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Colours are the deeds and suffering of light.

— Johann Wolfgang von Goethe
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SUMMARY

The study of the light field has become a valuable framework for capturing
and analysing the complex distribution of light in natural environments. The
directional, spatial, temporal and spectral structure of light, collectively influence
the optical information available to an observer and thus impact our perception
of the surrounding world. The extended definition of the light field, which is
equivalent to the plenoptic function in perceptual studies, incorporates radiance as
a function of spectral energy, position, direction, and time in space, quantifying all
the optical information available to an observer. However, there is a considerable
gap in measuring, describing, and visualizing the properties of the light field in the
chromatic domain, which this thesis aimed to address.

The thesis focuses on the research question of how to effectively describe, measure,
simulate, and visualize the spatiotemporal dynamics of the spectral structure of
light fields. To address this research question, We outlined four main objectives
in the thesis, which are addressed in separate chapters. The first objective is to
investigate the interplay between the colours of surfaces and light sources in 3D
indoor scenes, and its effects on the spatial and angular distribution of light. The
second objective was to quantify the directional and spatial variations of chromatic
light field effects on correlated colour temperature and colour rendering. The third
objective was to explore the objective measurement, description, and visualization
of the 7D light-field properties of outdoor illumination. Finally, the fourth objective
was to examine the relationship between image statistics and perceived time of day
in Western European paintings from the 17th to 20th centuries to determine if the
representation of lighting in paintings serves as a contextual cue for the time of day.

In Chapter 2 of the thesis, we systematically studied how the impact of
indirect illumination, specifically reflections and inter-reflections, affects the colour
appearance of materials and the diffuse and directed illumination in 3D spaces.
The study employed theoretical modelling and simulation of basic colour effects,
empirical testing, and visualization techniques. Our findings demonstrated the
occurrence of systematic hue, saturation, and brightness effects in light fields,
which are essential for understanding the 3D distribution of light in chromatic
environments. This has important implications for various fields, such as
perception research, architecture, and computer graphics, where knowledge of the
chromatic properties of light can inform the design and creation of effective visual
environments.

In Chapter 3, we explored how indirect illumination affects the effective
colorimetric properties of actual light in uni-chromatic spaces. The research involved
measuring the spectral irradiance of diffuse and directional light-field components
in real and simulated uni-chromatic spaces illuminated with standard white light
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sources. The results demonstrated significant differences between the lamp-specified
correlated colour temperature and colour rendition and the actual light-based
effective CCT and colour rendition. The results underscore the need for 3D colour
checkers for lighting designers, architects, and computer graphics professionals, and
we propose using simple Lambertian spheres as a solution.

In Chapter 4, we present a technique for capturing the 7-dimensional light field
that a human observer experiences and translating it into perceptually meaningful
information. The spectral cubic illumination method quantifies the objective aspects
of diffuse and directed light components, including its fluctuations over time, space,
wavelength, direction, after interaction with the environment, particularly the sky
and sunlight. To validate this method, experiments were conducted in natural
outdoor surroundings, and the data gathered shed light on how crucial aspects of
light, such as direction, colour, and diffuseness, vary spatially and temporally in
real-world conditions. This low-cost, high-benefit method is a valuable addition to
capturing the subtler effects of lighting on scene and object appearance, such as
natural chromatic gradients.

Finally, in Chapter 5, we explored the relationship between human subjective
assessments of the time of day depicted in paintings and the paintings’ image
statistics, including luminance and chromaticity variations. Two online rating
experiments were conducted, which showed that viewers could differentiate between
morning and evening depictions based on image statistics such as brightness,
contrast, saturation, and hue. A predictive model was created that explains 76% of
the variance in time-of-day perception.

Through the studies presented in this thesis, we have addressed a critical gap
in light field research by expanding its scope to include the chromatic domain.
The studies presented provide a comprehensive understanding of how light changes
spatially, directionally, temporally, and chromatically, as an integral component of
our environment, and its influence on the colour of matte materials and light
in space. These findings have important implications for architecture, computer
graphics, and perception research. By integrating the chromatic properties into the
light field framework, this research allows for a scientifically informed assessment of
the actual light in space, considering the interactions between illuminants, material,
shape, and space. This paves the way for more effective lighting design processes
and narrows the gap between design expectations and outcomes, ultimately leading
to better design outcomes.



SAMENVATTING

Onderzoek naar lichtvelden heeft geleid tot een waardevol framework om de
verdeling van licht te begrijpen en te analyseren in natuurlijke omgevingen.
De richtings-, spatiële-, temporele- en spectrale aspecten van licht beïnvloeden
gezamenlijk de beschikbare optische informatie voor een waarnemer, en bepalen
mede onze waarneming van de wereld om ons heen. De uitgebreide definitie
van een lichtveld, in waarnemingsonderzoek ook wel bekend als de plenoptische
functie, beschrijft radiantie als functie van spectrale energie, positie, richting, en
tijd, en kwantificeert alle optische informatie in een ruimte voor een waarnemer.
Deze omschrijving mist echter kleur bij het meten, beschrijven en visualiseren van
lichtveldeigenschappen. Dit proefschrift richt zich op deze tekortkoming.

De onderzoeksvraag van dit proefschrift is hoe spatiotemporele dynamiek van de
spectrale structuur van lichtvelden effectief beschreven, gemeten, gesimuleerd en
gevisualiseerd kan worden. Om deze vraag te beantwoorden, hebben we ons op
vier doelen gericht, ieder beschreven in een eigen hoofdstuk. Het eerste doel is
om het samenspel tussen oppervlaktekleur en lichtbronnen in 3D binnenruimtes
te onderzoeken, en het effect hiervan op de verdeling van het licht in positie en
richting. Het tweede doel is om de richting- en spatiële variaties van chromatische
lichtveldeffecten op kleurtemperatuur en kleurweergave te kwantificeren. Het
derde doel is om de objectieve meting, beschrijving en visualisatie van de 7D
lichtveldeigenschappen van natuurlijke buitenomgevingen te bestuderen. Het vierde
en laatste doel is om de verhouding tussen beeldstatistieken en de waargenomen
moment op de dag te onderzoeken in West-Europese schilderijen van de 17e tot de
20e eeuw, om te bepalen of de lichtweergave in schilderijen informatief is voor het
herkennen van het moment.

In Hoofdstuk 2 van dit proefschrift onderzoeken we de invloed van indirecte
belichting – in het bijzonder reflecties en interreflecties – op de waargenomen kleur
van materialen en op het diffuse en gerichte licht in 3D ruimtes. Hiervoor hebben
we een theoretisch model ontwikkeld, simulaties gedaan van basaleleur-effecten, en
verschillende experimenten en visualisaties uitgevoerd. De resultaten tonen aan
dat er systematische tint-, verzadigings-, en helderheidseffecten kunnen optreden
in lichtvelden, welkeessentieel zijn om de 3D-verdeling van licht in chromatische
omgevingen te begrijpen. Dit is van belang voor meerdere onderzoeksgebieden,
zoals waarnemingsonderzoek, architectuur en computergraphics, waar inzicht in
de chromatische eigenschappen van licht bij kan dragen aan wetenschappelijk
geinformeerd ontwerpen en de creatie van effectieve visuele omgevingen.

In Hoofdstuk 3 onderzoeken we hoe indirecte belichting de effectieve
colorimetrische eigenschappen van echt licht in unichromatische ruimtes beïnvloedt.
Hiervoor onderzoeken we de spectrale irradiantie van diffuse en gerichte
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lichtveldcomponenten in echte en gesimuleerde unichromatische ruimtes, beide
verlicht met standaard witte lichtbronnen. De resultaten tonen aanzienlijke
verschillen tussen de gecorreleerde kleurtemperatuur (CCT) en de kleurweergave
van de lamp en van de effectieve CCT en kleurweergave op basis van het
resulterende lichtveld. Dit bevestigt opnieuw de behoefte aan 3D-kleurcheckers voor
verlichtingontwerpers, architecten en computergraphics-professionals. De door ons
voorgestelde oplossing is het gebruik van eenvoudige Lambertiaanse bollen.

In Hoofdstuk 4 presenteren we een methode om het zeven-dimensionale lichtveld
te beschrijven en te vertalen naar perceptueel betekenisvolle informatie. De spectrale
kubieke belichtingsmethode kwantificeert de objectieve aspecten van diffuse en
gerichte lichtcomponenten, met inbegrip van de bijbehorende fluctuaties in tijd,
ruimte, golflengte en richting, na interactie met de omgeving en in het bijzonder
zoals beïnvloed door de kleur van de lucht en zonlicht. We hebben deze methode
gevalideerd door middel van experimenten in een natuurlijke buitenomgeving. De
resulterende data laat zien hoe cruciale aspecten van licht, zoals richting, kleur en
mate van diffusie, in ruimte en tijd variëren in natuurlijke omstandigheden. Vanwege
de lage kosten en hoge baten is deze methode een waardevolle toevoeging voor het
vastleggen van de subtielere effecten van licht op een tafereel of een object, zoals
het effect van natuurlijke chromatische gradiënten.

Ten slotte, in Hoofdstuk 5, bestuderen we de relatie tussen de menselijke
subjectieve waarneming van het afgebeelde moment van de dag in schilderijen en
de beeldstatistieken van het schilderij, met inbegrip van de variaties in belichting en
chromaticiteit. We hebben twee online schalings-experimenten uitgevoerd, waarvan
de resultaten aantonen dat deelnemers het verschil konden waarnemen tussen
afbeeldingen van ochtend- en avondtaferelen door middel van beeldstatistieken
zoals helderheid, contrast, verzadiging en tint. Op basis van dit experiment hebben
we een voorspellend model gemaakt dat 76% van de variantie in het waargenomen
moment van de dag verklaart.

De uitbreiding van lichtveldonderzoek naar het chromatische domein in dit
proefschrift beantwoord het eerder genoteerde gebrek daarvan. De gepresenteerde
resultaten bieden een veelomvattend inzicht in de verandering van licht in ruimte,
richting, tijd en kleur, als een integraal onderdeel van de omgeving, en de invloed
van die omgeving op de kleur van matte materialen en licht in een ruimte.
Deze bevindingen zijn van grote betekenis voor architectuur, computergraphics en
waarnemingsonderzoek. Door de chromatische eigenschappen te integreren in het
lichtveldframework, maakt dit onderzoek het mogelijk om op een wetenschappelijk
onderbouwde wijze het werkelijke licht in ruimtes te beschrijven, rekening houdend
met de wisselwerking tussen lichtbronnen, materiaal, vorm en ruimte. Dit
maakt de weg vrij voor effectievere processen voor verlichtingontwerp en verkleint
de afstand tussen ontwerp en realisatie, wat uiteindelijk zal leiden tot betere
ontwerpbeslissingen.
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2 1. INTRODUCTION

1.1. BACKGROUND AND MOTIVATION

Understanding the complicated characteristics of environmental light

W E live in a three-dimensional world that changes over time, and light is an
integral component of our environment. In physics, “light” is defined as

electromagnetic radiation in a range of wavelengths, that can be detected by the
human eye. For humans, the exact boundaries of the visible spectrum are not rigidly
defined, as they depend upon the amount of radiant flux reaching the retina and the
individual observer’s responsivity. However, the lower limit of this range is generally
accepted to fall between 360 nm and 400 nm, and the upper limit between 760 nm
and 830 nm. It’s important to note that these limits can vary, which is reflective of
the rich complexity of our visual perception.

Light is neither flat [1] nor static, but rather a dynamic and multifaceted
phenomenon resulting from various optical processes. The properties of
environmental light are influenced by various factors, including the reflective
properties of surfaces, the geometrical shape of objects, and the presence of other
light sources. The interactions between environment and lighting (illuminants), such
as scattering, shading, reflecting, and refracting, can notably influence the optical
properties of the light and therefore the perceived qualities of the resulting light,
such as its colour [2–6], intensity [7–10], and direction [11–16]. Furthermore, the
dynamic nature of our interaction with light through movement and changes in
gaze creates continually changing visual elements that shape our perception and
experience of space and time. To accurately capture these interactions, acquiring a
spatially and directionally articulated measurement of the light is necessary.

The importance of understanding the principles behind the properties of
environmental light cannot be overstated [17]. Such understanding is of course
key in designing light itself. It profoundly impacts our visual perception [18],
influencing factors such as colour perception [4, 19, 20], visual acuity [10], and how
we perceive depth [21–23], shape [24], and materials [25] – which are determining
requirements in perception-based lighting design. Furthermore, the characteristics
of environmental light have implications for many fields, including architecture,
solar technology and geo-engineering, agriculture, visual art and graphics. To design
lighting environments that are both functional and visually pleasing, designers need
to understand the principles behind the characteristics of environmental light in
(architectural) lighting design. This knowledge about the properties and principles of
environmental light can be incorporated into the design of spaces and environments,
leading to lighting systems that support visual comfort, well-being, circadian rhythms
and positive user experience.

Historically, there has long been a disjunction between light-based and lighting-
based approaches to studying and assessing the quantity and quality of light in the
built environment. A lighting-based approach acknowledges the impactful weights of
primary illumination for environmental light and thus focuses on the properties of
the light sources, such as the output and distribution of light from lamps and fixtures.
While this approach is advantageous in evaluating the technical performance and
efficiency of lighting systems, it falls short of fully capturing the complexity of
interactions between light and environment and its impact on visual perception. In
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contrast, a light-based approach recognises the interaction between the environment
and light as a critical factor in determining actual context-dependent light properties.
It focuses on the properties of light in three-dimensional space and its interactions
with the environment and matter. Moreover, this approach accounts for the
dynamics of human interactions with spaces and their impact on visual perception
[8, 11, 26].

The design of lighting in the built environment is an imperative factor that shapes
our perception and experience of the space we occupy. The visual impact of the
environment is not limited to the light sources alone, but also encompasses the
appearance of illuminated objects, materials, and surfaces. On the other hand,
these objects, materials, and surfaces will again influence the light. Having a
thorough understanding of the characteristics of environmental light is vital for
enhancing the visual experience and atmosphere of a space through lighting design.
A light-based approach, which takes into consideration the interactions between
the environment and light, offers a comprehensive approach to environmental light
and its effects on visual perception. This understanding is beneficial for designing
lighting environments that meet both functional requirements and enhance the
visual experience. To fully grasp the characteristics of environmental light and its
impact on visual perception, it is urgent to develop methods for measuring it in
a perceptually relevant way. Adopting a scientifically rigorous and interdisciplinary
approach that encompasses optics, perception, and design science has been shown
to provide insights into the complexity of environmental light and aid in creating
functional and visually pleasing lighting environments suited to human needs [10,
18, 24, 27]. This change in perspective from evaluating primary illumination through
a lighting-based approach to assessing the light that reaches the eye through a
light-based approach, can be considered as a precursor for the advancement of the
lighting profession.

The remainder of the introduction chapter is structured as follows: in Section 1.2,
I will introduce a framework that draws on knowledge from optics, perception, and
design to describe and measure the structure of light [18, 28]. While this framework
has been developed in the photometric domain, it will be expanded to include
wavelength information in the spectro-photometric domain. Spectro-photometric
measurement and analysis involve characterising light in terms of both its spectral
and photometric properties. Spectral properties describe the distribution of
radiant energy across the electromagnetic spectrum’s various wavelengths, while
photometric properties describe the physical characteristics of light that are weighted
according to the sensitivity of the human visual system, such as luminous flux,
intensity, luminance, and illuminance. By combining information on the spectral
and photometric properties of light, spectro-photometric measurements provide
a comprehensive understanding of its luminous and chromatic characteristics
and wavelength-dependent properties, offering a thorough understanding of the
chromatic effects of light sources and materials on the structure of light and its
implications in different fields of study.

Section 1.3 will focus on perceptually relevant metrics of environmental light
resulting from the interactions between the environment and light. This section
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will explore the distribution of light in terms of its direction, location in space,
and chromaticity. By delving into these properties of environmental light, a deeper
understanding of its characteristics and impact on human perception can be gained.
This investigation led to the identification of scientific gaps and research questions,
as outlined in Section 1.4. Finally, I will systematise the content of this thesis
and explain the relationships between the chapters, providing an overview of the
research and its significance.

Overall, the purpose of this introductory chapter is to set the foundation for
the rest of the study. It focuses on highlighting the impact of chromatic effects
and providing a comprehensive approach to capturing, analysing, describing, and
visualising the chromatic structure of the environmental light. This will provide a
framework for understanding and evaluating the perception-based lighting research
presented in subsequent chapters [18, 24, 27, 29].

1.2. THE SPECTRAL STRUCTURE OF THE LIGHT FIELD

The understanding of the environmental light that fills a three-dimensional space is
essential for lighting design. This is because the way light interacts with the surfaces
and objects in a scene has a major impact on the optics and therefor on how we
perceive the three-dimensional structure of that scene. Additionally, the appearance
of a scene is largely dependent on the environmental light. The light-based approach
captures the complexity of the light field by characterising the amount of spectral
radiance (λ) that travels in every direction (θ, φ) through every point (x, y , z) in
space at any given time (t ). This method is well-established and has been used for
measuring the variations of light properties across a scene and over time [14, 24,
30–34]. This function, termed the plenoptic function [33] in the field of perceptual
science, expands on the original light field concept proposed by Gershun [30] by
including the dimensions of wavelength and time. By capturing all the optical
information present to an observer at a given point in space and time, the plenoptic
function gives a complete description of the actual environmental light, making it
an invaluable tool for quantifying and designing lighting environments.

The examination of the light field is a complex task, but it can be sampled as a
spatially distributed collection of illumination maps that each can be represented as
a High Dynamic Range (HDR) panoramic image (Figure 1.1). To account for the
temporal component, a continuous capture of panoramic images is required. The
light field is described in terms of radiometry, which takes into account the physical
characteristics of light, such as its spectral power distribution and radiant intensity.
However, since light and colour perception is ultimately based on the sensitivity
of human observers, the raw radiometric measurements must be converted to
photometric and colorimetric measurements to relate to how the light is perceived.

Light exhibits an additive nature, meaning the illumination from multiple sources
can be calculated by summing the light emission of each source. This allows us
to divide a single light source into multiple sources as long as their combined
light emission is equal to that of the original source. To optimise the use
of natural illumination maps, researchers in computer science [35, 36] have
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employed a mathematical tool called spherical harmonics (SH) decomposition. SH
decomposition is analogous to Fourier Analysis in that it can break down complex
signals into simpler components, but it operates on the surface of a sphere.

Figure 1.1: Illustration of a local light field. (A) An sRGB representation of the local light
field captured as a high dynamic range panoramic image. (B) An ‘unwrapped’ version of
the light field, where the azimuth angle (φ) is represented on the horizontal axis and the
elevation angle (θ) is represented on the vertical axis. The environment map used in this
illustration was downloaded from Blender under a Creative Commons Zero license, which
allows for the free use, modification, and distribution of the work without any copyright or
database restrictions.

This decomposition method represents an illumination map as a sum of
mathematical components of different spherical frequencies or orders, facilitating
the analysis and understanding of the light field (see Figure 1.2). Each order
in the decomposition is controlled by two parameters: degree and order. The
degree parameter determines the frequency of the basis functions, while the order
parameter governs their alignment. This decomposition approach has been found
to possess a direct physical meaning [37], and this representation is useful for
quantifying the basic properties of lighting from spherical spectral measurements.

The fundamental spherical functions have increasing angular frequencies and can
be expressed as a monopole, dipole, quadrupole, and so forth. The zeroth-order SH
function is known as a monopole, a constant value representing the average spectral
radiance in all directions. Its physical interpretation is the density of light, and it is
commonly associated with fully diffuse illumination, also known as ambient light or
Ganzfeld illumination [38]. An illustration of this is the light in a misty atmosphere
over a snowy terrain during an overcast sky.

The first-order SH function, a dipole, features a positive and negative pole and
can be portrayed as a vector that encompasses both direction and magnitude. The
physical meaning of this function is the light vector or net spectral radiance transport
[38]. It can be observed in light with a single dominant direction. Examples of this
include spotlights and direct sunlight.
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The second-order SH function, a quadrupole, is characterised by two negative or
positive poles. The quadrupole contribution to the light field can be represented
by a symmetric traceless tensor, commonly known as the squash tensor [37]. This
tensor comprises two directions and magnitudes, and can be imagined as a light
clamp or ring. For example, when light is emanating from opposite sides, it results
in a light clamp with a dark ring in the centre, or in the opposite case a light ring
will result accompanied by a dark clamp.

Figure 1.2: Application of spherical-harmonic decomposition to environmental illuminations.
On the left, an illumination map is shown as a rectangular projection, which cannot preserve
the correct area corresponding to the physical measurements on a sphere. The images on
the right show the components of the SH decomposition, starting with the zeroth-order and
proceeding through the first-, second-, and higher-order components. These components
can be interpreted as the light density, the light vector, the squash tensor, and the
fine-grained details of illumination (high-frequency angular variations in the light field). The
spherical-harmonic decomposition was performed independently for each wavelength of the
sub-band light-field image. The environmental illuminations were originally captured as
1024×512 RGB images, but were later approximated as hyperspectral data using Mallett et
al.’s method [39].

The third-order and higher SH functions, which contain more complex
arrangements of positive and negative poles, are less predictable in nature. However,
they also display certain recurring patterns. In the domains of perception research
and perception-based rendering, it is often sufficient to consider a statistical
summary to grasp their characteristics [25]. This summary can be visualised as the
pattern of light produced by these higher-order functions.
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1.3. PERCEPTUALLY IMPORTANT PROPERTIES OF

ILLUMINATION

It has been established that the three-dimensional distribution of light, which
forms the foundation of a physics-based understanding of lighting, can be analysed
quantitatively. By decomposing the light field into its physically meaningful
components, it is possible to measure and describe its characteristics. However,
understanding the physical meaning alone is insufficient for comprehending human
perception of environmental light. Therefore, it is also necessary to identify the
perceptually relevant properties of these light-field components and how they relate
to perceptual attributes. In this regard, I reflect on recent studies on light-field
properties that explore the distribution of light across directions, spatial positions,
time and colour, with the goal of gaining a better understanding of the perceptual
aspects of illumination. By understanding the impact of illumination on these
perceptual attributes, lighting designers can strategically position and direct light
sources to improve the appearance of objects, manipulate texture contrast [40, 41],
accentuate certain features, and create a desired ambience, ultimately enhancing the
overall visual experience in a space with a scientifically informed approach.

1.3.1. AMBIENT LIGHT

Ambient light is a type of global, uniform light source that illuminates all objects in
a scene equally, providing a general level of illumination. In the perceptual domain,
it reflects the overall brightness of a scene as perceived by an observer. It is used to
provide a base level of illumination for all objects in the scene, and is an important
property of lighting that contributes to the perception of lightness and darkness [9,
10, 42, 43]. It is often represented by the magnitude of the zeroth-order SH, and is
used to estimate the brightness of environmental light [44, 45]. This illumination
property is of great interest to lighting design professionals as it serves as a
perceptually meaningful alternative to traditional 2D surface illumination metrics
when assessing visual task performance [10]. By utilising this metric, lighting design
professionals can consider whether a space appears to be bright or dim and make
adjustments accordingly to create appropriate environmental lighting solutions [46].

1.3.2. FOCUS LIGHT

Focus light is a fundamental property of lighting that can be used to convey
information about the position and location of objects within a scene [47]. It
shapes the appearance of objects and scenes, producing shading or highlights. The
direction of illumination, which corresponds to the direction of focus light, is defined
as the direction of the first-order SH. The strength of focus light, as represented
by the magnitude of the first-order SH, holds great importance in object shading,
influencing the perception of shape, reflectance, and the ability to locate shaded
targets [48]. Additionally, the direction and strength of focus light can impact the
representation of corrugated surface structures, and influence the perception of
surface roughness.
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1.3.3. ILLUMINATION DIFFUSENESS

The degree to which light is dispersed across a range of 3D directions, known
as illumination diffuseness, is an important property of lighting. While diffuse
light, such as that found under an overcast sky, is dispersed in multiple directions,
more directed light, such as that found on a sunny day, is concentrated in one
direction. In an SH decomposition, diffuseness is represented by the magnitude
of the zeroth-order component in relation to the first-order components [49, 50].
The diffuseness of the light is an important derived metric for the modelling
characteristics of light, including the appearance of relief and volume in objects.
Research has revealed that human perception has a tendency towards levels of
diffuseness that are commonly found in nature [51], and that diffuseness can interact
with estimates of light direction [26, 52]. In real-world scenes, measurements of light
diffuseness can vary widely and are influenced by both the materials and geometry
of the scene [51, 53, 54]. Grasping the interactions between material, shape, and
lighting in architectural spaces poses a major challenge for lighting designers. The
degree of light diffuseness is directly related to object modelling [55]. Lighting
designers can leverage this metric to make informed decisions while designing, as
it provides insight into how light will interact with various surfaces. Therefore,
accurately measuring the light diffuseness is essential for creating optimal lighting
designs.

1.3.4. HIGHER-ORDER FEATURES OF ILLUMINATION

The complexities and variations of natural illumination display recognisable patterns,
such as a rise in light intensity with elevation [17]. The distribution of light intensity
also tends to be skewed, following a 1/ f 2 power distribution [56, 57]. In addition
to these regular patterns, natural illumination also has higher-order features such as
texture and overall “gist” that can provide important information about the layout
of a scene, the presence of certain objects or features, and the overall mood or
atmosphere conveyed by the scene. These higher-order features aid in the rapid
recognition and understanding of a scene and facilitate perception in a limited time
frame.

Examining the appearance of matte and glossy objects under different levels of
illumination complexity can help explain why the visual system needs to consider
higher-order features in the light field [58, 59]. Research has demonstrated that even
in a world that appears uniformly lit, the presence of high-frequency variations in
the illumination can impact the ability to distinguish cast shadow boundaries from
other types of image edges. For instance, high-frequency variations in illumination
may not affect the appearance of a matte, rounded object, but the cast shadows
will appear clearer when high frequencies are taken into consideration [58]. The
appearance of glossy objects can be altered by the introduction of higher-order
components, which impact the pattern of specular highlights [58].

The brilliance metric is a tool used to measure the degree of spikiness in the
angular distribution of radiance in a light field, often referred to as brilliance. It
calculates the ratio of high-order SH coefficients (orders 3 and higher) to the total
sum of SH coefficients [25]. This results in a value between 0, indicating no
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brilliance, and 1, indicating maximum brilliance. In practical applications, finite
sampling is frequently employed, and according to Zhang et al. [25], the brilliance
metric offers consistent results even when measurements extend beyond the 10th

order.

1.3.5. ILLUMINATION DISTRIBUTION OVER SPACE

The spatial distribution of light, commonly referred to as the global light field,
profoundly affects the looks of objects and scenes. However, integrating the entire
light-field framework and methods, including the global structure, into design can be
challenging. Mury et al. [13] found that lower-order illumination components, which
typically contain more energy, vary smoothly across spatial locations and relate to
scene geometry. However, in specific situations, such as when light is filtered by
trees in a forest, even lower-order components can experience sudden changes [38].
Despite the occurrence of instability, the first-order global structure of the light field,
referred to as the flow of light [14, 55], can be visualised as 2D flux lines [14], which
were later extended to 3D tubes by Mury et al. [13], and represented by arrows and
ellipsoids (light “probes” or “gauge objects”) in addition to tubes by Kartashova et al.
[60].

The light flow describes the average illumination direction and its positional
variability throughout the scene [61]. It can be obtained by interpolating the
collection of light vectors present in the scene. The study of light flow is a topic of
considerable interest due to its influential role in shaping the subjective impression
of object modelling [14, 55]. The light flow is related to the perception of the
(variation of) strength and direction of lighting in a space [14]. To examine how
we estimate variations in illumination, researchers have used methods such as
asking observers to adjust the illumination of a flat surface or spherical object, or
to estimate the reflectance or shape of objects [3, 11, 59, 61, 62]. However, the
local estimation does not cover the variation of light over space. Kartashova et al.
[61] asked observers to adjust the illumination on a grid of spherical probes and
reconstructed the perceived global structure of the light flow. They found that the
visual light flow tubes were less curved than the ground truth optical light flow,
suggesting that humans underestimate the influence of reflections on the light itself.
These methods help researchers assess how accurately we can estimate the lighting
in a scene and compare it to actual lighting conditions, gaining insights into the
perceptual interactions between objects, material, and scenes with light.

The relationship between the perceived direction and diffuseness of light was found
to be interconnected [7, 61, 63], suggesting a correlation between the perceived flow
of light and its diffuseness. By estimating the distribution of light vectors across a
scene, we can determine its first-order global structure. This information, combined
with a measurement of light diffuseness, allows us to predict the overall appearance
of the scene.

In summary, the study of the global structure of the light field, and how it is
influenced by scene geometry and materials, is critical to achieving effective lighting
design as it directly impacts the final appearance of scenes. Earlier efforts have laid
the foundation for measuring and visualising the first-order global light field [64].
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1.3.6. ILLUMINATION DISTRIBUTION OVER TIME

Outdoor environmental light is known to vary greatly depending on location [13,
14, 50, 65], time of day, season, and weather conditions [66–69]. Daylight, a
mixture of sunlight and skylight, is spectrally dynamic, varying over short and long
timescales. Downwelling irradiance spectral measurements (which are upward-facing
2D measurements taken on a horizontal plane) show that daylight typically has
a correlated colour temperature (CCT) ranging from cool (∼12,000 K) to warm
(∼2000 K), following the well-defined daylight locus [68, 70, 71]. The overall lux levels
can vary over 10,000-fold, with a rapid rise and fall at dawn and dusk and a peak
around midday.

Small variations in spectral properties of daylight, as measured through 2D
hyperspectral imaging, over short intervals of time can have major effects on
reflected light, impacting the appearance and perception of objects. Using
information-theoretic methods, researchers have examined the maximum number of
surfaces that can be identified as the same after an interval [69]. In the absence of
illumination change, the average number of surfaces distinguishable by colour was
around 10,000. However, in the presence of an illumination change, the average
number of identifiable surfaces decreased rapidly with the duration of the change.

The implications of the findings discussed above extend to various aspects of
colour perception, including colour appearance [72] , colour rendering [73], colour
constancy [74], conspicuity of colour patterns [75], and scene articulation [76, 77].
However, relying solely on the measurement of downwelling irradiance spectra
and 2D hyperspectral imaging for research into the temporal variation of daylight
provides limited information on light, and not for instance its direction [78] and
diffuseness. Moreover, human photoreceptor orientation is tilted toward the pupil
and responds differently to light coming from various directions [79–81]. To fully
capture the temporal distribution of illumination, it is essential to move beyond
measuring only 2D irradiance spectra and include the capture of spherical light-field
measurements.

1.3.7. ILLUMINATION COLOUR

So far, we have reviewed a series of important light-field properties that are
perceptually meaningful and should be considered by designers when shaping
environmental light. In lighting design, colour is an important aspect to consider.
Nevertheless, most light field studies have focused on the achromatic domain and
ignored the chromatic domain. Even if the sources radiate “white” light, once
colours are present in a scene, the chromaticity of the light will be affected because
the light reflected by one surface can fall on a second, becoming a component of
the illumination incident on the second, and so on to a third, fourth, etcetera.
The spectra of reflected and scattered light might be different from direct light
sources, and a scene might contain several sources with different directional, spatial,
and spectral characteristics, resulting in a chromatically structured light field. The
influence of these differential spectral effects on the light-field structure had not
been systematically studied.
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1.4. RESEARCH GAP AND QUESTIONS
Advancing light field research in the chromatic domain
There exists a considerable deficit in measuring, describing and visualising the
properties of the light field in the chromatic domain. Additionally, the properties of
natural light, including its spectral, angular, spatial and temporal characteristics and
how they interrelate and influence the scene properties, are not well understood. This
thesis aims to fill these gaps in understanding and integrate the chromatic properties
of the light field into lighting design processes. This will be accomplished by
incorporating the chromatic domain into the light field framework, using advanced
measurement techniques, computational simulations, and innovative design tools
to gain insights into how light behaves in different environments and make more
accurate predictions.

The research presented in this thesis is guided by four main objectives: 1)
Investigating the interplay between multiple colour modes as surface and light
sources in 3D indoor scenes to understand the interaction between illuminants and
materials, and their effects on the spatio-spectral distribution of light and chromatic
characteristics of the illumination, 2) Quantifying the directional and spatial
variations of chromatic light field effects on CCT and colour rendering properties,
and 3) Exploring the objective measurement, description, and visualisation of 7D
light-field properties of outdoor illumination.

The initial three objectives of this study revolve around comprehending the
spectral structures of light fields and their impact on colorimetric properties within
the optical domain. After acquiring knowledge about the spectral characteristics
of light fields and their spatial and temporal fluctuations, the subsequent step is
to examine whether the human visual system is receptive to those fluctuations.
Artists have a long history of exploring the qualities of light. Paintings can be seen
as a human-made depictions of perceptions of a fraction of a panoramic image
or a fraction of a local visual light field. Taken together, this led to objective 4)
Examination of the relationship between image statistics and perceived time of day
in Western European paintings from the 17th to 20th centuries, with the aim of
determining if the representation of lighting in paintings serves as a contextual cue
for the time of day.

1.5. STRUCTURE OF THE THESIS
The structure of this thesis is composed of six chapters in total, including an
introduction and a conclusion. The core of the thesis is comprised of Chapters 2-5,
which address specific research questions and present the corresponding findings
and contributions. Each chapter is a standalone piece of work, presenting published
(three) or submitted (one) papers.

Chapter 2: How do the chromatic effects of indirect illumination influence the
different components of physical light fields in uni-chromatic spaces, and what
systematic colour variations can be expected?

In this chapter, we delve into the systematic study of how indirect illumination,
specifically reflections and inter-reflections, affects the different components of light
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fields. Our research builds upon previous findings that the spectral power distribution
of reflected light changes with the presence of inter-reflections [2]. To better understand
the chromatic effects of indirect illumination, we conducted a systematic examination
using a computational model that sampled representative RGB colours. Our findings
indicate that these colour variations can result in changes in brightness, saturation,
and even hue. We also tested the impact of coloured indirect illumination on
light fields in three-dimensional spaces. By conducting cubic spectral irradiance
measurements in a mock-up room setting, we quantified the chromatic variations of
the first-order properties of light fields across various furnishing scenarios. Our results
show that these chromatic variations are systematic and dependent on furnishing
colour, lighting, and geometry. Additionally, we found that the diffuse component
of light fields is more impacted than the focus component, as predicted by our
computational model.

Chapter 3: How does indirect illumination affect the colorimetric properties of the
effective light, specifically the correlated colour temperature and colour rendering,
in uni-chromatic spaces?

In this chapter, we investigate the intricate world of colour in uni-chromatic spaces.
These spaces, defined by their singular type of reflectance, offer a unique challenge as
the light field is a mixture of emissive light sources and mutual surface reflections
that results in a blend of diffuse and directional illumination. To better understand
the impact of these factors, we measured the spectral irradiance of both the diffuse
and directional light-field components in real and simulated uni-chromatic spaces,
illuminating them with standard white light sources. Our findings reveal major
disparities between the lamp-specified colour temperature and colour rendition and
the actual light’s effective correlated colour temperature and colour rendition. It
becomes clear that indirect illumination holds sway over the colour temperature
and rendition of the diffuse light component in comparison to the directional light
component. This study underscores the need for a three-dimensional colour checker
for lighting designers, architects, and computer graphics professionals, and proposes
the use of simple Lambertian spheres as a solution.

Chapter 4: How can the 7-dimensional structure of the light field be effectively
quantified and translated into perceptually-relevant information using the spectral
cubic irradiance method, and how do variations in the light field impact the diffuse
and directed components of the actual light over time, space, colour, and direction?

In this chapter, we unveil a technique for capturing the 7-dimensional essence of
the light field that a human observer experiences, and translating it into perceptually
meaningful information. Our spectral cubic irradiance method quantifies the objective
aspects of both diffuse and directed light components, including its fluctuations over
time, space, colour, direction, and its interaction with the environment, particularly
sky and sunlight. Our experiments were carried out in natural surroundings and the
data we gathered shed light on how vital aspects of light, such as direction, colour,
and diffuseness, vary spatially and temporally in real-world conditions. This low-cost,
high-impact method is a valuable addition for capturing the subtler effects of lighting
on scene and object appearance, such as natural chromatic gradients, and its value is
explored in detail.
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Chapter 5: How do artists’ depictions of natural illumination in paintings compare
to the statistical regularities of actual light in terms of luminance and chromaticity,
and how do these comparisons relate to human viewers’ perceptions of depicted
time of day in terms of image statistics, specifically luminance and chromatic
variations?

In this chapter, we explore the relationships between human subjective assessments
of the time of day depicted in paintings and the paintings’ image statistics, including
luminance and chromaticity variations. Through two online rating experiments,
our findings indicated that viewers were able to differentiate between morning and
evening depictions based on image statistics such as brightness, contrast, saturation,
and hue. A predictive model was created that successfully explains 76% of the variance
in time-of-day perception. These results show that humans are often capable of
estimating the time of day in paintings by utilising cues that correspond to luminance
and chromaticity variations of daylight.

In the end, Chapter 6 brings the thesis to a close by summarising the key
contributions and discoveries. Furthermore, limitations and potential avenues for
future investigation are explored.
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2
EFFECTS OF INTER-REFLECTIONS

ON THE CHROMATIC STRUCTURE OF

THE LIGHT FIELD

Chromatic properties of the effective light in a space are hard to predict, measure,
and visualise. This is due to complex interactions between materials and illuminants.
Here we describe, measure and visualise the effects of inter-reflections on the
structure of the physical light field for diffusely scattering scenes. The spectral
properties of inter-reflections vary as a function of the number of bounces they
went through. Via a computational model, these spectral variations were found
to be systematic and correspond with brightness, saturation and hue shifts. We
extended our light-field methods to measure and understand these spectral effects
on the first-order properties of light fields, the light density and light vector. We
tested the model via a set of computer renderings and cubic spectral illuminance
measurements in mock-up rooms under different furnishing scenarios for two
types of illuminants. The predicted spectral variations were confirmed and indeed
varied systematically within the resulting light field, spatially and directionally.
Inter-reflections predominantly affect the light density spectrum, and have less
impact on the light vector spectrum. It is important to consider these differential
effects for their consequences on the colour rendering of 3-dimensional objects and
people.

Published as: C. Yu, E. Eisemann, and S. Pont. “Effects of inter-reflections on the chromatic
structure of the light field”. In: Lighting Research & Technology. 55.2 (2023), pp. 218–236. DOI:
10.1177/14771535211058202
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2.1. INTRODUCTION

H OW can we completely describe the light in a space and understand its
interactions with that space? The interaction between light and objects shapes

the lighting distribution and determines scene appearance. Objects in common
conditions are illuminated by both direct light sources and indirect light originating
from secondary and higher-order sources, that is, light that is (inter-)reflected,
scattered, refracted, etc. Hence, the effective light in a space is usually complex,
varying directionally, spatially and spectrally. In former work, our lab addressed how
the spatial and directional structure of the light field can be described, measured
and visualised in perceptually-relevant ways [1–4]. In the current study, we extend
these methods to the spectral domain, and we model the effects of inter-reflections
in coloured spaces to understand its basic mechanisms impacting the spectral
light-field structure.

The effective light can be described as a light field; the spectral power distribution
(E) for a given wavelength λ, arriving from a direction (θ, φ) at a point (x, y, z) in the
scene [5–9]. This real-valued spherical function describes the entire distribution of
spectral power within the volume of the space. This function thus captures all optic
information available in the space, including both the angular, spatial and spectral
power variations.

The light field can be described in a tractable, physically and perceptually
meaningful manner via a spherical harmonics approximation [2, 4, 10–12], a sort of
Fourier decomposition for spherical functions. In this approach, the optical structure
of the light field can be represented as a combination of components of different
mathematical orders, which were found to represent physically and perceptually
meaningful entities, i.e., the light density, the light vector, the squash tensor,
and statistical summary of the higher-order angular frequencies, plus their spatial
variations. The light density, the zeroth-order light-field component, is a scalar
property that can be measured by integrating the spectral power over all directions.
The first-order light-field component, the light vector, indicates the direction of net
transport of radiant energy. The spatial variation of the light vectors is referred
to as light flow. The ratio between the light vector and light density provides an
estimate of diffuseness [1]. The light density, light flow and light diffuseness form
an integrated complete description of the lowest-order properties of the light field
distribution in a three-dimensional space [12], which are directly related to our
perceptions of the average illuminance, light direction, diffuseness, flow, and zones
[13–15] and indirectly to our perceptions of space, shape, materials, and textures
etcetera [16–22]. The light squash and higher-order light-field statistics are directly
related to scene cohesion and gist [23] and indirectly to, for instance, material
perception [9, 24, 25].

In natural scenes, the diffuse scattering mode forms a significant contribution to
the bidirectional reflectance distribution function (BRDF) of most materials [26, 27]
(NB: in a first order approach a BRDF can be approached as a linear combination of
scattering modes). For matte or Lambertian materials, scattering diffusely, the BRDF
acts as a low-pass filter on directional variations in the light field. Consequentially,
in scenes primarily containing matte (or "Lambertian") materials, and scenes
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containing materials with a significant diffuse scattering mode (which applies to
most natural scenes), the appearance is determined predominantly by the low-pass
components (up to the second order: light density, light vector and squash tensor)
of the incident light [28]. The second-order light field structure can be measured by
a dodecahedron shaped "plenopter" [12]. However, the resulting light-squash data
is currently still hard to interpret and use in practical lighting design. With a cubic
illumination meter, we can measure up to the first-order light-field structure [1, 29],
and human observers can perceive and adjust the light density and light vector, both
separately and simultaneously [3, 13, 30]. Representation of the light field up to its
first order (light density and vector) still explains 94% of the appearance variations
for Lambertian surfaces [31, 32]. Therefore, we employed the first-order approach
for its practicality and ease of implementation with the current state of the art.

Inter-reflection refers to reciprocally reflected light from non-luminous surfaces,
creating secondary sources. It is a common optical phenomenon occurring in
concavities in natural scenes, for instance, corners between walls, ceiling and floor,
or between objects and the ground they are on. The spectral power distribution
(SPD) of inter-reflected light is dependent on the SPD of the light source and the
spectral reflectance function (SRF) of the reciprocally reflecting surfaces. Undergoing
many light reflections between mutual surfaces, the SPD undergoes a non-uniform
and non-linear transformation except for perfectly neutral reflecting surfaces. Figure
2.1 shows an example of an ocre coloured room - which has high reflectivity
in the long-wavelength part of the spectrum and low in the short- and middle-
wavelength range. E2 was measured in the corner and showed the influence of
the (inter-)reflections, compared to E1, which was measured in the centre, under
the white source. Spectral power attenuation is exponential and relatively strong
for wavelengths, where the surface displays low spectral reflectivity (Figure 2.1, E2,
the left part). High spectral reflectivity, in contradistinction, results in insignificant
attenuation (Figure 2.1, E2, the right part). Due to this non-uniform and non-linear
spectral power attenuation in the presence of inter-reflections, the light field in
non-neutrally coloured spaces will show spatial and directional spectral variations
[33–37].

Acting as the major secondary sources of illumination in Lambertian scenes or
any scene with materials having major diffuse reflectance modes (thus, almost any
scene), inter-reflections influence the light field in a manner that depends on the
geometry of space and sources, the spectral reflectances and the light spectrum. It
has been intensely analysed how inter-reflections can affect the luminous properties
of low-order light field components in the achromatic domain [3, 38–42]. A
few studies have also shown the significance of inter-reflections in determining
colour appearance [43–45]. However, the impact of inter-reflections on the spectral
properties of the light field has not yet been described in an integral manner with
its spatial and directional properties.

The current study aims to understand the basic optical mechanisms behind
chromatic effects of inter-reflections and their influence on the first-order physical
structure of the light field, and to extend our light-field framework and methods
to the spectral domain. To this aim, we present a theory for how the spectra of
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indirect light vary as a function of the number of inter-reflections or bounces they
went through. We demonstrate these phenomena empirically in the second part
of the paper via physically-based computer simulations and optical measurements
in mock-up spaces, including how the light density and light vector are affected
spectrally and spatially by colours in the environment. We also show how the
spectral light density and vector can be simultaneously measured using a cubic
spectral illumination meter, quantifying spatial, angular and spectral variations of
chromatic light fields.

Figure 2.1: An example of chromatic inter-reflection effects. (a) Photograph of a box space
with a uni-chromatic ocre finish illuminated by white light. (b) Two of the illuminance
spectra measured in the box space. E1 indicates the spectrum measured in the centre facing
the back wall. E2 indicates the spectrum measured at the same height and in the same
attitude, in the back left corner.

2.2. THEORY
A coarse-grained spectral approach to understand basic mechanisms
underlying chromatic inter-reflections
For hyperspectral representations, it is impossible to study all possible spectra and
estimate their inter-reflection effects. In order to study the basic mechanisms
of chromatic inter-reflection effects, we instead took a coarse-grained spectral
approach. This was shown to work well to describe the human ecology [46, 47],
because most object colours have rather smooth spectra [48]. Such smooth spectra
can in a coarse-grained approach be described by the energy in three bins, say,
BGR. Once the fundamental mechanisms are understood, it is relatively easy to
extrapolate the methods to hyperspectral data.

Now consider Lambertian material or, more generic and omnipresent, the diffuse
scattering mode of material, and neutral white (equal energy) direct lighting, that
is, an (EB ,EG ,ER ) = (1,1,1) spectrum. This lighting illuminates the material of a
certain (SB ,SG ,SR ) spectral reflectance. The first bounce results in a "spectrum"
of (E1B ,E1G ,E1R ) = (SB ,SG ,SR ). The second bounce by the same material has a
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"spectrum" of (E2B ,E2G ,E2R ) = (S2
B ,S2

G ,S2
R ). The third bounce results in (S3

B ,S3
G ,S3

R )
and so forth. In summary, the spectrum of the n-th bounce is

(EnB ,EnG ,EnR ) = (
Sn

B ,Sn
G ,Sn

R

)
(2.1)

Since the spectral power in each band is attenuated exponentially, this can cause
relative differences between them depending on the number of bounces. The
respective ratios of spectral power between each band change with each reflection,
and thus lead to a change of the spectrum’s shape. In effect, this results in shifts
towards colours corresponding with the peak(s) of the material reflectance spectrum.
If applied in the coarse-grained BGR approach, we find that homogeneously
sampled reflectance spectra result in higher-order reflections with spectra that are
very non-homogeneously clustered in this space (Figure 2.2). In other words,
inter-reflections can cause strong spectral changes.

The spectral changes and associated colour shifts can be of various types,
depending on the ratios of the spectral reflectance (SB ,SG ,SR ). Spectra on straight
lines between the vertex (0, 0, 0) and all other vertices show a power attenuation
and associated brightness decrease with each inter-reflection until reaching (0, 0, 0)
or "black" in the limit (see Figure 2.3 left), while the peak position / band remains
constant. Note that for these spectra the ratios of the spectral reflectance are
either 0, 1 or infinite. The ratios remain despite the exponential attenuation of the
individual bands. Thus, the associated hues stay the same, while the power will
decrease for individual orders of inter-reflections.

Spectra on straight lines between white (1, 1, 1) and the single-peaked or the
double-peaked reflectance spectra become more peaked for higher orders. This
can be associated with materials having pastel colours, which will show saturation
increases in regions with many inter-reflections (see Figure 2.3 middle). For
both types, for higher-order reflections, the power attenuations of the troughed
band(s) are relatively stronger than the remaining band(s). The single-peaked type
can be associated with a saturation increase towards the monochromatic colour
corresponding with the peak, whereas the double-peaked type can be associated
with a saturation increase towards mixing colour corresponding with the two peaks.
Spectra on straight lines between the single-peaked spectra and their adjacent
double-peaked spectra show different levels of power attenuations and associated
hue shifts, i.e. in our coarse-grained model the reddish magentas and yellows shift
to red, greenish cyans and yellows shift to green, and blueish cyans and magentas
shift to blue. Those spectra have one band at peak value 1, another at 0, and
the remaining band has a value between 0 and 1. The power attenuation of that
remaining band leads to dominance of the spectral peak and an associated hue shift
towards the monochromatic colour represented by that peak (see Figure 2.3 right).

Our simplified computational model using coarse-grained BGR spectra has outlined
different categories of power attenuations and their associated colour effects that can
happen as a consequence of inter-reflections. The associated brightness changes,
saturation effects and hue shifts can happen simultaneously for other spectra which
are not on the vertices, edges and diagonals. The model can easily be extended
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Figure 2.2: (a) First, (b) second, (c) third, and (d) tenth (inter-)reflections of colours plotted
in the BGR coordinates under equal energy white lighting.

to hyperspectral cases with arbitrary illuminant spectra. If a material with spectral
reflectance Sλ is illuminated by a light source with the SPD to be Eλ, the n-th
bounce of the (inter-)reflections leads to

Enλ = Eλ ·Sn
λ (2.2)

Thus, for white(-ish) light with a continuous spectrum, the phenomena will
be perceptually similar to the coarse-grained simplifications: the troughs of the
reflectance spectrum are attenuated much more than the peaks, so that brightness,
saturation and hue shifts can occur. As those spectral effects are also subject to
the SPD of the direct lighting, these associated chromatic effects can be boosted
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Figure 2.3: A schematic representation of the spectral effects of the (inter-)reflections in our
coarse-grained model. It shows the categorised spectral effects in BGR space. The changes
(in the directions of the arrows) can be associated with (a) brightness changes, (b) saturation
effects, and (c) hue shifts.

or counteracted by spectral tuning of the source. However, since natural SPDs
are usually quite smooth, and since the power distributions of white light sources
are tuned to the sensitivity of the human visual system, it is expected that the
phenomena can still be predicted and explained on the basis of this fundamental
mechanism. Please also note that here we modelled the spectrum of each individual
order of inter-reflection, while in natural scenes, the final effect will be a sum
of (infinitely) many of them weighted by geometry-dependent factors [38, 43,
45]. In the following sections we will first test the effect of that summation in
computer simulations, and next test effects in real scenes with realistic hyperspectral
conditions.

2.3. EMPIRICAL TESTING 1
Chromatic inter-reflection effects in computer simulations of a box
space

This experiment aims to empirically verify whether the three types of spectral effects
indeed occur in simple scenes as predicted and test how accumulated orders of
inter-reflections combined with direct lighting impact the final reflected spectra. We
simulated a wide range of material spectral reflectance with homogeneous sampling
over BGR space for a simple geometrical case and analyse the results in image space
(Section 2.3.2). Next, we also analyse the effects on the first-order structure of the
resulting light fields for two cases: a white room and an ocre room, for which we
first explain how we extend our light field framework to the spectral domain (Section
2.3.3).
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2.3.1. METHODS

A digital model of a simple box space was set up with the length, width and height
to be 6000 mm × 3300 mm × 3300 mm. The space was illuminated by an 1884 mm
× 773 mm uniform diffuse light panel recessed in the centre of the ceiling. Its
luminous flux is 3500 lm with an equal energy flat spectrum. For the reflectance
spectra we evenly sampled the BGR space with values of 0.1, 0.5 and 0.9, leading
to 3 × 3 × 3 = 27 BGR spectra. We intentionally avoided sampling spectra on the
vertices and edges (having a reflectance of 100% or 0% in at least one band) for
physical realism. All surfaces within the box space were Lambertian and one of
the twenty-seven herefore selected reflectance spectra. The space was rendered for
only direct illumination and total (direct + indirect) illumination separately. Since
the direct lighting from the diffuse light panel has an equal-energy-white spectrum,
the spectrum of each individual reflection are exactly in line with the described
inter-reflection theory. The simulations then show how these add up to a final
appearance, depending on the walls’ reflectance spectrum (and of course the scene
geometry and the photometrical properties of the light source).

Based on the theory, we predicted what chromatic effects of inter-reflections would
show in the total illumination images - especially for the corners, ceiling and deeper
parts of the spaces, where inter-reflections have the biggest impact. Three types
of chromatic effects of inter-reflections were expected to occur simultaneously, and
the predominant types of spectral effects were predicted to be different depending
on the walls’ reflectance spectra. We divided the spectra into four groups named
according to those predominant types. The first "control group" contains reflectance
spectra that are adjacent to the vertices in the coarse-grained BGR space. The
"brightness-change group" consists of spectra that have one or more bands with 0.5
spectral reflectance and the rest of the bands, if any, of 0.1. The "saturation-effect
group" consists of spectra between neutral ("white") and the single-peaked or the
double-peaked BGR spectra (associated with pastel colours). Those spectra have one
or two bands with a reflectance of 0.9 and the rest of 0.5. The power attenuation
of the band(s) that have 0.9 reflectance is comparatively smaller than that of
the band(s) with 0.5 reflectance, resulting in saturation effects towards the peak
reflectances. The spectra in the hue-shift group have one band with 0.9, one with
0.1 and the other one with 0.5 reflectance. These spectra are predicted to show hue
shifts because higher-order reflections attenuate the bands with lower reflectance
more. Consequently, shifts occur towards the peak reflectance.

We used the Autodesk Raytracer (ART) render engine (a physics-based renderer).
The HDR output of the engine might include values beyond the display capability
of a typical monitor. We used the tone-mapped LDR (Low Dynamic Range) images
for display purposes. The tone mapping operator (TMO) first linearises the pixel
values without any clamping and then applies a standard 2.2 gamma correction.
This TMO aims to map brightness differences in a perceptually uniform manner but
exaggerates the colour effects of inter-reflections (which also follow a power law)
(see [49] for details). For physical accuracy, raw HDR (High Dynamic Range) outputs
were used for the numerical analysis.
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2.3.2. RESULTS IN IMAGE SPACE

The collection of tone mapped images is shown in Figure 2.4(a), in which the
predicted inter-reflection effects can be seen. To analyse the spectral effects of
the accumulated orders of inter-reflections, we measured the "dominant reflected
BGR spectra" of the HDR direct illumination images and the HDR total illumination
images, by applying a k-means clustering [50]. The dominant BGR spectra of the
direct illumination images correspond to the first-bounce reflected spectra, whereas
those of the total illumination images indicate the reflected spectra of accumulated
bounces. The resulting spectra were plotted in the BGR space according to our
grouping (Figure 2.4(b)). The perimeter of the hexagon indicates the coarse-grained
spectral locus [46, 51]. The centre is the white point. The arrows indicate the
shifts from the dominant spectra of the direct illumination images to those of the
total illumination images, showing the chromatic effects of inter-reflections. Shifts
between white point and spectral locus indicate saturation increases, whereas those
in the directions along the spectral locus consider hue shifts.

2.3.3. RESULTS IN 3D SPACE: MEASURING AND VISUALISING THE

CHROMATIC LIGHT FIELD

The former analysis tested how the effects of inter-reflections influence rendered
appearance in image space. But how do these effects impact the light field in the
box spaces? For this analysis, we use the Delft light field framework [4]. To this
aim, the first-order structure of the light field at any given point was measured
via the spectral illuminance on the six faces of a small cube, see Figure 2.5. The
light density and light vector of the local light field were measured via the cubic
spectral illuminance, with E(x+) and E(x-) the spectral illuminance measurements in
the positive and negative directions along the X-axis, and analogous for the Y and Z
directions. The light density was estimated via the mean SPD of the six cubic faces
(2.3). The differences in three orthogonal directions together gave an estimate of the
light vector, its direction (E(x), E(y), E(z)), magnitude EVector (2.4)–(2.7), as a function
of wavelength λ, which is not included in the formulas for simplicity.

EDensity =
Ex++Ex−+Ey++Ey−+Ez++Ez−

6
(2.3)

E(x) = Ex+−Ex− (2.4)

E(y) = Ey+−Ey− (2.5)

E(z) = Ez+−Ez− (2.6)

EVector =
√

E 2
(x) +E 2

(y) +E 2
(z) (2.7)

For the analysis of the spectral effects on the light-field components, we first
simplified the hyperspectral approach as described above to a coarse-grained
approach. To this aim we integrated the spectral power for three bands representing
the short-, middle- and long-wavelength parts, after this shortly called "BGR" bands.
The zeroth- and the first-order coarse-grained "BGR" light densities and vectors were
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Figure 2.4: Box space renders and their associated spectral effects. (a) The collection of
tone mapped total illumination images for the box spaces with different surface spectral
reflectances. The selected spectra have been numbered for further reference. The renderings
are divided into four groups based on the surface spectral reflectance and the corresponding
predicted spectral effects of inter-reflections. (b) The power of the most dominant reflected
BGR spectra within the direct and the total illumination renders plotted in the BGR space
according to their grouping.
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measured and visualised for a white (Figure 2.6(a)) and an ocre (Figure 2.6(b)) box
space. These figures present cross sections of the room, with the light density in the
upper rows and the vectors in the lower rows. The columns present the separate
data for the three bands. The light density is mapped using a false colour scale
(right of the plots) after scaling all data, and the light vectors are projected onto
the 2D cross section. The distributions of the light densities and the light vectors
for the three bands are identical in the white space, being strongest near the light
source and diverging outwards, and aligned for the BGR light flows (that is, the flow
structure or pattern formed by the vectors). The integrating effects of the white
Lambertian surfaces cause a quite diffuse light throughout the room, which is clear
from the vectors being small except near the source, and the density is quite high
and uniform throughout the room. For the ocre space, the distributions of the light
densities and the light vectors vary as a function of the spectral band. The higher
the spectral reflectance in a particular band, the larger the magnitudes of the light
densities and the smaller the magnitudes of the light vectors, due to the integrating
effects. Since the spectral reflectance of the ocre finish increases from B to G to R,
this effect is smallest in the B band, and largest in the R band. Thus, the BGR light
flows no longer align. The light flow in the short wavelength B band diverges out
from the source and ends (is absorbed) on the B light absorbing surfaces. The light
flow of the long-wavelength R band is, by contrast, heavily curved. The light flow in
the B band is thus much more directional than in the R band, and the G band in
between.

Figure 2.5: Schematic presentation of the cubic method via illuminance measurements on
six faces of a small cube.
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Figure 2.6: The zeroth- and first-order structure of the chromatic light fields in a white
and an ocre room. Light density (top rows) and light vector (bottom rows) plots for a
cross-section of the box spaces furnished in (a) white and (b) ocre. The pseudo colours of
the light density plots indicate their normalised value. The vectors represent the local light
vectors projected onto the cross section. The columns represent the short, middle and long
wavelength bands or B, G, R bands.

2.4. EMPIRICAL TESTING 2
Chromatic inter-reflection effects in a physical box space

2.4.1. METHODS

Here, we further explore and quantify chromatic light-field effects in real room
settings under natural lighting with fine spectral resolution (1 nm interval).
Inter-reflections on diffusely scattering materials, because of their diffuse nature,
boost the light densities and attenuate the light vectors – and, as we have seen
herefore, in a manner that depends on the wavelength (band). The objective is to
A) test whether the three categorised chromatic effects in the theory and computer
simulations can be reproduced in a real setting with more articulated spectra and B)
test the differential effects on the light-field components.

To these aims, a 1200 mm × 660 mm × 660 mm physical mock-up windowless
box space (Figure 2.8 first row) was constructed. The space was illuminated by
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a planar diffuse luminaire (377 mm × 155 mm). The SPD of the luminaire was
tuned by modifying the lamps used. The SPDs of the two chosen illuminants are
shown in Figure 2.7. Lighting scenario one was established by using a xenon lamp
(CRI Ra 91.4, CCT 5461 K) only to backlight the planar diffuser, and scenario two
by a fluorescent lamp (CRI Ra 84.2, CCT 4284 K). We combined these two sources
with four furnishing materials to keep it tractable, representing neutral, brightness,
saturation and hue shift cases (white, maroon, coral and ocre, respectively). The
furnishing materials were created by white paint, or printing A3 sheets of paper
with uniformly coloured BGR colours (0.1, 0.1, 0.5), (0.5, 0.5, 0.9) and (0.1, 0.5, 0.9).
The SRFs of those materials were measured with a spectrophotometer. With the
measurements of the SRFs of the four finishes (Figure 2.8 second row) and the SPDs
of the two lamps taken, we can predict the spectral effects for separate bounces
in both lighting scenes based on (2) (Figure 2.8). The spectral shape of the first,
second, third and tenth bounces under both illuminants have been plotted by using
the power functions presented in the theory section (third and fourth rows for the
first and second lamps, respectively). Please note that the weight of each bounce
in the final resulting light field is dependent on space geometry and lighting. To
quantify and analyse these effects, we measured the cubic spectral illuminance
in the left-back corner and the centre of the mock-up space in all four different
furnishing conditions and for the two sources.

Figure 2.7: Normalised spectral power distributions of the two selected illuminants. Xenon
lamp (solid line), a mixture of fluorescent and tungsten halogen (dashed line).

2.4.2. RESULTS

We first estimated and compared the light density and light vector for the centre
measurements (Figure 2.9(a) first row) and corner measurements (Figure 2.9(a)
second row) for all four selected finishes under the xenon lamp. The third row shows
their hue (angle) and saturation (length vector with 0 representing white and 1 fully
saturated). The chromatic coordinates of the spectra were calculated based on CIE
1964 10° colour-matching function.

In the white space, the SPDs of the light density and light vector were similar, as
expected for the relatively flat SRF of the material, causing the light density and
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Figure 2.8: Physical mock-up windowless box spaces and predictions of the spectral effects
for separate bounces in both lighting scenes. The first row shows the photographs of the box
spaces. The second row shows the measured SRFs of the four selected finishes. The third
row shows the associated calculated spectra for the first, second, third and tenth bounces
under the xenon lamp, and the fourth row under a mixture of compact fluorescent and
tungsten halogen.

light vector in the space to have a similar spectral shape as the illuminant (Figure
2.9(a) first column). The minor spectral variations might be due to the first author’s
skin reflections since he had to hold the meter into the box space during the
measurements.

The light densities’ SPDs in both the centre (D) and corner (D’) of the maroon
room showed minor but similar attenuations of the short- and middle-wavelength
part of the spectrum relative to the long-wavelength part, while the light vectors’
SPDs (V and V’) were close to the illuminant spectrum (Figure 2.9(a) second
column). However, the intensity for both light density and light vector decreased
(not visible in the plots due to normalisations) in the corner showing the brightness
effect. The hue and saturation plot showed that the light densities and vectors in
both locations had similar hue and saturation.

In the coral space (Figure 2.9(a) third column), the light densities’ SPDs in both
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the centre (D) and corner (D’) showed stronger attenuations of both the short- and
middle-wavelength parts of the spectrum than the long-wavelength part, while the
magnitude of attenuation was larger in the corner. The light vectors’ SPDs (V and
V’) were closer to the illuminant spectrum in both locations, while that in the corner
only showed minor attenuations of the short- and middle-wavelength part of the
spectrum compared to that in the centre. The hue and saturation plot shows that
the light densities were reddish and the light vectors were bluish in both locations.
Meanwhile, the light density in the corner D’ was more saturated than that (D) in
the centre, but shared a similar reddish hue. The light vector in the corner V’ was
more reddish than that (V) in the centre.

The SPDs for the ocre room showed similar effects as for the coral room; that
is the spectral attenuation mainly showed up for the light densities (D and D’)
relative to the light vectors (V and V’) (Figure 2.9(a) fourth column). However,
the short-wavelength part of the light density’s SPD in the corner (D’) attenuated
more than that in the centre (D), resulting in a change of the relative difference
between the short-, middle- and long-wavelength part of the spectrum. The hue and
saturation plot shows that the light densities were reddish and the light vectors were
bluish in both locations. Meanwhile, the light density in the corner D’ was more
reddish and saturated than that (D) in the centre. The light vector in the corner V’
was more reddish than that in the centre (V).

In general, we see the hue variations between the light densities and the light
vectors changing more and more towards red from V to D to V’ to D’. The light
density and light vector in the corner (D’ and V’) were also consistently more reddish
than their corresponding light density (D) and light vector (V) in the centre. A closer
look shows that the xenon source is quite blueish and so the hue plot shows that
the effective spectra cover a wide range between blueish and reddish. The complex
interactions between blueish direct light and reddish inter-reflections cause V’ to be
less saturated than V.

The second source was deliberately chosen with its highest peak at the
middle-wavelength part of the spectrum (about 545 nm) and relatively poorer colour
rendering to counteract the reddish material reflectance spectra somewhat. Here,
the hue angle variations for the coloured rooms are relatively smaller than for the
xenon lighting scenario (Figure 2.9(b)), showing the dependency on the illuminant.
The V-D and V’-D’ order however remained the same, as predicted before, going
towards red and more saturated colours, corresponding with the expected order of
impact of inter-reflections.

2.5. DISCUSSION

Light fields (the actual light in a space) are a function of position, direction and
wavelength. In earlier work, the position and direction dependency was already
described, measured and visualised [1–3]. Here we made the first steps to extend
this concept to the spectral domain, explaining how to compute and understand
the light density and light vector spectrally. We further presented several examples,
including real measurements.
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Figure 2.9: Spectral measurement results. (a) Normalised plots of the light density (D) and
light vector (V) spectra of both the centre (first row) and corner (second row) measurements
for four different finishes (in the rows) illuminated by a xenon lamp. The hue and saturation
of the light density and light vector spectra were plotted in the hue and saturation wheel
(third row). The arrows point from the reference white point W to the light density and
light vector colours for the centre and corner measurements. An accent denotes the corner
condition. (b) as (a) for a fluorescent lamp.
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These chromatic effects of inter-reflections are dependent on the spatial
arrangement, location and spectrum of the light source(s) and room furnishing
spectra. In a coarse-grained approach, we derived and explained what optical
mechanisms underlay the colour shifts we observed "in the wild", namely brightness,
saturation and hue shifts. Under neutral white illumination with good colour
rendering properties, a coarse-grained approach will suffice to describe and
understand the inter-reflection phenomena of human optical ecology. Moreover,
common "white" sources are tuned for optimised luminous efficiency and colour
rendering and have spectra with their power distributed over the visible range. Such
relative short, middle and long wavelength ratios remain rather robust, as the main
effects that we demonstrated. However, if light spectra do not overlap with the
material spectral peaks, the chromatic effects could be weakened or even violated.
Such lighting conditions apply to metameric white illumination with poor colour
rendering (e.g. high-pressure sodium lamp) and non-neutral illumination (e.g. blue
skylight or a low-pressure sodium lamp). It should also be noted that most materials
have rather smooth reflectance spectra and inter-reflections will therefore show the
predicted shifts toward the peak of the reflectance spectra, as demonstrated in the
empirical studies. Inter-reflections and chromatic light field effects are also subject
to the spatial distribution of the light sources and their positions. A light source that
is more directional (e.g. a narrow-beam spotlight) might cause weaker effects than a
more diffuse light source such as a luminous planar panel.

In empirical testing 1, we simulated the colour effects of accumulated orders of
inter-reflections in a uni-chromatic space under typical planar white lighting. The
theoretically predicted and simulated spectral shifts could indeed be reproduced in
computer-rendered spaces. Results for surfaces of which the spectral reflectance is
less than 0.5 were also found to be consistent with a previous study in which it
was found that for such surfaces the inter-reflections have almost no effect on the
chromatic appearance [43]. Results for surfaces with higher spectral reflectances
showed the predicted effects. Moreover, we extended our light-field methods to
show how these spectral effects on the first-order properties of light fields, the light
density and light vector, can be measured, visualised and understood.

In empirical testing 2, fine spectral measurements were taken in real room settings
under white lighting. The shape of the light density spectrum was shown to be
primarily affected by accumulated orders of (inter-)reflected light. The spectral
shape of the light vector was found to be close to that of the illuminant with a
minor impact of the (inter-)reflected light. These differential effects on the different
components of the resulting light field were predicted and demonstrated using
the extended light field methods. The differential effects were also shown to be
dependent on the lighting spectrum. These effects can be spectrally tuned via the
lighting. In general, the relative spectral differences between troughs and peaks of
reflected light can be increased (or decreased) by tuning the troughs and peaks of the
illuminant to be similar (or inverted) to those of the material. In natural scenes such
differential effects will have an impact on the appearance of 3D objects: shadows will
be filled in with mainly the light density and the lightest parts will be determined
for a large part by the light vector. This will cause chromatic effects in addition
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to the well-known modelling effects due to luminance gradients [52]. This raises
questions such as whether these effects will be noticeable, under which conditions,
and when they can safely be ignored. Colour adaptation and constancy mechanisms
might discount such effects, certainly if the chromatic effects are within the ballpark
of natural variations, such as happen with a blue sky and direct sunlight or under a
canopy. However, in artificial conditions such as an art gallery with sculptures or in
chromatic architectural spaces the effects described, measured and visualised in this
paper will have significant effects on people and objects worth considering.

A tool can be used for coarse-grained predictions under typical white sources.
Figure 2.10 shows variations of colours and their inter-reflection effects that one
might judge to be more or less "harmonious" [53–56], and thus of importance for
lighting professionals working on 3D designs. The interface above the boxes shows
the BGR spectral values of the finish, which in practice can be estimated with a
smartphone. In this manner, it is possible to get a quick idea of the appearance
of a space for a specific finish and lighting. It should be noted however that the
display medium and viewing conditions have a major impact on colour perception.
Computer simulations currently are much used to communicate design concepts
and evaluate colour schemes. Our tool provides a coarse visual guesstimation of the
impact of chromatic inter-reflections on spatial and chromatic articulation.

This study was limited to spaces furnished with diffusely scattering materials and
uniformly coloured rooms. In most natural scenes, diffuse scattering dominates
the reflectance modes. Therefore, our results apply to most scenes. Moreover, in
empirical testing 2 the boxes were furnished with paper that actually was quite
glossy. Such materials still have a very significant diffuse scattering mode - in
combination with a forward scattering mode. Many (or perhaps even most) materials
in our natural ecology have a diffuse scattering mode. Our findings thus describe
phenomena that occur widely "in the wild", not just in perfectly Lambertian scenes.
They can be observed in many daily life scenes. More complex and exotic scenes
composed of multiple coloured and non-diffusely scattering surfaces, such as mirror
and transparent materials, might however show more complicated effects.

2.6. CONCLUSION
In conclusion, light in a space varies not just as a function of position in the
space and the direction of observation, but also of spectral power. Reflectance
spectra have a prominent effect on the chromatic properties of the light field due
to inter-reflections, via the indirect contribution, and can influence the apparent
brightness, saturation and even hue. Here we showed how these effects could be
measured and visualised for the light density and light vector or flow in the room.
The spectral properties of the light vector were indeed shown to be impacted only
slightly, while the light density clearly showed the predicted effects, and both were
impacted stronger in deep parts of the scene. Our findings show the importance to
include 6D light field effects of light-material interactions in spatial designs.
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Figure 2.10: Coarse-grained predictions of spectral effects by our tool. The first column
shows three box-space visualisations under a warm (a) white light source. The second and
third columns show the same finished box spaces illuminated by neutral (b) and cool (c)
white light sources. The computer-generated renders were made using standard 2.2 gamma
correction after combining the BGR spectral bins and optical mixing.
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3
EFFECTS OF INTER-REFLECTIONS

ON THE CORRELATED COLOUR

TEMPERATURE AND COLOUR

RENDITION OF THE LIGHT FIELD

In everyday scenes, the effective light can be defined as a complex light field,
resulting from a mixture of emissive light sources and indirect mutual surface
(inter-)reflections. Hence, the light field typically consists of diffuse and directional
illumination and varies in spectral irradiance as a function of location and direction.
The spatially varying differences between the diffuse and directional illumination
spectra induce correlated colour temperature (CCT) and colour rendition variations
over the light fields. Here, we aim to investigate the colorimetric properties of
the actual light, termed the effective CCT and colour rendition, for spaces of one
reflectance (uni-chromatic spaces). The spectra of the diffuse light-field component
(light density) and the directional light-field component (light vector) were measured
in both physical and simulated uni-chromatic spaces illuminated by ordinary white
light sources. We empirically tested the effective CCT and colour rendition for the
light density and the light vector, separately. There were significant differences
between the lamp-specified CCT and colour rendition and the actual light-based
effective CCT and effective colour rendition. Inter-reflections predominantly affected
the CCT and colour rendition of the light density relative to the light vector. Treating
the diffuse and directional light-field components in a linear model reveals the
separate influences of the light source and scene. These effects show the importance
of a 3D version of colour checkers for lighting designers, architects or in general
computer-graphics applications, for which we propose simple Lambertian spheres.

Published as: C. Yu, M. Wijntjes, E. Eisemann, and S. Pont. “Effects of inter-reflections on
the correlated colour temperature and colour rendition of the light field”. In: Lighting Research &
Technology. 0.0 (2022), pp. 1–22. DOI: 10.1177/14771535221126902
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3.1. INTRODUCTION

I N natural scenes, light fields are often composed of directional illumination
emanating from a radiating source and diffuse illumination from inter-reflections

by objects (e.g. the floor, walls and ceiling of a room). The chromatic properties
of inter-reflections are a product of the spectral power distribution (SPD) of the
incident light and the spectral reflectance function (SRF) of a material. The
dependency on the SRF varies exponentially as a function of the number of
bounces the inter-reflections went through. Therefore, the SPDs of the illuminant
and inter-reflections are different [1–5] except if the inter-reflections originate from
spectrally neutral surfaces (ones which reflect light equally at all visible wavelengths).
Here we will focus on the optical effects of material SRFs on the light field. Even if
the light source SPD(s) and the material SRF(s) are invariant for most static natural
scenes, the chromatic properties of the effective light are still subject to spatial and
directional variations due to inter-reflections. Such material-space-light interactions
impact how 3D objects and people will look in such spaces, in which the diffuse and
directed components of the light will have differential effects on the shadowed and
directly illuminated parts of the objects and people [6, 7]. Our aim is to capture and
understand such spatially and directionally varying chromatic effects in a light-field
framework.

Colour rendering [8] refers to the interaction between light SPD and surface SRF.
This is one of the principal factors determining how objects appear, in addition to
illuminance level and light diffuseness. Colour rendering metrics (CRMs) apply to
lamps and characterise a specified source by its effects on the colour appearances of
a representative set of surfaces, compared to a reference illumination. The reference
illumination has a precisely defined broad-band spectrum. It is usually a Planckian
radiator or a mathematical model of daylight illuminant that is close to or on
the Planckian locus. The reference illumination is chosen as a common point of
comparison [9] for normal colour vision.

There are multiple types of CRMs associated with lighting applications. These
include colour fidelity, which refers to the degree to which colours appear under a
test illumination as they are expected to appear on the basis of previous observations
under a defined reference illumination [10]. Other attributes of colour rendering
include memory [11], discrimination [12], preference [13], fluorescence [14] and
many other effects, which tackle very specific visual tasks. For simplicity, we focus
on the colour fidelity aspect in this study. SPDs that are reasonably smooth and
evenly distributed tend to have higher fidelity.

With complete immersion in and adaptation to the chromaticity of the test
illumination, CRMs assume that the reference illuminants have maximum colour
fidelity [8]. Electric illumination spectra such as blue-pump LEDs often lack power in
certain wavelength ranges compared to full-spectrum radiators, negatively impacting
their colour fidelity. Illumination with high or low colour fidelity, in general, makes
object colours appear as expected or unexpected under reference illumination.

There are multiple CRMs in use to quantify colour rendering performance, among
which the CIE general colour rendering index (CRI) Ra is the most widely used
measure. Despite its prominence, Ra has a variety of limitations [15–17], such as a
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harsh cut-off at 5000 K for defining the reference illuminant. The scalar index also
fails to indicate the types of colour effects, i.e. whether it concerns saturation and/or
hue shifts.

Progress has been made in examining other CRMs as a replacement [11, 18–22]
or an adjunct [23] to the CRI. The global consensus was reached on assessing
colour rendering via TM-30 [10, 22, 24, 25]. TM-30 specifies both an improved
fidelity index (R f ) and a gamut index (Rg ), accompanied by a colour vector graphic.
Its high number (99 in total) of colour evaluation samples (CESs) covers a wide
range of reflectance spectra, corresponding to a range of consumer goods and
natural materials. Instead of a sharp cut-off at 5000 K, TM-30 uses a proportional
blend of Planckian radiation and a D Series illuminant between 4000 K and 5000 K.
The additional (Rg ), colour vector graphic and local measures provide detailed
information on the hue and saturation shifts. In 2018, the TM-30 R f was updated to
match the new CIE R f [26], as an agreed scientifically accurate measure of colour
fidelity. However, in practice, a switch to TM-30 involves software upgrading and
therefore time, so characterising colour rendition by the CRI is still in use. Therefore,
the current study utilises both the conventional and the state-of-the-art colour
fidelity measures to characterise the effects of inter-reflections on colour rendition,
which we coin the effective colour rendering.

Lighting professionals generally rely on lamp-based colour rendering metrics,
which apply well in common lighting applications. The impact of inter-reflections on
the effective colour rendering throughout spaces is usually not considered. However,
overlooking this can lead to unintentional colour distortion in lighting designs in
which coloured materials are used [18, 27–30].

In order to quantify spatially varying lighting distributions, the current study
uses the Delft light-field framework [31]. Light fields capture the effective light
in a space, including inter-reflections, shadowing effects, etcetera, so it describes
the complete lighting distribution that is potentially available to the human visual
system (or plenoptic function [32]). The light field thus depends on the light
source characteristics, the space’s geometry and the materials. The physical light
field (the spectral power as a function of location, direction and wavelength) can
be decomposed as the sum of qualitatively different components via spherical
harmonics (SH) [33–35]. Here we consider just the first two components since those
are the main determinants of the modelling and (colour) contrast [36–39]. The
0th-order SH, the light density, is associated with the diffuse light-field component,
namely the integration of the spectral power over the sphere. The 1st-order SH
represents the light vector, indicating the net flux transport or directional light-field
component. In past studies, up to 1st-order chromatic light fields were described,
measured and visualised via cubic spectral irradiance measurements [3, 6, 40].

This study aims to predict and measure chromatic light fields and the impact of
(inter-)reflections on the effective correlated colour temperature (CCT) and colour
fidelity. Hypotheses are that A) the lamp-specified CCT and colour fidelity are
noticeably different from the actual light-based effective CCT and effective colour
fidelity in the presence of materials with non-neutral SRFs, and B) the major
determinants of the CCT and colour fidelity for the light density are the scene
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material SRFs, while that for the light-vector CCT and colour fidelity is the illuminant.
We first summarise our earlier work showing how different bounces of inter-

reflections shape the chromaticity of the light field [3]. We then empirically
demonstrate the disjunction between the lamp-specified and the light-based CCT
and colour fidelity by measuring the spectra of the light density and the light vector
in physical and simulated uni-chromatic spaces illuminated by ordinary white light
sources. We also show how to understand the diffuse and directional light-field
components’ differential spectral properties and use their linear combination to
capture the separate influences of the light source and scene material interactions.

3.2. CHROMATIC EFFECTS OF INTER-REFLECTIONS
The SPD of the lamp is denoted as E0(λ), and the surface SRF of the room as ρ(λ).
The spectrum of the i th bounce of the inter-reflections is then:

Ei (λ) = γi E0(λ)ρ(λ)i (3.1)

where γi is the geometrical factor, determined by the surfaces’ geometry, the
bidirectional reflectance distribution function (BRDF), and scene layout. The ith
reflection results in a multiplier of E0(λ) with the i th power of the material SRF
or ρ(λ). As a result, the SPDs of inter-reflections depend strongly on the SRF. If
the room surfaces are achromatic, each reflection has the same SPD. But if the
room surfaces are chromatic, the SPD will change with each reflection. Since the
absolute spectral power attenuates exponentially, the relative differences between
the peak(s) and trough(s) of the material SRF increase with each bounce. The ratios
between the spectral power of short-, middle- and long-wavelength parts determine
the chromatic effects of inter-reflections [3, 40], i.e. brightness, saturation, and hue
shifts. For our earlier work on this topic and an extensive explanation of these
fundamental mechanisms, see Yu et al. [3]

Figure 3.1 shows such effects for an achromatic material and three chromatic
materials representing brightness, saturation, and hue effects under two typical
white illuminations. The chromatic materials were selected based on their
qualitatively different effects, namely on brightness, saturation, and hue, in a
coarse-grained spectral approach that resembles the human ecological context [3,
41, 42]. The coarse-grained spectral bandwidths are similar to the spectral channels
of human vision (50–120 nm half-widths) [43, 44], i.e. short-wavelength blue channel
(400–500 nm), middle-wavelength green channel (500–600 nm) and long-wavelength
red channel (600–700 nm) [45]. In ecological contexts, red, green and blue
(RGB)–coordinates suffice to predict the chromatic effects of inter-reflections [41,
46, 47]. The maroon SRF peaks in the red channel, and the rest of the bands
have minimal reflectivity. Thus, the exponential attenuation of high orders shows
diminishing spectral energy in the red channel as a brightness effect. The coral SRF
has its peak in the red channel with a relatively low but similar value in the green
and blue channels, resulting in saturation effects towards the peak reflectance for
high-order reflections. The orange has different reflectivity in the RGB channels, and
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Figure 3.1: Chromatic effects of inter-reflections. (a) SRFs of white, maroon, coral and orange
colours. For photographs, see Supplementary Materials Figure F2. (b-d) Inter-reflection
effects under xenon lighting. (b) The normalised SPDs of the 0th , 1st , 2nd , 3r d , and 10th

reflections of selected materials. see Supplementary Materials Figure F1 for non-normalised
SPDs. (c) The relative luminance of the associated reflections in ascending order marked by
red dashes. (d) The chromaticity coordinates of the associated reflections in the CIE 1976
UCS diagram based on CIE 1964 10° colour-matching functions. (e-g) as (b-d) for blue-pump
LED lighting.
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the RGB ratios of reflected SPDs consecutively change, causing hue effects. Figure
3.1(a) shows the SRFs of the selected materials. Figure 3.1(b-g) shows the SPDs,
luminous energy and chromaticity coordinates of the 0th , 1st , 2nd , 3r d , and 10th

reflections for broad-band xenon (R f 94, CCT 5461 K) and blue-pump LED light (R f

77, CCT 4745 K). The online supplementary files (see SupplementaryMaterial.docx
[48] and SupplementaryMaterial_Spectra.xlsx [49]) include the SRFs of selected
materials and the SPDs of the illuminants, so that the interested reader may
reanalyse the data.

The chromaticity coordinates of high-order reflections hardly vary for the white
room (see Figure 3.1, white-room chromaticity plots). However, the maroon material
shows brightness effects; the relative luminance diminishes from the 1st reflection
on for its low albedo, regardless of the chromatic variations. The coral colour
shows saturation effects at high-order inter-reflections, i.e. the chromaticity with
each bounce shifts closer to the colour’s dominant wavelength on the spectral
locus. For the orange colour showing the hue shift effects, the chromaticity of
individual bounces forms a curve in the chromaticity diagram, from orangish to
reddish (see Figure 3.1(c-d) and (f-g), the right three columns). The line between the
illuminant (point 0) and the material SRF’s dominant wavelength on the spectral
locus (approached by point 10) and the lines between points 0, 1, 2, ... span the
area of the effective light chromaticities.

Rendering of object colours will be impacted by these chromatic effects of
light-material-geometry interactions. This affects the CCT and CRM of the actual
effective light in the space instead of the source-based CCT and CRM, in other
words, light instead of lighting based. Moreover, these effects vary throughout space;
spectrally, directionally, and spatially, thus forming important metrics to include
in a light-field approach together with the already studied characteristics of light
density, vector, diffuseness, squash, brilliance, flow, and zones. This paper tested
these interaction effects in physical and simulated scenes for an extensive range of
material and illuminant spectra.

3.3. EXPERIMENT 1
CCT and colour rendition variations in a physical box scene
Chromatic effects of inter-reflections have a major influence on the diffuse light-field
component due to their omnidirectional nature and a minor influence on the
directional light-field component [40]. The effective CCT and colour fidelity
properties of the actual light in a space are therefore predicted to vary as a
function of the contribution of the diffuse and directional light-field components:
the more direct lighting (often consisting of a major directional and minor diffuse
contribution), the more it will be consistent with the original CCT and colour
fidelity of the lamp, and the more indirect lighting (often a major diffuse and minor
directional contribution), the more the CCT and colour fidelity will deviate. Here we
empirically test how chromatic effects of inter-reflections affect the CCT and colour
fidelity for up to 1st -order light-field components.

http://doi.org/10.25384/SAGE.21354688.V1
http://doi.org/10.25384/SAGE.21354691.v1
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3.3.1. METHOD

PHYSICAL TEST SCENES

We constructed four physical windowless box spaces with a length, width, and
height of 1200 mm × 660 mm × 660 mm. The spaces were uniformly covered in four
different material colours. The surface materials were created by matte white paint,
or A3 paper sheets printed with RGB colours including maroon (0.5, 0.1, 0.1), coral
(0.9, 0.5, 0.5) and orange (0.9, 0.5, 0.1). The SRFs of those materials were measured
with an X-Rite portable handheld spectrophotometer (Ci60 Series) (Figure 3.1(a)). As
verified by full spectral modelling in Section 3.2, the selected chromatic material
colours under typical white illumination show brightness, saturation and hue effects
in the presence of inter-reflections, respectively [3].

The box spaces were illuminated by a ceiling-recessed planar luminaire (377 mm ×
155 mm). The luminaire employed a micro prismatic diffuser that evenly dispersed
the light in the space. We specifically selected two lamps with typical SPDs, i.e.
xenon lights (R f 94, CCT 5461 K) with a broad-band spectrum and fluorescent (R f

83, CCT 4284 K) with a spiky spectrum. We combined these two illuminants with the
four materials for a total of eight light scenes.

DATA COLLECTION

We measured the local light fields via the cubic illumination system [36, 50, 51] in
the centre and left-back corner of the physical space for all eight scenes, capturing
the spectral irradiance on the six faces of a small reference cube (Figure 3.2) centred
at the measurement point. The cube was aligned with the principal surfaces of the
surrounding environment. The spectral irradiance was acquired over a wavelength
range from 380 to 780 nm in 11 nm increments and was internally interpolated to
1 nm increments. Each cubic measurement, including placement of the apparatus,
lasted about 1 minute. The experimenter (the first author) was covered in black to
minimise disturbing reflections. A total of 16 cubic measurements (96 irradiance
spectra) were collected.

DATA PROCESSING AND ANALYSIS

For each cubic measurement, the six spectral irradiance values are designated
E(λ,x+), E(λ,x−), E(λ,y+), E(λ,y−), E(λ,z+) and E(λ,z−), representing the measurements
in the positive and negative directions along the coordinate axes. The subtractions
of the opposed paired measurements correspond to the light vector components in
the coordinate-axis directions, i.e. E(λ,x), E(λ,y) and E(λ,z) (Equations (3.2)–(3.4)) and
define the direction of the light vector. The length of the vector corresponds with the
magnitude of the light vector E(λ,vector ) (Equation (3.5)). The light density E(λ,scal ar )

is obtained via the sum of the symmetric component E(λ,s ymmetr i c) and the weighted
vector’s contribution (Equation (3.10)). E(λ,s ymmetr i c) equals the average value of
the symmetric components of all directions (Equation (3.9)). The light vector’s
contribution to the light density is E(λ,vector )/4, which was derived analytically [36].
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Figure 3.2: The frame of reference for the cubic illumination measurements.

E(λ,x) = E(λ,x+) −E(λ,x−) (3.2)

E(λ,y) = E(λ,y+) −E(λ,y−) (3.3)

E(λ,z) = E(λ,z+) −E(λ,z−) (3.4)

E(λ, vector) =
√

E 2
(λ,x) +E 2

(λ,y) +E 2
(λ,z) (3.5)

∼ E(λ,x) =
E(λ,x+) +E(λ,x−) −

∣∣E(λ,x)
∣∣

2
(3.6)

∼ E(λ,y) =
E(λ,y+) +E(λ,y−) −

∣∣E(λ,y)
∣∣

2
(3.7)

∼ E(λ,z) =
E(λ,z+) +E(λ,z−) −

∣∣E(λ,z)
∣∣

2
(3.8)

E(λ, symmetric) =
∼ E(λ,x)+∼ E(λ,y)+∼ E(λ,z)

3
(3.9)

E(λ, scalar ) =
E(λ, vector )

4
+E(λ, symmetric) (3.10)

We used both CRI Ra and TM-30 R f to quantify the colour fidelity. The
illumination’s chromaticity is spatially and directionally varying within a scene, while
chromatic adaptation is assumed to be based on the scene’s white point (the
anchor) [52, 53]. The reference illuminant of the whole scene is thus defined as the
broad-band spectrum sharing the same CCT as the lamp, under the brightest-is-white
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assumption [53–56]. The Ra was calculated in the conventional manner [57]. The R f

calculation was based on the TM-30-18 standard framework via Luxpy [58].

RESULTS

Figure 3.3 shows the SPDs of the light densities and vectors in the centre (a-b) and
corner (c-d) of the box rooms under xenon illumination. We plotted the SPDs of
the xenon lamp (black line) and CIE D Series reference illuminant having the same
CCT (red line) as the baselines. The measured effective spectra were included in
Supplementary Material Section S5.

Figure 3.3: Spectral effects of light-material interactions. The SPDs of the light density ((a)
and (c)) and light vector ((b) and (d)) in the centre (a-b) and corner (c-d) for the four finishes
illuminated by a xenon lamp. The black line indicates the lamp spectrum. The red line is the
reference spectrum (CIE D Series reference illuminant having the same CCT as the lamp).
The other coloured lines are the effective light spectra corresponding to the room colours.

The light densities’ and vectors’ SPDs in the white room were consistently similar
to the lamp spectrum. For the other three finishes, the SPDs of the light densities
differed from the lamp spectrum, showing a peak in the long-wavelength part
and attenuation in the short-wavelength part, corresponding to the materials’ SRF
shapes. The spectral differences in the corner were larger than those in the
centre. The effects in the maroon room were smaller than in the coral and orange
rooms. The light vectors’ SPDs were quite similar to the lamp spectrum in the
centre but also showed deviations in the corner of the coral and orange rooms.
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Figure 3.4: Spectral effects of light-material interactions. The SPDs of the light density ((a)
and (c)) and light vector ((b) and (d)) in the centre (a-b) and corner (c-d) for the four
finishes illuminated by a fluorescent lamp. The black line indicates the lamp spectrum. The
red line is the reference spectrum (a mixture of Planckian radiation and the CIE D Series
reference illuminant having the same CCT as the lamp). The other coloured lines are the
effective light spectra corresponding to the room colours.

These results thus are in line with the hypothesis that the light vector (directional
light-field component) corresponds better with the illuminant spectrum and the
density (diffuse light-field component) with the paint reflection spectrum.

Figure 3.5 shows the relative differences of the effective CCT, Duv (distance from
the Planckian locus), Ra , and R f of the light density (grey bars) and vectors (black
bars) relative to those of the lamp for the centre (a) and the corner (b) of the box
rooms under xenon illumination. Ra and R f are designated to quantify the colour
fidelity of white primary illumination. Multiple effective Duv values are beyond Ra

and R f ’s stated limits, and thus, these metrics cannot be applied formally. However,
this type of scene is intended to be illuminated by white light, and excessive Duv is
due to chromatic inter-reflections. These metrics are conventionally used in such a
scene as a standard benchmark for the light qualities, and we thus still applied them
to assess how inter-reflections can modify the effective light qualities. It is important
to note that for the values beyond the Duv limits, the effective light cannot even
be classified as white anymore according to ANSI C78.377-2017 [59], but is actually
chromatic. The associated absolute colour fidelity values are unlikely to correspond
to perception, but the relative differences between light density and light vector in
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Figure 3.5: The relative differences between the Effective colour metrics and lamp-specified
colour metrics. The CCTs, Duv, Ra and R f differences of the light densities (grey bars)
and the light vectors (black bars) relative to those of the lamp in the centre (a) and corner
(b) of the four selected finishes illuminated by a xenon lamp. (c) and (d) as (a) and (b)
for a fluorescent lamp. The raw tabular colorimetric values are supplied in Supplementary
Materials Section S7.

the centre and corner give an estimate of directional and spatial colour fidelity
variations due to inter-reflections.

As shown in Figure 3.5, all colorimetric values for the white room are almost
identical to the lamp’s with minor variations. For the other three finishes, the
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effective CCTs of the light densities (grey bars) are up to 2905 K lower than those of
the light vectors (black bars) and up to 3353 K lower than the reference lamp CCT.
The light vectors’ CCTs were more consistent with the reference illuminant values
and deviated maximally 857 K in the corner.

The Duv of the light densities and vectors for all room cases were consistently
negative, indicating that their chromaticity coordinates were below the Planckian
locus. The Duv for the light densities were lower than the lamp values.

The effective Ra and R f results for xenon lighting were found to be similar in the
sense that the colour fidelity measures for the light densities were consistently lower
than for the vectors in the coloured rooms. However, light-density Ra values tended
to be lower than R f values for the chromatic rooms. The light densities’ Ra and
R f decreased up to 63% and 36% compared to that of the lamp, respectively. The
deviations in the corner were larger than in the centre. Also, material colours with
a high albedo and brightness value (coral and orange) showed stronger effects than
for a low albedo and brightness value (maroon).

Figure 3.4 and Figure 3.5(c-d) show the same information for fluorescent light.
The reference illuminant was a mixture of Planckian radiation and the D Series
illuminant. The lamp spectrum differs markedly from the reference illuminant.
The measured effective spectra were included in Supplementary Material Section
S6. The results in the white room were consistent with the lamp. The chromatic
materials caused lower CCTs and larger Duv magnitudes for the light density,
similar to the xenon condition. The Ra of the light density in the maroon space
increased. The decrease of Ra and R f for the light densities in the coral and
orange space was smaller than those under xenon illumination. We again found
differential colorimetric properties between the light density and light vector and
major differences between lamp-specified and light-based CCT and colour fidelity.

3.3.2. OVERVIEW OF FINDINGS

Chromatic materials of a space can alter the light density’s colorimetric properties
in that space due to inter-reflections. Their impact on the light vectors is relatively
small, except for deep parts of the space where the chromatic diffuse inter-reflections
dominate and directed white illumination attenuates, but on the light density can
be large. The colour temperature of the lamp and effective light is in the coral and
orange cases too large to be called the same “nominal” CCT [59]. Additionally, for
those cases we find differences for the colour fidelity larger than five points, which
tends to be noticeable [15]. This will cause chromatic gradients on 3D objects (and
people) in the space, in which diffusely scattered light greatly affects the shadows
and shaded parts and the direct light has major effects on highlights and directly
lit parts. Effects were major in our uni-chromatic cases with high purity, namely
the coral and orange rooms. For the maroon room the low reflectivity resulted in
relatively minor effects on the effective metrics. Colour fidelity was impacted in
most coloured rooms. The selected room colours also decreased the CCT, which
can be explained by the profile of their SRFs, having peaks in the long-wavelength
range. The colours used here were chosen for their qualitatively different effects
(brightness, saturation, hue shifts) and all had long dominant wavelengths. This
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raises the question how different types of SRFs will impact the effective light’s
chromatic properties.

3.4. EXPERIMENT 2
CCT and colour rendition variations in a simulated box space
This section aimed to quantify the spatial variations of the effective CCTs and colour
fidelity measures for more extensive and representative material-light interactions in
the box space. Using hyperspectral computer simulations, we systematically varied
the room material SRFs and illuminant SPDs of the space to study their effects on
the chromatic light-field properties and effective CCTs and colour fidelity measures.

3.4.1. METHODS

SIMULATED TEST SCENES

A digital model of a 6000 mm × 3300 mm × 3300 mm box scene was constructed.
The space was uni-chromatic and illuminated by a planar luminaire (1884 mm ×
773 mm) recessed in the centre of the ceiling. Its luminous flux was 3500 lm. The
scene geometry was the same as the physical scene from experiment one but built
at a scale of 5:1, representing a realistic single-floor space.

The illuminant spectra (see Supplementary Materials Figure F3) were selected
from the sources enumerated in the CIE publication on colorimetry [60] and
representative LEDs from the “example SPD library” of the ANSI/IES TM-30-18
Advanced Calculation Tool [61] (Table 3.1). We included representative sources that
are extensively used in lighting research and applications. These spectral samples
(380 nm to 780 nm with a 5 nm wavelength increment) comprise three broad-band
spectra, three fluorescent sources and six LEDs. As the selected broad-band
spectra have (nearly) perfect colour fidelity, the inclusion of these sources helps
to understand how material colours influence effective CCTs and colour fidelity
measures. Three fluorescents represent typical warm, neutral and cool white
illuminants. The first three LEDs (NO. 7–9) are yellow phosphor-coated types with
warm, neutral and cool white CCTs. Hybrid pump LED (NO. 10) utilises both
phosphor coating and red LED to generate white illumination. The last two LEDs
are three-primary and four-primary types with similar CCTs but with major colour
fidelity differences.

The material colours were sampled based on the Munsell system due to its wide
usage in colour testing and perceptual uniformity. We first selected five pure colours
(high chroma and high value) from the Munsell principal hues, i.e. 5RV70C08,
5GV70C08, 5BV70C08, 5YV70C08 and 5PV70C08. Another fifteen colours were
sampled systematically by reducing the chroma and values of the pure colours (see
Supplementary Materials Figure F4). Altogether we sampled 20 colours with varying
levels of colour purities. The SRFs of the sampled colours were from the “Munsell
colours matt” dataset of the University of Kuopio [62] (see Supplementary Materials
Figure F5), reported from 400 nm to 700 nm with a 5 nm increment. Thus, a total
of 240 combinations of illuminant and reflectance spectral pairs were applied to the
test scene.
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Table 3.1: Specifications of lamps used.

No. Type of Illuminant CCT (K) Ra R f

1 Equal Energy 5455 95 95
2 CIE st. illum. A 2855 100 100
3 CIE st. illum. D65 6500 100 100
4 CIE Fluor. Lamp FL 4 2940 51 57
5 CIE Fluor. Lamp FL 7 6490 90 92
6 CIE Fluor. Lamp FL 11 4000 83 80
7 LED (blue LED + phosphor) 2880 92 89
8 LED (blue LED + phosphor) 3551 91 89
9 LED (blue LED + phosphor) 4745 73 77
10 LED Hybrid Blue Pump 3417 91 95
11 RGB LED (450/525/625) 3000 53 65
12 RGBA LED (455/530/590/645) 3038 97 94

HYPERSPECTRAL SIMULATION AND ANALYSIS

We used the Autodesk® 3ds Max Mental Ray engine. This system’s Lighting Analysis
Assistant allows irradiance calculations via the virtual light sensor over a specific
area without rendering the whole scene [63]. We placed two cubic light meters in
each test scene, one in the centre and another in the left-back corner. The cubic
light meter was configured by placing six sensors facing the negative and positive
sides of the principal dimensional axes. The default lighting calculation in 3ds
Max utilises RGB coarse-grained wavebands. The RGB radiant power weighted to
approximate the CIE-Y tristimulus provides photometric outputs, such as illuminance
and luminance. The simulated photometric outputs are reliable [64], but physically
accurate colorimetric outputs demand finer spectral resolution [65].

Therefore, instead of default RGB bands, we implemented N-stepping [66, 67].
This approximates the radiant power per waveband in N steps, where N can
be any positive integer. The spectrum is divided into N consecutive, equally
spaced wavebands, with N defining the spectral resolution and the number of
monochromatic channels during the calculations. The light sensor reading from
each waveband indicates the irradiance value of the corresponding waveband. Since
the spectral resolution of the sampled reflectance spectra was lower than the
sampled light spectra, we subsampled the latter. So, we did hyperspectral cubic
measurements based on 61 channels (from 400 nm to 700 nm with 5 nm steps) for
all simulated box scenes. We then applied the same methods as in experiment one
to estimate the light density and vector SPDs and their associated CCTs and colour
fidelity measures.

3.4.2. RESULTS: COLORIMETRIC ANALYSIS

Figure 3.6 and Figure 3.7 show the CCT and R f differences between the lamp and
the two light-field components, ordered according to the numbers of the lamps
in Table 3.1. Negative values indicate decreases of CCT or R f relative to lamp
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properties, while positive values show increases. The colours of the bars correspond
to the room material colours grouped by their hues.

The effective CCTs (Figure 3.6) of the light density and vector were lower or higher
depending on the room colours. The directions of CCT differences were consistent
among the selected lamps except lamp NO. 8, while effect magnitudes varied. The
SRFs with peaks in the long-wavelength part caused a decrease of the light densities’
CCTs, whereas short-wavelength peaked SRFs induced increased CCTs for the light
density. The variations in the corner were larger than those in the centre. The
influences on light vectors’ CCTs were minor (note that the plot scale differs from the
light density plots), and the directions of the CCT changes in the centre and corner
were opposite. The effects became smaller with reductions of material chroma or
value.

The R f (Figure 3.7) was found to be close to that of the lamp (note the plot scale
differences) for the light vectors and to decrease up to 27% for the light density in
the corner for the broad-band illuminants (No. 1–3). The effects in the corner were
always larger than in the centre. Interestingly, in several cases (lamps 4, 6-9, 11, 12),
the light densities’ R f under a lamp increases for some material colours while it
decreases for other colours. In Supplementary Materials Figure F6 and Figure F7, we
provided the measured spectra for reference.

3.4.3. RESULTS: VISUALISING THE LIGHT-FIELD COLORIMETRIC

PROPERTIES

In the former sections we analysed how inter-reflection effects influenced light-field
CCT and colour fidelity. Here we study visualisations of the consequences for object
colour appearance. We spectrally simulated colour checkers in the white and orange
rooms illuminated by a D65 lamp (see Figure 3.8). The standard colour checker
was made of the 15 CIE test colour samples and 5 achromatic colour samples. The
effects that we studied vary also as a function of angle, which is not visible on the
2D checkers. Varying the orientation of the 2D checkers would be one way to show
those angular variations, but such variations demand either large numbers of images
or videos. Therefore we propose using 3D checkers with hemispheres instead of
flat colour patches, which allows visual inspection of a hemisphere of directions at
once. Moreover, such 3D checkers also show the colour gradients that will result on
3D objects, in one glance. The checkers were placed in the centre and bottom left
corner of the room. The colours of the checkers in the white room were primarily
affected by the inter-reflections in terms of luminance but not their chromaticities,
and thus provided the references to compare against the orange room. The apparent
colour appearances of the colour checkers in the orange room were affected by
inter-reflections showing an orange colour cast. The colour cast in the corner is
visually stronger than in the centre for both 2D and 3D checkers. The 3D colour
checker also showed differential apparent colour appearances for the shading and
attached body shadow, creating colour gradients on 3D objects which designers
might want to take into account in their decisions in practical applications.

Figure 3.9 shows an example of a technical visualisation of such effects throughout
a space: the CCT and colour fidelity of the light density and vector for a cross-section
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Figure 3.6: The relative differences between the light-field CCTs and lamp-specified CCTs.
The plots were numbered as Table 3.1. The bars were grouped according to the hues of
material colours in the order of R-G-B-Y-P. The colours within each hue group were arranged
by decreasing colour purity from bottom to top. The coloured bars indicate the results of
the centre location, while superimposed grey bars indicate those for the corner location.
The associated tabular values are supplied in Supplementary Materials Section S13. The
light-field Duv values are included in Supplementary Materials Figure F8.
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Figure 3.7: The relative differences between the light-field colour fidelity and lamp-specified
colour fidelity. The plots were arranged in the same way as in Figure 3.6. The bars
were grouped according to the hues of material colours in the order of R-G-B-Y-P. The
colours within each hue group were arranged by decreasing colour purity from bottom to
top. The coloured bars indicate the results of the centre location, while superimposed grey
bars indicate those for the corner location. The associated tabular values are supplied in
Supplementary Materials Section S13.
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of an orange box room illuminated by the D65 spectrum. The spatial variations of
the CCT and colour fidelity for the light density are large, while for the light vector
they stay almost constant throughout the space. The connections between these
technical visualisations and the foregoing visual impressions are providing insights
into the complex interactions between scene and lighting.

Figure 3.8: 2D versus 3D colour checkers. (a) Sample wavelength sub-band images for
the orange room with 3D checkers made of Lambertian hemispheres. (b) The sRGB
representations (gamma 2.2) of spectral renderings showing the white room with 2D (left)
and 3D checkers (right) with their corresponding close-ups. (c) as (b) for the orange room.
The mutual illumination between coloured spheres was omitted.

3.4.4. OVERVIEW OF FINDINGS

The results of experiment one were confirmed for simulated box spaces. In
addition to that, we found systematic effects of material colour spectral properties.
As expected, peaks in the long-wavelength and short-wavelength parts caused a
decrease and increase of light densities’ CCTs, respectively. In most cases, R f

decreased, but interestingly, R f increased for some light sources and material
colours. Effects showed the same dependencies as in experiment one, namely that
the density was impacted more than the vector, and effects were stronger in the
corner than in the centre. This has important implications for the appearance of 3D
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Figure 3.9: Chromatic light fields. The CCT (a) and colour fidelity (b) distributions of the
light density (top row) and light vector (bottom row) light fields for a cross-section (a vertical
plane right under the illuminant) of the box space furnished in orange illuminated by the
D65 lamp in the centre. The ensemble formed by the superimposed light vectors represents
the light flow.

objects and people in the space, dependent on where they are in the space. Our 3D
colour checker allowed visual assessments of the diffuse and directed light’s separate
impacts on apparent object colour appearance.

3.5. DISCUSSION
In earlier work, we described spectral variations of natural light fields [6, 40, 68–70].
Here, we made initial steps to extend the light-field descriptions with colour metrics,
presenting a method for measuring the effective CCT and colour fidelity for the light
density and light vector and showing results for physical and rendered scenes to
explore and understand the effects of material-light interactions. For non-neutral
coloured scenes, the SPDs were found to vary spectrally, spatially, and directionally
within the light field, and our approach revealed the complex effects of material-light
interactions on colour rendition.

In experiment one, we measured spectral light fields in physical settings under
white light. The light densities’ chromatic properties were strongly affected by
inter-reflections, while those of the light vectors were found to be closer to the lamp.
It was demonstrated that in some cases the differences between the lamp-specified
CCT and colour fidelity and the actual light-based effective CCT and effective
colour fidelity were substantial and thus worth considering. Colour constancy
mechanisms will certainly help to perceptually discount these optical effects in
many cases. Nevertheless, discounting mechanisms of inter-reflections by human
vision have neither been explored in depth for its differential effects of diffuse and
directed lighting (impacting shadowed and highlighted parts differently and causing
chromatic gradients) nor for the spatial and directional variations of these effects
throughout spaces.
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In experiment two, we simulated 20 coloured spaces under 12 typical white
sources. The spatial and angular variations of CCT and colour fidelity due to
(inter-)reflections were reproduced in hyperspectral renderings and confirmed the
conclusions of experiment one. The CCT and colour fidelity differences between
the lamp and the light field, and between the density and vector were again found
to be substantial in many cases, and as expected were found to decrease with
material colour value and chroma. Interestingly, combinations of material colours
and lamp spectra were found to increase or decrease CCT and colour fidelity,
offering possibilities for spectral tuning. These effects could be easily understood
for the CCT; so-called warm or cold material colours increase or decrease the CCT,
respectively. This is regularly implemented in practice and an example of it is
covering lampshades inside with a golden layer. The effects on colour fidelity are
much more complex and specific.

Since these context-dependent, spatially and directionally varying, space-material-
light-interaction effects can be substantial, applications involving 3D objects (and
people; and thus relevant for most applications) need to be tested. To that aim, we
propose to test real samples in mock-ups or create physically accurate renders of
spaces embedded with colour checkers in various locations. Traditional 2D checkers
will not show these effects because they are flat and matt and thus will average out
the differential effects of diffuse and directed light. The 3D version of the colour
checkers in Figure 3.8 show those directional effects [38, 39, 71]. In this manner, it is
possible to visually assess chromatic, spatial and directional effects of lighting-scene
interactions on colour appearance.

We have identified the following limitations of our method, which will be
addressed in future work. Both Ra and R f are defined within certain Duv limits and
considered meaningful to quantify the colour fidelity of direct white illumination
(lamp). Here we also considered spaces illuminated by direct white illumination,
while the secondary illumination was chromatic due to inter-reflections originating
from coloured materials. In some instances, the chromatic inter-reflections had
major impacts. As a result, the light density due to diffuse scattering became highly
chromatic, even beyond the Duv limits of those metrics. Those spaces were intended
to be illuminated by white light with suitable colour rendition rather than chromatic
light. Additionally, those metrics assume complete chromatic adaption to the test
illuminant while adaptation might be incomplete due to spatially and directionally
varying chromaticities, and hence, the built-in CAT (chromatic adaptation transform)
might overcompensate the colour constancy effect. Moreover, the differences
between light density and light vector will have differential effects on shad(ow)ed
and (high)lighted parts of 3D objects and people, rendering their appearance with
chromatic gradients. Other cognitive and perceptual effects such as discounting
inter-reflections might affect whether humans perceive such effects, but have only
been investigated in limited settings [72, 73]. Nonetheless, these works showed
that in many cases, discounting inter-reflections by human observers was far from
complete, and the level of discounting depended on geometrical configurations and
shape perceptions. In addition, Figure 3.8 shows how these mechanisms can have
aesthetic effects that might be wanted or not, e.g. as can be seen when comparing
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the colour appearance of the green spheres in the white and coloured rooms.
Furthermore, we used simple box spaces furnished with materials mainly scattering
diffusely and coloured evenly, while natural scenes have complex geometries and
diverse materials with various BRDFs. Direct lighting can also exist in combinations
of various spectral and spatial properties. Our spectral light-field framework is
well-suited also for capturing angular, spatial and spectral power variations of light
in such complex natural scenes.

3.6. CONCLUSION
This article aims to quantify the impact of (inter-)reflections on the effective CCT
and colour fidelity within the light field. We measured light-density and light-vector
spectra and calculated their associated colorimetric values in uni-chromatic box
spaces illuminated by ordinary white light. The effective CCT and colour fidelity
varied as a function of location and direction within the light field and depended on
the illuminant SPDs, material SRFs and scene geometry. We found major differences
between the lamp-specified CCT and colour fidelity and the actual light-based or
effective CCT and colour fidelity. The SPD of the diffuse light-field component
is predominantly defined by material SRFs, and the directional component by
the illuminant. The existing lamp-based metrics work well in common lighting
applications, however, we found that the effects of material-light interactions on
the chromatic properties of effective light can be substantial and vary spectrally,
spatially, and directionally. Therefore, applications that involve colour rendering in
spaces composed of chromatic materials could potentially benefit from not only
assessing the CCT and CRM of the light source but by also assessing the effective
CCT and CRM in context. Further research that addresses the chromatic effects
of inter-reflections on the overall perception of real scenes is necessary to confirm
these findings. Capturing the light density and light vector and calculating their
metrics separately allows us to understand the interactions between illuminant and
scene and to systematically analyse the spatial and directional variations of spectral
power throughout a scene; in other words, the chromatic light field. In addition,
3D versions of colour checkers, for which we proposed simple Lambertian spheres,
allow lighting designers, architects, and computer graphics artists to visually assess
the light density and vector effects [34, 63, 74–78]. In summary, we showed that
our proposed methods of capturing the light density and vector, calculating their
colour metrics separately and throughout spaces, and using 3D colour checkers for
visual assessment provide insights to measure, visualise, and understand complex
material-space-light interactions in a systematic approach.

SUPPLEMENTARY MATERIAL
See SupplementaryMaterial.docx [48] and SupplementaryMaterial_Spectra.xlsx [49]
for supporting content.

http://doi.org/10.25384/SAGE.21354688.V1
http://doi.org/10.25384/SAGE.21354691.v1
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4
QUANTIFYING THE SPATIAL,

TEMPORAL, ANGULAR AND

SPECTRAL STRUCTURE OF

EFFECTIVE DAYLIGHT IN

PERCEPTUALLY MEANINGFUL WAYS

We present a method to capture the 7-dimensional light field structure, and translate
it into perceptually-relevant information. Our spectral cubic illumination method
quantifies objective correlates of perceptually relevant diffuse and directed light
components, including their variations over time, space, in colour and direction,
and the environment’s response to sky and sunlight. We applied it “in the wild”,
capturing how light on a sunny day differs between light and shadow, and how light
varies over sunny and cloudy days. We discuss the added value of our method
for capturing nuanced lighting effects on scene and object appearance, such as
chromatic gradients.
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angular and spectral structure of effective daylight in perceptually meaningful ways. In: Optics Express
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4.1. INTRODUCTION

M EASUREMENTS of the light environment play a crucial role in diverse fields
such as architecture, lighting design, vision science and visual ergonomics.

They need to characterize light in a human perception-based manner to provide
meaningful information for human-centred fields and applications. In this context,
photometry [1] instead of radiometry is required. Natural light varies as a function
of space, direction, wavelength and time. In this paper, we focus on the question
how to capture and describe perceptually meaningful light qualities relating to the
complexity of all those variations in an effective manner.

Gershun first introduced the concept of the light field as a way to formally describe
how light is structured in a three-dimensional scene [2]. He coined the light field as
a function of radiance depending on location (x, y, z), direction (θ, φ), wavelength
(λ) and time (t ). This function is thus seven-dimensional, and in human vision it
is known as the plenoptic function [3], which quantifies all optic information that
is potentially available to an observer. In that sense it provides a starting point for
studying objective aspects of the light environment. The visual light field describes
the observers’ subjective inferences of the physical light field, which generally differ
from the objective physical ones [4–6]. Here we focus on the physical light field.
However, in order to derive information from the light-field measurements that are
meaningful for human-centred fields and applications, we take a perception-based
approach in simplifying and quantifying the high-dimensional light-field data. So,
in this study we capture the physical light field and analyze its structure in a
perception-based manner.

Light fields in natural environments are dynamic and complicated, because natural
scenes usually consist of complex spaces, shapes, materials, and lighting, that
optically interact with each other. Luckily, any local light field can be decomposed
as a weighted sum of basic spherical functions using spherical harmonics (SH)
[7–11] and a scene’s light field can thereby be sampled, described and visualized
approximately via sparse measurements [10] in a simplified and intuitive manner
[12]. Spherical harmonics are angular functions with increasing frequency that
can be represented as monopoles, dipoles, quadrupoles, etc (see Figure 4.1 for an
illustration). These functions form a complete basis for describing the variation
of illumination on a sphere. This mathematical basis has an immediate optical
meaning [9, 13–15], and its components have been shown to be directly related to
perceptual judgments [4, 16, 17]. The zero-order SH component is a scalar known as
light density, and the SH decomposition’s first coefficient represents its strength. Its
physical meaning is the spectral irradiance averaged over all directions. Perceptually,
it is associated with the strength of the ambient light. The first-order SH component
represents the light vector, whose strength and direction can be described with three
coefficients. Its physical meaning is the net spectral irradiance transport [2, 9].
Perceptually, it is associated with the strength and direction of a directional source.
Deducting the contribution of the vector component from the illumination solid
gives an estimate of the symmetric component [8, 18]. The symmetric component
has the property that, for any plane passing through the measurement point, it
produces equal irradiance on opposite sides. The second-order SH component is the
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squash tensor [9], requiring five coefficients. It can be considered as a light or dark
clamp. The third- and higher-order SH components can be summarised statistically
to represent the “brilliance” or “light texture” of the light environment [19].

Figure 4.1: Real spherical harmonics of orders 0, 1, and 2, corresponding to first nine basis
functions. The front of the sphere is shown, with white to light gray representing positive
values and black to dark gray representing negative values. These images show the real form
of the spherical harmonics. The connection between these functions and Gershun’s theory is
explained in detail in the work of Mury et al. [9–11].

Recently, progress has been made in measuring the optical light field. In several
studies, the light field was captured using imaging or photosensor systems (Table
4.1). In the imaging approach, a digital camera is used to either photograph
the environment directly [20] or indirectly via the reflection of the environment
from a mirror sphere [11, 21, 22]. An advantage of these approaches is the high
angular resolution. Direct photographing requires a digital camera equipped with a
fisheye lens and rotation tripod. Such cameras typically possess only three spectral
channels, i .e. red, green and blue (RGB) [20]. This coarse spectral resolution
might not always be sufficient for accurate colorimetric description [14, 23, 24]. A
(hyper)spectral camera provides a spectrally resolved solution [21]. However, taking a
single hyperspectral image is time-consuming and thus this method cannot be used
to capture fine temporal variations. Additionally, both imaging approaches have the
disadvantage that the extremely high dynamic range (HDR) of natural exterior light
environments often exceeds these devices’ capturing ranges, and then need photos
with multiple exposures to cover the environments’ ranges. This is impossible in
dynamic scenes because the light will change between different photos. Moreover, it
results in relatively large measurement errors.

Omnidirectional photosensor systems combine many photosensors to capture the
irradiance in all directions. Such a system provides a low-angular-resolution but
high-dynamic-range, and real-time measurement of the local light field. Several
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Table 4.1: Studies that employed light-field methods to characterize the light environment.

Light-field aspects taken into account

Studies HDR∗ Temporal
resolution† Spectral resolution‡ Directional

resolution§

Mori-
moto et
al. [21]

- 2250:1 (11 stops) - 40 minutes per
spherical image

Hyperspectral 400–
720 nm
in 10 nm
interval

✓ ∞∗∗

Li et al.
[22]

- 400:1 with 2
integration times

- up to 90
minutes per
spherical image

Hyperspectral 400–
1000 nm
in 7 nm
interval

✓ ∞

Nilsson
et al. [20]

- 2 orders with 3
integration times

- up to 68.5
minutes per
spherical image

Multispectral RGB†† ✓ ∞

Adams et
al. [25]

✓ 63096:1
(26 stops)

- up to 24
minutes per
spherical image

Multispectral RGB ✓ ∞

Mury et
al. [10]

✓ 7 orders ✓ Real-time
(1 second)∥

Multispectral Lumi-
nance

✓ SH
order 2

Morgen-
stern et
al. [26]

✓ 5 orders (ranging
from low-lit
indoor scenes to
direct sunlight)

✓ Real-time
(1 second)

Monospectral Lumi-
nance

✓ SH
order 2

Xia et al.
[27]

✓ 7 orders (0.01–
299,900 lux)

✓ Real-time
(1 second)

Monospectral Lumi-
nance

✓ SH
order 1

− denotes exclusion.
✓ denotes inclusion.
∗ Order of HDR means the order of magnitudes of the dynamic range.
† The temporal resolution is given for a measurement at a single location and the spatial

resolution is ignored in this table.
‡ Mono-, multi- and hyperspectral refer to a single band, 3 to 10 wide bands and

hundreds of narrow bands [28–30], respectively.
§ SH order means the order to which the spherical harmonics can be estimated.
∗∗ The notation ∞ at directional resolution should be interpreted as a very high angular

resolution that is limited by the number of pixels in the panoramic image.
∥ Multidirectional photosensors arranged in a spherical configuration offer the ability to

simultaneously measure the entire solid angle without the need for time-consuming
reorientation.

†† RGB is here used as a coarse representation of the visible spectrum [24], divided into
Red, Green and Blue bands, with Red typically around 568–700 nm, Green around
482–568 nm, and Blue around 400–482 nm, and dominant wavelengths of 457, 530, and
597 nm respectively.

researchers built such omnidirectional devices with varying numbers of sensors [8,
9, 31] but no spectral resolution. Connected to this approach is the question
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of how many sensors are needed to measure the light field in a certain angular
resolution, while keeping the information tractable. The SH description provides a
fundamental basis for understanding what is needed depending on the objectives.
The minimal number of sensors needed equals the total number of coefficients
required for the order of the mathematical description of the local light field, e.g.
one needs at least four sensors to estimate the first-order SH description and at least
nine for the second-order approximation. Ramamoorthi et al. [32] proved formally
that a second-order SH approximation of local illumination suffices to describe the
appearance of convex matte objects, since the bidirectional reflectance distribution
function (BRDF) of matte material acts as a low-pass filter on directional variations
in the light field. In most natural scenes, diffuse scattering dominates in the material
BRDFs. Much of the light field is then dominated by diffuse scattering [9], causing it
to behave smoothly, and allowing capturing by sparse measurements [10]. It is thus
sufficient to quantify the light environment of a diffuse scene or a scene dominated
by diffuse scattering via a second-order light-field approach. A dodecahedron-shaped
plenopter equipped with 12 evenly distributed sensors can measure a second-order
approximation of the light field [9]. However, the resulting second-order squash
tensor may be difficult for non-experts to interpret. Xia et al. [27] used a custom
cubic apparatus with six sensors to robustly measure the first-order approximation of
the light field. Their first-order SH decomposition [8] includes only the light density
and light vector, and they found that Cuttle’s approach [18, 31, 33], using a set of
simple linear functions, can be used to estimate the same metrics. A first-order
light field approach is able to explain 94% of matte object appearances [34] or
diffuse scattering, making it a practical and effective choice for descriptive purposes.
Moreover, this description captures the key elements of the subjective correlate of
the light field, the visual light field [6, 13]. However, in environments with multiple
highly directional light sources or strong reflections, higher-order components may
be necessary to predict fine details of the appearance of the environment and
especially objects with spiky reflectance functions such as shiny materials.

In this paper, we extended the cubic system to a spectral HDR cubic illumination
system to capture up to the first-order spectral local light fields. The system is
portable and suitable for field research. We also show how perception-based metrics
can be derived from the cubic samples, to capture spectral, angular, temporal
and spatial variations of effective daylight. We demonstrate the approach with
measurements of data sets collected in natural exterior scenes. We found that the
differential chromatic effects for the different light-field components in natural scenes
were large. In our test cases, the spatial and temporal variations in illuminance
and colour characteristics were the largest for the light vectors, medium for the
light densities, and smallest for the symmetric component. Moreover, this approach
allows capturing wavelength-dependent directional variations that we discuss to
have important implications for predicting colour gradients in the appearances of
objects and scenes. Our main contribution thus exists of the extension to the
spectral domain under challenging HDR conditions, and showing how the complex
7-dimensional light field data can be captured and transformed into perceptually
relevant information.
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4.2. METHODS

Despite the fact that solar radiation is more or less static, effective daylight is
dynamic. Earth’s axial tilt along with rotation and revolution, complex atmospheric
optical effects and the presence of occluders and mutual reflections cause variations
in an observed effective daylight field [35–37]. We aimed to quantify temporal,
spatial, angular and spectral variations of the effective light field in natural scenes
by cubic measurements (spectrometers configured on the faces of a small cube). In
order to quantify this complicated 7D function in a meaningful manner for humans,
we convert the raw radiometric cubic data to perception-based light components
and photometrical measures. In the subsections hereafter, we describe the cubic
measurement systems, the data processing pipeline, and the two empirical studies.

4.2.1. SPECTRAL CUBIC ILLUMINATION MEASUREMENT

The spectral cubic irradiance was measured using two types of systems. The
first system was relatively affordable and consisted of a portable handheld
spectrophotometer (Sekonic C-7000, made in Japan in 2015) and a microscopic
reference cube made of spectrally neutral white resin. Cubic measurements were
done by placing the spectrophotometer consecutively on the cube’s six faces and
recording the spectral irradiances. The second system for measuring spectral cubic
irradiance was a remotely addressable irradiance spectrophotometer (Konica Minolta
CL-500A, made in Japan in 2011) mounted on a three-axis angle-adjustable tripod
(shown in Figure 4.2(b)). The tripod occludes 2.97% of the entire solid angle. A
laptop (Dell Latitude 7410) drove the irradiance spectrophotometer from a distance
through an 8-meter-long USB cable via Data Management Software CL-S10w. The
meter was oriented to all six cubic faces by adjusting the tripod. The operator then
triggered and recorded the spectral irradiance measurement of each direction via the
laptop.

The cube or tripod was aligned with the positive direction of the y-axis pointing
North, and the positive direction of the z-axis facing upwards. Thus, the Cartesian
coordinate system of the spectral cubic irradiance was oriented according to the
principal directions in the geographic coordinate system. A compass was used to
calibrate the orientations.

Dark calibrations were performed prior to the acquisitions. The spectral irradiance
measurement was acquired over a wavelength range from 380 nm to 780 nm in
11 nm intervals for the Sekonic C-7000 and 360 nm to 780 nm in 10 nm intervals for
the Konica Minolta CL-500A. The cubic measurements lasted one minute in daylight
to five minutes at dawn and dusk. The Sekonic C-7000 can capture the irradiance
over a dynamic range of five orders of magnitude (1 to 200,000 lux), and the Konica
Minolta CL-500A of six orders (0.1 to 100,000 lux). The Sekonic C-7000 allows for
fast reorientations, and thus it is suitable for spatial light-field measurements in
an unstable light environment. The Konica Minolta CL-500A has the advantage of
allowing measurements of dim light environments and remote control, minimizing
the effects of (inter-)reflections from the operator. The operator was dressed in black
to reduce the influence from (inter-)reflections as much as possible.
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4.2.2. DATA PROCESSING AND ANALYSIS

THE BASIC COMPONENTS OF THE LIGHT FIELD

Estimates of the spectral light-field components were derived as follows. The systems
give spectral cubic data, namely E(λ,x+), E(λ,x−), E(λ,y+), E(λ,y−), E(λ,z+) and E(λ,z−)

[31, 38] (Figure 4.2(a)). The cubic measurements E(λ,x+) and E(λ,x−) represent the
opposed pair of spectral irradiances along the x-axis (East and West), and analogous
for the y (North and South) and z axes (up and down). The spectral irradiances
of the light-vector components in the x, y and z directions were estimated by
subtracting the associated opposed paired measurements, respectively. For example,
on the x axis,

E(λ,x) = E(λ,x+) −E(λ,x−) (4.1)

The light vector is defined as

E(λ,vector) =
[
E(λ,x),E(λ,y),E(λ,z)

]
(4.2)

The magnitude of the light vector in spectral irradiance, then is

∣∣E(λ,vector)
∣∣=√

E 2
(λ,x) +E 2

(λ,y) +E 2
(λ,z) (4.3)

The magnitude of the symmetric sub-component ∼ E(λ,x) equals the magnitude of
the lesser of E(λ,x+) and E(λ,x−),

∼ E(λ,x) =
E(λ,x+) +E(λ,x−) −

∣∣E(λ,x)
∣∣

2
(4.4)

The mean of the symmetric sub-components for the three axes gives a measure of
the magnitude of the symmetric component.

E(λ,symmetric) =
∼ E(λ,x)+∼ E(λ,y)+∼ E(λ,z)

3
(4.5)

The light density is defined as the average spectral irradiance from every direction. It
equals Cuttle’s light scalar, the sum of the symmetric component and weighted light
vector magnitude, up to a normalization constant [8].

E(λ,scalar) = E(λ,symmetric) +
∣∣E(λ,vector)

∣∣
4

(4.6)

The linear combination of the symmetric and vector components forms a spherical
harmonics (SH) approximation of the illumination map up to the first order, as
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shown in Figure 4.2(c-d). It is important to note that the symmetric component
is actually a spherical distribution which is generally not uniform, but in practice
can be defined adequately by its magnitude [39]. Research by Xia et al. has
shown that Cuttle’s scalar-vector approach provides the same information as the SH
density-vector approach, with some normalization constants applied. Each of these
components can also be spectrally resolved, as demonstrated in Figure 4.2(g). It
is worth mentioning that the illustration here uses 21 spectral bands with a 20 nm
increment, but the number of bands can be as large as the equipment’s resolution
capabilities.

Figure 4.2: Quantification of up to the first-order light field with the spectral cubic
illumination method measured outdoors in the afternoon. (a) Six spectral irradiances on
the faces of a small reference cube define the spectral cubic illumination (local light field).
(b) The spectrophotometer mounted on a tripod to capture spectral cubic illumination. (c)
The symmetric and vector components’ magnitudes add up to the light scalar. (d) The
symmetric component’s magnitude plus the light vector gives up to the first-order light field.
(e) The altitude of the light vector. (f) The azimuth of the light vector. (g) Representation
of the square-projected illumination map, computed independently for each wavelength.
Here we show 21 spectral bands from 380 nm to 780 nm in an increment of 20 nm for
simplification. See Figure S1 of Supplement 1 for a 360-degree panoramic view of the
surrounding measurement environment.

The photometric values of the components were calculated in the following way.
The inner product of the luminosity function ȳ(λ) with the spectral irradiance over
the visible spectral range gave their illuminance, as below for the x-direction.

https://doi.org/10.6084/m9.figshare.22129052.v2
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E(x) = 683 ·
∫ 780

λ=380
ȳ(λ)E(λ,x)dλ (4.7)

For each of the metrics, the corresponding CIE tristimulus values, (x,y) chromaticity
coordinates and CCT were calculated according to standard methods [40]. We used
the CIE physiologically relevant 2-degree photopic luminosity function and the CIE
standardized 2015 2-degree XYZ colour matching functions [40, 41] to perform these
calculations.
The vector altitude (θ) and azimuth angles (φ) were derived from the direction
of the light vector, which is entirely determined by (E(x),E(y),E(z)) in Cartesian
coordinates (see Figure 4.2(e-f)). Thus,

θ = tan−1

 E(z)√
E 2

(x) +E 2
(y)

 (4.8)

φ= tan−1
(

E(y)

E(x)

)
(4.9)

The light diffuseness [8] was defined as one minus the ratio between the light-vector
and light-scalar magnitudes divided by 4 and ranges from 0 for fully collimated light
to 1 for spherically diffuse or Ganzfeld light.

Dnormalized = 1− |Evector|
4Escalar

(4.10)

4.2.3. MEASUREMENTS OF NATURAL LIGHT FIELDS

Our proposed approach allows for measuring 7D light fields in any scene in real
time. This however would need a matrix of cubic systems to be operated remotely.
In practice, financial limitations made it necessary to split our measurements into
two experiments, showing spectral and directional variations as a function of space
in one experiment, and as a function of time in the other experiment.

In Experiment 1 (spatial experiment), we aimed to capture and compare spectral
and directional variations of the daylight field over space. Therefore we chose to
compare the light field in direct sunlight and in shadow parts of exterior scenes.
We took cubic measurements of natural outdoor scenes during daytime in July 2020
and August 2021 at multiple locations around the Delft University of Technology
campus (52.0116° N, 4.3571° E; elevation 0 m), located in the Northern hemisphere,
on sunny days with a blue sky, around noon. A total of 24 natural scenes were
selected. The scenes included a variety of coloured surfaces in both rural and urban
settings. They were chosen to contain surfaces that were partly lit by sunlight and
partly in the shade as to capture two light zones [42, 43] in the light field. In each
of the 24 scenes, the local light fields of the sample points in the light and shade
were acquired within 1 minute, yielding a total of 48 local light field measurements.
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The acquisition was done via the Sekonic C-7000. For illustration purposes, we also
photographed all scenes via a Canon EOS 5D Mark II camera as raw images with a
constant 5500 K white balance, matching to average noon daylight.

In Experiment 2 (temporal experiment), we aimed to capture temporal variations
over the day for a sunny and a cloudy day. We used the Konica Minolta CL-500A
device to collect local light fields from a rural location (51.9795° N, 4.3850° E;
elevation 0 m) in the Delft region of the Netherlands at a 5-minute interval from
dawn to dusk on September 22 in autumn and on December 8, 2021 in winter. The
location was an area where anthropogenic light sources were minimal for exclusive
characterization of effective daylight. The sky on the first day was clear, while
that on the second day was cloudy with strong wind. The full-day measurements
took place within the just-before-dawn to just-after-dusk periods of 06:30–20:15 in
September and 07:20–17:40 in December. In total, 165 cubic measurements were
collected on the sunny day and 124 on the cloudy day (the daytime was shorter in
winter). Meanwhile, we also used a spherical camera (Panono Camera) to capture
HDR illumination maps at a 60-minute interval for visual illustration.

In our study, we used two systems for measuring spectral cubic irradiance: the
Sekonic C-7000 and the Konica Minolta CL-500A. The Sekonic C-7000 was used
in Experiment 1, where fast reorientation was needed in a complex dynamic
environment. The Konica Minolta CL-500A was used in Experiment 2, where a high
dynamic range was necessary for measuring dim light environments. These systems
were chosen to effectively address the unique challenges presented in each scenario,
and by using them together we were able to gather more accurate and reliable data
to analyze the light environment.

Dataset 1 [44] contains raw spectral cubic illumination measurements of both
experiments, which are made freely available.

4.3. RESULTS

4.3.1. EXPERIMENT 1: SPATIAL VARIATIONS OF CHROMATIC LIGHT

FIELDS IN NATURAL SCENES

In Figure 4.3, we show the photographs of the measured scenes, showing that
sunlit parts appeared brighter with more directed yellowish light and shadow parts
appeared darker with more diffuse blueish light. We can also see clear effects on the
appearance of the scenes. For example, in Scene 12, the colour appearance of the
slender vervain flower was reddish magenta in the light but blueish purple in the
shade. The step between the cast shadow and the illuminated area did not just form
an illuminance edge but also a chromatic edge (see Figure S2 of Supplement 1 for
detailed results).

In order to visualize the results, a light probe, a white Lambertian sphere [6], was
superimposed on a photograph of the location where the cubic measurement was
taken. The appearance of the probe was then rendered under each approximated
illumination map derived from the cubic measurements. For ease of understanding,
the spectral images of the rendered probes were then converted to RGB colour

https://doi.org/10.5281/zenodo.7328594
https://doi.org/10.6084/m9.figshare.22129052.v2


4.3. RESULTS

4

83

Figure 4.3: The collection of all the selected natural scenes’ photographs. Light probes
were rendered for 1st-order local light field approximations as if they were embedded in the
scenes. Below each scene photograph, the decomposed local light fields are shown. The
light-vector directions were normalized to point upward in the decomposed light-field probe
renderings. The 24 scenes were arranged from left to right and top to bottom in numerical
order from 1 to 24.
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images. Additionally, a gamma value of 2.2 was applied to the linearized rendered
spheres for display on a screen. Please note that only six spectra per image were
considered, which corresponds to the six facets of the cube. The images of the
spheres presented in Figure 4.3 should not be taken as actual spectral data, but
rather as a reference for visualization purposes. The light probes in the cast shadow
appeared bluer and darker than those in the sun. In addition, the light probes
indicate a diffuseness difference between sunlit and shadowed, which causes a
difference in texture contrast [45].

Figure 4.4(a) shows the CCT of the light-field components in the shade and light
for all measured scenes. The light density CCTs in the shade (blue bars) were
consistently higher than in the light (yellow bars), with an average difference of 1821
± 1232 K (mean ± 1SD). The light vectors in shade and light had even larger CCT
differences, 3542 ± 1680 K (mean ± 1SD). By contrast, the CCTs of the symmetric
components in the shade were not consistently higher than in the light, and their
differences were relatively small, 655 ± 1183 K (mean ± 1SD). The data presented in
the form of inverse CCT can be found in Supplement 1, Figure S3.

Figure 4.4: The scene metrics in the shade and light. The (a) CCTs and (b) illuminance of
symmetric component (top), light density (middle) and light vector (bottom) for the shade
(blue bars) and light (yellow bars) regions. The (c) diffuseness and (d) altitude of the
light vector for the shade (blue bars) and light (yellow bars) regions. The number on the
horizontal axis indicates the scene number.

https://doi.org/10.6084/m9.figshare.22129052.v2


4.3. RESULTS

4

85

Figure 4.4(b) shows the illuminance of the different light-field components in the
same format. The illuminance of the light densities and vectors showed considerable
differences in the shade and light regions as expected, while the light vectors’
differences were larger (up to five orders of magnitude, 15,577–104,803 lux) than for
the light densities (up to four orders of magnitude, 4716–29,259 lux). The illuminance
differences between shadow and light for the symmetric component were smaller
(up to four orders of magnitude, 12–10,077 lux).

Figure 4.4(c) shows the measured scenes’ diffuseness in the shade and light. The
illuminance of the light density in the shade was relatively high compared to the
light vector, resulting in overall high diffuseness values (0.4–0.8). The light vector is
much stronger than the density in the light region, resulting in high directionality
or low diffuseness values (0.1–0.5). The altitudes of the light vector in the shade
(33°–85°) were higher than in the light (18°–58°), revealing an average light-direction
difference (Figure 4.4(d)).

Figure 4.5(a) shows the average spectra of the different light-field components in
the shade and light. Before averaging, all spectra were converted to have equal
luminous flux (CIE tristimulus value Y = 100). Overall, the spectra in the shade
and light for the symmetric component showed a resemblance, with peaks in the
long-wavelength part. The light-density spectra in the shade differed from those in
the light, especially in the long-wavelength part. Those differences were larger for
the light vector.

Figure 4.5(b) shows the associated chromaticities, which closely followed the
daylight locus. The chromaticities of the symmetric components for shade and light
regions overlapped, while that in the shade showed a larger spread along the daylight
locus towards the blue region (Figure 4.5(b) left). The chromaticities of the light
density of the shade and light regions separated in different clusters on the daylight
locus at both sides of D55 (mid-morning or mid-afternoon daylight) (Figure 4.5(b)
middle), and those of the light vector were even more apart (Figure 4.5(b) right).

In Figure 4.5(c), we present the colour differences between the shade and light
conditions for the three light-field components. These colour differences were
estimated using the CIE ∆E2000 metric in the CIELAB colour space, which is known
to be perceptually uniform within a reasonable approximation [46]. To calculate
the ∆E values, we first converted the tristimulus CIE XYZ values derived from the
light-field component spectra into CIELAB using the D50 white point. A ∆E value of
1 represents the just noticeable difference, values between 1 and 5 are considered
to be discriminable when viewed adjacent, values between 5 and 10 are considered
perceptible, and values greater than 10 are considered different colour categories
[47]. As shown in the figure, the colour differences of the symmetric components
(1–23) were smaller than those of the light densities (14–43), which in turn were
smaller than those for the light vectors (25–67). Additionally, the colour differences
varied over the different scenes. The colour differences of the light densities had
a strong positive correlation with those of the light vector (r = 0.91, p < 0.001), as
well as with those of the symmetric component (r = 0.62, p < 0.001). However,
the correlation between the colour differences of the light vector and symmetric
component was weak and not statistically significant (r = 0.32, p > 0.1).
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Figure 4.5: Spectra and chromatic properties for the scenes of Figure 4.2. (a) normalized
mean spectra with the gray area depicting ± SD and (b) chromaticity coordinates of the 24
scenes for symmetric component, light density and light vector (left to right) in the shade
(blue) and light (yellow) regions. The black dot represents D55 for reference. (c) colour
differences (CIE ∆E2000) between the shade and light regions for the symmetric component
(grey bar), light density (brown bar) and light vector (blue bar).

4.3.2. CONCLUSIONS EXPERIMENT 1
Natural daylight constitutes a varying mix of sunlight and skylight. As demonstrated
by local light-field measurements, the light densities and vectors in the shade
consistently showed higher CCT and lower illuminance than in the light, and
those differences for the light vectors were even larger. This was expected since
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the blue-rich and low luminous skylight is the prime light source in the shade,
though the magnitude of the effects differs for different scenes. The CCT and
illuminance of the symmetric components were found to be more or less similar
in shade and light. The most credible reason is that the omnidirectional nature
of (inter-)reflected light results in a relatively constant symmetric component over
the scenes. Additionally, the light fields in the shade showed higher diffuseness
relative to those in the light. These spatial variations in local light field illuminance,
diffuseness, directions and spectral properties were found to be large. Moreover,
our light-field data highlighted the differential luminous and chromatic properties
for diffuse and directed components of natural light fields.

4.3.3. EXPERIMENT 2: TEMPORAL VARIATIONS OF CHROMATIC LIGHT

FIELDS IN NATURAL SCENES

Figure 4.6 shows the panoramic images of the scene at different times of day
in a light probe format for sunny (a) and cloudy (b) weather conditions. These
low-dynamic-range images are only for illustrative purposes. We can see the
atmospheric features, such as clouds, and how they varied on the sunny day (Figure
4.6(a)) and cloudy day (Figure 4.6(b)).

SUNNY DAY

Figure 4.7(a) shows the temporal changes in CCT on the sunny day. The CCTs of the
light vector ranged from 2764–20118K, covering a larger span than the symmetric
component (3796–11,364 K) (Figure 4.7(a) upper row). The CCT range of the light
density (3819–14,544 K) was in between those ranges, as expected.

During effective daytime from 8:30 to 18:30 (when the sun appeared visible at
the measurement location), the light vector CCTs expressed smooth changes from
lower (3981 K) to higher (5740 K) and then back to lower (4063 K) values with an
average speed (AVs) of 0.23 K/s. The light density behaved similarly, while the
changes were less smooth but faster (0.25 K/s). However, the CCTs of the symmetric
component fluctuated in a higher range (5005–7332 K) with an even faster average
speed (0.51 K/s).

The effective twilight (when the sun was invisible to the measurement location)
expressed extremely high CCTs, as high as 20,118 K for the light vector, 14,544 K
for the light density and 11,364 K for the symmetric component. The fastest CCT
changes occurred at effective sunrise (from high to low CCTs) and sunset (from low
to high CCTs) rather than astronomical sunset and sunrise. During the effective
twilight period, the speed of CCT changes for the light vector (3.9 K/s) was fastest
relative to the light density (2.7 K/s) and symmetric component (2.1 K/s). Around
effective sunrise, the transition from high to low CCTs for the symmetric component
ended around 9:00, almost 0.5 hours later than for the light vector and light density.
The transition from low to high CCTs during sunset for the symmetric component
started 1.5 hours earlier, around 17:00, whilst the CCTs for the light vector and light
density were still decreasing. Right after the effective sunrise and before the effective
sunset, contrary to the warm light vector, the symmetric component at ground level



4

88 4. CAPTURING THE SEVEN-DIMENSIONAL LIGHT FIELD STRUCTURE

Figure 4.6: sRGB representations of illumination maps measured at a 60-minute interval via
a Panono spherical camera.

was bluish and diffuse. Additional data presented in the form of inverse CCT can be
located in Supplement 1, under Figure S4(a).

Figure 4.7(d) shows the hemispherical plots of the light vectors against the sun
path of that day. The light-vector directions closely follow the sun path during the

https://doi.org/10.6084/m9.figshare.22129052.v2
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Figure 4.7: Presentation of temporally-resolved spectral cubic illumination data on the sunny
day. Temporal CCT (a) and illuminance (b) variations for the symmetric component (left
column), light density (middle column) and light vector (right column) within the natural light
field. (c) Temporal light-vector azimuth (left column), light-vector altitude (middle column)
and diffuseness (middle column) variations. The black dashed lines indicate astronomical
sunrise and sunset time. (d) Temporal variations of sun positions and light-vector directions.
Normalized light vectors plotted as east elevation (left column first row), south elevation (left
column second row), top view (left column bottom row) and orthogonal view (right). The
chromaticities of the light vectors are represented by the colours of the arrows, with the bar
legend at the bottom of the figure providing a reference for the corresponding CCT values.
The lightness of the points at the end of the arrowheads indicate the relative luminance of
the light vectors. The green path indicates the sun’s movement. The data was collected at
a temporal resolution of every 5 minutes. Additional data presented in the form of inverse
CCT can be found in Supplement 1, under Figure S4(a) for further analysis.

https://doi.org/10.6084/m9.figshare.22129052.v2
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effective daytime, while those of effective twilight pointed upward (see also Figure
4.7(c) left two columns for the corresponding angles). The effective daytime light
diffuseness was low with minor fluctuations and slightly dropped from 0.370 to 0.208
(Figure 4.7(c) right column). By contrast, the diffuseness of the effective twilight was
up to 3 times higher, ranging from 0.444 to 0.669. The light-vector altitude and the
diffuseness correlated (r = 0.873, p < 0.001) (Figure 4.9(a)). From Figure 4.7(b-c) right
column, we can observe slight asymmetries of the vector’s magnitude and the light
diffuseness between morning and afternoon.

CLOUDY DAY

The day length shortened on the cloudy day, and the clouds periodically occluded
the sun. Figure 4.8(a) shows temporal changes in CCT on the cloudy day. Throughout
the whole day, the CCT ranges for the symmetric component (5122 K to 21,408 K),
light density (4218 K to 20,625 K) and light vector (3853 K to 20,500 K) were large.

Over effective daytime between 9:30 to 16:00, the CCT of the light vector ranged
from 3853 K to 10,170 K and fluctuated more than light density (4218 K to 10,210 K)
and symmetric component (5122 K to 10,243 K) (Figure 4.8(a) upper row). The
symmetric component expressed relatively higher CCT than the light vector around
effective sunrise and sunset when the sun was present without cloud occlusions. The
CCT difference between the symmetric and vector component was large at sunset
(up to 5757 K at 15:40) and still considerable at sunrise (up to 1269 K at 09:30). The
light vector showed larger and faster (2.7 K/s) CCT changes than the light density
(2.4 K/s) and symmetric component (1.5 K/s) during effective daytime.

The effective twilight metrics were all rather bluish with a maximum CCT of
21,408 K. Approaching the effective sunrise (9:30) and sunset (16:00), there were
the fastest CCT changes for the light vector (4.6 K/s), light density (4.2 K/s) and
symmetric component (3.7 K/s). Further data presented in the form of inverse CCT
can be found in Supplement 1, within Figure S4(b).

Figure 4.8(b) shows the temporal changes in illuminance on the cloudy day. The
illuminance of the light vector was consistently higher (0.02–79,411 lux) than of
the light density (0.006–25,125 lux) and symmetric component (0.0002–5273 lux).
The values were lower than for the sunny day, and also fluctuated more, together,
resulting in faster changes. The average speed for the light vector was the fastest
(31.5 lux/s), followed by the light density (8.3 lux/s) and symmetric component
(0.9 lux/s).

As Figure 4.8(b) the left column shows, the light-vector azimuth closely aligns
with the sun position during the astronomical daytime. However, the light-vector
altitude did not (Figure 4.8(b) middle). Effectively, the light-vector directions do
not correspond to the sun positions (Figure 4.8(d)). Figure 4.8(b) right shows the
diffuseness ranging from 0.135–0.620 with frequent fluctuations. Although these
fluctuations look random, in Figure 4.8(b), we see that the light-vector altitude and
diffuseness showed strong correlations (r = 0.821, p < 0.001).

https://doi.org/10.6084/m9.figshare.22129052.v2
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Figure 4.8: Presentation of temporally-resolved spectral cubic illumination data on the cloudy
day. The figure configuration is the same as Figure 4.7. Additional data presented in the
form of inverse CCT can be found in Supplement 1, under Figure S4(b) for further analysis.

https://doi.org/10.6084/m9.figshare.22129052.v2
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Figure 4.9: The scatterplots and correlations between light-vector altitude and diffuseness for
the sunny day (a) and cloudy day (b). The area around the fitted lines represent the 95% CI.
Disk colours approximately represent light-vector chromaticities.

4.3.4. CONCLUSIONS EXPERIMENT 2
Natural light (including both twilight and daylight) changes temporally in terms of
CCT, illuminance, diffuseness and directions over the day. On both sunny and
cloudy days, the CCT of all the light-field components expressed two blue spikes
during dawn and dusk. For the effective daytime, the light-vector CCT changes
on the sunny day showed a bell-shaped curve. On the cloudy day, this was
disrupted with major fluctuations. The symmetric component showed relatively
stable CCTs at a near-neutral white level (∼D55) for both weather conditions, while
the CCTs were overall higher and fluctuated more on the cloudy day than the sunny
day. Again, a credible reason for its stability is that the omnidirectional nature of
(inter-)reflected light results in a relatively constant symmetric component over the
scenes. A plausible explanation for the higher CCT is that it also diffuses out the
separate contributions from the yellowish sun and bluish sky. Additionally, overcasts
are far from spectrally neutral transmitters [48] causing a bluer ambience than the
sunny day. Light-density CCTs behaved more similarly to the light vectors than
the symmetric component, which can be explained by the light-vector contribution
to the density. The temporal profiles of the illuminance changes showed similar
patterns (a bell-shaped curve) for the sunny and cloudy days. On the cloudy day,
the illuminance fluctuated around the characteristic temporal profile. The temporal
diffuseness changes correlated with light-vector altitude changes. This can probably
be attributed to direct sunlight being present or absent. When the sun is behind
the clouds or below the horizon, the diffuse skylight becomes the prime light
source causing high diffuseness and light-vector altitude relative to sunlight-present
conditions. The measurements revealed large variations in CCT and illuminance of
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natural light over the days, and the temporal profiles for the different light-field
components showed differential effects under both sunny and cloudy weather
conditions.

4.4. DISCUSSION

In experiment one, we measured up to the first-order light fields in the shade and
in the light for 24 sunlit rural and urban scenes across multiple days. Spectrally
dependent Rayleigh scattering causes low-luminance highly diffuse bluish skylight
and high-luminance highly directional yellowish sunlight during daytime, which was
confirmed by the data. The spatially varying contributions from skylight and sunlight
caused large CCT, illuminance, diffuseness, direction and colour differences between
light and shade locations. In the shadowed parts of a scene, the diffuse light from
the blue sky has the largest gain. The light field in the shade thus had much lower
illuminance, higher CCTs and higher diffuseness relative to that in direct sunlight.
These variations were found to be of the same prominence as the well-known
temporal variations of daylight [49–51]. The spatial variations in terms of both
illuminance and CCTs were larger for the light vectors than the light densities and
symmetric components. We found experimentally that the symmetric component of
the light field was rather constant over the scenes. This is consistent with Mury et
al.’s study on light field constancy [11], which shows most materials diffusely scatter
light causing relatively stable low-order components.

In experiment two, we measured spectral light fields throughout a sunny and
cloudy day with 5-minute intervals. The different light-field components showed
differential CCT and illuminance variations as a function of time. The light vector
changed more in magnitudes of CCT and illuminance than the light density, and
again than the symmetric component. The magnitude differences between different
light-field components were smaller on the cloudy than sunny day, and this is
presumably due to diffusion by the clouds. The light-field components expressed
high CCT during the effective twilight period. This can be explained by Chappuis
absorption [37, 52, 53] due to Ozone, inducing a progressive enrichment in the blue
end of the spectrum (< 500 nm) for the primary lighting. The slight asymmetries
of the vector’s magnitude and the light diffuseness between morning and afternoon
on the sunny day might be attributed to Mie scattering by water droplets in the
morning [54–58]. On the cloudy day the temporal variations were too large to signal
such asymmetry.

The light-vector directions followed the sun’s positions on the sunny day when
the diffuseness was low. The misalignment of the light-vector directions and sun
positions might be due to occlusion. High light-vector altitudes occur when the sun
is absent from the measuring devices, including during twilight time and overcast
conditions. The primary illumination then comes from the hemispherically diffuse
skylight, resulting in high diffuseness and the observed positive correlations between
light-vector altitude and diffuseness.

Those measurements however can be analyzed even further with regard to
the spectral and directional properties. In Figure 4.10(a), we present a detailed
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analysis of the light vectors measured at 18:10 on the sunny day (close to effective
sunset when the sun appears at a low angle in the sky) in Experiment 2. The
light vector direction is shown, which was computed based on the photometric
values of the luminance channel, in line with the methodology used in the
analysis of our experiments. In reality, the light-vector directions might also
be wavelength-dependent, especially around sunset and sunrise. Figure 4.10(b-d)
shows the light vectors sampled at different levels of spectral resolution, including
multispectral (3 bands), hyperspectral (21 bands), and full spectral (401 bands) in
the visible spectrum. The wavelength-dependent light vectors have similar azimuths,
but the short-wavelength light vectors had higher altitudes than the long-wavelength
ones. This can be explained by wavelength-dependent Rayleigh scattering resulting
in the short wavelengths being scattered more than the long wavelengths. Figure
4.10(f) shows a white Lambertian sphere rendered under spectral light vectors
ranging from 380 nm to 780 nm in 20 nm intervals. The shading induced by the
spectral light vectors not only showed intensity differences but also varied in
directions. The misalignment of these sub-band images can, after superposition,
cause complex colour gradients for object shading (Figure 4.10(g) right), while
such complex colour gradients get lost in renderings that only consider a single,
average light-vector direction based on the luminance (Figure 4.10(g) left). Thus, the
spectral rendering considering the wavelength dependency of light-vector directions
provided more accurate colour gradient estimations than just relying on average
light-vector directions. In the presence of multiple direct light sources with different
chromaticities, quantifying both light-vector magnitudes and directions as a function
of wavelength might be necessary to predict object appearance in such detail.

In addition, we represented the symmetric component as a constant, as indicated
in Figure 4.2(d), instead of by its actual spherical distribution. Such simplification
is adequate when the symmetric component is relatively uniform [8, 18]. In the
case of non-uniform symmetric components, a physically correct rendering would
need to take into account the symmetric component as distribution. Furthermore,
a complete representation of the symmetric component should also include its
wavelength dependency for precise object colour appearance estimation.

Our spectrometer system and the cubic illumination data-processing pipeline
were shown to be well-suited for capturing spatial, temporal, angular and spectral
variations of effective daylight. A limitation of the present study is related to the
angular resolution that only suffices to quantify a light field SH description up to the
first order. The second limitation is that the operator needs to manually adjust the 3D
orientations of the spectrometer rather than take the multidirectional measurement
simultaneously. Each spectral irradiance measurement can take approximately 0.5
seconds during daytime and 27 seconds during twilight time. A solution is to
construct omnidirectional devices embedded with multiple spectrometers. The
number of meters can be adjusted to the desired angular resolution or order of the
SH approximation. Such a method can also further improve temporal resolutions.
This will allow the measurement of additional spectral light-field datasets at different
locations and times of day, seasons and weather conditions to further generalize the
findings. Nevertheless, the present study provides a step toward quantifying the
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Figure 4.10: Spectral light-vector properties for a sample cubic measurement measured at
18:10 on the sunny day. The light-vector plots in Cartesian coordinates ordered from low
spectral resolution to high spectral resolution, starting with the monospectral plot (a) which
shows the luminance channel, followed by the multispectral plot (b) that samples the light
vectors at 50 nm–120 nm intervals, the hyperspectral plot (c) that samples the light vectors
at 20 nm intervals, and finally the full spectral plot (d) that samples the light vectors at
1 nm intervals, covering the wavelength range of 380 nm–780 nm. The lengths of the arrows
indicate the relative radiant power. (e) The irradiance spectrum of the sample light vector (a),
which is equivalent to light-vector magnitudes as a function of wavelength (d). (f) Wavelength
sub-band images of a white Lambertian sphere rendered under hyperspectral light vector
(c). (g) sRGB representations of spectral rendering by ignoring (left) or considering (right)
wavelength-dependent light-vector directions.
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temporal, spatial, angular and spectral variations of the light field.

4.5. CONCLUSION

In conclusion, the combination of the geometrical structure of scenes, the presence
or absence of clouds, atmospheric scattering and varying sun angles leads to large
illuminance, direction, colour and diffuseness differences from location to location
and over time. The spectral cubic illumination method allows measuring these
characteristics of effective light in the environment, providing temporally, spatially,
spectrally and directionally resolved measurements. We also demonstrated how to
separately analyze the differential contributions of the effective diffuse and directed
day-light-field components and reveal their differential statistical properties. The
spectral cubic illumination method offers a novel and convenient tool for assessing
light environments, which will enable the characterization of visual signals crucial to
various disciplines. Furthermore, we discussed how our method can be extended to
full light field measurements of any order, and how the analysis can be extended to
accurately predict natural chromatic gradients in scene appearance by incorporating
the spectral dependency of light-vector directions. The dynamic nature of daylight
can make it challenging to quantify fully, but our research has taken initial steps in
capturing and decomposing the 7D light-field structure.

DATA AVAILABILITY

Data underlying the results presented in this paper are available in Dataset 1, Ref.
[44].

SUPPLEMENTAL DOCUMENT

See Supplement 1 [59] for supporting content.
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5
TIME OF DAY PERCEPTION IN

PAINTINGS

The spectral shape, irradiance, direction and diffuseness of daylight vary regularly
throughout the day. The variations in illumination and their effect on the light
reflected from objects may in turn provide visual information as to time of day. We
suggest that artists’ colour choices for paintings of outdoor scenes might convey
this information and that therefore time of day might be decoded from colours
of paintings. Here we investigate whether human viewers’ estimates of depicted
time of day in paintings correlate with their image statistics, specifically chromatic
and luminance variations. We tested time-of-day perception in 17th-20th century
Western European paintings via two online rating experiments. In Experiment 1,
viewers’ ratings from 7 time choices varied significantly and largely consistently
across paintings, but with some ambiguity between morning and evening depictions.
Analysis of the relationship between image statistics and ratings revealed correlations
with the perceived time of day: higher “morningness” ratings associated with higher
brightness, contrast, saturation, and darker yellow/brighter blue hues; “eveningness”
with lower brightness, contrast, saturation, and darker blue/brighter yellow hues.
Multiple linear regressions of extracted principal components yielded a predictive
model that explained 76% of the variance in time-of-day perception. In Experiment
2, viewers rated paintings as morning or evening only; rating distributions differed
significantly across paintings; and image statistics predicted people’s perceptions.
These results suggest that artists used different colour palettes and patterns to depict
different times of day, and the human visual system holds consistent assumptions
about the variation of natural light depicted in paintings.

Manuscript in preparation for journal submission: C. Yu, M. J. P. van Zuijlen, C. Spoiala, S. Pont,
M. W. A. Wijntjes, and A. Hurlbert. “Time of day perception in paintings”.
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5.1. INTRODUCTION

P AINTERS have long been attuned to real world properties that are relevant to
the perceiver [1], and have developed effective techniques to represent everyday

scenes in pictorial space [2]. While not aiming for physical accuracy, their depictions
often contain invariants [3] or perceptual shortcuts [4] that support the viewer’s
understanding of the scene. As such, paintings provide a rich source of image
features that vision scientists can use to better understand human visual perception.

Analysis of these features has largely focused on aesthetic preference [5, 6] or
material properties, such as transparency [7], translucency [8], gloss [9] or velvetiness
[10], Less well explored is how perceivers may also infer more abstract yet ecologically
important dimensions from paintings, such as time of day or weather. For these,
painters may use explicit cues such as human activities, shadow length or sun
position. Yet other image features, independent of pictorial content, may powerfully
convey the time of day. Here we examine the relationship between low-level image
statistics, in particular the distribution of chromaticities and luminances, in paintings
and the depicted time of day.

In representational paintings, painters deploy pigment on canvas to capture the
effects of light interacting with surfaces in the scenes they depict. Variations in
chromaticity and luminance across the image, induced by complex material-light
interactions, may containessential information about three-dimensional structure
[11, 12]; these painted patterns may in turn evoke perceptions of 3D shape and
surface colour. Luminance shading defines fundamental elements of volume and
space [13] and provides cues to the location and orientation of objects and the
direction of the light [14, 15]. In paintings, cast shadows may indicate the light
source position, even when simplified beyond physical plausibility [2, 16, 17]. Cast
shadow lengths [18] might give an additional indication of time of day.

Chromatic content might also be used in paintings to depict time of day. J. M.
W. Turner’s pair of paintings, The Morning after the Deluge and The Evening of the
Deluge, seem by their titles and content to demonstrate an association between
colour and time of day, as well as weather. The Morning after the Deluge features
a cyclone of brilliant colours, converging on yellow and white, evoking a sunny
day. In contrast, The Evening of the Deluge features blackness encircling a grey-blue
core, suggesting a stormy night. The paintings not only pay explicit homage to
Goethe’s colour theory [19], but also express an implicit rule about the depiction of
time. In his series paintings of Rouen Cathedral, Claude Monet painted different still
moments of the cathedral in markedly different colour palettes, titling them with
different times of day. In Rouen Cathedral, Facade (sunset) (Figure 5.1, upper row
second), the orangish glow of the solid stone partially covered by a crisp bluish
shadow under a blue sky creates a visual impression distinct from The Portal of
Rouen Cathedral in Morning Light (Figure 5.1, upper row first), in the more uniform
and inarticulate façade is smoothly shadowed and dissolves into the background sky.
The questions we pose are whether in deploying such chromatic cues painters are
deliberately capturing natural variations in illumination over the course of the day
and seasons, and whether people consistently read time of day from these cues.
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Figure 5.1: Claude Monet’s painting series of Rouen Cathedral. The paintings in the series
each capture the façade of the Rouen Cathedral at different times of the day and year under
various weather conditions, which exaggerates the changes in its colour appearance under
different lighting conditions. Downloaded from Wikimedia Commons, a free online media
repository that provides access to a wide range of images, videos, and other media.

5.1.1. CHARACTERISTICS OF TERRESTRIAL ILLUMINATION

The spectrum, direction, and diffuseness of natural illumination in the terrestrial
world regularly change over a day. These variations in natural illumination, and their
effect on the light reflected from objects, might be incorporated by painters’ choices
of colour palettes. It is argued that all visual sensory mechanisms have evolved to
be attuned to the characteristics of the heterogeneous terrestrial illumination [20,
21], which comprises all the light originating from extraterrestrial sources such as
sunlight and penetrating the Earth’s atmosphere, as well as artificial light sources like
lamps and fires. Terrestrial illumination exhibits heterogeneity due to interactions
among sunlight, atmospheric conditions, environment and anthropogenic light. The
daily and seasonal terrestrial illumination follows a tripartite pattern, classified as
diurnal, crepuscular, and nocturnal. During the day, diurnal illumination, or daylight,
is the total light originating from the sky and sun after sunrise and before sunset,
while crepuscular illumination, or twilight, is the sum of the skylight and artificial
anthropogenic light when the sun disk is below the horizon. Nocturnal illumination,
on the other hand, is commonly provided by moonlight, starlight, and light pollution
between astronomical dusk and astronomical dawn.
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Solar elevation is a main determinant of the illuminance and chromaticity of
natural illumination [22, 23]. The illumination is more spread out and less intense
during early morning and late afternoon compared to midday [24, 25]. This is due
to the longer path sunlight travels through the atmosphere and is being scattered,
also resulting in a lower intensity. Additionally, low sun angles also result in lower
illuminance, as the amount of light reaching a surface is proportional to the cosine of
the angle of incidence. The chromaticity of illumination also changes throughout the
day, with more reddish-yellow hues during sunrise and sunset and more bluish-white
tones during midday. This is due to the wavelength-dependent scattering of light
by atmospheric molecules, known as Rayleigh scattering. Short wavelength light is
much more heavily scattered, resulting in the transmitted beam becoming skewed
to the long wavelengths [26–30]. These variations have implications for visual
perception and activities relying on visual cues.

5.1.2. SUNRISE–SUNSET ASYMMETRY

As we ponder upon the light of the morning and the evening skies, we may be
led to assume their similarity due to the sun’s proximity to the horizon. Gombrich
acknowledged this ambiguity when he wrote of Corot’s work [31], “Corot softens the
shadow of the fallen tree and of the goose, thus convincingly suggesting the mellow
light of morning or evening.” Beurs, in his observations from the 17th century, noted
that although the techniques used to depict sunrise and sunset may be similar, there
are distinct differences in the colour palette and temperature of the sky [32]. He
observed that sunrise often features cooler colours and more mists, while sunset has
warmer colours and reflects the warmth of the day. As the sun sinks below the
horizon during sunset, the air cools, causing larger water molecules to gather in the
atmosphere and scatter the long-wavelength component of the sunlight, resulting in
a mesmerizing orangey-red hue [33]. Meanwhile, airlight, which specifically refers
to the scattered light in a scene caused by atmospheric conditions such as haze
or fog [34–36], exhibits different characteristics during the morning and evening
hours. In the morning, the air is more saturated with denser water vapor, haze, and
fog [37–40], causing airlight to appear milkier and more diffuse, and giving a hazy,
dreamlike quality to the light. These differences in hue and character of airlight
between morning and evening light arise from temperature and moisture distinctions
and offer artists the chance to portray a unique facet of the world’s natural beauty.

In the present study, we set out to investigate whether human observers can
estimate depicted time of day in paintings, and if so, whether this can be related
to image statistics. Although our visual perception mostly relies on the light that is
reflected from objects, the fact that illumination changes with such a conspicuous
daily cycle is likely to have played some part in indicating ecologically essential
dimensions, such as the time of day. We hypothesize that the image statistics of
paintings contain information about the characteristics of terrestrial illumination,
and that human observers use this statistical regularity to judge the time of day
depicted in a painting. To test this hypothesis, we conducted two rating experiments
with 17th-20th-century paintings. Experiment 1 involved participants viewing digital
reproductions of paintings and selecting the time of day depicted from seven options.
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The observation that bimodal distributions resulted for certain paintings, with some
participants rating them as morning and others as evening, motivated Experiment
2. Here, the aim is to examine whether observers were able to distinguish between
morning and evening in paintings when given only those choices, using a stimulus
set with metadata to provide “ground truth”.

5.2. METHODS
To recruit participants, we utilized Amazon Mechanical Turk (AMT) to conduct
two online experiments. In Experiment 1, participants were presented with digital
reproductions of paintings and asked to choose the time of day depicted from
seven options: sunrise, morning, noon, afternoon, evening, sunset, and night. In
Experiment 2, participants were asked to select between morning or evening. We
analyzed the perceptual data in relation to image statistics to better understand
whether humans use image statistics to judge the time of day depicted in paintings.

5.2.1. IMAGE DATASET

The images of paintings were downloaded from online open-access datasets ,
including the Materials in Painting (MIP) dataset by van Zuijlen et al., 2021
[4] (https://materialsinpaintings.tudelft.nl) and the National Gallery (NG) dataset
(https://nationalgallery.org.uk/paintings). The paintings from both datasets depict
various subject matters, including landscapes, seascapes, urban scenes, architecture,
etc. These datasets were chosen because they display a wide diversity of natural
outdoor scenes under a variety of illumination conditions.

5.2.2. STIMULI

In order to focus specifically on the role of image statistics related to light and colour
and their relationships with people’s perceptions of the time of day in paintings,
we selected primarily outdoor scenes that would be influenced by natural light. We
also chose paintings that lacked explicit social or contextual cues, such as human
activities, which might easily indicate the depicted time of day.

In Experiment 1, we chose 104 high-resolution digital images of 17th-20th-century
oil paintings (see Figure 5.A3). This collection comprised 50 from the MIP dataset
and 54 from the NG dataset. For 8 paintings out of the total selection, the title
contained information about the depicted time of day, e.g. Evening at Medfield,
Massachusetts by George Inness. We also selected four paintings from the NG
dataset as catch trials. These four catch trials clearly depicted nighttime scenes and
were also identified as nighttime depictions according to their titles or metadata, e.g.
A River near a Town, by Moonlight by Aert van der Neer. The metadata consists of
information about a painting that is not necessarily provided by the painter, but
rather by curators or other art experts. This data may be subjective, but is generally
considered to be based on art historical knowledge and expertise.

In Experiment 2, we chose a new set of 90 digital images, distinct from those in
Experiment 1, featuring 17th to 20th-century paintings from the MIP dataset (refer

https://materialsinpaintings.tudelft.nl
https://nationalgallery.org.uk/paintings
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to Figure 5.A3). The titles of these paintings provided cues to the time of day
represented in each scene: sunrise (10 paintings), morning (17 paintings), sunset
(36 paintings), and evening (27 paintings). To standardize the stimuli, we resized
the images to 1000 pixels along the longer dimension, while preserving the original
aspect ratio.

All paintings reproduced within this paper are available under open access at
a Creative Commons Zero (CC0) or Creative Commons Attribution-NonCommercial
(CC BY-NC) 4.0 license. The complete list of all paintings used within this study,
including those reproduced in this paper, is available in Dataset 1 [41].

5.2.3. OBSERVERS

A total of 112 unique (Experiment 1, n=51; Experiment 2, n=61) participants were
recruited via the AMT platform. Each agreed to the informed consent before data
collection. Data collection was approved by the Human Research Ethics Committee
(HREC) of the Delft University of Technology and adhered to the ethical guidelines
of the Declaration of Helsinki. All observers were naive to the purpose of the
experiments.

Previous experience with AMT recruitment has suggested that data might be noisy
due to a small but considerable portion of participants that appear to perform
poorly in experiments [10, 42]. We thus set an exclusion criterion in Experiment 1
to automatically remove participants who scored below an 80% correct rate for the
catch trials (detailed below). In total, 25 participants were removed this way. The
exclusion was performed prior to data analysis.

5.2.4. PROCEDURE AND TASK

We used a similar procedure for both Experiments 1 and 2. Experiment 1 consisted
of seven alternative choices, and Experiment 2 comprised two alternative choices.
Participants were informed that they would be presented with images of paintings
and that they would indicate the time of day in each trial. After each labeling,
participants had to press the continue button for the subsequent trial. Participants
were also allowed to go back and redo the previous trials. The trials were randomized
across participants. In Experiment 1, there were 109 trials per observer. Experiment
2 was composed of three blocks, and each contained 41 trials. Block 1 involved 21
observers, while blocks 2 and 3 had 20 observers each. Within each block, there was
no repetition of stimuli. Among three blocks, there were 70 unique stimuli. Seven
stimuli appeared in either of the two blocks, and 13 stimuli were used in all three
blocks.

5.2.5. IMAGE ANALYSIS

Our hypothesis is that painters capture the variation in illumination and reflected
light from scenes over the course of a day, and therefore the paintings will vary in
their luminance and chromatic content according to the time of day they depict. We
hypothesize that participants will be able to discern and interpret this content, and
that its statistical characteristics will predict people’s perception of the time of day.

https://doi.org/10.4121/22154798
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Figure 5.2: The interface of Experiment 1.

We therefore examined whether the image statistics of paintings predict participants’
time-of-day ratings.

The images in this dataset were downloaded as photographic jpegs or pngs, and
displayed directly without further transformation in the participants’ internet browser
windows. The images do not contain information about the photographic setups
which would enable us to derive the colour appearance of the original painting
under any specified illumination. We also do not have information about the
colour calibration of the individual displays used by the participants in the online
experiment. To model the colour appearance of the paintings as viewed by each
participant, and from this calculate the image statistics of the paintings, we therefore
make several assumptions: We assume that for each participant (1) the display
calibration characteristics and (2) the external viewing conditions stayed constant
throughout the experiment. For each session, the same colour transformation from
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Figure 5.3: The interface of Experiment 2.

RGB pixel values to colour appearance will therefore apply across the entire image
dataset. For the main analyses, we use the sRGB colour space model as the basis for
that transformation. sRGB is the widely adopted standard colour model for image
display on monitors and the web. It defines chromaticities for the RGB primaries,
based on original CRT phosphors, and a nonlinear transfer function between input
digital value (v) and output intensity (I ), with I = vγ and γ= 2.2. Using the sRGB
model, we calculated the colour appearance of the paintings displayed, by converting
RGB pixel values into chromaticity and luminance coordinates in CIE standard
colour spaces, and derived further image statistics from these. Although the sRGB
model might not perfectly predict colour appearance for each participant’s display,
it is the optimal transformation for approximating the average appearance, and it
also allows for consistent comparison and analysis of the image statistics across all
images in the dataset. Although the participants probably did not have “average
screens”, we regard this as the best modeling approach not having chromatic gauging
information. We also show in further analyses that the main results hold when using
alternative white points in RGB colour transformations (Appendix Section 5.A5).

The colour appearance attributes and image statistics, as described in detail in
Appendix Section 5.A1, were computed for our analysis. To the reader less well
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versed in colorimetry: we are essentially converting colours from screen-dependent
coordinates (i.e., the RGB values of the digital images) to screen-independent,
standardized colour coordinates. We then employed these standardized colour
metrics as input for a Principal Component Analysis (PCA) to reduce the
dimensionality of the data.

COLOUR SPECIFICATIONS AND APPEARANCE METRICS

Assuming the sRGB model and a default white point of D65, we calculated 1931 CIE
XYZ values for each pixel, and from these, CIELAB and LCH, according to standard
formulae, as detailed in Appendix Section 5.A1. Furthermore, we directly converted
the sRGB pixel values to cone, rod, and melanopic photoreceptor activations. We
used the cone fundamentals specified by Stockman et al. [43, 44], the melanopsin
curve by Lucas et al. [45], and the scotopic curve by Crawford [46] to compute the
scotopic irradiance. We combined pre-computed spectra for sRGB primaries, which
have minimal round-trip errors (as established by Mallett & Yuksel [47]), to generate
the corresponding spectrum for given sRGB pixel values.

For brightness and lightness measures, we used the CIE Y tristimulus value (termed
luminance in the analyses below) and CIELAB L∗ (termed lightness below).

For chromaticity measures, we used CIELAB a∗ and b∗, hue (calculated from
CIELAB a∗ and b∗, as in Appendix Section 5.A1), saturation (calculated from CIELAB
a∗, b∗ and L∗, as in the Appendix Section 5.A1), and chroma (calculated from
CIELAB a∗ and b∗, as in Appendix Section 5.A1). Because the chromaticity of
daylight may be summarized by its correlated colour temperature (CCT), which is
the temperature of the black-body radiator with the nearest chromaticity on the
Planckian locus in CIE 1960 (u, v) space, we therefore also convert CIE XYZ values
for each pixel into CCT (in Kelvin).

STATISTICAL MEASURES

For each of the luminance, lightness, and chromaticity metrics above, we calculated
descriptive statistics (max, min, mean, variance, and skewness) of their pixel value
distributions for each image. For the luminance and the blue channel in sRGB, we
also calculated RMS contrast. See Appendix Section 5.A1 for formal definitions.

In addition, we derived further image descriptors relating to interactions between
chromaticity and luminance across each image:

Colour difference at maximum luminance difference: To summarise overall
contrast including both luminance and chromatic contrast, we calculated the
colour difference between the brightest and darkest pixels in each image,
using the CIE ∆E 2000 colour-difference formula (∆E00). The CIE ∆E
2000 colour-difference formula [48], based on CIELAB coordinates, is the
recommended standard for computing colour differences that are perceptually
uniform across colour space.
Luminance-weighted CCT: The luminance-weighted CCT is calculated for each
pixel as the product of the pixel’s CCT and its corresponding luminance.
Luminance thereby serves as a weighting factor, reducing the contribution of
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darker pixels and increasing the contribution of brighter pixels. Effectively,
this weighting recognizes the greater salience of brighter pixels in chromaticity
perception.
Pixel-wise luminance-chromaticity correlations: We also calculated the
correlation between pixel luminance and chromaticity measures (CIELAB b∗,
saturation, and chroma) [5] within each image using Pearson’s correlation
coefficients.

IMAGE AIRLIGHT COLOUR

To provide further insight into the atmospheric conditions conveyed by the variation
in chromaticity and luminance within each image, we computed an estimate of
airlight appearance using the dark channel prior method [49]. This approach
identifies and removes areas where at least one spectral band is darker than the
others before averaging the remaining pixel values which correspond to clusters
with the highest average luminance and lowest chromatic saturation. The resultant
airlight colour has been shown to relate to the presence of scattered light in hazy
images. For more information, please refer to Appendix Section 5.A1. By considering
the atmospheric conditions in hazy images, we aimed to better understand whether
they relate to the perceived time of day in the image.

5.2.6. STATISTICAL ANALYSIS

To quantify participants’ responses, we used a scoring system based on chronology.
In Experiment 1, we assigned scores of 1 to 7 to seven rating categories: sunrise,
morning, noon, afternoon, sunset, evening, and night. To reduce potential confusion
between certain terms, we merged morning and sunrise into a single category, noon
and afternoon into another, and evening and sunset into a third. We kept night as
its own category, resulting in four merged categories (morning, noon, evening, and
night) assigned scores of 1, 3, 5, and 7, respectively. We used the merged-categories
scoring for subsequent correlational analyses and linear model prediction. However,
for the principal component analysis, we used the original 7-point scale to examine
the distribution of the original categories and identify potential overlaps. In
Experiment 2, we simplified the scoring system to two categories, scoring morning
as 0 and evening as 1.

We used three types of scores for data analysis in our study. a) The mean score:
This is the sum of all the scores divided by the number of scores, and it provides an
overall measure of the perceived time of day for each painting. b) The proportional
score per category: This is the ratio between the total count of scores for a particular
category and the total number of scores, or the proportion of scores that fall into
each category. c) Categorical score: This refers to the mode of the scores given by
participants for a particular painting, indicating the most frequently perceived time
of day for that painting.

Two types of analyses were conducted to investigate the relationship between
participants’ responses and image statistics. The first type consisted of independent
correlation analyses on each of the image metrics for both experiments using mean
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scores. In addition, PCA was performed to identify the image metric combinations
that best differentiated between paintings depicting different times of day. The
derived principal components were used as predictors in a multiple regression
analysis to model the perceived time of day from Experiment 1, and the accuracy
and quality of the model were evaluated using the Akaike information criterion
(AIC). Results with a p-value less than 0.05 were considered statistically significant.

5.3. RESULTS

5.3.1. EXPERIMENT 1
There was no significant difference between results with and without the data that
did not pass the catch-trial selection criterion (Mann-Whitney test, p = 0.82). Figure
5.4 displays sample paintings that received consistent ratings from participants.
In the evaluation of observer ratings across the images, significant differences
were observed (ANOVA; α= 0.05/5356, p = 2.63655×10−196, F(103,2600) = 15.2289).
Notably, even after implementing Bonferroni correction, a substantial 24.9% of
pairwise comparisons (equating to 1335 pairs) still presented significant differences.

Figure 5.4: Sample paintings with high-consistency ratings . (a) Sanford Robinson Gifford, A
Gorge in the Mountains (Kauterskill Clove), 1862. (b) Willard Metcalf, The North Country,
1923. (c) Emanuel Murant, The Old Castle, 1642–1700. (d) Arnold Böcklin, Island of the Dead,
1880. Downloaded from the online repository of the Metropolitan Museum of Art, New York

To investigate the average chromatic characteristics of the paintings, we plotted
their mean coordinates on the CIE chromaticity diagram. Figure 5.5 displays the
mean chromaticities of the paintings in Experiment 1, with one disk representing
each painting. The chromaticities tend to cluster along the daylight locus, varying
from blueish to orangish. Almost all lie above the daylight locus, with a positive
Duv value indicating a green and yellow shift. This green shift is also evidenced
by the negative a∗ values, while the yellow shift is indicated by positive a∗ values.
This chromatic relationship holds across different white points (Appendix Section
5.A5). Figure 5.6 presents the mean luminance of the paintings, providing additional
descriptive statistics for the image set. Together with Figure 5.5, it illustrates the
distribution of mean chromaticities and luminances across the images.

As detailed in the Methods section, we calculated 30 image statistics which
capture the chromaticity and luminance variations within and across the image
set. To evaluate whether these statistics predict time-of-day ratings, we performed
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Figure 5.5: (a) Mean image chromaticities in CIE xy plane for paintings, one disk per
image. Disk colours approximately represent image chromaticity. The black line indicates the
daylight locus; the locations of D30, D40, D55 and D75 are marked. (b) The CIELAB plane
at a lightness level (L∗) of 0.8, also showcasing the mean image chromaticities for each
painting as distinct disks. Again, the disk colours provide an approximate representation of
each image’s chromaticity.

Figure 5.6: Illustration of mean image luminance for each painting, depicted by individual
bars arranged in descending order from highest to lowest luminance. The colours of the
bars represent mean image chromaticity, while the black line on top of the bars shows the
standard deviation.

correlations (visualized in Appendix Section 5.A2 Figure 5.A1) and found that all 30
statistics were significantly correlated with average time-of-day ratings (p < 0.0001 for
all). We report correlations where the absolute value of r is greater than 0.6, namely
positive correlations for luminance skewness (r = 0.82) and saturation-luminance
correlation (r = 0.62), as well as negative correlations for mean image luminance
(r = -0.81), mean image luma (r = -0.81), mean melanopsin input (r = -0.78), mean
L-cone input (r = -0.82), mean M-cone input (r = -0.81), mean S-cone input
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(r = -0.73), mean rod input (r = -0.79), RMS luminance contrast (r = -0.81), RMS
contrast (B channel) (r = -0.71), b∗ standard deviation (r = -0.72), ∆E00 (r = -0.67),
mean luminance-weighted CCT (r = -0.69), b∗-luminance image distance (r = -0.72),
saturation-luminance image distance (r = -0.69), and chroma-luminance image
distance (r = -0.73). These findings underscore the intricate interplay between diverse
chromatic and luminance attributes in modulating our perception of time-of-day, as
derived from visual stimuli.

We conducted a PCA to uncover the underlying dimensions of the space, because
the image statistics are not independent of each other (refer to Appendix Section 5.A2
Figure 5.A1 and Section 5.A3 Table 5.A1). We extracted five principal components, as
defined by eigenvalues greater than 1 (Appendix Section 5.A3 Table 5.A2). The first
two components (Dim1 - PC1 on the horizontal axis and Dim2 - PC2 on the vertical
axis) accounted for 71.1% of the variability in the image statistics data, as visualized
in Figure 5.7. Adding a third, fourth, or fifth component captured 81.7%, 86.8%, and
90.4% of the variability, respectively. In the PCA space, there were three distinct
clusters of factor loadings, indicated by the red arrows, which were distributed on
the positive and negative sides of the horizontal axis and the negative side of the
vertical axis (Figure 5.7(a)).

The distribution of covariance error ellipses across different time-of-day
classifications was found to be systematic in the PCA space, see Figure 5.7(b). These
ellipses were formulated based on the mean coordinates and covariance matrix of
the data points for each category, using the mode or the highest proportion. By
calculating the eigenvalues and eigenvectors of the covariance matrix, we determined
the lengths and directions of the major and minor axes of the ellipses. In our
analysis, we designed the ellipses to enclose 68% of the data points within each
category, which corresponds to one standard deviation from the mean for normally
distributed data.

Principal component 1 (PC1) is highly negatively loaded with measures such
as luminance, cone, rod, and melanopic photoreceptor activations, contrast,
luminance-weighted CCT, and chroma-luminance image distance. Meanwhile, on the
other hand, luminance-channel skewness, which loads highly on PC1 with a positive
magnitude, is significantly positively correlated with these measures. We observed
that the substantial positive loading on luminance suggests PC1 is negatively
associated with the overall luminance levels across the images. Photoreceptor
activations are connected to radiance levels over the images, and contrast is also
related to the distribution across images. Luminance-channel skewness, on the
other hand, pertains to the luminance histogram or distribution within each image.
We speculate that this observation may be associated with the upper correlations,
as strong daylight typically results in increased brightness and heightened contrast
via shad(ow)ing. Consequently, we deduce that PC1 is primarily luminance-related.
The luminance-weighted CCT and chroma-luminance distance associations link to
the distribution within the images. This finding indicates that PC1 not only
encapsulates luminance-related aspects but also offers insights into the relationships
within the images. The measures that had a high loading on the second principal
component (PC2) include mean image saturation, mean image chroma, mean b∗,
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Figure 5.7: Visualization of the first two dimensions of PCA. (a) Factor loadings of 30 image
statistics, with text labels, and the red vectors indicating the factor loadings of the original
dimensions. (b) The covariance ellipses that were fitted for each time-of-day class, in which
each point represents one of the 104 paintings and is colour-coded based on its perceived
time-of-day classification.

and mean image colourfulness. Therefore, we infer that PC2 is negatively related
to chromaticity. CCT, inverse CCT difference, and saturation differences loaded the
third principal component (PC3). The highest loadings on the fourth and fifth
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principal components (PC4, PC5) came from minimal image b∗ and image b∗
standard deviation, respectively.

To predict the mean time-of-day rating, which spans from morning to night across
four combined categories, we applied a multiple linear regression analysis using
the components extracted from our PCA. By applying the forward technique, we
added one extra component as a predictor at a time. Accordingly, we computed
five candidate models and compared them using Akaike Information Criterion (AIC)
model selection. A lower Akaike weight can be interpreted as a higher probability
that a certain model performs best. Table 5.1 shows the statistical summary for all
the candidate models. We selected the model with the lowest Akaike weights, which
included only PC1 and PC2. The equation for the best-fitting line is

mean time of day rating = 0.583+0.034×PC1+0.017×PC2 (5.1)

This model explained (R2) 76% of the perceived time of day variance (see Figure
5.8 for scatterplot).

Figure 5.8: Scatterplot comparing the average perceived time-of-day scores (y-axis) to the
predicted time-of-day scores (x-axis) based on the linear model established with the merged
4 time-of-day category scores. The ratings correspond to the 4-category scale, varying from
1, 3, 5, to 7, respectively.

Because the average time of day score potentially conflated morning and evening
scores, we also analyzed the categorical data. Figure 5.9 shows the percentages of
responses for the four merged categories of images from the MIP dataset. As the NG
does not permit to reproduce their images, we only showed the MIP dataset. The
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Model Summary f

Change Statistics

R
R

Square

Adjusted
R

Square

Std.
Error

of the
Estimate

AIC
R

Square
Change

F
Change

df1 df2
Sig. F

Change

0.840a 0.706 0.703 0.09046 -202.675 0.706 245.379 1 102 0.000

0.872b 0.760 0.755 0.08218 -221.675 0.054 22.599 1 101 0.000
0.872c 0.761 0.754 0.08245 -220.010 0.001 0.322 1 100 0.571

0.876d 0.767 0.758 0.08173 -220.878 0.007 2.769 1 99 0.099
0.876e 0.768 0.756 0.08205 -219.129 0.001 0.236 1 98 0.628

a. Predictors: (Constant), PC1
b. Predictors: (Constant), PC1, PC2
c. Predictors: (Constant), PC1, PC2, PC3
d . Predictors: (Constant), PC1, PC2, PC3, PC4
e. Predictors: (Constant), PC1, PC2, PC3, PC4, PC5
f . Dependent Variable: mean time of day rating

Table 5.1: Model Summary

response distributions reveal that, for some images, the answers were concentrated
in a single category, with maximum categorical scores of 77% for morning, 81% for
noon, 77% for evening, and 100% for nighttime. In contrast, other images exhibited
a more evenly distributed mixture of answers, and we identified a considerable
group of paintings with bipolar distributions of morning-evening ratings. Thus these
images are evidently more ambiguous concerning the time of day. Additionally,
bipolar distributions are distinct, but we often observed mixtures of three or four
categories as well.

Figure 5.9: Results of Experiment 1. Percentages of population responses for the four merged
categories for the MIP subset of the paintings.
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5.3.2. INTERMEDIATE DISCUSSION

In Experiment 1, we found that the mean image chromaticities of the paintings were
distributed over a large range, close to and slightly above the daylight locus. This
implies that the mean image chromaticities of the stimuli ranged from so-called
warm to cool daylight, with a slight green shift. The green shift might be due to
a large portion of landscape features in the painting content. Perceived time of
day correlated with various image statistics incorporating luminance and chromatic
information. Multiple linear regressions of extracted principal components resulted
in a two-dimensional predictive model that could explain 76% of the variance in
time-of-day perception. People seem to use assumptions about the variation in
brightness and colour of natural light depicted in paintings to infer the time of
day, though there is a large amount of variance in these perceptions. It is worth
noting that some paintings were perceived quite consistently as morning, noon,
evening or night, while for many paintings we found mixtures of three or four
answers. Some paintings were rated predominantly as either morning or evening.
This raises questions about whether artists depicted morning and evening differently
and whether human observers can distinguish between those times of day.

5.3.3. EXPERIMENT 2
In Experiment 2, we aimed to investigate further whether observers could
discriminate specifically between morning and evening in paintings that explicitly
portrayed these times of day. We ordered the metadata-indicated morning (upper
panel) and evening paintings (lower panel) according to the average (or percentage)
scores, and the results are presented in Figure 5.10. Average and percentage scores
are equivalent here since the rating was binary. The order from left to right
corresponds to morningness to eveningness. The morning paintings are clustered
towards the left, and evening paintings lean towards the right. However, both
morning and evening paintings cover a large timeline span. The top 33% of
paintings rated morning and evening, indicated by a line above the paintings, were
then selected to further analyze whether these more extreme cases reflect salient
characteristics of morningness and eveningness.

The results of the experiment indicated that there was a significant difference
in observer ratings across the images (ANOVA; α = 0.05/4005, p = 1.0537×10−181,
F(89,4235) = 14.5139, with 27.9% of Bonferroni corrected pairwise comparisons

showing significant differences). The distributions for morning and evening paintings
spanned a wide range, with some morning paintings being rated as morning by 95%
of the participants, while some evening paintings were rated as evening by 100% of
participants. In Figure 5.11, we present several paintings that received consistent
ratings from participants.

We computed the same image statistics as in Experiment 1. After that, we
conducted single linear regressions between the 30 image statistics and the perceived
time of day, which is visualized as a correlation matrix in Appendix Section 5.A2
Figure 5.A2. We found that several image statistics, including Min chroma, mean b∗,
min b∗, b∗ SD, mean image colourfulness, CCT difference, inverse CCT difference,
and saturation difference, were no longer significantly correlated with the human
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Figure 5.10: Morningness-eveningness perception in Experiment 2. Digital images of
paintings from the MIP dataset were ordered according to the average time-of-day score.
The order from left to right corresponds to a progression from morningness to eveningness.
(a) Metadata-indicated morning scenes. (b) Metadata-indicated evening scenes. The top 33%
rated morning and evening paintings are marked by the solid line.

Figure 5.11: Sample paintings and their ratings. (a) Camille Pissarro, Morning, An Overcast
Day, Rouen, 1896. (b) George Bellows, Blue Morning, 1909. (c) Arkhip Ivanovich Kuindzhi,
Red Sunset on the Dnieper, 1905–1908. (d) Théodore Rousseau, The Forest in Winter at
Sunset, c. 1846–c. 1867. Downloaded from the online repository of the Metropolitan Museum
of Art, New York

ratings. Surprisingly, the correlations between the human ratings and mean image
saturation and chroma even reversed in direction.

We did a PCA analysis on the 30 image statistics for the image stimuli, and
the resulting PCA biplots are illustrated in Figure 5.12. Subpanel (a) displays the
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factor loadings, while subpanels (b) and (c) display the positioning of the metadata-
classified and observer-classified morning and evening paintings, respectively, in the
multidimensional image feature space. The observer-classified categories are based
on classifications selected by a majority of the participants. We used the same
method as in Experiment 1 to fit ellipses designed to enclose 68% of the data points
within each category.

Notably, the clusters for morning and evening paintings based on metadata
classification showed significant overlap (Figure 5.12(b)), while the clusters based on
observer classification demonstrated less overlap (Figure 5.12(c)). This difference in
overlap is primarily attributable to the reduction in the size of the ellipses, rather
than shifts in their positions. Despite these differences in overlap, the shapes of the
covariance ellipses remained largely consistent across both classification methods.

The factor loadings for the PCs identified in this analysis were similar to those
found in Experiment 1 on the negative side of the horizontal axis, but different
for the remaining factor loadings (Figure 5.12(a)). This could be attributed to the
selection of paintings, which only consisted of morning and evening paintings,
compared to the broader time-of-day selection in Experiment 1.

Observers rated paintings classified as “morning” by metadata significantly
different from those classified as “evening” by metadata (Mann-Whitney test,
p = 0.000). Furthermore, the Chi-Square test provided a significant agreement
between the metadata and the participants’ labeling, with χ2(1) = 10.145 and
a highly significant p-value (p = 1.45×10−3). This indicates that the observer
ratings were, overall, in alignment with the metadata classifications. While PC1
exhibited significant differences between “morning” and “evening” paintings based
on metadata (Mann-Whitney test, p = 0.000), PC2 did not show such a difference
(Mann-Whitney test, p = 0.294). However, when considering observer classification,
there were significant differences in both PC1 (Mann-Whitney test, p = 0.000) and
PC2 (Mann-Whitney test, p = 0.005) between morning and evening paintings. The
less overlapping covariance ellipses in the PCA plot in Figure 5.12(c) compared to
the overlap in the metadata-based covariance ellipses in Figure 5.12(b) supports this
finding. Thus, our results suggest that the differences between morning and evening
paintings are more pronounced when considering observer ratings than metadata
classification.

To better understand the factors that influence human perceptions of morning
and evening in paintings, we analyzed the distributions of luminance-related and
chromaticity-related image statistics based on both metadata classification and
observer rating classification. In Figure 5.13 we show the CIE-Y and CCT distributions
for all paintings, with the observer classifications shown in the right plots and
metadata classifications in the left plots. Our analysis revealed that while there were
no significant differences between mean image luminance for metadata-indicated
morning and evening paintings (Figure 5.13(a)), there was a significant difference
based on observer classifications (Figure 5.13(b)). The mean image chromaticity
(CCT) differed significantly between morning and evening paintings based on both
metadata classifications and observer rating classifications (Figure 5.13(c-d)). This
observation suggests that chromaticity could play a role in artists’ depictions of
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Figure 5.12: Biplot visualizations of the first two principal components. (a) Red arrows
indicate the factor loadings of all image statistics. (b) Morning and evening paintings
based on metadata classification, with points representing the 90 paintings and colours
indicating the classification. (c) Morning and evening paintings based on observers’ ratings
classification, with points and colours representing the classification. Ellipses were fitted to
enclose 68% of the data points within each category.
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morning and evening in paintings, as well as in the human ability to differentiate
between morning and evening scenes depicted in paintings.

Figure 5.13: Distribution plots of mean image luminance (CIE-Y) and chromaticity (CCT).
(a) and (c) Metadata classification. (b) and (d) Observers’ rating classification. *** indicates
statistically significant differences (Mann-Whitney test, p < 0.0001).

To more thoroughly understand the chromaticity factors that influenced the
observers’ perceptions of morning and evening in paintings, we conducted a
detailed analysis of the chromaticity coordinates of the images in addition to the
one-dimensional metric CCT. We concentrated on the 33% subsets of data most
strongly identified by the observers as morning or evening. As shown in Figure
5.14, which displays the mean image chromaticities in the CIE xy plane based on
both metadata classification (a) and observer rating classification (b), the mean
image chromaticities of all paintings generally follow the daylight locus. However,
when considering the metadata classification, we see that morning paintings tend
to have chromaticities closer to D55, while evening paintings are clustered in the
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warm white region. These chromaticity differences between morning and evening
are more prominent in the observer-classified paintings. It is striking that the top
33% evening paintings have chromaticities that cover the whole daylight locus, while
the morning chromaticities cluster tightly around D55. Specifically, the top 33%
rated morning paintings consistently have chromaticities around D55, with a small
covariance error ellipse, while the top 33% rated evening paintings have a wide
range of chromaticities centered in the warm white region, with a larger covariance
error ellipse.

Additionally, we analyzed the estimated airlight chromaticities of the images.
Airlight colour is associated with atmospheric conditions and such scattered light
contributes to the overall colour of depictions of a scene, in a depth-dependent
manner. By estimating airlight chromaticities for all paintings and the top 33%
morning and evening paintings, we tested whether this contributes to the observers’
differentiation in perceived morning-/eveningness. Basically, we estimated the
average chromaticity of the least saturated and brightest pixels, which has been
shown to correlate with the chromaticity of diffuse ambient illumination [35] and
with the amount of haze [34]. Dense haze can produce gray or bluish airlight colour,
depending on the size of the particles.

Figure 5.14 shows the estimated airlight chromaticities of the images in the CIE xy
plane based on both metadata classifications (c) and observer rating classifications
(d). Overall, we see that the mean airlight chromaticities of all the paintings tend to
shift towards D55. The exception to this is the observer-classified evening paintings,
which cluster has a mean airlight chromaticity slightly shifted to warmer colours.
One relationship we observed to be rather stable overall, that is, the chromaticities
of the morning paintings on average tend to be bluer than those of the evening
paintings.

5.3.4. INTERMEDIATE DISCUSSION

In Experiment 2, we set out to investigate whether there are notable differences in
the way that artists depict morning and evening, and whether observers can use
these differences to identify morning or evening. To this end, we selected a set
of paintings with metadata indicating whether they depict a morning or evening
scene, and asked observers to classify the paintings as either morning or evening.
The mean image chromaticities of morning paintings were close to neutral white,
while those of evening paintings varied from warm white to cool white, with a high
frequency of warm white occurrences. The airlight colour chromaticities of morning
paintings were on average bluer than those of evening paintings. These differences
were found to be larger between observer-classified morning and evening paintings
than between metadata-classified morning and evening paintings. This suggests that,
overall, there may be different statistical regularities between morning and evening
depictions, and that humans are able to use those to differentiate between morning
and evening.
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Figure 5.14: Mean image chromaticities and airlight colour chromaticities of paintings plotted
in the CIE xy plane. Panels (a) and (b) show mean image chromaticities based on metadata
and observer ratings respectively, with the top 33% rated morning and evening paintings
included in panel (b). Panels (c) and (d) depict airlight colour chromaticities based on
metadata and observer ratings respectively, with the top 33% rated morning and evening
paintings included in panel (d). The black line indicates the daylight locus, and the diagonal
cross indicates D55, serving as a reference for the chromaticity values.

5.4. GENERAL DISCUSSIONS

We studied the time-of-day perception using 17th-20th-century oil paintings. In
experiment one, we collected human ratings on the time of day depicted in
paintings. We collected both quantitative image statistics and qualitative perceptual
data. These showed systematic correlations yielding insights into how the time of
day can be perceived and predicted. Variance in the data was high, but statistical
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regularities in the human data were found to be correlated with regularities in the
image characteristics. We found that “morningness” was correlated with bright,
high-contrast, saturated, and darker yellow/brighter blue images, and “eveningness”
with darker, low-contrast, desaturated, and darker blue/brighter yellow images. This
finding shows that image statistics related to light and colour in paintings reflect the
characteristics of terrestrial illumination and can be used by people to perceive the
depicted time of day. Specifically, luminance and chromaticity were found to be the
most effective predictors of perceived time of day. The desaturation association with
eveningness might also be related to the Hunt Effect; colours in darker environments
are perceived as less saturated than those in brighter environments [50].

In experiment two, we examined the statistical differences between morning
and evening depictions based on both human perception and metadata. We
found that there are subtle differences between morning and evening depictions
in terms of luminance, but more significant differences in terms of chromaticity.
These differences were particularly pronounced in perception-classified paintings, as
opposed to the metadata-classified paintings. People tended to associate paintings
depicting morning with a CCT similar to the average daylight of D55, while they
perceived paintings depicting evening as having a CCT that ranges from warm to
cool white. In addition, the airlight colour of morning paintings was also bluer than
that of evening paintings. One contributing factor to this differentiation might be
the presence of depicted haze, which might serve as a visual cue in distinguishing
between morning and evening scenes. These regularities used by observers to
distinguish between morning and evening reflect recorded measurements of natural
illumination. As the sun rises and solar elevation increases, the temperature
transitions from low to high and the frequency of dense water vapor, haze, and
fog tends to be higher in the morning than in the evening [37–40]. The presence
of visible mist or haze in a scene can cause a higher level of diffuseness and
lower colour differences within the light field, resulting in an overall more even
distribution of white in the image. The atmospheric filtering is also far from
neutral [28, 51], causing a blue-shifted airlight colour in the morning relative to
the evening. On the other hand, at sunset, the temperature decreases as the sun’s
elevation decreases, resulting in a higher proportion of water molecules in the lower
atmosphere compared to the morning. These water molecules are larger than air
molecules and scatter the long-wavelength component of sunlight, along with blue
scattered light from the upper levels of the atmosphere, leading to large spatial and
angular colour variations in the sunset sky ranging from orangey-red to deep blue
[33].

It is worth noting that the reliability of metadata is an important consideration
in this study. While metadata may be a useful source of information about the
time of day depicted in a painting, it is ultimately based on the interpretation and
knowledge of curators, and might not necessarily reflect the original intentions of
the painter. This is especially relevant for paintings created before the 19th century,
when metadata was not yet being systematically recorded. However, the majority of
the paintings used in this study were from the 19th century (Appendix Section 5.A4),
allowing for a meaningful comparison between the perceptual data and metadata.
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It is possible that the differences between the two could be partially attributed to
the potential limitations of metadata in accurately reflecting the original intentions
of the painter.

The chromaticity of a painting, calculated from the conversion of sRGB to XYZ
values, may reflect the range of estimated illumination chromaticities that observers
see in the painting under the assumption of a “gray world” [52]. It is worth noting
that the spread of chromaticities was calculated from the RGB values of the image,
which may not produce the same chromaticity on every monitor due to variations
in monitor specifications. To account for this, we can calculate the spread of
chromaticities for a range of different white points, or assumed chromaticities for
RGB values of [1, 1, 1]. While the transformation of the spread to different regions of
the chromaticity diagram may vary, the relationship between chromaticity and time
of day perception remains similar (see Appendix Section 5.A5).

In addition to the confounding factors of the actual colours of the painting and
the colours displayed on participants’ screens, there may be a discrepancy between
the artist’s intended colours and the current colours due to colour degradation. One
influencing factor is the yellowing of varnish, which can affect the overall colour
palette of a painting and potentially influence the perceived time of day. Varnish
serves as a protective layer on oil paintings, shielding them from environmental
factors like dust, UV light, and moisture. While it is essential for preserving
artwork and frequently employed in art restoration, the yellowing of varnish might
alter perceptions of the time of day depicted, with yellow-tinted paintings possibly
being seen as morning scenes. However, our experiments did not substantiate
this hypothesis. Experiment 1 revealed a negative correlation between average
time-of-day scores and the year of creation, with a significance level of p = 0.0051
(r = -0.27), indicating a weak correlation. However, a positive correlation would
be expected if yellowing were occurring and influencing time-of-day judgments. In
Experiment 2, the correlation was not statistically significant (r = -0.16, p = 0.1284).
Additionally, the canvas ground used in the 19th century was lighter compared to
those employed in earlier periods. This led to the hypothesis that darker paintings
from earlier periods might be more frequently perceived as evening scenes. However,
the correlations between average scores and the year of creation were either not
statistically significant or very weak in both experiments.

In addition to creating a sense of space, our study shows that light and colour in
paintings are also associated with a temporal dimension: time of day in paintings.
Specifically, we found that luminance and chromaticity are the most effective
predictors of perceived time of day in paintings. Our findings show that image
statistics might partly explain time-of-day perception in paintings.

5.5. CONCLUSIONS

In this study, we analyzed the image statistics of paintings in order to understand
how people perceive the time of day depicted in these works of art. We used
dimension-reduction techniques to reduce the number of image statistics and then
used these statistics to predict the perceived time of day in the paintings.
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In conclusion, our study showed that the image statistics of paintings varied
systematically depending on the time of day depicted, reflecting the characteristics of
terrestrial illumination. Two predictors - luminance-related and chromaticity-related
components - were the most effective at predicting the perceived time of day in
the paintings. This suggests that people are able to perceive the difference between
different time-of-day depictions in paintings and use cues related to luminance and
chromaticity to discern the time of day depicted. Our results also indicate that while
subtle and insignificant differences exist between morning and evening depictions in
terms of luminance, statistical differences are evident in chromaticity. These average
chromaticity differences appeared more pronounced in people’s perceptions of the
two times of day in paintings, rather than in metadata classification. We found that
chromaticity may be an influential factor in people’s perceptions of morning and
evening, and that observers can use both luminance and chromaticity to differentiate
between the two times of day. Interestingly, artists portrayed morning and evening
with different chromaticity but not luminance. These findings provide insight into
colour statistics of paintings that contribute to their perceived time of day and could
be useful for artists and researchers studying the representation of the time of day in
art. The results of this study show regularity but also overlap and large variance in
the data. Further research will be needed to fully understand how people perceive
the time of day depicted in paintings and the role that image statistics play in this
process.
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5.A. APPENDIX

5.A1. IMAGE COLOUR CONVERSION AND STATISTICAL ESTIMATION

Colour of each pixel of a given image at position (1 ≤ i ≤W,1 ≤ j ≤ H) is described
as a triplet of colour coordinates in the sRGB colour space as [R(i, j), G(i, j), B(i, j)],
where W is the width and H is the height of the image in pixel number.

To ensure robust statistical estimates for the natural images, we determined the
minimum and maximum values using the 5% and 95% percentiles of the histograms,
respectively. This methodology was limited to values that were designated as either
minimum or maximum.

Following this preparation, we proceeded to the analysis of colour distribution in the
images, which involved the computation of image statistics defined as follows:

1. sRGB → XYZ and Yxy from XYZ.

The sRGB component values, R(i, j), G(i, j), and B(i, j), range from 0 to 1. The linear
values, Clinear(i , j ), are calculated as follows:

Clinear(i , j ) =


CsRGB (i , j )

12.92 , if CsRGB (i , j ) ≤ 0.04045,

(
CsRGB (i , j )+0.055

1.055

)2.4
, if CsRGB (i , j ) > 0.04045.

where C(i, j) refers to R(i, j), G(i, j), or B(i, j).

These gamma-expanded values are then multiplied by a matrix to obtain the CIE
XYZ tristimulus values.

X (i , j )
Y (i , j )
Z (i , j )

=
0.41240 0.35760 0.18050

0.21260 0.71520 0.07220
0.01930 0.11920 0.9503

Rlinear(i , j )
Glinear(i , j )
Blinear(i , j )



The CIE 1931 chromaticity coordinates (x, y) be derived from the tristimulus values
(X, Y, Z) as follows:

x(i , j ) = X (i , j )

X (i , j )+Y (i , j )+Z (i , j )

y(i , j ) = Y (i , j )

X (i , j )+Y (i , j )+Z (i , j )
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2. XYZ → LMS / rod / melanopic receptoral activations

One formula here can cover all the photoreceptor-specific irradiances/activations, by
referring to a SI(λ) and allowing i = L, M, S, mel, rod.

Then:

The spectrum of a given pixel is estimated as:

λRGB (i , j ) =λR ×R(i , j )+λG ×G(i , j )+λB ×B(i , j )

etc

The spectral sensitivity Si (λ) of the receptor can be determined as L, M, or S using
the Stockman & Sharpe (2000) [44] cone fundamentals. The melanopic irradiance is
calculated using the melanopsin curve specified by Lucas et al. (2014) [45], while the
scotopic irradiance is determined using the Crawford (1949) [46] method for rods.
The e receptor-specific irradiance of a pixel can be calculated as follows:

e(i , j ) =
∫
λRGB (i , j )Si (λ)dλ

Respectively.

3. XYZ → CIELAB

L∗, a∗,b∗ quantities defined by the equations

L∗(i , j ) = 116 f

(
Y (i , j )

Yn

)
−16

a∗(i , j ) = 500

[
f

(
X (i , j )

Xn

)
− f

(
Y (i , j )

Yn

)]
b∗(i , j ) = 200

[
f

(
Y (i , j )

Yn

)
− f

(
Z (i , j )

Zn

)]
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where

f

(
X (i , j )

Xn

)
=

(
X (i , j )

Xn

)1/3

if
X (i , j )

Xn
<

(
24

116

)3

f

(
X (i , j )

Xn

)
= 841

108

(
X (i , j )

Xn

)
+ 16

116
if

X (i , j )

Xn
≥

(
24

116

)3

and

f

(
Y (i , j )

Yn

)
=

(
Y (i , j )

Yn

)1/3

if
Y (i , j )

Yn
<

(
24

116

)3

f

(
Y (i , j )

Yn

)
= 841

108

(
Y (i , j )

Yn

)
+ 16

116
if

Y (i , j )

Yn
≥

(
24

116

)3

and

f

(
Z (i , j )

Zn

)
=

(
Z (i , j )

Zn

)1/3

if
Z (i , j )

Zn
<

(
24

116

)3

f

(
Z (i , j )

Zn

)
= 841

108

(
Z (i , j )

Zn

)
+ 16

116
if

Z (i , j )

Zn
≥

(
24

116

)3

Xn , Yn , Zn describe a specified white achromatic reference illuminant.

CIELAB lightness: L∗ as defined above

CIELAB chroma: C∗ =
√

b∗2 +a∗2

CIELAB hue: h = arctan

(
b∗

a∗

)

Saturation is the degree to which a colour is pure and is defined as the ratio of
chroma to luminance.
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S(i , j ) = C∗(i , j )

L∗(i , j )

4. CCT (T) - another measure of pixel chromaticity

The CCT of a given pixel T(i , j ) is derived from its chromaticity in the (u, v)
plane, in turn derived from (x, y) chromaticity in the usual way [53]. We finally
used a combination of triangular and parabolic calculations to estimate CCT from
(u, v), reducing the error to 1K [54]. We employed the triangular solution for
|Duv| < 0.002 and the parabolic solution for other regions. By employing this method,
we accurately estimated the CCT of each pixel, which is a vital measure of pixel
chromaticity.

To offer a more uniform perceptual representation, we calculated the inverse CCT as
106/CCT in reciprocal mega-Kelvin

(
MK−1

)
. We denoted the inverse CCT as T′(i, j),

where:

T ′(i , j ) = 106

T (i , j )

The luminance-weighted CCT, denoted as TY(i, j), is calculated as the product of the
luminance Y(i, j) and CCT T(i, j).

The luminance-weighted CCT is given by the following:

TY (i , j ) = Y (i , j )×T (i , j )

5. Statistical measures for image analysis

The following formulas are used to calculate several statistical measures of an image,
including the mean, minimum, maximum, variance, standard deviation, skewness,
difference and RMS contrast, based on the individual pixel data points represented
by r (i , j ):

Mean (µ):

µ= 1

W H

W∑
i=1

H∑
j=1

r (i , j )

Minimum (min):

rmin = min
1≤i≤W ;1≤ j≤H

r (i , j )
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Maximum (max):

rmax = max
1≤i≤W ;1≤ j≤H

r (i , j )

Variance (var):

var = 1

W H

W∑
i=1

H∑
j=1

[r (i , j )−µ]2

Standard deviation (σ):

σ=p
var

Skewness (g):

g = 1

W H

1

[
p

var ]3

W∑
i=1

H∑
j=1

[r (i , j )−µ]3

Difference (∆r):

∆r = rmax − rmin

RMS contrast (C ):

C =
√√√√ 1

W H

W∑
i=1

H∑
j=1

[r (i , j )−µ]2

6. Analysis of euclidean distance and correlation coefficient between colour
channels in an image

The Euclidean image distance and correlation coefficient between two colour
channels of an image can be described using the following formulas, where u and v
represent arbitrary colour channels.

The Euclidean image distance:

Duv = 1

W H

√√√√ W∑
i=1

H∑
j=1

[u(i , j )− v(i , j )]2
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This formula calculates the root mean square of the differences between
corresponding pixel values in the two colour channels over the entire image. It can
be used to quantify the dissimilarity between the two colour channels.

The correlation coefficient:

Ruv =
∑W

i=1

∑H
j=1[u(i , j )− ū)][v(i , j )− v̄]√∑W

i=1

∑H
j=1[u(i , j )− ū]2[v(i , j )− v̄]2

This formula calculates the correlation between the corresponding pixel values in
the two channels over the entire image. It can be used to quantify the similarity
between the two colour channels. This measure can be useful in a variety of image
processing applications, such as colour-based segmentation and image retrieval.

7. Colour difference (∆E00)

The colour-difference formula (CIEDE2000) is based on the LAB colour space.

∆L′ = L∗
max −L∗

min,

L̄ = L∗
max +L∗

min

2
,

C̄ = C∗
max +C∗

min

2
,

a′
max = a∗

max +
a∗

max

2

1−
√

C̄ 7

C̄ 7 +257

 ,

a′
min = a∗

min +
a∗

min

2

1−
√

C̄ 7

C̄ 7 +257

 ,

C̄ ′ = C ′
max +C ′

min

2
, and ∆C ′ =C ′

min −C ′
max,
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where C ′
max =

√
a′

max
2 +b∗

max
2, C ′

min =
√

a′
min

2 +b∗
min

2,

h′
max = atan2(b∗

max, a′
max) mod 360◦, h′

min = atan2(b′
min, a′

min) mod 360◦,

∆h′ =


h′

min −h′
max if

∣∣h′
max −h′

min

∣∣≤ 180◦,

h′
min −h′

max +360◦ if
∣∣h′

max −h′
min

∣∣> 180◦,h′
min ≤ h′

max,

h′
min −h′

max −360◦ if
∣∣h′

max −h′
min

∣∣> 180◦,h′
min > h′

max,

∆H ′ = 2
√

C ′
maxC ′

min sin

(
∆h′

2

)
,

H̄ ′ =


h′

min+h′
max

2 if
∣∣h′

max −h′
min

∣∣≤ 180◦,
h′

min+h′
max+360◦
2 if

∣∣h′
max −h′

min

∣∣> 180◦,h′
min +h′

max < 360◦,
h′

min+h′
max−360◦
2 if

∣∣h′
max −h′

min

∣∣> 180◦,h′
min +h′

max ≥ 360◦,

T = 1−0.17cos
(
H̄ ′−30◦

)+0.24cos
(
2H̄ ′)+0.32cos

(
3H̄ ′+6◦

)−0.20cos
(
4H̄ ′+63◦

)
,

SL = 1+ 0.015(L̄−50)2√
20+ (L̄−50)2

,

SC = 1+0.045C̄ ′,

SH = 1+0.015C̄ ′T,
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RT =−2

√√√√ C̄ ′7

C̄ ′7 +257
sin

[
60◦ exp

(
−

[
H̄ ′−275◦

25◦

]2
)]

,

KL = KC = KH = 1,

∆E00(L∗
max, a∗

max,b∗
max;L∗

min, a∗
min,b∗

min) =
√(

∆L′
KL SL

)2 +
(
∆C ′

KC SC

)2 +
(
∆H ′

KH SH

)2 +RT

(
∆C ′

KC SC

)(
∆H ′

KH SH

)

The colour difference between the mean of 5% brightest pixels and the mean of 5%
darkest pixel is:

∆E00 =∆E00
(
L∗

max , a∗
max b∗

max ;L∗
min′ , a∗

min ,b∗
min

)
8. mean image colourfulness (C)

r g is the difference between the R channel and the G channel. yb represents half of
the sum of the R and G channels minus the B channel.

r g = R −G

yb = 1

2
(R +G)−B

Next, the standard deviation
(
σrgyb

)
and mean

(
µrgyb

)
are computed before

calculating the final colourfulness metric, C.

µr g = 1

W H

W∑
i=1

H∑
j=1

r g (i , j )

µyb = 1

W H

W∑
i=1

H∑
j=1

yb(i , j )

σr g =
√√√√ 1

W H

W∑
i=1

H∑
j=1

[r g (i , j )− r g ]2

σyb =
√√√√ 1

W H

W∑
i=1

H∑
j=1

[yb(i , j )− yb]2

σr g yb =
√
σr g

2 +σyb
2

µr g yb =
√
µr g

2 +µyb
2
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The mean image colourfulness is given by the following:

C =σr g yb +0.3 ·µr g yb

9. Luma

The luma Y′(i, j) of a pixel in an image is calculated as a linear combination of its
RGB primary values, and is commonly used in colour video encoding in addition to
luminance due to its colorimetric properties. The formula for Y ′(i, j) is as follows:

Y ′(i , j ) = 0.2126R(i , j )+0.7152G(i , j )+0.0722B(i , j )

10. Airlight estimation

A practical way to estimate airlight colour comes from dehazing literature, as airlight
estimation is a prerequisite for dehazing. In a commentary on the dehazing study
by Kaiming He et al. [49], Odisio and Alessandrini [55] outline the following way of
airlight estimation:

1) First apply a filter to each RGB channel that replaces each pixel value with the
local minimum value, defined by some kernel width r. This step is used for
local smoothing.

2) For each pixel take the minimum value of three channels, this results in a dark
channel image.

3) Select the top 0.3% of the brightest pixels of the dark channel
4) Cluster these pixels and select the cluster with the highest luminance
5) Take the mean RGB colour, and this is the airlight.
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5.A2. CORRELATION MATRICES OF HUMAN RATING AND IMAGE

STATISTICS

In Figure 5.A1 and Figure 5.A2, we illustrate the correlations between human ratings
and selected image statistics for Experiments 1 and 2, resulting from independent
regressions of mean rating scores on each image statistics measure. The red time
of day score corresponds to the mean score, which is the sum of all scores divided
by the number of scores, representing an overall measure of the perceived time of
day for each painting. The morningness score, noonness score, eveningness score,
and nightness score represent the proportional score per category, indicating the
proportion of scores falling into each category relative to the total count of scores.

Figure 5.A1: Results of Experiment 1. Correlation matrices of human rating and image
statistics are represented by ellipses that vary in thickness and colour. Thinner ellipses
indicate a stronger correlation, while fatter ellipses indicate a weaker correlation. The
elongation of the ellipses shows the direction of correlation, with red indicating positive
correlation, blue indicating negative correlation, and white indicating zero correlation. Only
correlation coefficients that have a significant effect at p < 0.05 are included in the matrix
cells.
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Figure 5.A2: Results of Experiment 2. Correlation matrices of human rating and image
statistics are represented by ellipses that vary in thickness and colour. Thinner ellipses
indicate a stronger correlation, while fatter ellipses indicate a weaker correlation. The
elongation of the ellipses shows the direction of correlation, with red indicating positive
correlation, blue indicating negative correlation, and white indicating zero correlation. Only
correlation coefficients that have a significant effect at p < 0.05 are included in the matrix
cells.
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5.A3. PRINCIPAL COMPONENT ANALYSIS FOR EXPERIMENT 1

1. Factor loadings

Table 5.A1 displays the factor loadings for the first five principal components in
Experiment 1. The table shows the loading values for each image statistic, with red
indicating negative loading and green indicating positive loading.

Component Matrixa

Component
PC1 PC2 PC3 PC4 PC5

mean image luma -0.964 -0.100 -0.163 -0.140 -0.089
mean melanopsin input -0.962 0.079 -0.198 -0.146 -0.03
mean luminance (CIE Y) -0.963 -0.105 -0.162 -0.138 -0.091
mean L-cone input -0.962 -0.121 -0.158 -0.135 -0.095
mean M-cone input -0.966 -0.065 -0.171 -0.144 -0.079
mean S-cone input -0.942 0.194 -0.217 -0.141 0.012
mean rod input -0.966 0.038 -0.191 -0.147 -0.044
mean luminance-weighted CCT -0.893 0.197 -0.241 -0.184 0.164
b∗-luminance image distance -0.918 0.22 -0.208 0.007 0.096
saturation-luminance image distance -0.908 0.284 -0.089 -0.058 -0.029
chroma-luminance image distance -0.938 0.213 -0.175 -0.038 -0.082
RMS contrast (luminance) -0.864 -0.075 -0.257 0.233 -0.223
RMS contrast (B channel) -0.855 0.107 -0.077 0.413 0.006
colour difference (∆E00) -0.719 -0.162 -0.343 0.409 -0.158
CCT difference -0.527 0.108 0.674 0.227 -0.19
mean image saturation -0.244 -0.945 0.082 0.064 -0.018
mean image chroma -0.259 -0.945 0.076 0.053 -0.036
min chroma -0.434 -0.474 0.48 -0.45 0.201
mean b∗ -0.171 -0.888 0.163 -0.023 -0.31
min b∗ -0.43 -0.342 0.559 -0.531 -0.013
b∗ SD -0.296 -0.539 -0.341 0.251 0.621
mean image colourfulness -0.314 -0.834 -0.204 0.188 0.305
luminance-channel skewness 0.884 0.113 0.031 0.127 0.082
b∗-channel skewness 0.385 0.286 0.043 -0.262 0.075
inverse CCT difference 0.542 0.024 -0.689 -0.287 0.148
max saturation 0.588 -0.67 -0.179 -0.172 -0.024
saturation difference 0.55 -0.015 -0.67 -0.295 -0.133
b∗-luminance correlation 0.684 -0.376 -0.343 0.001 -0.376
chroma-luminance correlation 0.779 -0.292 -0.368 0.013 -0.261
saturation-luminance correlation 0.743 -0.023 -0.49 -0.131 -0.014

Extraction Method: Principal Component Analysis.
a. 5 components extracted.

-1.0 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1.0

Table 5.A1: Results of Experiment 1. Factor loadings for the first five principal components.
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2. Explained variance

Table 5.A2 elaborates on the results from Experiment 1, providing a detailed
breakdown of the total variance explained by each of the principal components. The
components are listed in descending order of the variance they account for. For
each principal component, the table presents the initial eigenvalues, the percentage
of total variance explained, and the cumulative percentage of variance explained
up to that component. Notably, the first few components explain a substantial
proportion of the total variance, indicating their significant contribution in capturing
the patterns in the image data.

Total Variance Explained
Initial Eigenvalues Extraction Sums of Squared Loadings

Component Total % of Variance Cumulative % Total % of Variance Cumulative %
1 16.292 54.307 54.307 16.292 54.307 54.307
2 5.027 16.758 71.065 5.027 16.758 71.065
3 3.205 10.682 81.747 3.205 10.682 81.747
4 1.514 5.046 86.793 1.514 5.046 86.793
5 1.069 3.563 90.355 1.069 3.563 90.355
6 0.894 2.979 93.334
7 0.448 1.492 94.826
8 0.347 1.156 95.982
9 0.280 0.934 96.916

10 0.181 0.602 97.518
11 0.170 0.566 98.084
12 0.132 0.439 98.523
13 0.104 0.347 98.870
14 0.078 0.262 99.132
15 0.074 0.248 99.380
16 0.049 0.164 99.544
17 0.045 0.149 99.693
18 0.035 0.117 99.810
19 0.022 0.073 99.883
20 0.016 0.054 99.937
21 0.012 0.039 99.976
22 0.004 0.014 99.990
23 0.002 0.008 99.998
24 0.000 0.001 99.999
25 0.000 0.001 100.000
27 0.000 0.000 100.000
28 0.000 0.000 100.000
29 0.000 0.000 100.000
30 -0.000 -0.000 100.000

Extraction Method: Principal Component Analysis.

Table 5.A2: Results of Experiment 1, showing the total variance explained by each principal
component in the analysis. The components are ordered by the amount of variance they
explain, from highest to lowest.
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5.A4. DISTRIBUTION OF YEARS OF CREATION FOR PAINTINGS

Figure 5.A3 shows the distribution of years of creation for the paintings used in
Experiments 1 and 2. The histogram demonstrates that the majority of the paintings
were created around 1900, with relatively fewer paintings from earlier or later
periods. This information is helpful in understanding the potential reliability of
metadata.

Figure 5.A3: Histogram of years of creation for paintings used in Experiment 1 (a) and
Experiment 2 (b).
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5.A5. DIFFERENT SCREEN WHITE POINTS ON THE MEAN CHROMATICITY

OF PAINTINGS

To account for the potential impact of different white points on the calculation
of chromaticities, we calculated the spread of mean image chromaticities for
Experiment 1 for a range of different white points, or assumed chromaticities for
RGB values of [1, 1, 1]. This allowed us to consider the effect of chromatic adaptation
on the calculation of chromaticities in our study. In Figure 5.A4, we plot the mean
image chromaticities in the CIE xy plane for a range of different white points, with
one disk representing one image.

Figure 5.A4: Results of Experiment 1. Mean image chromaticities in CIE xy plane for
paintings with a range of different white points, one disk per image. The disk colours
represent the chromaticity of each image. The black line indicates the daylight locus and the
location of D55 is marked. (a) Illuminant A. (b) D50. (c) D55. (d) D75. (e) Illuminant E.
(f) Illuminant F1. (g) Illuminant F2. (h) Illuminant F3. The XYZ colour coordinates of each
white point are indicated in the chromaticity diagram.
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To further investigate the relationship between luminance and chromaticity across
different white points, we plotted the correlation matrices of mean image luminance,
CIELAB a∗, and CIELAB b∗ values for nine different white points in Figure 5.A5. We
found that both luminance and chromaticity are significantly and strongly correlated
across different white points, while the correlation of CIELAB a∗ is relatively lower.
This is as expected, given that the mean image chromaticity follows a distinct pattern
along the daylight locus with only minor green shift.

Figure 5.A5: Results of Experiment 1. Correlation matrices for mean image luminance and
chromaticity values in terms of CIE-Y and CIELAB a∗ and b∗ for 9 different white points.
Ellipses varying in thickness and colour represent the correlation strength, with thinner
ellipses indicating stronger correlations and fatter ellipses indicating weaker ones. The
elongation of the ellipses shows the correlation direction, with red indicating positive, blue
indicating negative, and white indicating no correlation. Matrix cells only include significant
correlation coefficients at p < 0.05. (a) Luminance. (b) a∗ value. (c) b∗ value.
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6
CONCLUSION

This chapter presents a summary of the key findings and contributions of this thesis,
addressing the research questions outlined in Chapter 1. It highlights the limitations
of the current study and suggests potential avenues for future research to continue
advancing our understanding in this field.
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6.1. MAIN FINDINGS AND CONTRIBUTIONS

T HE phenomenon of a volume of space appearing to contain light [1] rather than
being completely dark raises questions about the factors that determine this

appearance. These factors can include the presence and type of light sources, the
nature of surfaces in the space, and any obstacles that may block or reflect light
[2–6]. Moreover, human perception of light and darkness can also be influenced by
cognitive and psychological factors [7, 8], like prior experience, expectations, and
attentional focus. To gain a deeper understanding of our experience of light in space,
it is beneficial to analyse the interaction between various optical and perceptual
factors.

Traditional measures of light, like lux levels on horizontal surfaces and downwelling
irradiance spectra [9], do not capture the volumetric properties of environmental light
and its impact on human perception and experience [10–13]. More comprehensive
metrics are needed to objectively and subjectively quantify the appearance of light.
This is where the concept of the light field [4, 5, 14, 15], which accounts for the
distribution of light in a three-dimensional space over time and wavelength, can
serve as a potential alternative metric.

To create an effective lighting design proposal, a thorough understanding of the
unique characteristics of the light field and its influence on human perception is
necessary. The lighting design process involves balancing various lighting concepts
with the specific users and design goals of the space in question. This process
requires imagining the space and its objects as they could be illuminated and a deep
understanding of the unique characteristics of the light field that results. From this,
the designer is able to carefully place and control luminaires and light sources to
create a cohesive, functional, and aesthetically pleasing design.

The early research into characterising the light field provided a solid foundation
for a light-based approach to studying and assessing the quantity and quality of
light in built environments [4]. However, a lack of spectral resolution in the
measurement, description, and visualisation of the light field limited the information
available for understanding colour appearance. Therefore, the purpose of this
thesis was to expand the light fields theory and methods in the chromatic domain
through a combination of computational modelling and physical measurements. By
analysing the impact of light on objects in full-room settings and combining physical
measurements with behavioural psychophysics and computational modelling, this
study aimed to develop and validate lighting design tools that use light field
parameters instead of traditional 2D surface illuminances. This research incorporated
knowledge from optics and perception science to optimise the characterisation of
natural illumination and drive advancements in lighting design and technology.

Chapters 2-5 addressed the key research questions, and the results and
contributions are presented in the order of the research questions.

Q1. How do the chromatic effects of indirect illumination influence the different
components of physical light fields in uni-chromatic spaces, and what systematic
colour variations can be expected?

This research studied the effects of indirect illumination on the structure of the
physical light field in diffusely scattering scenes. The spectral properties of indirect
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illumination were found to vary systematically and correspond with brightness,
saturation, and hue shifts. A computational model was employed to evaluate and
comprehend the spectral effects on the fundamental properties of light fields, such
as the light density and light vector, by measuring and understanding these spectral
effects. The model was tested via computer renderings and via measurements in real
mock-up rooms under different furnishing scenarios for two types of illuminants,
and found to correctly predict the spectral variations within the light field. The
results suggest that indirect illumination mainly affects the light density spectrum
and has less impact on the light vector spectrum, and highlight the importance of
considering these differential effects for their consequences on the colour rendering
of 3-dimensional objects and people.

Q2. How does indirect illumination affect the colorimetric properties of the
effective light, specifically the correlated colour temperature and colour rendering,
in uni-chromatic spaces?

This research aimed to investigate the colorimetric properties of the actual
light, specifically the effective correlated colour temperature (CCT) and colour
rendition, in spaces of one reflectance (uni-chromatic spaces). The spectra of
the diffuse and directional components of the light field were measured in both
physical and simulated uni-chromatic spaces illuminated by ordinary white light
sources. The results showed major differences between the lamp-specified CCT
and colour rendition and the actual light-based effective CCT and effective colour
rendition. The study also uncovered that indirect illumination primarily impacted
the CCT and colour rendition of the diffuse light element. Moreover, analysing the
diffuse and directional components of the light field independently allows for a
more comprehensive understanding of how the light source and scene affect each
component distinctly. The findings suggest the need for a 3D version of colour
checkers for lighting designers, architects and computer graphics applications, and
propose simple Lambertian spheres as a solution.

Q3. How can the 7-dimensional structure of the light field be effectively
quantified and translated into perceptually-relevant information using the spectral
cubic irradiance method, and how do variations in the light field impact the
diffuse and directed components of the actual light over time, space, colour, and
direction?

This research proposed a method, called the spectral cubic illumination method,
for capturing the 7-dimensional structure of light environments and translating it
into perceptually-relevant information. The method allows for quantifying objective
correlates of the perceptually relevant diffuse and directed light components of the
actual light, including their variations over time, space, colour, and direction, and
including the environmental response to sky and sunlight. We applied the method
in different outdoor scenes and found that perceptually meaningful aspects of light,
such as direction, colour, and diffuseness, vary over space and time in ecologically
valid conditions. We also made the data collected freely available and argue that the
method provides a low-cost, high-benefit solution for capturing nuanced effects of
lighting on scene and object appearance, such as colour gradients over 3D shapes.

Q4. How do artists’ depictions of natural illumination in paintings compare to
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the statistical regularities of actual light in terms of luminance and chromaticity,
and how do these comparisons relate to human viewers’ perceptions of depicted
time of day in terms of image statistics, specifically luminance and chromatic
variations?

The study investigated whether human viewers’ estimates of depicted time of day
in paintings correlated with the paintings’ image statistics, specifically luminance
and chromatic variations. The study confirmed such relations. The results showed
that higher ratings for ‘morningness’ were linked with higher brightness, contrast,
saturation, and yellow hues, while higher ratings for ‘eveningness’ were correlated
with lower brightness, contrast, saturation, and blue hues. These findings suggest
that artists’ depictions reflect the regularity of daylight in terms of chromaticity and
luminance, and that observers might use these cues to estimate the time of day.

6.2. LIMITATIONS

Our research expanded the Delft light-field framework [4] into the colour domain,
using the first-order spherical harmonics (SH) to describe light distribution in 3D
space from a perception-based perspective. This approach, which is equivalent to
describing the illumination solid [16, 17] or the first order part of Ramamoorthi’s
efficient represention of the radiance environment [18], forms the basis of a system
of applied photometry and colorimetry. The primary focus of our studies was on
quantifying the spectral effects of different light-field components that are relevant
to perception [3, 4, 19–21], evaluating the spatial and directional analyses in
combination with their photometric and colorimetric properties, and exploring the
temporal dynamics of the light field.

We have also encountered several limitations. First, due to financial constraints,
we were unable to create a grid of spectral cubic illumination meters to measure
the first-order structure of the global light field as a function of various parameters.
Instead, we used a single spectral irradiance meter to capture the light field
through sequential measurements, limiting the spatial and especially the temporal
dimensions. Furthermore, the angular resolution of the cubic approach is limited,
quantifying only 94% of the matte material appearances [22]. To fully quantify the
light appearance of matte materials, we would need to capture also the second-order
SH light field component [23], which can be measured with a dodecahedron-shaped
plenopter [24]. However, again due to financial limitations, we did not construct
such a spectral plenopter.

Another limitation of our studies is that in our perception study we only measured
an indirect effect of chromatic effects and not the perception of chromatic light-field
components themselves. This suggests a need for future research to test which
specific aspects of chromatic light-field components human observers are sensitive
to.

Overall, our research highlights the importance of integrating knowledge about
the perception of light with measurement of the light field, which presents unique
challenges that require innovative solutions and methods.
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6.3. FUTURE OUTLOOK

To design effective lighting schemes to suit human needs, it is necessary to
integrate knowledge about the optical structure, how it is perceived, and how light
interacts with material, shape, and space, considering both objective and subjective
factors. This requires a multidisciplinary approach combining optical science
and vision science. Assessing environmental light as it may reach the eye and
comprehending its multidimensional characteristics offers perceptually meaningful
information beyond characterizing lux levels on horizontal surfaces and downwelling
irradiance spectra. Categorising environmental light into perceptually meaningful SH
light field components, as we have done in this thesis, can deepen the understanding
of light perception and improve the ability to create effective lighting designs and
environments that enhance the human experience.

While our research in Chapters 2 to 4 has focused on the spectral properties of
the optical light field up to the 1st order, characterising higher-order components of
the light field and including their spectral properties is critical for future research.
This will enable a comprehensive description of the distribution of light in 3D space
from a human-centred perspective and a deeper understanding of how the light
field impacts object appearance. The integration of findings from both first-order
and higher-order components has already provided a complete framework for
describing the light distribution in 3D space [3, 4]. However, to fully account for
the human visual experience of environmental light, it is important to consider the
spectral-spatial-angular-temporal structure beyond the first-order light field, given
the critical role that higher-order light field components plays in apparent gloss of
objects [25].

Moreover, investigating human sensitivity to spectral variations within the light field
is important to gain insights into its influence on our perception. A comprehensive
theory of visual light fields [20, 21, 26, 27] in the spectral domain could enhance
our knowledge in related areas such as lightness and colour constancy, shape
from shading, and material perception. Although lighting perception has received
less attention compared to other key topics in the field, it is a promising avenue
for advancing our understanding of human vision, given the advancements in
experimental methods and new applications.

Lastly, the polarisation state of light can yield higher-dimensional functions and is
worth investigating as it affects visual perception by influencing interactions with
objects and surfaces, including highlights on glossy objects [28, 29]. Although not
included in our light field description, the use of polarisation filters to capture the
light field could serve as an additional experimental tool to separate specular and
diffuse components [28]. While humans lack true polarisation vision [30], it plays
a key role in animal vision [31]. Therefore, the characterisation of environmental
light beyond anthropocentric perspectives may aid in furthering the study of animal
vision. Investigating polarisation variations in light fields in combination with
behavioral animal studies could yield useful insights into how animals perceive their
environment and navigate through it.

In conclusion, this thesis has contributed to the development of novel lighting
design tools and expanded our understanding of the chromatic light field. A
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perception-based approach is crucial in understanding the complex nature of
environmental light by representing the endless variety of light with a few traceable
canonical components, and further research is needed to fully account for the
human visual experience of environmental light. The findings of this thesis have
immediate implications for lighting designers, architects, and researchers dealing
with 3D distributions of environmental light. It allows research into and scientifically
informed design of chromatic appearance, including gradients, by leveraging the
interactions between any space’s colours and light source characteristics. In other
words, it provides an understanding of and a means to utilize light and spectra in
the wild.
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