
Building Exact Online Plugins for the
Salesforce Platform

Final Report

Delft, June 2014D. Eikelenboom, T. Rensen

Preface
This report is the final report which concludes on the development of a plugin framework for theonline accountancy software Exact Online, with a particular focus on implementation within CustomerRelationship Management (CRM) system Salesforce.
The project was executed for the TI3800 - Bachelor End Project course within the Bachelor ComputerScience and Engineering at Delft University of Technology. The project is the final project under theBachelor phase, and was performed during the period from April 21th until the final presentation atJuly 4th 2014. All research and development took place at the head building of Exact InternationalDevelopment B.V. in Delft, The Netherlands, Molengraafsingel 33.
This report provides details on the project, requirements, design decisions, implementation, testing,process and the final product.
Especially, we would like to thank the following persons for their support during the project:

• Konrad Olczak, for coaching and steering the development process as contact person withinExact, but also for giving constructive code reviews during the project.
• Edgar Wieringa, for giving us the opportunity to perform this Bachelor End project at Exact. Aswell as for coordinating and steering the development process and clarifying requirements asthe main stakeholder.
• Cor-Paul Bezemer, for watching the process from the TU Delft side of the project. As well as forgiving extensive and constructive feedback on reports and process issues.

Dennis Eikelenboom and Tim RensenDelft, The Netherlands, June 2014
1

Summary
Exact is a global supplier of business software. Their online business solution, called Exact Onlineprovides its users with a toolkit for Customer Relationship Management (CRM), HR, logistics andmanufacturing with a particular focus on small- and medium sized businesses. Salesforce is a popularCRM system that is used by companies worldwide. Exact’s recent focus with Exact Online is on creatingan ecosystem of (partner) companies around Exact Online by opening up data via an ApplicationProgramming Interface (API), offering a set of mobile apps, and by offering the possibility to integratedata from Exact Online into other business applications.
For this Bachelor project, a project group consisting of two students created a plugin framework anda set of plugins that enable Exact to facilitate and develop plugins for Exact Online. The possibilityto embed plugins with data from Exact Online within other business applications, will be a possibleadvantage for customers to choose for Exact Online above other business administration software.
In particular, Exact wanted to have a set of plugins for CRM-system Salesforce. The project team,proposed to make the assignment more abstract by using a more generic approach. An advantage ofsuch an approach is that a platform independent set of plugins can be offered. Consequently, it will bepossible to embed plugins within multiple different business applications.
The main challenge in this project was to maintain the features that an integration within a specificplatform will offer, yet keeping a generic approach in order to realize a high degree of adaptability,extendability, maintainability and to allow a secure environment for data exchange. With the finalprototype that the project team delivered at the end of this project, those goals have been achieved.
The final prototype of the Exact Online Plugin framework can be embedded in two different ways inanother application. Firstly, it is possible to use a plugin as a ‘stand-alone‘ version. A plugin can beembedded within another application, and show all data related to accounts in Exact Online. Secondly,it is possible to embed a plugin into another application while sending along data that belongs to theother application. These data can be for example company names or phone numbers. The pluginframework will then attempt to match the provided account data with accounts from Exact Online, andshow a customized view adapted on and integrated with the ‘host‘ application.
Matching is an essential part of the integration of external accounts with accounts from Exact Online.Algorithms that can be used to achieve this matching make use of the distance property of a set ofwords. In the implementation of the Exact Online Plugin framework this means that organizationnames are compared to see the degree of similarity between them. Moreover, the algorithms ofLevenshtein, an algorithm of Jaro-Winkler and a combination of both are used in specific.
Thematchingmodule is a feature that have been thoroughly tested, because of the use of a test-drivenapproach for development. This approach, helped to optimize the level of acceptance for the matchingalgorithms. Next to unit and user test, a detailed assessment has been made on the security of theapplication. The creation of a threat model helped to identify potential threats from a security point ofview. Based on the findings, application improvements could be made.
Concluding, the Exact Online Plugin Framework provides a flexible and maintenance-extensive way tocreate plugins for Exact Online. By maintaining a generic approach, it is possible to embed pluginswithin multiple different third-party applications, yet showing application-specific data because of amatching module that is built in.

2

Contents
1 Introduction 5
2 Problem Definition and Assignment 62.1 Initial Assignment . 62.1.1 Outstanding Items Plugin . 62.1.2 Revenues Plugin . 72.2 Assignment Revised . 7
3 Project Methodology 83.1 Time Frame and Methodology . 83.2 Environment . 83.3 Documentation . 93.4 Presentations . 9
4 Design and Implementation 104.1 Design Goals . 104.2 High-Level Architecture . 114.2.1 Application-Specific or Generic Approach . 114.2.2 Components and Dependencies . 114.3 Plugin Framework . 124.3.1 Authorization . 124.3.2 API Communication . 134.3.3 Division Switching . 134.3.4 Account Matching . 144.4 Architecture in More Detail . 144.4.1 Building Plugins . 154.5 Outstanding Items Plugin . 154.5.1 Stand-Alone . 154.5.2 Matching External Data . 164.6 Deployment . 18
5 Matching 185.1 Levenshtein . 185.2 Jaro and Jaro-Winkler . 225.2.1 Jaro Distance . 225.2.2 Jaro-Winkler . 245.3 Reverse Matching . 24
6 Testing 256.1 Automated Testing . 256.2 Integration Testing . 256.2.1 Testing Environments . 266.3 Usability Testing . 266.4 Security Review . 276.5 Code Analysis . 28
7 Conclusions 28
8 Recommendations for Future Work 29
A Product Planning 31

3

B Orientation Report 42
C Guide on How To Extend 55
D Guide on How To Implement 59

4

1 Introduction
Exact[3] is a leading global supplier of business software. Exact is headquartered in Delft, theNetherlands and has been listed on the NYSE Euronext Amsterdam since June 1999. It servestheir customers with industry-specific business software products on topics like manufacturing,accountancy, marketing, HR and logistics and is active in 125 countries worldwide.
Exact Online[4] is the main cloud solution and product division of Exact that is active in the field ofonline-based accountancy software, with 145,000 customers worldwide. By focusing on small- andmedium businesses it provides its users with a toolset for Customer Relationship Management (CRM),logistics and manufacturing, centralized in one place.
Salesforce[5] is a global cloud computing company headquartered in San Francisco, California. It isbest known for its Salesforce1 platform, which is a highly customizable business CRM platform. Thereare clients of Exact that use both Exact Online and Salesforce to support their business processes.
Exact wants to create an ecosystem of (partner) companies built around Exact Online in order toenhance the customer binding with Exact. Since several years, Exact has been focusing on openingup data from Exact Online via other ways than only via the web application. In 2011, a team has beenstarted to work on an Application Programming Interface (API) that could be used by mobile appsto retrieve and store data from Exact Online. In 2014 a new phase has been started, in which Exactgrants partner organizations access to their API. In this way, partners get eligible to create and publishapps in the Exact App Center[6], a central place where customers can find third-party applications. Acombination of the App Center, collaborations with multiple partner (development) companies andthe offering of apps and plugins for other platforms would contribute to the creation of an ecosystemaround Exact Online.
In the remainder of this report design choices and full requirements will be clarified. In Section 2 therequirements are discussed. In Section 3 the Project Methodology will be discussed. The productimplementation and architecture will be discussed in Section 4. The matching mechanism will beexplained in Section 5, followed by Section 6 that will focus on testing. Section 7 concludes on theachievements made in this project according to the goals that has been set. Finalizing, Section 8 willgive future work recommendations.

5

2 Problem Definition and Assignment
In the line with the recent App Center launch and the release of a set of mobile applications, Exactwould like to have plugins available that show data from Exact Online in third-party web applications.Exact wants these plugins to be able to integrate within third-party business software that a shareof their customers use next to Exact Online. The main focus within this assignment lies on theimplementation of plugins within Salesforce. This section gives a description of the problem and theassignment in more detail.

2.1 Initial Assignment
The project team is required to perform a feasibility study (see Appendix B, Orientation report) to getinsight in the possibilities to create plugins for Salesforce. To start with, a plugin should be createdthat shows outstanding items, e.g. sales invoices, from Exact Online ordered by customer accounts.When creating plugins for Salesforce does not turn out to be possible, an alternative target applicationshould be sought for. When possible, and when the timeframe is reasonable enough, the project teamshould also create an additional plugin that will show revenues assigned to clients from Exact Online.However, to realize a revenue plugin, extension of the current API is required.
Exact wants to make it possible to embed a plugin into third-party applications by using only one lineof Javascript code. LinkedIn[7] and Salesforce are parties that implemented a similar implementationand the project team should find out what is the best approach to achieve the same. In short, the pieceof Javascript code should be able to load the complete interface of a plugin.
During the project, it should be kept in mind that Exact wants to publish the plugin for a large numberof users. Therefore, architecture must be set up in a scalable way and it should not be time-extensiveto reuse the implementation for another plugin. Good documentation is therefore a requisite. Thesubsections below give a brief description of the required plugin functionality. Descriptions are partlygiven by user stories, to make the requirements more clear.

2.1.1 Outstanding Items Plugin
Exact wants to show outstanding items (invoices) in third-party systems and Salesforce in specific. Afterimplementation of this plugin, one should be able as a Salesforce user to open a relation account inSalesforce. A list and the total amount of outstanding items that are open in Exact Online should beshowed upon. An outstanding item should mention the total amount, the VAT included and a due date.A more detailed requirement can be seen in the user story below.
User StoryAs a SalesForce user I want to see the outstanding amounts of a given account so that I aminformed about the healthieness of our relationship in my CRM system without the need to loginto a different system.

1. How to demo?
(a) Login to SF as an existing Exact Online user with rights to view financial informationfrom that given account.
(b) Show three invoices with their description, date, invoice number and outstandingamount including currency.
(c) Show the total of these invoices

6

(d) Login as a user without rights, no info shown, no indication at all of the widget.
(e) When there are no outstanding items. Correct working of this is out of scope for now .
(f) The information is clearly identified as financial information from Exact Online. Yet itsvisual appearance matches the visual appearance of SF.

After implementing a prototype with all the required functionality as mentioned above, a morecomplete implementation has been proposed, agreed on and built.
This more complete model features the showing of all accounts that have outstanding items fromExact Online. After clicking on an account with outstanding items, a sublist will be shown showingall the items that are open from a specific relation. The plugin also features the possiblity to switchbetween the different ‘divisions‘. To be more precise, an Exact Online user may have access rights overmultiple administrations, which are called divisions.

2.1.2 Revenues Plugin
Another plugin that Exact wants to create for the Salesforce platform is a plugin that shows the shareof revenues in Exact Online associated to specific relation accounts. In this way, it becomes possiblefor a user to see the importancy of a specific customer in terms of revenue. More details on theimplementation, would be provided if the project team is ready to start with this plugin. However,where the outstanding items data is already available in the Exact Online API, this is not the case fordata about revenues. The project team should therefore extend the API. Since the limited time of theproject, this might be out of scope and has to be decided during the project.

2.2 Assignment Revised
After the first implementation of the Outstanding Items plugin, a meeting and evaluation has beenorganized to assess and verify the delivered prototype. Although the requested functionality wasavailable, a more integrated solution within Salesforce was aimed for. Basically, the prototype featuredan independent plugin that did not use any Salesforce data.
Within the Salesforce application there exist customer relation cards showing information for a specificrelation. It would be ideal for Exact if an integration of Exact Online Outstanding Items on these accountcards could me made, so that a user can see instantly if a relation has outstanding items.
With this new goal, multiple challenges arose. As accounts from Salesforce do not necessarily havethe same names as in Exact Online, a solution has to be found to match accounts from both systems.To illustrate, how do we match Salesforce account "Exact Software Development" with "Exact SoftwareDevelopment B.V." and how do we know if "Exact" and "Exact Software" are the same companies? Theconclusion was made that this is an interesting challenge, but also a challenge that would undoubtedlyrequire at least an additional sprint. Another challenge was to find a way to maintain the design goalfrom a generic implementation, yet still make a specific matching possible with Salesforce accounts.
During implementation of the matching functionality, it became obvious that extension of the API wasnot realistic within the time that was left. Therefore the project would include an empty plugin thatgives a good example on how to extend the system with additional functionality once the API is ready.In addition, a document had to be created that guides other developers on how to realize this. Thisextension can be found in appendix C.

7

3 Project Methodology
In this section an overview is given of the time frame in which the project is performed, the softwareengineering methodology, required development tools and deliverables.

3.1 Time Frame and Methodology
The project team worked on the assignment for ten consecutive weeks, from the end of April untillthe first week of July. Preceding the project period, there have been a number of meetings at Exact tospecify the context of the project and to make decisions on methodologies used for the project.
Together with the stakeholders we agreed to work on-site at Exact for at least four days a week, during10 weeks. Methodology to use is Scrum[8], with sprints of two weeks. On a weekly and daily basismeetings were held with stakeholders to discuss the project progress.
At the beginning of every project day a meeting was held in which the progress of each member isdiscussed. In these ’stand-up’, or daily scrum, meetings every teammember is required to mention theblocking issues that he might have, and also look forward to the planning of the specific day and theremainder of the sprint. These meetings typically take no more than 15minutes.
As well, at the beginning of each sprint there are longer meetings with all the stakeholders in theproject. These meetings have the goal to reflect on the last sprint and look forward on the planningfor the next sprint(s) in order to reach the project goals and deadlines. Next to reflection, there is alsotime reserved for ’grooming’ of tasks. Grooming is the process of estimating the time that is neededfor each backlog item in a sprint. After a planning is made, subtasks for each backlog item are definedand by using Scrum Poker[9] time estimations are made for each task. These meetings take around ahour.

3.2 Environment
The project team is offered working places at Exact’s headquarter in Delft for the whole project.Although, Exact offered the ability to work on their machines, we chose to keep working on ourmachines for mobility reasons. It was slightly unfortunate that our coach for the project was abroadin he first two weeks of our project. Therefore, all the meetings in the first sprint has to be performedvirtually via videoconferencing. Setting up the Exact Online environment on our own systemsrequired around three days, since we were unable to easily fix problems with missing dependencies.Fortunately, we received some help at this point from someone else.
At Exact, Microsoft Visual Studio 2013 is the recommended Integrated Development Environment (IDE)to work with. Exact Online is built with the Microsoft .NET framework and so will the system toimplement be. The choice for an IDE like Microsoft Visual Studio is therefore logical since it integratesfluently with the language and it provides optimalized testing and code-review features. Next to VisualStudio, Exact uses a tool called Team Foundation Server (TFS) to keep track of versions in their softwareprojects. TFS provides source code management functionality, but also features project managementfunctionality aligned with the Scrum Methodology. During the project, TFS should be used by theproject team to plan sprints on, create and assign working tasks and to keep track of source codechanges. Time estimations for backlog items that are made during grooming sessions, can be easilyassiged to tasks on TFS. All the mentioned features support project members in having a betteroverview of the development process.

8

3.3 Documentation
To get familiar with Exact’s system architecture and to find other internal documents, the project teamcan make use of Synergy[10]. Synergy is Exact’s internal system for sharing documents and people’scontact information (HRM) within the company. It enables Exact’s employees to find documentationabout past projects, to find news updates, people and also it provides guidelines for coding styleand documents. Documents that might be useful for the project team are those that describe theAPI architecture and API interface. New documents that will be delivered for this project should beuploaded to Synergy as well so that they can be found easily in the future by others.
For evaluation at TU Delft, multiple documents have to be handed in. Firstly, a document thatdescribes the planning for the entire project must be handed in at the beginning of the project.An orientation report must describe the first research weeks, corresponding research outcome andconclusions. Finally, this final report should describe the entire project process, considerations,trade-offs, implementation and conclusions. The TU Coach was available during the projects to givefeedback on each document once, so that the project team was able to incorporate feedback an handin improved final documents. The reader can find both the Product Planning document as well as theOrientation Report as an appendix to this document.
Since the project team makes a prototype of the product, it is likely that Exact will not directly publishthe result to its customers. Documentation on how to implement the delivered prototype on a liveversion is therefore very useful for Exact, as soon as the product becomes production-ready. A guideon how to release the project on a production server and on how to implement the plugins in aSalesforce app, is therefore required for Exact. As well a document on how to extend the systemwith additional plugins, would be useful for future developers that will work on the system. Bothdocuments, supplemented with the TU Delft reports need to be uploaded to Synergy.

3.4 Presentations
At the end of the project, the final product should be presented both to the management team ofExact as well as for stakeholders at TU Delft. Ideally, the presentation at Exact will take place at thebeginning of the last sprint of the project, so that feedback can be incorporated in the last sprint. Thepresentation at TU Delft will take place at the 4th of July.
At the moment of writing, the presentation of TU Delft is not held yet. Though, the presentation forthe management team at Exact turned out to be very useful to collect feedback. Received feedbackafterwards the presentationwas valuable, since it manifestedmultiple new insights in both stakeholderwishes and possiblities from a technical point of view. The generic approach that the project teamused was very appreciated, but the same approach however also created some challenges in keepingthe implementation generic, while still providing specific functionality like Salesforce integration. AJavascript callback function, provided by the host application, is one of the proposed features toovercome these challenges. Afterwards, it might have been useful to have had the presentation atExact at an earlier stage during the project. At such a late moment in the project, it is very hard to stillincorporate feedback in the implementation.
For a more detailed view on the project planning, the reader is refered to the Project Planningdocument that can be found in appendix A.

9

4 Design and Implementation
In this section, an overview is given of the system architecture. During the implementation, designgoals have been taken into consideration as defined at the beginning of the project. These designgoals and an initial set up of the system architecture can be found in the orientation report, whichis included in Appendix B. In the orientation report, the reader may also read more about researchfindings in detail.

4.1 Design Goals
As defined during the research part of this project (see Appendix B), multiple design goals are takeninto account when implementing the Plugin Framework for Exact Online. Compared to the designgoals as drawn in the research phase, a goal related to application security has been added. Overall,the design goals provided a good guidance during implementation. The design goals are listed andexplained briefly below.

• Maintainability The application should be set up in such a way that it is easy maintainable byExact’s employees. This means that the product should be based on Microsoft frameworks andprogramming languages, as used by Exact for their development.
• Scalability Given the large amount of potential users, scalability should be ensured in theapplication architecture. Scalability can be concerned on hardware level, database level or onalgorithm design. Also performance of external dependencies like the Exact Online APImust betaken into account.
• Reliability Data to be shown by the application should be reliable. In addition, it has to be able tohandle with errors and other exceptions, for example caused by the unavailability of applicationswhere the system depends on.
• Adaptability It should be easy to extend the application with additional features or adapt existingfeatures. A clear architecture that respects principles like the open/closed-principle and properdocumentation of the system enables other people to understand how the system is composed.
• Efficiency Data should be handled in an efficient way. Loading lots of unnecessary data is not agood practice and should be avoided. In addition, data storage should be set up in such a waythat redundancy is avoided en relations are set up in a scalable way.
• Understandability The system should be easy to understand for both its users as its developers.User interfaces should be kept minimal and be in line with the existing Exact user interfacedesign. For developers, in-line comments and a clear architecture should provide a systemarchitecture that can be understood quickly.
• Availability Because of the dependencies of the system on the API as well as on OAuth and otherthird parties like Salesforce, it must be ensured that the application can operate independentlyas much as possible.
• Generic design It is desirable that the system is set up in a generic way. This will make it possible touse the same application in multiple different contexts, e.g. the use of the same implementationfor Salesforce and for SugarCRM[11].
• Security As the system potentially must handle with vulnerable data of Exact’s customers, securityis an important aspect. It should be prevented that data is breached by malicious parties. Asecurity code review will be needed to assess the quality of code from a security perspective.

10

4.2 High-Level Architecture
Before a clear picture can be drawn on the high-level architecture, it is useful to emphasize the essentialtrade-offs that have been made before choosing a system architecture. Basically, two approacheswere possible. Either creating plugins for each third-party business application or creating a systemfrom scratch and using a more generic approach. Both approaches are discussed in the followingsubsection. Then a clear overview is given from the current system architecture.

4.2.1 Application-Specific or Generic Approach
As described in detail in the orientation report (see Appendix B), two possible approaches are possibleto implement plugins for third-party systems – and in the first place Salesforce. On the one hand onecan built a plugin based on the Salesforce App platform, on the other hand it is possible to create asystem from scratch and inject the interface by means of an iframe into an empty Salesforce plugin.
Approach A - Creating a plugin based on the Salesforce App platform can be relatively fast compared toan alternative approach. Salesforce provides a development platform for developers to create apps.Apps need to written in the own ‘Apex‘ programming language, and may access Salesforce’s internalas well as external APIs. This provides flexibility for developers as organizations’ own data might beused. Another advantage is that apps do automatically work on mobile devices as well. Salesforceprovides secure storage for authorization keys if developers need to store authorization keys for APIsas an example.
Approach B - An alternative approach is to create a new system from scratch. This approach gives thedevelopment team the freedom to implement the system without having to cope with limitations dueto the dependency on another platform. As the Salesforce1 platform makes use of a webinterface,created plugins could be integrated by injecting them into the Salesforce interface by using an iframe.
Although approach A provides a fast way to develop plugins for Salesforce applications, approachB provides more flexibility and less dependencies on other parties. Keeping in mind the designgoals as listed in section 4.1, approach B is obviously the best approach to use. This approachfulfills the requirements on maintainability, security, adaptability and genericness as the plugin canbe implemented from scratch by the developmen team. As every plugin is hosted at one place, thesame plugin would be easily portable to other platforms. As well, maintainability only has to take placeat one place. Security can be better ensured, as no data will be hosted at servers of third parties.

4.2.2 Components and Dependencies
Seen from a high level perspective, the system is built on top of the .NET framework with C# asimplementation language. The Exact Online Plugin framework is a layer of shared functions thatall plugins make use of. The functionalities of this layer consist of handling access tokens for APIcommunication and handling user authorization via the authentication protocol OAuth.
In figure 1 an overview of the system is provided graphically. On itself, the system is dependent on twoexternal sources, the Exact Online OAuth authorization system and the Exact Online API. A study onOAuth authorization and the Exact Online API can be found in the orientation report (Appendix B).

11

 Plugin B Plugin CPlugin A

EOL Plugin Framework

C#

EOL API

EOL OAuth2

EOL Plugins

Token/code
storage

ASP.NET MVC

Figure 1: A high-level overview of the system.

4.3 Plugin Framework
The plugin framework layer in the system is the central part of the Exact Online Plugins system. Itprovides a set of shared functions that every plugin might use, and thereby makes it easy to createnew plugins in relatively short time. The following subsections describe the framework’s functionalityin more detail.

4.3.1 Authorization
Exact Online makes use of OAuth for user authentication. An advantage of this technique (see alsoAppendix B) is that an user does not have to pass his credentials for Exact Online to a third-party, inthis case the Exact Online Plugin framework. Instead, an access token will be passed which allows thethird-party to retrieve user data from the Exact Online API.
In order to use one of the plugins, a user always has to authorize himself. From an usability perspective,it is undesirable that users have to authorize every time they want to make use of a plugin. Thereforeaccess tokens get encrypted and are stored in a database. To identify an user, an unique user id alwayshave to be provided within the request, when calling a plugin from an external application.
The plugin framework handles the routing of users to authorization pages, when they make use of aplugin for the first time. Figure 2 shows the Exact Online Authorization screen that is shown to pluginusers.

12

Figure 2: If a user is not authorized, the framework will redirect the user to an authorization screen ofExact Online.

4.3.2 API Communication
As every plugin has to communicate with the API in order to show data from Exact Online, it wouldbe unnecessary complicated if every plugin needs to handle the establishment of an API connectionon its own. Therefore, an API communicator is part of the shared framework functions, to set up aconnection with the API and handle the refreshment of access tokens.
The functionality of the authorization and API communication part shows a large overlap, since it isrequired to be authorized in order to retrieve data from the API. After a user gave the plugin frameworkauthorization to use its data, an access token is provided. Due to security concerns, this access tokenexpires after a while, whereafter there is a need to ‘refresh‘ a the token. The API Communicator,handles this refreshment of tokens and so provides a layer of abstraction for the actual plugins. Nextto token management, the API Communicator part also takes care of a layer of abstraction in callingthe api. Normally, a developer needs to get familiar with the specific uri structure of an API Call. TheAPI Communicator however makes data retrieval easier by providing functions as ‘Select‘ and ‘Orderby‘ that developers might use to add arguments.

4.3.3 Division Switching
An Exact Online user might have access to multiple administrations. Typically this will be multipledifferent organizations. A user may switch between the organizations/administrations he has accessto. Administrations are also referred under the name ‘division‘ in Exact Online.
Consequently, the same switching mechanism must be present in the plugin system as well so thatusers can switch between divisions as shown in Figure 3.

13

Figure 3: Division switching.

4.3.4 Account Matching
The Exact Online Plugin system is an independent system on its own, as it also can function withoutbeing implemented in a host application like Salesforce. This provides flexibility, as it is possible tointegrate a plugin in multiple other applications. But it also introduces limitations, as it is hard to usedata from the Salesforce application in plugins.
In order tomake the data provided by plugins specific on the host application, yetmaintaining a genericapproach the following approach has been used. If a plugin is requested, additional data can be addedto the request. This can be for example account names, organization names or phone numbers. If datais added to a request, the plugin framework will try to match the provided data with account data fromExact Online so that accounts from the host application get mapped to account from Exact Online.
Section 5 provides a detailed view on the matching module that is used to match account data in theExact Online Plugins System.

4.4 Architecture in More Detail
The figure below gives an overview of the current system architecture. The diagram includes the pluginframework with shared functions like APICommunicator that handles the connection with the API,an abstract DataRetriever that provides communication between plugins and the API, and besidesevery plugin has an own pluginController that inherits from an abstract ’pluginController’. The lastmentioned includes easy generation of views when someone wants to create a new plugin, but alsohandles routing so that unauthorized users for example will be redirected to an authorization screen.In general, for every plugin that interacts with the API a specific DataRetriever should be implementedto handle data retrieval. A new plugin can be realized by creating a new pluginController and a specificDataRetriever.

14

ExampleRetrieverOIAbstractRetriever

OIMatchingRetrieverOIDataRetriever

DataRetriever
- api
- userId
isAuthorized()
currentDivision()
switchDivision()

Controller

APICommunicator
- clientId
- clientSecret
- redirectUri

PluginNController

ExamplePluginController
- ExampleRetriever

OutstandingItemsController
- OutstandingItemsRetriever

PluginController
dataRetriever
pluginTitle
columnNames
- generateView()
- unauthorizedView()

4.4.1 Building Plugins
As mentioned before, plugins should make use of an abstract DataRetriever since it takes care of thebasic communication with the API. By extending the abstract retriever the basic functionality does notchange, but additional API calls can be implemented which makes it possible to easily obtain new data.
If one implements a new plugin, the abstract pluginController always needs to be extended. Thisclass will then take care of authorization and handling the refreshment of tokens. A newly createdDataRetriever may be included here to extend the basic funtionality of the abstract data retriever class.This allows the developer to use additional functionality.
A more detailed version on how to extend can be found in Appendix C.

4.5 Outstanding Items Plugin
Because of the matching that needs to be done, we chose to create an abstract class with an abstractmethod getOutstandingItems(). This way, it was very easy to create two different retrievers: a genericone and one that takes care of the matching.

4.5.1 Stand-Alone
The stand-alone version is the intial created version of the outstanding items plugin. We chose toshow a high-level list of Outstanding Items with only names and associated total amount as shown inFigure 7. By clicking on a customer row in the interface, all of the outstanding items related to that

15

specific customer will be shown. Items provide a description, invoice date, invoice number, currencyand amount. By this way, a user can see at a glance the total amount that is still open of a specificcustomer. When there is need for more detailed information, the user can simply click on a name asshown in Figure 5.
Since the plugin works independently (no data from a third-party is needed), it can be easily integratedin any other application. Accounts that are shown in the interface, are the accounts as they exist inExact Online.

Figure 4: A basic Outstanding Items implementation.

Figure 5: A basic Outstanding Items implementation withitems shown for a specific account.

4.5.2 Matching External Data
To make it possible to match Exact Online account with accounts from other environments, it must bepossible to send data to the plugins, which will then attempt to match these accounts. The data mustbe send in JSON[12] format, so that independability on other applications is avoided.

16

Since the matching algorithm cannot be 100 percent reliable for every match, there is a need for userverification. When the plugin is not confident if there is a match, two buttons are shown: accept andreject. The user can then decide whether to accept or reject this matching. The decision verificationis stored upon in a database, so that a user only has to make the decision once. The user can revokeits decision by right clicking, on a previously made match. A popup wil then be shown to ask for averification of the user to delete a matching.
The plugin is generic just like the stand-alone version, because of the fact that additional data mustbe provided in JSON format. It is possible to send data from Salesforce to this plugin, but from otherenvironments as well.

Figure 6: Matching mechanism

During the sprint review that was following it became clear that the delivered implementation wasnot exactly what the stakeholders had aimed for. Though the plugin featured all the requiredfunctionality, the desire was to integrate the showing of outstanding items deeper inside the SalesForceplatform. The best solution to integrate within Salesforce would have been the showing of Exact OnlineOutstanding items on a specific Customer relation card. A mockup of such a implementation can beseen in the picture below.

Figure 7: An account/customer relation card in Salesforce

After research through the Salesforce documentation, the project team concluded that it does notseem to be possible to plug in additional features within the account card - which is in fact a pluginon its own. The desire from Exact to fully integrate within Salesforce accounts had to be compromisedfor that reason. However, another way had to be proposed to integrate the outstanding items withinSalesforce, as in the basic implementation accounts from both systems did not neccessarily matchwith eachother.
Although it was not explicitly required by Exact, we still found it a very good practice to keep a distancebetween the actual plugin system and the hosting business application. Therefore we had to find a

17

way to keep the plugins generic, including the ability to offer a specific host application dependentview. And what should not be unmentioned, we had to convince the stakeholders at Exact being this abetter way of implementation than creating only a set of plugins for Salesforce.

4.6 Deployment
As a final stage before finalizing this project, the plugin framework was fully deployed on a MicrosoftAzure website 1.
This suffices for testing purposes, but most likely this is a temporary solution. Publishing fromMicrosoft Visual Studio to an Azure website can be done easily since both products interact seamlesslywith eachother. After setting up the project to interact with the Microsoft Azure servers, a developeronly has to click on the Publish button, to deploy the application.
A more detailed view on deployment can be found in Appendix D.

5 Matching
To make it possible to combine accounts from different environments, some kind of matching needsto be done and it proved to be quite challenging to do this properly. Humans canmake use of commonsense, something that is really hard to translate to programming code.
Several algorithms are already available to calculate the similarity, or ’distance’, between two strings.Firstly, the choice for the used algorithms is explained. After that, the algorithms will be described inmore detail including their mathematical notation in sections 5.1, 5.2 and 5.3.
One of the best known algorithms for string distances is the Levenshtein distance (Section 5.1) whichsupports deleting, inserting and substituting characters.Unfortunately, the matching results were not as good as we expected, so other algorithms needed tobe taken into account.
Another algorithm is the Jaro-Winkler distance (Section 5.2) which is a variant of the Jaro distance whichtakes matching characters and transpositions into account and determines a score based on theseaspects.This is algorithm gave better results than Levenshtein in many cases, but still not completely what weexpected.
Reverse matching (Section 5.3) made it possible to progress in the right direction. Combining thesethree methods, great results were achieved and no additional research was needed.

5.1 Levenshtein
A method that calculates the distance between two strings, is the Levenshtein distance. It is namedafter Vladimir Levenshtein who was a Russian scientist. He has done research in information theory,error-correcting codes, and combinatorial design. The algorithm was developed in 1965 and supportsdeleting, inserting and substituting characters.
The Levenshtein distance equals the sum of the minimum edits needed to get from one string toanother string.

1http://azure.microsoft.com/en-us/

18

ExampleThe Levenshtein distance between ‘acdfg’ and ‘abcef ’ is 3 since there is no way to do this operationwith fewer than three edits:
1. acdfg→ abcdfg (insertion of ‘b’)
2. abcdfg→ abcefg (substitution of ‘d’ for ‘e’)
3. abcefg→ abcef (deletion of ‘g’)

Obviously, if two strings are exactly the same, no edits are needed so the distance equals 0. If one ofthe strings has length 0, the Levenshtein distance equals the length of the other string since that manyinsertions or deletions are needed. Intuitively, one could state that an edit is just a snapshot in timeand is based on previous choices.
To make it possible to implement an algorithm that calculates this distance, a more formal definitionis required:
The Levenshtein distance between two strings a and b is given by leva,b(|a|, |b|) where

leva,b(i, j) =

max(i, j) ifmin(i, j) = 0.

min

 leva,b(i− 1, j) + 1
leva,b(i, j − 1) + 1
leva,b(i− 1, j − 1) + x

otherwise.
where x = 1 if ai ̸= bj , and x = 0 otherwise.
leva,b(i, j) can be translated as ‘Levenshtein distance between strings a and b when reading thefirst i characters of a and the first j characters of b’.

The first part in the equation is ‘max(i, j) ifmin(i, j) = 0’: this corresponds with the case that one ofthe strings has length 0, the Levenshtein equals the length of the other string as mentioned earlier.
The second part determines which choice is the most suitable. These three recursive calls representthe edits that could be made:
leva,b(i− 1, j) + 1 deletion
leva,b(i, j − 1) + 1 insertion
leva,b(i− 1, j − 1) + x substitution
ExampleThe Levenshtein distance between two strings a and b with |a| = 3 and |b| = 2 is calculated by
leva,b(3, 2). Sincemin(3, 2) ̸= 0, the second part of the equation is used:

min

 leva,b(i− 1, j) + 1
leva,b(i, j − 1) + 1
leva,b(i− 1, j − 1) + x

= min

 leva,b(2, 2) + 1 deletion
leva,b(3, 1) + 1 insertion
leva,b(2, 1) + x substitution

When the Levenshtein distances of leva,b(2, 2), leva,b(3, 1) and leva,b(2, 1) are known, a decision ismade which edit to apply.
Likewise, the ‘deletion’ call leva,b(2, 2) is based on leva,b(1, 2), leva,b(2, 1) and leva,b(1, 1).

19

Instead of using pure recursion which may result in calculating certain distances more than once, amore smart approach is taken: dynamic programming with memorization in the form of a lookuptable which is filled in iteratively. Firstly the table is created with size (|a| + 1) x (|b| + 1). Secondly, allof the base cases are filled in, which correspond with the first row and first column of the table. Lastly,each empty cell can determine its value by looking up values at left (deletion), top (insertion) or top-left(substitution), starting off with cell (1, 1). After that, the remainder of row 1 is filled in before iteratingover rows 2, . . . , |b|+ 1.
Example – Base casesSuppose there are two strings a = uvw and b = xy. If one compares 0 characters from string a(i.e. i = 0, first column) with j characters from b, the distance will equal j. Same for string b, whenreading 0 characters from it (i.e. j = 0, first row) and i characters from a, the distance is i:

i 0 1 2 3j u v w
0 0 1 2 31 x 12 y 2

Example – SubstitutionSuppose a = y and b = z. The base cases are filled in as described in previous example:
i 0 1j y

0 0 11 z 1
To determine the distance at position (1, 1), one has to calculate leva,b(1, 1). x = 1 since a1 ̸= b1:

min

 leva,b(0, 1) + 1
leva,b(1, 0) + 1
leva,b(0, 0) + 1

= min

 2 deletion
2 insertion
1 substitution = 1

So in this case the best edit is substituting ‘y’ for ‘z’ with cost 1:
i 0 1j y

0 0 11 z 1 1
If b equals ‘y’ instead of ‘z’, then ‘y’ was substituted for ‘y’: no changes made, so

i 0 1j y
0 0 11 y 1 0

Example – DeletionSuppose that a equals ‘xy’ and b equals ‘x’.Base cases combined with ‘x’ equals ‘x’ (substitution):

20

i 0 1 2j x y
0 0 1 21 x 1 0

This time leva,b(2, 1) needs to be determined:

min

 leva,b(1, 1) + 1
leva,b(2, 0) + 1
leva,b(1, 0) + 1

= min

 1 deletion
3 insertion
2 substitution = 1

The full lookup table becomes:
i 0 1 2j x y

0 0 1 21 x 1 0 1

Example – InsertionSuppose that a equals ‘x’ and b equals ‘xy’.Base cases combined with ‘x’ equals ‘x’ (substitution):
i 0 1j x

0 0 11 x 1 02 y 2
leva,b(1, 2) equals

min

 leva,b(0, 2) + 1
leva,b(1, 1) + 1
leva,b(0, 1) + 1

= min

 3 deletion
1 insertion
2 substitution = 1

The full table becomes:
i 0 1j x

0 0 11 x 1 02 y 2 1
Even if the Levenshtein distance is known, it still does not clarify the extent to which the strings area good matching. For example, a distance of 2 on short strings means that there are not manysimilarities, whereas a distance of 2 on long strings is not bad at all. To solve this problem, we dividedthe distance by the length of the longest string which results in a score [0,1] where 0 is a perfectmatching:

leva,b(|a|, |b|)
max(|a|, |b|)

21

ExampleTo give an impression how the Levenshtein algorithm deals with person names, the two strings
a = ‘John Doe’ and b = ‘J. Doe’ are matched.
The table is created and filled like explained in previous Examples. leva,b(|a|, |b|) = leva,b(8, 6) = 3.

i 0 1 2 3 4 5 6 7 8j J o h n D o e
0 0 1 2 3 4 5 6 7 81 J 1 0 1 2 3 4 5 6 72 . 2 1 1 2 3 4 5 6 7
3 3 2 2 2 3 3 4 5 64 D 4 3 3 3 3 4 3 4 55 o 5 4 3 4 4 4 4 3 46 e 6 5 4 4 5 5 5 4 3

The bold numbers represent the choices that are made to achieve the optimal distance. The threenumbers in a box are the edit that needed to be done:
• Deletion of ‘o’ (2, 1).
• Deletion of ‘h’ (3, 1).
• Substitution of ‘n’ for ‘.’ (4, 2).

To get a score in [0,1]:
leva,b(|a|, |b|)
max(|a|, |b|)

=
leva,b(8, 6)

max(8, 6)
=

3

8
= 0.375.

5.2 Jaro and Jaro-Winkler
An algorithm that calculates the distance between two strings is the Jaro-Winkler distance which is avariant of the Jaro distance. The Jaro distance is more suitable for string based duplication detecting,whereas the Jaro-Winkler distance is best suited and designed for short strings as person names. TheJaro-Winkler algorithm boosts the score if a certain threshold has been passed, otherwise the scoreremains the same.

5.2.1 Jaro Distance
The Jaro distance takes the number of matching characters and number of transpositions into account.Characters need to be in a certain range to be considered matching. The number of transpositionsrepresent the mismatch in order of the matching characters.
ExampleSuppose there are two strings s = ‘abcde’ and t = ‘dbac’. If the matching range equals 2, ‘a’, ‘b’ and‘c’ are determined as matching whereas ‘d’ is not since the difference in index is more than 2.
The matching characters are ‘a’, ‘b’ and ‘c’, but in the first string they are ordered as ‘abc’ and in thesecond string as ‘bac’. The number of transpositions is 2 since the first matching character of s is

22

not the same as the first matching character in t (‘a’ ̸= ‘b’). Same to the secondmatching characters(‘b’ ̸= ‘a’):
s a b c
t b a c

5 5 3

Mathematically the Jaro distance dj of strings a and b is given by:

dj =

0 ifm = 0.
1

3

(
m

|a|
+

m

|b|
+

m− t

m

)
otherwise.

where m is the number of matching characters and t is half the number of transpositions. The Jarodistance equals 1 if the two string are the same and 0 if there are no similarities at all.
Two characters are considered matching if they are not further than⌊

max (|a|, |b|)
2

⌋
− 1

ExampleIn the case of a = ‘J. Doe’ and b = ‘John Doe’matching characters may not be farther than⌊
max (6, 8)

2

⌋
− 1 = 3

‘J. Doe’ and ‘John Doe’ have five matching characters (i.e. m = 5) :
0 1 2 3 4 5 6 7

J . D o e

J o h n D o e
Note that all matching characters are not farther than 3 indices from each other.
To determine the value for t, the m matching characters are compared from s and t. In this casethere are three transpositions:

s J D o e
t J o D e

3 5 5 5 3

Thus t = 3
2 = 1.5.

The Jaro distance of ‘J. Doe’ and ‘John Doe’ equals
1

3

(
5

6
+

5

8
+

5− 1.5

5

)
≈ 0.719

23

5.2.2 Jaro-Winkler
The Jaro-Winkler formula boosts the Jaro distance when possible and is defined as follows:

dw =

{
dj if dj < bt.
dj + (lp(1− dj)) otherwise.

where bt is the boost threshold which equals 0.7 inWinkler’s implementation. l is the length of commonprefix at the start of the string up to a maximum of 4 characters. p is a constant scaling factor for howmuch the score is adjusted upwards for having common prefixes. p should not exceed 0.25, otherwisethe distance can become larger than 1. The standard value for this constant inWinkler’s work is p = 0.1.
ExampleThe Jaro distance of ‘J. Doe’ and ‘John Doe’ equals 0.719 as explained in previous example. Sincethis distance succeeds the threshold 0.7, the distance will be boosted. ‘J. Doe’ with ‘John Doe’ willresult in l = 1 because only ‘J’ is the same when reading from the left. The Jaro-Winkler distancewill become

0.719 + (1 · 0.1(1− 0.719)) ≈ 0.748

5.3 Reverse Matching
When matching ‘ABCDE UVWXYZ’ with ‘UVWXYZ’ the first six characters do not match: there is a decentchance that is this result will have a low matching score while the last name matches perfectly – withnames this can happen very frequently. To solve this problem, one could take the first- and last nameseparately but this could give some problems with name prefixes.
The solution we came up with ourselves was reverse matching: match both ‘ABCDE UVWXYZ’ with‘UVWXYZ’ and ‘ZYXWVU EDCBA’with ‘ZYXWVU’. By combining those outcomes amore accurate outcomeis being created, since both methods have great aspects. It is worth mentioning that the Levenshteindistance remains the same when comparing reversed strings.
On the other hand, the Jaro-Winkler distance is affected when using reversed strings.
ExampleThe Jaro-Winkler’s score of matching ‘J. Doe’ with ‘John Doe’ equals 0.748 with m = 5 and t = 3 asshown in Section 5.2.1.
When matching ‘eoD .J’ with ‘eoD nhoJ’m equals 5 as well:

0 1 2 3 4 5 6 7

e o D . J

e o D n h o J
However, in this case, there are no transpositions needed, so t = 0. This will obviously result in ahigher score:

1

3

(
5

6
+

5

8
+

5− 0

5

)
≈ 0.819

24

With the boost of Jaro-Winkler’s algorithm, the score becomes even higher: 0.892. This is mainlydetermined by the l which is in this case 4 (e, o, D and [space] are in the right order).
By using the avarage of ‘normal’matching and reversedmatching, amore realistic outcome is achieved,which was confirmed by unit testing, which will be discussed in next section.

6 Testing
In this section, an overview is given of the testing methodologies that were used during the project.The project source code has been tested with automatic tests, but not limited to only unit tests. Sincethe vulnerable nature of the exchanged data, security of communication is a high-listed requirement.Multiple security code reviews have been performed during the project, to reduce the risks ofvulnerabilities. An initial review has been performed by Robin van Loon, one of Exact’s employeeswho work on security. Adjustments have been made by us, and after that again verified by Exact. Inparticular, the following ways of testing have been used to ensure the correctness of the implementedsoftware: automated testing, integration testing, usability testing, cross-browser testing and codereviews.
Each testing method will be discussed in the subsections below. A last subsection on code analysisdescribes the results of a code quality analysis performed by the Software Improvement Group (SIG).

6.1 Automated Testing
To ensure the proper working and behaviour of individual system parts like methods, the system isintensively tested by making use of automated tests, both unit tests as integration tests. Making use ofunit tests, allowed us to find problems in an early stage and to simplify integration with other systemparts. For some parts of the systems, like account matching, it was useful to use a test-driven approachto implement methods. By writing tests first, we were able to adapt the degree of acceptance withinthe algorithms to match the wanted results. In this way, we could optimize the matching module.
Some challenges emerged on the testing of system components that heavily rely on external sourceslike Exact’s API. With unit testing it is desired to only test for the correct behaviour of single methods.When a method needs to retrieve data from an external source, you typically do not have controlover what kind of data is sent. For some code components we solved these uncontrolled behaviourissues by mocking dependent classes. Still, for a large part of the API we made the decision to not testresponses as the API has already intensively been tested by Exact’s development teams.

6.2 Integration Testing
With integration testing we combined individual unit tests andmethods in larger test methods, in orderto be able to test on a higher level. This form of black-box testing was able to support us in checkingthe correct functionality of groups of methods. Moreover, as a result of these integration tests, anhigher coverage performance could be achieved. At the most recent calculation, 70% of the systemhas been line-covered by tests, which is an acceptable score.

25

6.2.1 Testing Environments
During development, multiple environments have been used implement and test the application on.The switch of environments was due to the progress in development at the first place. As graduallymore dependent components were added to the system, multiple changes of environment wereneeded to keep the system working correctly. An example that illustrates such a change was theembedment of a test plugin within Salesforce. Salesforce is an application that requires its usersto connect with a secure connection (SSL). It turned out that it was not possible to embed ourplugin without using a secure connection. Testing this environment was possible though, but onlyin Internet Explorer since this browser allows to access unsecure data via a secured connection. Weconcluded that a production server using the https protocol was an absolute requirement to deploythe application on.
Moreover, a switch of test environment was needed to test both local as live system components.During development we consecutively tested in the following environments:

• a local Internet Information Server (IIS) to run the application on;
• IIS and a local Exact Online (EOL) copy for API access;
• IIS and a local OAuth authorization component of Exact Online;
• IIS, EOL API and EOL OAuth;
• IIS, EOL API, EOL OAuth and a local database;
• IIS, EOL API/OAuth, local database and Salesforce;
• IIS, a local database and the live version of EOL within Salesforce;
• Microsoft Azure VM, an external database and the live version of EOL;

The reader might wonder why this many testing environments would have been needed duringdevelopment. This was mainly due to the fact that the project team, did not have access rights totest with live components at an early stage in the development. Also, as development proceededmorecomponents were added to the system.
At the end of the project a prototype has been delivered that runs at a Microsoft Azure virtual machine.By this way, a secure https connection can be set up between users, host applications (e.g. Salesforce)and the Exact Online plugins. A final step for Exact would be the deployment of the plugin system at aninternal production server, whereafter an Salesforce app embedded with an plugin can be publishedin the Salesforce App Exchange.
Next to the above mentioned testing environments, the plugin interface has been tested in multiplebrowsers and in multiple browser versions. This Cross-browser testing turned out to be very usefulfor older versions of Internet Explorer, as these versions do not follow HTML and styling standards.Because of the cross-browser testing we were able to optimize our application so that it behavescorrectly in all Exact Online’s supported browsers.

6.3 Usability Testing
In the Scrum meetings with the stakeholders after each sprint, we showed them our progress inthe development. These sessions were ideal for getting constructive advise on how to improve ourapplication in terms of usability from a customer perspective. An important aspect was to design theplugins according to the design and the design guidelines of the Exact Online web application.
One week before the end of the project a presentation has been held for the higher managementof Exact. We presented to them the design goals, implementation trade-offs and were able to give a

26

A1 - Injection By using MYSQL injection it turned out to be possible to login asthe last user in the database.A2 - Broken Authentication andSession Management For authentication it is strongly suggested to use formsauthentication of ASP.NET membership ASP.NET login control orto integrate with Exact Online.A3 - Cross-Site Scripting (XSS) XSS was obviously present in our application. After the securityreview it turned out to be possible to inject code via user input tothe plugin system.A4 - Insecure Direct ObjectReferences No threats
A5 - Security Misconfiguration No threats at the moment. But for the live version, it would berequired to set SSL configuration parameters like RequireSSL totrue. Connections should be encrypted and javascript files mustbe minified to reduce readability.A6 - Sensitive Data Exposure Tokens should be encrypted to limit the impact of a databreach. Javascripts should me minified ands comments shouldbe removed on the live version.A7 - Missing Function LevelAccess Control It was possible to unmap an map mapping of accounts ofother users by changing url parameters and unauthorized calljavascript functions.A8 - Cross-Site Request Forgery(CSRF) It seems like a possibility to (un)map accounts via CSRFattack (and edit data of other customers). Implementing[ValidateAntiForgeryToken] attributes could prevent thisA9 - Using Components withKnown Vulnerabilities No threats.
A10 - Unvalidated Redirects andForwards No threats.

Table 1: OWASP Security threat model

demo. After this presentation, a lot of constructive feedback could be collected from both technical aswell as usability and security point of view.

6.4 Security Review
In the last sprint there was a special focus on both code quality as well as security. Together with thesecurity division of Exact, three meetings have been organized to model potential security threats. AtExact, there are no clear guidelines regarding security, however as the security topic is becoming moreand more apparent, increased attention is given on preventing possible future attacks.
Next to common code reviews, security guidelines are followed as specified by the Open WebApplication Security Project (OWASP), which is a non-profit organization that has its goal set onimproving the security of software. OWASP composed a top 10[13] of most common security risksto be watched for. Based on this model, a security analysis of our application was performed.
In line with the security model as described above, we could identify the following potential securitythreats regarding our application as shown in Table 1.
The creation of a threat model as described above made us realize how important the security topicis in current applications. Especially when you are working with sensitive data attacks should beprevented and worst-case scenarios should be assumed. In essence, this means that all sensitive data

27

must be encrypted at any time. In the last project-week extensive attention has been put on fixingthese security issues.

6.5 Code Analysis
After each sprint, our project coach gave us feedback on the quality of code. This was not only helpfulto improve the structure of the code in general, but also gave us a good direction in how to set up theapplication in amore scalable way. After the refactoring of ’problematic’ pieces of code, additional codereviews could be requested in a handy tool in Microsoft Visual Studio. These last mentioned reviewscould then be assigned to the other team member or by the project coach.
Before the start of the last sprint, the project code has been send to the Software ImprovementGroup[14] for a code review. In general, the project scored above average on all points. Included in thereview, there were for example remarks on method length and classes with a too bright scope. Someof these points were already noticed before in the code reviews of our project coach and obviouslyneeded to be taken in consideration. For example, the API Communicator featured both functionalitythat handles communication with the API as functionality for user’s authorization. Recommendationfollowing from the code reviews was consequently to split this class up in a part for authorization anda part for communication with the API.

7 Conclusions
At the beginning of the project, multiple goals were set. The majority of these goals has been reached,some even more detailed than specified and planned at the beginning of the project. In this sectionwe will briefly discuss the goals, the final results and in particular how we view back on the process ofour project.
Without taking into account limitations in time, the initial plan was to implement two plugins forSalesforce. One to show Outstanding Items in Salesforce, the other to show a list of revenues assignedto relation accounts in Salesforce. The last one could only be implemented once the Exact OnlineAPI was ready. Unfortunately there was no time left to be able to extend the API with the neededfunctionality. This lack of time can be ascribed to multiple factors.
Firstly, the tight planning set at the beginning of the project did not allow for multiple problems thatarose during development. For example, already in the first week the set up of the complete ExactOnline environment took three days longer than expected.
Secondly, during the development and the integration of the Outstanding items plugin with Salesforceit became possible that account matching was needed to achieve the required functionality. A detailthat we were not aware of upfront, as we did not realize that Exact wanted to actually match accountsfrom Salesforce with Exact Online. Due to this new requirement, and the large amount of the time thatwas needed to design a appropriate implementation other features had to be compromised.
Moreover, the fact that customers desires are not known upfront is always an underestimated part in aproject. Also for Exact and involved stakeholders, it was upfront only vaguely known what the final goalwas for this project. This uncertainty emphasizes the importancy of a good requirements analysis andthe creation of mockups of the end product. During our project, it required a lot of time to refine theimplementation based on ’new’ requirements, that we and stakeholders did not realize before seeinga new version of the product.
In the end, we can say that we have delivered a product that features all the functionality required atthe beginning of the project, but also implemented this in such a way that it is generically available for

28

other applications. We showed that the plugin framework can be easily extended with other plugins(once the API has the required data available) by integrating an example plugin within the project.We were able to create an additional plugin in less than a half hour. We also ensured maintainabilityby setting the application up via a clear architectural modal and following Exact’s code format andsecurity guidelines. To make extendability more clear, we included an empty template plugin with theproject. Concluding, we could say that we were able to deliver a tested prototype, featuring genericfunctionality since it integrates and matches with multiple third-party applications, and being analyzedfor security threats.

8 Recommendations for Future Work
If we look back at requirements at the beginning of the project, most but not all have been fulfilled asearlier discussed in Section 7. Moreover, from a usability point of view multiple improvements can bemade to enhance the current version of the system. In this section, multiple additional features arelisted that can be implemented in the future to enhance the current system.

• Revenue plugin - The development of a new plugin that shows the share of revenues that aspecific relation is responsible for. This feature can be implemented as soon as the Exact OnlineAPI is ready to retrieve the required data.
• Pagination - Show only a limited amount of entries from the API instead of a long list of items.From a user perspective, implementation by means of A JAX is desired as the interface then doesnot have to reload at every request.
• Localization - Show plugins in the language of the user. The language can be obtained afterlogging in via OAuth, and can be saved in the database. Translations needs to be available forevery language supported by Exact Online.
• Let users manipulate data from Exact Online directly in plugins. API put functionality must beavailable, hence secure communication is a priority.
• Javascript callback function - Make it possible for external applications to hook on their ownfunctionality when clicking on items in the plugin interface. An example might be the opening ofa specific customer relation page in Salesforce.

29

References
[1] Salesforce, Developer Documentation Available at https://developer.salesforce.com/docs.
[2] Cihan Duruer, Exact Online REST API - Reference documentation.Available at https://developer.salesforce.com/docs.
[3] Exact http://www.exact.com/
[4] Exact Online http://exactonline.com/
[5] Salesforce http://www.salesforce.com/
[6] App Center https://apps.exactonline.com/nl/en-US
[7] LinkedIn https://www.linkedin.com/
[8] SCRUM method http://en.wikipedia.org/wiki/Scrum_software_development
[9] SCRUM Poker http://en.wikipedia.org/wiki/Planning_poker
[10] Synergy http://www.exact.nl/software/producten/exact-synergy-enterprise
[11] SugarCRM http://www.sugarcrm.com/

[12] JSON http://json.org/

[13] OWASP Top 10 https://www.owasp.org/index.php/Top_10_2013-Top_10

[14] Software Improvements Group http://www.sig.eu/en/

30

A Product Planning

31

Project Plan:
Exact Online Plugin framework

TI3800 Bachelorproject, course 2013-2014

Delft, June 30, 2014D. Eikelenboom, T. Rensen

Preface
Dear stakeholder,
In this document the planning for the end project of our bachelor is described. A clear problemdefinition is described in this document. Moreover, this document features all the project details,stakeholders, conditions and targets that should be achieved at the end of the project. Additionally aplan is shown on the architectural design of the system. A rough planning on the complete project isalso provided.
In case you have any questions regarding the project after reading this document, do not hesitate tocontact us at the addresses below.
Best regards,Dennis Eikelenboom (d.eikelenboom@student.tudelft.nl)Tim Rensen (t.rensen@student.tudelft.nl)

1

Contents
1 Summary 3
2 Introduction 42.1 Emergence of this Plan . 42.2 Company Description (client) . 42.3 Background and Motivation for the Project . 4
3 Project Assignment 43.1 Introduction . 43.2 Contact Persons . 43.3 Problem Definition . 53.4 Targets . 53.5 Project Description . 53.6 Deliverables . 53.7 Conditions . 63.8 Risks . 6
4 Approach 64.1 Introduction . 64.2 Methods . 64.3 Techniques . 74.4 Planning . 7
5 Project design and contract 85.1 Introduction . 85.2 People Involved . 85.3 Information . 85.4 Facilities . 8
6 Quality Assurance 86.1 Introduction . 86.2 Quality . 86.2.1 Documentation . 96.2.2 Version Control . 96.2.3 Evaluation . 96.2.4 Pilots . 9

2

1 Summary
Exact is a leading global supplier of business software. With their solutions they support over 100,000customers, local and international companies, with the daily management of their business. ExactOnline provides customers with business software in the cloud.
Recently Exact opened up parts of their system by means of an API. The goal for the project teamis to make use of this API and give customers the possibility to access data from their Exact Onlineaccounts through plugins. Since Exact is developing their products with Microsoft technology, theplugin framework should be implemented in a .NET language as well.
The project team will be supported by a project and a customer coach and will be working at workingplaces at the Exact Office. Scrum will be used as a development method. There will be daily standupmeetings with the project coach, and at the beginning of each sprint there will be a grooming sessionwhere all tasks for the coming sprint will be identified.
At the end of the project, there will be a presentation of the delivered work at the TU Delft as well as atExact. If the work is from enough quality, is is likely that the result will be integrated and used by Exact.

3

2 Introduction
2.1 Emergence of this Plan
All formal information stated in this documented has been discussed and agreed on during three initialmeetings at Exact preceding of the project period. Implementation and architectural details have beenagreed on during the first project week together with Konrad Olczak (project coach) and EdgarWieringa(product manager/customer).

2.2 Company Description (client)
Exact is a leading global supplier of business software. Since the beginning in 1984 the focushas shifted from supporting financial processes to developing a complete ERP offering for smalland medium enterprises. Innovative solutions like Exact Globe Next, Exact Synergy Enterprise andExact Online support over 100,000 customers local and international companies with the dailymanagement of their business. Exact develops industry-specific on premise and SaaS solutions formanufacturing, wholesale & distribution, professional services, small business and accountancy. Exactis headquartered in Delft, the Netherlands and has been listed on the NYSE Euronext Amsterdam sinceJune 1999.

2.3 Background and Motivation for the Project
Exact Online recently opened their data through an API to external partners. This solution createsthe possibility for third parties to integrate the Exact data services into their own applications. Exactalso wants to make their services available to integrate well within bigger Customer RelationshipManagement (CRM) systems such as Salesforce.

3 Project Assignment
3.1 Introduction
Exact wants to open up a customers’ outstanding items (invoices) and a current revenue list percustomer into such a system. The assignment is to set-up a framework for Exact Online pluginsand develop a specific plugin for the CRM system Salesforce. The project team should explore thepossibilities how to integrate such a system within the current design. An API is already available fromwhich some functionality can be used. If functionality is needed that is not supported yet, the studentshould extend the API conform to the guidelines Exact set up for this. The developed solution shouldbe accompanied with proper documentation for future development.

3.2 Contact Persons
• Edgar Wieringa (Product manager Exact)

– edgar.wieringa@exact.com
• Konrad Olczak (Project Coach Exact)

4

– konrad.olczak@exact.com
• Cor-Paul Bezemer (TU Delft Coach)

– c.bezemer@tudelft.nl

3.3 Problem Definition
Exact Online wants to open up their system for customers outside of their main websiteexactonline.com. By offering multipe types of plugins, it enables their customers to integrate datafrom Exact into their own system.

3.4 Targets
Exact Online wants plugins that enable users to include personal data into their own software as easyas possible. The plugins and framework have to be very user friendly. It has to be easy to add pluginswhich offer more services other than outstanding items and revenue. A SalesForce app has to showthe power of the framework.

3.5 Project Description
Exact Online is a cloud based business software platform. Exact wants to make it possible to integratesome of its functionality into another cloud solution. More specific, we think of opening-up of acustomers’ outstanding items and a current revenue list into such a system. The assignment is toset-up a framework for an Exact Online plug-in and develop a specific plugin for the CRM systemSalesforce. The project team should explore the possibilities of integrating such a system within thecurrent design. An API is already available from which some functionality can be used. If functionalityis needed that is not supported yet, the student should extend the API conform to the guidelines Exactset up for this. Exact Online is built on top of the .NET-platform. The implementation language for theplugins depends on the other system. The developed solution should be accompanied with properdocumentation for future development.

3.6 Deliverables
• Research documents
• OAuth authentication mechanism
• API interface class for plugins
• Webpage showing all available plugins
• For each plugin:

– Contextual model
– Plugin controller
– Optional: customize options file
– Needed resources (e.g. js/css)

• Starting with:

5

– Plugin that offers outstanding items
– Plugin that offers revenue

• Wrap ‘outstanding items’-plugin into SalesForce app
• Clear documentation
• Project plan
• Final report
• Presentation at Exact and TU Delft

3.7 Conditions
Exact and the project team agreed on working onsite – and in concert it is possible to work at TUDelft or at home. At the end of this project, we have to give a presentation at Exact to show ouraccomplishments and to inform other stakeholders of our product. This project will be done on ourown machines.

3.8 Risks
Exact uses the Microsoft .NET framework for developing their products. Since these languages are notfamiliar to us, it could be quite challenging to deliver proper code. Another risk is when it turns outthat our goals are not possible to implement. For example, it is possible that SalesForce blocks externalJavascript code, which could mean that our way to implement the Exact plugin into an app does notwork.
In this case, we have to talk to the stakeholders and make comprises with what is possible. Theassignment may change if such problems occur.

4 Approach
4.1 Introduction
Exact gave us the freedom to set up the project as a R&D project. This means that the initial phaseof the project consists of doing research on how others implemented similar solutions, but also howExact internally handles certain problems and how Exact set up their software architecturally. Thenimplementation follows and finally integration and testing.

4.2 Methods
During the project we will work with Scrum as iterative development framework. Conform to the lengththe sprints at Exact, we will use iterations, or sprints, of two weeks. At the beginning of each sprintthere will be a grooming session, in which all the tasks for the coming week are identified. In addition,to each task points will be assigned, to represent the amount of work we expect that each task willrequire. Everyday, there will be a standup session together with our project coach or scrum master. Inthese sessions we discuss our progress, our planning for the day, and the issues that we encounteredduring our work.

6

4.3 Techniques
Exact Online is built on top the .NET framework. Because of the existing knowledge and experienceamong Exact’s employees with Microsoft development and .NET, it is a logical choice to choose fora .NET language as main programming language. Syntactically C# is the most similar to languagesthat we have knowledge and experience with ourselves. Therefore we choose for this languageto implement the backend of the system. Combined with ASP.NET and regular web languages asJavascript, HTML and CSS we expect ourselves to be able to produce a solid end product.

4.4 Planning
• MILESTONE I - research - 2 weeks (April 21 - May 2)

– Project Planning (TU Delft, April 25)
– Configure environment
– Creating plugins for Salesforce.com
– OAuth
– Investige how LinkedIn achieved similar
– OAuth Salesforce, Exact Online
– Basic architecture
– Orientation Report (TU Delft, April 30)

• MILESTONE II - framework - 2 weeks (May 5 - May 23)
– Detailed architectural plan
– Framework
– Authentication mechanism

• MILESTONE III - outstanding items - 3 weeks (May 26 - June 13)
– Basic app
– Displaying outstanding items in SalesForce.com app
– SIG Review (June 13)

• MILESTONE IV - revenue list - 3 weeks (16 June - July 4)
– Create revenue GET API in EOL
– Displaying revenue list in SalesForce.com app
– Presentation Exact (June 19)
– Final Report (TU Delft, June 27)
– Presentation TU Delft (July 4)

7

5 Project design and contract
5.1 Introduction
This section points out how this project will be designed.

5.2 People Involved
In this project, there are several people involved. Edgar Wieringa is product manager at Exact andhe offered us this project. He will accompany us and keeps an eye out to ensure everything goes assmoothly as possible. Konrad Olczak is an iOS app developer at Exact. He will go along with us andwill help making the right decisions with the substantive aspects. The Connectivity-team of Exact playsan important role in our project since they created, among other things the API we have to extend.Cor-Paul Bezemer will be our TU Delft coach and will point out the requirements from the university(i.e. reports).

5.3 Information
Every sprint, there is a grooming session where product backlog items (PBIs) are being created. Withevery PBI the remaining work is estimated. The union of these PBIs define which tasks need to becompleted before the ending of the corresponding sprint.

5.4 Facilities
Two workplaces are available to work with private machines. A compensation fee of EUR 364,= perperson per month is offered. The employees of Exact are willing to anwser more specific questions.For example, UI Designers and Software Engineers are available to anwser ambiguities. And last butnot least: free coffee is another great facility.

6 Quality Assurance
6.1 Introduction
To make sure that the delivered work is from high quality multiple methods and checks will be usedand performed.

6.2 Quality
Firstly, by making use of Scrum we ensure that every two weeks there is a working, tested, versionof our system. Secondly, we will write unit tests and will be using integration tests. There will befeedback on the work by the project coaches. Moreover, the project will be reviewed by the Softwareimprovement group and the internal software validation team at Exact.

8

6.2.1 Documentation
Documentation will be written about the research that is done and about the implementation andarchitecture of the system. All codewill be documented and clarified. Documents will also be publishedon the companies documentation and hrm system, Exact Synergy.
Multiple reports need to be handed in at the TU Delft: Project Planning, Orientation Report and FinalReport which deadlines are described section 4.4.

6.2.2 Version Control
To enable the project team to use versioning, a private GitHub repository will be used to store versionsof the system using git. Finally the code will also be placed on Exact’s TFS server, which makes use ofsimilar techniques.

6.2.3 Evaluation
The process and code will be evaluated during weekly and daily meetings as described above. Thedeliverd work and codewill also be review by the Software improvement group and Exact’s own internalquality team.

6.2.4 Pilots
If the delivered work is from enough quality, it is likely that Exact will integrate the Plugin frameworkwithin their current system. This will enable users of Exact Online to integrate plugins into their owninternal software.

9

B Orientation Report

42

Exact Online Plugged Into

SalesForce.com

Orientation Report

Delft, April 30, 2014

D. Eikelenboom, T. Rensen

Contents
1 Introduction 2
2 Exact Online 2
3 Salesforce 2
4 Product 3

4.1 Design Goals . 3

4.2 Generic Framework . 4

4.3 Outstanding Items Plugin . 4

4.3.1 Gathering Information . 4

4.3.2 Salesforce Extension . 5

4.4 Revenue Plugin . 5

4.5 Exemplary Solutions . 5

5 Dependencies 6
5.1 Exact Online . 6

5.1.1 REST API . 6

5.1.2 OAuth . 6

5.1.3 OAuth Applied . 7

5.1.4 API Architecture . 7

5.2 Salesforce . 8

5.2.1 External Authentication Settings . 8

5.2.2 Plugin Integration . 8

6 Architectural Design 8
6.1 Choice of Programming Language . 8

6.2 .NET Languages . 9

6.3 Testing . 9

6.4 High-level Architecture . 9

6.5 Class Diagram . 10

7 Definition of Done 11

1

1 Introduction
In this orientation report we give insight in the possible techniques that can be used to implement

the desired solution: opening up customer data from business software Exact Online into

Customer-relationship-management (CRM) system Salesforce.

For each design choice, we list the possible implementations and trade-offs that will be faced during

this project. All decisions and implementation details for the product will have to be supported by

Exact, and so introduces limitations regarding the possible alternatives.

The remainder of this document is structured as follows. In sections 2 and 3 a general introduction

is given to Exact Online and Salesforce. Section 4 will describe the product with design goals and the

generic framework that will be developed. A brief study on competitors and similar implementations

(Exemplary solutions) shows how other parties implemented equivalent systems.

In section 5 the major dependencies will be pointed out with respect to the plugin and contains

information on OAuth
1
and Application Programming Interface (API) which are needed for retrieving

information from Exact Online. Section 6 is about system architecture and gives insight into the high

level design of the system. Finally, our definition of done is given in section 7.

2 Exact Online
Exact is a leading global supplier of business software. Exact is headquartered in Delft, the Netherlands

and has been listed on the NYSE Euronext Amsterdam since June 1999. It serves their customers with

industry-specific business software products on topics like manufactoring, accountancy, marketing, HR

and logistics. Exact is active in 125 countries worldwide.

Exact Online is the cloud solution that Exact offers, used by 145,000 customers worlwide focusing

on small- and medium businesses. It provides its users with the tools for CRM, logistics and

manufacturing, all on one central place.

To integrate more with their environment, Exact Online recently opened up their data through an API

to external partners. This creates the possibility for third parties to integrate data from Exact Online

into their own applications. Exact also wants to make their services available to integrate well within

bigger, popular, CRM systems like Salesforce. This is what our project should aim for.

3 Salesforce
Salesforce.com is a global cloud computing company headquartered in San Francisco, California. It is

best known for its Customer Relationship Management (CRM) product. Salesforce has approximated

12,000 employees and a revenue of 4 billion dollars
2
.

Salesforce.com’s CRM service is broken down into several broad categories: Sales Cloud Service Cloud,

Data Cloud (including Jigsaw), Collaboration Cloud (including Chatter) and Custom Cloud (including

Force.com), with over 100,000 customers.

Around 100,000 customers make use of Salesforce to manage their customer relation data and leads.

Exact offers similar CRM features, but also offers services on other business related topics like

1
http://oauth.net/
2
http://en.wikipedia.org/wiki/Salesforce.com

2

invoicing. Logically, it may be a valuable oppertunity for Exact to integrate some of their data into

Salesforce because of their existing userbase.

Salesforce has an AppExchange as well which offers multiple types of apps. In order to integrate with

the Exact Online services, there is a need for the app to be able to load external data. However this

step is not trivial in Salesforce because of the closed nature of the system. Normally data in Salesforce

apps is stored and managed in each app’s unique database tables inside Salesforce. Though, we need

to make use of exernal data objects
3
in order to retrieve (and store) data from Exact Online.

4 Product
In this section, product specific information is discussed. In general, multiple design goals should be

taken into account. First, these design goals are discussed, then a more product specific approach is

used to clearify how these design goals will be translated into the final product.

4.1 Design Goals
Application performance is a crucial characteristic that is often a measure of how successfully the

application has been constructed. Below is the list of the design goals that are aimed to achieve.

• Maintainability The application should be set up in such a way that it is easy maintainable by
Exact’s employees. This means that the product should be based on Microsoft frameworks and

programming languages, as used by Exact for their development.

• Scalability Given the big amount of Exact Online users, and the big amount of Salesforce users,
there might be a big overlap in customers that may be wanting to use our app. Therefore,

scalability should be ensured in application architecture, hardware level, database design and

algorithm design. The product will make use of the Exact API that is built for efficiently offering

information. Data is stored in an organized way and the API allows for quick searching through

data.

• Reliability Data to be shown by the application should be reliable. Also, it has to be able to handle
with errors and other exceptions, for example caused by the unavailability of applications where

the system depends on.

• Adaptability It should be easy to extend the application with additional features or adapt existing
features. A clear architecture that respects principles like the open/closed-principle and proper

documentation of the system, enables other people to understand how the system is composed.

• Efficiency Data should be handled in an efficient way. Loading lots of unnecessary data is not
good practice and should be avoided. In addition, data storage should be set up in such a way

that redundancy is avoided en relations are set up in a scalable way.

• Understandability The system should be easy to understand for both its users as its developers.
User interfaces should be kept minimal and be in line with the existing Exact user interface

design. For developers, in-line comments and a clear architecture should provide a system

architecture that can be understood quickly.

• Availability Because of the dependencies of the system on the API as well as on OAuth and other
third parties like Salesforce, it must be ensured that the application can operate independently

as much as possible.

3
http://help.salesforce.com/apex/HTViewHelpDoc?id=external_object_manage.htm

3

4.2 Generic Framework
Themain goal of the project is to investigate the possibilities of implementing a plugin into CRM-system

Salesforce. If this is possible, this system should be implemented within Salesforce. Else, an alternative

target system should be chosen to integrate the plugins in.

The goal of implementing a plugin within Salesforce is possible on several ways. Salesforce provides

developers with an extensive API and documentation for creating apps. While searching for possible

solutions, we proposed the idea that it would be a lot more useful for Exact on the long term to have

a generic framework for plugins, so that it will take less time to create another new plugin. Either

contextual or for integration with another platform.

In general, two approaches are used by others to integrate plugins of an application into another

(web) application. Firstly, a plugin can be written on the platform and following the conventions of the

application. This means that the implementation must follow the rules and syntax of the hosting

application. In the second approach, the plugin is actually hosted by the plugin creator self, and

integrated (embedded) within the host application by an iframe. This latter solution is used by e.g.

LinkedIn and Facebook by offering plugins to their users and so make them able to embed data on

their own websites.

To achieve high independability from other systems, we convinced our stakeholders and ourselves

to create a plugin that is accessible for users through an iframe and hosted on the own servers; the

latter solution. The following arguments were leading for this decision: high independabiliy from host

applications; low maintainance effort, no need to update multiple plugins for multiple platforms; the

application can be written in any desirable language; business logic keeps inside; knowledge about the

implementation language is already available among Exact’s employees.

In order to set up the system as a plugin framework we came up with the idea of making use of a

generic view that every plugin can use. Advantage of this set up is that when a new plugin is added, only

the to be shown data has to be provided. Layout and styling is automatically applied and customizable

at one place.

A similar abstraction can be created by having an abstract plugin controller from which every plugin

extends. This abstract controller should handle geneneric tasks like user authorization and the creation

of views. The plugin should also offer the possibility to switch between ’administrations’ or ’companies’

that exist in a certain Exact Online and change the view upon it.

It should be able to embed a plugin into third-party applications by implementing only one line of

Javascript code. This Javascript code should load the specific plugin on that page into the third-party

application.

4.3 Outstanding Items Plugin
Exact has the desire to show outstanding items (invoices) in third-party systems and Salesforce in

specific.

After implementation of this plugin, one should be able as a Salesforce user to open a relation account

in Salesforce. Then a list and the total amount of outstanding items that are open in Exact Online

should be showed.

4.3.1 Gathering Information
The Exact Online REST API offers many resources, like “ReceivablesList”, “ReceivablesListByAccount”,

“ReceivablesListByAgeGroup” and “ReceivablesListByAccountAndAgeGroup”. It is possible to request

4

very specific information such as the total amount of outstanding items, but also account specific

information.

However in terms of speed we consider that a request of all outstanding items in once, instead of

requesting seperate items for each invoice account, is significantly faster than combining multiple

requests to open items for a specific account. All individual API calls take much more time, because of

the startup time (i.e. making connection). When requesting much information, there is a startup time

only once and it became clear that it is much faster than seperate calls.

The API offers an option ‘orderby’ that enables sorting at serverside. Behind the API, information is

stored in a database, which offers optimalized sorting methods. Concluding, this approach is much

faster than sorting the information locally.

4.3.2 Salesforce Extension
To implement the outstanding items plugin within Salesforce, a native Salesforce app should be

created. This app should embed the specific plugin by implementing the one line of Javascript code.

4.4 Revenue Plugin
Optionally, if there is enough time left, a second plugin has to be created and integrated within

Salesforce. The plugin should show the current and recent revenues from an Exact Online

administration.

One issue is already known when implementing this plugin, since the current API does not provide any

functionality to access revenue data. The project team should extend the API’s functionality before any

plugin can be created.

4.5 Exemplary Solutions
Stakeholders at Exact mentioned a few implementations of plugin systems that can act as example for

this project. A leading example that is proposed are the Linkedin Plugins that can be embedded with

only one line of code.

LinkedIn offers multiple types of plugins
4
. One can personalize the plugin with several options like

display mode (inline, icon/name, icon only, color et cetera). A small piece of default code is provided:

<script src="//platform.linkedin.com/in.js" type="text/javascript"></script>

The protocol is omitted by purpose: the environment will determine if the http or https protocol is

used. For example, Chrome does not allow content over http in an https environment because of

security reasons. This script loads another script dynamically, which takes care of the communication

with LinkedIn’s API.

Some plugins – like Member Profile – do not require authorization, so the information can be obtained

anonymously. The only data that needs to be provided is the unique identifier of the requested data,

for example the public URI of an user. For other plugins, like ’Full Member Profile’, an API key must be

provided which is simply done by setting a variable:

<script src="//platform.linkedin.com/in.js" type="text/javascript">

api_key: the_api_key_goes_here

</script>

4
https://developer.linkedin.com/plugins

5

By setting variables in Javascript, some essential data can be send to the server which will take these

settings into account when generating the right information in the plugin.

Exact collaborated with LinkedIn in 2010 as a launching partner for company pages. Exact Online uses

the company page tool as a way to match entrepeneurs with for example accountants. It is possible to

see which accountant in a client’s professional network is working with Exact Online, allowing them to

connect and work together within Exact Online.

An example that we found ourselves is the application that Evernote offers to their Salesforce users.

Evernote is an application that let its users make notes about everything at everytime, either on their

desktop or mobile phone. They created an app, available in the Salesforce app store that let their users

interact with their own system. Evernote implemented a Salesforce plugin using the same techniques

as we intend to. They host their plugin on their own servers, and then embed it into Salesforce using

an iframe. This shows that a similar implementation must be possible.

5 Dependencies
The system rests on multiple other systems to able to functionate correctly. For each dependency,

needed techniques and implementation trade-offs are discussed in this section. As earlier mentioned

in the design goals, there should be aimed for as less coupling between components as possible, the

same counts for these dependencies. At least, plugins should still be able to work if Salesforce is

unavailable.

5.1 Exact Online
The plugin system will make use of two different existing components from Exact Online. An

authorization part that implements the OAuth authentication standard, and an API that can be used in

combination with OAuth to retrieve user specific data from Exact Online. f

5.1.1 REST API
There are two ways to communicate with Exact Online’s API: authorization (OAuth) and authentication

(Basic Authentication). Basic Authentication lets users access their own data by signing in with their

normal username and password. OAuth allows access for third parties to the same resources but

most of the time with limitations. A short overview of frequently used API calls are described in

the appendix. The Basic Authentication will be used at first, because of testing purposes. Once the

OAuth authentication parts is functional, authentication will only happen by means of OAuth given the

security it provides to users’ personal data.

5.1.2 OAuth
To receive an authorization code, an Exact Online user needs to log in at the authorization website

of Exact Online. With this authorization request, a client_id, redirect_uri and response_type needs to

provided by the developer. After logging in and granting access to the developer, the user will be

redirected back to the redirect_uri with an authorization code. The authorization code is valid for 1

year. After this time, the user needs to log in again to obtain a new code. The authorization can be

exchanged once for an access token, and with this access token a refresh token is provided as well. The
developer can request a new access token with the request token.

6

The access token has to be passed in the header of every API request. After some time (currently 10

minutes) the access token will expire. As mentioned earlier, using the refresh token one is able to

retrieve a new access token.

When the user decides to revoke access to the developer, the last-mentioned can not request new

access tokens anymore from that moment.

5.1.3 OAuth Applied
The flow diagram below (figure 1) shows how the plugin framework is going to communicate with both

the Exact Online authorization server and the API in order to get access tokens and the requested user

data.

:EOL User

user data

auth code

credentials

token request

token

access token / refresh token

auth code

auth request

:EOL API:EOL Auth:Framework

Figure 1: OAuth flow diagram

5.1.4 API Architecture
The architecture of the API needs to be known if the API needs to be extended with additional

functionality. Below a short description is given on the API architecture and subcomposition. The

Exact Online Web Api can be divided in the following three parts, which are built on each other in the

same order.

• .NET Framework functionality

• API Core

• System, Entity and Read; corresponding to different data types.

Two classes are central in the design:

• Dataservice: The DataService class serves as the code endpoint for a data service. It handles data
protocol, servide-side paging, authentication, etc.

• Datasource: The DataSource is the main data provider and provides access to all (queryable)
data.

7

5.2 Salesforce
The first and aimed application to integrate the plugins with is Salesforce. These sections give an

overview what dependencies exist when writing plugins for Salesforce.

5.2.1 External Authentication Settings
Salesforce provides storage possiblities for developers who want to store authentication settings

of users. With the external authentication settings functionality, it is possible to save user-specific

authentication data. It might be useful to save the authentication code of a user here, and

communicate this to the framework every time data from the API is needed.

5.2.2 Plugin Integration
Usually when writing apps for SalesForce, a lot of rules and limitations are present because of the

closed nature of the system. Salesforce uses an own programming language to facilitate the creation of

apps for their platform. It is called ’Apex’ and is a stongly-typed object-oriented language. Apex enables

developers to add business logic to their apps, including button clicks, related record updates, and

Visualforce pages. Moreover, the Salesforce frameworks needs to know the structure of the external

data. Therefore a external object definition must be defined. Each definition maps to a table that

contains the data.

Another option is to render only a HTML view within Salesforce and implement your own code at

that point by using Javascript. In this way, an plugin can be embedded in a Salesforce app by using

Javascript, but still be maintained by the own development team in the own familiar languages.

6 Architectural Design
This section describes our choices and motivation for the architectural design of the framework. First,

the type of language to be used is described, the chosen framework and how the implementation

should be tested. Finally, UML diagrams show how the systemswill be build up on top of the framework

and following what type of architecture.

6.1 Choice of Programming Language
The plugin framework will be an application on its own that will not be part of the Exact Online

application. The only correspondence will be the interaction with the Exact Online API, which will

provide user data to the framework. Therefore the type of language to use is a relatively open choice.

Typical choices for web-based software are either PHP or .NET, because of the flexibility these

languages feature to integrate with HTML. Exact Online is built on .NET, a framework developed by

Microsoft. PHP is another language that can be run on almost every web server and features a gentle

learning curve. Especially the last argument let us decide to go ahead with PHP as language to use and

since our time frame is not really big it is a logical choice to work with a language with which we are

already familiar with and therefore this language is our primary choice.

However, since Exact Online is built on the .NET framework and it must be ensured that the application

can bemaintained in the future by Exact it is not an option to go aheadwith PHP as language. Therefore

8

it is unavoidable to do some extra research on the possiblities with the .NET framework and languages

which we will discuss in the section below.

6.2 .NET Languages
C#, Visual Basic.NET and ASP.NET are the primary languages used to program on the .NET framework.

This framework is developed by Microsoft and especially suited for development for the web. These

languages are syntactically very different, but at the end compile to the same intermediary language.

Below we discuss the differences shortly:

• C#: Based on C; many similarities with Java; cleaner syntax; multi-line comments; static classes;
iterative loops

• VB.NET: Based on Basic; syntax more textual; not case-sensitive
• ASP.NET: Successor to Microsoft’s Active Server Pages (ASP) technology. Dynamically building
webpages, same purpose as PHP.

Because of above comparison, we expect C# to be the language we can be familiar with in the shortest

time. Since there are almost no performance-differences at runtime, there is no argument for choosing

any other language above this one for that reason.

6.3 Testing
Application development will be done using Visual Studio 2013, as also used by other Exact employees.

Visual Studio provides good integration with unit tests and let us create a seperate test project next

to the main project. Verification and validation will take place to review functionality together with

stakeholders.

6.4 High-level Architecture

C#EOL API

EOL OAuth2 EOL Plugin Framework

Token/code
storage

TestControllerViewModel

.NET

ASP.NET MVC

Figure 2: EOL Plugins framework architecture

9

Seen from a high level, the architecture is built up as follows. The EOL Plugin framework will be built

on top of a ASP.NET Model View Controller layer, which is built on top of the .NET libaries, for which we

use C# as main programming language.

The framework makes use of two external sources; the Exact API and OAuth authorization in order

to obtain the authorization codes and tokens. Once retrieved, the status and codes are stored in a

database.

6.5 Class Diagram

Account

- EOL id
- auth code
- access token
- refresh token

Authorize

- clientid

Provide plugin-key as argument.
Custom javascript plugin code is
returned.

APICommunicator

- clientid
- clientsecret

pluginNPluginBpluginA

- title
- version

generateCode()
generateHTML()

pluginController

+ generateCode()
+ generateHTML()

pluginOverview

+ showPlugins()
+ logIn()

ControllerBase

Figure 3: EOL Plugins framework class diagram

Above diagram shows the architecture of the Exact Online plugin framework. The framework is built

on top of the .NET and ASP.NET MVC framework and therefore depends the system on some base class

provided by .NET. As can be seen on the class diagram every controller inherits its base functionality

from the .NET’s ControllerBase class. Views are written in ASP.NET, controllers and models in C#.

Basically, the architecture features multiple MVC structures inside a MVC structure. To achieve a high

state of flexibility, each plugin features its own model, view and controller so that adding a new plugin

does not require changes over the whole system. Every plugin features a controller that inherits all

basic plugin functionality from an abstract pluginController class.

Moreover, every plugin features two core functions. A code generator, in order to be able to generate

the specific plugin code that Exact Online clients can use, to integrate the plugin within their systems.

On the other hand, a generateHTML() class that is used to render the view of the specific plugin.

Every pluginmust contain a plugin-key, by which the plugin will identify itself. This key will be integrated

in the script. When a plugin requests some information, it has to send this plugin-key to grant access

to the personal information. The plugin-code is generated by the pluginController, and differs from

the authorization code from the API. This is done to avoid manually updating the key by the plugin. So,

the plugin can always use the same code, even when the authorization code changes.

10

7 Definition of Done
The project can be defined as done when the following goals are reached: Outstanding items plugin

is implemented, tested and validated by stakeholders; The system is setup as generic as possible to

allow easy extension; as a framework. Argumentation on all design choices is provided in documents.

Documents contain the Product plan, Orientation report and Final report following the requirements

from Blackboard.

Moreover, for each sprint the project team should make sure that all features are implemented, fully

tested, documented and clarified with inline-comments.

Optionally, when the time frame allows, another plugin will be implemented that will show revenue

lists. However, providing a highly customizable and feature-rich plugin is preferred above delivering

multiple plugins with less functionality.

11

C Guide on How To Extend

55

How to extend

This document will describe how to extend the framework with new plugins and this
is done by creating a new plugin called ‘ExamplePlugin’ which will show the contacts
with their name and code. First of all, the folder structure is described. Secondly the
new models are highlighted. Thirdly the extension of the view is shortly described and
finally a new controller is created which is explained in detail.

Folder structure

The EOLPlugin project has an organized structure. Some basic implementation is avail-
able that every plugin should use, like PluginControllers for newly created Controllers
and AbstractDataRetriever while extending functionality with respect to the API.
Each plugin has its own Controller as shown in Figure 1. In this case the ExamplePlug-
inController will be implemented. For each plugin a folder is created in Models.Plugin
which contains classes that are needed for that particular plugin, in this case classes
Contact and ExampleRetriever.

Figure 1: Folder structure

1

Model

Basic functionality like switching divisions and checking if the user is authorized is al-
ready available in AbstractDataRetriever. However, additional functionality is often
required when creating a new plugin. This can easily be done by extending Abstract-
DataRetriever and implement additional methods. AbstractDataRetriever needs an user
id so that it can use the right tokens when calling the API.

namespace EOLPlugins . Models . Plugins . ExamplePlugin
{

pub l i c c l a s s ExampleRetriever : AbstractDataRetriever

{
pub l i c ExampleRetriever (s t r i n g user_id) : base (user_id)
{
}

pub l i c Contact [] getContacts ()
{

JsonValue json = api . request (”/ read /crm/Contacts ”)
. select (”Code , FullName”)
. orderBy (”FullName asc ”)
. get () ;

Contact [] result = new Contact [json . Count] ;

f o r (i n t i = 0 ; i < json . Count ; i++)
result [i] = new Contact (

(s t r i n g) json [i] [”Code”] ,
(s t r i n g) json [i] [”FullName”]) ;

r e turn result ;
}

}

pub l i c c l a s s Contact

{
pub l i c s t r i n g code { get ; set ; }
pub l i c s t r i n g name { get ; set ; }

pub l i c Contact (s t r i n g code , s t r i n g name)
{

t h i s . code = code ;
t h i s . name = name ;

}
}

}

View

At this moment, the view does not need to be updated when creating a new plugin.

Controller

This section will describe how additional controllers can be created. Suppose an addi-
tional plugin ‘ExamplePlugin’ is needed, then a controller called ‘ExamplePluginCon-

2

troller’ has to be added in Controller>Plugins folder and it must extend the PluginCon-
troller. The PluginController takes care of authorization, user ids and basic information
needed in the plugin View (sent via ViewBag). The user id is put into a session variable
called “uid”. When extending the PluginController, several methods needs to imple-
mented and most of them are self-explanatory. The setRetriever method, however, has
one import aspect: it has to set the base.retriever to an DataRetriever object to make
sure no nullreferenceexceptions can occur, since it determines if the user is authorized.
In addition to this, the retriever takes care of the communication with the API.

namespace EOLPlugins . Controllers . Plugins
{

pub l i c c l a s s ExamplePluginController : PluginController

{
protec ted new ExampleRetriever retriever ;

pub l i c ExamplePluginController ()
{
}

protec ted ove r r i d e s t r i n g getPluginTitle ()
{

r e turn ”An Example Plugin ” ;
}

protec ted ove r r i d e s t r i n g [] getColumnNames ()
{

r e turn new s t r i n g [] { ”Code” , ”Name” } ;
}

protec ted ove r r i d e s t r i n g getNoContentMessage ()
{

r e turn ”Nothing to show r i gh t now . ” ;
}

protec ted ove r r i d e void setRetriever ()
{

t h i s . retriever = new ExampleRetriever ((s t r i n g) Session [” uid ”]) ;
base . retriever = th i s . retriever ;

}

pub l i c ov e r r i d e ActionResult generateView ()
{

Contact [] contacts = retriever . getContacts () ;
s t r i n g [] [] content = new s t r i n g [contacts . Length] [] ;

f o r (i n t i = 0 ; i < contacts . Length ; i++)
{

content [i] = new s t r i n g [] {
contacts [i] . code ,
contacts [i] . name } ;

}

setTableContent (content) ;
r e turn View (”Plugin ”) ;

}
}

}

3

D Guide on How To Implement
This document describes how to publish the Exact Online Plugins system on an Azure website and howto implement plugins built on the Exact Online platform into other environments. Lastly, a descriptionis given on how to maintain and use the prototype of the Salesforce app.

Publish Azure website
To test the prototype by using a secure connection (https), a virtual machine is set up to deploy theprototype on. The system is hosted at Microsoft Azure, which easily integrates with Microsoft VisualStudio. ‘Microsoft Azure is an open and flexible cloud platform that enables you to quickly build, deployand manage applications across a global network of Microsoft-managed data center2 ‘.
A project in Visual Studio needs to have a publish profile set up to Azure, so that it knows the locationof the project. Since a publish profile is included in the EOLPlugins project, one can easily publish thefull project to the Azure website by performing the following operations:Right click on the EOLPlugins project, then Publish. Changing settings is optional. By clicking again onPublish, the required files are being uploaded to the server and after this is done, a new window willopen that shows the webpage.

Implementation Environments
For the system to work in a third-pary application, the third-party application must allow the use ofin-line javascript. The piece of Javascript below will create an inline frame (iframe) once a page isloaded, and will load the specific requested plugin inside that iframe.
<script language="JavaScript" type="text/javascript">plugin = ’OutstandingItems’;uid = ’some_kind_of_id’;</script><script language="JavaScript" type="text/javascript"src="EOLPLUGINS_URI/Content/js/EOLplugin.js"></script>
The third-party application needs to provide a unique userid, preferably hashed, to identify the userwho is requesting a plugin. This user id (‘uid’) might be static, but might be generated as well. A typicalformat for the Salesforce application would be ‘sf_hashed(salesforce-userid)’.

Salesforce app
Salesforces provides a marketplace (Salesfoce App Exchange 3) for apps on which developers canpublish their apps/plugins. In Salesforce the project team developed a test app, that integrates anExact Online plugin via Javascript. This code might be used to publish a final version of the app in theApp Exchange. Someone interested may follow the following actions to find the source code.

• To view this app, log in as edgar.wieringa@exact.com / Online123
• The code can be modified by clicking ‘Edgar Wieringa’ (on the top) -> Developer Console

2http://azure.microsoft.com/en-us/3https://appexchange.salesforce.com/

59

Note that before an app is published to the App Exchange, the final url to the system needs to getupdated. This url will be the location of the deployment server. This server is required to use a securedhttp (https) connection, so that iframes will not be blocked by browsers because of security reasons inthe case that a third-party application runs https as well.

60

	Introduction
	Problem Definition and Assignment
	Initial Assignment
	Outstanding Items Plugin
	Revenues Plugin

	Assignment Revised

	Project Methodology
	Time Frame and Methodology
	Environment
	Documentation
	Presentations

	Design and Implementation
	Design Goals
	High-Level Architecture
	Application-Specific or Generic Approach
	Components and Dependencies

	Plugin Framework
	Authorization
	API Communication
	Division Switching
	Account Matching

	Architecture in More Detail
	Building Plugins

	Outstanding Items Plugin
	Stand-Alone
	Matching External Data

	Deployment

	Matching
	Levenshtein
	Jaro and Jaro-Winkler
	Jaro Distance
	Jaro-Winkler

	Reverse Matching

	Testing
	Automated Testing
	Integration Testing
	Testing Environments

	Usability Testing
	Security Review
	Code Analysis

	Conclusions
	Recommendations for Future Work
	Product Planning
	Orientation Report
	Guide on How To Extend
	Guide on How To Implement

