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Abstract

A cross flow actuator based on a turbine concept is a possible choice for the harvest of the
kinetic energy from a dynamic flow. Since there is a large potential of energy contained in the
water movement of the ocean, it is fascinating to apply turbines to extract energy. In marine
flows, currents can be described as steady since their flow velocities remain unchanged during
long periods, while waves are treated as unsteady due to their variation within short peri-
ods. In some regions, the flow is a combination of both the current and the wave. Thus, it is
interesting to understand how the turbine behaves during the operation in this unsteady flow.

The current work tries to model the marine turbines by numerical methods. Two branches are
then studied separately. The first model is built within a 2D rotor scale in which the turbine
is represented as an actuator disk. Case studies are built with different wave and current
velocity scales. The second model studies the case of the Vertical Axis Turbine (VAT) by
integrating the wave model with a 2D VAT panel code.

The simulation results from the actuator disk model suggest that it is more feasible to extract
energy from the case when the current is dominant, while in the other cases, the flow is domi-
nated by the unsteady response with large variations of power or even negative power output
observed. The results from the VAT model show that for all the wave current combinations,
the turbine can reach a regular periodic performance under the operation condition where the
blade rotation period equals the wave period. The further study of the load behavior indicates
that the turbine’s response can be controlled by tuning the phase difference between the wave
flow and the blade rotation.
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Chapter 1

Introduction

The ocean is a huge container which holds a tremendous amount of energy. It mainly produces
energy in two types: thermal and mechanical. Waves, currents and tides are the branches of
the mechanical type generated from the water movement in the ocean. To clarify the kine-
matic features of each movement, their definitions in oceanography will be briefly introduced.

Waves, or wind waves occur on the surfaces of the ocean. They are usually driven by the wind
blowing and featured with oscillating motions. Wave models are introduced to describe the
water particle’s kinematics. Among the different wave theories and equations, the simplest
model represents the waves with sinusoid shapes. This will be further depicted in Chapter 3.
An ocean current is a continuous water flow in a dominant direction, for example, the Gulf
stream which moves from the Gulf of Mexico northward through the Atlantic Ocean. The
driving forces of an ocean current come from wind, Coriolis effect, temperature and salinity
differences, tides and so on. Among them, tides are the main drives which are defined as the
variation of the sea levels that are caused mainly by the gravitational attraction between the
Earth and the Moon.

Tides and currents vary on the timescale of hours and therefore can be treated as steady
flows within a certain short term. From this aspect, these two water movements will not be
discussed separately in the later chapters and are together referred to as tidal currents. Mean-
while, waves oscillate within seconds and thus constitute the unsteady part of the flow. Then,
the income flow in this thesis will be modeled as the superposition of tidal currents and waves.

The collection of tidal energy is usually achieved by turbines. One approach is to build a
water reservoir. In this case, the flow is controllable but large civil works will be required
and may affect the marine life and the local environment [5]. Alternatively, turbines can be
directly located in the flow route and immediately turn the kinetic energy into electricity by
the blade rotation. For the wave energy, the collection is always done by other conversion
systems, typically, the oscillating water columns (OWC), point absorbers, attenuators and
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2 Introduction

the overtopping devices [6]. However, for the integration of tidal and wave energy, the turbine
is chosen to be the energy convertor in this thesis. The above wave conversion systems will
thus not be further introduced here.

As illustrated above, the energy conversion system here is mainly composed of the turbine
and the generator. Waves and tidal currents will act together as the income flow. Under this
circumstance, the turbine can be treated as the marine wave current turbine. The following
sections will first review the fundamental issues involved in a marine wave current turbine
system and then outline the main research questions of this thesis and the approaches to
answer them.

1-1 Fundamentals of marine wave current turbines

The discussion on the fundamentals of the marine wave current turbines mainly takes the
marine current turbine (MCT) system as reference. Since the energy carrier and operation
environment is the same, the sea, these two systems are comparable. Several basic fundamen-
tal issues of MCT are discussed in Bahaj’s paper [7]. The following parts will try to make a
summary from Bahaj’s while taking waves’ influence into consideration.

1-1-1 Energy capture and axial thrust

The most fascinating factors of the tidal current energy are the predictable resources and
the high energy density. The ocean current system is well studied by experts while the tide
movements can be calculated from the patterns of the earth, sun and moon. Thereby, the
harvest of the energy from tide can be planned in advance. The high energy availability
can be easily explained by the high fluid density of the sea water. Generally, a tidal current
turbine with the income flow speed at 2-3 m/s can produce four times as much energy as that
of the rated power wind turbine per rotor swept area in one year [7]. With the assumption
that in a certain time period, the velocity of the tidal current remains constant, Vc, the power
contained in the flow is thus calculated as:

Pc = 1
2ρAV

3
c (1-1)

where ρ is the fluid density, A is the cross sectional area of the turbine.

However, the wave energy cannot be obtained by this equation since both the direction and
the magnitude of the water particle velocity are varying with time. Furthermore, unlike the
tidal currents, the wave behaviors have some randomness, which can however be predicted a
few days ahead [8]. To predict the wave movements, wind wave models need to be involved.
Since the analysis here will only take the typical statistics of the sea state around the UK,
the details of the prediction models will not be further included.
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1-1 Fundamentals of marine wave current turbines 3

To describe the wave behavior, several measures are defined in the metocean field. The
instantaneous wave height, H, is the distance from crest to trough. From the observed
record, one can get an average height measure in a given record length, typically about 20
minutes [2]. Wave period, Tw, is the time required for two successive wave crests/troughs
to pass a fixed point. While these are the classical wave characteristics, the significant wave
height and period, Hs and Ts are the most commonly used measures, which are defined as the
average values of the highest 1/3 of the reported wave heights and periods [9]. With those
metocean data, the power contained in the wave can be expressed by Eq. 1-2 [10]:

Pw = Wρg2TwH
2
s

64π (1-2)

where g is the gravitational acceleration and W is the width of the wave front. One thing to
note is that the power calculated in Eq. 1-1 only considers the kinetic energy of the current
while Eq. 1-2 is obtained by estimating the rate of the potential energy change when the
water falls from the crest into the trough in front of the wave.

As the high sea water density results in the high energy density, it also causes large thrust on
the turbine. Assuming that the maximum resultant flow velocity is Umax and the turbine is
designed with an axial thrust coefficient CT , the maximum axial thrust, Tmax is then:

Tmax = 1
2CTρAU

2
max (1-3)

To resist the high loadings, robust structure is required, which will lead to an expensive
construction. Furthermore, the oscillating wave movement will cause the variation of thrust
in both the amplitude and the direction; and thus yields the fatigue problem. Therefore, the
optimization to obtain a safe yet economic system is a key challenge in the marine turbine
application.

1-1-2 Operation and maintenance

The most important factor that influences marine turbines’ operation and maintenance is the
sea water environment. The main obstacles are the corrosion, marine growth and the diffi-
culties in accessibility, which are similar as those in the offshore and shipping industries [11].
Expertise and knowledge can be transferred from these industries to marine turbines and the
prevention of the possible damages should be taken into consideration from the design phase
through the whole life time of the turbines.

To solve the corrosion problem, anti-corrosive materials are used to manufacture or coat the
structures. However, a more widespread and cost-effective way is to use the steel material
with redundancy to offset the possible corrosion losses [7]. The marine growth is another
common problem involved in the ocean-related engineering. For marine turbines, the organic
fouling may drag or block the blades and thus result in low performance. Sometimes, the
blade rotation can break the organism growth. Regular maintenance or telemetry is required
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4 Introduction

to inspect the marine growth and any other possible damages caused by debris in the sea water.

Considerate design can also increase the convenience of maintenance. Some units of the tur-
bine can be well designed with raising facility to avoid the underwater inspection and repair
work. Furthermore, the structure design can be optimized by placing components above the
sea surface, for example, the generator of the vertical axis marine turbine. In addition, the
maintenance should be carried out under a calm sea condition.

For the wave flow, as explained in the previous section, fatigue problem is involved. Therefore,
design and experiments based on fatigue analysis need to be taken into account to avoid the
possible fatigue damages.

Another factor that may influence the operation is cavitation. It is a phenomenon that vapor
cavities are formed due to a relative low pressure. The formation of cavities may occur on the
blade surface of the turbine where a rapid pressure jump exits. When the bubbles collapse,
shock waves will be emitted, which may causes noise, vibration and damage to the blades.

Generally, the solutions to most of the sea generated problems can be found in offshore and
shipping industries. The main limitation of the marine turbine development is the cost [11].
How to achieve the goals of operation and maintenance through economic way remains the
key challenge for the application of marine turbines.

1-2 Overview of the thesis

The above fundamental issues of the wave current turbine are mainly based on the MCT;
and the possible influence due to the unsteady wave flows is just empirically derived. For the
MCT with horizontal axis, the turbine performance can be predicted by BEM modeling [12].
The scale model tests conducted by Bahaj and other researchers show the results that agreed
well with BEM [13]. In the general BEM theory, the income flow is assumed to be steady.
However, as illustrated above, waves will carry the oscillating movements to the flow. It is
yet not clear whether the BEM model is valid under this circumstance. Therefore, we will
try to study the turbine performance from the perspective of the wake. The main research
questions of this thesis are:

1. How does the wake develop in the wave current flow?

2. What is the turbine’s response to this kind of unsteady flow?

3. Is BEM still valid in the prediction of the unsteady turbine performance here?

The thesis will then try to answer the questions by the numerical modeling on a 2D rotor
scale. The project is further divided into two parts. The first part represents the rotor with
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1-2 Overview of the thesis 5

an actuator disk and applies the unsteady free wake model to learn the wake development.
Case studies are built for the situations where the ratios between the wave and current ve-
locities are different. The second part is the study of the wave current turbine with vertical
axis (VAT). This is done by the integration of wave model with the 2D VAT panel code
developed by C.Simão. Ferreira [14]. Different wave current velocity combinations are also
studied separately for the VAT model.

With the above research approach, the thesis is organized with 8 chapters. The first chapter
briefly introduces the overall fundamentals of the marine current wave turbine to gain a
primary understanding. Then the research questions are proposed which are the main drivers
of this project. Chapter 2 explains the classical BEM theory which serves as the baseline
for the result comparison in the latter chapters. Afterward, the linear wave model and the
scales of currents and waves are illustrated in Chapter 3. The cases with various wave current
combinations are then set up based on the real sea state. Furthermore, Chapter 4 studies the
unsteady actuator disk model with a brief introduction of the optimization numerical method,
the fourth-order Runge-Kutta method (RK4). Then, the basic computation steps of the panel
method for the VAT model are outlined in Chapter 5. With all the inputs and model methods
demonstrated in the previous chapters, Chapter 6 and 7 present and discuss the results from
the unsteady actuator disk model and the VAT rotor model separately. Finally, Chapter 8
concludes the thesis work with remarks and recommendations for the future study.
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Chapter 2

Actuator Disk Model and Blade
Element Method

This chapter reviews the blade element momentum (BEM) theory which is basically com-
posed by two theories: actuator disk model (also well known as momentum theory) and blade
element theory. The following sections will introduce them separately.

2-1 Actuator Disk Model

The actuator disk theory is first proposed by Rankine and Froude in the late 19th. The basic
idea of the theory is to represent the real turbine rotor with an equal area disk. Several
assumptions are involved [1]:

1. The disk is infinitely thin which means it is permeable for the air to pass through.

2. The fluid flow is considered to be incompressible, homogenous and steady.

3. No viscous effects are taken into account

4. Thrust and velocity are uniformly distributed on the disk.

5. Only the axial momentum balance is considered (1D).

6. Far up- and downstream pressure is the ambient pressure.

2-1-1 Disk Model without Wake Rotation

A typical rotor disk of a wind turbine is displayed in Fig. 2-1. The thrust (T) and the kinetic
power extracted (P) are derived from the mass conservation law and the momentum balance.
Without the consideration of disk rotation, it gives:
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8 Actuator Disk Model and Blade Element Method

Stream tube boundary

Actuator
     disk

1 2 3 4

U1 U2 U3 U4

Figure 2-1: Actuator disc model of a wind turbine[1]

T = ṁ(U1 − U4), P = 1
2ṁ(U2

1 − U2
4 ) (2-1)

where ṁ is the mass flow rate. With A is the disk area, ρ is the fluid density, ṁ = (ρAU)1 =
(ρAU)4. With the axial induction factor, a, defined as:

a = U1 − U2
U1

(2-2)

replace the income flow velocity U1 with U and substitute Eq. 2-2 into Eq. 2-1, then:

T = 1
2ρAU

2[4a(1− a)], P = 1
2ρAU

34a(1− a)2 (2-3)

The rotor performance is usually characterized with the non-dimensional coefficients:
Thurst coefficient:

CT = T
1
2ρU

2A
= 4a(1− a) (2-4)

Power coefficient:
CP = P

1
2ρU

3A
= 4a(1− a)2 (2-5)

The maximum CP is found when a = 1
3 . It is called the Betz limit, CPmax = 16

27 and the
corresponding thrust coefficient is: CT = 8

9 .

2-1-2 Disk Model with Wake Rotation

When the rotor is rotating, it generates an angular momentum and causes the flow behind
the rotor rotates in the opposite direction. Assume that the angular velocity of the rotor is
Ω while the one of the wake is ωwake. The angular induction factor, a′ , is defined as:

a
′ = ωwake/2Ω (2-6)
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2-2 Blade Element Method 9

Divide the rotor into radially independent annular elements (see Fig. 2-2). Now, for each
annulus, the thrust is expressed as:

Stream tube boundary

Rotating
actuator
     disk

1 2 3 4

U U(1-a) U(1-2a) r

dr

Stream tube boundary
at rotor (actuator disk) plane

Figure 2-2: Annular streamtube and plane

dT = 4a(1− a)1
2ρU

22πrdr (2-7)

and the torque exerted on the annular element:

dQ = 4a′(1− a)1
2ρUΩr22πrdr (2-8)

Since the model in this thesis does not involve the wake rotation case, detailed derivation will
not be further explained here.

2-2 Blade Element Method

In the blade element theory, the blade is assumed to be divided into N segments as shown in
Fig. 2-3. Two key assumptions are made:

i) There are no aerodynamic interactions between different blade elements.
ii) The forces on the blade elements are determined solely by the lift and drag coefficients.

For each blade element, the relative flow is composed of the wind velocity at the rotor, U(1−a),
and the velocity due to the blade rotation. When the blade is rotating with the speed Ω and
the induced angular velocity at the blades from the wake rotation is ωwake/2, the rotational
component velocity is thus:

Ωr + (ωwake/2)r = Ωr(1 + a
′) (2-9)

An overview of the relationships of the flow velocities, angles and forces is shown in Fig. 2-4.
Here, φ is the angle of relative flow velocity which is the sum of β, the local pitch angle (the

Master of Science Thesis Yuan Shan



10 Actuator Disk Model and Blade Element Method

angle between the chord line and the plane of rotation), and α, the angle of attack (the angle
between the chord line and the relative wind). The incremental lift force is represented as
dFL while dFD is the drag force. dFN is the incremental force normal to the rotation plane
and dFT is the tangential component.

The mathematical relationships between these parameters are:

φ = β + α (2-10)

tanφ = U(1− a)
Ωr(1 + a′) (2-11)

Urel = U(1− a)
sinφ

(2-12)

dFL = Cl
1
2ρU

2
relcdr (2-13)

dFD = Cd
1
2ρU

2
relcdr (2-14)

dFN = dFLcosφ+ dFDsinφ (2-15)

dFT = dFLsinφ− dFDcosφ (2-16)

with Cl and Cd are the lift and drag coefficients which are determined by the airfoil shape.
For the rotor which has B blades, the thrust (total normal force) on each segment is therefore:

dT = BdFN = B
1
2ρU

2
rel(Clcosφ+ Cdsinφ)cdr (2-17)

and the torque can be computed from the tangential force:

dQ = BrdFT = B
1
2ρU

2
rel(Clsinφ− Cdcosφ)crdr (2-18)

Recall the equations 2-7 and 2-8 from the momentum part, the calculation of thrust and
torque links these two parts and thus forms the Blade Element Momentum (BEM) theory.
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2-2 Blade Element Method 11

C

dr

r

R

Figure 2-3: Schematic of blade elements

Plane of blade rotation

Chord
linedFN

dFL
dFD

dFTrΩ (1 + a’  )

U (1 - a)
Urel

Φ

β

α

Figure 2-4: Local element geometry and forces
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12 Actuator Disk Model and Blade Element Method
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Chapter 3

2D Model of Wave and Current Flow

As mentioned in the introduction chapter, the oscillating feature of waves will be modeled as
a sinusoid curve. The simplest approach in the wave theory is the Airy linear wave model
that will be explained in section 3-1. Then, the real sea states can be selected according to
the local marine energy potential as well as the applicability of the Airy theory.

3-1 Airy linear wave model

The linear wave theory is the simplest wave model, and applicable only within the deep
water region. To define the different water region, the classification of waves will firstly be
introduced. An oscillatory wave can be characterized by the parameters shown in Fig. 3-1;
those are height, H (distance from crest to trough), wavelength, L (distance between adjacent
crests), the free surface elevation, η, period, Tw, and the still water depth, d.

L
z

x H

GravityZ=-d

Sea Floor

Still-water level
d

η 

Figure 3-1: Characteristic measures for an oscillatory wave[2]

When d is small in comparison to L, the wave is classified as a shallow water wave. If the
situation is the reverse, it is defined as a deep water wave. The wave types classified by the
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14 2D Model of Wave and Current Flow

key parameter d/L are summarized in Table. 3-1.

Classification d/L
Deep >0.5
Transitional 0.05 to 0.5
Shallow <0.05
Very shallow << 0.05

Table 3-1: Classification of wave types[2]

In deep water regions with small wave steepness, H/L, the most frequent solution is the Airy
theory or linear wave theory because of its simplicity. The governing equations are derived
from the potential flow theory and work with a 2-dimensional Cartesian coordinate in x and z
directions (see Fig. 3-1) [2]. The origin of the x-z reference frame is located at the still water
level with x aligned with the wave propagation direction and gravity is assumed to act in the
negative z direction. According to Airy, the water particle follows an elliptical path with the
major axis oriented along x-axis. When it comes to deep water, the influence from the seabed
diminishes, and then the particle orbits tend toward circles[2]. The particle motion is shown
in Fig. 3-2.

Still Water Level

Circular Orbits

Mean
position

Bottom z=-d Bottom z=-d

Deep water
    L > 0.5d

Intermediate water depth
       0.05d< L < 0.5d

Elliptical
  Orbits

Figure 3-2: Particle orbits according to the Airy theory[3]

Based on the above assumption, Airy theory neglects the nonlinear terms in the governing
equations and describes the kinematics of the water particles by the following equations [2].

η = H

2 cos(kx− ωt) (3-1)

Vx = πH

Tw

cosh[k(z + d)]
sinh(kd) cos(kx− ωt) (3-2)
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3-2 Scales of currents and waves 15

Vz = πH

Tw

sinh[k(z + d)]
sinh(kd) sin(kx− ωt) (3-3)

with g is the gravitational acceleration, ω is the circular frequency (ω = 2π/Tw) and k is the
wave number. k and ω are related by the dispersion equation [2]:

ω2 = gk · tanh(kd) (3-4)

Then, the wave length, L and the velocity of propagation, C can be described as [2]:

L = 2π
k
, C = L

Tw
= ω

k
(3-5)

Eq. 3-3 gives the velocity variation on the z direction. However, in our study, the turbine
will only consider the velocity on x direction. For the horizontal axis marine turbine, the
actuator disk will be taken at the depth where the rotor axis lies. The z velocity at this depth
is therefore fixed at a certain time; but it will be neglected in the study. Thus, only the Eq.
3-2 will be applied to calculate the velocity on x direction as the unsteady component of the
income flow field velocity.

3-2 Scales of currents and waves

The sea area along the coastline of the UK is the choice for the scale selection. It is stated
that the domestic tidal energy of the UK is around half of the European resource and about
10-15 % of the known global resource [15]. Large effort has been put into the assessment of
extractable resource distribution and the relevant data are conveniently accessible through in-
ternet. The following wave and tide scales are based on the Atlas of the UK marine renewable
energy resources [16]. The atlas contain information of tide, wave and wind resources. With
region selection on the online map, one can easily get the water depth, tide speed, wave height
and other relevant data. The maps [17] that show the bathymetry and the general resource
information are also available and will be taken as the main reference for the estimation of
the wave and tide scales.

As can be seen from Eq. 3-2, the wave velocity is modeled as a sinusoid curve. The amplitude
of the velocity is determined by several parameters and some of them have inner relations.
Whereas, the tidal current can be simply modeled with a constant as the income flow velocity.
Thus, the wave resource will be studied first to set reasonable parameters.

The online atlas only give the significant height of the waves, Hs; while the wave period can
be derived from it. In real sea state, the relation between wave height and period is quite
random. However, estimation can be made from analytical approximation [2]:

Hs = 0.115T 1.788
w (3-6)

It is reported that about 50 % of the tide resource in the UK is in deep (>40m) sites and
the flow velocities are quite high (>2.5 m/s) [15]. However, this will only provide the case
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16 2D Model of Wave and Current Flow

in which the tide flow is dominant. To obtain the different scales, a medium depth is taken
here, d = 30m. Viewing from the map [17], areas with this water depth are featured with an
annual mean significant wave height (Hs) of about 2m. Thus, the other wave parameters can
be derived from Eq. 3-4 to Eq. 3-6; and the ratio between the water depth and the wavelength
length (d/L) is calculated as around 0.77. From Table. 3-1, the Airy linear theory is valid in
these regions.

With the chosen wave parameters, the amplitude of the velocity on x direction, AmpV , is
now a function of the elevation, z:

AmpV = πH

Tw

cosh[k(z + d)]
sinh(kd) (3-7)

It can be seen from the curve (Fig. 3-3) of the above equation that the velocity amplitude
decreases with the drop of the elevation.

−30 −25 −20 −15 −10 −5 0
0

0.2

0.4

0.6

0.8

1

1.2

1.4

z [m]

AmpV

[ms ]-1

Figure 3-3: X velocity amplitude (AmpV) VS elevation (Z)

This can be physically explained by that the friction from the sea bottom diminishes the
water movement [2]. Thus, to extract more energy, it is better to put the turbine closer to
the sea surface. In the measurement of tidal current resource, the velocity is often represented
by the Mean Spring Peak Velocity, Vmsp. It is the tidal flow velocity taken at 5m below the
surface [15]. Therefore, to make the scale combination more realistic, for the wave velocity
amplitude calculation, we also choose the elevation as z = −5m. An overview of the wave
parameters used for the estimation of wave velocity amplitude is shown in Table. 3-2.

Hs Tw d k L ω C

2 m 5 s 30 m 0.16 m 39 m 1.26 rad/s 7.80 m/s

Table 3-2: Wave parameters
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3-2 Scales of currents and waves 17

The amplitude is thus derived as AmpV = 0.56. It should be noted that the wave period
in Table. 3-2 is just a primary value for the amplitude estimation. To further study the
relationship between period, Tw, and the velocity amplitude, AmpV , we vary the period
within a reasonable range. Table. 3-3 shows the wave velocity amplitudes based on different
Tw values.

Tw [s] AmpV [m/s]
5 0.56
6 0.6
7 0.6
8 0.59
9 0.59
10 0.59

Table 3-3: Wave period VS Amplitude of the wave velocity

It can be summarized from Table. 3-3 that within the range of 5-10 s (which is the typical
wave period range of the North Sea [18]), the wave period has little influence on the velocity
amplitude. Thus, in the model, AmpV is assumed to be independent from the period and is
chosen as AmpV = 0.6m/s.

With the fixed amplitude of wave velocity as the baseline, the current flow velocities (Vc)
are chosen for different cases. According to the maps of the local bathymetry and the corre-
sponding tidal current resources [15], the current velocities in the area of 30 m water depth
rang from <0.11 m/s to >3 m/s. It is assumed that in the first scale, there will be zero
current flow velocity. Thus, the output will show how the rotor behaves in a pure oscillating
flow. Scale 2 represents the combination in which the wave velocity slightly dominants while
Scale 4 reverses. The situation in which these two values are equal will be modeled by Scale
3. At last, Scale 5 will show the outputs under the circumstance that the current velocity is
much larger than the wave. The values of the real sea states chosen for the different scales
are shown in Table. 3-4.

Scale Number ALPHA = AmpV
Vc

AmpV [m/s] Vc [m/s]
1 - 0.6 0
2 2 0.6 0.3
3 1 0.6 0.6
4 0.5 0.6 1.2
5 0.2 0.6 3

Table 3-4: Scales with different wave and tidal velocity combination from real sea states

The sum of the wave and current will result in an income flow with a sinusoid shape of which
the mean value is the current velocity and the amplitude equals that of the wave velocity.
Since the wave velocity is always varying, we will set the average value of the income flow
velocity, the current velocity, as the reference velocity for the parameter evaluation. Thus,
in the modeling, the current velocity is set as 1. With the ratio between AmpV and Vc,
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18 2D Model of Wave and Current Flow

ALPHA = AmpV/Vc, the scales for different wave and current combinations applied in the
coding are listed in Table. 3-5. The income flow velocity is thus defined as:

U = Vc +ALPHA · cos(kx− ωt) (3-8)

Case Number Vc [m/s] ALPHA

1 1 0
2 1 0.2
3 1 0.5
4 1 1
5 1 2
6 0 1

Table 3-5: Scales with different wave and tidal velocity combination for modeling

with Case 1 and 6 are the two extreme situations: only current and only wave.

The model will then simulate these scales under two different operation conditions. One is to
run the turbine with constant force applied on the rotor disk, which points to the negative x
direction; in the other situation, the thrust coefficient is specified and the thrust on the disk
is then computed from:

T = 1
2CTρAU

2 (3-9)

Eq. 3-9 gives the magnitude of the thrust which is proportional to U2; while the direction of
the thrust force is always pointing against the income flow velocity.

Yuan Shan Master of Science Thesis



Chapter 4

Unsteady Actuator Disk Model

The BEM thoery introduced in Chapter 2 is one of the most commonly used methods for the
wind turbine studies because of its simplicity. However, it does have limitations and the main
one that limits its application in our study case is that the calculations of BEM are static.
To observe the turbine’s responses from the unsteady input flows, the unsteady actuator disk
model is utilized in our case.

4-1 Unsteady free-wake vortex method

In the free wake vortex method, the velocities at the rotor is calculated from the wake in-
duction. The rotor here is still treated as the classical 2D actuator disk with a uniform,
normal load distribution. Thus, the variation of the load on the disk will only occur at
the edge with an infinite radial gradient. The derivation of the vortex generation from the
force gradient is explicitly explained in van Kuik’s work [4] and will be briefly introduced here.

According to the basic assumptions of the actuator disk model (Section 2-1), the fluid is
considered as incompressible, homogeneous and inviscid; therefore, the Euler equation is
valid:

ρ
Dv
Dt

= −∇p+ f (4-1)

together with the continuity equation:

∇ · v = 0 (4-2)

with v is the velocity vector, p is the static pressure and f is the force density distribution.
With the Bernoulli constant, H = p+ 1

sρv ·v and the vorticity, ω = ∇×v, Eq. 4-1 is reshaped
as:

∇H = f + ρv× ω − ρ∂v
∂t

(4-3)
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20 Unsteady Actuator Disk Model

By taking curl of the both sides of Eq. 4-3, in 2D flow case, it gives:

1
ρ
∇× f = ∂ω

∂t
+ (v · ∇)ω = Dω

Dt
(4-4)

This illustrates that the generation of the vorticity only depends on ∇× f . Fig. 4-1 gives a
view of the cross section though an actuator surface [4].

A

y

x

C

r

θ 

ε

∆p = ∫ε fdx

Figure 4-1: Cross-section through an actuator surface[4]

Since the integration of f on x-component is the pressure jump, ∇p =
∫
fdx, the integration

of ∇× f across the thickness ε yields:

ez ·
∫
ε
∇× fdx = −

∫
df

dy
dx = −d∆p

dy
(4-5)

With Stoke’s theorem, the integration of ∇× f on the edge area A equals:

ez ·
∫∫

A
∇× fdA =

∮
C
fdc = ∆p (4-6)

with C is a contour that encloses the area A. Substitute this into Eq. 4-4 yields:

ez ·
∫∫

A

Dω

Dt
dA = DΓ

Dt
= ∆p

ρ
(4-7)

Now, the numerical method treats the vortex generated at the disc tip as a vortex blob. The
vortex shedding process of the 2D actuator disk is shown in Fig. 4-2. At each time step, ∆t,
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4-1 Unsteady free-wake vortex method 21

1

TSTEP =1

12

TSTEP =2

123

TSTEP =3

1234

TSTEP =4

Figure 4-2: Vortex shedding process

a new vortex blob will be generated from the tips with the circulation strength[19]:

Γ = ∆p
ρ

∆t (4-8)

From the momentum theory, the pressure difference is calculated from:

∆p = 1
2ρU

2CT (4-9)

with: CT : thrust coefficient

These blobs are then shed into the wake traveling with a resultant speed determined by the
income flow velocity, U (in our case, the velocity is only on x direction) and the induced
velocity from other blobs, V.

Vres(i) = U +
N∑
j 6=i

V(i, j) (4-10)

with N is the number of the vortices released, which is equal to the number of the time steps,
TSTEP .

In a 2D Cartesian coordinate, for an arbitrary location (xi, yi), the velocities induced by a
vortex located at (xj , yj) are computed as:

u(i, j) = Γ
2π

yj − yi
(yj − yi)2 + (xj − xi)2

v(i, j) = − Γ
2π

xj − xi
(yj − yi)2 + (xj − xi)2

(4-11)

Then, the resultant velocities for an individual vortex in the 2D coordinate are:
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22 Unsteady Actuator Disk Model

Vx(i) = U +
N∑
j 6=i

u(i, j)

Vy(i) =
N∑
j 6=i

v(i, j)
(4-12)

Thus, for the next time step, the existing vortices will travel a distance by:

∆x(i) = Vx(i)t−1∆t
∆y(i) = Vy(i)t−1∆t

(4-13)

With the geometry of the vortices in the wake, the fluid velocity at any point of the 2D flow
field is then computed as the sum of the undisturbed income stream velocity and the velocity
induced by all the vortices.

4-2 Runge-Kutta Method

To refine the numerical computation, the iterative method is applied to the unsteady actuator
disk model. The specific method applied here is the fourth-order Runge-Kutta method which
is often referred to as "RK4". Instead of a general description, the RK 4 will be introduced
here with the integration of the original model. The following equations are based on the
formulation presented in Atkinson’s book [20].

As illustrated in the previous section, the vortex traveling velocity is a function of time and
the position:

(Vx, Vy) = f(t, (x, y)) (4-14)

with the position (x, y) is an unknown function of time. Here, the initial values of the problem
are given as t0, (x0, y0). When the time step number is n, we pick a vortex which travels with
an instantaneous velocity, (Vnx, Vny). RK 4 then gives the position of this vortex for next
time step number (n+ 1) as:

(xn+1, yn+1) = (xn, yn) + 1
6∆t((k1x, k1y) + 2(k2x, k2y) + 2(k3x, k3y) + (k4x, k4y))

tn+1 = tn

(4-15)

with k1(k1x, k1y), k2(k2x, k2y), k3(k3x, k3y), k4(k4x, k4y) are defined as:
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4-2 Runge-Kutta Method 23

(k1x, k1y) = f(tn, (xn, yn)),

(k2x, k2y) = f(tn + 1
2∆t, (xn, yn) + ∆t

2 (k1x, k1y)),

(k3x, k3y) = f(tn + 1
2∆t, (xn, yn) + ∆t

2 (k2x, k2y)),

(k4x, k4y) = f(tn + ∆t, (xn, yn) + ∆t(k3x, k3y)).

(4-16)

(k1x, k1y) equals the velocity, (Vnx, Vny), which is the rate of the position change at the
beginning of the time step. In the original model, the vortex traveling distance is directly
computed from the product of (Vnx, Vny) and the time interval, ∆t (Eq. 4-13). In RK4, k2
and k3 take the rate at the midpoint of the interval into calculation while k4 considers the
endpoint change rate. Thus, it leads to a more accurate approximation to the real position
change.
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Chapter 5

2D Potential Flow Panel Method
(VAT)

For the modeling of VAT in the wave current flow, the 2D panel code developed by C.Simão.
Ferreira [14] is applied here. The integration of the income flow condition to the panel code is
done by modifying the income wind script profile according to the wave model introduced in
Section 3-1. The original panel code is based on the unsteady formulation explained by Katz
and Plotkin [21]. Here, we will introduce the panel method following the numerical solution
steps recommended by Katz and Plotkin with some specific simulation data involved in the
2D panel code.

5-1 Selecting the singularity element

For the potential flow, the panel (numerical) method can be briefly summarized as dividing
the problem surface (e.g. airfoil surface) into piecewise straight line segments or panels and
then finding the strength of the singularity elements distributed on the surface [21]. The first
step is to choose the singularity elements that will be used. The usual options are sources, σ,
doublets, µ, and vortices, Γ, or any combination of them. These basic singularity solutions
of the potential flow are explicitly explained in the work of Katz and Plotkin with the com-
putation of the relevant induced velocity and potential.

In the panel code applied here, a combination of sources and doublets is distributed on the
airfoil. The near-wake is then represented with doublets while the mid and far wake are
modeled with vortex points.
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26 2D Potential Flow Panel Method (VAT)

5-2 Discretizing the geometry

This step generates the grid of the problem surface by dividing the geometry into panels
and thus defines the corner points and collocation (control) points for each segment. The
collocation points are the locations where the boundary conditions need to be fulfilled. Two
boundary conditions or their combination can be chosen for the building of the numerical
calculation, the Neumann boundary condition and the Dirichlet boundary condition. In the
case of Neumann, the collocation points are selected on the surface and the zero normal ve-
locity condition need to be satisfied directly:

∇(Φ + Φ∞) · n = 0 (5-1)

with Φ∞ is the free-stream potential and Φ is the perturbation potential. The total potential
is defined as the sum of these two: Φ∗ = Φ + Φ∞.

The Dirichlet boundary condition indirectly meets the zero normal velocity requirement by
setting the potential inside the body, Φ∗i , as a constant.

Φ∗i = const. (5-2)

Therefore, in Dirichlet case, the control points need to be placed inside the surface.

The 2D panel code here sets up the Dirichlet boundary condition for the calculation. The
airfoil chosen for the rotor model is a NACA0015 which is then subdivided into 190 panels.
The control points are placed slightly inside the airfoil and at the middle of each panel.

5-3 Determining the influence coefficients and establishing the sys-
tem of equations

The establishment of the influence coefficient matrix is based on the previous steps. For the
Dirichlet boundary condition chosen in the panel code, the calculation of the influence coef-
ficients involves both the induced potential formulation and the collocation point geometry.
The specific expression of the influence coefficient will not be included here. Instead, we
simply represent the coefficient of source element as aij .

For the doublets, an additional wake panel, µw, need to be added to fulfill the Kutta condition
that the circulation at the trailing edge is zero:

(µ1 − µN ) + µw = 0 (5-3)

with µ1 and µN are the doublets of the first and the N th panel. It will then result in N + 1
linear equations:
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5-4 Solving linear set of equations and secondary computing 27

N+1∑
i=1

N+1∑
j=1

Cijµj =


c11 c12 · · · · · · c1N c1w
c21 c22 · · · · · · c2N c2w
· · · · · · · · · · · · · · · · · ·
cN1 cN2 · · · · · · cNN cNw
1 0 0 · · · −1 1




µ1
µ2
· · ·
µN
µw

 (5-4)

Substitute µw with Eq. 5-3 and reshape the above matrix into N × N size. Rewrite the
doublet influence coefficients as:

bij = cij j 6= 1, N
bi1 = ci1 − ciw j = 1

biN = ciN + ciw j = N

(5-5)

Now, for every collocation point, the matrix equation will be:
a11 a12 · · · a1N
a21 a22 · · · a2N
· · · · · · · · · · · ·
· · · · · · · · · · · ·
aN1 aN2 · · · aNN




σ1
σ2
· · ·
· · ·
σN

 +


b11 b12 · · · b1N
b21 b22 · · · b2N
· · · · · · · · · · · ·
· · · · · · · · · · · ·
bN1 bN2 · · · bNN




µ1
µ2
· · ·
· · ·
µN

 = 0 (5-6)

In the panel code, the source strength is specified to be the total potential that the element
will perceive. It is thus the sum of the potential due to the income flow, the wake and the
movement of the airfoil during the rotation. Then, with the source, σ known, the Right-Hand
Side (RHS) is: 

RHS1
RHS2
· · ·
· · ·

RHSN

 = −


a11 a12 · · · a1N
a21 a22 · · · a2N
· · · · · · · · · · · ·
· · · · · · · · · · · ·
aN1 aN2 · · · aNN




σ1
σ2
· · ·
· · ·
σN

 (5-7)

5-4 Solving linear set of equations and secondary computing

Now, the doublets can be solved from the linear set of equations:
b11 b12 · · · b1N
b21 b22 · · · b2N
· · · · · · · · · · · ·
· · · · · · · · · · · ·
bN1 bN2 · · · bNN




µ1
µ2
· · ·
· · ·
µN

 =


RHS1
RHS2
· · ·
· · ·

RHSN

 (5-8)

Once the doublet strength µj is known, the local external tangential velocity above each
control point is calculated as the differentiation of the velocity potential along the tangential
direction and the simplest numerical interpretation is:

Utj = µj+1 − µj
∆lj

+ Ut∞ (5-9)
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with ∆lj is the distance between the two adjacent control points. Ut∞ here is the sum of the
tangential component of the income flow velocity and the velocity due to the movement of
the airfoil. In the 2D panel code, a time derivation of the doublets is applied to refine the
computation. Thus, with the reference income flow velocity set as Uref = 1, the pressure
coefficient can by computed by Eq. 5-10:

CPj = 1−
U2
tj

U2
ref

− 2Dµ/Dt
U2
ref

(5-10)

Then the contribution to the force coefficient distributed on the X direction and Y direction
are:

∆CFxj = −CPj ∆ljex
∆CFyj = −CPj ∆ljey

(5-11)

The total force on each direction is obtained by summing the force on each element:

CFxj =
N∑
j=1

∆CFxj

CFyj =
N∑
j=1

∆CFyj

(5-12)

The simulation process is similar to the free wake model in Section 4-1. For each time step,
the airfoil rotates to a new position. The control points on the airfoil will then perceive new
income flow velocities which are determined by both the simulation time and the coordinates
of the points. At the mean time, the previous wake will travel to a new geometry. With
the updated income flow and wake information, the source and doublets distribution will be
calculated following the steps above. The result will then lead to the new vortex shedding
from the trailing edge to the wake.

Recalling Eq. 4-13, for each time step, the traveling distance of the existing vortex is deter-
mined by the previous resultant velocity of the vortex. However, for the simulation conve-
nience, in the coding, the traveling velocity is taken as the new velocity at the current time
step. Since there is inherent deviation involved in the numerical computation due to the
assumption that within the small time step, the relevant properties remain unchanged, the
error here is then treated as acceptable.
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Chapter 6

Simulations for Different Wave
Current Cases - 2D Actuator Disk

This chapter discusses the results form the 2D unsteady actuator disk model. As explained
in Chapter 3, Case 1 to 6 in Table. 3-5 are simulated individually. The corresponding wake
geometry and the induction factor, a, are presented here. For the calculation of a, we choose
the current velocity as the reference velocity, thus, a is defined as:

a = −udisk/Vc (6-1)

with udisk is the induced velocity at the disk center which is computed from Eq. 4-11. The
reason that we choose Vc instead of the instantaneous income flow velocity (U) is due to the
phase delay observed between U and the udisk, which means, the induction factor based on
U can be infinite when U = 0 in some cases. The following sections will discuss the results
from each case separately.

6-1 The current case - baseline actuator disk

In the first case here, only the current velocity is involved, which means it is a case of steady
flow. It can be seen from Fig. 6-1, vortices are shedding behind the rotor disk. After several
time steps (TSTEP ), the tail of the wake starts to roll up. With large amount of vortices
shed into the wake (in our case, TSTEP ≥ 1000), the wake will finally reach a steady state.
The induced velocity at the disk center, udisk, and the induction factor will also approach
steady.

Comparison with BEM

From BEM, the relationship between induction factor and the thrust coefficient is CT =
4a(1 − a). To validate the free wake vortex model by comparing with BEM, we vary CT
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Figure 6-1: Wake Geometry of the current case at TSTEP = 100

from 0 − 1 to observe the output values of the induction factor. The corresponding results
from BEM and the free wake vortex model are described in Fig. 6-2. From the figure, we
can see that these two models match well in the low load region while the difference can be
found in the high load region, especially for the area where a exceeds the Betz limit, a = 1

3 .
One cause for the difference is that the BEM theory becomes invalid where a > 1

3 [22]. The
other is probably due to the inherent deviation of the numerical computation method. The
Glauert correction is recommended for the validation of the high load case. However, in our
research, we just choose the low load situation for the simulation. The red point in Fig. 6-2 is
the thrust coefficient applied in the simulation: CT = 0.65 and the corresponding theoretical
induction factor given by BEM is a = 0.204.

6-2 Wave case

The above section shows that the constant current velocity finally leads to a steady state
which matches well with the BEM prediction. Now the cases with pure wave oscillation will
be studied, which is further sub-divided into two operation conditions: constant force and
varying force applied on the rotor disk.

6-2-1 Wave case - constant force

In this case, the rotor is assumed to be operated with a constant force pointing to the negative
x-direction. Recalling Eq. 3-9, the constant force here is computed by replacing the income
flow velocity by a reference velocity Uref = 1. The force distributed on the rotor disk per
unit area with non-dimentionalization by diving the fluid density is then:
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Figure 6-2: Comparison of the induction factor from BEM and the free wake vortex model

fTconst = 1
2CTU

2
ref (6-2)

Vortices are then released from the tip. With the force keeping constant, the tip vortices shed
at different time steps share the same circulation strength and direction. We then represent
these vortices with red points in the geometry.

Fig. 6-3 shows the wave oscillation within one period, Tw. The red circle points are the four
turning points, N · Tw, (N + 1/4) · Tw, (N + 1/2) · Tw and (N + 3/4) · Tw (N is an arbitrary
integer). The wake geometry development process in one Tw at these four points is indicated
in the following figures.

Fig. 6-4 to Fig 6-7 show that the vortices travel back and forth corresponding to the wave
oscillation. However, the whole vortex group travel to the negative x direction. Recalling Eq.
4-12, without a dominant U in the positive x direction, the resultant velocity of the vortex is
negative at most of the time since the induced velocity from other vortices is negative. The
same thing happened at the disk center where the resultant velocity, Ures = U + udisk, is
mostly negative. While the thrust generated by the disk is pointing to the positive direction.
Thus, the power output in this case is almost negative and the turbine is actually acting
similar to a propeller.

6-2-2 Wave case - varying force

The variation of the force is defined in Chapter 3: the force is always pointing against the
income flow velocity with the magnitude proportional to U2. Same as the non-dimensional
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Figure 6-3: Wake velocity oscillation within a wave period

fTconst, the varying force distribution is then:

fTvary = 1
2CTU

2 (6-3)

Now the vortices released from the tip vary not only in circulation strength but also in the
direction. In the geometry graph, the red points represent the vortices which are released
when the wave velocity is positive while the blue ones are opposite. It can be seen that the
main part of the wake is shedding to the positive direction and the power output in this case
is positive which is shown by the power coefficient curve (Fig. 6-9).

The power coefficient, CP here is defined as:

CP = Pcenter
1
2U

3
ref

(6-4)

with Pcenter is the power generated at the center of the disk, which is computed as:

Pcenter = fTvary · Ures (6-5)

Since the wave power computation in Eq. 1-2 gives an overall power, to trace the instanta-
neous variation of the power, the computation of CP is then based on the reference velocity,
Uref = 1, as illustrated in the equations above.

The power output here is oscillating. Attentions need to be paid to some heavy variation parts
on the curve. To further understand those abnormal variations, we then study the induced
velocity at the center of the disk. Viewing from Fig. 6-10, the large variations also happen in
the udisk. By tracing the time when the variations occur, it is found that some vortices that
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Figure 6-4: Wake geometry of wave
case, constant force, t = 20Tw
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Figure 6-7: Wake geometry of wave
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Figure 6-8: Wake geometry of the wave case with varying force
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Figure 6-9: Power coefficient of the
wave case with varying force
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Figure 6-10: Induced velocity of the
wave case with varying force

travel to the axis of the disk move back towards the disk. When they are crossing the disk,
the self-velocities carried by those vortices bring the large variations.

Comparison with BEM

The results from these two operation conditions with only wave income flow indicate that
they are inherently unsteady. In the two wave cases here, the BEM model does not give any
useful information for comparison. Furthermore, since the result from the constant force case
gives the negative power output while the result of varying force case indicates the risk of
the heavy unsteady response from the disk. We may conclude that it is not recommended to
apply the rotor disk to harvest energy from the pure wave flow.
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Figure 6-11: Wake geometry of the wave current case with constant force (ALPHA = 1)

6-3 Current and wave

After study the rotor behaviors in the wave and the current separately, now we start to in-
tegrate them with different scales. Same as the previous section, the operation condition is
also categorized by the forces applied on the disk.

6-3-1 Current and wave - constant force

Different from the previous constant force, the force distribution here take the current ve-
locity into computation (fTconst = 1

2CTV
2
c ) since the mean value of the income flow velocity

now equals Vc. From the simulation results, the wake geometry and the ovearall trend of the
induction factor in Case 2 to Case 5 are similar. Thus, we only represent the Case 4 with
ALPHA = AmpV

Vc
= 1 for the discussion. The wake geometry and the induction factor are

illustrated in Fig. 6-11 and Fig. 6-13.

With the integration of the current velocity pointing in the positive x-direction, for all the
cases here, the dominant direction of the income flow velocity, U is positive. The vortices are
then all shed to the back of the disk (positive x-direction). However, the power output is not
always positive. For the Case 4 (ALPHA = 1) and Case 5 (ALPHA = 2), the negative CP
can be observed. Fig. 6-12 shows the power coefficient of Case 4 in the last period of the
simulation time.

The definition of CP is similar to the one defined in the wave case with only the Uref replaced
by Vc. We will first present the induction factor behavior which will then give an explanation
for the occurrence of negative power.
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Figure 6-12: Power coefficient of the wave current case with constant force(ALPHA = 1)

The corresponding induction factor in Fig. 6-13 finally reaches a periodic manner with the
mean value, amean gradually approaches steady after a transition time. We then take the
induction factor curve in the time period of the last time steps and try to fit it with a regular
sinusoid curve. Fig. 6-14 shows the curve-fitting which matches well with the original curve.
And from the equation of the sinusoid curve (for Case 4 here: a = 0.0322 · sin(6.238(t/Tw) +
2.881)), we can see that there exists a phase delay between a and the income flow velocity
at the disk,U (Eq. 3-8). The induced velocity is always negative and when U is zero, the re-
sultant velocity becomes less than zero which then leads to the negative power output. Until
the current velocity takes a much more dominant place, the negative resultant velocity will
disappear which guarantees a positive power output for all the time. Both in Case 2 and Case
3, the power coefficient is positive, however, the exact ALPHA where the minimum power is
zero is not studied here.

Comparison with BEM

Curve-fitting is applied for each case and the features are listed in Table. 6-1. It can be easily
observed that the oscillating period of the induction factor equals the wave period. To further
verify this conclusion, other cases with wave period from 3 s to 10s are also simulated and
the results agree well with this observation.

Case Tw [s] Vc [m/s] ALPHA (AmpV/Vc) amean Ta [s]
2 5 1 0.2 0.1974 5
3 5 1 0.5 0.1940 5
4 5 1 1 0.1853 5
5 5 1 2 0.1596 5

Table 6-1: Induction factor features of different wave current cases with constant force
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Figure 6-13: Induction factor of the
wave current case with constant force
(ALPHA = 1)
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Figure 6-14: Curve-fitting for the in-
duction factor for wave current case
with constant force (ALPHA = 1)

In the Case 2 and Case 3, amean is near to the theoretical induction factor value given by
BEM, a = 0.204. Considering the slightly increasing trend of a in Fig. 6-13, we may guess
that even BEM fails in the prediction of the unsteady response, it may be helpful in the
prediction of amean. With the limitation from the computation speed, the total time steps is
set as 3000 for each case. Thus, this conclusion may be further verified by accelerating the
model process and observing with a much larger TSTEP .

6-3-2 Current and wave - varying force

The case of varying force need to be discussed separately since the outputs from the situations
where ALPHA ≤ 1 are different from that of ALPHA > 1. When the current velocity is
smaller than the wave velocity amplitude, here ALPHA = 2, vortices with negative circula-
tion direction will be generated (represented in blue points). Fig. 6-15 to Fig. 6-19 show the
vortex releasing process in one wave oscillating period. Similar to the case of varying force in
the pure wave, the vortices gradually reach the axis of the disk and then will slightly travel
back. In Fig. 6-20, the vortices have already reached the disk and started to cross the disk.
The self velocities carried by those vortices will then cause the large variations in the response
of the disk (t/Tw at around 100 in Fig. 6-21).

However, it is not clear yet whether the phenomenon that the votices travel back to the disk
will happen for all the cases where ALPHA > 1. Since when the ratio between Vc and AmpV
is close to 1, larger TSTEP is required until the possible crossing can be observed.

When Vc ≥ AmpV (ALPHA ≤ 1), the negative forces disappear. This situation is actually
similar to the constant force. The difference is that the vortex circulations here have the same
direction but varying magnitudes. The wake geometry and the induction factor turn out to
behave in similar manners for Case 2 to Case 5. Thus, we also choose one example to present
(Case 3, Alpha = 0.5) and the results are shown in Fig. 6-22 and Fig. 6-23.
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Figure 6-15: Wake geometry of
wave current case with varying force
(ALPHA = 2, t = 3Tw)
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Figure 6-16: Wake geometry of
wave current case wiht varying force
(ALPHA = 2, t = (3 + 1
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Figure 6-17: Wake geometry of
wave current case with varying force
(ALPHA = 2, t = (3 + 1
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Figure 6-18: Wake geometry of
wave current case with varying force
(ALPHA = 2, t = (3 + 3
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Figure 6-19: Wake geometry of
wave current case with varying force
(ALPHA = 2, t = 4Tw)
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Figure 6-20: Wake geometry of
wave current case with varying force
(ALPHA = 2, TSTEP = 3000)
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Figure 6-21: Induction factor of the wave and current case with varying force, ALPHA = 2
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Figure 6-22: Wake geometry of the wave current case with varying force, ALPHA = 0.5

The induction factor here behaves similar to the case with constant force. It finally reach a
periodic shape with a phase delay in comparison to U at the disk. The specific features of a
from each case are discussed in the following part of the comparison with BEM.

Comparison with BEM

Similar to the analysis of induction factor in the case with constant force, the features of a and
the relevant case parameters are shown in Table. 6-2. The shape of the periodic induction
factor in this case is less similar to sinusoid, however, the period is still determined only by
the wave period. The mean values of a are higher than the BEM theoretical value a = 0.204.
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Figure 6-23: Induction factor of the wave current case with varying force, ALPHA = 0.5

Furthermore, it can be noticed that the larger the component ratio of wave, the higher the
induction factor can reach. Why this happens remains unknown. In addition, for Case 2
and Case 3, the power output is always positive. Other cases with Vc slightly exceeds AmpV
are needed to check the possible negative power output. This can be done for the further study.

Case Tw [s] Vc [m/s] ALPHA (AmpV/Vc) amean Ta [s]
2 5 1 0.2 0.2017 5
3 5 1 0.5 0.2230 5
4 5 1 1 0.3068 5

Table 6-2: Induction factor features of different wave current cases with varying force
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Chapter 7

Simulations for Different Wave
Current Cases - 2D VAT

Results from the VAT model simulation are presented in this chapter. Since in the actuator
disk model, the turbine is operating in a light-load situation, CT = 0.65, the VAT is then
chosen to contain two NACA0015 airfoils and operated with a tip speed ratio, TSR = 5. The
chord of the blade is at the quarter chord and normal to the rotation radius. The chord to ra-
dius ratio is c/R = 0.1 with the rotation radius set as R = 10m and the time step is ∆t = 2.5◦

ω .

The geometry, angle of attack and the force data obtained from the simulation are presented
for each case of different wave current scale. It is observed that after the 20th initial rotation,
the blade load reaches a periodic manner. Thus, the results demonstrated here correspond to
the situation after 20 rotations.

7-1 The current case

With merely the current, the VAT actually operates in a steady flow condition and the sim-
ulation returns the results similar to the one modeled with the original panel code [14]. The
non-dimensional force coefficient on the x direction is defined as CFx = Fx

1/2ρU2
ref

, with the
reference velocity set as Uref = 1. In one rotation (R), CFx and the angle of attack, α of the
first blade behave in the manners shown in Fig 7-2 and 7-3.

7-2 Wave case

The simulation of the pure wave flow case is sub-divided into two parts. In the first part, the
wave period is set to be Tw = 5s, same as the one of the actuator disk model. By doing so, we
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Figure 7-1: Wake Geometry of the VAT (Current Case)

try to simulate the situation where Tw has no clear relation with the turbine rotation period,
TR. While for the second part, we build the wave model with the assumption that the wave
period is equal to the rotation period, Tw = TR. The results from the different simulation
situations are then discussed separately.

7-2-1 Arbitrary wave period

The wake development process is demonstrated in Fig. 7-4 to Fig. 7-7. It can be seen from
the figures, the vortices generated in this case accumulate within the region of the VAT rota-
tion plane. This can be understood that since the income flow velocity is oscillating, there is
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Figure 7-2: CF x over one rotation
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rotation (Current Case)
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Figure 7-4: Wake geometry after 1
rotation (Wave Case, Tw = 5s)
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Figure 7-5: Wake geometry after 5
rotation (Wave Case, Tw = 5s)
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Figure 7-6: Wake geometry after 10
rotation (Wave Case, Tw = 5s)
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Figure 7-7: Wake geometry after 30
rotation (Wave Case, Tw = 5s)

no dominant velocity that can blow away the vortices. Their behaviors are quite chaotic and
the x-component force coefficient also behaves randomly (see Fig. 7-8).

No useful power can be extracted from this case, some control strategies are needed to adjust
the turbine operation. Since the blade of VAT is rotating, if we match the rotation period
equal to the wave period, the velocity experienced by the blade at a specified azimuthal posi-
tion will remain the same in each rotation. Under this circumstance, the turbine gives results
with some regular rules, which are demonstrated in the next part.

7-2-2 Wave period equal to rotation period

The rotation period, TR, can be computed from the definition of the tip speed ratio, TSR =
ΩR
U . With TSR = 5 in the coding, the rotation period of this turbine is 4π, around 12 s.
Since this value is also within the wave period range of the sea area of the UK [17], we set the
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Figure 7-8: X-component Force Coefficient (Wave Case, Tw = 5s)

wave period equal to the rotation period, Tw = TR = 4π. Then, we vary the starting phase
of the wave model to control the income velocity perceived by the blade during the rotation.
Four typical starting phase are chosen here, 0, 1

2π, π and 3
2π. Fig. 7-9 to Fig. 7-12 illustrate

the wake geometries obtained with the different starting phases.

There are still no clear wake structures in the geometries of these cases. However, the vortices
travel downstream instead of staying in the rotor area. It is yet not clear that why without a
dominant velocity on positive x direction, most of the vortices travel in a dominant direction.
Further study that traces the vortex traveling is recommended to explain the formation of
the wake and the results here mainly focus on the load behavior. The x component force co-
efficient, CFx, has a periodic shape with some sectional variations for all the starting phasess
(Fig. 7-13 to Fig. 7-16).

From the figures, we can see that CFx in the case with zero starting phase is negative for
the most part of the rotation. Whereas, the π starting phase case returns an almost opposite
results while the other two cases are in between. Therefore, we first trace the CFx (Fig.
7-17) and α (Fig. 7-18) of one rotation for the case with the starting phase equal to 0 to
understand the cause of the negative CFx. Blade local geometries and the velocities perceived
by the blade at four azimuthal positions are presented to study the relationship between the
velocities. The four azimuthal positions are θ = 45◦, θ = 135◦, θ = 225◦ and θ = 315◦.

In Fig. 7-19 to Fig. 7-22, the black vectors represent the relative velocities, Vrel, while the
blue ones are the velocities due to the displacement of the blade, Vdis. The flow velocities,
Vflow at the quarter chord point are in red and the wake induced velocities, Vwake are shown
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Figure 7-9: Wake geometry of the
wave case with Tw = TR (Start 0)
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Figure 7-10: Wake geometry of the
wave case with Tw = TR (Start 1
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Figure 7-11: Wake geometry of the
wave case with Tw = TR (Start π)
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Figure 7-13: CF x of the wave case
with Tw = TR (Start 0)
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Figure 7-14: CF x of the wave case
with Tw = TR (Start 1
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Figure 7-15: CF x of the wave case
with Tw = TR (Start π)
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Figure 7-16: CF x of the wave case
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Figure 7-17: CF x over one rotation
of the wave case, Tw = TR (Start 0)
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Figure 7-18: α over one rotation of
the wave case, Tw = TR (Start 0)
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Figure 7-19: Velocities relation of the
wave case with Tw = TR (Start 0, θ =
45◦)
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Figure 7-20: Velocities relation of the
wave case with Tw = TR (Start 0, θ =
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wave case with Tw = TR (Start 0, θ =
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in purple. The velocities induced by the other airfoil are plotted green. However, they are
negligible in comparison to other velocities and thus are not obviously detected in the figures.
The red dash lines are the chord lines.

As illustrated from the figures, Vdis is always pointing the chord line direction. The main
vector that influences the deviation of Vrel from the chord line is the flow velocity. In the 0
starting phase case, for all the four azimuthal positions, the Vflow points to the negative x
direction, which results in the negative angle of attack in the upwind part (0◦ < θ < 180◦)
and positive α in the downwind part (180◦ < θ < 360◦). This explains why the x-component
force is almost negative in Fig. 7-13.

Then, to further explain the different blade loads in the cases with different starting phases.
The azimuthal position with θ = 45◦ is chosen to observe the velocity relationships from the
four cases (Fig. 7-23 to Fig. 7-26).

Comparing these four cases in pairs, start 0 with start π and start 1
2π with start 3

2π, accord-
ing to the features of the sinusoid curve, the difference of π in the starting phase results in
the opposite velocities in the cases of one pair. Since the flow velocity is the main influence
factor of α, the angles in one pair are almost opposite to each other. However, the effect
from the wake induced velocity is not negligible, especially when the wave velocity is in the
zero-crossing area. This can further explain why CFx in one pair (for example, Fig. 7-14 and
Fig. 7-16) are not just reversed. In addition, we may guess that Vwake is also the main cause
of the sectional variation in the blade load.

The results in this case implicate that VAT can be utilized to extract energy from the pure
wave oscillation. However, the strict control strategy is required to match the rotation period
with the wave period. Moreover, the phase difference between the wave and blade rotation
influences the load output. The negative x-component force may appear, which can be elim-
inated by pitching the blade during the rotation.

7-3 Wave and current case

Same as the previous section, the results are discussed separately according to the wave period.

7-3-1 Arbitrary wave period

When the wave velocity takes the dominant place, ALPHA ≥ 1, the geometry and blade load
behave similar as the case with pure wave oscillating. No regular rules can be found from the
results and thus will not be further explained here

In the cases where ALPHA < 1, periodic responses with some randomness can be observed
from the VAT model. The typical wake geometry and the x-component force coefficient
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Figure 7-23: Velocities relation of the
wave case with Tw = TR (θ = 45◦,
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Figure 7-25: Velocities relation of the
wave case with Tw = TR (θ = 45◦,
Start π)

−8 −7.5 −7 −6.5 −6 −5.5 −5
−9.5

−9

−8.5

−8

−7.5

−7

−6.5

x [m]

y [m]

Start 3/2π

Vrel
Vdis

V�ow
Vwake

Figure 7-26: Velocities relation of the
wave case with Tw = TR (θ = 45◦,
Start 3

2π)

Master of Science Thesis Yuan Shan



50 Simulations for Different Wave Current Cases - 2D VAT

are shown in Fig. 7-27 and 7-28 for the case when ALPHA = AmpV
V c = 0.2. The CFx

curve illustrates that the downwind part is more sensitive to the velocity variation. This is
explainable since the blade traveling downwind is operating in the wake of the upwind part
while the vortex traveling speed is also influenced by the flow velocity as explained in Chapter
4.
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Figure 7-27: Wake Geometry of the wave current case with Tw = 5s (ALPHA = 0.2)

7-3-2 Wave period equal to rotation period

With the integration of the current, the response from the turbine is improved in comparison
to the results with pure wave oscillation. Since the negative part of the total income velocity
become smaller due to the integration of the current flow, the occurrence of the negative angle
of attack is also less. When ALPHA ≥ 1, the negative velocity disappears. Reuglar wake
structures which are similar to the one of the steady current flow case can be observed. The
wake geometries and CFx curves from all the cases are similar. Thus, we only present the one
in which ALPHA = 0.2 with starting phase equals π here.
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Figure 7-28: CF x of the wave current case with Tw = 5s (ALPHA = 0.2)
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Figure 7-29: Wake Geometry of the wave current case with Tw = TR (ALPHA = 0.2, Start π)
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Figure 7-30: CF x of the wave current case with Tw = TR (ALPHA = 0.2, Start π)
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Chapter 8

Conclusions and Recommendations

This project consists of two models, the 2D actuator disk and the VAT rotor model. Results
of case studies from those two models are discussed in the previous chapters. Now, we try to
make a summary based on the observations. Section 8-1 will focus on the conclusions from
the results of the case studies while Section 8-2 will discuss about the improvements and
interesting findings that can be studied in the future work.

8-1 Conclusions

Firstly, results from the actuator disk model indicate that it is more feasible to install the
cross flow actuator in the wave current flow where the current is dominant. For the pure
wave flow, no regular power output is found and the turbine may be operated under the risk
of large turbulence due to the vortices traveling back to the rotor area. When the current is
added to the flow while the wave remains dominant, periodic power output can be obtained
under the operation condition with constant force. However, some parts of the generated
power are negative due to the negative resultant velocity perceived by the disk. In the cases
with varying force applied on the disk, the vortices may also travel back to the rotor and
bring large unsteady variations to the flow. Then, only for the situations where the current
takes dominant place, the turbine will give responses which indicate the possibility of energy
extraction. In addition, for all the unsteady cases, BEM fails to predict the unsteady response.

The VAT model shows the potential to collect energy from all the wave current combinations.
However, strict control strategy is required to match the blade rotation period equal to the
wave period. Based on the study of the load behaviors for the cases where the wave is simu-
lated with different starting phases, the conclusion can be made that it is possible to control
the load output by tuning the phase difference between the wave and the blade rotation.
Furthermore, the blade pitch control can be applied to prevent any negative x component
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force.

As summarized above, for all the cases where the energy extraction is possible, the turbine’s
performance will finally reach a regular periodic manner. However, the periodic response also
means the possible fatigue damages, especially in the marine field with the high fluid density.
Thus, how to overcome the serious fatigue problem will be a key challenge for the application
of the marine turbine in the wave current unsteady flow.

8-2 Recommendations

This section first proposes the improvements that can be applied for the optimization of the
numerical model. Then, the findings and ideas during the research period are demonstrated
which may be interesting for the further study.

1. All the cases simulated in both models only consider the light-load condition. It is thus
recommended to first validate the actuator disk model for the heavy load region and
then simulate the situation under this load condition. The VAT model with three blades
can then also be simulated.

2. For the actuator disk model, a cut-off vortex kernel and the Runge-Kutta method are
applied to refine the code. However, from the comparison with BEM, especially in the
high-load region, the deviation is not negligible. To improve the accuracy of the model,
other kernel methods can be integrated, for example, the Lamb-Oseen. Furthermore,
the higher order numerical methods and the time derivative method can help to further
optimize the coding.

3. The actuator disk model is time consuming and requires several hours (in our case, 2
hours) to reach a regular periodic result. Fast multiple method (FMM) and Graphic
Processing Unit (GPU) computation can be introduced to accelerate the computation
process.

4. The BEM model proposed here for comparison is the classical BEM which can not
predict the unsteady performance. Other unsteady models, for example, the dynamic
inflow model can be applied for a better comparison.

5. During the study of the induction factor from the actuator disk model, it is found that
when the induction factor behavior reaches the periodic manner, its variation follows
some rules. Since the number of the case studies is limited, it is not sufficient to under-
stand the exact influence on the oscillation of the induction factor. Further cases can
be studied which may lead to interesting results.
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6. In the VAT model, there are cases in which we assume that the wave period is equal
to the rotation period, which requires strict control strategy in practice. Furthermore,
since the turbine’s response is periodic, how to apply the control method to efficiently
extract energy remains a challenge for the future study.
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Nomenclature

Vc current flow velocity [m/s]
Pc power contained in the current flow [W ]
ρ fluid density [kg/m3]
A turbine cross sectional area [m2]
H instantaneous wave height [m]
Tw wave period [s]
Hs significant wave height [m]
Ts significant wave period [s]
Pw power contained in the wave flow [W ]
g gravitational acceleration [m/s2]
W wave front width [m]
CT thrust coefficient
T thrust [N ]
P kinetic power [W ]
ṁ mass flow rate [kg/s]
U income flow velocity [m/s]
a induction factor
CP power coefficient
Ω rotor angular velocity [rad/s]
ωwake wake rotation velocity [rad/s]
a′ angular induction factor
r local radius [m]
Q torque [Nm]
φ angle of the relative flow velocity [rad]
β local pith angle [rad]
φ angle of attack [rad]
FL lift force [N ]
FD drag force [N ]
FN force normal to the rotation plane [N ]
FT force tangential to the rotation plane [N ]
Urel relative velocity [m/s]
c chord [m]
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R rotor radius [m]
Cl lift coefficient
Cd drag coefficient
B number of blades
v velocity vector [m/s]
p static pressure [Pa]
f force density distribution [N ]
ω vorticity [1/s]
ε cross section thickness of the disk [m]
Γ circulation strength [m2/s]
V induced velocity [m/s]
Vres resultant speed [m/s]
TSTEP number of the time steps
u induced velocity on x direction [m/s]
v induced velocity on y direction [m/s]
L wavelength [m]
η free surface elevation [m]
d still water depth [m]
ω circular frequency [rad/s]
k wave number
C wave propagation velocity [m/s]
AmpV amplitude of the wave velocity on x direction [m/s]
Vmsp mean spring peak velocity [m/s]
σ source strength [m2/s]
µ doublet strength [m2/s]
Φ∞ free-stream potential [m2/s]
Φ perturbation potential [m2/s]
Φ∗ total potential [m2/s]
Φ∗i inner potential
Ut tangential velocity [m/s]
∆l distance between the two adjacent control points [m]
CF force coefficient
Uref reference velocity [m/s]
udisk induced velocity at the disk center [m/s]
TSR Tip Speed Ratio
θ azimuthal position [rad]
Vflow flow velocity perceived by the blade [m/s]
Vwake wake induced velocity [m/s]
Vdis velocity due to displacement [m/s]
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