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Abstract

Research and development of motion control in the field of autonomous driving is significantly increasing
nowadays. Model predictive control (MPC) is one of the most powerful and practical tools currently
available. It is important to select the parameters of the MPC, such as weights, in a way so that different
control objectives can be met within the desired performance constraints. The tuning procedure of
the MPC variables can be achieved automatically by employing appropriate approaches. To make
the tuning process more robust to different scenarios, one approach is to choose a decision-making
architecture that provides guidance. This thesis therefore aims at developing a system integrating an
automatic tuning method with a decision-making module. In order to achieve the objectives, Genetic
Algorithm and Behavior Tree are employed on top of an existing motion planner. The motion planner is
based on model predictive contouring control (MPCC) and the proposed method is tested in CARLA
simulation environment. This report also highlights the limitations of the proposed automatic tuning
method and gives concrete recommendations on how to deal with the shortcomings.
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1
Introduction

Research and development projects have been conducted extensively in the field of autonomous
driving [1]. As autonomous vehicles become more common on public roads, fewer accidents, more
cost-effective transportation, and reduced traffic congestion in urban areas are expected as a result. As
promising as the benefits of autonomous driving are, there are also numerous challenges to confront,
including safety, reliability, and adaptability of the autonomous system itself. There are critical tasks
that autonomous vehicles must perform, including path planning and executing motion through an
environment shared with traffic participants, and achieving robust performance using feedback controls.
The stability, accuracy, and speed of control have been improved through implementation of different
approaches [2]. One of the most powerful and practically useful approaches is model predictive control
(MPC) [3]. This method offers the advantage of being able to make predictions about the immediate
future under constraints over a given horizon.

A significant impact is exerted on control performance when there are weights for corresponding
cost terms in a MPC problem. Generally, the fixed weights used in autonomous vehicle navigation are
selected based on empirical knowledge. Such weight selection exploits the advantages of MPC and
takes stability properties into account. The question remains, however, if this method fully utilizes the
advantages of the MPC. Moreover, this strategy may not allow good generalization across a number of
different scenarios.

1.1. Problem Description
In order to implement MPC, the dynamics of the system must be explicitly modelled. As an opposite
example, proportional integral derivative (PID) control [4] does not require such explicit requirements.
However, the tuning of MPC is still considered more burdensome. For example, for a single-input
single-output (SISO) system or a decoupled multi-input multi-output (MIMO) system, each PID controller
only has at most 3 gains to adjust, these gains have an intuitive connection to the characteristics of the
system response in time domain. As a comparison, in MPC, the number of tuning parameters scales
significantly with a quadratic-cost formulation. In addition, the response of the controlled system does
not appear to have any obvious intuitive relationship between the parameters and resulting control
performance. Consequently, significant calibration effort could be expended when tuning MPC.

Consequently, one of the most challenging aspects of designing MPC is to select the tuning pa-
rameters appropriately to achieve the control objectives within the desired performance constraints.
Most commonly, these parameters are selected based on a particular criterion, for instance, in a manner
that accounts for the stability of the system and exploits the controller’s strengths. In autonomous
driving, human preferences could also be heavily influential. Developing such a controller involves
a large number of scenarios and uncertainties. It should be noted that static tuning parameters are
not robust to state variations and other uncertainties. Additionally, the selection of these parameters
on the basis of trial-and-error experiments may not be straightforward and may require considerable
expertise. One of the challenges generated by this is to make the tuning procedures more robust to

1



1.2. Related Work 2

various situations. A second challenge is determining how the preferences of the human calibrator can
be learned and reproduced in the tuning process.

To make the tuning process of MPC be more robust to different scenarios, one approach is to treat
it as a human-level driving behavior with regard to the surrounding environmental information, which
can be greatly aided by choosing a decision-making system. In order to understand the role of a
decision-making system, the general structure of an general autonomous driving system architecture
can first be introduced, as shown in Figure 1.1. Accordingly, the autonomous vehicle is expected to
operate independently in order to accomplish its mission as well as cooperate with other road users.
Decision-making has an especially important function in this structure since it is responsible for trans-
lating intentions into actions. This is accomplished by evaluating the change of the current situation
and comparing the possible actions in order to select the most appropriate one. As a general rule, the
optimal action generated from decision-making should account the motion constraints to ensure efficient
operation of an autonomous vehicle [5]. In this manner, the tuning process for MPC can be considered
a part of the vehicle behavior, since it affects the specific maneuvers of the vehicle.

Figure 1.1: Autonomous Driving System Architecture [6]

This thesis is primarily motivated by addressing the challenges described above. As a result, the
proposed work should include a decision-making architecture that changes the operation in the tun-
ing process along with a tuning method that is able to minimize the tuning effort required for the
implementation of MPC in practice.

1.2. Related Work
This thesis is based on an existing research platform SafeVRU [7]. SafeVRU is a complete system that
integrates perception, vehicle localization, route planning and local motion controlling. The main goal of
the platform is to ensure safety and performance when driving in complex urban environments involving
vulnerable road users (VRUs). In particular, the motion control employed in SafeVRU relies on model
predictive contouring control (MPCC) [8], [9].

This section will discuss the existing MPC tuning methods and decision-making architectures as
well as a literature review of the relevant study. The focus is on the work being done in the field of MPC
tuning methods, followed by a discussion of different decision-making architectures used in the field of
autonomous driving. Afterwards, a discussion of how they differ or are similar is given, along with what
approach would be best suited for the design of the controller, eventually leading to a thesis outline well
covered in this report.
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1.2.1. Tuning of MPC
In the literature, there is an abundance of approaches that can be used to formulate the tuning problem.
In particular, [10], [11], [12], published roughly one decade apart, provide an overview of MPC tuning
during the period that they were written. The literature covers a variety of tuning approaches for the
multitude of MPC formulations and their associated tuning parameters. The MPCC formulation [7]
considered in this thesis is therefore not compatible with every approach found in the literature. The
following sections categorize different aspects of the many tuning methods used by MPC.

Thematic Approaches
MPC tuning is considered a practical procedure, different tuning methods may be categorized into a
variety of thematic strategies based on the literature.

• Heuristic Typically, heuristic MPC tuning approaches are based on rules-of-thumb tuning guide-
lines [3]. A list of instructions and simple algebraic expressions are presented in these guidelines
to meet predefined criteria, which are often based on frequency domain analysis. [13] also
presents some heuristic tuning procedures based on expert knowledge. Heuristic approaches,
however, often fails to capitalize on the full potential of closed loop systems.

• Analytical There have been several studies of analytical methods based on pole placement
[14], [15] and plant identification [16], [17]. A major limitation of these methods is that the analysis
is conducted in the case when there are no constraints in place.

• Algorithmic A number of algorithmic approaches in tuning controller are applied, which usually
involve another closed-loop optimization. The objective of the new optimization problem might
be, for example, to determine a function of the closed-loop response with respect to the tuning
parameters [18]. Figure 1.2 illustrates the schematic diagram of how the algorithm is executed. In
addition, [19], [20] present several ways that deal with multi-objective optimization formulations.
A reoccurring tool is the use of evolutionary algorithms, for instance, genetic algorithms [21].
A particular focus is placed on determining the MPC weights that minimize the overall energy
usage with a reduced tracking error using genetic algorithm in [22]. In order to determine the
specific performance metrics that are indicative of the control scenarios, a cost function has been
formulated using importance weighted performance metrics. Once all metrics have been attended
to with the consent of the operator, the algorithm terminates.

Figure 1.2: Schematic Diagram for the Execution Stages [18]

• Learning-based With learning-based approaches, in order to collect data, tuning parameters
are selected by first conducting offline training with different tuning parameters. Data are then
fitted to the predefined model, from which tuning procedures may be derived. In [23], a conditional
inverse reinforcement learning method is employed in conjunction with 1000+ hours of expert
driving training data. A machine learning method is used in [24] to approximate a human-learned
cost function with existing expert knowledge and consequently tuning the controller. It is possible
to apply the framework to problems with a relatively large number of tuning parameters.

Tuning Parameters
Depending on the specific formulation of MPC being considered, tuning parameters will take on different
roles. Since the applications of MPC offer a lot of flexibility, it is also important to discuss the tuning
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parameters individually. Consider the following example of a quadratic cost function for optimization
without constraints:

J =

N∑
i=1

wxi
(ri − xi)2 + wui

∆u2i (1.1)

where N is the prediction horizon, xi is the state variable, ri is the reference, ui is the input variable, and
wxi

and wui
are the weight parameters reflecting the relative importance of xi and ∆ui, respectively.

• Structural Parameters Studies have been conducted to tune the structural parameters of MPC.
For example, it is crucial to ensure that the prediction horizon N , that is, the number of future
control intervals the MPC controller must evaluate when optimizing, is tuned correctly to ensure
the closed-loop stability. To obtain the desired prediction horizon, [11] employs a first-order-plus-
dead-time representation of the process and formulas derived from the time constants. In some
MPC formulations, the prediction and control horizons are considered separately [3]. [25] also
discusses the use of a genetic algorithm as a way of tuning the prediction and control horizons.

• Weights Most of the literature tend to focus primarily on tuning the weights within the cost
function. The number of the weights can vary depending on the formulation. In general, weights
are categorised as weights on the outputs, weights on the inputs and weights on the rate-of-
change. Within the formulation above, for example, by increasing the value of wui , more control
efforts can be directed to the controller output for tighter control but at the expense of being more
sluggish [11]. It is typical to leave the tuning of this parameter to the controller designer with
experience and knowing the process requirements [11]. In addition, it may be appropriate to
consider weights on inputs, as a means of relaxing a constraint on the optimization process and
making it more computationally attractive. For example, the quadratic term with wxi is trying to
constrain the deviation from the current state to the desired state.

It should be pointed out that the tuning of weights and structural parameters do not necessarily have to
be mutually exclusive. one of the examples shows that weights and structural parameters have been
tuned at the same time [26]. On the other hand, the inclusion of structural parameters as free tuning
parameters may not always be desirable [27], since these parameters may be fixed as a result of the
limitations of the hardware in which the controller is intended to operate.

Tuning Timescale
The implementation of different tuning methods varies depending on the timescale in which they operate
and whether they are intended for online or offline tuning.

• Offline In general, offline methods require finding the desired weights prior to applying them
to the actual plant. This usually requires the designer to perform multiple simulations in order
to ensure good performance of the control system, either in the event of unforeseen changes
(e.g., variations in operating conditions or unmeasured disturbances), or even in the event of
performance criteria change. The authors in [22] employ genetic algorithm to obtain the desired
set of weights in simulation and apply it to the actual plant. One drawback of offline tuning is that
the simulation performance will not always reflect the performance on the actual plant. This may
be due to modeling uncertainties, noise, disturbances, or error caused by discretisation during the
simulation [27]. Thus, it is unclear whether a well-performing controller in offline tuning will also
demonstrate good performance when applied to the actual plant. While this is true, in the case of
a relatively representative plant, offline simulation is still recommended to evaluate whether the
designed controller meets prescribed performance requirements [28].

• Online The implementation of online strategies involves correcting the tuning parameters in
a real-time manner in order to fulfill specifications designed from a detected nonconformity. In
[29], the authors propose a real-time weight tuning strategy. Optimal control inputs are used as
the control command so as to meet vehicle safety, ride comfort, and fuel economy requirements
simultaneously. In [30], the authors present an automatic tuning strategy for the online selection
of weights. The weight factor will be tuned online during each sampling period and applied to
the minimization procedure of the cost function at the next sampling period. As described in
[31], the authors propose an automatic tuning method capable of receiving plant measurements,
reference signals, and performance criteria to optimal the tuning parameters only when they are
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required. This method is schematically illustrated in Figure 1.3. Due to the fact that in most cases
two optimization procedures are calculated simultaneously per time step, online methods may be
computationally more expensive or take longer to tune a controller.

Figure 1.3: Automatic Tuning Layer [31]

Tuning techniques are ambiguous in the sense that they can either be used in an online or offline setting.
A proposed algorithmic approach may be applicable if the performance of a given controller can be
evaluated by some external indicators or the tuning parameters can be updated in between evaluations
[27].

1.2.2. Outline of Decision-making
Given the countless permutations of scenarios an autonomous vehicle can encounter on the road,
making the right decision at the right time is one of the biggest challenges in autonomous driving.
Making decisions feel not only safe but also human-like is key to the adoption of autonomous driving.

It is essential to understand the general framework of autonomous driving in order to design methods
for efficient decision-making through specific research. Based on a summary of a number of related
studies, this subsection provides an overview of decision-making in the field of autonomous driving.
These contents summarize four aspects of a decision-making system for autonomous vehicles.

Inputs and Outputs
In autonomous driving, the decision-making system serves as an interface between perception and
planning. A decision-making system typically receives inputs such as environmental information and the
status of the ego vehicle then generates outputs such as driving behaviors or direct control commands,
which are then sent to the motion planning module [32]. The inputs and outputs of a decision-making
system can be summarized as follows.

• Inputs

– Environmental information In general, perception data is collected from various sensors
on vehicles, which are then processed to generate perception results that include information
concerning obstacles, road condition, and traffic signals.

– Status of ego vehicles Localization information is obtained from a localization system,
while motion information is derived from a motion estimation system.
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• Outputs

– High-level driving behaviors Different driving behaviors such as cruising, overtaking, and
lane switching.

– Low-level control commands Variables selected to control the vehicle, including longitu-
dinal velocity, acceleration and steering rate.

Design Criteria
Managing decisions is the goal of generating a safe and reliable driving strategy that is closer to a
human. To achieve better decision making, several design criteria must be formulated, and four aspects
are outlined below [33]:

• real-time performance
• balance safety and efficiency when making decisions
• ride comfort
• capacity to detect faults

Design Constraints
In order to develop a more complete system, research on decision-making methods requires the
consideration of many factors. The following is a list of related works that provide several design
constraints for decision-making systems.

• Information of surrounding environment There should be consideration of objects located
within a certain distance around the ego vehicle. Among these are, for example, the status of
other vehicles, static obstacles, the prediction of pedestrian behaviors, as well as traffic signals.

• Local traffic regulations Ego vehicles are expected to comply with traffic rules when making
decisions, including speed limits, turning restrictions, etc.

• Current status of ego vehicle States of ego vehicle, including location, velocity and heading.
• Results of path planning Normally, path planning deals with two types of trajectory: global

trajectory and local trajectory. Decision-making takes into account primarily the outcomes of
current local trajectory.

• Historical decision-making results The sequence of historical decisions made by the ego
vehicles in the past few moments that need to be considered when making decisions at the current
moment.

• Driving ethics During operation, vehicles must adhere to driving ethics [34], by giving pedestri-
ans courtesy, giving way to special vehicles, etc.

Application Scenarios
It is necessary to make decisions almost in every scenario in which an autonomous vehicle is operating.
Research has focused on some typical scenarios including highways, urban intersections, and merging
traffic because of the growing requirements for decision-making in a complex driving environment [5].

1.2.3. Methods of Decision-making
In general, decision-making are divided into classical methods and learning-based methods [5]. Clas-
sical methods can be categorized into rule-based methods, optimization methods and probabilistic
methods. Because of the complex and dynamic environment, classical methods are not always effective
due to poor adaptability to uncertainties, while learning-based methods are employed to achieve better
adaptability but usually require plenty of training training data.

Rule-based Methods
Rule-based strategies are determined by considering the states of various vehicles according to an
extensive rule database that incorporates numerous traffic laws and driving experience.

As the most representative rule-based method, given in Figure 1.4, finite state machine (FSM) is
understood as abstract machines that reside in one of a set of state transitions between which a given
state can be changed. However, FSM can be unmanageable for large complex systems, which is
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Figure 1.4: Finite State Machine

referred to as the state and transition explosion [35]. As a result, maintaining and improving such
systems may become problematic, especially when they grow.
In an effort to reduce the heavy transition duplication required in FSMs, hierarchical finite state machines
(HFSMs) were developed by D. Harel in 1987 [36]. Figure 1.5 shows how an HFSM clusters states into
a group, referred to as a superstate, where all the internal states are implicitly associated with the same
superstate. One advantage of HFSMs is that it does not require each state to replicate transitions to a
particular state, but enables the transitions to be inherited from a superstate. Although this is a more
modular approach than FSM, it still inherits many of the disadvantages, such as limited reusability.

Figure 1.5: Hierarchical FSM

The most representative application of FSM and HFSM implemented in autonomous vehicles is the
DARPA Grand Challenges, where Team TerraMax used FSM to decide which driving mode the high-level
controller should select [37]. Another example can be found in the DARPA Robotics Challenge [38].
These hybrid architecture for complex autonomous systems use HFSM to define the overall system
behavior and coordinate between sub-systems.

As an outperformed alternative approach, Behavior Tree (BT) is structured as a directed rooted tree
and switches between different tasks in an autonomous agent. BT are modular and reactive to create
complex systems efficiently. These properties have led to the spread of BT from computer game
programming to many branches of robotics.

A BT consists of a variety of nodes. All nodes have the same external interface, but each has its
own internal functionality. As a result, the structure appears modular. The return status of each node
(success, failure and running) in a BT determines how the tree will be traversed upon evaluation. The
three types of nodes in a BT are conditions, actions, and composites [39]. Condition node evaluates
a particular property of an environment, while an action prompts the agent to act on the environment.
Table 1.1 is a representation of all the nodes in a basic BT. Normally, leaf nodes are developed for
specific application, while composite nodes are application independent and can be reused. Figure 1.6
illustrates the process of tree execution, showing the basic node types and execution flow. Ticks refer to
the execution of a BT. Not all nodes are evaluated in every tick, imposing a sort of priority on execution
by ticking the leftmost nodes first.

A study of the how suitable it is to use BT as a decision-making architecture for autonomous driving is
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Figure 1.6: Typical Representation of the Behavior Tree [39]

Node type Graph Success Failure Running

Sequence If all child succeed If one child fails If one child is running

Selector If one child succeeds If all child fail If one child is running

Decorator Varies Varies Varies

Parallel If N child succeed If M-N child succeed If all child are running

Action Upon completion Impossible to complete During completion

Condition If true If false Never

Table 1.1: Basic Node Types in Behavior Tree

presented in [35]. Accordingly, the use of BT over FSM has the advantage that the transitions between
states do not require labor-intensive manual transitions. Moreover, actions, conditions, and sub-trees
can be added or removed without requiring modifications to other components in the BT. The authors of
[40] do not claim that BT is superior to FSM from a purely theoretical perspective. In fact, all BT can
most likely be formulated in terms of FSM. However, there are significant differences when it comes to
modularity, readability, and reusability, which makes BT a reliable decision-making architecture. Thus,
BT represents the most promising decision-making system that can be utilized in an autonomous vehicle
system, out of all the explored options in rule-based methods.

Optimization Methods
Optimization methods typically employ a reward function to generate decision results. Methods such as
Chance Controlled Optimization are employed [41] for lane change overtaking in urban areas. A Markov
linear system is used in this case to model other road users’ behavior, but it is modelled in a discrete
time stochastic hybrid system. In [42], receding horizon control is integrated into game theory in order to
provide the decision with information that is based on current and future predicted uncertain information.
In order to evaluate actions during lane changes, a game is defined that includes a reachability analysis
to determine an upper and lower bound for the position of the vehicle at each time step.

Probabilistic Methods
Based on probability theory in mathematics, probabilistic methods can generate behavior results. The
Partially Observable Markov Decision Process (POMDP) is a representative example. By evaluating
all possible actions and their effects, it is possible to maximize the expected reward over a period of
time. Probability distributions are applied to the states in order to allow for uncertainty to be accounted
for during the decision-making process. It is however computationally costly to solve, which makes it
critical to use in practical applications. To decrease the complexity involved in generating a complex
policy, approximate POMDP solutions [2] to simplified problem formulations are used to overcome the
intractable problem of solving the most general POMDP.



1.3. Proposed Approach 9

Learning-based Methods
Learning-based strategies use artificial intelligence knowledge to enable decision-making. In most cases,
driving data require to be collected firstly, and different learning models or network frameworks are then
fitted to produce reasonable decisions based on various environmental circumstances. Learning-based
methods have the disadvantage of requiring a large amount of training data for all potential scenarios.
The system resulting from this process is treated as a black box [43]. It appears to be a major issue
as it impedes failure testing, and there can be no assurances regarding performance under untrained
scenarios. The system must be retrained if undesired behavior occurs. Any subsequent data specific to
that scenario must also be collected.

1.2.4. Conclusion from Related Work
The related work discussed above highlights the strengths and weaknesses of the methods deployed
for MPC tuning and decision-making in autonomous driving. However, it also becomes evident that
research on the integration on MPC tuning methods and decision-making is very disjointed. The reason
behind is mainly that the outputs of decision-making system is typically the high-level behaviors instead
of the direct control commands or parameters adjustment in the controller. Hence, one challenge in this
thesis is to select the suitable methods for both systems and incorporate them. Base on this, along with
the capabilities of the MPCC motion planner and the test scenarios, the most suitable method for this
work can be chosen. This main criteria for choosing the approach in this thesis are:

• Generality: the approach could be applied to the targeted type of driving scenario, namely, urban
traffic where vulnerable road users are present.

• Traceability: the approach should allow for easy failure analysis and debugging.
• Real Time Capability: the cost of the approach is efficient so that it could be used in later real

world application.

Taking a closer look at automatic tuning methods based on this, algorithmic methods appear to be
the most appropriate selection since they do not require extensive training data or expert knowledge
to begin with the tuning procedure. Genetic algorithms appear to be the most suitable algorithmic
method since they make use of importance-weighted performance metrics that can account for the
driving performance. Additionally, it is possible to modify the structural parameters in order to change
the complexity of the genetic algorithm. According to the majority of the reviewed literature, genetic
algorithms are typically used offline before applying converged parameters to a plant. This thesis will
propose an online implementation to explore both options and compare both with the default MPCC
setting. In terms of the decision-making architecture, the behavior tree appears to satisfy most of the
requirements in terms of its modularity and maintainability.

1.3. Proposed Approach
On the basis of the variable tuning challenges, capabilities and limitations of the decision-making archi-
tecture identified in the literature on the field of autonomous driving, the importance and requirements
of the integrated methods needed to overcome these challenges has been highlighted. Therefore,
this work proposes the use of a genetic algorithm that works along with behavior tree and tunes the
controller parameters in an urban traffic scenario while avoiding collision with other vulnerable road
users.

The fundamental component of the automatic tuning method that is responsible to achieve the afore-
mentioned objectives is MPCC-based motion planner. A general description of the system architecture
given in the following clarifies how the overall system looks like.

Figure 1.7 illustrates the closed loop architecture of the automatic tuning method equipped with MPCC-
based motion planner. The system is divided into (i) Automatic tuning approach where the genetic
algorithm is implemented and generates tuned weight vectors, (ii) MPCC-based motion planner, which
is equipped with MPCC controller and a solver that finally control the acceleration and steering motion
of the vehicle to ensure trajectory following and collision avoidance, (iii) Behavior Tree, which generates
corresponding actions based on the scenarios information.
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Figure 1.7: System Architecture Showing Major Components

1.4. Thesis Outline
The rest of the thesis presents the design of the automatic tuning method of the MPCC-based motion
planner. Chapter 2 discusses background information on the MPCC-based motion planner, vehicle
modelling and weight parameters. It gives an understanding of the system to be controlled, and
presents the selected model that can be used as prediction model of MPC. Chapter 3 presents the
design of automatic tuning method and implementation to achieve the objectives described above.
Chapter 4 presents the design of the decision-making architecture, where behavior tree is employed to
better understand vehicle behaviour due to the combined traffic scenarios. Chapter 5 discusses the
simulator used in this work, construction of all scenarios the other components required for setting up
the simulation setup. It also presents the performance comparison of different breakdown scenarios
and also verifies the automatic tuning method performance compared with the default MPCC approach.
Chapter 6 finally concludes the thesis and presents scope of future work.



2
Preliminaries

To design an MPCC-based automatic tuning method, several important components, such as the model
of the system and the role played by the parameters, have to be determined first. This chapter begins
with an introduction to the MPCC motion planner. The system model is then considered, which is a
simple kinematic bicycle model. Finally, the impact of parameters on the objective function is discussed
for further optimization.

2.1. MPCC-based Motion Planner
This thesis is based on the research platform SafeVRU [7]. Under this platform, the vehicle is able to
perform localization, perception, motion planning, and control of its motion. In particular, the module for
perception and planning is of particular importance. Figure 2.1 outlines the overall structure of SafeVRU.

Figure 2.1: Overview of the Architecture [7]

A particular objective of the motion planner is to provide an efficient and practical implementation
of MPCC [9], which is employed for real-time collision-free navigation of autonomous vehicles in
dynamic environments with multiple agents. By integrating information gathered from the route planner,
localization module, and perception module, the motion planner is able to compute and generate a
collision-free path and directly control the vehicle, sending acceleration and steering commands. [7]
provides further details on the formulation.

2.2. Vehicle Modelling
Simulations are an essential part of the development of the motion planner. Choosing a vehicle model
that captures the kinematics and dynamics of the vehicle has a substantial impact on the reliability of
simulation results. The vehicle model should be determined by practical application and the need to
closely approximate the actual behavior of the vehicle. For example, the dynamics of a vehicle, including
tire compliance, must be taken into account when driving at high velocity or performing aggressive
maneuvers. On the other hand, in urban traffic scenarios where vehicles have relatively low speeds, a
kinematic model of the vehicle may be used for control purposes.

11
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2.2.1. Kinematic Model
Kinematic bicycle models represent the general physical behavior of the vehicle through the use of
nonlinear equations of motion and are based solely on the vehicle geometry. As a result, a four wheeled
vehicle can be simplified into a two wheeled bicycle with constraints. As this model does not consider
tire slip in lateral or longitudinal direction, it is a useful approximation of vehicle behavior in slow speed
driving scenarios. The following nonlinear continuous time equations describes the kinematic bicycle
model in the inertial frame, as also shown in Figure 2.2.

Figure 2.2: Kinematic Bicycle Model [44]

ẋ = v cos(ψ + β) (2.1a)
ẏ = v sin(ψ + β) (2.1b)

ψ̇ =
v

lr
sin(β) (2.1c)

v̇ = a (2.1d)

β = tan−1
(

lr
lf + lr

tan (δf )

)
(2.1e)

where x and y are the coordinates of the center of mass of the vehicle. ψ is the inertial heading angle
and v is the vehicle’s velocity. The distances between the center of mass of the vehicle and the front
and rear axles are represented by lf and lr respectively. β is the angle of the current velocity with
respect to the longitudinal axis of the car. a is the acceleration in the same direction as the velocity. As
most vehicles do not have steering wheels at the rear, δr = 0 is assumed in this calculation. The control
inputs therefore include the front steering angles δf , and a.

The motion planner incorporates the kinematic bicycle model. The optimization problem in [7] solves
the state vector z = [x, y, ψ, v, δ]T. At time t, the planner obtains information regarding the car and its
approximated path parameter. Following this, the planner solves the optimization problem to determine
a sequence of commands. Finally, the planner sends the first control command u = [a, δ̇]

T
(acceleration

and steering rate) to the plant while discarding other elements of the sequence.

2.3. Role of the Weights
Each control objective is assigned a weight, which indicates its importance in the cost function. Two
weighting vectors are used in the planner to determine the cost function: output weights and the rate
weights. Higher output weights will cause the controller to manipulate the tracking process in order to
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provide more accurate results. The rate weight affects the amount of incremental change in the control
input. By increasing the rate weight, smoothness can be improved at the cost of increased tracking
errors. Thus, optimal weight parameters must be determined for the purpose of minimizing the tracking
error while reducing the consumption of control inputs. The cost function defines the objectives of the
control problem:

J = Jtracking + Jv + Ja + Jδ̇ (2.2)

It is defined as follows: Jtracking is the penalty for path tracking, Jv is the penalty for the error between
the measured velocity and the reference, and Ja and Jδ̇ are the penalties for the inputs.

Tracking
Contouring control [45] consists of steering the vehicle at position (xk, yk) at time k along a continuously
differentiable reference path consisting of sequences of waypoints [xpm, y

p
m]. The goal is to compute

the path parameter of the closest waypoint on the reference path to the ego vehicle’s current position.
However, this is computationally expensive and an approximation is used. The approximation introduces
two errors. The longitudinal error is the position error measured along the path’s tangent with respect to
the abscissa of the path, which is expressed as:

ẽl (zk, θk) = − cosφ (θk) (xk − xr (θk))− sinφ (θk) (yk − yr (θk)) (2.3)

θk is the path parameter where the deviation from the reference waypoint (xr (θ) , yr (θ)) to the vehicle’s
position (xk, yk) is minimal. Defining the contour error as the deviation between the estimated position
of the vehicle and the projected position onto the path normal:

ẽc (zk, θk) = sinφ (θk) (xk − xr (θk))− cosφ (θk) (yk − yr (θk)) (2.4)

The graphical representation of the errors and their approximations are illustrated in Figure 2.3. The
error vector can then be defined as:

ek =
[
ẽc (zk, θk) , ẽl (zk, θk)

]T
(2.5)

Figure 2.3: Contouring error, lag and their approximations [46]

Consequently, the MPCC tracking cost is defined as:

Jtracking = eTkQeek (2.6)

There are two parameters in the penalty weight Qe that are to be determined according to the relative
importance of contouring accuracy and control deviations.
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Velocity
In order to minimize the quadratic tracking cost as described above, the vehicle is directed towards the
reference path. For the purpose of progress on the path, a cost term that tries to penalize the deviation
of the vehicle velocity vk from the reference velocity vref is introduced:

Jv = Qv (vref − vk)
2 (2.7)

where Qv is the velocity penalty weight. There is a reference velocity variable vref provided by a
higher-level planner and this variable may vary from segment to segment.

Inputs
Additionally, a quadratic penalty is imposed by Ja and Jδ̇ on acceleration and steering commands,
respectively:

Ja = aTkQaak (2.8)

Jδ̇ = δ̇Tk Qδ̇ δ̇k (2.9)

where Qa and Qδ are acceleration and steering rate penalty weights, respectively.



3
GA-based Automatic Tuning Strategy

The purpose of this chapter is to describe a method to automatically tune the MPCC weight parameters
using genetic algorithms (GA). As compared to iterative weight tuning, GA-based strategy is reported to
provide a faster convergence rate [22]. An implementation of both an online and an offline timescale
is designed in the proposed work. Using the online approach, real-time tuning procedures can be
provided, while the offline approach with defined termination criteria is used to capture the defined
requirements, making the proposed design a reliable tuning procedure.

3.1. Introduction
GA is commonly used to find optimal solutions to optimization problems based on the application
of evolutionary biology principles to computer science. Techniques that derived from biology, such
as inheritance, mutation, natural selection, and recombination are employed in this process. It is
usually implemented as a process in which a population of abstract representations, referred to as
chromosomes, of candidate solutions to an optimization problem, referred to as individuals, evolves to a
better solution over the search space. GA has the advantage of being a heuristic and iterative tool for
determining MPC parameters since it offers both. GA involves the five steps, as shown in Figure 3.1,
namely:

1. Start Initialize and generate random population of potential solutions (chromosomes)

2. Loop The following steps would be loop over until a convergence condition is satisfied

(a) Fitness Compute and evaluate the value of fitness function of each chromosome

(b) Selection Selection of optimal population based on the fitness values

(c) Crossover Cross over the parents to form new offspring with a given probability .

(d) Mutation Mutate the new offspring at each position with a given probability.

(e) Replacement Replace the poorly-performed population with the new generated population

(f) Check Check if the stop criterion is met

3. Return Return the best solution in the last generation

In this work, the implementation process is categorized into two methods, online and offline. Through
the online method, the GA is optimized simultaneously with the MPCC, and the chosen parameters
are adjusted in real-time. Offline method consists of two stages. Stage one consists of running the
algorithm in several breakdown scenarios, determining the optimal set of weights for each scenario, and
then applying them to controller during simulation. The operation of the GA is explained in more detail
in the following section.

15
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Figure 3.1: Operations in genetic algorithm

3.2. Operations
In this work, each combination of the parameters in the chromosome is represented as a different
weight variable in the optimization problem search space. In GA terminology, the optimization function
is termed the fitness function. The value representing the appropriateness of a chromosome is known
as the fitness value, which is calculated by using the fitness function.

3.2.1. Encoding
The term "encoding" is used to describe the representation of potential solutions containing a set of
weight parameters as strings of codes. There are various ways in which weight parameters can be
encoded, such as binary coding, letter coding and real numbers [47]. However, binary coding is the
most common encoding. In this work, the binary coding method has been selected for simplicity and
convenience. Every element of the weight variable is encoded as a string of length, which consists of
0s and 1s to achieve the desired resolution. Uniform distribution is used to select the weight variable at
random within a given boundary. The mapping from a the real number xr into the binary string xb is
straightforward and is completed in two steps:

1. Compute the scale of the bit representation such that the converted value is within the boundary
of the chromosome

2. Convert the real number to the scaled binary equivalent using the representation of bitset, which
is a fixed-size sequence of bits and stores values either 0 or 1, the equation given by:

xb =
xr − lb
ub−lb
2n−1

(3.1)

where ub and lb are the upper bound and lower bound of the chromosome, respectively. In order to
demonstrate this more clearly, Table 3.1 illustrates the conversion of weights into binary strings for two
initial populations.
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Population Chromosome Real Number Binary String

1

Qe 0.5 10110010100111001101
Qv 0.05 01010110110101000100
Qa 0.3 00101001111000110101
Qδ̇ 0.02 11010101010100110100

2

Qe 0.4 10110000100101101001
Qv 0.07 01001100110101010100
Qa 0.25 11101001010000100110
Qδ̇ 0.03 11001010101001000101

Table 3.1: Example of Two Encoded Populations

3.2.2. Evaluation
It is important to evaluate the quality of a solution once it has been presented. This will require the
formulation of the fitness function. It is likely that an individual with a lower fitness value will contribute
one or more offspring in the next generation, which is discussed in the following subsection. The
performance criteria are based on fitness function, and optimal weight parameters are determined by
minimizing an objective, which incorporates a weighted combination of IAE. Further details regarding
the formulation of the fitness function will be discussed in Section 3.3.

3.2.3. Selection
In selection operation, individuals are selected for further recombination. Proportional selection is the
most widely used algorithms [48]. This method involves a selection process in which an individual has a
probability of being selected depending on the relative fitness value. Consequently, the individuals in
the generation have a biased chance of occurring, favoring the more suitable individuals. The selection
probability can be calculated for any population i:

pi =
1
Ji∑m
k=1 Jk

(3.2)

where Ji is the fitness value for population i, and m is the population size. This selection algorithm
could be seen as a pie chart, Figure 3.2 shows an example of four populations and their probability to
be chosen.

Figure 3.2: Proportional Selection

3.2.4. Crossover
Crossover is one of the operators that attempt to reproduce new individuals. To create a new offspring,
the strings of the chromosomes are cut and mixed. There are three different crossover methods:
one-point crossover, two-point crossover and uniform crossover [49]. The first two methods result in less
diverse offspring. These involve dividing the chromosome into segments and swapping them. Uniform
crossover evaluates every bit in the chromosome with the intent of exchanging it with a probability. A
probability of 0.5 would suggest that around half of the chromosomes for the new offspring belong to
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parent one and the other half to parent two, as shown in Figure 3.3. In this work, uniform crossover has
been chosen because of its diversity between the parents and offspring.

Figure 3.3: Example of Uniform Crossover (probability ≈ 0.5)

The crossover of all chromosomes in a population is not necessary or even recommended because this
can neither tell us if the result will be better or worse than the parent chromosomes [50], consequently,
the crossover is limited to the less desirable half of the chromosome.

3.2.5. Mutation
There is a tendency for the chromosome pool to become homogeneous after a certain number of
reproductions, as one better chromosome begins to dominate after several generations, resulting in
premature convergence of local minima. In order to overcome this undesirable convergence, mutation is
introduced with appropriate probability. Ideally, this probability should be small enough to cause a small
alteration in the chromosome. Otherwise, GA would resemble a random search. The binary coding
employed in this work renders bit flip mutation [51] particularly suitable for use. In the bit flip method,
bits are alternated from 0 to 1 or from 1 to 0 with the mutation points being determined at random. An
example is shown in Figure 3.4.

Figure 3.4: Example of Bit Flip Mutation (probability ≈ 0.1)

3.3. Formulation
In this work, the weight parameters of the MPC cost function are assigned to each individual of the
population. Their characteristics are characterized by the set of weights constrained by a range of upper
and lower bounds:

wGA =
[
Qe Qv Qa Qδ̇ vref

]
(3.3)

To determine the MPC weights parameters, the fitness function is formulated. Since this is a process
involving multiple variables, the fitness function incorporates four cost terms to describe the performance.
There are two terms refer to tracking and velocity-following errors, respectively, which are defined in
terms of integral absolute error (IAE):

IAEtracking =

N∑
n=0

|pr(n)− p(n)| (3.4)
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IAEvelocity =

N∑
n=0

∣∣vref (n)− v(n)
∣∣ (3.5)

where pr and p are reference pose and current pose of the vehicle, respectively. The other two terms
consider the input variables acceleration a and steering rate δ̇, represented by the cumulative rate
change, which is calculated on the basis of the accumulation of deviations from its value at the previous
time step.

IAEa =

N∑
n=0

|a(n)− a(n− 1)| (3.6)

IAEδ̇ =

N∑
n=0

∣∣∣δ̇(n)− δ̇(n− 1)
∣∣∣ (3.7)

In the proposed work, the weighted average method is used to formulate a single objective function.
The importance weights are constrained to unity since the error terms are normalized.

J (wGA) = w1 × IAEtracking + w2 × IAEvelocity + w3 × IAEa + w4 × IAEδ̇ (3.8)

4∑
i=1

wi = 1 (3.9)

To have the genetic algorithm running in real time, the importance weights are adjusted through the
behavior tree architecture, which will be discussed in the next chapter.

3.4. Structure
While the online and offline method share the same flow of the GA operation, the structure and
corresponding adjustment are different. The structure of the online method is shown in Figure 3.5, which
illustrates how a simplified version of the solver with a lower prediction horizon has been developed
under the GA interface to improve computational efficiency. Information other than weights is sent to the
GA interface by the MPCC interface. In order to achieve optimal results, both solvers must be consistent
in order to evaluate the optimal individual via the GA interface. Upon completion of the GA optimization,
the updated weights are sent back to the MPCC interface and used for the MPCC optimization.

Figure 3.5: Structure of the Online Implementation

As a way of increasing the computational efficiency, the simplified solver uses the weight parameters
from each of the individuals to run only one iteration. As the states and input are updated, the fitness
values are then calculated. As previously mentioned, individuals with a lower fitness value are more likely
to be selected for the new generation. As soon as the stopping criteria is met, the weight parameters
from the best individual are sent to the MPCC interface and used to run the MPCC optimization.
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3.5. Stopping Criteria
For evolutionary algorithms like GA, the following stopping criteria have been traditionally employed [52]:

• the maximum number of generations is reached
• the maximum number of evaluations of the fitness function is reached
• the best solution during the evolution process doesn’t change to a better value for a predefined

value of generations

For the first two criteria, selecting sensible settings requires expert experience in order to estimate
an appropriate maximum generation number, at which point it stops and provides the best results.
In contrast, the third alternative does not require such knowledge. This work employs an interactive
decision tree (IDT) approach [53] to decide the importance weights that are assigned to the performance
metrics. As a result, the improvement in performance metrics is determined based on the operator’s
response [22]. A uniform distribution of weights for each individual metric wi is initially used in the
fitness function.

In order to determine if the performance improvements in these metrics are significant, they are
compared to the default MPC weight parameters (m = 0):

% ImpIAE =
IAE |m− IAE|m− 1

IAE | m
× 100% (3.10)

A weakly improved metric j is determined by the algorithm in conjunction with the operator. Upon
reaching the level of satisfaction for all metrics, the operator may select none (j = 0) then the algorithm
is terminated. The weight associated with the identified weakly improved metric (wi=j) is increased by a
small factor (ni):

wi=j = niwi (3.11)

Then the weights of the other performance metrics wi 6=j are decreased equally without loss of generality:

wi6=j = wi
(N − ni)
(N − 1)

| i ∈ {1, 2, . . . , N} (3.12)

This new set of fitness weights are applied to the GA procedures. Whenever the metrics need to be
improved, the weights are increased by a factor ni. Upon achieving an acceptable improvement, the
weight for the specific metric is set to be static, then other weights are adjusted in the same manner.

3.6. Conclusion
This chapter presented the design procedure of the GA. It explained the reasoning behind the choice of
each method utilized in the operation. As part of the formulation of the fitness function used for evaluating
individual suitability, the IAE of tracking, velocity, and inputs are penalized. The fitness function was
formulated as a single objective function. Furthermore, the GA optimization process was terminated
when defined conditions are met using a stopping criteria approach. In terms of implementation, the GA
development was applied both online and offline with different structural parameters. Another difference
was that in online tuning, the importance weight in the fitness function is automatically adjusted. During
offline tuning, the weight parameters of the controller were applied by means of a lookup table to the
controller.



4
Behavior Tree

This chapter discusses the implementation of the decision-making architecture behavior tree (BT).
First some properties of the developed BT are discussed regarding priority and concurrency. Then
a description of how the BT can be crafted for different implementations of the genetic algorithm is
provided. Finally a conclusion is given.

4.1. Properties
It is important to note that a basic application of BTs involves blocking behavior, that is, once an action
is launched it will continue running until completion. In such case, the BT would not able to respond in
this period. There is a possibility that the self-preservation behavior may not be utilized timely when
faced with a potentially hazardous situation. It is imperative that this limitation be addressed in order for
BTs to be suitable for autonomous driving. A distinction between the BT and FSM is that transitions are
implicitly incorporated in the tree structure, reducing the designer’s burden of explicitly implementing all
transitions. The addition and deletion of a node do not affect other nodes, making development easier
and less prone to errors.

4.1.1. Priority
From the root node, the tree is traversed in depth order, which essentially means that the leftmost node
will be visited first, indicating that the behavior with the highest priority should be placed at leftmost.
As a result, it seems appropriate to place the self-preservation behaviors such as collision avoidance
as the leftmost action node of the tree. This also indicates that it is recommended to put the default
behavior, such as cruising, on the far right side of the tree.

4.1.2. Concurrency
It is necessary for tasks to be run independently in order to overcome the blocking nature of the
tree. In order to accomplish this, either asynchronous tasks can be run on the same thread as the
main thread, or it can be implemented by executing a thread in parallel with the main thread while
the tree is ticking over [35]. In some cases, the BT may be required to continue where it left off in a
series of tasks rather than starting from the beginning. Concurrency in behavior trees is not standard-
ized or established, so it is left to the developer to decide how to implement the concept. The three
approaches are based on event-driven design, an open/closed node pattern, or recursive abort calls [35].

The event-driven approach enables the tree to notify nodes of activity within the tree, making them to
be reset. In the simulation, this approach is applied. By using the open/closed pattern, it is possible
to keep track of which nodes have yet to commence execution and which have already begun. With
this information, it is possible to reinitiate the nodes on the subsequent tick. The benefit of recursive
abort calls is that no blackboard knowledge has to be communicated between the nodes. As soon as
a task successfully executes and returns Running or Success, a recursive abort call is issued to all
subsequent nodes.

21
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4.2. Implementation of BT
Similar to the GA-based tuning method, the implementation of the behavior tree is also categorised into
online and offline approaches. The offline approach shares the same philosophy as the online approach,
but the actions are carried out differently. When the scenario corresponds to the GA implementation,
the actions will take the optimal weight parameters acquired through GA and pass them to the MPCC
interface. Additionally, the behavior tree should only utilize the environmental information that could be
obtained by the ego vehicle with sensors from the simulation.

4.2.1. AsyncAction
Due to the nature of the GA optimization being an long running process, simply running it and waiting
for it to complete may prevent the system from being able to react to new risks as they arise. As a result,
a basic BT would be incapable of achieving this task while also remaining responsive. Rather, the BT
will be implemented through an event-driven approach as discussed previously.

A new type of action leaf node, AsyncAction, is introduced for this purpose [54]. As compared to
the Action node, which serves only to modify parameters and settings that can be accomplished immedi-
ately, AsyncAction is for behavioral tasks, such as running the GA optimization with adjusted importance
weights, that cannot be completed in a short period of time and therefore require an asynchronous
thread to be spawned. As soon as the node starts the routine, it returns the status code for the BT
running. In this manner, the parent composite node saves the index of the previous running child node.
In the next tick, the system will skip the preceding nodes and directly update the running one. Following
the completion of the execution of the coroutine, the AsyncAction node would be able to return Success
or Failure.

4.2.2. Environmental Information
To develop a practical BT applied in an autonomous vehicle, it is important to first define the inputs.
In this work, the inputs of the BT are environmental information and the states of the ego vehicle. As
already mentioned, the simulation focuses on the urban scenario where VRUs are present. In particular,
pedestrian crossing is one of most typical situations that the vehicle may encounter. There are generally
two types of pedestrian crossings: controlled and uncontrolled [55]. As a result of the former, traffic
signals are employed to direct the interaction between vehicles and other road users. The bottom of
Figure 4.1 illustrates the latter case, in which there are no traffic signals, and the pedestrian has to
choose a gap in the traffic flow and then cross.

Figure 4.1: Uncontrolled Pedestrian Crosswalks [55]

The top of Figure 4.1 shows the schematic of a pedestrian crossing the road. d represents the distance
from the ego vehicle to a safe position ∆ ahead of the crosswalk. xp is the position of the pedestrian
within the crosswalk, which can be negative when the pedestrian’s entry is from the opposite side.
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Gap acceptance is one primary factor influencing the behavior of pedestrians at uncontrolled traf-
fic intersections. If the vehicle maintains its current speed, this indicates how much time remains until it
enters the crosswalk. It is defined as:

gap =
distance to pedestrian

vehicle speed
=
d

v
(4.1)

Researchers have shown that pedestrians typically tend to not cross the road if a vehicle enters the
crosswalk within 3 seconds or less, but will do so if they have more than 7 seconds to spare [55].

The behavior tree will remain in the cruising action unless a pedestrian ahead is detected to en-
ter the driving lane or a cyclist rides in front of the vehicle. In the behavior tree, “beginning to enter”
is mathematically defined as the moment the pedestrians begin moving towards the driving lane,
regardless of whether they are currently on the sidewalk.

inCrosswalk (xp, ẋp) =

{
1 : ẋp 6= 0 ∨ 0 ≤ xp ≤ xF
0 : otherwise (4.2)

where xF is the exit of the crosswalk. In this work, the definition of xF will be the same half of the
driving lane as the vehicle. The ego vehicle should be able to determine whether to proceed through
in an urban scenario that requires yielding and stopping for pedestrians, which could be aided by the
definition of the time advantage tadv [56]:

tadv =
xv − xp
ẋp

− d

v
(4.3)

where xv is the ego vehicle’s x position. When a predefined threshold value is exceeded by the ego
vehicle, the design of the BT explicitly allows it to drive with minimal deviation from the reference velocity.

4.2.3. Analysis
In this work, the development of the BT is based on a thrid party library BehaviorTree.CPP [54]. To
illustrate, the structure of the online implementation of the behavior tree is shown in Figure 4.2.

Figure 4.2: Behavior Tree for Online Implementation

It has already been mentioned that the leftmost action should have the highest priority. In the de-
signed BT, the action "calculate time advantage" is defined as an instant action, which is evaluated
every tick, which makes the AsyncAction behavior "braking" the action with the highest priority. Due
to the safety-related consideration, this action is prioritized over the other actions. Moreover, the
condition nodes are placed to indicate the specific situation that the ego vehicle is facing. It is the de-
fault behavior of the vehicle to cruise, and if all conditions are not met, the vehicle will remain in that state.
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The designed BT utilizes the event-driven approach. This design is premised on the idea that nodes
that require information about interruptions of tasks will receive notification when disruptions occur. It is
possible, for example, for composite nodes to maintain a pointer to the current child node in order to
resume execution of recently executed children without having to start from scratch. Whenever a child of
this pointer is interrupted by another action, the pointer should be reset. Furthermore, all AsyncActions
are notified when an action is about to run, allowing them to abort their own execution in the event it is
already in progress. Due to the limited concurrency of workloads via the coroutine pattern, long-running
actions must be executed within a higher shared context. The code structure of the BT implementation
is illustrated in Figure 4.3.

Figure 4.3: Behavior Tree Code Structure

4.3. Conclusion
This chapter described the design of the behavior tree architecture. Some shortcomings of the behavior
tree in terms of task priority and concurrency were addressed by introducing asynchronous coroutine.
During the execution, the environmental information was processed to tell the current situation that the
ego vehicle is facing, where the decisive variable time advantage was introduced. The construction of
the BT considered the possible scenarios in the simulation as well as the priority of the actions. Hence
major contribution of this work, a decision-making architecture that was able to handle multiple tasks
simultaneously in the simulation and output specific actions to the tuning procedure, was presented in
this chapter.



5
Simulation Results

The GA-based automatic tuning method that works along with the BT is tested in an open source
autonomous driving simulator CARLA [57]. The purpose of CARLA is to serve as a modular and flexible
interface so that a wide range of tasks related to autonomous driving can be addressed, and hopefully,
help democratize autonomous driving research by providing an easily accessible and customizable tool.

5.1. Vulnerable Road Users Behavior
Before performing the simulation, it is important to define the possible behaviors or actions of the VRUs,
so that they act as authentic pedestrians or cyclists in urban traffic. In a purpose of evaluating the
performance of the autonomous vehicle, the pedestrians needs to be able to:

• Spawn at the sidewalk near the initial position of the ego vehicle
• Walk or run with predefined and constant velocity
• Cross the road with random chance
• Disregard the ego vehicle

Additionally, the cyclists needs to be able to

• Spawn at the driving areas as the ego vehicle
• Cruise with predefined and constant velocity
• Detect and react properly to the activities of other road users

5.2. Scenarios for Simulations
The tested scenario in this work is trying to duplicate an urban traffic conditions where VRUs are present.
The ego vehicle is spawned at a given location and then drives towards to destination while avoiding
collisions. The global reference path is therefore a straight line in the same driving lane. The designed
scenario for simulation is called random crossing scenario, given in Figure 5.1, where a realistic urban
traffic scene is built. This scenario is used to test both online and offline tuning method.

Figure 5.1: Random Crossing Scenario

Additionally, different breakdown scenarios are constructed to optimize the weight parameters for the
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offline method. The scenarios are shown from Figure 5.2a to Figure 5.2e, which are classified as
follows:

• Baseline : Scenario without any VRUs
• Right Entry : One pedestrian crosses the road from the right side of the ego vehicle
• Left Entry : One pedestrian crosses the road from the left side of the ego vehicle
• Cyclist Following : One cyclist riding in front of the vehicle with a given distance
• Cyclist & Pedestrian : One pedestrian crosses the road from the left while one cyclist riding in

front of the vehicle with a given distance

(a) Baseline (b) Right Entry (c) Left Entry

(d) Cyclist Following (e) Cyclist & Pedestrian

Figure 5.2: Breakdown Scenarios

For purposes of comparison with the default MPCC setting, the GA-based automatic tuning method is
referred to as GA-MPCC in the rest of the chapter. It is noted that each of the breakdown scenario is
simulated for 10 times both for GA-MPCC and MPCC to reduce randomness that potentially occurs in
the simulation.

5.3. Simulation Results for Offline Tuning
Figure 5.3 shows the perceptual decrease of the best fitness values from the optimization process of the
GA-based offline tuning. The optimal weight parameters of five breakdown scenarios are obtained from
the process. The figure shows that all five optimizations are with a consistent trend, the best fitness
values decrease to a nearly constant value and close to convergence from around the tenth generation.
The optimization is then terminated.
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Figure 5.3: Perceptual Decrease of the Best Fitness Values

Table 5.1 shows the weight parameters from the default setting of the MPCC as well GA optimization. In
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order to keep the parameters at the same order of magnitude, the constrain bounds of the weights are
also determined.

Weights MPCC
Offline GA

Bounds Baseline Left Entry Right Entry Cyclist Cyclist & Ped

Qe 0.02 [0.01, 0.1] 0.0246 0.0591 0.0872 0.0954 0.386
Qv 0.03 [0.01, 0.1]] 0.0779 0.096 0.0985 0.0577 0.0819
Qa 0.35 [0.1, 0.6] 0.1046 0.5318 0.4246 0.2082 0.3239
Qδ̇ 0.5 [0.1, 1.0]] 0.316 0.655 0.432 0.622 0.53

vref 4.0 [0.5, 4.0] 4.0 0.6653 0.7398 1.85 0.6469

Table 5.1: Optimized Weight Parameters

5.3.1. Baseline
The objective of the baseline scenario is to reach the goal with minimal deviation from the reference. It
is noted that since the baseline scenario is without any VRUs, the variation of the reference velocity is
unnecessary, hence this variable would remain a constant in this specific simulation. In order to achieve
the objective, the vehicle tends to reach the reference velocity in a short time. Hence, at the expense of
greater changes in acceleration, the priority of the velocity error is emphasized.

GA-MPCC vs MPCC
As shown in Figure 5.4, GA-MPCC enables the vehicle to reach the reference velocity in a shorter
time with slight overshoot compared to the MPCC. However, GA-MPCC brings a greater change in
acceleration and reaches the upper bound of the input.
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Figure 5.4: Longitudinal States in Baseline Scenario

Figure 5.5 presents the trajectories generated from all simulations, the blue and yellow dashed lines
represent the road boundary and the driving lane. The heading of the vehicle is illustrated in Figure 5.6.
Since the spawned location of the ego vehicle is not fully centered in the driving lane, initially the ego
vehicle would try to steer a certain angle to track the reference path. The result of GA-MPCC shows
that the vehicle tends to steer more in order to resume to desired path in a shorter time compared to
the MPCC.

5.3.2. Right Entry
In this scenario, the objective of the vehicle is to yield to the pedestrian with minimal deviation from
the reference path. Since there is a pedestrian in the scenario, the reference velocity would no longer
remain a constant in order to put emphasis on the deviation from the reference velocity.

GA-MPCC vs MPCC
The generated trajectories from all simulations for both application are given in Figure 5.7. The blue
dots with different transparency indicate the path of the pedestrian. It is easy to tell that the vehicle
controlled by MPCC makes aggressive maneuvers in order to avoid the pedestrian from the right, while
the GA-MPCC can remain in the reference path. As a result, GA-MPCC is able to leave a further
distance towards the pedestrian, as shown in Figure 5.8.
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Figure 5.5: Vehicle Trajectories in Baseline Scenario
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Figure 5.6: Lateral States in Baseline Scenario

Figure 5.7: Vehicle Trajectories in Right Entry Scenario
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Figure 5.8: Distance to the Pedestrian in Right Entry Scenario

Figure 5.9 presents the longitudinal states along with the distance to the pedestrian. The yellow and
black dashed line indicate the entry and exit of the pedestrian crossing, respectively. For GA-MPCC, the
velocity remains at a stable level while the acceleration is gradually decreased when the pedestrian is
detected and negative numbers are hardly present. On the other hand, the velocity in MPCC fluctuates
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greatly because of the significant change in acceleration. It is noted that in MPCC, since the vehicle
tends to resume to the reference velocity once it passes the pedestrian, the curve tries to turn back to
previous states when near the end of the simulation.
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Figure 5.9: Longitudinal States in Right Entry Scenario

5.3.3. Left Entry
The purpose of the this scenario is to impose a special case. Because the vehicle is at a further distance
from the pedestrian comes from the opposite side, if the time advantage remains sufficiently high, then
the vehicle is able to comfortably continue driving without needing to slow down.

GA-MPCC vs MPCC
The simulated trajectories for both application are given in Figure 5.10. Similar to Right Entry scenario,
the vehicle controlled by MPCC tries to make aggressive avoiding maneuvers in order not to lose much
velocity, which introduces the risk of safety. While the GA-MPCC can follow the reference path well.
Consequently, GA-MPCC brings a larger distance margin, as shown in Figure 5.11.

Figure 5.10: Vehicle Trajectories in Left Entry Scenario
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Figure 5.11: Distance to the Pedestrian in Left Entry Scenario
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From Figure 5.12, GA-MPCC shows a similar change in term of longitudinal states when facing the
pedestrian. However, the velocity in MPCC drops and rises much more significantly according to
presence of the pedestrian. This happens because the computed safety margin is small so the vehicle
has to slow down significantly to avoid collision, which can also be illustrated from the smaller heading
of the vehicle.
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Figure 5.12: Longitudinal States in Left Entry Scenario

5.3.4. Cyclist Following
In this scenario, a cyclist with given constant velocity is spawned at a given distance in front of the
pedestrian. The objective of the vehicle is to cruise with a suitable velocity and to remain a safety
distance towards the cyclist.

GA-MPCC vs MPCC
The simulated trajectories and longitudinal states of the vehicle are given in Figure 5.13 and Figure 5.14.
It shows that MPCC introduces a higher vehicle velocity at the beginning of the simulation, which drops
significantly when it approaches the cyclist, and remain at around 1.5 m/s afterwards. On the other
hand, the GA-MPCC is able to keep the vehicle in a steady state, where the velocity and acceleration
are without significant changes.

Figure 5.13: Vehicle Trajectories in Cyclist Following Scenario

As a result, GA-MPCC is able to leave a further distance compared to MPCC, as illustrated in Figure
5.15. The reason behind is the vehicle controlled by MPCC tries to pass the cyclist at the beginning
of the simulation, as can be observed from the trajectories, and keeps accelerating and decelerating
during the following behavior.
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Figure 5.14: Longitudinal States in Cyclist Following Scenario

1 2 3 4 5 6 7 8 9

Number of Simulations

4

6

8

10

12

14

D
is

ta
n
c
e
 [
m

]

Distance to Obstacle (MPCC)

1 2 3 4 5 6 7 8 9

Number of Simulations

4

6

8

10

12

14

D
is

ta
n
c
e
 [
m

]

Distance to Obstacle (GA-MPCC)

Figure 5.15: Distance to the Pedestrian in Cyclist Following Scenario

5.3.5. Cyclist & Pedestrian
The objective of this scenario is to test how the vehicle will react to the pedestrian ahead while the
driving lane from the left is occupied by a cyclist. The pedestrian comes from the left entry for the
purpose to impose constraint to the avoidance maneuvers of the vehicle.

GA-MPCC vs MPCC
The trajectories of the vehicle are given in Figure 5.16, where the green circles represent the trajectory
of the cyclist. Compared to the Left Entry scenario, in this case, the vehicle from MPCC no longer tries
to pass or aggressively avoid the pedestrian before the pedestrian reaches the sidewalk.

Figure 5.16: Vehicle Trajectories in Cyclist & Pedestrian Scenario

The velocity and acceleration of the vehicle, shown in Figure 5.18, is similar to the case in Left Entry
scenario, where the velocity from MPCC drops to 0 from 2.5 m/s as the vehicle has to stop and wait. As
a result, the distance to the pedestrian, as shown in Figure 5.15, is close. On the other hand, thanks
to the relatively low tracked velocity, the GA-MPCC is able to drive the vehicle steadily, with a less
significant change in acceleration.

5.3.6. Random Crossing
All the optimized weight parameters from above are utilized in the Random Crossing scenario with the
help of decision-making from the designed BT to evaluate the performance of GA-MPCC against default
MPCC. The simulation is run 5 times, each with different traffic condition, to test the adaptability of the
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Figure 5.17: Distance to the Pedestrian in Cyclist & Pedestrian Scenario
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Figure 5.18: Longitudinal States in Cyclist & Pedestrian Scenario

methods. The following figures show the result from one specific simulation. As shown in Figure 5.19
and Figure 5.20, the vehicle with MPCC setting has more adjustment in terms of longitudinal and lateral
directions. The velocity even exceeds the reference and nearly reaches 8 m/s for fast-passing at a
certain moment. Similarly, the steering is much more aggressive. On the other hand, the GA-MPCC has
a relative stable performance in lateral direction, although there are some oscillations from longitudinal
and the acceleration turns negative for hard braking. The reason behind is mainly because of the
sudden transition from one set of weight parameters to another, which brings a significant change on
reference velocity.
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Figure 5.19: Longitudinal States in Random Crossing Scenario (Offline)

Figure 5.21 and 5.22 present the trajectories and safety distance from all 5 simulations. As illustrated
above, due to the massive adjustment in throttle and steer, the vehicle under MPCC shows a more
exaggerated maneuver, and even cross the driving lane for avoidance in one simulation. As for the
GA-MPCC, there are also some emergency avoidance behavior but in a relatively smaller magnitude.
Consequently, the GA-MPCC is able to maintain a safer distance towards the VRUs in the simulations.

5.4. Simulation Result for Online Tuning
For online tuning, the importance weights in the fitness function is adjusted in real time with the
assistance of the designed BT. Due to the limit computational power, the maximum iteration is limited
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Figure 5.20: Lateral States in Random Crossing Scenario (Offline)
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Figure 5.21: Vehicle Trajectories in Random Crossing Scenario (Offline)
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Figure 5.22: Distance to Obstacles in Random Crossing Scenario (Offline)

compare to the offline tuning. Similarly, simulations are run 5 times, each with different traffic condition.
Table 5.2 shows the results of all simulations in terms of average computation time.

Simulation 1 Simulation 2 Simulation 3 Simulation 4 Simulation 5
MPCC (s) 0.0372 0.0344 0.0362 0.0361 0.0354

GA-MPCC (s) 0.0483 0.0455 0.0482 0.0461 0.0430

Table 5.2: Average Computation Time

The following figures show the result from one specific simulation. As shown in Figure 5.23 and Figure
5.24, the vehicle react differently when the VRUs are detected. Under MPCC, the vehicle tries to pass
the pedestrian aside with a high velocity, resulting in a highly increased throttle and steer. Facing the
same situation, the vehicle controlled by GA-MPCC yields and stops, which is preferable and brings
less potential risks in terms of collision.

Figure 5.25 and 5.26 illustrate the trajectories and safety distance from all 5 simulations. Even though in
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Figure 5.23: Longitudinal States in Random Crossing Scenario (Online)
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Figure 5.24: Lateral States in Random Crossing Scenario (Online)

one specific simulation, the vehicle under MPCC behaves more aggressively, in most of the simulations,
similar behaviors also occur on the GA-MPCC controlled vehicle. The reason behind is due to the
limit number of iteration, the weight parameters being optimized in GA haven’t converged to a decent
level, resulting in less improved performance. However, in terms of distance towards the VRUs, the
GA-MPCC is still proved safer as the margins are higher in most of the cases.
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Figure 5.25: Vehicle Trajectories in Random Crossing Scenario (Online)
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Figure 5.26: Distance to Obstacles in Random Crossing Scenario (Online)
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5.5. Conclusion
This chapter discussed the simulation results that showcased the capabilities of the automatic tun-
ing method. Design of the scenarios was important to conduct the simulations. CARLA simulator
was used to replicate urban traffic conditions for simulations. Several breakdown scenarios were
used to enumerate the potential situations that may occur in an urban scenario. Before discussing
the actual simulation results, the results of the GA optimization used for later simulations were discussed.

The performance of the GA-MPCC was compared with the default MPCC setting. For offline tun-
ing, 5 breakdown scenarios were simulated firstly. The results showed a decent improvement in terms of
less adjustment in throttle and steer when facing the VRUs. All weight parameters from the breakdown
scenarios were then tested in a more complex random crossing scenario with the aid of the designed BT.
The vehicle equipped with GA-MPCC behaved the way it was expected to and brought less aggressive
maneuvers with more consideration in terms of leaving more safety distance to the VRUs. As for the
online tuning, a real time tuning procedure based on GA was applied to the controller. The results
showed some improvement regrading different decisions when facing the VRUs. However, in some
cases, the vehicle equipped with GA-MPCC still behaved some risky maneuvers, such as try to pass
the pedestrian aside with high speed. Since these simulations were performed using CARLA, which
provides an accurate physical vehicle plant and simulation environment, the results can be expected to
be trustworthy.



6
Conclusion

This thesis explored the challenges in variable tuning in MPC, which formed the gap between two
disjointed research fields together with decision-making system in autonomous driving. After going
through the literature, it was found that there were extensive researches on both fields, but few combined
them into a single approach. The literature about decision-making systems mainly focuses on high-level
driving behaviors, while the researches on automatic tuning methods rarely rely on a decision-making
system. However, tuning MPC variables depending on the environmental information would greatly
improve the adaptability of controller. Genetic algorithm and behavior tree were then selected with
reasoning as the primary approaches of the thesis.

The thesis work was based on the MPCC motion planner used in the platform SafeVRU, which
focuses on the urban scenarios where VRUs are present. First, the tuning method based on GA was
developed, different parameters and methods for operators were chosen. Then a BT that was able to
acquire and process environmental information was developed. The BT was designed to be capable
of handling multiple tasks simultaneously for long running behaviors, and prioritising specific actions
for safety consideration. Then the algorithm was integrated with the designed BT and tested in the
simulation. The proposed automatic tuning method was tested both online and offline. The method was
compared with the default MPCC setting and performed well for different breakdown scenarios as well
as a complex urban scenario.

6.1. Limitations and Future Work
The genetic algorithm and behavior tree employed in this thesis could be improved in the following
aspects.

1. Only single objective GA is used in this work, however, more variants of genetic algorithm can be
employed to test their performance. For example, multi-objective GA does not combine individual
metrics but provides a Pareto front of the MPC weights, which may describe the dependencies of
the metrics and also provide an insight on possible minimization of them.

2. Only weight variables are being automatically tuned in this thesis. However, to increase the
adaptability of the controller, other structural parameters can also be considered.

3. As for the less improved performance from the online tuning method, with higher computational
power, the maximum iteration of the online algorithm can be extended so that a better converged
results may be acquired.

4. The results obtained from the simulation are mostly conservative, as illustrated from the safety
distance towards the VRUs, one can adjust the fitness function to achieve different performance
for other objectives.

5. As a rule-based approach, the behavior tree has a shortcoming of being not able to consider all
possible situations or to handle the uncertainty in a traffic condition. Therefore, learning-based or
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uncertainty-based approaches that could compensate this drawback can be employed to evaluate
the possibility.

6. The simulation environment being tested in this thesis is limited to a two-lane scenario with simple
operations. To test more functionality of the controller and the tuning method, a more complicated
scenario can be employed.



A
Simulation Results

A.1. Genetic Algorithm
A.1.1. Parameters

Parameter Online GA Offline GA
Population size 10 10

Maximum generation 10 40
Crossover rate 0.5 0.3
Mutation rate 0.1 0.05

Table A.1: Parameters in GA

A.1.2. Baseline Scenario
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Figure A.1: Simulation Results in Baseline Scenario
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A.1.3. Right Entry Scenario
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Figure A.2: Simulation Results for Right Entry Scenario

A.1.4. Left Entry Scenario
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Figure A.3: Simulation Results for Left Entry Scenario
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A.1.5. Cyclist Following Scenario
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Figure A.4: Simulation Results for Cyclist Following Scenario

A.1.6. Cyclist & Pedestrian Scenario
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Figure A.5: Simulation Results for Cyclist & Pedestrian Scenario
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