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Identifying and classifying traffic and congestion patterns are essen-
tial parts of modern traffic management underpinned by the emerging 
intelligent transport systems. This paper explores the potential of using 
a combination of image processing methods to identify and classify 
regions of congestion within spatiotemporal traffic (speed, flow) contour 
maps. The underlying idea is to use these regions as (archetype) shapes 
that in many combinations can make up a wide variety of larger-scale 
traffic patterns. In this paper, use of a so-called statistical shape model 
is proposed as a low-dimensional representation of the archetype shape, 
and an active shape model algorithm coupled with linear classification 
is developed to classify the patterns of interest. Application of the pro-
posed method is demonstrated with a preliminary set of speed contour 
maps reconstructed from loop detector data in the Netherlands. The  
results show that the extended active shape model can be used as a 
multiclass classifier. In particular, 70% of the traffic patterns in the test 
data were correctly classified with use of only two archetype shapes and 
simple logistic classifiers. The results point to the importance of use of 
expert knowledge by means of (a priori) manual classification of the 
training examples. This work opens many research directions, including 
semiautomated searches through traffic databases, automatic detection, 
and classification of new traffic patterns.

In research, in education, and in practice, spatiotemporal contour maps 
of speed, density, and flow provide an intuitive means to identify, 
study, explain, and illustrate (longitudinal) traffic flow phenomena 
on the basis of either real traffic data or data from traffic simulation 
models. These phenomena include homogeneous congestion (HC) 
patterns at bottlenecks, reduced flows related to blockages, wide 
moving jams (WMJs) that propagate over large distances against 
the direction of traffic flow, and high-density platoons of heavy 
vehicles that form moving bottlenecks. With contour maps these 
phenomena become visible, which helps scientists to formulate  
hypotheses and derive theories and models to describe the under
lying dynamics. Figure 1, for example, shows speed contour plots on 
the A20 freeway in the Netherlands between Rotterdam and Gouda 
(Figure 1a), the A13 between Rotterdam and The Hague (Figure 1b), 

and the A16 east of Rotterdam (Figure 1c), which were used in a 
study of traffic dynamics related to severe accidents.

Constructing smooth contour maps from (sensor) data is relatively 
straightforward with the adaptive smoothing method introduced by 
Treiber and Helbing (1) and further refined by others (2, 3). Techni-
cally, contour maps represent matrices of traffic variables (densities, 
speeds, flows) on consecutive cells Δx along a route for consecutive  
time periods Δt, where neither Δx nor Δt must be of constant size 
or duration, respectively. When mapped onto an underlying grid 
{xi, tj} with i = 1, . . . , N and j = 1, . . . , M, traffic contour plots 
can be understood as images with a color mapping from the traffic 
variable of interest to whatever color coding provides the required 
visual representation. This image representation opens a wide array 
of possibilities for traffic scientists and engineers, such as deriving 
distributions of wave speeds from raw traffic data, without making 
any prior assumptions (4). These wave speeds and patterns can then 
be used for calibration and validation of traffic flow models (5).

This paper explores a different application perspective of image 
processing techniques within the traffic domain, that is, the clas-
sification and identification of different traffic patterns. Classifying 
congestion patterns has a twofold application—for off-line analysis 
and for real-time predictions. For off-line analysis, it can be used to 
find days and routes in the historical database with similar congestion 
patterns. These data can be used by traffic managers to compare two 
incidents to gain insight for better traffic control. The classification 
of partial patterns along with metadata such as incident location and 
severity can also be used for short-term predictions.

Classifying congestion patterns is not a new idea. The ASDA/
FOTO method of Kerner et al. is a well-known, patented, theory-
laden approach (6), and many machine learning alternatives are avail-
able (7–10). Whereas the latter studies focused on class labels that 
indicate level of service (e.g., light, medium, and heavy congestion), 
this study’s aim, like that of Kerner et al., is to classify entire spatio-
temporal congestion patterns. In contrast to that of Kerner et al., this 
study does not use an elaborate set of expert rules but instead uses 
flexible and data-driven methods. A supervised learning method was 
used in an earlier study to classify such patterns with a multiclass 
support vector machine (11). That study derived an equal-size fea-
ture vector for all small and larger traffic patterns identified in traffic 
contour maps. In this paper, (geometrical) shapes instead of feature 
vectors are used. The method used comprises several image pro-
cessing techniques to break down larger-scale traffic patterns into 
smaller regions. The underlying idea is that these regions constitute 
base (archetype) shapes that in many combinations can make up a  
wide variety of larger-scale traffic patterns. With robust identifica-
tion methods for such archetype shapes, it is possible to dissect, 
identify, and classify complex traffic patterns automatically. Despite 
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the approach’s simplicity, the classification results are encouraging, 
with 70% accuracy attained with just two archetype shapes and 
simple logistic classifiers and without resorting to the use of addi-
tional information (e.g., flow), as in the method of Kerner et al. The 
applications for this technique are numerous and range from traf-
fic database searching and indexing to traffic state estimation and 
prediction.

The rest of the paper is organized as follows. The next section gives 
an overview of the approaches in the multiclass classifier using active 
shape models (ASMs). Then the experimental setup is described, 
along with the validation method. The results of the method are pre-
sented, and a synthesis of the findings is then given. The paper closes 

with preliminary conclusions and an outlook on further improvement 
of the method.

Method

In this work, an approach that is fundamentally different from 
the state of the art in traffic pattern classification is introduced and 
developed. Instead of the use of local features to identify charac-
teristics of traffic patterns, (archetype) shapes are used to classify 
patterns to capture the global structure of these patterns. This method 
works at a higher abstraction level than feature-based methods. The  
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FIGURE 1    Three severe incidents with similar characteristics regarding incident, spatiotemporal 
extent of queue, and vehicle loss hours: (a) A20, June 9, 2015; (b) A13, March 24, 2015;  
and (c) A16, January 9, 2011.
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shape-based methods are usually used for shape recognition and 
fitting, mainly in image recognition. This is the first paper, to the 
authors’ knowledge, that introduces shape-based classification in 
the traffic domain for multiclass classification. The overall method 
is outlined in Figure 2a.

The idea is to extract contours from speed contour maps and use 
these as the basis for building the shape model, the base shape clas-
sifier (SC) model, and the pattern classifier model. All these compo-
nents are explained below; a full mathematical explanation is beyond 
the scope of this paper. The final part of the method explains how 
the fitting result from ASM has been used for a multiclass prediction 
process.

Contour Extraction

The basic ingredients of the method are contour maps of detector 
data generated with the adaptive smoothing method. This method is 
extensively described elsewhere (1–3). Raw data for 1 day are con-
sidered in one contour map, which therefore can contain multiple 

congestion patterns for a given day. The individual traffic congestion 
patterns from each space–time plot are extracted with a naïve contour 
extraction.

The naïve contour extraction finds the outline of a pattern in an 
image, as there are multiple patterns in one image (Figure 3a). The first 
step is to filter out irrelevant information by assuming a speed thresh-
old, v_thres, that differentiates between congested and freely flowing 
traffic. In this paper, v_thres = 65. This crude assumption can be 
relaxed, as discussed later in the paper. This step results in a Boolean 
mask, as shown in Figure 3b. After thresholding, dilation is used to fill 
the holes created to provide a smooth mask. This smoothed mask is 
then used to detect the contours in the image by joining the continu-
ous points along the boundary with similar pixel intensity (12). The 
detected contours are used to define the boundary to extract each 
pattern in an image (Figure 3c). Resulting from the naïve contour 
extraction is a data set of various traffic congestion pattern images.

An additional contour refinement is then performed on the 
obtained patterns to extract the congestion shape from each pattern. 
The irrelevant information is filtered out from the naïve extracted 
pattern image with the same assumption used before; low speed 
implies congestion, as shown in Figure 3e. A morphological clos-
ing strategy that consists of two successive binary transformations,  
dilation followed by erosion (13), is used to eliminate small and iso-
lated gaps from the relevant regions without destroying the original 
shape, as shown in Figure 3f. For both transformations, a 3 × 3 cross-
structuring element is used. This binary smoothed mask is then used 
to detect the contours in the image (12), as shown in Figure 3g.

Manual Classification

The refined contour extraction results in a data set of various traffic 
congestion pattern images. This data set is manually classified into 
five classes according to the size of images (space and time extent 
of traffic jam) and the type of congestion. Table 1 shows the five 
classes with some examples. This classification is arbitrary—other 
analysts may come up with more or fewer classes and different 
criteria. Unsupervised learning also can be used for creating these 
classes. However, this would require building feature vectors based 
on the application or using complete black-box methods like deep 
learning to find all the relevant features in the patterns.

Base Shape Identification  
and Base Shape Predictor

The manually classified data show that all the patterns in the class 
are approximately a combination of two base shapes, isolated WMJs 
(IWMJs) and HC. For example, Table 1 shows that low-frequency 
WMJ patterns comprise n WMJ shapes, mixed class patterns com-
prise both HC and IWMJ patterns, and so on. The key distinction in 
the context of this paper between the two base shapes is that WMJs 
are stripe-like shapes, whereas HC patterns form triangular shapes. 
This distinction is backed by theoretical research that investigated a 
wide range of congestion patterns (1, 14). These works distinguish 
two main types of congestion based on first-order traffic flow theory, 
synchronized and WMJs, which includes characteristics similar to 
those in the base archetypes. Hence, it was decided to start with 
these two distinct and well-defined base shapes. As more archetypes 
emerge from data, the proposed method can be scaled to include these 
base shapes.

Speed contour maps

Contour extraction

Multiclass predictor

Class 1 Class 2 Class N Identify base shapes

Base shape predictor

(a)

Contours of base
shape

ASM training

ASM fitting

Shape classifier
training

Shape predictor

Isolated and Homogeneous

(b)

Pattern classifier
training

For each pattern

For each shape

ASM fitting

Shape predictor

Class predictor

Class 1–5

(c)

FIGURE 2    Approach: (a) overview, (b) base shape predictor,  
and (c) multiclass predictor.
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The ASM, given a new observed shape, tries to fit this shape to 
one of the base shapes. To do this, the originally single-class ASM 
algorithm was extended to a multiclass ASM through inclusion of a 
linear classifier that predicts whether a given shape is HC or IWMJ. 
Figure 2b outlines how to do this step by step. Each step is explained 
in the following (a full mathematical explanation of the ASM com-
ponents, including the multiclass extension, is beyond the scope 
of this paper). The two main phases in ASM are discussed below: 
constructing a statistical shape model (SSM) for each base shape 
(model training) and fitting a new shape to this SSM (model fitting).

ASM Training

The ASM is a model-based segmentation method introduced by 
Cootes et al. (15). The method is based on the principle that a shape 
can be represented by a mean shape and its variations. The mean 
shape and the variances constitute the SSM, which contains all the 
parameters that are needed to define that shape. The SSM is used  

to find potential instances of the shape model in a new image or con-
tour. Initially, a set of landmarks in the new contour is defined, after 
which the shape defined by these landmarks is deformed accord-
ing to the SSM to provide the best fit possible within the SSM. The 
deformation is based on finding correspondences between the new 
shape and the shape defined by various SSM components and itera-
tive minimization of a cost function for the fit. The allowed degree 
of deformation is constrained by the variations defined in the SSM. 
If the SSM includes large variances, large deformations are possible, 
and vice versa.

An overview of the method is given below. A more detailed 
explanation is available elsewhere (15). The steps for building 
the SSM model (i.e., the training phase) for a base shape are as 
follows:

Step 1.  Align the shapes to the first shape in the data set, and 
generate a mean shape from the aligned shapes. First, all the shapes 
must have the same number of landmarks, which is rarely the case. 
Therefore, a so-called iterative closest point (ICP) method is used 

(a)

(b)

(c)

(d) (e)

(f) (g)

Speed (km/h)

FIGURE 3    Contour extraction, naïve and refined: (a) raw data, multiple patterns; 
(b) threshold mask; (c) naïve extracted contour with boundary; (d) naïve extracted 
pattern; (e) binary image; (f ) performed closing; and (g) refined contours.
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to register the contours from all classes to a given model contour. 
In ICP, a point set is transformed to best match the chosen model, 
where the transformations are revised iteratively until the distance 
between the point set and the model is minimized (16). The align-
ment itself is achieved with Procrustes analysis because the standard 
ASM also uses this method for alignment (17).

Step 2.  Realign the shapes to the mean shape and generate a new 
mean shape from the newly aligned shapes.

Step 3.  Repeat Step 2 (update the mean shape) until convergence.
Step 4.  Finally, apply principal component analysis (PCA) to 

compute the eigenvectors and eigenvalues of the aligned shapes. 
The SSM components are the eigenvectors of the centered shapes in 
the training data, and the variances are the eigenvalues of these shapes. 
When PCA is applied to the data, any shape (within the training set) x 
(an n-dimensional vector of points) can be approximated with

x x Pb (1)≈ +

where

	 –x	=	� SSM mean shape having point correspondences with x and 
the same dimension,

	 P	=	SSM principal components, and
	 b	=	� parameters corresponding to the SSM components that deform 

the shape.

This is the basis for fitting a new set of landmarks to the SSM. 
The first four components of the IWMJ base class are shown in 
Figure 4a. This figure explains the shape variations of the class 
according to the mean shape.

ASM Fitting

Given a new shape Y′ for testing, the shape is registered with the 
mean shape by using ICP to compute Y. With Y and the SSM model 

TABLE 1    Class Description for Manually Classified Patterns

Name Remarks Examples

Isolated WMJs Short (1–2 km) high-density traffic jams. Both head 
and tail of this queue propagate backward with 
virtually constant speeds (typically −18 km/h). 
WMJs typically result from large disturbances 
(e.g., abrupt braking) farther downstream.

Heterogeneous Congestion 1,  
low-frequency WMJs

Large-scale light congestion patterns with a few 
WMJs emitting from the congested area.

Heterogeneous Congestion 2,  
high-frequency WMJs

Large-scale light congestion patterns with many 
WMJs emitting from the congested area.

Homogeneous congestion High-density (low-speed) severe congestion regions, 
typically caused by incidents or other lane block-
ages. In terms of shape, the downstream front is 
stationary, whereas the upstream front moves with 
various shock wave speeds.

Mixed large-scale pattern Combination patterns not falling in either of the 
other categories.
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of the shape, ASM fitting finds the model points x that best fit Y. The 
steps for ASM fitting are as follows:

Step 1.  Initialize the shape parameter b as 0, implying model 
points = mean shape, that is, x = –x.

Step 2.  Generate the model points positions with x = –x + Pb, 
where P is the SSM principal component.

Step 3.  Find the pose parameters transform that best aligns the 
model points x to the new set of landmarks Y by using Procrustes 
analysis (17).

Step 4.  Project Y into the model coordinate frame Y′ by using the 
inverse transform from Equation 1.

Step 5.  Update the shape parameters b to match Y′ by finding the 
least squares solution of Ax′ = B, where A is P, x′ is b, and B = Y′ − –x.

Step 6.  Repeat Steps 2 through 5 until convergence.

An example of an ASM fitting result is shown in Figure 4b. 
The fitting error metric for the ASM that is used as the convergence 
criteria is the Euclidean distance between the mean shape and the 
ASM fitted shape. The ASM stops the iteration when there is no  
significant difference in the error metric result from the previous 
iteration and the current iteration. Here, an error difference thresh-
old of 0.0001 was used, which is statistically insignificant with respect 
to the error rate and the shape surface area.

Designing and Training a Base Shape Classifier

Now, with a working ASM model for both base shapes (IWMJ and 
HC), a shape classifier is needed that can predict which of these base 
shapes provides the best representation for a newly found shape in a 
speed contour plot. First, the new shape is fitted with both base shapes, 
resulting in fitting error values ei (error on the IWMJ base shape) 
and eh (error on the HC base shape), respectively. These errors are 
defined as the Euclidean distance between the SSM mean and the 
fitted shape. Additionally, to increase prediction accuracy, a third 
metric is computed that is based on additional nonshape properties 
of IWMJ and HC shapes, respectively. As an example, in this case a 
metric is based on the spatiotemporal area covered by the shape a 
(in meter × seconds) and the gradient g (the variation in speed in the 
given area a). The compound metric is the ratio g/a, which can be 
understood as the amount of heterogeneity (variation in speed) per 
unit space × time, resulting in a three-dimensional feature vector 
(ei, eh, g/a). To build the classifier, a well-known method in linear clas-
sification, logistic regression, is applied (18). It originally was a con-
ditional probability model that measures the likelihood relationship 
between a specific output and an input by using a logistic function:
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FIGURE 4    IWMJ: (a) first four PCA components of IWMJ shape model and (b) ASM fitting for IWMJ shape after Nth iterations (N = 11).
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where t is a linear combination of input feature vector x and a is  
the vector of coefficients, which is considered a model character-
istic. In preparing training data, isolated and homogeneous shapes 
are labeled as 0 and 1, respectively. These numbers are supposed 
to be outputs of logistic function. Coefficient vector aSC is trained 
to minimize the cost of matching logistic function to training data, 
which is measured by Euclidean distance.

p x yi i

xi

SCcost (3)
2

training set

a i∑( )( )= −
∈

x e e
g
a

i i h, , (4)= 





yi

0 for isolated shapes

1 for homogeneous shapes
(5)=





The resulting (trained) model is the (base) shape predictor, which 
classifies a shape as either IWMJ or HC. The shape classifier is used 
to build feature vectors for training pattern classifiers for multiclass 
classification.

Using the Base Shape Classifier

Given a new shape, the shape is fitted to the IWMJ and HC SSM as 
described in the section on ASM fitting to create a description vector 

xSC = (ei, eh, g/a). This vector is used by the shape classifier model to 
make the decision based on the following equation:

a x
�

i
shape

0SC SC
=

>





homogeneous shape

isolated shape otherwise
(6)

This equation together with the logistic function gives a straight-
forward explanation for the classifier to make the decision. The new 
shape is classified as a homogeneous shape if the probability given by 
the logistic function is greater than 0.5. An overview of the method 
is shown in Figure 5a.

Multiclass Pattern Classifier and Predictor

The aim of this work is to classify a given traffic (congestion) pattern 
into one of five predefined classes (Table 1). The final step now is 
to design, train, and test a classifier that can do this. A schematic 
overview of the proposed method is shown in Figure 2c.

Since each of these five patterns can be broken down into com-
binations of two (archetype) base shapes (IWMJ and HC), the first 
step in classifying a congestion pattern is to break down the pattern 
into these base shapes, as shown in Figure 5a. For each of the five 
classes a training set can be built. The output data are the class labels 
(1 to 5), and the input data are equal to a simple two-dimensional 
feature vector (ni, nh), where ni is the number of occurrences of the 
IWMJ shape in the given pattern and nh is the number of occurrences 
of the HC shape in the given pattern.

ASM Fitting

Gradient
Area

Shape
Predictor

ei

eh

g /a

Isolated and
Homogeneous

Class
Predictor

Isolated and
Homogeneous

Isolated and
Homogeneous

(ni, nh) Class

(a)

(b)

FIGURE 5    Multiclass predictor: (a) base shape prediction given shape and (b) class prediction 
given new pattern.
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The general idea of the multiclass pattern predictor is given in 
Figure 5b. Multiclass logistic regression is used to implement it. 
A simple yet efficient method, the so-called one-versus-all (OVA) 
scheme, was used for training; it constructs one binary logistic 
regression model for each class and assigns a probability p to the 
training sample belonging to this class versus the probability that it 
belongs to any of the other classes.

After the classifier is trained, there are five coefficients, ai=FC1,...,FC5, 
corresponding to five binary logistic regression models of five classes. 
For a given (new) pattern with feature vector xFC = (ni, nh), the class 
label is assigned to it, giving rise to the largest probability, that is,

p x
i

iclass argmax FC FC (7)a� i( )=

Experimental Setup

The data used in this study come from the National Data Warehouse 
for Traffic Information (19), a Dutch organization that archives and 
provides real-time access to traffic data from the Dutch agency of the 
Ministry of Infrastructure and the Environment (Rijkswaterstaat), 
the 12 Dutch provinces, two metropolitan regions, and four of the 
largest cities in the Netherlands (Amsterdam, Rotterdam, Utrecht, 
and The Hague). The data used for the experiments were collected 
from two heavily congested roads in the Netherlands:

•	 Southbound A13 from Den Haag-Zuid to Rotterdam center and
•	 Eastbound A15 from Havens 5500–5700 to Rotterdam 

Ijsselmonde.

Space–time plots of carriageway speed for these two roads were 
constructed with all available loop data for the entire month of 
March 2015. Each space–time plot represents a period of 24 h from 
00:01 to 23:59 at a resolution of 30 s and 100 m. Each of the plots 
contains multiple congestion patterns. After each pattern was iden-
tified and extracted separately with naïve contour extraction, there 
were 140 traffic congestion patterns detected on the first road and 
160 patterns on the second road. Because only large-scale patterns 
with similar space–time ratios are of interest here, 120 patterns were 
selected to create the classes. The patterns were manually classified 
into five classes based on spatiotemporal extent and characteristics 
of traffic congestion, as shown in Table 1. The number of patterns 
per class is small; the first trial was intended to demonstrate the ideas 
and learn lessons for larger-scale application. After the classes were 
identified by experts, the naïve contours were refined to construct 
better distinctive contours from the patterns. From these refined con-

tours, two base shapes were identified; 35 contours were manually 
chosen to build the SSM models of both homogeneous and isolated 
base shapes. These same contours are used to train the shape classifier.

A simple OVA approach was used for the multiclass predictor that 
reduced the problem of classifying contours among five classes into 
five feature vectors, where each model discriminated a given class 
from the other four classes (20). For this OVA approach, there were 
N = 5 binary classifiers, the kth classifier trained with positive exam-
ples belonging to class k and negative examples belonging to the 
other four classes. The classifier that produced the maximum output 
was considered to be the best fit. Rifkin and Klautau stated that, 
provided the binary classifiers are tuned well, this OVA approach 
is extremely powerful and produces results that often are at least as 
accurate as other, more complex approaches (20). The accuracy of the 
ASM OVA classifier was measured to judge the overall efficiency of 
the algorithm with the following formula:

accuracy
number of correctly classified images

total number of images
(8)=

A confusion matrix, or contingency table (21), is constructed to 
investigate which class is behaving poorly, and that class is studied 
further for a better understanding of the data and to make future 
recommendations to improve accuracy.

Results and Discussion

This section presents the results of the proposed method. The OVA 
ensemble of ASM models achieved an average prediction accuracy 
of 70%, which is relatively low compared with the state of the art. 
However, this method represents five classes by using only two 
archetype shapes, whereas other methods need more degrees of 
freedom for defining each class. Thus, the presented method can 
constrain the classification complexity while providing satisfactory 
accuracy for a preliminary study with such a small data set. A more 
elaborate confusion matrix is given in the Table 2. The table shows 
the percentage of correctly and erroneously classified patterns in 
each class given the ground truth. For example, for the IWMJs class, 
the ground truth patterns in that class were correctly classified with 
81% accuracy, but there were some patterns in other classes that 
were wrongly classified as IWMJ. The high-frequency WMJs class 
contains the most patterns that were wrongly classified with 50% 
accuracy.

Table 2 shows that two classes have low accuracy compared with 
the other classes, namely, high-frequency WMJ and mixed. It is 

TABLE 2    Confusion Matrix for OVA Evaluation

Predicted

Known Isolated
Low 
Frequency

High 
Frequency Homogeneous Mixed

Isolated 0.81 0.03 0.03 0.13 0.00

Low frequency 0.03 0.76 0.09 0.09 0.03

High frequency 0.00 0.28 0.50 0.16 0.06

Homogeneous 0.21 0.00 0.00 0.74 0.05

Mixed 0.05 0.00 0.22 0.17 0.56
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hypothesized that this result reflects the small training data set or 
the limited representativeness of the samples in that class. The data 
were further investigated to qualitatively test this hypothesis.

Two of the wrongly classified patterns are shown in Figure 6a; 
in this case, both were wrongly classified as mixed patterns instead 
of low-frequency WMJ and HC, respectively. These patterns are 
actually mixed congestion patterns. The classifier confused these 
because they have a feature vector similar to that of the mixed class. 
Successful classification depends on the subjective manual classifi-
cation process and the degree to which labeling patterns that can be 
distinguished through OVA ASM are successful. This definition of 
success was confirmed by an initial analysis of the wrongly classified 
patterns in which the authors agreed with the classifier’s decision 
on 15% of all wrongly classified patterns rather than with the initial 
manual classification. To reduce the subjectivity of the manual clas-
sification, unsupervised clustering and reinforcement learning can be 
used as an alternative for building the classes.

A second reason for the low accuracy is the constraints of the 
assumptions that have been made for extracting the contours, such 
as thresholding at 65 km/h. These are evident in Figure 6b, where 
the highlighted shapes consist of combinations of two or more 
isolated shapes and combinations of isolated and homogeneous 
shapes, respectively. Finally, speed was used exclusively to distin-
guish patterns. Identifying and classifying distinct traffic patterns 
also requires information on the flows, particularly when one is dis-
tinguishing between congested patterns. Using just the speed and 
the naïve single speed thresholding can uniquely identify only a few 
patterns. To extend the repertoire of the classifiers, more archetypes 

are needed to approximate all the unique shapes that are present 
within the patterns, both speed and flow patterns must be combined, 
and meta-information (speed limits, geometry, etc.) may be needed 
to construct a more dynamic thresholding method to extract the 
shapes from the patterns.

Still, given all these limitations, the simplicity and transparency 
of the method (a few base shapes + logistic regression) offers great 
potential for further research and application development.

Conclusion and Future Work

This paper proposed a method, consisting of contour detection, shape 
models, and a multiclass OVA classifier, to automatically classify 
spatiotemporal traffic patterns with network sensor data. The various 
components were adequate for labeling complex traffic patterns with 
acceptable accuracy, although the data set used was too small to 
warrant definite conclusions. With only two archetype shapes and 
simple logistic classifiers, 70% accuracy of the classification on the 
test data was achieved. Furthermore, for the 30% of cases in which 
the classifier could not decide on any of the five designated patterns, 
the contour shapes were affected by the assumptions and subjective 
manual labeling was used to construct the training data.

There are many future directions of research that can further 
improve the accuracy. First, the ensemble scores can be used to 
directly put a confidence score to each classification. Further sophis-
tication can be reached by ensemble bootstrapping or more modern 
Bayesian techniques. Second, an iterative manual–automated classi-
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FIGURE 6    Synthesis of wrongly classified patterns: (a) manually classified and (b) potential base shapes.
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fication procedure is envisaged in which the manual classification is 
reevaluated after each training round with the classification scores 
of the OVA ASM. This procedure could yield splitting or combin-
ing classes, hierarchically subdividing classes, or otherwise. Third, 
metadata (type of date and time, circumstances, topological charac-
teristics, etc.) can be combined to better classify the patterns. Another 
extension will combine speed plots with flow contour plots for better 
definition of classes of congestion and for improved accuracy. Finally, 
the database will be further enriched with more congestion patterns, 
with a goal of identifying more complex patterns.
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