 4.43, the energy transfer between the fluid and the
structure is still varying over time. When there was a net energy transfer from the fluid to the structure, the
non-dimensional amplitude started to increase and vice versa.

The corresponding phase angle development and phase portrait of fig. 4.43 is displayed in fig. 4.44. The
phase angle seemed to fluctuate periodically around a mean phase angle of φmean ≈ 5°. When the phase
angle was above the mean phase angle, the aerodynamic damping was higher and the fluid was exciting the
cylinder more. Contrary, when the phase angle was below the mean value, the fluid was damping the cylinder
motion. Therefore, the oscillations observed in the phase angle development in fig. 4.44 were found to be in
line with the earlier lift force and cylinder motion oscillations shown in fig. 4.43. Each peak of the phase
angle in fig. 4.44 was found to be located around the steepest lift force/cylinder displacement increment
(largest positive slope) in fig. 4.43. Similar to the expected equilibrium conditions of the lift force and motion
amplitude stated before, it was expected for t∗ > 250 the phase angle would reach a constant plateau as well
at a certain time instant (similar to the plateau observed in fig. 4.41). The phase portrait does not show
one unique cycle as was observed in the previous Category. This means that the lift force and structural
displacement are changing continuously over time and do not show a unique relative trajectory. Still, the
overall shape of the phase portrait indicated that lift force and cylinder displacement should be in phase with
each other, or at least close to that. Indeed, the estimated mean phase angle of φmean = 5° demonstrated that
the lift force and structural motion are nearly in phase with each other. It may be expected once the phase
angle becomes constant and equilibrium is reached, the phase portrait would also show a unique trajectory
similar to the one plotted in fig. 4.41.

Cat. 3: Inside the lock-in region Inside the lock-in region, the aerodynamic forces and structural motion
showed a periodical behaviour but with varying amplitude over time, as shown in fig. 4.45. While in the
previous Category, the lift coefficient reached a maximum of CL,max = 0.69, in this Category inside the lock-in
band the lift coefficient reached a maximum of CL,max = 2.22. Increasing the reduced velocity from U∗ = 2.95
to U∗ = 3.12 lead to a substantial lift magnification of MCL ≈ 3.2. The motion amplitude showed an even more
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impressive increment; one order of magnitude compared to the previous Category. Hence, the transition from
Category 2 (at the border of the lock-in band) to Category 3 (inside lock-in band) particularly impacted the
structural displacement.
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Figure 4.45. Fluctuating aerodynamic forces (left) and (non-dimensional) displacement motion (right), both
for the non-dimensional values of U∗ = 3.1, m∗ = 29.6, ζ= 0.003 and Re = 4.60 ·106

The PSD plots of the lift and motion trajectory both showed one dominant peak around the natural fre-
quency. This is the first case where the wake was governed by the structural oscillations rather than the
Strouhal relation. A secondary, smaller frequency peak was observed for both the lift and motion PSD’s. In-
terestingly, the smaller peak for the lift time series was located further away from the Strouhal frequency while
for the motion PSD the opposite was true. The fact that the secondary lift frequency peak is not located closer
to the Strouhal frequency compared to the secondary motion frequency peak can be explained by two factors.
Firstly, the Reynolds number has been varied accordingly to the reduced velocity sweep as was shown in tab.
4.17. The Strouhal number is dependent on the Reynolds number and therefore varied for each case with
a different reduced velocity. For some of the operating conditions, the Strouhal number has been interpo-
lated between two different cases. This interpolation might have introduced an error. Secondly, the Strouhal
number for the stationary cylinder has been evaluated with loose fluid solver settings in contrast to the tight
settings for the moving cases (see tab. 3.7). This difference might have caused a difference in the Strouhal
number between the stationary and moving case. These two factors could have affected the Strouhal number
evaluation. Hence, it is possible that the secondary frequency peak of the lift time series was located closer to
the Strouhal number than the secondary motion frequency peak.

The overall phase angle development and phase portrait of this Category is shown in fig. 4.46. The phase
angle variation is in line with the lift force and motion development over time. When the lift force coefficient
and transverse displacement increased, the phase angle was typically positive. Vice versa when the lift force
and transverse displacement were decreasing. Especially around the peaks of the lift force coefficient and
transverse displacement in fig. 4.45, the phase angle dropped significantly. This drop will be explained in the
subsequent sections. The phase portrait indicates that the lift force and transverse displacement tended to
move generally in phase with each other. The mean phase angle was found to be φmean = 9° and supports
this latter observation. Yet, there is no unique cycle, as was the case for Cat. 1 in fig. 4.41. This is caused by
the continuous amplitude variation of the aerodynamic forces and structural motion.

The time series are presented again fig. 4.47, but for a smaller timeframe around the first lift/motion peak
observed in 4.45 around t/Ts = 145. The corresponding, varying phase angle for each shedding cycle was
plotted in the same figure. In this timeframe, the lift force and motion displacement showed an alternation
of growth and decay. This alternation was related to a phase angle drop (see right subfigure of fig. 4.47) and
wake pattern change. While for the earlier shedding cycles the phase angle was observed to be positive, it sud-
denly dropped to a negative value when the 146th cycle started. This phase drop is causing the aerodynamic
damping to change of sign. Where the aerodynamic damping was positive for the cycles 142−144 it became
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Figure 4.46. Phase angle development over time (left) and (non-dimensional) phase portrait (right), both for
the non-dimensional values of U∗ = 3.1, m∗ = 29.6, ζ= 0.003 and Re = 4.60 ·106

negative for the cycles 146−147. Hence, in the former cycles the fluid was exciting the cylinder and during
the latter cycles the fluid was damping the cylinder’s motion. The phase angle evolvement can be seen back
in the time series in fig. 4.47 by the relation between the lift coefficient and non-dimensional amplitude. In
the earlier cycles, the lift force coefficient is leading the displacement which corresponds to a positive phase
angle. In the last couple of cycles, the lift force starts to fall behind the motion displacement and is then said
to be lagging behind the displacement vector. In the latter case, the phase angle was indeed negative.

Beside the relation between the lift force and motion displacement, the amplitude development is also
related to the phase angle development. Where in the cycles 142−144 the lift force grew and the transverse
displacement as well, they both started to decay once the phase angle switched sign. When the wake is ex-
citing the cylinder, it makes sense that the cylinder vibrations would grow. Apparently, with the stronger
oscillations, the lift force also tended to increase (self-excitation). Yet, at one point this self-exciting effect
stopped when the phase angle switched sign. In the last couple of cycles, the amplitudes of both the lift coef-
ficient and displacement started to decay. Apparently, a change in the wake has caused the VIV to go from a
self-exciting nature to a self-limiting one.

The phase angle drop can be related to the wake pattern development shown in fig. 4.48, as was done for
the forced-vibration cases. The left subfigure corresponds to the positive phase angle at t/Ts = 143.5 and the
right subfigure to the negative phase angle at t/Ts = 146.5 of fig. 4.47.

When the phase angle was positive, the vortices were shed from the bottom side of the cylinder when the
cylinder reached its maximum positive displacement, see fig. 4.48a. The opposite was true for when the phase
angle turned negative, then the vortices shed from the same side as where the cylinder was oscillating to. It
seems that at one point the cylinder motion became too big which reorganized the wake in such a way that the
wake started to damp the cylinder motion. Hence, the self-exciting behaviour observed for the positive phase
angles changed to a self-limiting behaviour when the wake was reorganized and the phase angle became
negative. This continuous alteration between self-excitement and self-limitation is reflected in the lift force
times series of fig. 4.45. No steady-state equilibrium was therefore found, where the transverse displacement
amplitude and lift coefficient amplitude stayed constant (and hence the energy transfer between the fluid
and the structure stayed constant).

This trend, the relation between the vortex shedding and the phase angle, was found to be in line with the
observations for the forced-vibration simulations before in section 4.2.2. In fact, fig. 4.48b looks similar to
the observed wake pattern in fig. 4.34c and 4.34d. Yet, the wake pattern for 4.48a does not correspond with
the ‘positive phase angle’ wake patterns observed for the forced-vibration simulations in fig. 4.34a and fig.
4.34b. This might have to do with the fact that those latter wake patterns corresponded to a phase angle of
φ = 19− 20° while the ones presented here to a phase angle of φ = 10− 14°. Where in the forced-vibration
cases the phase angle dropped directly from φ = 19° to φ = −22° when the amplitude was increased from
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Figure 4.47. Fluctuating lift coefficient and (non-dimensional) displacement/velocity (left) and correspond-
ing fluctuating phase angle (right) around a peak in the lift force development under the operating conditions
of U∗ = 3.1, m∗ = 29.6, ζ= 0.003 and Re = 4.60 ·106

y∗
max = 0.1 to y∗

max = 0.175, for the free-vibration case the phase angle development was more gradual over
time. Therefore, it may be concluded that the vortices shown in fig. 4.48a compromised a wake pattern
development in between the wakes of fig. 4.34b and fig. 4.48b.

(a) t/Ts = 143.5 (b) t/Ts = 146.5

Figure 4.48. Instantaneous (non-dimensional) vorticity magnitude (
∣∣ ξD

U∞

∣∣) at the maximum, positive displace-

ment. Vorticity range has been filtered to ξD
U∞ = 0−5. Cases obtained under following non-dimensional oper-

ating conditions: U∗ = 3.1, m∗ = 29.6, ζ= 0.0033 and Re = 4.64 ·106.

Cat. 4: Closely after lock-in Closely after lock-in, in contrast to the previous three Categories, the wake and
structure did not reach a stable equilibrium. In fig. 4.49, the lift force, drag force and transverse displacement
are shown. As can be seen from these figures, the fluctuating forces and structural motion were still develop-
ing when the simulation was stopped. In fact, prior to this simulation a lower oscillation amplitude and lift
coefficient were expected. This Category is in the reduced frequency range of 0.5 < f ∗ < 0.7 compared to the
range of 1.2 < f ∗ < 0.9 for Category 2 and 3. Because these latter two Categories were located more closely
to the critical frequency, it was expected these Categories would show the highest oscillations amplitudes
and lift forces. Nevertheless, it has been reasoned the simulations for Category 4 were not experiencing nu-
merical divergence. In fact, the transverse velocity error of the last PIMPLE loop has been monitored closely



108 4. Results

(right subfigure in fig. 4.50). As can be seen from this figure, the velocity error stayed well below the desired
threshold of 10−5. One ‘peak’ error is shown in fig. 4.50, however it is expected this peak was caused by a post-
processing error. The fluid solver converged each timestep and the specified non-linear tolerance criteria of
10−6 was reached every timestep for the fluid. The fluid convergence (and indirectly structural convergence)
was typically reached after 3−4 subiterations. Because of the motion solver’s implementation within Open-
FOAM (see section 3.2.2), the structural convergence observed the right subfigure of fig. 4.50 also guarantees
that the FSI coupling has been solved adequately. Furthermore, an additional identical case with 10 subiter-
ations has been run. It appeared this even more strongly coupled case did not prevent the divergence from
happening, which also supports there was no numerical divergence. It was believed the divergence was fea-
sible and this has been explained by the following steps:

• The Category 4 cases are located around a frequency ratio of 0.5 < f ∗ < 0.7 which initially triggered
a beating phenomenon where the wake was continuously switching between following the Strouhal
relation or the cylinder motion (for 225 < t/TS < 350 in fig. 4.49, beating further explained in section
4.1.3).

• It was known from the forced-vibration simulations of before that the operating range of 0.5 < f ∗ <
0.7 yielded potentially unstable trajectories for the system (shown in fig. 4.37). In this bandwidth,
the aerodynamic damping keeps on increasing with growing oscillation amplitudes. Therefore, the
relatively small rise of the transverse oscillations as a result from the beating opened the possibility
of undergoing an unstable trajectory where the aerodynamic damping would only excite the cylinder
even more.

• Eventually, the beating phenomenon stopped and the wake fully adapted to the cylinder’s natural fre-
quency: one dominant PSD peak was observed located at the natural frequency for the lift force signal
(for tT /s > 350 only one sinus signal can be seen in fig. 4.49 and fig. 4.50 shows indeed one dominant
peak in the PSD of the lift signal).

• The self-excitation is expected to continue until the cylinder reaches an amplitude where the aerody-
namic damping starts to become negative again. The simulation was stopped when the oscillation
amplitude reached y∗

max > 0.5. Since the contour map of the forced-vibration simulations considered
an operating grid up to y∗

max = 0.25, it is not known if (and when) a negative aerodynamic damping
would occur somewhere along the trajectory. The simulation was stopped because of the considerable
amount of computational time and power required to further continue this run, while not knowing if
an equilibrium would be reached after all.

• It may be concluded the damping coefficient ζ was not large enough to suppress the aerodynamic ex-
citement of the wake. Even though at lower amplitudes, as shown in fig. 4.37, when the aerodynamic
excitement was still relatively low the system’s damping was not able to phase out the oscillations. Ide-
ally, the damping coefficient should be matched to at least the value of the positive aerodynamic damp-
ing reached at the first isoline in the contourmap.

It may be questioned if the contour map obtained by the forced-vibration experiments can be considered
as a reliable source of information. The predicted aerodynamic damping coefficients have been compared
against the results from a supercritical wind-tunnel experiment before in fig. 4.35 and 4.36. Although in some
cases the magnitude might differ, the behaviour of the aerodynamic damping for a varying frequency ratio
was considered to be similar. In fact, the wind-tunnel experiment of [2] also observed an unstable trajectory
at a frequency ratio of f ∗ = 0.965. In addition, in fig. 4.36 it was shown that the CFD results agreed well with
the experiment before the lock-in band (except for the lowest amplitude). Hence, the observed aerodynamic
behaviour in the contour map was deemed as a reliable source of information to explain observed divergence
here for the free-vibration experiment.

Another aspect of the above reasoning which might attract some discussion is the plausibility of the cylin-
der vibrating at a frequency ratio of f ∗ = 0.7. Various numerical and experimental studies in the literature
showed similar broad lock-in ranges, where the non-dimensional amplitude reached values of y∗

max > 0.5 as
well for these low frequency ratios. For example, the numerical study of [106] also yielded a broad lock-in
map. Yet, the latter study was performed at a lower mass ratio and Reynolds number. The 2-DOF experimen-
tal study of [107] showed a similar broad lock-in band as [106]. The wind-tunnel study of [30] also showed
a lock-in region extending to a frequency ratio of f ∗ = fnat / fshed ,st at = 0.6. The DPIV experiment of [108]
observed a distinction between a two-branch and three-branch response, based on the non-dimensional
amplitude versus reduced velocity response. The distinction was related to the mass-damping parameter,
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Figure 4.49. Fluctuating aerodynamic forces (left) and (non-dimensional) displacement motion (right), both
for the non-dimensional values of U∗ = 4.30, m∗ = 29.6, ζ= 0.003 and Re = 6.40 ·106

where a low value typically leads to the three-branch response with a significantly broader lock-in range and
also the 2P wake mode. The latter wake mode has been observed in the present research as well and has been
shown in the next section which considered the mass coefficient effect. Hence, although usually at lower
Reynolds numbers and mass-damping values, plenty of VIV studies found in the literature showed similar
broad lock-in ranges as was found in the present research. In fact, the book of [3] noted the vortex-shedding
frequency might shift towards the natural frequency ‘by as much as ±40%’, when the oscillation amplitudes
are large. Hence, it is highly possible the stationary wake was strong enough to initialize and trigger the cylin-
der movement, although the operating conditions were 30% off the critical frequency. Eventually, the cylinder
oscillations became strong enough (partly because of the aerodynamic excitation) such that the shedding fre-
quency started to follow the natural frequency (lock-in).
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Figure 4.50. Power-spectral density of the fluctuating lift coefficient (left) and relative velocity error (right) for
the following operating conditions: U∗ = 4.30, m∗ = 29.6, ζ= 0.003 and Re = 6.40 ·106
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Effect of mass coefficient on VIV The Standard Batch of CFD cases was defined before in section 4.2.3 in
tab. 4.17. The first sensitivity analysis on the Standard Batch has been dedicated to investigate the effect of
the mass coefficient on the lift forces and transverse displacement. This resulted into four additional cases
analysed for three different reduced velocities. Because of the large computational cost, only three operating
points of the previous batch have been analysed for a different mass coefficient: U∗ = (2.95 3.12 3.22).
These three operating points corresponded to the previously defined Categories 2 and 3 and are therefore
either located closely before the lock-in band or are inside the lock-in band. Out of all the operating points
it was deemed as most interesting and relevant to the present research to further analyse the sensitivity of
certain parameters when lock-in was present (or at least starting to become present). When the simulations
were started for this sensitivity analysis, it was expected Category 2 and 3 would entail the lock-in region as
best. However, as the simulations of Category 4 appeared to eventually yield higher oscillation amplitudes it
would have been relevant as well to conduct the sensitivity study for this Category. No sensitivity analysis has
been done for Category 4.

For the sensitivity analysis, the standard mass coefficient of m∗ = 29.6 has been multiplied by Mm∗ =
(8.6 2 0.5 0.085) which yielded the following mass coefficients: m∗ = (254.6 59.2 14.8 2.5). The idea
was to investigate one very large and one very small mass coefficient, while also investigating some cases in
between to see if there is a relation between the mass coefficient and the results. Similar to tab. 4.17, the
mass-sensitivity cases have been tabulated in tab. 4.18 for a clear overview. In total, 9 additional cases have
been run compared to the Standard Batch.

Non-dimensional parameter Value

U∗ (2.95 3.12 3.22)

Re 4.4 ·106 −4.8 ·106

m∗ (2.5 14.8 29.6 59.2 254.6)

ζ 0.003

Table 4.18: Non-dimensional parameters and values for the mass coefficient sensitivity study

The results of the mass sensitivity study have been shown in fig. 4.51. Regarding the effect of the mass
coefficient on the displacement amplitude, the results were as expected. Each time the mass coefficient was
lowered, the non-dimensional amplitude increased. This can be explained by the fact that a lower mass
ratio leads to a lower structural inertia compared to the fluid inertia. This in turn made the cylinder more
susceptible to oscillations and possibly lock-in. In the present sensitivity study, the effect on the lock-in band
has not been investigated because of the large computational power required to compute the full lock-in
curve again for different mass ratios. Based on fig. 4.51, it may be concluded increasing the mass coefficient
would at one point lead to a motion-fluid response which is similar to the one of a stationary cylinder. This
reasoning was supported by the fact the lowest two mass coefficients did not lead to a major difference in
response. In other words, there is a critical mass ratio which prevents the system of undergoing an enhanced
fluid-structure interaction.

The middle two curves, for m∗ = 29.6 and m∗ = 14 both showed an increasing trend with increased re-
duced velocity, while the curve for m∗ = 2.5 implied a ceiling. As will be shown further ahead in this section,
it appeared the highest mass coefficient led to a different type of response for some of the operating points.
This different response might have led to a different lock-in curve as well. The sensitivity of the motion am-
plitude to the mass coefficient was not linear at all. The sensitivity was different for each of the operating
conditions and is therefore hard to generalize.

The effect of the mass coefficient on the lift force is a bit different compared to the effect on the motion
amplitude. The curve for m∗ = 2.5 was different. In fact, where the motion amplitude grew when the mass
coefficient was lowered from m∗ = 14.8 to m∗ = 2.5, the lift coefficient showed a different trend. For U∗ =
2.95 the lift force indeed increased, but for U∗ = 3.12 it barely increased and for U∗ = 3.22 it decreased. It
turned out the aerodynamic damping relative to lift coefficient magnitude for both mass ratios m∗ = 14.8
and m∗ = 2.5 at U∗ = 3.2 was quite low, which means the aerodynamic damping could not have caused this
counter intuitive result. Yet, it was believed the counter intuitive result was caused by the dynamic state
which was reached for both mass ratios. The mass ratios of m∗ = 29.6 and m∗ = 14.8 led to a more dynamic
fluid-structure interaction, where the lift coefficient was able to reach higher peak values. This effect is clearly
visible in fig. 4.52 between the responses for m∗ = 14.8 and m∗ = 2.5. Besides the lift RMS curve for m∗ = 2.5
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which differed slightly, the other curves agreed well with the curves observed for the motion amplitude in fig.
4.51.
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Figure 4.51. RMS of lift coefficient (left) and (non-dimensional) transverse motion amplitude (right), both
results for the mass sensitivity study of tab. 4.18

For U∗ = 2.95, the lift coefficient and motion displacement time-series are shown in fig. 4.52. The follow-
ing observations were made:

• A larger mass coefficient leads to a smaller lift coefficient and non-dimensional displacement, as was
earlier shown in fig. 4.51.

• A larger mass coefficient also leads to a steadier, harmonical signal. The only exception to this obser-
vation is the case with the lowest mass coefficient of m∗ = 2.5 where a stable amplitude is reached after
the transient part.

• It seemed the cylinder was more inclined to stick to its dynamic equilibrium (steady-state) at higher
mass coefficients. The beating phenomenon or other non-harmonical behaviour were less likely to
occur as the larger inertia prevented the cylinder from changing to a different dynamic state. In other
words, the energy transfer between the cylinder and the fluid remained more constant for a higher mass
coefficient.

Similar to fig. 4.52, the time series for the lift coefficient and transverse displacement are displayed in fig.
4.53 for U∗ = 3.10. The results for U∗ = 3.20 were quite similar to the results for U∗ = 3.10, therefore these
results have not been plotted here (note that both operating points were from Category 3).

Comparing fig. 4.53 (U∗ = 2.95) with fig. 4.52 (U∗ = 3.10) lead to the following observations:

• When the mass coefficient was m∗ = 2.5, the force time series and dynamic state does not seem to vary
much when the reduced velocity was varied between U∗ = (2.95 3.10). This could indicate the lock-
in band has increased with a lower mass coefficient, leading to indifferent results when the reduced
velocity is only varied slightly. Also quantitatively, the non-dimensional transverse displacement am-
plitudes and lift coefficient amplitudes were found to be in the vicinity of each other at m∗ = 2.5 (see fig.
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Figure 4.52. Fluctuating lift coefficient (left) and (non-dimensional) displacement (right), under the operating
conditions of U∗ = 2.95, m∗ = (2.5 14.8 29.6 59.2 254.6), ζ= 0.003 and Re = 4.4 ·106
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4.51). With such a low mass coefficient, lock-in was established fairly quickly. The shedding frequency
showed a strong response close to the stationary shedding frequency instead of close to the natural
frequency. This would imply the cylinder was not in lock-in mode according to the definition stated in
section 2.2.4.

• When the mass coefficient was m∗ = 254.6, the aerodynamic forces and dynamic state seemed to be
insensitive as well to the change of the reduced velocity between U∗ = (2.95 3.10). This time, the
shedding frequency showed a weak response (compared to the lower mass coefficients) and followed
the stationary shedding frequency very closely fshed ,F SI / fshed ,st at ≈ 1 rather than the natural frequency
fshed ,F SI / fnat = 0.98. The higher mass coefficient yielded a very stiff system which the fluid forces
could not initiate to move significantly and therefore the wake tended to follow the stationary Strouhal
relation.

• For both reduced velocities of U∗ = (2.95 3.10), it was reasoned that the mass ratios of m∗ = 14.8 and
m∗ = 29.6 allowed the fluid-structure system to develop in a more dynamic way where energy transfer
between fluid and structure was not constant.

• It has appeared the Categories defined earlier in section 4.2.3 are no longer applicable for either very
high or very low mass coefficients. It seemed the aerodynamic forces and dynamic state converged to
a similar solution over the range of reduced velocities investigated here: U∗ = (2.95 3.12 3.22) when
the mass coefficient is either very high (which approaches a stationary cylinder) or very low (which
approaches a cylinder supposedly strongly in lock-in mode although the frequency response did not
show this).

Interesting wake patterns have been identified for the lowest mass coefficient cases with m∗ = 2.5. The
phase angle and phase portrait of one of these cases at U∗ = 2.95 have been shown in fig. 4.54 (corresponding
to the case with m∗ = 2.5 in fig. 4.52). Similar to earlier findings, the phase angle was found to be positive
when the lift coefficient was still growing in the beginning, transient part of the simulation. Then, when the
equilibrium was found, the phase angle dropped to a lower, more constant value of around φ≈ 3°. The phase
portrait in fig. 4.54 indeed shows a steady-state condition with one unique lift-motion trajectory, implying a
more constant phase angle.
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Figure 4.54. Phase angle development over time (left) and (non-dimensional) phase portrait (right), under
the operating conditions of U∗ = 2.95, m∗ = 2.5, ζ= 0.003 and Re = 4.4 ·106

Only the 2S wake pattern was identified from the defined wake patterns of [15] in the vorticity contours
shown before. In this specific case, with m∗ = 2.5, the wake patterns 2P and P+S also appeared to be active.
The 2P pattern was found at the t/Ts = 27th shedding cycle, still when the lift and displacement amplitude
was growing. The phase angle was found to be φ≈ 19° there. The P+S pattern was found in the steady-state
regime.
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The 2P pattern, in which two vortex pairs are formed each cycle, can be identified in fig. 4.55a. First one
strong vortex separates from the cylinder body and then quickly after that a smaller vortex separates as well
and follows the larger vortex. The vortices lose their strength as they trail further aft from the cylinder body
in the wake. It was shown in the review of [14] that some of the experiment/numerical works done before
were able to show 2P/2S modes for Re > 1000 and some not. In fact, in the study of [106], two of the known
vortex patterns (2S and 2P) have been identified in the wake by a RANS approach. It must be noted the mass
ratio was only m∗ = 2.4 in their study which is nearly the same as the presently used mass coefficient in fig.
4.55 (although the damping was one order of magnitude higher than the one used in [106]). Before, when
the mass coefficient was larger, only the 2S mode was found in the wake. It is possible that the lower mass
coefficient, in line with the findings of [106], made the 2P formation possible. This might be caused by the
higher, transverse displacement amplitudes which were reached with the lower mass coefficient.

In the fig. 4.55b another vortex mode was seen. This vortex mode looked much alike the P+S pattern of
[15], in which a vortex pair and a single vortex are being shed each cycle. First, a large vortex sheds from the
cylinder body and after that three smaller vortices quickly shed as well from the body. The middle vortex of
these three smaller vortices fades out relatively quick. When this happens, the P+S pattern becomes visible
in the wake. Before the P+S pattern becomes apparent, it is unclear which pattern the wake with 4 vortices
would resemble of the study of [15]. Although the cylinder in both subfigures of fig. 4.55 showed a similar
transverse displacement, the wake pattern was different. It has been reasoned that this difference was caused
again by the phase angle (and hence the state of the system).

(a) t/Ts = 27.0, y∗ =−0.66,φ≈ 19° (b) t/Ts = 95.6, y∗ =−0.69,φ≈ 3°

Figure 4.55. Instantaneous (non-dimensional) vorticity magnitude (
∣∣ ξD

U∞

∣∣) at the maximum, negative dis-

placement. Vorticity range has been filtered to ξD
U∞ = 0−5. Cases obtained under following non-dimensional

operating conditions: U∗ = 2.95, m∗ = 2.5, ζ= 0.003 and Re = 4.4 ·106.

Effect of damping coefficient on VIV Like the previous section, a sensitivity analysis has been performed
on the (structural) damping coefficient. The input parameters have been tabulated in tab. 4.19. The mass
coefficient corresponds to the one used for the Standard Batch. The reduced velocities are identical to ones
used in the analysis on the mass coefficient, which is in the lock-in band (or close to).

Non-dimensional parameter Value

U∗ (2.95 3.12 3.22)

Re 4.4 ·106 −4.8 ·106

m∗ 29.6

ζ (0.002 0.003 0.007)

Table 4.19: Non-dimensional parameters and values for the damping coefficient sensitivity study

The results for the damping sensitivity study have been shown in fig. 4.56. The lock-in curves for ζ= 0.002
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Figure 4.56. RMS of lift coefficient (left) and (non-dimensional) transverse motion amplitude (right), both
results for the damping coefficient sensitivity study of tab. 4.19

and ζ = 0.003 are similar. The main effect of the damping coefficient observed in these curves is on the
magnitude, where a lower damping leads to a slightly larger lift coefficient RMS and motion amplitude. The
results for ζ = 0.007 show a different trend over the range of reduced velocities. For U∗ < 3 it seemed the
curve for ζ = 0.007 agreed well with the other damping curves. Yet, for U∗ > 3, the lock-in curve started to
deviate for ζ = 0.007 compared to the curves of ζ = 0.003 and ζ = 0.002. It has appeared, as will be shown
further ahead in this section, the damping coefficient was sufficiently large to almost completely phase out
the motion and wake responses observed for the lower damping curves.

Whereas the Categories defined earlier did not seem to be applicable when the mass coefficient was
changed significantly, the Categories remained applicable when the damping coefficient as varied. The effect
of the damping coefficient on Category 2, which is just before lock-in, is shown in fig. 4.57. The damping
coefficient did not change the time series qualitatively, in contrast to the observed responses for the mass
coefficient sensitivity analysis. It was found that the eventual harmonical signal that was reached in Category
2 was reached faster when the damping coefficient was higher. This can be seen back in fig. 4.57 by the less
oscillatory transient part when the damping coefficient was higher.

With regards to Category 3, the effect of the damping coefficient on the aerodynamic forces and cylinder
motion is shown in fig. 4.58. In contrast to Category 2, this time the damping coefficient does have a qual-
itative effect on the aerodynamic forces and cylinder motion. When the damping coefficient was increased
from ζ= 0.002 to ζ= 0.003 the amplitude decreased slightly and the initialization of VIV took longer, but the
trajectory was similar. For ζ = 0.007 the trajectory changed significantly. The structural damping was most
probably too large to allow the cylinder body and the wake to initialize the ‘strong’ trajectory observed for
the other damping cases. The energy transfer from the wake to the cylinder body was overruled by the en-
ergy dissipation of the structural damper. This finding demonstrated that the 2-way FSI coupled cases, in
contrast to the 1-way coupled and stationary cylinder cases, are hugely dependent on the transient part of
the simulation. It matters how the wake and the cylinder motion develop and how they interact with each
other before equilibrium is reached. If the interaction is suppressed it can prevent a strong trajectory from
occurring, while if the configuration is more susceptible it can lead to significant lift forces and transverse
displacements.
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Figure 4.57. Fluctuating lift coefficient (left) and (non-dimensional) displacement (right), under the operating
conditions of U∗ = 2.95, c∗ = (0.002 0.003 0.007) , m∗ = 29.6 and Re = 4.4 ·106
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Figure 4.58. Fluctuating lift coefficient (left) and (non-dimensional) displacement (right), under the operating
conditions of U∗ = 3.10, c∗ = (0.002 0.003 0.007) , m∗ = 29.6 and Re = 4.4 ·106
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Non-dimensional analysis: Two Approaches In the free-vibration studies for laminar flow it was shown
before that these four non-dimensional parameters adequately describe the 2-way coupled problem (see
section 4.1.3): m∗,ζ,U∗ and Re. It was deemed as important to see if these four non-dimensional parameters
worked as good in the supercritical Reynolds regime as they did in the laminar regime. Therefore, similar
to section 4.1.3, multiple cases have been simulated where the non-dimensional values were equal but their
dimensional values slightly changed. The non-dimensional and dimensional input parameters and results
have been shown in tab. 4.20.

Parameter Case 1.1 Case 1.2 Case 2.1 Case 2.2

U∗ 4.3 4.3 3.2 3.2

m∗ 3446.9 3446.9 29.6 29.6

ζ 0.003 0.003 0.003 0.003

Re 3.2 ·106 3.2 ·106 4.8 ·106 4.8 ·106

fnat [H z] 0.23 0.324 0.31 0.324

U [m/s] 1.0 1.4 1.0 1.04

m[kg ] 2707.2 2707.2 23.2 23.23

ks [N /m] 5835.5 11219.5 88.3 96.3

c[N · s/m] 25.3 35.1 0.30 0.31

ν[m2/s] 3.13E −07 4.33E −07 2.1E −07 2.18E −07

CD,mean[−] 0.42 0.42 0.58 0.58

CL,RMS [−] 0.09 0.09 1.0 1.0

CL,y [−] −0.13 −0.13 1.31 1.31

CL,ẏ [−] 0.001 0.001 0.25 0.25

y∗
max [−] 1.36E −05 1.35E −05 0.34 0.34

St [−] 0.322 0.321 0.30 0.30

fshed 0.322 0.444 0.304 0.317

Table 4.20: Results of turbulent free-vibration cases inside (Case 1.2/2.2) and outside (Case 1.1/2.1) lock-in
band

The same two Approaches from section 4.1.3 have been used to simulate identical non-dimensional cases
while their dimensional values may differ. As can be observed, Case 1.1 has the same non-dimensional values
as Case 1.2. The same holds for Case 2.1 and Case 2.2. Case 1.1 and Case 2.1 used Approach 1 while Case
1.2 and 2.2 used Approach number 2. In the first Approach (Case 1.1 and 2.1), the dimensional velocity was
assumed to be constant and the value was assumed as well. From there on, the other dimensional parameters
were deduced. In the second Approach (Case 1.2 and 2.2), the value of the natural frequency was assumed
constant during the U∗-sweep. In the latter Approach, only the dimensional velocity was varied while the
other dimensional values were kept constant. As shown in tab. 4.20, both Approaches have yielded identical
results for the aerodynamic forces which is in line with the earlier findings in the laminar analysis.

The mass and spring-stiffness used for Cases 1.1 and 1.2 was considerably higher. In addition, Cases
1.1/1.2 were outside the lock-in band while Cases 2.1/2.1 were inside the lock-in band. These four Cases have
been analyzed to see if the non-dimensionalization would work under different operating conditions. Tab.
4.20 shows that both Approaches arrive at the same results. The results confirmed that the non-dimensional
values are usable for turbulent flows as well. It must be noted that for the comparison of Cases 1.1-1.2 and
2.1-2.2 it was deemed as important to deduce the aerodynamic quantities from an equal non-dimensional
timeframe. If the latter was not done, larger deviations between the results were observed. Knowing that
t = t∗/ fshed , it may concluded that a smaller shedding frequency leads to a longer simulation time. Tab. 4.20
shows that Approach 1 leads to a smaller shedding frequency. Therefore, to save computational time it has
been recommended to adopt Approach 2 for VIV analysis rather than Approach 1.
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Non-dimensional analysis: Cylinder Size In addition to the verification of the two proposed Approaches
before, the effect of the cylinder diameter on the results has been evaluated as well. The aim of this additional
parameter study was to see if the size of the cylinder is taken into account well by the four non-dimensional
parameters. These Cases have been listed in tab. 4.21.

Parameter Case 3.1 Case 3.2 Case 4.1 Case 4.2

U∗ 2.95 2.95 3.1 3.1

m∗ 14.8 14.8 29.6 29.6

ζ 0.003 0.003 0.003 0.003

Re 4.4 ·106 4.4 ·106 4.6 ·106 4.6 ·106

fnat [H z] 0.34 0.085 0.32 0.08

U [m/s] 1.0 1.0 1.0 1.0

D[m] 1.0 4.0 1.0 4.0

m[kg ] 11.6 185.8 23.2 371.7

ks [N /m] 52.5 52.5 94.5 94.5

c[N · s/m] 0.163 0.65 0.31 1.24

ν[m2/s] 2.3E −07 9.1E −07 2.16E −07 8.6E −07

CD,mean[−] 0.47 0.47 0.57 0.57

CL,RMS [−] 0.59 0.59 0.97 0.98

CL,y [−] 0.80 0.80 1.30 1.31

CL,ẏ [−] 0.05 0.05 0.35 0.28

y∗
max [−] 0.15 0.15 0.23 0.23

St [−] 0.32 0.32 0.32 0.31

Table 4.21: Results of turbulent free-vibration Cases for a varying diameter under different operating condi-
tions

Case 3.1 and Case 3.2 have equal non-dimensional parameters. The same is true for Case 4.1 and Case
4.2. The main difference between Cases 3.1−3.2 and 4.1−4.2 is the diameter of the cylinder. For Cases 3.1
and 4.1 the diameter was set equal to D = 1[m]. For Cases 3.2 and 4.2 the diameter was increased to D = 4[m].
To keep the non-dimensional values equal while increasing the cylinder diameter, other dimensional values
needed to be tweaked to cope with the change of cylinder size. Therefore, the other dimensional values are
tabulated as well in tab. 4.21 to show the effect on them.

Cases 4.1 and 4.2 belonged to the Standard Batch, while Cases 3.1 and 3.2 were used in the analysis on
the mass/spring-stiffness variation before. As shown in tab. 4.21, the results are in good agreement between
Cases 3.1− 3.2 and 4.1− 4.2. Similar to the previous non-dimensional analysis, this shows that the classi-
cal four non-dimensional parameters adequately describe the VIV problem (even when the diameter was
changed). Even the aerodynamic stiffness and damping terms show good agreement, except for the aero-
dynamic damping term found for Cases 4.1−4.2. Considering that these aerodynamic quantities are more
prone to fluctuations because they depend on both the fluid forces and cylinder motion, it was concluded
that the non-dimensional method was reliable.

To illustrate the effect of the change in diameter on the absolute values on the time and cylinder dis-
placement, the lift force coefficient and (dimensional) cylinder displacement are shown in fig. 4.59 for Cases
4.1 and 4.2 of tab. 4.21. The time t was dimensional on the x-axis of both subfigures. The first observation
from these two subfigures is the fact that Case 4.2 needs a larger simulation time to reach the same condi-
tions as Case 4.1. This is a direct consequence of the larger diameter used for Case 4.2. In fact, knowing the
Strouhal number remains constant between Cases 4.1−4.2 (see tab. 4.21), a larger diameter inherently leads
to a smaller shedding frequency according to eq. 2.2. This in turn resulted in a four times larger shedding pe-
riod Ts for Case 4.2. In other words, a four times larger diameter requires a four times larger simulation time.
Therefore, to save computational time, it is recommended to run VIV simulations with a smaller diameter.

It can be seen in fig. 4.59 the lift coefficient reaches the same maximum amplitude (which confirms the
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Figure 4.59. Fluctuating lift coefficient (left) and transverse cylinder displacement (right) of Case 4.1 and 4.2
in tab. 4.21

results in tab. 4.21). At the same time, the difference in diameter is seen back in the (dimensional) transverse
cylinder displacement. For Case 4.2, the maximum amplitude is four times larger compared to Case 4.1. For
the comparison of the results in tab. 4.21, an equal non-dimensional timeframe was taken for all the Cases.
The aerodynamic damping, stiffness and to a smaller degree the aerodynamic force coefficients would show
a larger deviation when the non-dimensional timeframe was not set equal between any of the two compared
Cases.

Stability of FSI solver in supercritical regime In the laminar free-vibration cases, only two simulations
lead to numerical divergence, which was mentioned in section 4.1.3. After the complication was found inside
the code regarding the Newmark solver, it was concluded that it was not necessary the weakly-coupled FSI
solver that caused the divergence in those two simulations. In fact, it was observed that the strongly-coupled
solver did not change the results for the laminar free-vibration cases compared to the weakly-coupled results.
Hence, initially, all the turbulent free-vibration cases have been run with the same weakly-coupled scheme
as for the laminar cases with the symplectic structural solver. This latter solver suited the weakly-coupled
scheme better than the Newmark solver in OpenFOAM, was was explained in 3.2.

In fact, it was believed that the weakly-coupled scheme would perform even better for the turbulent free-
vibration cases compared to the laminar cases. It was mentioned earlier in section 2.3.2 that weakly-coupled
schemes can introduce some artificial or numerically added mass under certain operating conditions [64] [62]
[63] [109]. Referring to the section, the following effects on the stability on the weakly-coupled FSI system (in
combination with an incompressible fluid) were expected for the turbulent free-vibration cases compared to
the laminar free-vibration cases:

• The higher mass ratio was expected to increase the stability.

• The increased spring-stiffness was expected to increase the stability.

• The decreased fluid viscosity was expected to increase the stability.

• The decreased timestep size was expected to decrease the stability.

Based on these four statements, it was overall indeed expected that the weakly-coupled scheme would
have been at least as stable as for the laminar cases. In this reasoning, the effect of the modelled turbulence
fluctuations within URANS (the Reynolds stress tensor) by the eddy-viscosity model on the stability of the
coupling was not taken into account.

Yet, it has turned out the turbulent free-vibration cases were more sensitive to divergence. This sensitivity
was not caused by the weakly-coupled FSI scheme, it was rather caused by the fluid solver. In all the laminar
cases only two outer correction loop was employed for the fluid solver. This appeared to be insufficient for the
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turbulent freely-vibrating cases. The PIMPLE settings were explained in more detail in section 3.1.3. Even for
the turbulent stationary case, the loose PIMPLE settings with only 1 outer correction was deemed as a fine set-
up for resolving the flow field. In those cases, convergence of pressure-momentum and turbulence quantities
was only assessed by enforcing linear tolerances rather by also including the outer tolerances. This was done
because the Courant number was enforced to be Comax ≤ 0.7 which was considered to yield low timestep
continuity errors, without the need for additional, computational costly outer corrector loops. In fact, it was
observed the poor grid convergence shown before for the turbulent stationary cases did not improve at all by
using tighter PIMPLE settings. Nevertheless, these tighter PIMPLE settings turned out to be a necessity for the
turbulent moving cases. In contrast to the laminar free-vibration simulations, the loose PIMPLE settings did
not yield stable results for the turbulent free-vibration simulations. In fact, the results did not change when
tighter PIMPLE settings were applied for some of the laminar free-vibration cases in retrospect.

For the turbulent free-vibrating cases, the difference between loose fluid solver settings and tight fluid
solver settings had a significant impact on the results. In some cases, the tight settings prevented divergence.
In other cases, where stability did not seem to be an issue, the results still changed significantly. Therefore, the
turbulent moving results obtained with the loose PIMPLE settings were disregarded in the present research.
With this knowledge, all the turbulent moving cases of interest have been re-run with tighter fluid solver
settings. As was described in section 3.2, it was readily possible within OpenFOAM to re-run the structural
solver within each of the additional fluid outer loops (i.e. strongly-coupled FSI scheme). Indeed, the strongly-
coupled sovler has been used for all of the turbulent free-vibration cases especially because the structural
solver did not require much additional computational time. All the turbulent free-vibration cases have been
run again with the implicit structural solver Newmark in combination with the implicit FSI scheme and tight
fluid solver settings. Although the effect of the fluid solver settings on the 1-way coupled simulations was not
investigated, the 1-way turbulent cases have been simulated as well with tight fluid solver settings.

The additional settings available for the strongly-coupled scheme were evaluated. These evaluations, in
combination with the earlier observations shared for the turbulent free-vibration cases, have been summa-
rized as follows:

• The effect of the relaxation factor ψ (eq. 3.31) was marginal on the force and motion results. It was
observed that a lower relaxation factor required more outer corrector loops and hence the fluid solver
sometimes had to be run more times than needed. This increased the computational time significantly.
A standard relaxation factor of ψ= 0.9 was applied for all the strongly-coupled simulations.

• It was observed that an explicit FSI/implicit structural solver lead to unstable, divergent behaviour for
U∗ = 2.95. The combination of an explicit FSI/explicit structural solver (referred to as weakly-coupled
scheme) lead to a stable steady-state solution for U∗ = 2.95. Lastly, the combination of an implicit
FSI/implicit structural solver (referred to as strongly-coupled scheme) lead to a stable solution as well.
These findings were also observed before for one of the laminar cases, see section 4.1.3. The associ-
ated complication of the explicit/implicit combination implemented in OpenFOAM was pointed out
before in section 3.2. Based on these findings, it was concluded that the weakly-coupled FSI solver was
sufficient to predict the turbulent free-vibration cases, similar to the laminar free-vibration cases.

• Increasing the number of subiterations (with constant relaxation factor) did not lead to significant
changes in the results. Typically, the amount of subiterations were found to be i = 3−4 for the Standard
Batch, depending on how fast the outer criteria of the fluid solver were reached. When i = 10, it was
indeed observed that the velocity residuals for each timestep decreased compared to when i = 3−4 but
the results were identical in both simulations.

• As was stated before, the effect of using tighter fluid solver settings and by making sure that the pressure-
momentum/k −ω coupling converged well, had a big impact on the turbulent-moving results.

It must be noted that the above-mentioned effects have only been evaluated for one case inside the lock-
in regime where U∗ = 2.95, except for the ‘loose’ fluid solver setting. The latter setting has been employed
initially for all the turbulent free-vibration cases, as was explained before. Regarding the other items, the
observations must be treated with caution because they might not be true for the entire operating range of
1 <U∗ < 11. For example, it could very well be that the weakly-coupled scheme would have led to divergent
behaviour for other cases than U∗ = 2.95. Regarding the tight and loose fluid solver settings, it has been
argued that the loose fluid solver settings most likely lead to problems at the fluid-structure interface [110].
Although the energy conservation was respected at the fluid-structure interface, the problems on the fluid
solver’s side lead to a different, more unrealistic equilibrium.
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It was found that if the aim is to reach accuracy, then the maximum number of iterations should be set
to imax = 100. Such a high number of iterations for the fluid solver would usually lead to satisfying the spec-
ified tolerances within each timestep and hence lead to small continuity errors. The outer tolerances were
typically reached after i = 3−4 subiterations as was stated earlier. If stability is of the interest, it might be in-
teresting to remove the additional fluid solver tolerances and to enforce a desired number of iterations (lower
than imax = 100). By removing the tolerances, the fluid solver will always complete all the number of itera-
tions until the specified maximum is reached. Since it was not possible to specify structural tolerances within
OpenFOAM, reaching the additional fluid solver tolerances may not automatically lead to a low relative error
for the structural solver. It was found that these two tolerances can of be different orders of magnitude, even
if the additional fluid tolerances are considered as tight (1e −06). For this reason, it was found to be better to
remove the residuals and enforce a maximum number of iterations on the FSI solver. If this maximum num-
ber of iterations is higher than the number of iterations that were actually required for fluid convergence, the
timestep continuity errors should be adequately low. For example, when only 3-4 iterations were required
to reach convergence for the fluid solver, then with 10 iterations this should be the case as well. Then, the
more challenging part is to find a number of subiterations which would lead to convergence on the structural
solver while keeping an eye on the computational time. Ideally, the number of iterations should not be too
high. As the fluid is being solved for each subiteration (for each timestep), increasing the number of itera-
tions evidently leads to higher computational cost. It was found in the literature that introducing a structural
convergence criteria in the FSI solver would prevent the need of estimating the number of subiterations re-
quired to reach convergence for both the fluid and structural solver [84]. This would be more convenient
and could also lower the computational time, especially if the required number of subiterations varies per
timestep throughout the simulation. In the study of [84] a dynamic relaxation factor ψ was implemented in
the standard OpenFOAM FSI solver. This led to a 70−80% reduction of simulation time while the coupled
solver’s stability was guaranteed as well.
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Discussion, recommendations and

conclusions

In this last chapter of the thesis report, the reliability of the model will be evaluated first. Then, a critical
review on the FSI modelling will be reported. After that, the research question will be addressed and the
progress towards the research objective will be evaluated in the conclusion of this MSc thesis.

This chapter focuses on the following three aspects of the thesis research:

• How does the model perform?

• What can be done better for future work?

• What are the main outcomes of the results?

5.1. Discussion and recommendations
5.1.1. Turbulence modelling
Regarding the accuracy and reliability of the presently used model, the following conclusions were drawn
before by the grid convergence, verification and validation studies:

• All of the of the planned assessments in tab. 2.1 for the laminar flow regime have been completed
successfully.

• Most of the turbulent assessments in tab. 2.1 have been completed successfully. Grid convergence was
not achieved and the validation could have been better for the (turbulent) stationary cylinder.

• The results fell within the range of numerical data available at supercritical Reynolds numbers: drag,
lift and Strouhal number. Furthermore, the predicted lift coefficient and separation angle agreed fairly
well with the experimental studies. The Strouhal number was over predicted, which was experienced
by other numerical studies as well.

• The forced-vibration model showed reasonable agreement with a wind-tunnel experiment found in the
supercritical regime [2].

Although grid convergence was not obtained, the pressure and skin-distribution showed good agreement
with the numerical studies found in the supercritical regime. The present work showed good agreement with
two different DES studies performed in the supercritical regime and with one LES study in the transitional
regime [54], [100] and [48]. Other numerical studies in the literature simulating VIV also faced problems with
their grid convergence [54] [100] and [56]. Although convergence should be aimed for, the results obtained
with the present URANS model were deemed as satisfactory for a qualitative analysis of the fluid problem as
they agreed with the numerical data found in the literature. For future attempts to achieve grid convergence, a
couple of recommendations were made in section 4.2.1. Carefully enforcing a maximum to the eddy viscosity
ratio and decrease the cell growth ratio at the cylinder wall to even closer values to 1 (in the present mesh a
ratio of 1.2 was used) were the most important recommendations. In addition, it was not recommended to
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use wall functions for future work with URANS in the supercritical regime, such that the boundary layer is
resolved up to the wall.

Regarding the accuracy of the model compared to experiments, some differences were observed. It was
shown that the fully turbulent flow assumed by URANS impacted the skin-friction coefficient, which deviated
from the experimental results. Nevertheless, the LES study of [48] demonstrated in the transitional regime
that the boundary layer separation and the recirculation region were captured well, while their upstream skin-
friction coefficient was also over-predicted due to inadequate modelling of the laminar boundary layer before
separation. This showed the upstream errors did not have a large impact on the important flow features
around and after flow separation. Therefore, although the numerical study of [53] indicated otherwise, the
implementation of a transition model within URANS is not considered as a necessary next step for future
research.

Based on comparisons of the pressure distribution with experimental data at Re = 3.6·106 it was suspected
that URANS was not able to capture the flow directly after separation accurately. This caused a higher base-
pressure coefficient which led to a smaller drag coefficient compared to the experiments. The larger Strouhal
number was expected to be caused by the incorrectly predicted detached flow. Besides the drag coefficient
and the Strouhal number, it appeared the that lift coefficient and the separation angle were predicted fairly
well by the present URANS approach compared to the experimental values. It is possible LES would be a
better approach for predicting the detached flow compared to URANS, as was suggested by [48] and [73].

These observations are in line with the study of [73] were comparisons were made between URANS and
LES for a vortex-shedding fluid problem. URANS was able to predict the main features of the flow qual-
itatively. Yet, LES has performed better in their study because of the direct resolution of large scales and
the modelling of the interaction between the different scales. The boundary layer separation was argued to
play an important role in vortex shedding, which turned out to be predicted well by LES. The study of [48]
also showed LES was better able to capture the separation phenomenon compared to URANS. The two DES
studies found in the supercritical regime seemed to yield similar accuracy compared to the present URANS
results. LES is therefore recommended to be the preferred approach for future work when higher fidelity
than URANS is desired. The challenge of the LES study in the supercritical regime is on one side the mod-
elling choice regarding to which extend (potentially important) smaller sized eddies are resolved and on the
other side to meet with the very fine grid resolution requirements for supercritical Reynolds numbers. In fact,
when very small sized eddies in the near-wall region are desired to be resolved, the LES could readily become
a DNS-alike approach. A LES study in the supercritical regime could indeed demonstrate if LES shows a better
agreement with the experimental values than URANS.

In hindsight, URANS (and the CFD model) has proven its reliability throughout the successful completion
of most of the assessments in tab. 2.1. The lift coefficient and Strouhal number were considered to be the most
important aerodynamic parameters for the transverse oscillating simulations. The obtained lift coefficient of
the turbulent stationary cylinder in the supercritical, which agreed fairly well with the experimental studies,
may be seen as a good starting point for the turbulent moving simulations. The predicted shedding frequency
for the moving simulations by the present FSI model should be interpreted with more caution, as the Strouhal
number was over predicted for the stationary cylinder. Comparison against the supercritical FSI study [2]
showed reasonable agreement between the present results and the wind-tunnel results. This comparison
in fig. 4.35 and fig. 4.36 demonstrated URANS predicted the magnitude of the aerodynamic forces and the
FSI response well. Regarding the FSI response, it was observed the CFD model predicted the aerodynamic
‘switch’ phenomenon well for the supercritical flow as was supported by the wind-tunnel data. The switch
mechanism has been explained carefully in section 4.2.2.

In addition to the quantitative aspects, URANS was able to simulate some of the qualitative aspects of
the vortex street at supercritical Reynolds numbers. In the first place, the present model predicted coherent
vortex structures in the wake. This is in line with the anticipations in the literature, where a re-esthablished
vortex street is present in the supercritical regime [25].

Near all turbulent simulations showed the 2S wake pattern. In a few cases the 2P or P + S pattern was
observed. These patterns have been defined in the study of [15]. The 2S wake pattern was visible in for
example fig. 4.26, fig. 4.34 and fig. 4.48. Yet, the question is whether these obtained vortex structures are
sufficiently reliable because they were obtained by URANS. It was believed in the present study the most
important vortex characteristics in the wake can still be captured by URANS. In the first study on the vortex
wake patterns of [111] by using PIV the switching mechanism of the wake was showed to still be present for
turbulent flows at Re = 5000. Small-scale Kelvin-Helmholtz vortices were found to be present in the wake
by the study of [111] and in some of the shedding cycles the large-scale vortices were more disorganized by
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the near-wake turbulence. Nevertheless, when ensemble averaging was applied to multiple images under
the same operating conditions, the vortex switching mechanism was similar to the one observed for lower
Reynolds numbers. This averaging was possible, it was reasoned, since the smaller coexisting vortices and
the turbulence distortion showed high fluctuations while the larger vortices were steadier. Relating these
observations back to the presently obtained vorticity pattern by URANS, it may be assumed that neither the
turbulence distortion nor the small-scale Kelvin-Helmholtz vortices have been captured by URANS. Yet, as
the ensemble averaging of the PIV study of [111] showed, the vortex patterns can still be deducted from the
mean flow for turbulent flows. In fact, the study of [73] demonstrated that the main wake patterns predicted
by URANS agreed well with PIV and LES (by using only the mean field and two major Proper Orthogonal
Decomposition). In other words, their study supported that URANS was able to predict the major modes. It is
not known what the effect of the smaller vortices or turbulence distortion is on the mean vortex pattern in the
wake. The effects of these latter two phenomena would be relevant to address in future numerical research
by DNS. In addition, it would be relevant to investigate the effects the uncaptured turbulence by URANS on
the FSI response as well in future work.

Additional higher fidelity numerical studies (preferably LES) can offer more reliable results and hence
wake patterns predicted by LES may serve as good a comparison against URANS results. The inclusion of 3
dimensions instead of 2D would be an important next step as well. These more sophisticated models would
shed more light on the possible wake patterns present in the supercritical regime (versus the transitional
regime) and if indeed the patterns typically observed at lower Reynolds numbers ([15]) are present as well for
large Reynolds numbers. Where it is difficult and costly to capture the wake patterns in an experiment, let
alone at supercritical Reynolds numbers. The numerical studies might be able do this rather well.

5.1.2. FSI modelling
The standard OpenFOAM FSI solver has been verified in the laminar regime extensively. The solver has been
compared against three other numerical VIV-FSI studies. The beating phenomenon, which could be inter-
preted as a complex type of fluid-structure interaction, was captured accurately as well. In addition, some of
the features discussed in the literature on the self-limiting mechanism of VIV were also captured and treated.
All these successfully completed assessments have proven the reliability and accuracy of the standard Open-
FOAM FSI solver. While the FSI solver was unconditionally stable for the laminar regime, it appeared the
solver had stability issues for some cases in the supercritical regime. Yet, eventually it has turned out these
instability issues were not caused by the FSI solver but by the fluid solver. The convergence of the k-ω and
pressure-momentum coupling was considered to be important for the stability of the turbulent moving cases,
as was explained in section 4.2.3. Based on the experiences in the present research, the following settings have
been recommended for the CFD-FSI model:

• ‘Tight’ fluid solver settings have been employed for the turbulent moving cases according to section
3.1.3.

• Strongly-coupled scheme has been used for FSI (implicit FSI solver with implicit structural solver New-
mark).

• A high relaxation factor of ψ = 0.9 since the number of subiterations was typically found to be small:
i = 3−4 (depending on outer tolerance criteria of fluid solver).

It was believed the sharp oscillating amplitude and lift coefficient rise for the Fourth Category in the tur-
bulent free-vibration simulations (see fig. 4.49) were not caused by numerical divergence. These large incre-
ments were suspected to be plausible, since the specified operating conditions opened up the possibility for
an unstable trajectory as was shown by the forced-vibration simulations. Fig. 4.50 supports this argument by
showing the structural motion (and hence FSI-coupled) convergence for each timestep. In fact, increasing
the number of subiterations or lowering the relaxation factor did not prevent the divergence observed in the
Fourth Category.

Implementation of a structural tolerance and dynamic relaxation factor in the standard OpenFOAM FSI
solver is recommended for future research. These implementations were carried out before by the study of
[84]. Both these features could reduce the computational time significantly (while guaranteeing stability),
which would be beneficial for the costly turbulent simulations.

It was aimed to include a comparison of the 1-way and 2-way coupled models to contribute on the
on-going debate how well the forced-vibration and free-vibration canonical cases match (at supercritical
Reynolds number). This comparison has not been done and it is therefore recommended for future research
to address this comparability.
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5.2. Conclusion
The following three canonical VIV cases have been investigated in the present research: stationary, forced-
vibrating and free-vibrating cylinder. All these three cases have been analyzed for both the laminar regime
(which was defined as 80 < Re < 200) and supercritical Reynolds regime (Re > 3.5 · 106). The results and
the comparison in the laminar regime mostly demonstrated the accuracy and reliability of the CFD model.
Some fundamental insights have been obtained in the laminar regime, but the results obtained in this regime
mostly served to build up the confidence in the CFD model.

The results for the stationary cylinder in the supercritical Reynolds regime provided a challenging playing-
field to assess the turbulence modelling capabilities of URANS within OpenFOAM. The model was compared
both against numerical and experimental work. Based on these comparisons, it was concluded that the
URANS k-ω SST model has proven its reliability as the results agreed well with two independent DES stud-
ies. Furthermore, most of the assessments defined in tab. 2.1 have been completed successfully by the model.
The obtained lift force was predicted well, also compared to the experimental work in the supercritical regime.
The obtained Strouhal number should be interpreted with caution for the turbulent moving cases. The ac-
curate prediction of the lift force and Strouhal number was considered to be important, since in the present
research the cylinder was only allowed to move in the transverse direction.

The forced-vibration and free-vibration simulations in the supercritical regime were aimed to address the
research question: What is the fluid-structure interaction effect of a transversely oscillating cylinder exposed to
VIV at supercritical Reynolds numbers?

Regarding the forced-vibration model, the following conclusions were drawn:

• The results demonstrate a lock-in band, phase angle switch coinciding with a change of the wake pat-
tern around the critical frequency, aerodynamic damping contour map and enhanced effective added
mass and lift magnification inside the lock-in band. All these phenomena describe the FSI effects at the
supercritical Reynolds number.

• The forced-vibration simulations allowed to simulate the wake for behind a cylinder prescribed to os-
cillate for a wide range of motion amplitudes and frequencies. It gave the possibility to also run more
unorthodox, non-equilibrium operation points in contrast to the free-vibration model. The aerody-
namic damping contour map predicted by the forced model therefore offered great insights into the
stable and unstable oscillation trajectories for the grid of 0.6 < f ∗ < 1.2 and 0.0035 < A∗ < 0.25.

• The data from the aerodynamic contour map can be utilised to calibrate phenomenological models
predicting VIV. This potential application of the CFD data was deemed useful for the research objective,
to help Siemens to enhance their existing model.

• Furthermore, the aerodynamic damping contours offered useful insights to explain some of the phe-
nomena occurring in the free-vibration simulations. Unstable trajectories observed in the forced-vibration
results indeed led to divergence in the results for the free-vibration cases when the damping coefficient
was too low. The damping coefficient was not able to suppress the aerodynamic excitement. Vice versa,
stable trajectories observed in the forced-vibration results did not lead to divergence in the results of
the free-vibration cases, even when the damping coefficients were very low. These strong correlations
between the results of the forced- and free-vibration results support the potential of phenomenological
models.

• The only FSI study found in the literature at supercritical Reynolds numbers was a forced-vibration
wind-tunnel experiment which was useful to validate the turbulent-moving results. In fact, reason-
able agreement was found between the wind-tunnel experiment and the present CFD model results.
With further enhancements and an optimized fluid solver, the OpenFOAM URANS-FSI can be used to
capture circular bluff bodies exposed to VIV in the supercritical regime.

• It may therefore be concluded the forced-vibration model provided a great intermediate modelling step
in between the stationary and free-vibration cylinder. This latter statement also holds for the modelling
aspect.

The main focus of the research was the free-vibration set-up, which was considered to be the most realistic
set-up modelling VIV in this research. The results from the 2-way coupled model addressed the research
question. In addition, the free-vibration model gave the opportunity to investigate the FSI effects of some
of the structural parameters of the cylinder, which was not possible with the forced-vibration model. First,
before the effect of the structural parameters was evaluated, a Standard Batch of cases was simulated. This
Standard Batch entails the following operating conditions: 1.9 <U∗ < 10.7, 2.8 ·106 < Re < 1.6 ·107, m∗ = 29.6



126 5. Discussion, recommendations and conclusions

and ζ = 0.003. The results on this Standard Batch clearly rejected the H0 hypotheses. The results showed
a lift force magnification and a critical wind speed range around the lift force magnification (i.e. lock-in
band). This means the typical characteristics of VIV found for lower Reynolds number in the literature are
also present for supercritical Reynolds numbers. In fact, three of the five main VIV effects compiled by [3]
have been observed for supercritical Reynolds numbers in the present research (all five effects were explained
in section 2.2.4):

• Lock-in/synchronization: fig. 4.39 clearly shows the extended range where the wake adapted to the
natural frequency.

• The strength of the shedded vortices increase: fig. 4.38 demonstrates a lift magnification within the
lock-in band.

• The phase, sequence and pattern of vortices in the wake is affected: fig. 4.42 and fig. 4.48 illustrate this.
The ‘switch’ mechanism has been captured for both the forced- and free-vibration simulations.

A lift magnification factor of MCL ≈ 10 and drag magnification factor of MCD ≈ 1.5 were both found to
be the largest magnifications for the Standard Batch. The drag coefficient magnification was expected to
be lower, since the cylinder was only allowed to vibrate in the transverse direction. The maximum non-
dimensional oscillation amplitude was found to be y∗

max = 0.52. The results for the Standard Batch have
been categorized into four Categories, based on their time series and FSI behaviour. Especially the third and
fourth Category were interesting, as these Categories revealed the lock-in nature of VIV. In the Third Category,
the fluid was no longer dominated by the Strouhal relation. The natural frequency was close enough to start
dictating the wake, which led to lock-in. Yet, the aerodynamic force signals did not show a constant amplitude
over time. In fact, it was demonstrated by the phase angle behaviour and changes in the wake pattern that
this Category yielded a continuous alteration between self-excitation and self-limitation of the FSI. The wake
restructuring was found to be in line with the ‘switching mechanism’ found earlier for the forced-vibration
results. Because of the alteration, no steady-state equilibrium was found where the energy transfer between
the structure and fluid remained constant over time. In the last Category, divergence was observed. It was
believed the divergence was mathematically plausible and not a consequence of a numerical problem. This
was supported by the convergence of the relative transverse (cylinder) velocity error. The divergence was
believed as realistically possible. The results from the forced-vibration cases from the present work and the
wind-tunnel data from [2] showed that unstable trajectories can occur under the operating conditions where
divergence was observed.

An additional non-dimensional analysis has been performed for the supercritical free-vibration set-up
to see if the four classical non-dimensional parameters used to describe VIV (see [85]) represent VIV ade-
quately. The analysis indeed showed the four parameters capture the VIV problem rather well. In fact, two
approaches have been proposed which can be used to parameterize VIV. One of these approaches yields a
smaller shedding period TS (while the non-dimensional values are kept the same). With a smaller shedding
period, more shedding cycles can be analyzed in an equal timeframe. Hence, this approach offers the benefit
of taking less computational time. The same holds for a smaller cylinder size (while bearing in mind that the
non-dimensional values should be kept equal).

Regarding the effect of the structural parameters on the FSI, the sensitivity of the aerodynamic and struc-
tural response to varying both the mass and damping coefficient was studied. It was suggested that a suf-
ficiently large critical mass coefficient would lead to nearly a stationary response (say m∗ > 59). It seemed
the FSI interaction was suppressed by the structural inertia. For a very low mass ratio (m∗ < 3), the cylinder
supposedly showed a stronger lock-in response. Interesting wake patterns like the 2P and P+S mode were
identified for the lowest mass ratio (m∗ = 2.5) corresponding to earlier URANS findings in the literature. It
appeared the lowest mass ratio yielded a steady-state equilibrium with a constant amplitude for the aero-
dynamic forces and motion response. For very large mass ratios or very low mass ratios, it seemed that the
response of the system did not vary significantly when the reduced velocity was varied. It was reasoned that
a high mass ratio leads to a stationary response, which appeared to be quite indifferent for a varying reduced
velocity. The small mass ratio might have increased the lock-in bandwidth which also yielded a somewhat
indifferent response after varying the reduced velocity. When the mass ratio was in between the critical mass
ratio and the very small mass ratio (10 < m∗ < 40), it appeared the system yielded a more dynamic FSI re-
sponse where the energy transfer between the structure and the fluid varied over time. These cases yielded
high aerodynamic peak forces and were the most susceptible to changes in response when the reduced ve-
locity was varied.
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The effect of the damping coefficient was considered to be less severe compared to the effect of the mass
coefficient as the time series remained more similar when the damping was varied. For some of the operating
conditions an increased damping coefficient led to a significantly different response, in magnitude and qual-
itatively in the time series signal. Under these latter operating conditions, the damping coefficient proved to
be useful to almost entirely phase out the motion response. It appeared the damping coefficient overruled the
energy transfer from the wake to the cylinder by dissipation in the structural damper. The mass and damping
sensitivity study showed the importance of the transient phase in the 2-way coupled simulations in contrast
to the 1-way coupled and stationary results. The impact of the damping coefficient and mass coefficient on
the time series of the aerodynamic forces and motion response demonstrated the importance of how the fluid
and structure interact with each other before equilibrium has been reached for the free-vibration model. The
damping coefficient or the mass coefficient could in fact determine whether the cylinder will follow a more
unstable or stable trajectory defined earlier in the forced-vibration results.

In conclusion, this research has aimed to open up the relative new research area for supercritical Reynolds
numbers by demonstrating the current CFD infrastructure (OpenFOAM, URANS and FSI coupling) is suitable
for engineering work. Since no other numerical study has been found in the literature which has performed
a similar combination of supercritical Reynolds numbers with FSI, the present research has delivered new
insights and numerical data for this novel research area. Various typical VIV characteristics, known from the
literature, have been observed in the supercritical regime. In addition, the FSI at supercritical Reynolds num-
bers has been investigated thoroughly by analyzing the aerodynamic damping, phase angle and wake pat-
terns. All these results have addressed the research question. These insights have served to reach the research
objective defined in chapter 1: To help Siemens Gamesa define a more physically representative VIV model
accounting for the large-scale effects by analyzing the critical parameters influencing VIV. From a practical
perspective, relevant data was obtained by the CFD model for potential optimisation of a phenomenological
model predicting VIV. At the same time, more importantly, the insights obtained regarding the fluid-structure
interaction at supercritical Reynolds numbers have contributed to a better understanding of the VIV phe-
nomenon for Siemens Gamesa. The addressed research question has provided a fundamental analysis of how
the phenomenon originates and how it is influenced by two of the main influencing parameters. Although
no effort has been undertaken in the present research to investigate the phenomenological models in more
detail, this theory-oriented thesis indeed showed that the Reynolds number and the fluid-structure interac-
tion effects should be modelled carefully in a phenomenological model. Further practical improvements of
the phenomenological model are within the capabilities of the CFD infrastructure as has been demonstrated
in the present research. This research has deliberately shared its modelling experiences and possible recom-
mendations for future work to further exploit the potential of CFD to improve phenomenological models.



A
Non-dimensional form of URANS

The incompressible Navier-Stokes equation for Newtonian fluids were given in chapter 2 in vector format:

∂u

∂t
+∇· (uu)+ 1

ρ
∇p −∇· (ν∇u) = 0 (A.1)

∇·u = 0 (A.2)

Considering only 2 dimensions, eq. 2.7 and eq. 2.8 are written in the cartesian coordinates (x,y) as follows:
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After using the non-dimensional values listed in tab. A.1, eq. A.3 becomes:
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Dividing all the terms by
U 2∞

D leads to the following equation:
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Where ν∞
DU∞ = 1

Re . This derivation is also valid for the y-direction and therefore the scaling may be related
to the vector equation of before:

∂u

∂t
+∇· (uu)+ 1

ρ
∇p − 1

Re
∇·∇u = 0 (A.8)

It is possible to derive the Reynolds-averaged Navier-Stokes equations by substituting the following rela-
tion in eq. A.8:

u(x, t ) = u(x, t )+u′(x, t ) with u′ = 0 (A.9)

where x = (x y)T is the position vector. Hence, the non-dimensional URANS equations are defined as
follows:

∂u

∂t
+∇· (uu)+ 1

ρ
∇p − 1

Re
∇·∇u =−∇·u′u′ (A.10)

∇·u = 0 (A.11)
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Non-dimensional parameter Relation

x∗ x

D

y∗ y

D

u∗ u

U∞

v∗ v

U∞

t∗
t

D/U∞

p∗ p

ρ∞U 2∞

ρ∗ ρ

ρ∞

ν∗
ν

ν∞

Table A.1: Non-dimensional parameters used for the non-dimensional URANS equations

The non-dimensional terms used for deriving the non-dimensional URANS are tabulated in tab. A.1.



B
Non-dimensional form of EOM

The equations of motion for a 1 degree-of-freedom structural system with an aerodynamic excitation force
can be described by the following equation:

mÿ + c ẏ +ks y = Fy (B.1)

The natural frequency of this system is:

ωn =
√

ks /m (B.2)

and the critical damping coefficient:

cc = 2
√

ks m = 2m
√

ks /m = 2mωn (B.3)

The damping coefficient can then be defined as the ratio of the actual damping against the critical damp-
ing:

ζ= c/cc = c

2
√

ks m
(B.4)

Looking back to eq. B.1, the damping coefficient c can be expressed in the natural frequency and damping
ratio by the following relation:

c = cc ·ζ= 2mωnζ (B.5)

And the spring stiffness constant by:

ks =ω2
nm (B.6)

Finally, combining these last two expressions with eq. B.1 and dividing all terms by the mass yields:

d 2 y

d t 2 +2ζωn
d y

d t
+ω2

n y = Fy /m (B.7)
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The following non-dimensional terms are introduced to form the non-dimensional equations of motion:

Non-dimensional parameter Relation

y∗ y

D

t∗ fn t
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Fy

1
2ρU 2DL

m∗ 2m

ρD2

U∗ U

ωnD

p∗ p

ρ∞U 2
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ρ∞

ν∗
ν
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Table B.1: Non-dimensional parameter definitions

After substituting these non-dimensional parameters in eq. B.7, the following relation is obtained:
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By processing all terms the following equation is obtained:
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Dividing all the terms by ω2
nD yields:
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Rearranging leads to:
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nD2

CL
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The reduced velocity of tab. B.1 is then finally used to derive the non-dimensional equations of motion
for VIV:
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+ y∗ =U∗2 CL

m∗ (B.12)



C
Moving-mesh quality

The mesh quality of all the meshes were evaluated before in ch. 3, paragraph 3.1.2 throughout ANSYS ICEM.
These evaluations were done for the stationary meshes. In order to see if the initial mesh quality was pre-
served during the oscillations, an additional time-dependent quality study was performed on the meshes.
The mesh quality was studied by using the 1-way coupled model (in OpenFOAM), this allowed the specifica-
tion of a certain harmonical motion trajectory.

Since the mesh quality was evaluated in OpenFOAM, different metrics were used. In essence, two mesh
parameters were studied: skewness and non-orthogonality. The skewness ratio, computed by OpenFOAM, is
the distance between the interpolated face centre and actual face centre locations divided by the distance of
the two concerned, adjacent cell centres. The smaller this ratio, the smaller the error that is introduced by the
skewness. The maximum skewness ratio for the initial mesh m2.2 was found to be ξmax = 1.0446, which was
deemed as satisfactory. Skewness is important for the convective terms being solved properly, as these terms
require the computation of the face values. Besides the skewness, the non-orthogonality was also evaluated
for the moving mesh. The non-orthogonality is represented by the angle between the cell-centre vector of two
adjacent cells and the face-normal vector of their common face. An angle of 0° would be the best scenario.
For the mesh m2.2, the maximum non-orthogonal angle was found to be χmax ≈ 26° and the average angle
of the whole domain χmean ≈ 9°. These values have considered to be very well and relatively close to the
ideal zero degrees. Non-orthogonality has the biggest impact on the solvability of the diffusive terms. Within
OpenFOAM, it is possible to correct for this error by introducing an extra corrector within the PISO or PIMPLE
loop, called nNonOrthogonalCorrectors. In the present work, this corrector was always set equal to 1.

The skewness ratio and non-orthogonality angle have been evaluated for two motion trajectories: y∗
max =

0.1, f ∗ = 2.06 (dynamic mesh dm1.1) and y∗
max = 1, f ∗ = 2.06 (dynamic mesh dm2.1). The first input motion

has been used as a realistic input for the 1-way model in a couple of simulations. The second motion trajec-
tory with the higher amplitude has been studies as a more extreme case to challenge the mesh deformation
algorithm. The frequency was set higher as well in both simulations to see if the diffusion was working well
for rapidly moving meshes. The peak-to-peak variations of these metrics have been tabulated in tab. C.1. The
metrics did not vary significantly over time as is shown in tab. C.1.

Parameter dm1.1:A∗ = 0.1, f ∗ = 2.06 dm2.1: A∗ = 1, f ∗ = 2.06

ξmax 0.2% 0.19%

χmax 0.8% 0.85%

Table C.1: Dynamic mesh metrics peak-to-peak variation over time

It has to be noted here, these metrics represent the global maximum found by OpenFOAM within the com-
putational domain. It is possible that the metrics showed higher variations over time locally in the domain.
The dynamic mesh quality was not assessed locally in the computational domain in this study.
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