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Preface

Within the framework of this thesis, the analysis of the infinite slot leaky wave antenna is
presented and a new geometry for the feed of a leaky lens is explored. Firstly, the analysis
of the propagating leaky wave modes (TM0 and slot modes) is done leading to the findings
about the location of the slot pole w.r.t. k0, as well as the contributions of the leaky waves and
how they behave when the thickness of air-cavity and width of the slot change. Secondly, the
spectral analysis of the near field is put forward with the goal of gaining deeper understanding
of the leaky wave modes’ behaviour and their asymmetry. Finally, a new geometry: leaky wave
antenna with multiple slots is explored and its potential of lowering the levels of cross pol. is
shown.
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Chapter 1

Introduction

1.1 Background

Dielectric leaky lens antennas fed by resonant leaky wave feeds are by now a mature tech-
nology that has been demonstrated at mm and sub-mm wavelengths, achieving high aperture
efficiency with 10 − 15% operational bandwidth. However, due to the need for higher range
resolution in radars and larger frequency characterization in spectrometers, the need for the
antennas with wider operational bandwidth appeared. Answering these requirements, infinite
slot leaky wave antenna was first introduced in [1]. As is illustrated in Figure 1.1, this antenna
consists of an infinite slot etched into the ground plane that separates the lower and the upper
semi-infinite mediums. Additionally, between the ground plane and the upper medium, thin
layer of vacuum is placed responsible for inducing the TM0 leaky wave mode. How this leaky
wave mode propagates together with the slot mode induced by the infinite slot itself and how
they contribute to the far field in H and E-planes is demonstrated in [1]. Furthermore, the
ultra-wideband property of the structure is shown and the antenna is proposed as a feed to a
leaky lens.

Figure 1.1: Infinite slot leaky wave antenna

However, the infinite slot leaky wave antenna suffers from high levels of cross pol. which limits
the aperture efficiency of the leaky lens that uses it as the feed. In order to lower this cross
pol. component, the state of the art leaky lens feeds use tapering of the infinite slot and very
thin air-cavity so as to weaken the leaky waves and therefore their contribution to the cross
pol. as well [2], [3]. On the other hand, this leads to the patterns of the feed that are not very
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2 CHAPTER 1. INTRODUCTION

directive, requiring lenses that have large truncation angles allowing more reflection in the lens
as well as increasing the complexity of manufacturing the matching layer. [4]

In order to understand the cross pol. better and the reasons for its high levels, deeper under-
standing of the propagating leaky wave modes is needed. For this reason, the modes and their
propagation constants are analysed as was previously started in [5]. Furthermore, the spectral
analysis of the near field is done with the same goal. Finally, based on the gained insights, a
new geometry that decreases the cross pol. is presented and explored.

1.2 Contribution of the thesis

Within the framework of the thesis, the analysis of the infinite slot leaky wave antenna is pre-
sented and a new geometry for the feed of a leaky lens is explored.

Firstly, the analysis of the propagating leaky wave modes (TM0 and slot modes) is presented.
Since the Riemann sheet w.r.t. the lower semi-infinite medium in which the slot pole is to be
found is unknown, the analysis of the magnetic current along the slot and what contributes to
it is put forward. After presenting the integration path that allows the separation of different
components of the current, the results are compared to the total magnetic current which is
obtained by not crossing any branch-cuts in kx-plane. From this analysis, it is concluded that
the slot pole is in the top Riemann sheet w.r.t. k0. Moreover, it is noted that the slot mode
becomes less dominant as the air-cavity thickness and width of the slot become larger in terms
of the wavelength.

Secondly, the spectral analysis of the near field is put forward. In order to obtain the electric
field in the near field, the integral in α is solved analytically using an approximation on the
magnetic current along the slot. Next, the singularities of the integrand in kρ are presented af-
ter which the integration paths for different planes are defined. This complex analysis together
with its results provides with the deeper understanding of how the TM0 and the slot mode
behave and in what ways they are different and non-symmetrical.

Finally, a new geometry: leaky wave antenna with multiple slots is explored. After comparing
it to the state of the art leaky lens feed (tapered slot) and performing the parametric analysis,
it is concluded that for the same air-cavity thickness, the LWA with three slots outperforms
the tapered slot in terms of cross pol. efficiency and, consequently, in aperture efficiency (when
used as a feed to a leaky lens antenna). Furthermore, the lens truncation angle is decreased
which can be beneficial in manufacturing of the matching layer.

1.3 Outline of the thesis

This report is divided into three central chapters. In Chapter 2, the analysis of the leaky wave
modes and their propagation constants is presented. Firstly, the TM0 mode is shown (Sec-
tion 2.1) after which the slot mode is analysed (Section 2.2). In order to determine in which
Riemann sheet of k0 is the slot leaky wave pole in and consequently calculate its propagation
constant, the behaviour of the pole is analysed in Subsection 2.2.1. Furthermore, comparing
the total magnetic current along the slot to the current obtained by adding contributions of
the leaky waves and the space wave, it is demonstrated that the leaky wave pole of the slot
mode is in the top Riemann sheet of the lower semi-infinite medium (Subsection 2.2.3). Next,
the approximated contributions of the leaky waves are presented in Section 2.3, where the high
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levels of cross pol. component are discussed.

In Chapter 3, the spectral analysis of the near field is put forward with the goal of gain-
ing deeper understanding of the leaky waves’ behaviour. In Section 3.1, the closing of the
integral in α is demonstrated together with the approximations used in order to be able to
do it analytically. Next, the singularities in kρ are presented (Section 3.2). In Section 3.3,
the integration paths for different planes are shown together with the electric fields obtained
through the presented method. Finally, the verification of the results is presented in Section 3.4.

In Chapter 4, leaky wave antenna with multiple slots is explored as a design which could re-
duce the cross pol. Firstly, the current state of the art leaky lens feeds (tapered slots) are
shown (Section 4.1). Next, the leaky wave antenna with three slots is presented as an example
of the antenna with multiple slots and its performance is compared to that of a tapered slot
(Section 4.2). Finally, in Section 4.3 the parametric analysis of the leaky wave antenna with
multiple slots is performed where it is shown that this antenna can reduce the cross pol. and
obtain similar aperture efficiency as the tapered slot antenna of the same air-cavity thickness,
but for a smaller lens truncation angle.

Conclusions and future work are presented in Chapter 5.
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Chapter 2

Analysis of the leaky wave modes

The analysed structure consists of the infinite slot directed along x-axis printed on an infinite
ground plane that separates the lower and the upper semi-infinite mediums. Between the upper
semi-infinite medium and the ground plane a thin layer of vacuum is placed, the thickness of
which is h. This antenna is excited by a uniform y oriented delta-gap electric current. In Figure
1.1 the antenna is illustrated with the symbols that are be used for its parameters throughout
the report.

The electric field of this antenna can be calculated as:

E⃗(r⃗) =
1

4π2

∫∫ ∞

−∞
G̃EM(kx, ky, z, z

′)M⃗(kx, ky)e−jkxxe−jkyydkxdky, (2.1)

where G̃EM(kx, ky, z, z
′) represents the spectral Green’s function for the stratification of the

analysed structure in the absence of the slot, while M⃗(kx, ky) is the spectral domain magnetic
current along the slot. Since the coordinate system is taken as such that the slot is positioned
at z′ = 0, the dependence on z′ in the Green’s function is omitted throughout the thesis report.

It is well known that the dominant contributions to the field of this antenna are due to the pole
singularities of both the Green’s function (TM0 mode) and the magnetic current (slot mode) [1].

In Section 2.1 the formulas to calculate the propagation constant of the TM0 mode are pre-
sented. Next, the behaviour of the slot mode pole is analysed in Section 2.2 where the inte-
gration path in ky-plane is defined and the contributions to the magnetic current are obtained.
Finally, in Section 2.3 the approximated contributions of the leaky waves are evaluated in the
far field.

2.1 TM0 mode

TM0 mode is a consequence of the pole that appears in the spectral Green’s function. In or-
der to obtain the propagation constant of the TM0 leaky wave, this pole needs to be located [6].

The spectral Green’s function for calculating the electric field from magnetic currents is:

G̃EM =


(vTM − vTE)kxky

k2
ρ

−
vTEk

2
y + vTMk2

x

k2
ρ

vTEk
2
x + vTMk2

y

k2
ρ

(vTE − vTM)kxky
k2
ρ

−ζ
ky
k
iTM ζ

kx
k
iTM

 , (2.2)
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6 CHAPTER 2. ANALYSIS OF THE LEAKY WAVE MODES

where kx = k sin θ cosϕ, ky = k sin θ sinϕ, kρ =
√

k2
x + k2

y while ζ and k are, respectively, char-
acteristic impedance of the medium in which the electric field is calculated and its propagation
constant. Furthermore, the currents and voltages are the solutions of the transmission line
representation of the analysed structure (Figure 2.1). Since TM and TE modes are decoupled,
their solutions of the transmission line are obtained separately. Characteristic impedances are

calculated as ZTM
i = ζi

kzi
ki

and ZTE
i = ζi

ki
kzi

. [7] Since the leaky wave pole is known to be

located in the bottom Riemann sheet with respect to the upper and in the top Riemann sheet
with respect to the lower semi-infinite medium, kzi are chosen as:

kz0 = −j
√

−(k2
0 − k2

ρ), (2.3)

kz2 = j
√
−(k2

2 − k2
ρ). (2.4)

Figure 2.1: Transmission line representation of the infinite slot LWA

Solving the transmission line, it can be noted that all the currents and voltages have the same
denominator:

DG(kρ) = Z2 + jZ0 tan (kz0h). (2.5)

Equating the denominator to zero, and solving the equation for kρ, the propagation constant
of the TM0 mode is obtained. Mathematically, this equation has more than one solution.
However, for the analysed antenna, only the TM0 mode is of significance, therefore only the
propagation constant for this mode is calculated.

Approximating tan (kz0h) ≈ kz0h − nπ and taking n = 0 (corresponding to TM0 mode) and

Z2 ≈
ζ0√
εr

(corresponding to broadside direction), propagation constant of the TM0 mode can

be approximated:

(kg,TM0

z0 )2 ≈ j
2π

√
εrλ0h

, (2.6)

kg,TM0
ρ =

√
k2
0 − (kg,TM0

z0 )2. (2.7)

In order to converge to a more accurate solution, Newton-Raphson method is used. Firstly, the
Taylor expansion around the above-mentioned approximate solution is employed:

DG(k
TM0
ρ ) ≈ DG(k

g,TM0
ρ ) +D′

G(k
g,TM0
ρ )(kTM0

ρ − kg,TM0
ρ ) = 0, (2.8)

kTM0
ρ = kg,TM0

ρ −
DG(k

g,TM0
ρ )

D′
G(k

g,TM0
ρ )

, (2.9)

where D′
G(kρ) ≈

DG(kρ +
∆k
2
)−DG(kρ − ∆k

2
)

∆k
and ∆k = k0

500
. These steps can be repeated

for the new kTM0
ρ as a guess point iteratively, keeping the track of

∣∣∣∣DG(k
g,TM0
ρ )

D′
G(k

g,TM0
ρ )

∣∣∣∣. When
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g,TM0
ρ )

D′
G(k

g,TM0
ρ )

∣∣∣∣ becomes smaller than the previously agreed-upon value ethreshold = 10−5, kTM0
ρ is

considered to be the propagation constant of the TM0 mode. When the propagation constant
is calculated over a frequency range, the propagation constant of the previous frequency point
is used as the first approximated value and the input to Newton-Raphson loop for the current
frequency point. [6]
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ws=60
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re
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M

0
;

)=
k

0

Phase constant TM0
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h = 2ws

Figure 2.2: Phase constant TM0: εr = 11.9, ws = 100µm, ∆gap = 180µm
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k
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Figure 2.3: Attenuation constant TM0: εr = 11.9, ws = 100µm, ∆gap = 180µm

The propagation constant of the TM0 mode is presented in Figures 2.2 and 2.3 where the
thickness of the air-cavity is being varied. It is noted that as the thickness gets larger the
pointing angle of the TM0 mode gets smaller. Additionally, the absolute value of the attenuation
constant gets smaller, leading to a more directive radiation pattern.
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2.2 Slot mode

As the slot mode is not a regular leaky wave stemming from the pole of the Green’s function, a
more widely known structure is analysed in parallel (Figure 2.4). As can be noted, this struc-
ture does not have the air-cavity separating the silicon layer from the PEC, but is otherwise
the same as the one presented in Figure 1.1. The lack of the air-cavity results in the loss of
the TM0 mode. However, the structure supports the propagation of the slot mode and is used
as a reference point for the behaviour of the structure with the air-cavity. The derivation that
follows is valid for both structures [8], [1].

Figure 2.4: Infinite slot leaky wave antenna without the air-cavity

Figure 2.5: Transmission line representation of the infinite slot LWA without the air-cavity

In order to obtain the propagation constant of the slot mode, firstly the current along the slot
needs to be calculated. By invoking the equivalence theorem, the slot volume is filled with the
perfect electric conductor. The magnetic current on the surface above the slot is calculated as
m+

s = −ẑ × e+, and on the surface below the slot as m−
s = ẑ × e−. Since e+ = e−, then

m−
s = −m+

s . Furthermore, the continuity of the magnetic field at z = 0 is enforced:

ẑ × (h+ − h−) = jinc, (2.10)

ẑ × (m+
s ∗ gHM

2 −m−
s ∗ gHM

1 ) = jinc, (2.11)

ẑ × (m+
s ∗ (gHM

1 + gHM
2 )) = jinc, (2.12)

ẑ × (m+
s ∗ gHM) = jinc, (2.13)

where jinc is the impressed electric current. Assuming that the slot is narrow and that the
magnetic current is perfectly polarized along x:

mx(x, y) ∗ gHM
xx (x, y) = jinc,y(x, y). (2.14)
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Rewritten in integral form:1∫∫ ∞

−∞
gHM
xx (x− x′,−y′)mx(x

′, y′)dx′dy′ = rect
( x

∆gap

)
. (2.15)

As the slot is assumed to be narrow, the magnetic current distribution has a separable space
dependence on x and y. The transverse y dependence is chosen to certify the quasi-static edge
singularities:

mx(x, y) = v(x)mt(y), (2.16)

mt(y) = − 2

wsπ

1√
1−

(
2y

wsπ

)2
. (2.17)

Continuing with the derivation:∫∫ ∞

−∞
gHM
xx (x− x′,−y′)v(x′)mt(y

′)dx′dy′ = rect
( x

∆gap

)
. (2.18)

Changing the order of the integration and regrouping the variables:∫ ∞

−∞
v(x′)

∫ ∞

−∞
gHM
xx (x− x′,−y′)mt(y

′)dy′dx′ = rect
( x

∆gap

)
, (2.19)∫ ∞

−∞
v(x′)dM(x− x′)dx′ = rect

( x

∆gap

)
, (2.20)

where dM(x − x′) =
∫∞
−∞ gHM

xx (x − x′,−y′)mt(y
′)dy′. Rewriting dM(x − x′) in the form of the

anti-Fourier transformation and regrouping the variables:∫ ∞

−∞
v(x′)

1

2π

∫ ∞

−∞
DM(kx)e−jkx(x−x′)dkxdx

′ = rect
( x

∆gap

)
, (2.21)

1

2π

∫ ∞

−∞
DM(kx)e−jkxx

∫ ∞

−∞
v(x′)ejkxx

′
dx′dkx = rect

( x

∆gap

)
. (2.22)

Finally, by expressing the rectangular function in the anti-Fourier form the equation becomes:

1

2π

∫ ∞

−∞
DM(kx)V (kx)e−jkxxdkx =

1

2π

∫ ∞

−∞
sinc

(kx∆gap

2

)
e−jkxxdkx, (2.23)

from which the spectral and spatial longitudinal magnetic current is derived (since the Eq.
(2.23) is valid for any kx):

V (kx) =
sinc

(kx∆gap

2

)
DM(kx)

, (2.24)

v(x) =
1

2π

∫ ∞

−∞

sinc
(kx∆gap

2

)
DM(kx)

e−jkxxdkx. (2.25)

1For the case with the air-cavity, this integral is additionally averaged across the width of the slot 1
ws

∫
ws

dky.

This leads to an additional factor sinc
(kyws

2

)
in the final expression of the denominator as derived in Eq.(2.30)

[5].
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In order to determine DM(kx), the spectral Green’s function is rewritten in the form of anti-
Fourier transformation in the expression for dM(x− x′):

dM(x− x′) =

∫ ∞

−∞

(
1

4π2

∫∫ ∞

−∞
GHM

xx (kx, ky)e−jkx(x−x′)ejkyy
′
dkxdky

)
mt(y

′)dy′, (2.26)

where GHM
xx (kx, ky) = GHM

xx,1 + GHM
xx,2, GHM

xx,i = −
iTE,ik

2
x + iTM,ik

2
y

k2
ρ

. The currents in GHM
xx,1 and

GHM
xx,2 are obtained by solving the transmission line representations of the structure for z = 0−

and z = 0+, respectively (Figure 2.1 for the case with the air-cavity and Figure 2.5 for the one
without the air-cavity). After regrouping the terms in y′ and reversing the order of integration:

dM(x− x′) =
1

4π2

∫∫ ∞

−∞
GHM

xx (kx, ky)e−jkx(x−x′)

(∫ ∞

−∞
mt(y

′)ejkyy
′
dy′
)
dkxdky. (2.27)

Closing the integral in brackets analytically, the final expression is:

dM(x− x′) = − 1

4π2

∫∫ ∞

−∞
GHM

xx (kx, ky)e−jkx(x−x′)J0

(kyws

w

)
dkxdky, (2.28)

dM(x− x′) =
1

2π

∫ ∞

−∞
DM(kx)e−jkx(x−x′)dkx, (2.29)

where

DM(kx) = − 1

2π

∫ ∞

−∞
GHM

xx (kx, ky)J0

(kyws

2

)
dky. (2.30)

Furthermore, since mt(y) has a closed-form Fourier transform FT (mt(y)) = −J0

(kyws

2

)
, the

spectrum of the magnetic current along the slot can be expressed as:

Mx(kx, ky) = −
sinc

(kx∆gap

2

)
DM(kx)

J0

(kyws

2

)
. (2.31)

From the Eq.(2.31) it is evident that DM(kx) is the denominator of the magnetic current spec-
trum. In order to obtain the propagation constant of the slot mode, the integral in Eq.(2.30)
needs to be solved and equated to zero. For the structure without the air-cavity, the integral
can be solved analytically. However, for the case with the air-cavity, analytical solution does
not exist and the integral needs to be solved numerically.

In Subsection 2.2.1 behaviour of the pole for the structures with and without the air-cavity is
analysed. Next, in Subsection 2.2.2. integration in the complex ky-plane is presented in order
to solve the integral from Eq.(2.30) and obtain the pole of DM(kx) for the antenna with the
air-cavity. Two possible pole solutions are put forward. In Subsection 2.2.3 the significant pole
is identified by reconstructing the total magnetic current. The reconstruction is obtained by
summing the branch-cut and the pole contributions.

2.2.1 Behaviour of the slot mode

The integral in Eq.(2.30) can be analytically solved for the structure without the air-cavity and
is given by the following expression:

DM(kx) =
1

2k0ζ0

2∑
i=0

(k2
i − k2

x)J0

(
ws

4

√
k2
i − k2

x

)
H

(2)
0

(
ws

4

√
k2
i − k2

x

)
. (2.32)



2.2. SLOT MODE 11

The slot mode pole is located in the bottom Riemann sheet for k2 and top Riemann sheet w.r.t.
k0. The real part of the propagation constant is presented in Figure 2.6 where it can be noted

that real(kslot
x ) ≈

√
k20+k22

2
[8].

However, since Eq.(2.30) cannot be solved analytically for the structure with the air-cavity, the
integral needs to be evaluated numerically. For this calculation, one needs to be very careful
how the branches of the semi-infinite media are crossed. In order to avoid this complication at
this stage but still gain some insight into the general behaviour of the mode, firstly an approx-
imate propagation constant of the slot mode is obtained.
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Figure 2.6: Phase constant (no air-cavity): εr = 11.9, ws = 100µm, ∆gap = 180µm
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Figure 2.7: Phase constant (with air-cavity): εr = 11.9, h = ws = 100µm, ∆gap = 180µm

In order to arrive at the approximate propagation constant of the slot mode for this case, the in-
tegration is performed over the real axis and only one iteration of the Newton-Raphson method
is executed. More precisely, the first guess (as defined in Eq.(2.8)) is taken to be kg,slot

x = 0.9k0.
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Since the guessed value of the slot propagation constant is real, the denominator DM(kx) and
its first derivative DM(kx)

′ are calculated without having to cross any branches. Therefore, we
are in the top Riemann sheets of both semi-infinite media.

The approximated value for the phase constant is presented in Figure 2.7. It can be noted
that only for the very small values of h does the phase constant follow the behaviour as in
the case without the air-cavity. However, as the thickness of the air-cavity gets larger, the
real part of the propagation constant tends to k0. For this reason, it becomes unclear whether
the pole is located in the top Riemann sheet w.r.t. k0, or is it necessary to cross that branch-
cut and to look for the pole in the bottom Riemann sheet for k0. This problem is discussed next.

2.2.2 Integration in the complex ky-plane

To obtain the propagation constant of the slot mode accurately, multiple iterations of Newton-
Raphson method need to be performed. This means that the integration path in ky-plane is no
longer only along the real axis and it needs to be defined.

Considering that the integration in ky-plane depends on the Riemann sheets in which the pole is
searched for in kx-plane, the longitudinal spectral plane is illustrated in Figure 2.8a. Apart from
the pole associated to the slot mode, kx-plane also contains branch-points and their branch-
cuts as a consequence of the semi-infinite mediums. On the other hand, Figure 2.8b illustrates
the transverse spectral plane ky with its branch-point and branch-cuts. Branch-points of the
semi-infinite mediums are noted as ky0, ky2 and are calculated as kyi =

√
k2
i − k2

x [9].

It is a priori known that the slot mode leaks into the upper semi-infinite medium, and that
its pole then must be in the bottom Riemann sheet with respect to k2. However, the Riemann
sheet in reference to k0 is not evident (as was discussed previously). For that reason, two
possible locations of the pole are analysed:

1. top Riemann sheet w.r.t. k0, bottom Riemann sheet w.r.t. k2,

2. bottom Riemann sheet w.r.t. k0, bottom Riemann sheet w.r.t. k2.

(a) Longitudinal spectral plane kx (b) Transverse spectral plane ky

Figure 2.8: Longitudinal and transverse spectral planes

Depending on the Riemann sheets in which the integral Eq.(2.30) is being calculated, the in-
tegration paths in ky plane are illustrated in Figure 2.9. When DM(kx) is obtained in the top
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Riemann sheet w.r.t. k0 and bottom Riemann sheet w.r.t. k2, only the branch-cut associated
to k2 is crossed and the integration path in ky-plane for this case is presented in Figure 2.9a.
Furthermore, if DM(kx) is obtained in the bottom Riemann sheet for k0 as well as k2, both
branch-cuts are crossed (Figure 2.9b) [9]. The color of the integration path indicates how kzi

is calculated for GHM
xx (kx, ky). For the top Riemann sheet kzi = −j

√
−(k2

i − k2
ρ), while for the

bottom Riemann sheet kzi = j
√
−(k2

i − k2
ρ) (Figure 2.9c).

(a) Top RS w.r.t. k0 and bottom RS w.r.t. k2 (b) Bottom RS w.r.t. k0 and k2

(c) Riemann sheet legend

Figure 2.9: Integration paths in the transverse spectral plane

It is possible to determine the integration paths that are equivalent to the ones presented in
Figure 2.9, but easier to implement. Invoking the Cauchy’s integral theorem: C1+C2+C3 = 0
(Figure 3.3b). Therefore, C1 = −C2−C3, and the equivalent integration path from Figure 2.9a
is presented in Figure 2.11a. Similarly, crossing the branches of both media is equivalent to the
integration path in Figure 2.11b [5].

Figure 2.10: Cauchy’s integral theorem in the transverse spectral plane
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(a) Top RS w.r.t. k0 and bottom RS w.r.t. k2 (b) Bottom RS w.r.t. k0 and k2

Figure 2.11: Equivalent integration paths in ky-plane

0 0.02 0.04 0.06 0.08 0.1
h=60

-0.5

0

0.5

1

1.5

2

2.5

k
sl

ot
x

=k
0

Propagation constant of the slot mode

k0 TRS; real
k0 TRS; imag
k0 BRS; real

k0 BRS; imag
approximation; real
approximation; imag

f = 5GHz
f = 100GHz

f = 240GHz

Figure 2.12: Propagation constant of the slot mode: εr = 11.9, h = ws = 100µm,
∆gap = 180µm

Having defined the integration paths in the transverse spectral plane, the denominator of the
magnetic current along the slot is calculated as defined in Eq.(2.30). Furthermore, using the
Newton-Raphson method to converge to the accurate solution across a frequency range, the
poles in different Riemann sheets with respect to k0 are obtained and presented in Figure 2.12.
As can be noted, there are two poles: one in the top and one in the bottom Riemann sheet
w.r.t. the lower medium. Furthermore, the approximated propagation constant (as defined in
Subsection 2.2.1) is plotted. Evidently, the approximation does not give the same results as any
of the two propagation constants presented. Therefore, multiple loops of the Newton-Raphson
method are needed. In the next subsection, magnetic current along the slot is reconstructed so
as to determine which pole is significant for the analysed structure.

2.2.3 Contributions to the magnetic current along the slot

Longitudinal term of the magnetic current is obtained by Eq.(2.25). However, the integration
path in kx-plane that leads to the solution is not uniquely defined.
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(a) Total magnetic current (b) Contributions of the branches and the pole

Figure 2.13: Integration path in kx-plane

In Figure 2.13a, the integration path that gives the total longitudinal term of the magnetic
current is illustrated. It is referred to as total because it does not distinguish between the
contributions of the branch-cuts and the poles. The equation for this integration path is given
as: kpath

x = kx + 0.01je−
1
2
( kx
k2

)2 . On the other hand, the path can also be chosen as the one in
Figure 2.13b. As a consequence of the deformation of the original path presented in Figure
2.13a and Cauchy’s theorem, the contribution of the pole in the top Riemann sheet for k0 is
added as a residue:

v(x) = v1(x) + v2(x) + vslot(x), (2.33)

vslot(x) = −2πjRes

(
sinc

(kx∆gap

2

)
2πDM(kx)

e−jkxx

)∣∣∣∣∣
kx=kslotx

, (2.34)

vslot(x) = −j
sinc

(kslot
x ∆gap

2

)
D′

M(kslot
x )

e−jkslotx |x|, (2.35)

where v1(x) and v2(x) are the contributions of the integration paths encircling branch-point k0
and k2, respectively, as is presented in Figure 2.13b. It is evident that the pole in the bottom
Riemann sheet w.r.t. k0 is not crossed, therefore its contribution is not added to the magnetic
current.

To evaluate the significance of the pole in the top Riemann sheet for k0, v(x) obtained with
the deformed path that enables the separation of the contributions is compared to vtotal(x)
calculated using the integration path from Figure 2.13b. This is done for the frequency points
as indicated in Figure 2.12 and the results are presented in Figure 2.14. It can be noted that for
the lowest frequency point, the two evaluated currents are practically equal. As the frequency
becomes higher, the difference between v(x) and vtotal(x) becomes larger for the points close
to the source, but is still quite negligible. Furthermore, for the case f = 5 GHz results of
a full wave CST simulation are also plotted confirming the results obtained using the above-
mentioned procedure. Similar analysis was performed for different dimensions of the infinite
slot leaky wave antenna with the same qualitative results that are not included in the thesis
report for conciseness.
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Figure 2.14: Comparison of v(x) and vtotal(x) for f = [5, 100, 240] GHz:
εr = 11.9, h = ws = 100µm, ∆gap = 180µm
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Figure 2.15: Contributions to the magnetic current along the slot for f = [5, 100, 240] GHz:
εr = 11.9, h = ws = 100µm, ∆gap = 180µm

Based on the presented study, it is concluded that the pole in the top Riemann sheet w.r.t. k0
and bottom Riemann sheet w.r.t. k2 is the significant pole for the analysed structure and is
taken as the slot mode for the rest of the thesis report. On the other hand, the pole in the
bottom Riemann sheet w.r.t. both media is mathematically valid, but it does not contribute
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to the radiation of the antenna.

Additionally, the contributions of the leaky wave and the branch-cuts are presented in Figure
2.15. As can be seen, the leaky wave is dominant for the lower frequencies, but as the fre-
quency gets higher (or as the thickness of the air-cavity and width of the slot become larger),
the contribution of the branch-cuts increases. At f = 240GHz, the two contributions are of
comparable scale. This is important to note because it reveals when the assumption that the
leaky wave is dominant can be made and, consequently, in what frequency range should the
antenna be designed.
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Figure 2.16: Phase constant of the leaky waves: εr = 11.9, ws = 100µm, ∆gap = 180µm
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Figure 2.17: Attenuation constant of the leaky waves: εr = 11.9, ws = 100µm, ∆gap = 180µm

Finally, the propagation constant of the both TM0 and the slot mode is presented in Figures 2.16
and 2.17. These graphs show that the propagation constant of the slot mode behaves similarly
as the thickness of the air-cavity is increased as the TM0 mode. However, the values of the
propagation constants for the two modes are quite different, which implies a non-symmetric
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radiation pattern. The contributions of the poles in the far field are discussed in the next
section.

2.3 Approximated contributions of the leaky waves

In this section, the approximated contributions of the leaky waves are evaluated in the far field.
Since the contribution of a leaky wave defined as the residue of the electric field integrand
evaluated in the pole does not exist in the far field, the contributions are obtained by using the
approximation of the spectrum around the poles. The far field analysis is complemented with
the analysis of the spectrum of the electric field which is presented first.

2.3.1 Spectrum of the electric field

As the far field is proportional to the spectrum of the electric field for kρ ∈ [0, k2], the analysis
of the spectrum can lead to important insights into the behaviour of the antenna. Therefore,
in this subsection, the electric field spectrum is studied.

The spectrum of the electric field is given as:

E⃗(kρ, α, z) = G̃EM(kρ, α, z)M⃗(kρ, α). (2.36)

Approximating the spectrum around the poles, the approximated contributions of these poles
are evaluated [10]:

E⃗TM0(kρ, α, z) ≈
2kTM0

ρ

k2
ρ − kTM0

ρ
2Res

(
G̃EM(kρ, α, z)M⃗(kρ, α)

)∣∣∣
kρ=k

TM0
ρ

, (2.37)

E⃗slot(kρ, α, z) ≈
2kslot

x

(kρ cosα)2 − kslot
x

2Res
(
G̃EM(kρ, α, z)M⃗(kρ, α)

)∣∣∣
kρ=

kslotx
cosα

. (2.38)

In order to demonstrate that the approximations of the pole contributions model the behaviour
of the poles well, the spectrum of the y-component is plotted for α = 45° (D-plane in the far
field) for the case εr = 11.9, h = ws = 100µm= 0.04λ0, ∆gap = 180µm (Figure 2.18). As can
be noted from these graphs, subtracting the approximated contributions of the poles from the
total spectrum leads to the cancellation of the respective poles. Therefore, it can be concluded
that the approximated contributions of the poles model the behaviour of the poles well.
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Figure 2.18: Spectrum of the y-component of the electric field for α = 45°:
εr = 11.9, h = ws = 100µm= 0.04λ0, ∆gap = 180µm

2.3.2 Far field

To obtain the contributions of the poles in the far field, the approximated expressions for
the spectrum are used and evaluated asymptotically in the stationary phase point (kρ,s =
k2 sin θ, kzs = k2 cos θ, αs = ϕ):

E⃗TM0
FF (r⃗) ≈ jkzs

2kTM0
ρ

k2
ρ,s − kTM0

ρ
2Res

(
G̃EM(kρ, αs, z)M⃗(kρ, αs)

)∣∣∣
kρ=k

TM0
ρ

e−jkr

2πr
, (2.39)

E⃗slot
FF (r⃗) ≈ jkzs

2kslot
x

(kρ,s cosαs)2 − kslot
x

2Res
(
G̃EM(kρ, αs, z)M⃗(kρ, αs)

)∣∣∣
kρ=

kslotx
cosαs

e−jkr

2πr
. (2.40)

Therefore, the total far field that is obtained using the standard definition:

E⃗total
FF (r⃗) ≈ jkzsG̃

EM(kxs, kys, z)M⃗(kxs, kys)
e−jkr

2πr
, (2.41)

is equal to the summation of the pole contributions and a remaining term:

E⃗total
FF ≈ E⃗remaining

FF + E⃗TM0
FF + E⃗slot

FF . (2.42)

Before the results of the far field are presented, an important characteristic of the two leaky
wave modes can be noted inspecting the spectral Green’s function given in Eq.(2.2) and the
approximated contributions of the poles in the far field. As the residue in Eq.(2.39) is evaluated
at kTM0

ρ , there is no contribution of the TE voltages. Therefore, TM0 mode is a purely TM
mode. However, since the slot mode appears as a pole of the magnetic current, the residue in

Eq.(2.40) is equal to G̃EM( kslotx

cosαs
, αs, z)

N⃗M( kslotx

cosαs
, αs)

D′
M( kslotx

cosαs
, αs)

. From this expression, it is clear that both

the TM and the TE solutions of the Green’s function are contributing to the far field. Hence,
it can be concluded that the slot mode is a hybrid mode.
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Figure 2.19: Directivity in the main planes: εr = 11.9, h = ws = 100µm, ∆gap = 180µm

(a) α = 0° (b) α = 90°

(c) α = 45°

Figure 2.20: y-component of the electric field spectrum in the main planes:
εr = 11.9, h = ws = 100µm, ∆gap = 180µm

The normalised directivity in the main planes is presented in Figure 2.19, while the y-component
of the electric field spectrum is plotted in Figure 2.20 (εr = 11.9, h = ws = 100µm= 0.04λ0,
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∆gap = 180µm). From these figures it can be seen that in the H-plane there is only the con-
tribution of the slot mode, in E-plane the contribution of TM0, while in D-plane both leaky
waves are contributing. Furthermore, the TM0 pole is constant in the spectrum, while the pole
linked to the slot mode moves in the complex kρ plane. As a consequence, the pointing angle
and the directivity of the slot contribution change with ϕ.

In Figure 2.21 cross polarised component in D-plane is plotted for εr = 11.9, ws = 100µm=
0.04λ0, ∆gap = 180µm and different values of the air-cavity thickness.
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Figure 2.21: Cross polarised component in D-plane: εr = 11.9, h = ws = 100µm,
∆gap = 180µm

Figure 2.22: Illustration of the cross polarised component in D-plane

It is noted that the cross component is very high for the analysed values of h. This is a con-
sequence of the two leaky wave contributions not having the same amplitude nor the same
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pointing angle and therefore not canceling each other. In Figure 2.22 the cross component
behaviour is illustrated additionally. Since the TM0 mode is a purely TM mode, it is oriented
along i⃗ρ. However, being a hybrid mode, the slot mode is not strictly oriented along i⃗ϕ. Further-
more, the amplitudes of the mode contributions are not equal (as can also be noted in Figure
2.21). For these reasons, the analysed structure has a very high cross polarised component not
only in D-plane but across a larger range of angle ϕ which can be noted in Figure 2.23. The
demonstrated cross polarisation component motivates the slot tapering [2], [3].

Figure 2.23: Cross polarised component of the total far field 2D: εr = 11.9, h = ws = 100µm,
∆gap = 180µm



Chapter 3

Spectral analysis of the near field

In the previous chapter, spectral analysis of the leaky wave modes was performed which resulted
in propagation constants of the leaky waves, magnetic current contributions and the approx-
imated contributions of the modes in the far field. However, the analysis cannot be used to
describe the behaviour of the slot mode in its entirety. For this reason, the spectral analysis of
the near field is conducted. The procedure and its results are presented in the following chapter.

In Section 3.1, the procedure of solving the integral in α analytically is presented. This is
done using an approximation on the phase of the magnetic current in order to avoid numerical
calculation of the integral which would be very heavy computationally. Next, the singularities
in kρ-plane and their behaviour are illustrated in Section 3.2. The integration paths for different
planes are explained in Section 3.3, with verification of the results in Section 3.4.

3.1 Solving the integral in α

The double integral that this chapter is dedicated to solving is given in Eq.(2.1). Taking into
the account that the slot is oriented along x-axis and performing the change of variables, this
equation assumes the following form:

E⃗(r⃗) =
1

4π2

∫ 2π

0

∫ ∞

0

G̃EM(kρ, α, z)Mx(kρ, α)e−jkρρ cos (α−ϕ)kρdkρdα. (3.1)

The first approximation that can be made is to assume that the current is slow-varying in α
compared to the phase term of the integrand Mx(kρ, α) ≈ Mx(kρ, ϕ)

1. This approximation is
made in order to avoid the numerical closing of the integral in α, which would be very heavy
numerically. The reason for it is that there is already one integral in Mx that is being solved
numerically: integral in ky (Eq.( 2.30)).

After changing the order of integrals and taking the magnetic current out of the α integral
(since it no longer depends on α), the expression becomes:

E⃗(r⃗) ≈ 1

4π2

∫ ∞

0

Mx(kρ, ϕ)
(∫ 2π

0

G̃EM(kρ, α, z)e−jkρρ cos (α−ϕ)dα
)
kρdkρ. (3.2)

The remaining integral in α can be solved analytically and the steps of that derivation are given
in Appendix A. After the integral in α is closed, the electric field expression can be presented
as:

E⃗(r⃗) ≈ 1

8π

∫ ∞

−∞
G̃EM

kρ (kρ, ρ, z)Mx(kρ, ϕ)kρdkρ, (3.3)

1The approximation on α of the magnetic current is discussed further in Section 3.4.

23
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where G̃EM
kρ

(kρ, ρ, z) is given in the form of its cylindrical components:

GEM
kρ,ρ(kρ, ρ, z) = sinϕ[vTE(H

(2)
0 (kρρ) +H

(2)
2 (kρρ)) + vTM(H

(2)
0 (kρρ)−H

(2)
2 (kρρ))], (3.4)

GEM
kρ,ϕ(kρ, ρ, z) = cosϕ[vTE(H

(2)
0 (kρρ)−H

(2)
2 (kρρ)) + vTM(H

(2)
0 (kρρ) +H

(2)
2 (kρρ))], (3.5)

GEM
kρ,z(kρ, ρ, z) = j2 sinϕ

kρvTM

kz2
H

(2)
1 (kρρ). (3.6)

If the large-argument approximation on Hankel functions is assumed (H(2)
0 (kρρ)+H

(2)
2 (kρρ) ≈ 0

and H
(2)
0 (kρρ)−H

(2)
2 (kρρ) ≈ 2H

(2)
0 (kρρ)), the final expressions are as follows:

GEM
kρ,ρ(kρ, ρ, z) ≈ sinϕvTM2H

(2)
0 (kρρ), (3.7)

GEM
kρ,ϕ(kρ, ρ, z) ≈ cosϕvTE2H

(2)
0 (kρρ), (3.8)

GEM
kρ,z(kρ, ρ, z) = j2 sinϕ

kρvTM

kz2
H

(2)
1 (kρρ). (3.9)

In order to perform the integration in kρ and obtain the electric field, it is important to take
note of the singularities in kρ-plane. This is done in the next section.

3.2 Singularities in kρ-plane

Singularities of the integrand in Eq.(3.3) can stem both from the spectral Green’s function and
the magnetic current. These singularities are firstly illustrated separately in Figure 3.1.

G̃EM
kρ

contains two singularities: branch-point kρ = k2 and pole kρ = kTM0
ρ (Figure 3.1a). There

is only one branch-point and it comes from the upper semi-infinite medium (since only the
z > 0 part of the transmission line in Figure 2.1 is solved to obtain currents and voltages that
are inserted in the Green’s function).

On the other hand, Mx has one pole kx = kslot
x and three branch-points kx = k0, kx = k2, kx =

kTM0
ρ

2 (Figure 3.1b). The branch points k0 and k2 come from the two semi-infinite media,
which are both taken into account when calculating Mx (demonstrated in Section 2.2). kTM0

ρ

branch point comes form the TM0 pole in Green’s function. Since the slot is oriented along
the x-axis, the singularities of the magnetic current are found in kx. However, the integration
Eq.(3.3) is performed in kρ. For that reason the singularities of Mx are presented in kρ-plane
using the relation between the two planes kρ =

kx
cosϕ

(Figure 3.1c).

Analysing the Figure 3.1, it can be noted that the singularities of the spectral Green’s function
do not depend on ϕ and are constant, while the singularities of the magnetic current change
with ϕ as 1

cosϕ
. This observation helps with understanding the differences in behaviours of the

TM0 and slot modes.

Finally, the singularities of Mx and G̃EM
kρ

are not separated, but are existing simultaneously in
kρ-plane. For an arbitrary angle ϕ, the kρ-plane is presented in Figure 3.2a. Planes E and H are
special cases for which ϕ is equal to 90° and 0°, respectively. As can be noted from Figures 3.2b
and 3.2c, E-plane only has the singularities of the Green’s function, while H-plane contains

2Even though mentioned in this section, the branch-point kTM0
ρ and its impact are not taken into account

in the analysis that is put forward in this chapter since its contribution is negligible.
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the singularities of the magnetic current.

(a) Singularities of G̃EM
kρ

: kρ-plane

(b) Singularities of Mx: kx-plane (c) Singularities of Mx: kρ-plane

Figure 3.1: Singularities of G̃EM
kρ

and Mx

(a) Singularities in arbitrary plane

(b) Singularities in E-plane (c) Singularities in H-plane

Figure 3.2: Singularities in different planes
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Having shown the kρ-plane and singularities in it, the next section describes how to integrate
Eq.(3.3) in order to obtain the electric field.

3.3 Integration

As it was presented in the previous section, there are many singularities in kρ-plane. For an
arbitrary angle ϕ, there are four branch-points and branch-cuts, and two poles. Before the
integration for this case is put forward, for the sake of simplicity, the main principle behind it
is explained with an example with less singularities.

For this demonstration, the goal is to calculate the electric field:

E⃗(r⃗) =

∫ ∞

−∞
f(kρ)dkρ, (3.10)

where f(kρ) is a function that contains two singularities in kρ-plane: one branch-point kρ =
kbranch and one pole kρ = kpole.

(a) Original integration path (b) Cauchy’s residue theorem

(c) Deformed integration path

Figure 3.3: Applying Cauchy’s residue theorem

One possible integration path is presented in Figure 3.3a. It is slightly modified from the
real-axis path in order to avoid the branch-points, and is entirely on the top Riemann sheet of
kbranch. This integration results in the total field, but it does not give any information about
the separate contributions of the pole and the branch.
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In order to obtain different contributions to the total field, the Cauchy’s residue theorem is
used [11]. This theorem says that if the integration is performed over a closed contour C, then
that is equal to the residue contributions of the poles that the contour is enclosing (Eq.(3.11),
Figure 3.3b). ∫

C

f(kρ)dkρ = 2πj
n∑

k=1

Reskρ=kρ,kf(kρ) (3.11)

Going back to the example and minding the crossing of the branch, the SDP (Steepest Descent
Path)3 is added to the original integration path in order to form a closed contour (Figure 3.3c).
It is important to note that in order for the two paths to form a closed contour, they need
to be in the same Riemann sheet with respect to kbranch at the points where they meet. The
contributions of the two integration paths can be written as:

Original path integration − SDP integration = pole contribution, (3.12)

Original path integration = SDP integration + pole contribution, (3.13)

where the minus sign in front of the SDP contribution comes from the reverse direction of the
path with respect to the one of the original path. It can be noted from Eq.(3.13) that the
deformed integration path gives the total electric field, but it also provides with the separate
contributions of the SDP and the pole.

In the upcoming subsections, the explained method is used in order to define the integration
paths in different planes and obtain the electric field results. The definition of the SDP and how
the Riemann sheets with respect to different branch-cuts are chosen are given in Appendix B,
while the residual contributions of the modes and their shadow boundary angles are presented
in Appendix C.

3.3.1 E-plane

As was previously noted in Figure 3.2b, there are only singularities of the spectral Green’s
function in E-plane: one branch-point and one pole. Hence, the integration path chosen is
very similar to the example given at the beginning of this section. This integration path is
illustrated in Figure 3.4.

When the angle θ is smaller than the shadow boundary angle of the TM0 mode, the TM0 pole
is not captured (Figure 3.4a). After θ becomes larger than θTM0

SB , the pole is crossed and its
contribution can be separated as the residue of the integrand evaluated at kρ = kTM0

ρ . The
Riemann sheets in which the integration path is changes as the branch-cuts are crossed.

In order to illustrate the results obtained with these integration paths, the electric field is cal-
culated on the surface of the sphere center of which is located bellow the ground plane (Figure
3.5). The coordinate system is chosen as such because it is known that antennas like the one
that is being analysed have their phase center bellow the ground plane [12]. Furthermore, the
parameters of the antenna are h = ws = 0.04λ0, εr = 11.9.4

3SDP is defined in detail in Appendix B.
4These parameters are used throughout this chapter.
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(a) θ ≤ θTM0
SB (b) θ > θTM0

SB

(c) Riemann sheet legend

Figure 3.4: Integration in E-plane

Figure 3.5: Near-field sphere
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(a) Contributions to the electric field (solid: SDP, dot: TM0)
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(b) Total electric field obtained by summing the contributions (SDP+TM0)

Figure 3.6: Electric field in E-plane

In Figure 3.6a, the contributions of the electric field are plotted. As can be noted, up until a
certain angle θ (shadow boundary angle of TM0), there is only the contribution of SDP, which
corresponds to the integration path in Figure 3.4a. At θ = θTM0

SB , the SDP contribution is
discontinuous. Above that angle, the contribution of the TM0 pole is added (integration path
Figure 3.4b). In order to demonstrate that these contributions result in a continuous field, their
summation is plotted in Figure 3.6b.

3.3.2 H-plane

Compared to the E-plane, H-plane has two branch-points more that need to be taken into
account when integrating. In Figure 3.7, the integration paths for H-plane are presented.

When θ ≤ βH
0 , θslot,HSB (βH

0 , θslot,HSB are β0, θslotSB evaluated for ϕ = 0°, respectively, where
β0 = arcsin kρ

k0/cosϕ
5), the integration path is illustrated in Figure 3.7a. As can be seen, the

integration path crosses the real-axis for the first time on the left-hand side of k0 and the pole
is not captured. However, when θ becomes larger than βH

0 , in order to close the contour with
the original integration path (Figure 3.3c), k0 branch contribution needs to be added to SDP.
This way, starting from the top Riemann sheets of the both branch-cuts and changing the
Riemann sheets when the branch-cuts are crossed, the SDP ends in top Riemann sheets too
(Figure 3.7b). Additionally, when θ gets larger than the shadow boundary angle of the slot

5Appendix B.
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mode, its contribution is added (Figure 3.7c).

(a) θ ≤ βH
0 , θslot,HSB (b) θ > βH

0 , θ ≤ θslot,HSB

(c) θ > βH
0 , θslot,HSB

(d) Riemann sheets legend

Figure 3.7: Integration in H-plane

The electric field results are plotted in Figure 3.8. Firstly, the contribution of the pole and
summed up contributions of SDP and branch are presented (Figure 3.8a). Similar to the E-
plane, bellow the shadow boundary angle (of the slot mode), there is no contribution of the pole.
The slot mode starts contributing explicitly for θ > θslot,HSB (corresponding to the integration
path Figure 3.7c). As a confirmation, the summation of all the contributions is shown in
Figure 3.8b where it can be noted that they result in a continuous field.
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(a) Contributions to the electric field (solid: SDP+branch, dash: slot)
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(b) Total electric field obtained by summing the contributions (SDP+branch+slot)

Figure 3.8: Electric field in H-plane

3.3.3 Arbitrary plane

Singularities in kρ-plane for an arbitrary plane were illustrated in Figure 3.2a. In order to per-
form the integration for an arbitrary ϕ, all of these singularities need to be navigated around.
Different cases are presented in Figure 3.9.

In Figure 3.9a, the integration path is presented for when no poles are captured and angle θ
is smaller than β0(ϕ) (as defined in Appendix B). The SDP starts on the top Riemann sheet
for all three branch-cuts and after crossing them all twice, goes back to the top Riemann
sheets. When θ becomes larger than β0(ϕ), similarly to the integration in H-plane, k0

cosϕ
contri-

bution is added, minding the crossings of all three branch-cuts (Figure 3.9b). Furthermore, for
θ > β0(ϕ), θ

TM0
SB , θslotSB (ϕ), the poles of both modes are captured in bottom Riemann sheets of k2

and k2
cosϕ

and top Riemann sheet of k0
cosϕ

(Figure 3.9d).

However, as angle ϕ increases in value, two things can be observed. Firstly, for β0(ϕ) > θTM0
SB ,

TM0 pole is captured in the bottom Riemann sheets of all three branch-cuts. This effects the
way the residual contribution of the mode is calculated (Appendix C). Secondly, above a certain
angle ϕ, the slot mode is not captured and it does not explicitly contribute to the field. This
angle corresponds to ϕ for which the shadow boundary angle of the slot mode becomes larger
than 90°.
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(a) θ ≤ β0(ϕ), θ
TM0
SB , θslotSB (ϕ) (b) θ > β0(ϕ), θ ≤ θTM0

SB , θslotSB (ϕ)

(c) θ > β0(ϕ), θ
TM0
SB , θslotSB (ϕ)

(d) Increasing angle ϕ

(e) Riemann sheets legend

Figure 3.9: Integration in an arbitrary plane

In the above-presented figures, the second time that the SDP crosses the real-axis is always
after k2

cosϕ
, assuring that the integration path ends in top Riemann sheets for all three branch-

cuts. However, this is not the case for all θ. As is discussed in Appendix B, the SDP is defined
around k2 branch. As θ grows larger, the SDP becomes steeper and the points where it crosses
the real-axis get closer to k2. The integration paths that take into account these additional
crossings of the branches are illustrated in Figure 3.10.

If only the k2
cosϕ

branch-cut is crossed above k2 branch-point, the integration path is presented
in Figure 3.10a. In order to form a closed contour with the original path (as discussed at
the beginning of this section), contribution of the k2

cosϕ
branch should be added. Similarly, in

Figure 3.10b the integration path is presented when the contributions of both k2
cosϕ

and k0
cosϕ

should be added. However, the integration paths given with dashed lines are not implemented
in the code used to obtain the results, since their contribution is negligible.
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(a) k2
cosϕ branch (b) k0

cosϕ and k2
cosϕ branches

Figure 3.10: Additional branches

To demonstrate the results obtained for an arbitrary angle ϕ, electric field in D-plane is plotted
in Figure 3.11. Firstly, the separate contributions are plotted: TM0 mode, slot mode and SDP
together with the branch contribution. Co. and cx. components are presented in Figures 3.11a
and 3.11b, respectively. As can be noted, the two modes start contributing at different angles
θ, since their shadow boundary angles are different. Furthermore, they do not have the same
spreading term. These differences between the modes are the reason for the high cx. pol and
the asymmetry of the radiation pattern. Finally, in Figures 3.11c and 3.11d the electric field
obtained when all the contributions are summed up is plotted, showing that the resulting field
is continuous.
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(a) Contributions to the electric field: co. (solid: SDP+branch, dash: slot, dot: TM0)
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(b) Contributions to the electric field: cx. (solid: SDP+branch, dash: slot, dot: TM0)
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(c) Total electric field obtained by summing the
contributions: co. (SDP+branch+slot+TM0)
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(d) Total electric field obtained by summing the
contributions: cx. (SDP+branch+slot+TM0)

Figure 3.11: Electric field in D-plane

3.4 Verification

In the following section, the verification of the electric field results is presented. Comparison
is performed with respect to the real-axis integration of Eq.(3.3) and the results obtained with
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CST.6
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(a) Comparison to the real-axis integration (solid: summation of contributions, circles: real-axis
integration)
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(b) Comparison to the CST results (solid: summation of contributions, circles: CST)

Figure 3.12: Verification of the electric field

The real-axis integration is slightly deformed so as to avoid the branch-points laying on the
real-axis and is given with the expression kpath

ρ = kρ + 0.01je−
1
2
(
kρ
k2

)2 . As was mentioned previ-
ously, this integration path results in the total electric field. The summation of the separate
contributions presented in the previous section is compared to the total electric field in Fig-
ure 3.12a. It can be noted that the agreement between the two integration paths is perfect.
This means that the complex analysis and the integration paths presented in Section 3.3 are
correct.

On the other hand, in Figure 3.12b the results are compared to the ones obtained with full
6The results presented in this section are obtained without using the large-argument approximation on the

Hankel functions from Section 3.1.
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wave CST simulation. As can be seen, the match is not perfect for such a small r. This was
expected due to the approximation made on the magnetic current Mx(kρ, α) ≈ Mx(kρ, ϕ) which
is pretty rough considering that the current contains singularities. However, this choice was
made so as to not perform numerical closing of the integral in α which would be very demanding
numerically. Finally, even though the match is not perfect for smaller values of r, the insight
into the behaviour of the modes and how they contribute to the field that is gained with the
spectral analysis of the near field performed is valid.



Chapter 4

Leaky wave antenna with multiple slots

In the previous chapter, using the spectral analysis of the near field, TM0 and slot modes were
characterised and an insight into the behaviour of these modes was presented. However, as
was discussed in Chapter 2, the main problem of the infinite slot leaky wave antenna remains
unsolved: high cross pol. component. Once again, this is demonstrated in Figure 4.1 for
h = ws = 0.02λ0c

1 and it can be noted that the cross pol. in D-plane is around −7dB, which
represents a strong interference.2
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Figure 4.1: Directivity of the infinite slot LWA: εr = 11.9, h = ws = 0.02λ0c

In the next section, the current state of the art feeds of leaky lens antenna that suppress the
cross pol. are presented and analysed.

4.1 Tapered slot

Up until this point, the most effective way to deal with high cross pol. has been to taper the
slot, as presented in [2], [3]. The slot is then defined through the tapering angle γtap illustrated
in Figure 4.2. Due to this widening of the slot, the space wave becomes more dominant and
the contribution of the slot leaky wave becomes weaker. Therefore, since the slot mode is the

1Throughout this chapter, λ0c corresponds to the central frequency of f = 15 GHz.
2If not stated otherwise, the radiation patterns presented in this chapter are at the central frequency. Fur-

thermore, all the radiation patterns are obtained via full wave CST simulations.

37
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mode with the stronger cross pol. contribution (as discussed in Subsection 2.3.2), it is expected
that the cross pol. would get smaller with tapering of the slot.

Figure 4.2: Tapered slot

In order to demonstrate the effect of tapering the slot on the far field of the antenna, two
designs are compared:

1. Height h = 0.02λ0, tapering angle γtap = 30° [2],

2. Height h = 0.016λ0, tapering angle γtap = 70° [3].

The far fields of these two designs are presented in Figure 4.3. As can be noted, the fields in
H and D-planes are more symmetric than that of a slot without the taper and the cross pol.
in D-plane is lower: for h = 0.02λ0c, γtap = 30° the cross pol. is approximately −10dB, while
for h = 0.016λ0c, γtap = 70° it is around −14dB. It should also be noted that the antenna with
smaller air-cavity is less directive and its pattern is broader in θ, which is an important metric
if such an antenna is used as a feed to a lens. Furthermore, the cross pol. of this antenna is
suppressed more not only due to the tapering of the slot, but also because of the fact that the
modes are very weak for lower values of h (as can be clearly noted from Figure 2.17).
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(a) h = 0.02λ0c, γtap = 30°, εr = 11.9
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(b) h = 0.016λ0c, γtap = 70°, εr = 11.9

Figure 4.3: Directivity of the tapered slot antennas

The level of cross pol. component can also be quantified with the cross pol. efficiency that is
defined as:

ηcx =

∫ 2π

0

∫ π
2

0
|E⃗co

FF (θ, ϕ)|2sin θdθdϕ∫ 2π

0

∫ π
2

0
|E⃗FF (θ, ϕ)|2sin θdθdϕ

. (4.1)

This efficiency is plotted for the non-tapered slot and the two tapered antennas in Figure 4.4. As
was expected, the efficiency is increased drastically with the taper. However, as was mentioned
at the beginning of this section, increasing the taper eventually leads to losing the slot mode to
the space wave. In the next section, a new geometry is presented to deal with high cross pol.
while maintaining the leaky wave modes.
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Figure 4.4: Cross pol. efficiency: non-tapered vs. tapered slot

4.2 Introduction of the LWA with multiple slots

As was demonstrated in the previous section, both tapering the slot and decreasing the thick-
ness of the air-cavity contribute to lowering the level of cross pol. This effect is a consequence
of removing the leaky wave components in the current. Since the leaky waves are by design
made to be weak, the space wave is the most dominant component of the field which leads to
less directive radiation patterns (Section 2.2). On the other hand, if there is no taper and the
air-cavity is large, the TM0 and slot modes are non-symmetric in ϕ leading to a high cross pol.
component. In this section, the idea of obtaining more symmetrical contributions of the TM0

and slot modes by adding additional slots is explored.

Figure 4.5: LWA with three slots

As an example of the leaky wave antenna with multiple slots, triple slot antenna is illustrated
in Figure 4.5. Additional to the slot along the x-axis, the triple slot antenna consists of two
other slots that are rotated in xy-plane by an angle αr. This structure is fed by a delta-gap
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generator in the center with the goal of exciting the slot mode in all three slots. Therefore,
using the insight about the behaviour of the slot mode gained in the work presented previously,
the shape of the radiation pattern can be modified w.r.t. the single slot antenna.
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Figure 4.6: Directivity of the LWA with three slots: εr = 11.9, h = ws = 0.02λ0c, αr = 30°
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Figure 4.7: Cross pol. efficiency: non-tapered single slot vs. tapered single slot vs. triple slot

In Figure 4.6, the directivity of the LWA with three slots is presented. Even though the air-
cavity thickness of this antenna is the same as the air-cavity thickness of one of the tapered
slot antennas presented in the previous section, it is evident that the cross pol. component in
D-plane is significantly lower: around −20dB. This effect can be further quantified by calculat-
ing cross pol. efficiency (Figure 4.7). Notably, the efficiency of the triple slot antenna is much
higher than that of the tapered slot with the same height h and γtap = 30°, and slightly smaller
than the efficiency of the other tapered slot case presented.3

3Based on the directivity plots presented in the previous section, it is intuitive to assume that the cross pol.
efficiency of the triple slot antenna would be better than the efficiencies of both tapered slot cases presented
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Based on the results presented in this section, it can be concluded that the LWA with three slots
gives an additional degree of freedom that can be used to control the leaky wave contributions
so as to achieve very low cross pol. In the next subsection, the potential of the leaky wave
antenna with three slots as a feed to a leaky lens is analysed.

4.2.1 LWA with three slots as a feed to a lens

The antennas analysed so far are usually used as a feed to a lens in order to achieve directive
radiation patterns across a wide frequency band. For that reason, performances of the lens an-
tenna with different feeds (non-tapered single slot, tapered single slot, triple slot) are presented
in this subsection.

In Figure 4.8, the geometry of an elliptical lens antenna is illustrated. Diameter of the lens
is fixed to D = 10λ0c. Truncation angle is noted as θ0, while the relative permitivity of the
matching layer is εr,m =

√
εr.

Figure 4.8: Leaky lens antenna

As a measure of the performance of such antennas, aperture efficiency in reception is used. This
efficiency is defined as:

ηap = ηf2b
Pload

Pinc

= ηf2b
R2

GO|
∫ 2π

0

∫ θ0
0

E⃗GO(θ, ϕ) · E⃗FF (θ, ϕ) sin θdθdϕ|2

2ζ2
∫ 2π

0

∫ π
2

0
|E⃗FF (θ, ϕ)|2sin θdθdϕ

1

Pinc

, (4.2)

where E⃗GO represents the incoming field on GO sphere of radius RGO, E⃗FF the far field of the
feed, ηf2b front-to-back efficiency of the feed and Pinc the power incident on the lens surface by
a plane wave. Characteristic impedance is given as ζ2 =

120π√
εr

. [13]

The aperture efficiencies for different feeds of the leaky wave lens antenna are plotted in Fig-
ure 4.9. This was done by keeping the diameter of the lens fixed and optimising the truncation
angle and the phase center of the feed so as to obtain the highest aperture efficiency at the
central frequency. It can be noted that the lens antenna with the triple slot outperforms the
tapered slot of the same air-cavity thickness. Comparing the aperture efficiency of the triple
slot fed antenna to the one with the tapered slot of γtap = 70° and h = 0.016λ0c, the tapered

(−20dB cross pol. level in D-plane compared to −10dB and −14dB). However, the cross pol. does not only
exist in D-plane and its maximum might be elsewhere. This is something that is accounted for in the cross pol.
efficiency.
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slot is slightly better, which can be attributed to the smaller air-cavity and very large tapering
angle. However, its truncation angle is larger, which would contribute to more complicated
manufacturing of the matching layer.
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Figure 4.9: Aperture efficiency: non-tapered vs. tapered slot vs. triple slot

Furthermore, in Figure 4.10 the amplitude of the S11-parameter is plotted for the analysed feeds
showing that the triple slot antenna has a good matching across the observed 3 : 1 frequency
band. Additionally, the input impedance of the triple slot antenna is the highest of all feeds
which could be beneficial for the application of time domain imaging using photoconductive
antennas, for example.
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Figure 4.11: Secondary radiation patterns of the leaky lens fed by the tapered single slot:
εr = 11.9, h = 0.02λ0c, γtap = 30° (red: H-plane, blue: E-plane, green: D-plane, magenta:

D-plane cx.)
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Figure 4.12: Secondary radiation patterns of the leaky lens fed by the LWA with three slots:
εr = 11.9, h = ws = 0.02λ0c (red: H-plane, blue: E-plane, green: D-plane, magenta: D-plane

cx.)

Finally, in Figures 4.11 and 4.12, the secondary radiation patterns of the leaky lens antenna fed
by a single tapered slot and LWA with three slots of the same air-cavity thickness are presented,
respectively.4 Comparing these results at three frequency points f = 7, 15, 23 GHz, it can be

4The secondary radiation patterns were obtained using Geometrical Optics / Fourier Optics Tool for Ana-
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noted that the cross pol. in D-plane is significantly better for the antenna with three slots.

4.3 Parametric analysis of the LWA with multiple slots

In the previous section, the potential of the leaky wave antenna with multiple slots was demon-
strated. In the upcoming subsections, parametric analysis of the antenna is presented and the
results obtained are discussed. The dependence on the following parameters is discussed: angle
αr, the number of slots, the air cavity thickness h and the slot taper.

4.3.1 Angle αr

A new parameter that is introduced with the LWA with multiple slots is the angle αr. In this
subsection, the dependence of the feed’s far field and the aperture efficiency of the consequent
leaky lens are analysed.

In Figure 4.13, the directivity of the leaky wave antenna with three slots is presented for dif-
ferent angles αr ranging from 15° to 45°. Firstly, it can be noted that as αr gets larger, the
radiation pattern in E-planes gets more directive. Similarly, the direction of radiation in D-
plane is slowly shifted to smaller angles of θ. This could be explained by the fact that with
introducing the two additional slots, the field in E and D-planes get their dominant contribution
from the slot modes of these two slots. Even though the modes excited in the three slots are
not analysed in detail in this report due to complexity of solving that problem, for the sake
of simplicity and the first-level explanation, it is imagined that the slot mode is excited in all
three slots. Following that logic, a rough illustration for αr = 45°: contribution in D-plane
is expected to be similar to the contribution in H-plane for the single slot antenna, while the
pattern in E-plane would be more similar to the pattern in D-plane of the antenna with one slot.

Another thing that can be read from the graphs presented in Figure 4.13 is that at first the
cross pol. component in D-plane gets lower with increasing αr and after reaching the minimum
value for αr ≈ 30°, the cross pol. increases again.

The aperture efficiencies of the leaky lens fed by three-slot LWAs with different αr are presented
in Figure 4.14. It can be seen that the highest aperture efficiency is obtained with αr = 30°.

lyzing Quasi-optical Components (GO/FO) for which the interface is presented in [14].
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Figure 4.13: Directivity of the LWA with three slots: εr = 11.9, h = ws = 0.02λ0c (red:
H-plane, blue: E-plane, green: D-plane, magenta: D-plane cx.)
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Figure 4.14: Aperture efficiency: εr = 11.9, D = 10λ0c, h = ws = 0.02λ0c

4.3.2 Number of slots

Thus far, the analysed leaky wave antenna consisted of three slots. In this subsection, the
antenna with two slots is presented (Figure 4.15). This is done with anticipating the tapering
of the slots presented later in Subsection 4.3.4 since the double slot antenna offers opportunity
for larger angle of tapering than the LWA with three slots.

Figure 4.15: LWA with two slots

For the sake of having contributions of the slot modes in D and H-planes as similar as possible,
αr as defined in Figure 4.15 is taken to be 22.5°. The far field of the LWA with two slots for
h = ws = 0.02λ0c is plotted in Figure 4.16a, while the directivity of the antenna with three
slots for the same h and ws and αr = 30° is presented again in Figure 4.16b. It can be noted
that the antenna with two slots is slightly more directive and has larger cross pol. than the
antenna with three slots. Furthermore, in the E-plane of the double slot antenna, due to the
smaller angle αr there is radiation pointing in the direction of θ ≈ 60°.
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Figure 4.16: Directivity of the LWA with multiple slots εr = 11.9, h = ws = 0.02λ0c

The aperture efficiencies of the LWA with two and three slots are presented in Figure 4.17. It
can be noted that the leaky lens fed with antenna with three slots performs slightly better than
the antenna with two slots. However, the truncation angle of the LWA with two slots is slightly
smaller than that of a LWA with three slots.
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Figure 4.17: Aperture efficiency: LWA with two slots αr = 22.5° vs. LWA with three slots
αr = 30°: εr = 11.9, D = 10λ0c, h = ws = 0.02λ0c

4.3.3 Air-cavity thickness

As was discussed in Section 4.1, in order to achieve lower cross pol. of the feed and better aper-
ture efficiency of the leaky lens, the air-cavity thickness can be decreased. In this subsection,
the results for the leaky wave antenna with three slots are presented for the air-cavity thickness
of h = 0.016λ0c.

The far field of the LWA with three slots and h = ws = 0.016λ0c is plotted in Figure 4.18, while
the aperture efficiency of the leaky lens fed by it is presented in Figure 4.19. As can be noted,
the aperture efficiency is increased with thinner air-cavity, but the truncation angle of the lens
is also increased which can be a downside for the manufacturing of certain types of matching
layers.
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Figure 4.18: Directivity of the LWA with three slots: εr = 11.9, h = ws = 0.016λ0c
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Figure 4.19: Aperture efficiency: LWA with three slots: εr = 11.9, h = ws = 0.016λ0c vs.
h = ws = 0.02λ0c

4.3.4 Slot tapering

Finally, in this subsection the tapering of the slots is explored. The analysed case is the leaky
wave antenna with two slots h = ws = 0.016λ0c, αr = 22.5° and γtap = 20° (Figure 4.20).

Figure 4.20: LWA with two tapered slots

From the far field presented in Figure 4.21, it can be noted that the cross pol. is further de-
creased compared to all the other cases analysed so far. Furthermore, the radiation at larger
angles of θ is decreased, and the pattern is more symmetric. However, as discussed in Sec-
tion 4.1, the leaky wave contribution decreases leading to a less directive pattern.
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Figure 4.21: Directivity of the LWA with two tapered slots:
εr = 11.9, h = ws = 0.016λ0c, αr = 22.5°, γtap = 20°

The aperture efficiency of the lens antenna fed by the LWA with two tapered slots is plotted
in Figure 4.22 and compared to the aperture efficiencies of the cases previously analysed. It
can be noted that the LWA with two tapered slots outperforms the tapered single slot antenna
from [3] in terms of the aperture efficiency. Furthermore, the truncation angle is decreased
from 52° and 48°. However, this decrease is not large enough to help with the manufacturing
of the matching layer significantly. In order to understand what aspect of the antenna could
be further improved, different efficiencies are analysed.
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Figure 4.22: Aperture efficiency: LWA with two tapered slots
εr = 11.9, h = ws = 0.016λ0c, αr = 22.5°, γtap = 20° vs. previous cases

In Figure 4.23, different efficiencies are plotted [15]. As can be noted, the most problematic
aspect is the spillover. This is a direct consequence of decreasing the directivity by weakening
the leaky waves through decreasing the thickness of the air-cavity and tapering the slots. How-
ever, if the taper and small air-cavity are not employed, spillover efficiency increases but the
radiation pattern loses in symmetry and consequently the amplitude and aperture efficiency.
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Therefore, the solution is not to simply increase h and use smaller taper, but the air-cavity of
non-uniform thickness would likely need to be used.
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Figure 4.23: Efficiencies of the LWA with two tapered slots:
εr = 11.9, h = ws = 0.016λ0c, αr = 22.5°, γtap = 20°

To conclude, for the same thickness of the air-cavity, the leaky lens antenna fed by the LWA with
multiple non-tapered slots achieves better aperture efficiency than having a single tapered slot
as the feed due to the better performance in terms of the cross pol. (Figure 4.9). Additionally,
the lens truncation angle is reduced allowing easier manufacturing of the matching layer. On
the other hand, if higher aperture efficiency is needed while maintaining the small truncation
angle of the lens, non-uniform air-cavity might be the solution.



Chapter 5

Conclusions and future work

5.1 Summary and conclusions

In this report, the analysis of the infinite slot leaky wave antenna was presented and a new
geometry for the feed of a leaky lens was explored.

Firstly, the TM0 mode and its propagation constant were presented (Chapter 2). Next, the
slot mode was analysed. Observing the behaviour of the slot pole, it was not clear in which
Riemann sheet with respect to k0 the pole was to be found. For that reason, the integration
paths in ky-plane were defined and magnetic current was calculated as a summation of different
contributions (space wave and leaky waves). Comparing this magnetic current with the total
magnetic current obtained via the integration path that stays on top Riemann sheets for both
branch-cuts, it was concluded that the slot pole is found in the top Riemann sheet for k0 and
the bottom Riemann sheet for k2. Furthermore, it was noted that as the air-cavity and the
width of the slot grow larger, the slot mode becomes less dominant and the contribution of
the space wave increases. Next, the approximated contributions of the leaky waves were shown
and the high level of cross pol. was noted and linked to the observation that the TM0 and slot
modes are intrinsically different in their natures and dependency on ϕ.

In order to gain deeper understanding of the leaky waves’ behaviour, the spectral analysis of
the near field was performed and presented in Chapter 3. Firstly, the closing of the integral
in α was shown together with the approximation on the magnetic current that allows for an
analytical solution of the integration in α. This was done in order to avoid the numerical
method of closing this integral which would require a lot of computational time. Secondly, the
singularities in kρ-plane were noted so as to understand how the integration should be per-
formed. The integration paths in different planes were presented next together with the results
of the electric field obtained with this approach. Finally, the electric field results were verified
with the total electric field calculated when the integration path does not cross any branch-cuts
demonstrating that the complex analysis presented in this chapter is valid. The comparison
with the results obtained with full wave CST simulation does not result in the perfect match,
but this outcome was expected due to the rough approximation made on the magnetic current
and does not take away the gained insight into the behaviours of the modes.

Finally, in Chapter 4 a new geometry: leaky wave antenna with multiple slots was explored and
compared to the state of the art leaky lens feed (tapered slot). As an example of the LWA with
multiple slots, antenna with three slots was illustrated and its performance in terms of the cross
pol. efficiency and aperture efficiency of the leaky lens that uses it as the feed was put forward.
It is concluded that for the same air-cavity thickness, the LWA with three slots outperforms

53
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the tapered slot in terms of cross pol. efficiency and, consequently, in aperture efficiency.
Furthermore, the lens truncation angle is decreased which can be beneficial in manufacturing
of the matching layer. Next, the parametric analysis of the new feed geometry was presented
with analysing the angle αr, the number of slots, air-cavity thickness and the tapering of the
slots. It was seen that the aperture efficiency can be increased further by reducing the air-cavity
thickness and tapering the slots, but with the consequent increase of the truncation angle as
well.

5.2 Future work

As was concluded in the previous chapter, in order to achieve higher aperture efficiency with-
out increasing the lens truncation angle, additional degree of freedom is likely needed. A
possible solution through which this new degree of freedom might be gained is the non-uniform
air-cavity. In this section, the introduction to the analysis of the tapered air-cavity is presented.

Figure 5.1: Uniformly tapered air-cavity

In Figure 5.1, the geometry of the antenna with the uniformly1 tapered air-cavity is illustrated.
As can be noted, the angle that defines the taper is δtap. The far field results obtained for
different air-cavity tapering angles of the infinite slot LWA are plotted in Figure 5.2. It is
evident that the pointing angle in the main plains decreases as the tapering angle increases.
Furthermore, the field gets more directive. This was to be expected due to the fact that the
air-cavity becomes thicker with the tapering. It can also be noted that the cross pol. grows
with bigger tapering angle δtap.

Observing the far field in main planes of the infinite slot leaky wave antenna (Figure 4.1) and
their asymmetry, it can be concluded that in order to achieve a more symmetrical pattern,
the radiation in E-plane needs to be more directive. Ideally, the pattern in H-plane would be
slightly less directive in order to have similar pattern as the one desired in E-plane. However,
based on the results presented in Figure 5.2, with tapering the air-cavity, the directivity in-
creases in all planes. For that reason, this geometry would not lead to a more symmetrical
pattern.

1Uniformly meaning that the tapering angle is the same for every plane.
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Figure 5.2: Directivity of the infinite slot LWA with uniformly tapered air-cavity:
εr = 11.9, h = ws = 0.02λ0, δtap = [0, 1, 3, 5]°

However, a potential solution to this problem might be to apply the tapered air-cavity in certain
sectors and to have it uniform in others. More precisely, if it is assumed that the far field in
H-plane is dominantly dependent on the air-cavity around the slot and the field in E-plane on
the air-cavity in the plane perpendicular to the slot, the air-cavity thickness could be designed
in the manner presented in Figure 5.3. With this, the goal is to have H-plane remain the same
while making the pattern in E-plane more directive. Additionally, in order to decrease the cross
pol. levels presented in Figure 5.2c, LWA with multiple slots can be used. Furthermore, if the
H-plane needs to be less directive, small taper of the slots can be employed.

Figure 5.3: Air-cavity tapered in sectors (yellow: uniform air-cavity, purple: tapered
air-cavity)

The presented ideas are yet to be further explored. The analysis of these designs and their
implementation are expected to be the continuation of the work presented within this report.
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Appendix A

Closing the integral in α analytically

In this appendix, the steps of closing the integral in α are put forward [16]. The expression for
the electric field after making the approximation on α of the magnetic current is:

E⃗(r⃗) ≈ 1

4π2

∫ ∞

0

Mx(kρ, ϕ)
(∫ 2π

0

G̃EM(kρ, α, z)e−jkρρ cos (α−ϕ)dα
)
kρdkρ. (A.1)

Separating components of the electric field:

Ex/y/z(r⃗) ≈
1

4π2

∫ ∞

0

Mx(kρ, ϕ)
(∫ 2π

0

GEM
x/y/zx(kρ, α, z)e

−jkρρ cos (α−ϕ)dα
)
kρdkρ. (A.2)

Taking kx = kρ cosα, ky = kρ sinα, components of the spectral Green’s function are given as:

GEM
xx (kρ, α, z) =

(vTM − vTE)kxky
k2
ρ

=
1

2
(vTM − vTE) sin 2α, (A.3)

GEM
yx (kρ, α, z) =

vTEk
2
x + vTMk2

y

k2
ρ

=
1

2
vTE(1 + cos 2α) +

1

2
vTM(1− cos 2α), (A.4)

GEM
zx (kρ, α, z) = −ζ2

kyiTM

k2
=

kyvTM

kz2
. (A.5)

Using the following identity:∫ 2π

0

cos
sin(nα)e−jkρρ cos (α−ϕ)dα = j−n2πcos

sin(nϕ)Jn(kρρ), (A.6)

closed integral in α is equal to:

Fx(kρ, ρ, z) = [vTE − vTM ]π sin 2ϕJ2(kρρ), (A.7)
Fy(kρ, ρ, z) = vTEπ[J0(kρρ)− cos 2ϕJ2(kρρ)] + vTMπ[J0(kρρ) + cos 2ϕJ2(kρρ)], (A.8)

Fz(kρ, ρ, z) =
kρvTM

kz2
j2π sinϕJ1(kρρ), (A.9)

where Fx/y/z(kρ, ρ, z) =
∫ 2π

0
GEM

x/y/zx(kρ, α, z)e
−jkρρ cos (α−ϕ)dα and J0/1/2(kρρ) are Bessel functions

of zeroth, first and second order. The electric field expression is left with the integral in kρ:

Ex/y/z(r⃗) ≈
1

4π2

∫ ∞

0

Mx(kρ, ϕ)Fx/y/z(kρ, ρ, z)kρdkρ. (A.10)

Using the identity that relates Bessel functions to Hankel functions:∫ ∞

0

C(kρ)Jn(kρρ)kρdkρ =
1

2

∫ ∞

−∞
C(kρ)H

(2)
n (kρρ)kρdkρ, (A.11)
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the final form of the electric field expression is:

E⃗(r⃗) ≈ 1

8π

∫ ∞

−∞
G̃EM

kρ (kρ, ρ, z)Mx(kρ, ϕ)kρdkρ, (A.12)

where

GEM
kρ,x(kρ, ρ, z) = sin 2ϕ[vTE − vTM ]H

(2)
2 (kρρ), (A.13)

GEM
kρ,y(kρ, ρ, z) = vTE[H

(2)
0 (kρρ)− cos 2ϕH

(2)
2 (kρρ)] + vTM [H

(2)
0 (kρρ) + cos 2ϕH

(2)
2 (kρρ)], (A.14)

GEM
kρ,z(kρ, ρ, z) = j2 sinϕ

kρvTM

kz2
H

(2)
1 (kρρ). (A.15)

Using the standard transformation from cartesian to cylindrical vectors, the cylindrical com-
ponents of GEM

kρ
(kρ, ρ, z) are:

GEM
kρ,ρ(kρ, ρ, z) = sinϕ[vTE(H

(2)
0 (kρρ) +H

(2)
2 (kρρ)) + vTM(H

(2)
0 (kρρ)−H

(2)
2 (kρρ))], (A.16)

GEM
kρ,ϕ(kρ, ρ, z) = cosϕ[vTE(H

(2)
0 (kρρ)−H

(2)
2 (kρρ)) + vTM(H

(2)
0 (kρρ) +H

(2)
2 (kρρ))], (A.17)

GEM
kρ,z(kρ, ρ, z) = j2 sinϕ

kρvTM

kz2
H

(2)
1 (kρρ). (A.18)



Appendix B

β-plane integration and choosing the Rie-
mann sheets

The integration paths illustrated in Section 3.3 are in kρ-plane. However, the SDP is given in
β-plane as:

kρ = k2 sin β. (B.1)

The SDP is further defined with a change of variable β −→ τ , where τ ∈ [−∞,∞] and:

βSDP = θ + 2arcsin
τej

π
4

√
2
. (B.2)

As shown in Section 3.2, for an arbitrary angle ϕ, there are three branch-cuts the crossings of
which need to be taken into account when integrating: k2,

k0
cosϕ

and k2
cosϕ

.1 In order to explain
how these crossings are performed, the branch-cuts are analysed with respect to the functions
they stem from: k2 w.r.t. the spectral Green’s function and k0

cosϕ
and k2

cosϕ
w.r.t. the magnetic

current.

The branch-cuts for which G̃EM
kρ

is calculated are given with the choice of kz0 and kz2. Since k0 is

not a branch-point of the Green’s function, kz0 can be simply computed as kz0 = −j
√
k2
0 − k2

ρ.
However, the way kz2 is calculated depends on the location in β-plane. Amplitudes of the real
and imaginary parts can be obtained from kρ = k2 cos β, but the signs of the real and imaginary
parts need to be defined for different regions in β-plane as given in [12].

The choice of k0
cosϕ

and k2
cosϕ

Riemann sheets is made the same way as described in Subsec-
tion 2.2.2.

1The branch-cut due to the TM0 pole is not taken into consideration.
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Appendix C

Residual contributions of the modes

Shadow boundary region is defined as the region in which there is no explicit contribution of the
leaky wave modes (their contribution cannot be separated as a residual contribution). Above
the shadow boundary angle θSB (Figure C.1), the pole of the leaky wave is captured. [7]

Figure C.1: Shadow boundary region

The shadow boundary angle of a leaky wave is calculated as:

θLWSB = Re{βLW}+ arccos (sech(Im{βLW})), (C.1)

where βLW = arcsin
(

kLW
ρ

k2

)
.

Applying the Cauchy’s theorem (Eq.(3.11)), residual contribution of a leaky wave mode is
calculated starting from Eq.(3.3) as:

E⃗LW (r⃗) ≈ − 1

8π
2πjRes[G̃EM

kρ (kρ, ρ, z)Mx(kρ, ϕ)kρ]
∣∣∣
kρ=kρ,LW

. (C.2)

Substituting G̃EM
kρ

(kρ, ρ, z) with Eq.(3.4), Eq.(3.5) and Eq.(3.6), the contribution of the TM0
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mode is:1

ETM0,ρ(r⃗) ≈ −j

4
sinϕ

NTM [H
(2)
0 −H

(2)
2 ]

D′
TM

kρMx(kρ, ϕ)
∣∣∣
kρ=k

TM0
ρ

, (C.3)

ETM0,ϕ(r⃗) ≈ −j

4
cosϕ

NTM [H
(2)
0 +H

(2)
2 ]

D′
TM

kρMx(kρ, ϕ)
∣∣∣
kρ=k

TM0
ρ

, (C.4)

ETM0,z(r⃗) ≈ −1

2
sinϕ

kρNTM

kz2D′
TM

H
(2)
1 kρMx(kρ, ϕ)

∣∣∣
kρ=k

TM0
ρ

, (C.5)

where NTM and DTM are the numerator and the denominator of the voltage vTM , respectively.

Similarly, the contribution of the slot mode can be calculated. However, since the pole of the
slot mode is in kx, the change of variables needs to be performed:∫

C

f(kρ)dkρ = 2
n∑

k=1

Reskρ=kρ,kf(kρ), (C.6)

∫
C

f
( kx
cosϕ

) 1

cosϕ
dkx =

1

cosϕ
2

n∑
k=1

Reskx=kx,kf(kx). (C.7)

Residual contribution of the slot mode is calculated as:

Eslot,ρ(r⃗) ≈
j sinϕ[vTE(H

(2)
0 +H

(2)
2 ) + vTM(H

(2)
0 −H

(2)
2 )]

4 cosϕ
kρ

sinc
(kx∆gap

2

)
J0

(kyws

2

)
DM(kx)′

∣∣∣
kx=kslotx

,

(C.8)

Eslot,ϕ(r⃗) ≈
j[vTE(H

(2)
0 −H

(2)
2 ) + vTM(H

(2)
0 +H

(2)
2 )]

4
kρ

sinc
(kx∆gap

2

)
J0

(kyws

2

)
DM(kx)′

∣∣∣
kx=kslotx

, (C.9)

Eslot,z(r⃗) ≈ − sinϕ

2 cosϕ

kρvTM

kz2
H

(2)
1 kρ

sinc
(kx∆gap

2

)
J0

(kyws

2

)
DM(kx)′

∣∣∣
kx=kslotx

. (C.10)

After the large-argument approximation on Hankel functions is performed (as in Section 3.1),
the residual contribution of the TM0 mode is:

ETM0,ρ(r⃗) ≈ −j

4
sinϕ

NTM2H
(2)
0

D′
TM

kρMx(kρ, ϕ)
∣∣∣
kρ=k

TM0
ρ

, (C.11)

ETM0,ϕ(r⃗) ≈ 0, (C.12)

ETM0,z(r⃗) ≈ −1

2
sinϕ

kρNTM

kz2D′
TM

H
(2)
1 kρMx(kρ, ϕ)

∣∣∣
kρ=k

TM0
ρ

, (C.13)

and the contribution of the slot mode is equal to:

Eslot,ρ(r⃗) ≈
j sinϕ

2 cosϕ
vTMH

(2)
0 kρ

sinc
(kx∆gap

2

)
J0

(kyws

2

)
DM(kx)′

∣∣∣
kx=kslotx

, (C.14)

Eslot,ϕ(r⃗) ≈
j

2
vTEH

(2)
0 kρ

sinc
(kx∆gap

2

)
J0

(kyws

2

)
DM(kx)′

∣∣∣
kx=kslotx

, (C.15)

Eslot,z(r⃗) ≈ − sinϕ

2 cosϕ

kρvTM

kz2
H

(2)
1 kρ

sinc
(kx∆gap

2

)
J0

(kyws

2

)
DM(kx)′

∣∣∣
kx=kslotx

. (C.16)

1H
(2)
n (kρρ) ≡ H

(2)
n
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