
Tywaves
A Typed Waveform Viewer for
Chisel HDL with typed circuit
components and Tydi streams
Raffaele Meloni

Te
ch

ni
sc
he

U
ni
ve

rs
ite

it
D
el
ft

Tywaves
A Typed Waveform Viewer for Chisel HDL
with typed circuit components and Tydi

streams
by

Raffaele Meloni
to obtain the degree of Master of Science

at the Delft University of Technology,
to be defended publicly on Friday August 2, 2024 at 11:00 AM.

Student number: 5845106
Project duration: November 20, 2023 – August 2, 2024
Thesis committee: Dr. Zaid Al-Ars TUDelft, supervisor

Prof. Dr. H. Peter Hofstee TU Delft, IBM
Dr. Soham Chakraborty TU Delft

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Abstract
Modern hardware design languages introduce high-level constructs to considerably improve design
capabilities. The adoption of software language features and strong type systems contribute to ex-
pressing complex designs with cleaner and more robust code, facilitating the translation of software
algorithms for hardware accelerators. Despite these advantages, their mainstream adoption is often
discouraged by the lack of debugging tools that support the same level of abstraction. The usage of
standard tools implies inspecting automatically generated RTL code, dissimilar from the source, which
leads to a convoluted debugging experience.

This thesis presents Tywaves, a new kind of type-centered waveform viewer for the Chisel hardware
language with typed circuit components and Tydi streams. Contributions to both the Chisel library and
CIRCT MLIR compiler are described. Type information for debugging is extracted from the source
language and linked with the target Verilog. A frontend waveform viewer is updated with the functionality
to interpret and associate type information with values dumped from an RTL simulator and reconstruct
the source language view. Finally, a Chisel API has been implemented to enable Tywaves from a
high-level testbench.

The Tywaves project aims to enhance the debugging experience of modern hardware languages by
reducing the gap between the source code and waveforms. It provides a new type-centered debugging
format that helps to bring the same level of abstraction of new languages into waveform viewers.

ii

Preface
When this project was proposed to me, I was excited to create something new that could help and
simplify the testing of hardware code. In my past experience, during my bachelor’s study, I created
software APIs to facilitate hardware development. In the same way, creating a new type of waveform
viewer for modern hardware languages can make life easier for designers, reducing the effort and
speeding up debugging. This gave me strong motivation to start and complete the project.

The implementation of this project for Tydi and the Chisel hardware language was not trivial. It
required an in-depth study of large tools implemented in different programming languages. This expe-
rience helped me to improve my skills in contributing to large projects, integrating new functionalities,
and combining multiple tools together. In addition, it introduced me for the first time to the interesting
field of programming languages and compilers.

I would like to thank my supervisors who introduced me to the topic and supported me during this
journey, and the team of Chisel, CIRCT and Surfer who gave me useful advice on how to contribute
to their projects and also gave me the opportunity to present my project at their public meetings. Fur-
thermore, I would like to thank people who previously worked on Tydi and Chisel for their contributions
which revealed fundamentals for Tywaves.

Finally, I am grateful to my girlfriend, my friends in Delft and back home, and my family for all the
support, good times and fun moments they have given me over the past two years.

I hope Tywaves will have a long future and encourage people to try it and continue its development
to further improve the debugging of modern HDLs.

Raffaele Meloni
Delft, July 2024

iii

Contents
1 Introduction 1

1.1 Context . 1
1.2 Challenges . 2
1.3 Problem statement and research question . 2
1.4 Contributions . 3
1.5 Outline . 4

2 Background 5
2.1 Tydi, Tydi-Chisel and Tydi-lang . 5
2.2 Chisel and simulation flow . 6
2.3 CIRCT. 7

2.3.1 CIRCT debug dialect . 8
2.3.2 Integration of CIRCT in ChiselSim. 9

2.4 Typed hardware circuits . 10
2.4.1 Example of a typed-circuit in Chisel . 10
2.4.2 Differences between Chisel and FIRRTL types . 12

2.5 HDL/HGL simulators and waveform viewers . 12
2.6 Related work . 13

2.6.1 Hardware Generator Debugger . 14
2.6.2 Surfer for the Spade language . 14
2.6.3 Synopsys Verdi HGL viewer . 14
2.6.4 Conclusion . 14

3 Generating waveforms for typed Chisel circuits 16
3.1 Implementation requirements . 16
3.2 Implementation alternatives . 16
3.3 Updated simulation flow . 17

4 Tywaves backend 18
4.1 Collecting and passing the type information to CIRCT through FIRRTL. 18

4.1.1 Updated phases to generate source language type information 18
4.1.2 Tywaves Annotation: encoding types in FIRRTL 19
4.1.3 An alternative to the FIRRTL annotation . 21
4.1.4 Details about the collection of the type information 21

4.2 Associate original source code info with dumped traces 22
4.2.1 Consuming the Tywaves annotations in CIRCT 23
4.2.2 Updated debug dialect . 23
4.2.3 Materializing the debug dialect. 26
4.2.4 Emitting a debug file for external programs . 27

5 Tywaves frontend 30
5.1 Extending Surfer . 30

5.1.1 Tywaves-rs: bridging Tywaves information in Rust 31
5.1.2 Tywaves translator . 34

5.2 Tywaves-Chisel API . 34

6 Results 38
6.1 Evaluating Chisel constructs . 38

6.1.1 Behavior of the design . 38
6.1.2 Waveforms . 40

6.2 Evaluating Tydi-Chisel example . 42
6.3 Circuit with conflicting names in the final Verilog . 43
6.4 Drawbacks . 44

iv

Contents v

7 Summary, conclusions and recommendations 45
7.1 Summary . 45
7.2 Conclusions. 45
7.3 Recommendations for future work . 46

Bibliography 48

A Tydi-lang to Tydi-Chisel: a one-to-one translation 53

B EphemeralSimulator: The default high-level simulator in ChiselSim 56

C TableGen of debug dialect updated 57

D UML diagrams 59
D.1 Sequence diagram of Chisel side . 59
D.2 Sequence diagram of Surfer side . 60
D.3 Class diagram of Hgldd . 61
D.4 Class diagram of TyVcd . 62

1 | Introduction
The current hardware design domain has been facing an explosion of new hardware description lan-
guages (HDLs) and hardware generator languages (HGLs) that introduce new levels of abstraction to
reduce development time and design effort. This trend has marked the beginning of a new golden age
for hardware languages [53, 62].

Despite this progress, less work has been done on improving the debugging infrastructure. To
keep compatibility with pre-existing designs and synthesis tools, most of these languages usually tar-
get classic HDLs. This often requires designers to make use of old testing frameworks that reflect an
automatically generated code, usually dissimilar from the source, leading to a convoluted debug ex-
perience. Thus, hardware testing and debugging tools should be at the same level as languages to
benefit from the new levels of abstraction.

1.1. Context
The end of Moore’s law has led to increased research into new specialized chips and accelerators to
overcome the performance limitations of general-purpose processors [32]. Over the last decade, this
claim has been confirmed by a greater number of publications in favor of specialized hardware accel-
erators. As stated by Mahmoud [47], the rising trend of using new specialized processors, observed
between 2013 and 2021, will continue over the next years, making their development more prevalent.

Hardware accelerators usually integrate into existing software applications to support and speed up
portions of their computation. Often their development process starts from a software version of the
algorithm which is subsequently adapted for execution on an ASIC or FPGA. Nevertheless, the effort for
porting, writing, and testing a specific functionality on HDL is higher than the one needed in conventional
programming languages. This challenge slows the mainstream adoption of HDLs. It is much more
evident while translating complex typed data structures into a hardware representation, due to the lack
of the same declarative flexibility of classic HDLs.

The current progress in hardware development and debugging can be summarized as follows:

• Software abstractions in hardware. Adoption of common software functionalities in hardware
languages.

• Type system. Definition of a strong type system in hardware for complex data structures and
easier translation from software.

• Intra-cycle debugging. Porting of the software breakpoint debugger concept for hardware sim-
ulation.

• Waveforms. Inspection of multiple signal values over time to highlight inter-cycle signal changes.

Each point is discussed in more detail below.

Software abstractions in hardware. New hardware languages introduce common software pro-
gramming features in digital design such as polymorphism, functional programming, and custom com-
plex types definitions to enable reusable and cleaner hardware code [35, 58]. Modern HDLs such as
Chisel, Clash, and Spade [10, 11, 55] showed that they are able to maintain similar performances to
Verilog and VHDL while adding abstraction value.

Type system. Although these languages allow the definition of custom types to encode complex
data structures of fixed size, there is no inherent support to represent and use dynamically sized data
structures in hardware. Exchanging, describing, and representing variable-sized data in hardware im-
plies mapping them onto streams. As a consequence, an additional challenge arises when translating
them into corresponding hardware. This challenge is addressed by the Tydi (Typed dataflow interface)
specification and Tydi-lang [49, 61, 63] defining a protocol and a domain-specific language (DSL) with
abstractions to specify typed streaming hardware minimizing the programmer’s effort and the number
of lines of code required. Tydi-Chisel [23] ported the Tydi constructs and concept into Chisel, allow-
ing Tydi-lang to use the same testing infrastructure of Chisel. With Tydi, Chisel will not only offer the

1

2 1. Introduction

strongly typed system that is described in [16, section: Data Types Overview] but also abstractions for
exchanging those typed data over streams.

Intra-cycle debugging. Recently, progress has been made in improving the debugging experience
with new HDLs. In 2022, Zhang et al. presented a novel breakpoint debugger (HGDB) for intra-cycle
reverse debugging [65, 66] bringing the same concept used in software programs also for assessing
hardware behavior. However, in an HDL, variables updated in different parts of the code change value
in the same clock cycle (considered the time unit of registers), while in HGDB the value changes are
shown sequentially. Hence, a visualization of value changes of multiple variables over time is more
suitable for inter-cycle inspection, like the one implemented by waveform viewers.

Waveforms. Waveform viewers are widely used programs able to read values dumped by hardware
simulators and provide a graphical representation of signal changes in a circuit. This visual aspect is
crucial in understanding interactions, correlations, and behavior over time in a digital design. The
timing aspect becomes particularly relevant when developers seek to inspect performance metrics,
such as the number of cycles needed to complete a task, throughput, and signal delays. Yet, viewers
may encounter a challenge in maintaining abstraction when dealing with modern HDLs, especially in
the open-source domain. These visualizers work tightly coupled with the low-level RTL simulators
used for the languages. Therefore, if the simulators lack support for the language or the compilers do
not produce the proper debug information, rendering a waveform representation reflecting the source
language is nearly impossible.

This thesis reports on improving the debug experience for modern HDLs/HGLs by implementing a
new type-based waveform viewer for typed circuit components and Tydi streams, called Tywaves [48].
The custom type system introduced by Tydi-lang but also by Chisel and other languages is lost once
they are compiled into classic HDLs and then simulated. The Tywaves project aims to reduce the gap
between the source and the waveforms displayed by increasing the level of abstraction of waveform
debugging with a type-based visualization. Developers continue to choose classic HDLs over new
languages because of the lagging support of the required features in testing tools. A new type of
viewer can help to speed up the mainstream adoption of any of these languages. Targeting all existing
languages at once is impossible due to their differing characteristics. Therefore, to increase the chance
of having a bigger impact on reusability, the Tywaves project integrates with Chisel and CIRCT [19] a
novel compiler that targets multiple languages with the same infrastructure.

1.2. Challenges
The primary objective of Tywaves is to provide a new debugging format that displays custom data-
type information next to values of signals in a waveform viewer and customize value representation
based on these types. However, associating type information in the context where HGLs are compiled
and simulated with current testing tools for classic HDLs might not be trivial. In fact, transformations
and optimizations are performed during the compilation, leading to the loss of abstraction. Reverse
engineering of a compiled output to reconstruct the source view is difficult due to the complexity of
these operations within the compiler.

Furthermore, the compilation and simulation pipelines implemented for a language likely involve
multiple tools where the language is transformed into various intermediate representations. The chal-
lenge here is related to the complexity of modifyingmultiple programs and creating consistency between
them without breaking other functionalities.

Moreover, the same classic HDL is the target of multiple compilers and languages. For a viewer
that receives information only about the target, foreseeing and knowing any generic type is challenging.
Therefore, it should receive information about how to access or build the original view.

1.3. Problem statement and research question
This thesis addresses a crucial problem in the current hardware development field. Nowadays multiple
modern HDLs and HGLs have been created to reduce design time and effort. However, there has been
limited progress in developing new debugging tools, especially within the open-source domain.

Simulating these languages comprises compilations to traditional HDLs which might lead to the loss
of abstraction, resulting in an awkward debugging experience. Although some novel debugging meth-
ods have been proposed to address this issue, waveform viewers remain one of the preferred tools

1.4. Contributions 3

for hardware designers but the progress in their development remains insufficient in the open-source
community. Therefore, this thesis focuses on creating a type-based waveform viewer to increase the
abstraction level to debug hardware in a similar manner to debugging software by including a strong
type system. In order to address this issue, the main research question to motivate the work is:

Main research question: How can a type-based waveform viewer be effectively developed to raise
the abstraction level while debugging modern HDLs and HGLs, specifically reducing the gap between
the waveform visualization and source code?

Following the challenges addressed within this thesis, we address the following subtopics:

1. How can types be associated with values output from simulations and the source language be
reconstructed from a compiled output not matching the source?

2. What are the necessary steps to improve multiple compilers and tools involved in simulation of
modern HDLs in order to create debug information for a waveform viewer?

3. How can types be displayed in a graphical user interface and how show the source view?

4. How should types and, more in general, debug information be generated, encoded, and propa-
gated throughout the compilation and simulation pipelines?

5. Due to the multiplicity and diversity of modern HDLs, can a method be found and defined to
support multiple languages or, possibly, to extend support easily by re-utilizing much of the in-
frastructure so as to have a greater impact in the open-source community?

1.4. Contributions
The Tywaves project involves multiple contributions aimed at enhancing the hardware debugging ex-
perience. This thesis focuses specifically on implementing a type-based waveform viewer for Chisel
HDL with typed circuit components and Tydi streams.

First, an overview of Tydi-Chisel, a description of Chisel simulation flow, Chisel-CIRCT compilation,
and a definition of typed circuits are provided (Chapter 2). The overview also describes how Tydi is
integrated into the Chisel compilation pipeline, how the user interacts with the tools, and the progress
until now to highlight missing components necessary to make Tywaves feasible.

Second, updates in the Chisel library are introduced to generate extra debug information and pass it
to the underlying CIRCT compiler (Section 4.1). This information includes the source language types,
eventual parameters, and other info like enum variants value mapping. In addition, it contributes to
creating a methodology for passing generic debug information from Chisel to CIRCT.

Third, CIRCT is updated to read and process this new information (Section 4.2). The previous debug
flow permitted to emitting a debug file for reconstructing the view of the intermediate representation
generated by Chisel which showed only hierarchies. Tywaves adds the functionality to enable linking
Chisel types information to Verilog and a new debug file format for representing it.

Moreover, support for Chisel is added to the Surfer waveform viewer (Section 5.1). A Rust library,
tywaves-rs, is implemented to process the debug information emitted from CIRCT and convert it into a
more generic and efficient data structure. In fact, following the concept of CIRCT and Surfer to support
extensibility for other languages, interfacing the viewer with the debug info through an intermediate
data structure allows to add support for new inputs without changing the rest of the program.

Finally, a Chisel API is defined to easily use the updated simulation flow and tools (Section 5.2).
High-level Chisel Scala simulators are implemented to hide the complexity of the underlying tools and
prevent the users from the tedious process of manually calling multiple programs to generate the debug
information, like the compilers and waveform viewer.

Example of Tywaves output
To give an illustration of the overall contribution, Figure 1.1 shows an example of the final output of
Tywaves. The figure mainly highlights how the types in the circuit are preserved from the source code.

4 1. Introduction

Figure 1.1: Output example of Tywaves

1.5. Outline
The remainder of this thesis is organized as follows:

• First, Chapter 2 provides a background description of Tydi-Chisel, how the Chisel compilation
and simulation flow works, and an overview of the current debug information generated by the
Chisel-CIRCT compiler. A definition of typed circuits in Chisel is provided and a brief overview
of how modern HDL/HGL simulators and waveforms can be used is presented. Related works
on both traditional and contemporary testing and debugging tools are presented, with a particular
emphasis on tools that are closely related to Chisel.

• Chapter 3 analyses the implementation requirements and alternatives for generating waveforms
for typed Chisel circuits. Then, it describes the main components involved, namely a backend for
debug information generation and a frontend for waveform visualization.

• Changes to the Chisel and CIRCT compilation pipelines are discussed in Chapter 4. The changes
are necessary for reconstructing type information from an external tool. In addition, justifications
on the debug format emitted for the viewer and means employed for exchanging information
between Chisel and CIRCT are given.

• Chapter 5 reports the updates in the waveform viewer, the tywaves-rs library, and an API created
for easy adoption of the features into existing chisel simulations. Furthermore, a rationale for the
specific open-source viewer extended is provided.

• Chapter 6 shows an evaluation of Tywaves results. Comparisons between the standard waveform
visualization and Tywaves output are given. The focus of this chapter is to illustrate whether
Tywaves have or not an added value while debugging Chisel and Tydi-Chisel circuits.

• Finally, Chapter 7 summarizes the work done in the thesis and outlines the future work.

2 | Background
This chapter provides a general background on the technologies and tools involved in the project. The
Tydi-Chisel library integrates within the Chisel compilation and simulation flow. ChiselSim provides a
high-level interface between the low-level RTL simulators and the CIRCT compiler. Moreover, CIRCT
implements initial support to reconstruct the FIRRTL-level view from the compiled Verilog code. Tydi
and Chisel introduce new paradigms for typed circuit components. Finally, current HGL/HDL simulators
can be used to extract trace files for waveform viewers.

Figure 2.1 summarizes how Tydi [23, 49] is related to Chisel, the CIRCT backend compiler, and
ChiselSim simulation infrastructures [11, 14, 19]. Within the workflow, the initial interaction of the user
occurs with Tydi-lang [61], where they define the data types involved in the circuits, describe the stream-
ing interface characteristics, and declare the components involved along with stream connections. This
code is translated into Chisel boilerplate code, enabling users to add the actual functionality of the com-
ponents which are subsequently elaborated to FIRRTL [33] and later to Verilog by CIRCT. Finally, the
user interacts with ChiselSim to simulate the circuit through a specific testbench, interfacing with a
low-level Verilog simulator like Verilator [57].

The remainder of the chapter goes into amore detailed description of the parts depicted in the figure.
The Tydi specification and its integration into Chisel are first introduced in Section 2.1. Second, Chisel
and particularly the simulation flow are described in Section 2.2, while Section 2.3 presents the CIRCT
compiler. Then, a definition of circuits with typed components accompanied by a concrete example is
provided in Section 2.4. Finally, Section 2.5 gives a brief overview of HDL simulators and waveform
viewers. and Section 2.6 presents related work.

Compile
&

Transpile

Tydi-lang code

Elaboration

CIRCT final
Compilation

ChiselSim

Simulation

Describe
data, types and streams

Describe
functionality of components

Tesbench code

Verilog

Figure 2.1: Relationship between Tydi, Chisel, and user interaction with the compiling/simulation infrastructure

2.1. Tydi, Tydi-Chisel and Tydi-lang
Tydi [49] is an open specification that defines a methodology for representing typed dynamically sized
data structures and a protocol for exchanging them over hardware streams. Tydi-Chisel [21, 23] is a
Scala library that ports the protocol into the Chisel language and implements abstractions for using

5

6 2. Background

the typed hardware streams introduced by the specification. Thus, users who want to use Tydi as a
communication interface can use the library similarly to any other existing component in Chisel. On
the other hand, Tydi-lang [61] is a DSL with a specific syntax for simplifying the definition of tydi com-
ponents, data types, stream types, and connections between streams. Listing 2.1 and 2.2 report an
example retrieved from [23] implementing a pipeline to filter a stream of numbers with timestamps and
emit some statistics. Numbers, timestamps, and statistics (min, max, sum, and avg) are defined with
Tydi hardware types that matches software data types, closing the gap between the two implementa-
tions. Thus, the code snippets clearly show the advantages of Tydi for defining hardware components
from a software implementation. Before Tydi-Chisel, the Tydi toolchain comprised TIL (Tydi Interme-
diate Language) [51] to emit VHDL instead of Chisel. However, using the Chisel language as Tydi
backend was revealed as a better option to further simplify the development and help the mainstream
adoption of Tydi streams.

df.filter(col(”value”) >= 0).agg(
min(”value”).as(”min_value”),
max(”value”).as(”max_value”),
sum(”value”).as(”sum_value”),
avg(”value”).as(”avg_value”)

)

Listing 2.1: Example of Spark code. From Tydi-Chisel: Col-
laborative and Interface-Driven Data-Streaming Accelerators
[23, Listing 1]

package pack0;
UInt_64_t = Bit(64); // UInt<64>
SInt_64_t = Bit(64); // SInt<64>

Group NumberGroup {
value: SInt_64_t;
time: UInt_64_t;

}

Group Stats {
average: UInt_64_t;
sum: UInt_64_t;
max: UInt_64_t;
min: UInt_64_t;

}

// Rest of the code: specification of
streams and components

// ...

Listing 2.2: Corresponding Tydi-lang code snippet. From
Tydi-Chisel: Collaborative and Interface-Driven Data-
Streaming Accelerators [23, Listing 2]

When Tydi-lang is used together with a transpiler [22], it generates Chisel boilerplate code contain-
ing all definitions, types, and interfaces translated one-to-one from the Tydi-lang code, further simpli-
fying user’s work (see Appendix A). Tydi-lang is not an HDL, so it does not have the expressivity to
define logical behavior, therefore the functionality of components should be added through Chisel as
introduced by Figure 2.1.

The combination of these components contributed to the definition of the flow shown in Figure 2.1
which uses Chisel as development backend. Relying on Chisel as a host HDL for the library allows
Tydi to exploit a full existing development infrastructure, testing pipeline, and easier integration in other
Chisel projects. As a consequence, any other tool that utilizes or tests Chisel can be also used for
circuits operating with Tydi, including waveform viewers. Tywaves would not need any extra information
from Tydi-lang because Chisel has full expressivity for custom data types by extending its basic types
as reported in [37, p. 37] and [11, Sections 2.1-3].

2.2. Chisel and simulation flow
Chisel [11] (Constructing Hardware In a Scala Embedded Language) is a new but already broadly
adopted HDL that brings object-oriented and functional programming, and type-safety to hardware de-
sign. Chisel falls into the category of HGLs, namely programs that generate a classic HDL. Specifically,
it is a Scala library internally implementing a compiler frontend that transforms Chisel into FIRRTL [33]
(Flexible Internal Representation for RTL) which is consequently compiled to Verilog by a FIRRTL
compiler. From Figure 2.1 we can observe that Chisel exploits existing RTL simulators for behavioral

2.3. CIRCT 7

simulation of components. The compilation to Verilog also ensures compatibility with other vendors
and open-source tools.

Although simulating the output Verilog is certainly possible, writing testbench in such a low-level
language would not be convenient in an HGL context, since all the abstractions introduced by Chisel
would be lost. In addition, even the testbench compatibility would not be guaranteed because the
compiled code may change unexpectedly when the source is updated. Therefore, the Chisel library
provides high-level simulation components to write tests and run simulations directly from Scala.

Initially, Chisel used ChiselTest [40], an external testing framework based on the Scala FIRRTL
Compiler (SFC) [8], to support the simulation of circuits. However, starting from the release of Chisel
5, the team switched to the CIRCT project [19, 44] for FIRRTL compilation. This made supporting
ChiselTest for future versions difficult and a new, officially maintained and actively integrated component
(ChiselSim), has been built as a testing framework replacement [14].

Figure 2.2 shows a generalized flow diagram of the approach for testing HGLs through existing
simulators and writing tests directly in the source language rather than the target HDL. Such a pipeline
is used in ChiselTest but partially implemented in ChiselSim. Yet, unlike the former, the new simulation
framework does not provide abstractions to emit traces for waveform viewers1. The flow follows the
classic rules of any other HDL simulation with the exception that there are two levels of simulators
rather than one, plus a compiler from HGL to HDL. Unfortunately, this simulation flow does not enable
source-level waveform debugging. The simulation is executed by a low-level Verilog simulator which
outputs a trace file reflecting its representation. The consequence is the absence of information to
reconstruct a representation that matches what the Chisel’s user writes.

Low-level simulator

Design code

Tesbench
code

Compilation to
low-level HDL

Modern
HDL/HGL

Classic
HDL

Direct control of
elements with

source code
representation

High-level simulator

Simulation

Output waveform
trace files

(vcd, fst, ghw)
Waveform

viewer

Figure 2.2: Generalized HGL simulation approach used in ChiselTest and partially used in the current version of Chiselsim

2.3. CIRCT
The previous section mentions that Chisel has embraced the CIRCT project to execute the final compi-
lation phase. This compiler infrastructure applies MLIR and LLVM development methodologies [42, 43]
to the domain of hardware design tools, including a shared and reusable compiling infrastructure with
interoperability with other HDLs and HLS [26, p. 8]. This removes the need to create a compiler for ev-
ery new language and also opens opportunities to combine different input languages in a single target
output and reuse all the tools compatible with that [19].

MLIR provides a methodology to abstract individual languages handled by the compiler through
unique namespaces called dialects, referred to also as intermediate representations (IR) of MLIR.
Each dialect groups together MLIR operations, attributes, and types representing characteristics of
languages or information in a compiler step. Through the compilation, dialects are lowered and trans-
formed into common dialects independent from source languages, enabling a progressive and more
organized compilation towards an optimized target output.

Operations in MLIR (Ops) are the semantic unit of an intermediate representation and model every
component of a language. An operation can receive operands and output results which store values
and associated types used to represent data at runtime and compile-time. Operation results can be
passed as operands of other operations, enabling the representation of data and control flow proper-
ties of a language. This follows the idea of static single assignment (SSA) [24] which is used in MLIR.
Moreover, additional compile-time information related to a language component can be represented
and manipulated through attributes (later referred to also as fields of MLIR Ops) of dialect operations.
Finally, dialects and operations can be defined using a declarative syntax provided by TableGen in
LLVM [45]. This latter is a DSL built to speed up and simplify the definition of components in LLVM

1ChiselSim improvements to close the gap to ChiselTest. Issue #4203 and partially solved in #4201 in [16]

8 2. Background

compilers since, with few lines of code, it allows the automatic generation of all the common function-
alities needed to manipulate operations like C++ classes, getters, and setters.

CIRCT achieves Chisel compilation through firtool which parses a FIRRTL input to a specific
firrtl dialect, performs lowering steps and transformations into language-independent CIRCT dialects
(referred to as core dialects), and emits output formats for standard EDA tools as shown in Figure 2.3.
In addition, CIRCT offers custom options to select different optimization levels or the output target.
Lowering is a semantic technique used in compilers that consists of rewriting complex constructs in
terms of simpler ones in the same language. For instance, structs in terms of their fields or software
while loops and foreach statements as for loops. This technique is essential for optimizations in
a compiler.

Figure 2.3: firtool - a CIRCT implementation of FIRRTL compiler in replacement to SFC. From ”CIRCT: Lifting hardware
development out of the 20th century” [44]

2.3.1. CIRCT debug dialect
Figure 2.3 highlights the difference between core and input-language dialects; nonetheless, it does
not provide a complete overview of all dialects involved in CIRCT. In addition to the ones in the figure,
firtool integrates a debug dialect providing MLIR Ops to track the relationship between values, types,
and hierarchy of an input language and the target compiled output [18]. This allows external testing
tools to reconstruct a source language view for more straightforward debugging. It is part of the CIRCT
dialects and it can be used with any other dialect when proper MLIR transformation passes are created.

The debug dialect implements operations that firtool uses to generate debug information (DI) from
the rest of the compilation process. Specifically, it is composed of four operations that can be combined
to represent and reconstruct the original hierarchical view of variables that might be flattened or even
optimized out during the compilation:

• dbg.variable: represents a named variable declared in the source code.

• dbg.struct and dbg.array: create aggregates from lists of named and indexed values respectively.
Preserve the hierarchical representation of the variable independently from the optimizations used
for the final output.

• dbg.scope: define a scope in the source code. It creates a namespace to group variables and
other scopes, including module instances.

Following the concept of producing standard formats for external tools, firtool processes the DI
of the debug dialect and emits a new open standard file format called HGLDD (Hardware Generator
Language Debug Data). It is based on JSON and has been defined in collaboration with Synopsys for
an alpha version of VCS/Verdi, as presented by the Chisel’s team during the Latch-Up 2024 conference
[29, 38]. HGLDD is an open standard that can be used, extended, and emitted also by non-CIRCT,
non-Chisel projects and other tools, including a waveform viewer.

Even though the debug dialect operations permit the reconstruction of an input language source
view, they can store only values, types, and hierarchies of a dialect effectively defined in CIRCT, namely
FIRRTL. Chisel interfaces with CIRCT through FIRRTL and, for this reason, information about it is not

2.3. CIRCT 9

available to the debug dialect. Hence, the debug dialect and HGLDD lack inherent support for Chisel
features and abstractions that are lost during the lowering and transformation phases. Furthermore,
the latter is a recent file format (2024) and still misses formal documentation, making its adoption in the
open-source community more difficult.

For these reasons, a new file format or an updated and documented HGLDD might be required
to include types or any other source language information. On the other hand, the independence
from a specific language suggests that using and improving the debug dialect might lead to possible
extensions of the Tywaves project to other HGLs rather than only Chisel.

2.3.2. Integration of CIRCT in ChiselSim
ChiselSim is composed of two core components:

• Svsim: a low-level library for compiling and interfacing SystemVerilog simulators from Scala
code, providing maximal portability and backend-independent test harness and simulation.

• PeekPoke API: a set of basic operations built in Scala to control a testbench. It includes methods
to advance the simulation, assert signals with expected values, and peek and poke IO signals.

Figure 2.4 shows a high-level diagram of ChiselSim and the integration with user code, Verilog sim-
ulators, and firtool. The PeekPoke API and svsim can be combined in high-level simulators to abstract
and hide details of low-level simulation, expose the control of IO signals, and enable more advanced
functionalities. This combination translates into a complete testing framework with a straightforward
and intuitive user front-end.

Internally, svsim invokes ChiselStage (a Scala class implementing ”a User-facing API for invok-
ing Chisel” [37, p. 17]) to prepare and analyze Chisel code for FIRRTL-Verilog compilation and it later
passes the circuit emitted by firtool to the hardware simulator backend (currently supported, Verilator
and VCS [57, 59]).

ChiselSim

CIRCT

Testbench code

PeekPoke API

svsim

ChiselStage Firtool compiler

External verilog
simulator

Chisel code

High level simulator

Chisel library

Implement
abstractions to
invoke svsim

Figure 2.4: The current ChiselSim architecture and interface to Firtool

The translation to FIRRTL and firtool invocation within ChiselStage is internally performed by
several mathematical transformations (𝑓 ∶ 𝐴 → 𝐴′), referred to as phases, whose interface is reported
in Listing 2.3. Each Phase implements an annotation-transformation mechanism shown in Figure 2.5,
where each annotation is a Scala case class storing some information about the circuit. These phases
are handled by the PhaseManager class which is responsible for storing, executing, and checking the
dependencies and order between multiple elaboration steps. Therefore, ChiselStage provides the
FIRRTL output to CIRCT and collects a SystemVerilog design available to svsim.

10 2. Background

/** A polymorphic mathematical transform (f: A ->
A') */

trait TransformLike[A] extends LazyLogging {
/** A mathematical transform on some type */
def transform(a: A): A

}

trait Phase extends TransformLike[AnnotationSeq]
with DependencyAPI[Phase] {

lazy val name: String = this.getClass.getName
}

Listing 2.3: Phase trait in Scala

A0 A1 A(n-1)

Phase.transform()

Input annotations

A0' A1' A(n-1)'

Output annotations

Figure 2.5: Mathematical transformation
implemented by a phase: 𝑓 ∶ 𝐴 → 𝐴′

2.4. Typed hardware circuits
The concept of a typed waveform viewer originated from the type system introduced by Tydi, Tydi-lang,
and Tydi-Chisel library (tydilib). As mentioned in Section 2.1 and Appendix A, Chisel is able to
fully express the definitions of typed components at a high level of abstraction and to implement the
behavior of the design.

The tydilib hides all the implementation details of the specification. In a typed streaming sys-
tem, the data structures defined are internally ”serialized” at the bit-level for the actual transmission, but
thanks to the abstractions this aspect is hidden from the user. Therefore, from their perspective, com-
ponents are transferring complex data structures as whole ”packets” and not ordinary bits or bit vectors.
Moreover, in the context of Chisel, a user likely chooses to use or define a new specific type for a signal
rather than another one because they want to manipulate and associate that type of information with
the actual value of the variable. Likewise, for the same reason, developers declare variables as char,
string, int, arrays, etc. When software variables are inspected in debuggers, they expect that the
value is associated with the respective type, i.e. a char, an array of 8 float or int rather than a mere
byte, 4 words of 8 bytes. If software debuggers would show simple bytes, all the abstraction introduced
in favor of assembly would be lost.

The same concept of typed elements can be extended from Tydi to Chisel through typed circuits
where each signal has a high-level type rather than being a bit vector, and with Tydi this is further
strengthened. Yet, types cover an important role in Chisel as well, Chisel includes internal, ”standard”,
and user-defined types. Considering this type-system [16, section: Data Types Overview], displaying
Chisel types alongside signal hierarchies in waveforms is essential for bridging the gap between writing
and debugging code. Furthermore, it helps to distinguish signals clearly. Different types, such as
Bool, SInt, Enum-like or a Bundle and user-defined, have distinct characteristics, which makes their
differentiation even more important.

This section illustrates an example of a typed circuit in Chisel (Subsection 2.4.1). Specifically, it
helps to understand the difference between hardware and Scala/Chisel types and what the main char-
acteristics of a signal that Tywaves addresses are. Since FIRRTL has been implemented as an IR
for Chisel it shares some concepts on types, such as the aggregated signals or signed and unsigned
integers. However, Chisel and FIRRTL are distinct, and Subsection 2.4.2 clarifies how they differ.

2.4.1. Example of a typed-circuit in Chisel
While writing a Chisel circuit, each signal has a clearly defined Scala type. Listing 2.4 and Table 2.1 help
to understand what a typed circuit in Chisel is. In this kind of circuit there are three main characteristics
of a signal to consider:

1. The hardware type, like IO;

2. The Scala/Chisel type, consisting of the class name and constructor’s parameters;

3. The value representation and range of values.

2.4. Typed hardware circuits 11

The example uses both standard types like Bool, UInt and SInt, and more advanced types such
as vectors, and user-defined enums and bundles. All of them have different properties that do not exist
in Verilog. Therefore, once transformed, it becomes tricky to distinguish their characteristics due to the
fewer types available and optimizations performed by the compiler. For instance, a Chisel operation
between an SInt and UInt is not allowed without explicit casting. However, this is not the case after
the Verilog transformation since they are both translated as logic. Additionally, aggregates might be
flattened into parallel signals and their inspection as a grouped variable might be very difficult. Finally,
enumeration variants might be translated as bit values and, as a consequence, their named value lost.

Next to signals, also modules represent reusable circuit blocks with their Scala types. In the exam-
ple considered, there are two module instances: both are instantiated using MyModule but their types
are different since their instances use different parameters.

// User-defined aggregate with named fields
class MyBundle(val n: Int) extends Bundle {

val a: Bool = Bool()
val b: SInt = SInt(n.W)
val nested = new Bundle { val x: UInt = UInt(8.W) }
val v = Vec(n, SInt(32.W))

}

// User-defined enum
class MyState extends ChiselEnum {

val IDLE, A, B, C, Other = Value
}

// User-defined module
class MyModule(val n1: Int, val n2: Int, val n3: Int) extends Module {

val inBundle : MyBundle = IO(Input(new MyBundle(n= n1)))
val wireBundle: MyBundle = Wire(new MyBundle(n2))
val outBundle : MYBundle = IO(Output(new MyBundle(n3)))

val state = RegInit(MyState.IDLE))

// ...
}

class TopCircuit extends Module {
val mod1 = Module(new MyModule(10, 7, 9))
val mod2 = Module(new MyModule(1, 1, 1))
// ...

}

Listing 2.4: An example of Chisel typed hardware circuit

Variable Type Values
inBundle IO[MyBundle(n: 10)] Aggregated named signals in MyBundle
wireBundle Wire[MyBundle(n: 7)] Aggregated named signals in MyBundle
outBundle IO[MyBundle(n: 9)] Aggregated named signals in MyBundle
inBundle.a IO[Bool] [0; 1]
inBundle.b IO[SInt<10>] [−29; +29 − 1]
inBundle.nested IO[AnonymousBundle] Hierarchical representation with x as field
inBundle.nested.x IO[UInt<8>] [0; 28 − 1]
inBundle.v IO[SInt<32>[10]] Indexed SInt elements
state MyState IDLE, A, B, C, Other
...

Table 2.1: Types and possible values of signals defined in Listing 2.4

12 2. Background

In conclusion, a Chisel type is the type of the Scala variable representing a signal or a module in the
source Chisel code. This Scala type includes the name of the class and the names, types and values
of the constructor parameters. This information, together with signal hierarchies, is missing from the
standard waveform viewers.

2.4.2. Differences between Chisel and FIRRTL types
FIRRTL is the intermediate representation used to bridge Chisel with Verilog [33]. The main objective
of an IR is to reduce the complexity of the compilation process from a high-level to a low-level language.
As stated by Chow in [17], an IR enables splitting the compilation into multiple phases and the portability
of the sample compiler flow to multiple languages. Therefore, an IR should be both closer to the target
output than the source language and more generic. At the same time, it may preserve some common
characteristics of the input languages.

In the case of FIRRTL, it preserves some characteristics of Chisel such as some of the basic types
that can be obtained from all the others [9]. Table 2.2 reports the respective FIRRTL types of some
variables from the example of Subsection 2.4.2. It is worth noticing that not all the Chisel types have a
corresponding type in the IR. This is because some Chisel types are defined to give an additional level
of abstraction to the user which is not needed when compiling to Verilog since some of them represent
special cases of more generic types. For instance, Bool can be represented as UInt<1> or a user-
defined bundle as an anonymous bundle in FIRRTL. Even though this simplifies the optimizations and
transformations made by the compiler, it does not fully preserve the source language information which
would be an added value when debugging Chisel code.

Chisel Type Firrtl type
Bool UInt<1>
UInt(n.W) UInt<n>
SInt(n.W) SInt<n>
new Bundle {val x: UInt = UInt(8.W)} {x: UInt<8>}
Vec(n, SInt(32.W)) SInt<32>[n]
class MyState extends ChiselEnum { ... } UInt<2>
MyBundle(3) {a: UInt<1>, b: SInt<3>, ...}
...

Table 2.2: Examples of Chisel types transformed to corresponding FIRRTL types [9]

2.5. HDL/HGL simulators and waveform viewers
Waveform viewers load values dumped into a trace file generated through an RTL simulation. Widely
used and supported standard open source formats are VCD (Value Change Dump), GHW (GHDL
Waveform), and FST (Fast Signal Trace) [6, 12, 30]. All of these open standards can only handle Ver-
ilog, SystemVerilog, and VHDL types. Thus, in the domain of modern HDLs, they focus on storing the
signal values from a low-level simulation rather than how they should be linked to the source language.

Figure 2.2 showed how modern HDLs and HGLs can be simulated and tested with existing tools
for classic HDLs. The main advantage is to provide immediate support and compatibility for simu-
lation without any additional work. As mentioned earlier, Chisel is compiled into Verilog, simulated
with low-level tools like Verilator, and the output trace is directly passed to the viewer without any
extra information. However, this method does not offer source-level debugging but rather target-HDL-
level debugging. The simple example in Figure 2.6 highlights a first issue with the current flow. The
waveforms do not correspond to the hierarchies, names, and types of the corresponding circuit (Fig-
ure 2.6a). For instance, io is not displayed as a grouped signal, some unwanted additional artifacts
such as io_in_0 are generated, and the values of the State enum are converted into bit vectors.
Furthermore, there is no type distinction between the signals (Figure 2.6b, all of them are represented
as simple wires although it is clear to see that io is a IO[Bundle], io.in is an IO[Bool] and state
is a Reg[State] in the source code.

A slight improvement could be observed by using ChiselTest to output FST instead of VCD. It dis-
tinguishes wires from ports and also the direction of signals is shown. However, the main problem
still remains.

2.6. Related work 13

(a) Example of an FSM in Chisel with enums and grouped signals (b) Screenshot of GTKWave with only VCD from simulation uploaded

Figure 2.6: Example of Chisel code and waveforms with the simulation approach of Figure 2.2

A representation that reflects a compiled code would not be a big deal for simple cases like the one
above. The example provided implements a trivial circuit with few signals, so it is straightforward to
understand what the signal inspected refers to. However, with larger and more complex designs like
CPUs or hardware accelerators, the way signals are represented might lead to a tedious debugging
experience due to the explosion of signals in the compiled Verilog. As mentioned in Section 2.3 the
Chisel and MLIR compilers perform a set of transformations from Chisel-FIRRTL to Verilog. Among
these, optimizations may be executed and temporary signals created, carrying out an omission of
declared signals or an explosion of additional artifacts.

To overcome this, the generation of waveforms supporting a high-level language should follow the
steps depicted in Figure 2.7 where extra debug information is generated during compilation or simu-
lation and passed to a viewer accordingly. This approach would allow external programs to process
and associate source HGL debug information with values dumped into normal trace files. For instance,
Synopsys followed this flow to realize a first alpha version of a viewer for HGL/Chisel [38] through the
HGLDD introduced in Subsection 2.3.1.

Low-level simulator

Design code

Tesbench
code

Compilation to
low-level HDL

Modern
HDL/HGL

Classic
HDL

Direct control of
elements with

source code
representation

High-level simulator

Simulation

Output waveform
trace files

(vcd, fst, ghw)

Waveform
viewer

Extra debug
information

Generated during compilation or simulation

◻ standard simulation flow
◼ extra debug info to support the
source language

Legend

Figure 2.7: A proposed generalized HGL simulation flow to enable source-level waveforms

2.6. Related work
In the context of hardware development, we can distinguish between tools for testing and debugging.
The former involves the simulation of designs and verification of whether components operate as in-
tended, while debugging is the process of identifying and removing eventual errors. Both techniques
can be enhanced and contribute to the general improvement of hardware development with new tools
that make the process faster and more user-friendly.

14 2. Background

A notable tool for testing HDLs is cocotb [7] which helps productivity by allowing the definition of test-
bench and functional RTL verification in Python and providing a single interface platform for commonly
used RTL simulators. However, cocotb works with classic HDLs like Verilog and VHDL. As mentioned
in Section 2.2, ChiselTest does a similar job for Chisel and ChiselVerify [27, 28] is a library that enables
functional verification from Scala.

WAL (Waveform Analysis Language) [36] is a DSL that can be used for the automated analysis
of waveforms, allowing to perform arbitrary actions on waveforms such as the comparisons of values
output from a simulation with pre-computed values.

Furthermore, there are various waveform viewers available from open-source options like
GTKWave [31] to proprietary software such as Virtuoso, Modelsim, Vivado, and Verdi [13, 54, 60, 64].
These tools provide waveform visualization by supporting the most common trace formats such as
VCD, FST, FSDB etc. Additionally, vendor programs provide more comprehensive functionalities in a
unique platform like formal verification and synthesis tools.

Recent developments have introduced three new tools that are particularly relevant to the study.
These include the HGDB debugger [65, 66], the Surfer viewer [56] for the Spade language [55], and
an alpha version of Verdi. The following subsections delve deeper into these tools.

2.6.1. Hardware Generator Debugger
The Hardware Generator Debugger (HGDB) is a debugging tool that presents a novel methodology for
testing the behavior of hardware languages. It allows to perform breakpoint debugging for inspecting
intra-cycle signal values. Breakpoints enable inspection of value changes within the same clock cycle
and this helps to identify possible errors that may occur during an intermediate calculation. Waveforms
would not show the values calculated by intermediate operations during the same clock cycle but rather
the final value that is assigned to signals. Nevertheless, HGDB brings source-level debugging by
discussing a different problem. When designers need to inspect multiple signals at once, check value
changes between cycles, and also show the behavior of a circuit graphically, waveform viewers still
reveal a better choice.

2.6.2. Surfer for the Spade language
As introduced in Chapter 1 multiple new hardware languages have been created to improve the de-
velopment experience. Among them, the Spade language [55] stands out from the others because its
syntax and high-level constructs are natively supported by Surfer. Skarman et al. created this viewer
because they found that other standard waveform viewers like GTKWave do not provide a good expe-
rience for debugging modern HDLs. For instance, Spade has an Option<T> type enum whose values
are Some(T) and None similar to Rust. With these high-level values, the actual bit representation of a
signal is hidden from designers; therefore, it would be nice for a viewer to display the values of a sim-
ulation in their source representation rather than their raw bits. Surfer does this specifically for Spade
and supports also Verilog and VHDL. Although it is built for extensibility it does not offer native support
for other HDLs yet and it misses the type information from the view.

2.6.3. Synopsys Verdi HGL viewer
Synopsys Verdi is a vendor waveform viewer with many advanced functionalities and it is tightly coupled
with the VCS simulator for functional verification. As anticipated in Subsection 2.3.1, Synopsys started
working on a new alpha version of Verdi and cooperated with CIRCT to define the HGLDD debug format.
By combining HGLDD and the FSDB trace file, Verdi manages to support an HGL/HDL waveform
visualization. Since HGLDD provides information only about FIRRTL [33] as mentioned earlier, in this
prototype, Verdi provides a waveform visualization at a FIRRTL level rather than Chisel.

2.6.4. Conclusion
Recent years have seen the development of tools to improve hardware design with old and new HDLs.
New testing frameworks and tools have been created to facilitate the creation of testbench, the usage
of multiple simulators with a common interface API, and the employment of functional verification at a
higher level of abstraction.

Other debugging tools have been proposed to bring source-level debugging for HGLs and modern
HDLs. Most significantly, HDGD introduces a novel breakpoint debugging technique as an alterna-

2.6. Related work 15

tive to waveform viewers for intra-cycle inspection instead of inter-cycle evaluation. Surfer presents a
modern waveform viewer for another language and classic HDLs but it does not provide a type-based
visualization and native support for other HDLs yet. Whereas, Verdi is a proprietary program that pro-
vides some support for Chisel through FIRRTL waveform visualization.

On the other hand, Tywaves aims to provide a new kind of open-source waveform visualization
by showing source-level data types and support for Chisel and Tydi-Chisel. The integration within
CIRCT would imply a new methodology for propagating information through an existing toolchain and
it suggests that would contribute to the extension of other languages.

3 | Generating waveforms for typedChisel
circuits

Chisel inherently lacks a proper waveform visualization. First, as noted from Section 2.2, the current
version of ChiselSim does not have native abstractions to emit any trace file or control the firtool com-
piler1. Controlling the available options directly from a testbench would relieve users from the tedious
task of calling several programs for a single simulation, such as invoking firtool to get debug infor-
mation. In addition, customizing the compilation mode for a simulation would give control over the
optimization level of the circuit. Second, although ChiselTest is a more stable and mature framework
than ChiselSim, it still enables a waveform visualization of an output Verilog view rather than Chisel.
Third, in CIRCT the debug dialect and HGLDD include only information related to FIRRTL as described
in Subsection 2.3.1. This means that in the current version, HGLDD cannot be used to have a pure
Chisel-level visualization due to the differences with FIRRTL presented in Subsection 2.4.2. Finally,
although some work for supporting Chisel has been done for VCS and Verdi, the community still misses
an open-source waveform viewer for Tydi, Chisel, and CIRCT.

This chapter analyzes the implementation requirements and possible designs, proposing an update
to the current simulation flow of Chisel to answer the main research question.

3.1. Implementation requirements
Since Tydi is integrated within Chisel and its types and constructs are defined in a library for Chisel
(Section 2.1), creating a typed waveform viewer is equivalent to creating a tool able to render signal
values of Chisel and CIRCT circuits while preserving the source code representation. This main goal
leads to the following implementation requirements which follow the generic flow of Figure 2.7:

1. Collect high-level debug information (DI) from Chisel;

2. Elaborate the DI in order to associate it with the values in a trace from a simulator. In other words,
an association with the signals and modules output of a Chisel-CIRCT compilation;

3. Emit a well-defined file format that an external viewer can read and associate easily to a trace file
to properly display the waveforms;

4. Define compatibility and portability with ChiselSim.

3.2. Implementation alternatives
In this section, two alternative approaches to achieving the established goals are briefly presented and
discussed. The first consists of creating a library external to Chisel, while the second solution proposes
an integration within the Chisel-CIRCT compilation pipeline described in Section 2.2 and 2.3.

External tool. An external tool would need to get intermediate data structures used to represent
the different intermediate representations throughout the pipeline, namely Chisel, FIRRTL, and Verilog.
Then, it would require joining the signals together and identifying an ID that is unique for different signals
but shared between the representations of the same signal in the three IRs. Finally, it should use this
information to emit a symbol table for an external viewer.

Unfortunately, ChiselStage [37, p. 17] does not publicly expose the internal IRs used to represent
Chisel and FIRRTL in the PhaseManager, making them subject to potential changes. This highlights
the main drawback of an external approach because there would not be the opportunity to guaran-
tee a unique ID for each signal, the maintainability over time would be even more difficult, and the
implementation complicated and less reliable.

Integrated solution. A solution integrated into the official Chisel-CIRCT repositories, instead,
would not be subject to the problem of finding a unique ID and, at the same time, would improve the

1Verified until Chisel v6.4.0.

16

3.3. Updated simulation flow 17

maintainability. The idea is to generate the information directly when the transformation from one IR to
another is done, namely when Chisel is translated to FIRRTL during the PhaseManager, pass this in-
formation to firtool, process it and emit the file for the viewer, either an updated HGLDD or a new format.

The two solutions present complementary advantages and disadvantages. Although the first one
would give total control of the choices and how to represent the code internally and no need to deeply
study how the Chisel internals work, the challenge for maintainability and defining a unique ID suggests
a great preference in favor of an integrated solution.

3.3. Updated simulation flow
As addressed at the beginning of this chapter, the current flow of ChiselSim has two main issues: the
debug information that firtool can generate is not available to testbench users and the whole pipeline
lacks inherent support for generating and propagating the type information presented in Section 2.4.
Therefore, both Chisel-CIRCT compilation stages and ChiselSim necessitate an update to implement
Tywaves and provide necessary information to an external viewer. The diagram in Figure 3.1 provides
an overview of the software architecture of the project and shows how the Tywaves frontend integrates
into the Chisel compilation pipeline to achieve the objectives established. Specifically, this implies an
update to the simulation flow and its implementation requires:

• An update to ChiselStage and PhaseManager to collect the type information during the trans-
formation phase of Chisel to FIRRTL and propagate it to firtool.

• Processing the extra information in firtool through the debug dialect. Handling these new features
led to an update of both the dialect and HGLDD format.

• Choosing and extending an existing waveform viewer to render a Chisel representation. This
also includes developing a library for parsing HGLDD and converting it into a manageable and
efficient data structure capable of linking abstract representations with an attached trace file.

• An API implementing two high-level PeekPoke simulators with more advanced functionalities (see
Appendix B for an overview of high-level functionalities in the current Chiselsim) to control firtool,
emit trace files, and link all the components.

The implementation can be subsequently divided into two main parts: a backend comprising of
necessary changes in the Chisel-CIRCT compilation pipeline and a frontend that processes the infor-
mation emitted by the backend to properly render the signals and gives, at the same time, an intuitive
interface to the user. The next chapters explain how it is achieved. Section D.1 presents a sequence
diagram that highlights the inner steps of how Chisel invokes and cooperates with the other tools.

ChiselSim

CIRCT

Testbench code
PeekPoke API

svsim

ChiselStage Firtool compiler

External simulator
Surfer-tywaves

Chisel code

Tywaves-Chisel API

HGLDD
with Chisel
type info

Trace file

*

**

* ChiselStage with standard elaboration settings
** ChiselStage with the extra debug info enabled for Tywaves
*** HGLDD is parsed and converted to an internal data structure for Surfer

TywavesSimulator

ParametricSimulator

Chisel library

parser
+

converter

tywaves-rs

Abstractions for
tywaves and improve

svsim control

BackendFrontend

Figure 3.1: Tywaves software architecture

4 | Tywaves backend
This chapter details the implementation of the backend introduced in Figure 3.1. The generation of extra
debug information integrates within the official Chisel compilation pipeline as explained in Chapter 3.
The backend is divided into two components: the Chisel library and the CIRCT firtool compiler.

First, the methodology for collecting the type information of Chisel elements is presented. It includes
the addition of a special transformation phase to ChiselStage that is executed only in a new debug
elaboration mode and the definition of a FIRRTL annotation [19, ’firrtl’ dialect: FIRRTL Annotations] to
encode the type information. This annotation system is intrinsic to the intermediate representation and
it is subsequently used to pass the data to firtool. Then, this new debug info is consumed in CIRCT
and associated with the final Verilog format. The debug dialect and HGLDD are updated accordingly
to manage and represent types. Moreover, additional details about the algorithms and steps to extract
types from the code, process and transform them into a cleaner format are provided in the subsections
respective to each component.

The final output of the backend is a debug file containing enough information to reconstruct the hi-
erarchical view of signals and associate them with their original Scala types. Since CIRCT and FIRRTL
are not restricted to Chisel, the features introduced can potentially be used with other languages using
the same compiler.

4.1. Collecting and passing the type information to CIRCT through
FIRRTL

Subsection 2.3.2 introduced the ChiselStage class that implements a bridging interface with the
CIRCT compiler and internally executes a sequence of phases (Figure 2.5) through a PhaseManager
class. In this sequence, two phases are specifically responsible for the transition of Chisel to a FIRRTL
equivalent representation: the Elaborate and Convert phases. The former executes and elaborates
the body of a module into a circuit graph stored in a ChiselCircuitAnnotation while the latter
converts it into a FIRRTL equivalent hardware graph stored in a FirrtlCircuitAnnotation. This,
in turn, is passed to a final phase that calls the actual CIRCT compilation from Scala.

4.1.1. Updated phases to generate source language type information
The current PhaseManager pipeline permits firtool to access only information intrinsic to a FIRRTL
representation, missing details about the source language that generated it. FIRRTL contains a stan-
dardized representation of Chisel circuits. It is able to preserve the structure and signal hierarchies,
but it cannot express any Scala abstraction and associate its elements with original types as shown
in Subsection 2.4.2. For instance, user-defined bundles are always converted to anonymous FIRRTL
bundles, making their identification difficult as highlighted in Listing 4.1 and 4.2.

class Foo extends RawModule {
// Anonymous bundle
val io = IO(new Bundle {

val a: UInt = Input(UInt(4.W))
val b: Bool = Output(Bool())

})
// User defined bundle
class BarAggr extends Bundle {

val a: UInt = Input(UInt(4.W))
val b: Bool = Output(Bool())

}
val bar: BarAggr = IO(new BarAggr)
// ...

}

Listing 4.1: User-defined and anonymous bundles in Chisel

circuit Foo :
module Foo :

output io : {
flip a : UInt<4>,
b : UInt<1>

}

output bar : {
flip a : UInt<4>,
b : UInt<1>

}

; ...

Listing 4.2: User-defined and anonymous bundles in FIRRTL

18

4.1. Collecting and passing the type information to CIRCT through FIRRTL 19

This limitation arises because FIRRTL is generated once the Scala meta-programming is executed,
and there is no support for reconstructing it yet. In fact, during the Convert phase, any non-relevant
information for FIRRTL is skipped. Although this simplifies the optimization process for lowering in
CIRCT, it runs against the idea of debugging at Chisel source level. To overcome this, the information
of Scala types needs to be passed to FIRRTL without changing its output functional code, thus, keeping
compatibility with the existing pipeline.

An update to the existing PhaseManager to preserve types is proposed and Figure 4.1 reports
the insertion of the changes made within the pipeline. A new phase, AddTywavesAnnotation, is
added in between the Elaborate and Convert phases. It parses the circuit graph stored in Chis-
elCircuitAnnotation and annotates each of its nodes (modules and signals) with its respective
type information and constructor parameters through a TywavesAnnotation (Subsection 4.1.2). The
annotated circuit is then passed to the Convert phase for FIRRTL transformation.

Finally, this extra phase is executed only when a specific flag is set to indicate that the circuit should
be elaborated in a ”debug compilation mode”. Hence, this addition will not affect the execution time of
normal compilations. Debug information is not always necessary, there are several cases when this
applies, for instance, when the logic is compiled for synthesis or when the designer wants to rapidly
check if the code compiles without testing behavior. Similarly, the debug flag of the GCC compiler [1]
can be set when it is used with the GDB debugger [2] to provide useful information for catching errors
in the source code. When the code is compiled in release mode, the compiler passes to collect debug
information do not run, resulting in a faster and lighter executable.

◻ existing phases part of the
standard Chisel elaboration
◼ new parts for Tywaves

Legend PhaseManager

if(debug)

Phase 0

true

false

Phase 1

ChiselGeneratorAnnotation(gen: () => RawModule)

Convert phase

Elaborate phase

ChiselCircuitAnnotation(circuit: Circuit)

CIRCT phase

ChiselCircuitAnnotation(circuit: Circuit)

FirrtlCircuitAnnotation(circuit: firrtl.ir.Circuit)

Phase n-2

AddTywavesAnnotation

(a) Updated PhaseManager to include type information in FIRRTL

Input
Chisel
graph

Output
Chisel
graph

Graph parsing
and

Types collection

(b) Associate type information to the Chisel hardware graph

Figure 4.1: New phase to generate the type information from Chisel

4.1.2. Tywaves Annotation: encoding types in FIRRTL
The TywavesAnnotation definition is reported in Listing 4.3. It is a case class with two fields,
typeName and params, to encode respectively the name and the list of parameters of the variable
type. Parameters of a Scala class are defined by a name, a Scala-type, and a value. Each of these
case class fields is implemented as strings allowing to cover the representation of any possible type
and value.

The annotation class implements the SingleTargetAnnotation trait which provides a serializa-
tion API to JSON in the form of a FIRRTL annotation. During the serialization to FIRRTL, annotation

20 4. Tywaves backend

definitions are inserted at the top of a fir file, making the information they contain accessible to com-
pilers and available for specific transformations such as debug operations in the case of Tywaves.
Specifically, the FIRRTL annotations are a mechanism used to associate arbitrary metadata with zero
or more target objects (i.e. signals, modules, etc…) of a FIRRTL circuit [20, FIRRTL Annotations].

/** Store constructor parameters of a Scala class */
case class ClassParam(name: String, typeName: String, value: Option[String])

/** Store types of a variable and its [[ClassParam]]s */
private[chisel3] case class TywavesAnnotation[T <: IsMember](

target: T, // The Chisel-FIRRTL target element
typeName: String, // The name of the type
params: Option[Seq[ClassParam]] // Optionally emitted - not every class has

parameters
) extends SingleTargetAnnotation[T] {
// ...

}

Listing 4.3: Scala code of TywavesAnnotation which encodes the extra type information for Tywaves and extends a serial-
ization API targeting FIRRTL files

As can be seen from Listing 4.4, the new additions of Figure 4.1 reflect minimal changes for using
ChiselStage. The generation and serialization of TywavesAnnotation is automatically handled
and abstracted by the PhaseManager execution. Each variable and module is recursively associated
with its type name and parameters, so the info is created also for sub-variables and sub-modules. To
give an illustration of how it is represented, Listing 4.5 shows a snippet with the resulting serialization
of the annotations for the anonymous and user-defined bundles of the circuit Foo (Listing 4.1). The
two targets are now decorated with their respective type names: IO[AnonymousBundle] for io and
IO[BarStruct] for bar. The Scala-type can be now read by firtool making feasible the rest of the
pipeline and with a compiler potentially able to distinguish their original types of components.

val chiselStageOpt = new ChiselStage // Classic compilation mode
chiselStageOpt.execute(Array(”--target”, ”chirrtl”),

Seq(ChiselGeneratorAnnotation(() => new Foo())))

val chiselStageDbg = new ChiselStage(withDebug = true) // Generate extra debug mode
chiselStageDbg.execute(Array(”--target”, ”chirrtl”),

Seq(ChiselGeneratorAnnotation(() => new Foo())))

Listing 4.4: Generating FIRRTL through ChiselStage abstractions
circuit Foo :%[[

{
”class”:”chisel3.tywaves.TywavesAnnotation”,
”target”:”~Foo|Foo>io”,
”typeName”:”IO[AnonymousBundle]”

},
; ... OTHER ANNOTATIONS
{

”class”:”chisel3.tywaves.TywavesAnnotation”,
”target”:”~Foo|Foo>bar”,
”typeName”:”IO[BarStruct]”

}
]] ; ... REST OF THE CIRCUIT

Listing 4.5: Serialization of Tywaves annotations in FIRRTL of Listing 4.1

4.1. Collecting and passing the type information to CIRCT through FIRRTL 21

4.1.3. An alternative to the FIRRTL annotation
Annotations are a mechanism deriving from the old SFC and represent an actual extension of the
FIRRTL language. In other words, each new annotation translates into a new feature of the language
that is required to be supported explicitly by any FIRRTL compiler.

The CIRCT compiler recently added a new option to add meta-data to FIRRTL without extending the
language, called intrinsics [19, ’firrtl’ dialect: Intrinsics]. In contrast to annotations, this new construct
represents an innate characteristic of the compiler rather than a language. This removes the need to
update other potentially existing FIRRTL compilers. Moreover, it better matches the MLIR mechanism
of operations, including strict definitions and type checking. On the Chisel side, intrinsics can be seen
as blocks with pre-defined functionality that are intrinsic to the compiler and not implementable by
hand [15, Intrinsics].

Although after switching to the CIRCT compiler intrinsics are considered a better mechanism to
extend FIRRTL more suitable for MLIR, intrinsics were still a work in progress with great risk of being
modified at the moment of realizing the implementation of Tywaves. Therefore, the project uses a more
stable format like annotations and leaves intrinsics as an optimization for future improvements.

A possible implementation using intrinsics would not change many parts of the backend. The
changes would involve the creation of an intrinsic expression for Chisel and the corresponding MLIR
operation. Thus, differences would be only in the interface between Chisel and CIRCT.

4.1.4. Details about the collection of the type information
Previous subsections introduced the changes made to Chisel to access, transform, and pass the type
information to the underlying CIRCT compiler. This section focuses on details about the actual algorithm
and methods used to traverse the hardware circuit graphs and retrieve Scala compile-time information.

The IR data structures stored in ChiselCircuitAnnotation and FirrtlCircuitAnnota-
tion are trees where each node represents a component in a circuit and may have multiple children
nodes of the same or different type. After the Elaborate phase each Chisel construct like signals,
module instances, control statements, temporary values, etc., creates a node entry of the circuit data
structure. The nodes and respective children involved in Tywaves are summarized in Table 4.1. The
new pass added by Tywaves traverses and updates the ChiselCircuit tree using the Depth First
Search algorithm (DFS) [39]. The variant used is the pre-order traversal that processes each visited
node before its children.

Node Children
Circuit Component (DefModule)
DefModule Port, Command/Definition
Port Data
Command/Definition Command/Definition, Node, Data
Node Data
Data

Table 4.1: Nodes and respective children of ChiselCircuitAnnotation involved in the AddTywavesAnnotation phase

According to the definition of typed-circuits from Section 2.4, a TywavesAnnotation (Listing 4.3)
is created for module definitions and signals, where signals are defined through the Data class of
Table 4.1. To create the annotation, the type and parameters need to be extracted from the nodes
considered. Both of them are compile-time information while the PhaseManager is executed during
runtime. Therefore, their information is obtained using Scala reflection [5] which allows to access
compile-time data during the runtime of the program.

Finally, Section 2.4 claimed that named values of enum variants also have an important role in
debugging a Chisel circuit. In comparison to types though, enum variants already have their own
annotation in FIRRTL. Thus, a specific update for them in Chisel has not been necessary. The debug
information of an enum is represented in FIRRTL by a set of three annotations (Table 4.2), storing the
definitions and associating each enum signal to the respective definition. However, the type name of
an enum signal is not handled by these annotations, and this makes Tywaves an added value also for
ChiselEnum.

22 4. Tywaves backend

Enum Annotation Description

EnumDefAnnotation Contains a unique ID of an enum type and a map of the variants
with raw integer values

EnumComponentAnnotation Associate a FIRRTL target with an enum definition using the ID

EnumVecAnnotation
Associate a FIRRTL vector with an enum definition using the ID.
When the vector has aggregate types it contains a list of which
fields have the enum type

Table 4.2: Enum annotations already implemented in Chisel

To give an illustration of how a circuit is represented in a Chisel IR graph together with its Tywaves
annotations Figure 4.2 depicts the ChiselCircuitAnnotation of Detect2Ones example.

ChiselCircuitAnnotation

Components

DefModule: Foo

Ports Commands

a: IO[UInt<4>] b: IO[Bool]

a: IO[UInt<4>] b: IO[Bool]

Port: clock

Data: Clock

id
Port: reset

Data: Bool

id
Port: io

Data:
AnonymousBundle

id
Port: io

Data:
BarAggr

id
DefWire: x

Data: SInt<3>

id
DefPrim: tmp

Data:
OpResult[SInt<3>]

id

Figure 4.2: Example of Chisel circuit graph

4.2. Associate original source code info with dumped traces
Previous sections described how the annotation mechanism can be used to encode the type infor-
mation in FIRRTL. This extra information needs to be consumed inside firtool and elaborated to new
specific HGLDD fields for reconstructing the view of Chisel from the generated Verilog. The debug
dialect and HGLDD already implement a structure to track the correlation between values, types, and
hierarchy of the IRs internal to CIRCT implemented as other dialects. Nevertheless, as mentioned in
Subsection 2.3.1, only FIRRTL has an MLIR dialect in the compiler whereas Chisel does not, preclud-
ing any opportunity to get Chisel types into the debug dialect and limiting viewers to merely enable
FIRRTL waveforms at the current state. Although FIRRTL keeps the same hierarchies and variable
names of Chisel, it does not express any Scala meta-programming information, i.e. the Scala types.

This section explains how CIRCT has been updated to consume the new TywavesAnnotation,
how it materializes the information in an updated debug dialect, and transforms the changes of the IR
into respective new JSON entries of HGLDD to make the new features usable by external programs
without breaking the existing behavior.

4.2. Associate original source code info with dumped traces 23

Operation Operands Results Attributes

dbg.variable

value

Opt<scope>

Opt<enumDef>

-

name

Opt<typeName>

Opt<params>

dbg.scope scope ScopeType
instanceName

moduleName

dbg.array element ArrayType -

dbg.struct fields StructType -

dbg.subfield
value

Opt<scope>

Opt<enumDef>

SubFieldType
name

Opt<typeName>

Opt<params>

dbg.moduleinfo - -
Opt<typeName>

Opt<params>

dbg.enumdef Opt<scope> EnumDefType
enumTypeName

id

variantsMap

Table 4.3: Debug dialect operations. In bold-italic the changes made.

4.2.1. Consuming the Tywaves annotations in CIRCT
According to Figure 2.3, once a FIRRTL source is parsed and translated into the respective dialect,
some lowering operations, transformations, and checks are executed before diving into the core di-
alects. Specifically, one of the first steps executed by CIRCT is the LowerAnnotation pass which
parses the JSON representation of annotations in the file header, discards unsupported annotations,
and processes the others to compute custom operations. Each annotation stores different meta infor-
mation (debug, optimization, formal verification, etc.) and performs a distinct transformation. In the
case of this project, the TywavesAnnotation presented in Subsection 4.1.2 is pushed as an entry of
the annotations field of the MLIR operation correlated with its FIRRTL target [19, ’firrtl’ dialect].

4.2.2. Updated debug dialect
As mentioned earlier MLIR dialects enable the integration of different levels of abstraction and com-
putations. Specifically, Subsection 2.3.1 anticipated that the four debug dialect operations do not
have native support for Chisel source information yet. Tywaves updates the debug dialect through
TableGen [45] to reconstruct type names and parameters from MLIR operations. TableGen provides a
straightforward DSL to define dialects and prototype new features, in fact, it automatically generates all
the C++ classes and functions to manipulate the operations. Table 4.3 summarizes the debug dialect
and underlines the additions made to handle Tywaves.

According to the proposed pipeline of Figure 4.1 the TywavesAnnotation is not always emitted,
in such a case the type Chisel information might not be available in FIRRTL. To handle this possibility,
all operations and attributes of the updated debug dialect related to the source language type must be
declared as optional MLIR fields (see Appendix C for the full definition of the new debug dialect). The
next subsections provide more details and reasons for the changes made.

4.2.2.1. Storing enum type definitions in dbg.enumdef
One of the current problems of the debug dialect is the inability to reconstruct named values of enum
variants. To combat this issue, a new dbg.enumdef operation is derived from the enum annotations
of Table 4.2 and its attributes store data to reconstruct the named variants of an enum type. More
precisely, variants are internally implemented as a DictionaryAttr : (𝐼𝑛𝑡 → 𝑆𝑡𝑟𝑖𝑛𝑔). This kind of
map can be directly converted to a hash map by a viewer to access the variant with a time complexity
of 𝑂(1). In contrast, an array attribute of strings cannot be used since the user might select the order
and the single raw values of the variants.

Finally, since enum creates mapped values for signals, the dbg.enumdef needs to be accessed
from other operations. Thus, it returns a result that can be pushed as an operand of other debug Ops.

24 4. Tywaves backend

Listing 4.6 contains the definition corresponding to the State enum of the Detect2Ones example.

%0 = dbg.enumdef ”DetectTwoOnes$State”, id 0,
{sNone = 0 : i64, sOne1 = 1 : i64, sTwo1s = 2 : i64}

Listing 4.6: The dbg.enumdef operation from the FSM example of Figure 2.6a

4.2.2.2. New dbg.variable attributes
Two new MLIR attributes have been added to the dbg.variable for representing the name and param-
eters of the source type of a variable declared in the source code. In TableGen, these two new MLIR
fields need to contain the string serialization of typeName and ClassParam of the Scala annota-
tion Listing 4.3 and they are therefore declared as an LLVM StringAttr and an ArrayAttr of a
DictAttr respectively. On the other hand, a variable can be created from an enum signal. Hence
an optional operand is added to accept the result of a dbg.enumdef operation. This allows to map the
values of a variable with the corresponding named variants.

Notably, Tywaves information might not be generated, and this suggests that also the typeName
and params attributes should be optional (see Appendix C).

4.2.2.3. The dbg.variable is not enough for subfields of aggregates
A dbg.variable explicitly captures direct declarations of variables in a module but it does not relate
fields of aggregated values as shown in Figure 4.3. On the other hand, dbg.array and dbg.struct are
obviously responsible for only maintaining the hierarchical structure of their respective aggregates.

Figure 4.3: The dbg.variable reconstructs only signal top declarations (light-blue). The subfields (red) miss an associated dbgOp.

Consequently, the current operations on their own cannot fully reconstruct the source types of sub-
fields, even though they are capable of retrieving the original hierarchies from the generated Verilog.
This is further confirmed when we take a look at the official documentation of the Ops:

”1) The dbg.variable operation is useful to represent named values in a source language. For
example, ports, constants, parameters, variables, nodes, or name aliases can all be represented as a
variable... 2) The dbg.struct operation allows for struct-like source language values to be captured in the
debug info. This includes structs, unions, bidirectional bundles, interfaces, classes, and other similar
structures... 3) The dbg.array operation allows for array-like source language values to be captured in
the debug info. This includes arrays, ...” [18].

The first statement does not suggest any reference to subfields for a dbg.variable but rather the
cited operations cover only the declarations of FIRRTL types in a module [20, Operation Definitions –
Declarations]. On the other hand, fields of aggregates have specific subfields FIRRTL operations [20,
Operation Definitions – Expressions] also shown in the figure. Therefore, a value of a debug variable
Op can only have FIRRTL declarations as operands. Additionally, dbg.variable cannot be even used
as the operand of structs and arrays since it does not return any result type and, because of that, it
cannot be passed to other Ops1.

The left side of Figure 4.3 shows how the debug dialect, after the first update, can reconstruct the
source level hierarchy independently from FIRRTL and highlights three things. First, the variable does

1In MLIR operations return results and these results can be passed to other operations as operands.

4.2. Associate original source code info with dumped traces 25

not return any result; second, there has been only one variable for the declaration of bar and no one
for its named fields; finally, the results of the operations are cascaded between operations.

The observations above advise three possible solutions to store and manipulate type information
for subfields through the debug dialect:

1. Using dbg.variable as an operand in dbg.struct/dbg.array. The first possible solution to the prob-
lem would consist of adding a return result for a variable Op such that it can be passed as an
operand to the debug aggregate Ops.

2. Update structs and arrays with attributes for type information. An alternative approach is to add
the extra information next to the operations of the aggregates operations directly. For instance it
would be possible to obtain something similar to
%2 = dbg.struct ”a”: ”value”: %0, typeName = ”Wire[Bool]”, ”vsub”:
”value”: %4, typeName = ”Wire[UInt<3>[2]]”, params = [...].

3. Create a new distinct debug operation for subfields. A third possibility is to define a separate
operation specific to elements of aggregates.

The first two solutions seem to be able to solve the issue addressed, but they both have disad-
vantages compared to the last one. First of all, some updates to existing operations not only imply
changes in the Op definitions but may also require adapting their usage in the compiler, likely leading
to more difficult integration. This is exactly the case of the first and second proposals. For instance,
although changing the definitions in TableGen is trivial, updating already implemented usages might be
an onerous task due to the size of the CIRCT project. Moreover, with the first approach, it would be un-
clear whether the variable refers to a top declaration or a subfield of another declaration. In the second
option, the information is not part of the subfield value but is instead associated with the operand.

Taking into account these thoughts, the solution is obvious. Declaring a new debug operation spe-
cific for managing extra debug info of subfields allows keeping the code using other Ops in the compiler
untouched. Then, it would also be possible to clearly distinguish variables and fields. Separating data
of declarations, aggregates, and sub-elements is another key point for a better organization of the
information, already implemented in other dialects, and following the principles of MLIR [43, p. 3].

4.2.2.4. The dbg.subfield operation
This operation enables tracking debug information for subfields of aggregates separately from the par-
ent variable. The dbg.subfield Op (Table 4.3) has the same attributes as the dbg.variable to store
the value, source language name, type name, and type parameters but, unlike the latter, it also re-
turns a SubFieldType result which can be passed as operand of dbg.struct and dbg.array opera-
tions as demonstrated in Listing 4.7. Since a field value is always a descendant of another value, the
dbg.subfield does not have a scope operand, as opposed to the dbg.variable.

%0 = firrtl.subfield %bundle[a] : !firrtl.bundle<a: uint<1>,
vsub: vector<uint<3>, 2>>

%1 = dbg.subfield ”bundle.a”, %0 {typeName = ”Wire[Bool]”} :
!firrtl.uint<1>

%2 = firrtl.subfield %bundle[vsub] : !firrtl.bundle<a: uint<1>,
vsub: vector<uint<3>, 2>>

%3 = firrtl.subindex %2[0] : !firrtl.vector<uint<3>, 2>
%4 = dbg.subfield ”bundle.vsub[0]”, %3 {typeName = ”Wire[UInt<3>]”} :

!firrtl.uint<3>
%5 = firrtl.subindex %2[1] : !firrtl.vector<uint<3>, 2>
%6 = dbg.subfield ”bundle.vsub[1]”, %5 {typeName = ”Wire[UInt<3>]”} :

!firrtl.uint<3>
%7 = dbg.array [%4, %6] : !dbg.subfield
%8 = dbg.subfield ”bundle.vsub”, %7 {params = [...],

typeName = ”Wire[UInt<3>[2]]”} : !dbg.array
%9 = dbg.struct {”a”: %1, ”vsub”: %8 : !dbg.subfield, !dbg.subfield
dbg.variable ”bundle”, %9 {typeName = ”Wire[MyBundle]”} : !dbg.struct

Listing 4.7: The dbg.subfield operation for the bundle variable from Figure 4.3

26 4. Tywaves backend

4.2.2.5. Encoding generic module type information in dbg.moduleinfo
As stated in Section 2.4, types cover modules and instances as well as signals of a circuit. Hence,
Tywaves defines dbg.moduleinfo operation which stores this information for a module and makes
it available in the compiler. The Op is just declarative and does not accept operands or return re-
sults. Unlike signals, module hierarchies and dependencies are preserved characteristics during the
compilation process and explain the choice made. An example is reported in Listing 4.8. Although
firrtl.circuit and firrtl.module seem to contain the same name, they are not part of the
debug information.

module {
firrtl.circuit ”MyModule” {

firrtl.module @MyModule() {
// Other Ops ...
dbg.moduleinfo typeName = ”MyModuleType”

}
}

}

Listing 4.8: The dbg.moduleinfo operation

4.2.3. Materializing the debug dialect
After the LowerAnnotation, the meta-data contained in the FIRRTL annotations is added to the re-
spective attribute of FIRRTL operations. Despite this, the information is not associated with debug
operations, yet it may be subject to further optimizations. To overcome this potential issue, the anno-
tations should be converted to debug operations, free from compiler optimization steps.

The MaterializeDebugInfo is a compiler pass responsible for looking at themodules, ports, and
wires of a FIRRTL circuit and generating the corresponding tracking operations such that the FIRRTL
perspective is preserved through the transformation pipeline.

According to the new operations introduced previously, the pass is updated to follow the pseu-
docode of Algorithm 1, 2 and 3. When the algorithm implemented in MaterializeDebugInfo pass
is applied the debug dialect operations presented in the previous section are created. Specifically, all
the operations declared in a module are processed to preserve the hierarchical structure of aggregates
and associate to variables and fields the type information. Finally, the algorithms of the pass implement
the following features:

• Extract all the enum definitions, create the respective dbg.enumdef operations, and cache each
of them in a hash map for later reuse.

• Create a dbg.variable operation for each declaration of ports and non-IO signals in the module.

• Unpack all the aggregates and repack them with debug aggregates and subfield operations.

• For each declared variable and subfield FIRRTL operations: extract the Tywaves information
and enum reference definition from the annotation list of the processed Op/SubOp; eventually
lookup the enum definition operations cache map and, if any, insert the Op as an operand of the
dbg.variable or dbg.subfield; insert the type name and parameters as attributes.

Figure 4.4 shows a dependency graph example of debug operations. The ”%” values in MLIR are
the operations’ results and represent their return values. Therefore, they are used as operands of other
operations (i.e. in the figure, %1 and %3 are the results of the two dbg.subfield Ops and operands of
the dbg.struct Op).

4.2. Associate original source code info with dumped traces 27

dbg.variable

dbg.struct
%4

dbg.subfield
%3

firrtl.subfield
%2

firrtl.uint
%bar[b]

dbg.subfield
%1

firrtl.subfield
%0

firrtl.uint
%bar[a]

Figure 4.4: Dependency graph of results of operations

Algorithm 1 MaterializeDebugInfo pass pseudocode
procedure MaterializeDebugInfo(𝑀𝑜𝑑𝑢𝑙𝑒, 𝑂𝑝𝐵𝑢𝑖𝑙𝑑𝑒𝑟)

𝑂𝑝𝑠 ← 𝑀𝑜𝑑𝑢𝑙𝑒.𝑔𝑒𝑡𝐸𝑙𝑒𝑚𝑒𝑛𝑡𝑠() // Get all the operations in a module (ports, wires, nodes, regs)
𝐸𝑛𝑢𝑚𝐷𝑒𝑓𝐶𝑎𝑐ℎ𝑒 ← ∅ // Cache all the enum definitions in a module
for all 𝑜𝑝 ∈ 𝑂𝑝𝑠 do

for all 𝐴𝑛𝑛𝑜 ∈ 𝐴𝑛𝑛𝑜𝐿𝑖𝑠𝑡 do
if 𝐴𝑛𝑛𝑜 is EnumDefAnnoType then

𝑖𝑑 ← createNextId
𝑒𝑛𝑢𝑚𝐷𝑒𝑓𝑂𝑝 ← 𝑂𝑝𝐵𝑢𝑖𝑙𝑑𝑒𝑟.𝑐𝑟𝑒𝑎𝑡𝑒𝐷𝑏𝑔𝐸𝑛𝑢𝑚𝐷𝑒𝑓𝑂𝑝(𝐴𝑛𝑛𝑜.𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝐹𝑖𝑒𝑙𝑑𝑠, 𝑖𝑑)
𝐸𝑛𝑢𝑚𝐷𝑒𝑓𝐶𝑎𝑐ℎ𝑒.𝑖𝑛𝑠𝑒𝑟𝑡(𝑒𝑛𝑢𝑚𝐷𝑒𝑓𝑂𝑝.𝑛𝑎𝑚𝑒, 𝑒𝑛𝑢𝑚𝐷𝑒𝑓𝑂𝑝)

for all 𝑜𝑝 ∈ 𝑂𝑝𝑠 do
𝐴𝑛𝑛𝑜𝐿𝑖𝑠𝑡 ← 𝑜𝑝.𝑔𝑒𝑡𝐴𝑙𝑙𝐴𝑛𝑛𝑜𝑡𝑎𝑡𝑖𝑜𝑛𝑠
(𝑉𝑎𝑙𝑢𝑒, 𝑇𝑦𝑝𝑒𝐼𝑛𝑓𝑜, 𝐸𝑛𝑢𝑚𝐷𝑒𝑓𝑅𝑒𝑓) ← CreateDebugAggregates(𝑜𝑝, 𝑂𝑝𝐵𝑢𝑖𝑙𝑑𝑒𝑟, 𝐴𝑛𝑛𝑜𝐿𝑖𝑠𝑡,
𝐸𝑛𝑢𝑚𝐷𝑒𝑓𝐶𝑎𝑐ℎ𝑒) // Get the value for the dbg variable
return 𝑂𝑝𝐵𝑢𝑖𝑙𝑑𝑒𝑟.𝑐𝑟𝑒𝑎𝑡𝑒𝐷𝑏𝑔𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑂𝑝(𝑉𝑎𝑙𝑢𝑒, 𝑉𝑎𝑟𝐴𝑛𝑛𝑜, 𝑇𝑦𝑝𝑒𝐼𝑛𝑓𝑜.𝑡𝑦𝑝𝑒𝑁𝑎𝑚𝑒,
𝑇𝑦𝑝𝑒𝐼𝑛𝑓𝑜.𝑝𝑎𝑟𝑎𝑚𝑠, 𝐸𝑛𝑢𝑚𝐷𝑒𝑓𝑅𝑒𝑓)

Algorithm 2 GetTywaves: extract type info and eventual enum definition from the list of annotations of a module
procedure GetTywaves(𝐴𝑛𝑛𝑜𝐿𝑖𝑠𝑡, 𝑂𝑝, 𝐸𝑛𝑢𝑚𝐷𝑒𝑓𝐶𝑎𝑐ℎ𝑒)

𝑇 ← ∅
𝐸 ← ∅
for all 𝑎 ∈ 𝐴𝑛𝑛𝑜𝐿𝑖𝑠𝑡 do // Filter the annotations and extract the fields from the targets in a better format

if 𝑎 is TywavesAnnoType then
𝑇.𝑝𝑢𝑠ℎ(extractFields(𝑎))

if isGround(𝑂𝑝) & 𝑎 is EnumCompAnnoType then
if 𝐸 ≠ ∅ then

// Search the definition, the EnumCompAnnoType stores only the name, not the enumDefOp
𝐸 ← 𝐸𝑛𝑢𝑚𝐷𝑒𝑓𝐶𝑎𝑐ℎ𝑒.𝑙𝑜𝑜𝑘𝑢𝑝(𝑎.𝑛𝑎𝑚𝑒)

return (𝑇, 𝐸)

4.2.4. Emitting a debug file for external programs
According to Figure 2.7 the compiler infrastructure should output and pass extra debug information
about the source language to an external viewer. All theMLIR dialects are used internally in the compiler
and their output serialization is not meant to be parsed by external tools. Therefore, the debug dialect
cannot be used directly by a waveform viewer and the information in it needs to be converted to a file
format independent of the MLIR syntax.

As introduced in Subsection 2.3.1, the current state of the CIRCT compiler and the debug dialect
implements the HGLDD debug file format, a JSON-based format defined in collaboration with Synop-
sys. This implementation does not support specific Chisel source type information and a new format
needs to be specified for the waveform viewer that this project targets. However, it seems that an up-
date to this existing file format would simplify the work done, compared to a new specification, because

28 4. Tywaves backend

Algorithm 3 CreateDebugAggregates: redefine all the FIRRTL operations with debug operations. Unpack
all the FIRRTL aggregates and repack them. Add also the associated type and enum def information.
1: procedure GenerateResult(𝑂𝑝𝐵𝑢𝑖𝑙𝑑𝑒𝑟, 𝑂𝑝, 𝑟𝑒𝑠𝑢𝑙𝑡, 𝐴𝑛𝑛𝑜𝐿𝑖𝑠𝑡, 𝐸𝑛𝑢𝑚𝐷𝑒𝑓𝐶𝑎𝑐ℎ𝑒)
2: if isDeclaration(𝑂𝑝) then
3: return (𝑟𝑒𝑠𝑢𝑙𝑡, ∅, ∅)
4: else
5: (𝑡𝑦𝑤𝑎𝑣𝑒𝑠𝐼𝑛𝑓𝑜, 𝑒𝑛𝑢𝑚𝐷𝑒𝑓𝑅𝑒𝑓) ← GetTywaves(𝐴𝑛𝑛𝑜𝐿𝑖𝑠𝑡, 𝑂𝑝, 𝐸𝑛𝑢𝑚𝐷𝑒𝑓𝐶𝑎𝑐ℎ𝑒)
6: return (𝑂𝑝𝐵𝑢𝑖𝑙𝑑𝑒𝑟.𝑐𝑟𝑒𝑎𝑡𝑒𝐷𝑏𝑔𝑆𝑢𝑏𝐹𝑖𝑒𝑙𝑑𝑂𝑝(𝑟𝑒𝑠𝑢𝑙𝑡, 𝑡𝑦𝑤𝑎𝑣𝑒𝑠𝐼𝑛𝑓𝑜.𝑡𝑦𝑝𝑒𝑁𝑎𝑚𝑒,

𝑡𝑦𝑤𝑎𝑣𝑒𝑠𝐼𝑛𝑓𝑜.𝑝𝑎𝑟𝑎𝑚𝑠, 𝑒𝑛𝑢𝑚𝐷𝑒𝑓𝑅𝑒𝑓), 𝑡𝑦𝑤𝑎𝑣𝑒𝑠𝐼𝑛𝑓𝑜, 𝑒𝑛𝑢𝑚𝐷𝑒𝑓𝑅𝑒𝑓)
7:
8: procedure CreateDebugAggregates(𝑂𝑝, 𝑂𝑝𝐵𝑢𝑖𝑙𝑑𝑒𝑟, 𝐴𝑛𝑛𝑜𝐿𝑖𝑠𝑡, 𝐸𝑛𝑢𝑚𝐷𝑒𝑓𝐶𝑎𝑐ℎ𝑒)
9: // Extract type and enumDef information
10: if 𝑂𝑝 is FirrtlBundle then
11: // Collect subfields of the struct
12: 𝑓𝑖𝑒𝑙𝑑𝑠 ← ∅
13: for all 𝑠𝑢𝑏𝑂𝑝 ∈ GetSubOps(𝑂𝑝) do
14: 𝑠𝑢𝑏𝐹𝑖𝑒𝑙𝑑𝑂𝑝 ← 𝑂𝑝𝐵𝑢𝑖𝑙𝑑𝑒𝑟.𝑐𝑟𝑒𝑎𝑡𝑒𝑆𝑡𝑟𝑢𝑐𝑡𝑆𝑢𝑏𝐹𝑖𝑒𝑙𝑑𝑂𝑝(𝑠𝑢𝑏𝑂𝑝)
15: 𝑣𝑎𝑙 ← CreateDebugAggregates(𝑠𝑢𝑏𝐹𝑖𝑒𝑙𝑑𝑂𝑝, 𝑂𝑝𝐵𝑢𝑖𝑙𝑑𝑒𝑟, 𝐴𝑛𝑛𝑜𝐿𝑖𝑠𝑡, 𝐸𝑛𝑢𝑚𝐷𝑒𝑓𝐶𝑎𝑐ℎ𝑒) // Recursive

pass
16: 𝑓𝑖𝑒𝑙𝑑𝑠.𝑝𝑢𝑠ℎ(𝑣𝑎𝑙)
17:
18: // Create and return the result
19: 𝑟𝑒𝑠𝑢𝑙𝑡 ← 𝑂𝑝𝐵𝑢𝑖𝑙𝑑𝑒𝑟.𝑐𝑟𝑒𝑎𝑡𝑒𝐷𝑏𝑔𝑆𝑡𝑟𝑢𝑐𝑡(𝑂𝑝, 𝑓𝑖𝑒𝑙𝑑𝑠)
20: return GenerateResult(𝑂𝑝𝐵𝑢𝑖𝑙𝑑𝑒𝑟, 𝑂𝑝, 𝑟𝑒𝑠𝑢𝑙𝑡, 𝐴𝑛𝑛𝑜𝐿𝑖𝑠𝑡, 𝐸𝑛𝑢𝑚𝐷𝑒𝑓𝐶𝑎𝑐ℎ𝑒)
21: else if 𝑂𝑝 is FirrtlVector then
22: // Create indexed elements of the vector
23: 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 ← ∅
24: for 𝑖𝑑𝑥 = 0,… , GetNumSubOps(𝑂𝑝) do
25: 𝑠𝑢𝑏𝑂𝑝 ← 𝑂𝑝𝐵𝑢𝑖𝑙𝑑𝑒𝑟.𝑐𝑟𝑒𝑎𝑡𝑒𝑆𝑢𝑏𝐼𝑛𝑑𝑒𝑥𝑂𝑝(𝑂𝑝.𝑣𝑎𝑙𝑢𝑒, 𝑖𝑑𝑥)
26: 𝑣𝑎𝑙 ← CreateDebugAggregates(𝑠𝑢𝑏𝑂𝑝, 𝑂𝑝𝐵𝑢𝑖𝑙𝑑𝑒𝑟, 𝐴𝑛𝑛𝑜𝐿𝑖𝑠𝑡, 𝐸𝑛𝑢𝑚𝐷𝑒𝑓𝐶𝑎𝑐ℎ𝑒) // Recursive pass
27: 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠.𝑝𝑢𝑠ℎ(𝑣𝑎𝑙)
28:
29: // Create and return the result
30: 𝑟𝑒𝑠𝑢𝑙𝑡 ← 𝑂𝑝𝐵𝑢𝑖𝑙𝑑𝑒𝑟.𝑐𝑟𝑒𝑎𝑡𝑒𝐷𝑏𝑔𝐴𝑟𝑟𝑎𝑦(𝑂𝑝, 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠)
31: return GenerateResult(𝑂𝑝𝐵𝑢𝑖𝑙𝑑𝑒𝑟, 𝑂𝑝, 𝑟𝑒𝑠𝑢𝑙𝑡, 𝐴𝑛𝑛𝑜𝐿𝑖𝑠𝑡, 𝐸𝑛𝑢𝑚𝐷𝑒𝑓𝐶𝑎𝑐ℎ𝑒)
32: else if 𝑂𝑝 is FirrtlGround then
33: return GenerateResult(𝑂𝑝𝐵𝑢𝑖𝑙𝑑𝑒𝑟, 𝑂𝑝, 𝑂𝑝, 𝐴𝑛𝑛𝑜𝐿𝑖𝑠𝑡, 𝐸𝑛𝑢𝑚𝐷𝑒𝑓𝐶𝑎𝑐ℎ𝑒)
34: else
35: // Return nothing
36: return (∅, ∅, ∅)

it would allow the re-usage of most of the emitted code. Therefore, an extension to the HGLDD format
is defined in this section (Section D.3 contains the UML class diagram of the new format).

Nevertheless, overwriting the current emitter in firtool to output a new version with updated or new
fields might break the file from Synopsys’s side. Because of that, the updated format presented in this
thesis is emitted separated from and in addition to the current HGLDD, and it is reported in Table 4.4.

Extended HGLDD
Every HGLDD file contains a header with generic information about the source and output files and
a list of ”objects” representing the module and aggregates definitions used in the HGL circuit that is
compiled. A few fields (Listing 4.9 and 4.10), are added to the format in order to represent Tywaves
type information and maps for the values of enum types. First, the ”source_lang_type_info”
is added correspondingly to each module definition and variable/subfield instance entry in HGLDD.
Second, each enum definition is encoded with a map (𝐸𝑛𝑢𝑚𝐷𝑒𝑓 ∶ 𝑅𝑎𝑤𝑉𝑎𝑙𝑢𝑒 → 𝑁𝑎𝑚𝑒) and in-
serted in an ”enum_defs” list present in module definitions. This last list is implemented as a map
(𝑙𝑖𝑠𝑡 ∶ 𝐸𝑛𝑢𝑚𝐼𝑑 → 𝐸𝑛𝑢𝑚𝐷𝑒𝑓) to enable fast lookup. Finally, the variables of enum types have an addi-
tional entry storing the reference ID to the respective enum definition.

4.2. Associate original source code info with dumped traces 29

Node Children Description
Node JSON entry name

Root Header HGLDD The whole file. Contains a header and a list of
objects.Object objects

Header - Header of the file. Contains version of the format
and info about the source files

Object

ObjectKind kind
An object in in the HGLDD file. It can be a module
definition or a struct-like type.
It has also a name (hgl and hdl) and a flag in the
case of an external module.

Location hgl_loc, hdl_loc
Variable port_vars
Instance children
SourceLangType source_lang_type_info
Map<int<int, string>> enum_defs

ObjectKind An enum variant to indicate the type of an Object.
It can be module or struct.

Variable

Location hgl_loc, hdl_loc

A variable in HGLDD. It has a name and
information indicating the location in
source (hgl) and target file (hdl), the reference
in hdl (value_expr).

Expression value_expr
TypeName type_name
PackedRange packed_range
UnpackedRange unpacked_range
SourceLangType source_lang_type_info
int enum_def_ref_id

SourceLangType ContructorParams params The serialization of Tywaves type info in HGLDD format.
ContructorParams - - The parameters of a source lang type.

Instance
Location hgl_loc, hdl_loc The instance of a module. Its content is similar to

a module definition.
Each Instance is usually defined in another HGLDD
file. Each module definition has its own file.

Variable port_vars
Instance children

Expression - - An expression can refer to a signal in the target
language or a constant value or an operator that
combines other expressions/variables.

PackedRange Indicates the dimensions of a variable in the target
language (i.e. logic [7;0] x in verilog)

UnpackedRange - -
Dimensionality of a variable in the target language
(i.e. logic x [1:0][3:0] in verilog). It is associate to
a vec-like variable.

TypeName - - The type name in the target language.
Location - - A location of a variable, instance in a file.

Table 4.4: Fields and nodes in HGLDD file format.

”source_lang_type_info”: {
”type_name”: ”<The type of the variable or module>”,
”params”: [

{
”name”: ”<The name of the parameter>”,
”typeName”: ”<The source language type of

the parameter>”,
”value”: ”<The value actually used>”

}
]

}

Listing 4.9: Example of ”source_lang_type_info” to serialize type names and
constructor parameters in HGLDD

”enum_defs”: {
”0”: {

”0”: ”sNone”,
”1”: ”sOne1”,
”2”: ”sTwo1s”

},
”1”: {

”1”: ”A”,
”3”: ”B”

}
}

Listing 4.10: Example of the enum def-
inition maps in HGLDD

5 | Tywaves frontend
The waveform visualization and testbench abstractions play a significant role in the project since they
represent the interaction with the user. The former implements the actual debug tool that designers
use to check the behavior of a digital design through the inspection of signal values while the latter
allows them to execute simulations and tests on a specific design. Therefore, referring to the views of
Figure 3.1 this chapter presents the frontend of Tywaves.

This portion of the implementation can be divided into two main parts: the waveform GUI and the
Tywaves-Chisel API. First of all, a rationale for the choice of extending the Surfer waveform viewer [56]
is given in this chapter. Next, a detailed explanation of the changes to the chosen UI and the imple-
mentation of a library to interface the waveform with the backend outputs and manipulate the debug
information is provided. To conclude, the end of the chapter describes an intuitive ChiselSim API to
use the Tywaves project for testing Chisel circuits.

5.1. Extending Surfer
As can be deducted from the software architecture diagram shown in Figure 3.1, Tywaves involves
several tools and updates to achieve type-based signal visualization. For this reason, the optimal solu-
tion for creating a graphical user interface (GUI) is to extend one of the existing open-source waveform
viewers. This has the advantage of leveraging established and tested functionalities and so is reducing
development time and the potential for errors compared to realizing a new interface from scratch.

Several open-source alternatives exist such as GTKWave, Surfer, VaporView, WaveTrace, Sootty,
and simview [4, 25, 31, 46, 50, 56]. Among them, GTKWave is one of the oldest and most used.
However, it does not offer the opportunity to easily integrate new extensions to its current features, i.e.
through plugin systems. On the contrary, Surfer is built with a focus on extensibility and provides a
more straightforward method to add new functionalities such as the support of a new language or a
different kind of signal rendering as in the case of this project. Thus, the frontend uses and extends
Surfer to support a type-based representation of Chisel circuits.

Surfer is a new viewer written in Rust with an active community open to updates and extending
support to other HDLs, including Chisel. It has been implemented with an emphasis on extensibility;
in fact, it natively supports the customization of signal representations. The value rendering system
is based on a Translator trait which translates a given raw value associated with a signal with a
custom representation.

Figure 5.1 shows a high-level diagram of Surfer and how the Tywaves functionality is integrated.
As can be seen, trace files are loaded and converted to an intermediate data structure by Wellen [41]
providing a format-independent interface with the rest of the system. A waveform container, in Surfer,
loads and preserves the state of the intermediate data structure while the Translator trait defines
common functions to render a raw bit vector value with a custom representation. Moreover, the trait
system ensures modularity since it can be implemented by multiple Rust structs. On the other hand,
the Tywaves-rs library bridges debug information with trace files. It follows the same logic as Wellen by
converting multiple formats into a common intermediate data structure (TyVcd). This way the translator
can eventually interface with multiple debug file formats without changing its functionality. Additionally,
a generic structure facilitates the extension to other languages. Finally, the wave container extracts
the values associated with a signal and queries the current translator for the rendering of such a value.
Section D.2 illustrates sequence diagrams of how a trace file and debug information are loaded in
Surfer and highlights the interaction with the user.

The following subsections provide specific details about each added and updated component present
in the figure.

30

5.1. Extending Surfer 31

Wellen IR Wave container

Tywaves
translator

Translator
2

Translator
n

TyVcd
data structure

Builder

IRParserTywaves-Chisel
APIChisel C

IR
C

T

Other

Trace files
(*.vcd, *.fst, *.ghw)

IRParser

IRParser

Other

tywaves-rs

SurferParse Convert to common
data structure

Load into a
container

Get the custom
representation

Sen values to translator

Parse possible
multiple file formats

Convert to
common

data structure

HGL compilation Debug info

◼ new parts for Tywaves
◼ parts of Wellen
◼ existing parts in Surfer
◻ other
languages/tools/functions for
possible extensions

Legend

Figure 5.1: Tywaves integration within the Surferwaveform viewer

5.1.1. Tywaves-rs: bridging Tywaves information in Rust
Tywaves-rs is a Rust library that provides a programming interface with the debug file and information
emitted by CIRCT as shown in Figure 3.1. It specifically provides functions to parse the file and process
the debug information to build an internal data structure independent from the constructs of the input
(Section D.2 shows a sequence diagram that highlights the exact steps followed in Surfer). Tywaves-rs
is divided as follows:

• TyVcd: an intermediate data structure that links source language representation with the respec-
tive trace files.

• A parser or multiple parsers for reading and converting one or multiple debug files into a Rust
data structure.

• TyVcd builder: a generic struct that provides an interface to populate TyVcd from any other data
structure, i.e. a data structure representing HGLDD.

• VCD rewriter: a construct that rewrites VCD entries of aggregate variables such that all the values
are collected and concatenated in a unique entry of the output.

Its internal structure is organized such that the common interface can be built from multiple debug
file formats. For this project specifically, a parser and builder for HGLDD have been implemented and
presented.

5.1.1.1. TyVcd intermediate data structure
Asmentioned in Section 5.1, Surfer is an extensible waveform viewer, and following this idea tywaves-rs
should provide a format-agnostic interface for Surfer. TypedVcd (TyVcd) is an efficient and standard-
ized Rust data structure with support for multithreading, not restricted to Tydi, Chisel, or HGLDD (see
Section D.4 for the full UML class diagram).

Table 5.1 summarizes the nodes of the data structures. The root of TyVcd stores all the scope
definitions of a design that can be modules, instances, etc. These definitions are stored in a shared
atomic reference (Arc<RwLock<T>>) to enable thread-safety and to allow linking scope hierarchies
using shared references. In this way, a scope definition can have a field pointing to its children sub-
scopes without memory overhead. In contrast, variables are unique to a scope definition, and they can
be stored without Rust reference counters. Then an abstraction to the generic hierarchical kind of a

32 5. Tywaves frontend

variable is implemented by VariableKind. This can be a ground, struct-like, vec-like, or external kind.
The latter is used by TyVcd when none of the other kinds correspond to any kind of source language.
The other three kinds implemented are used by most of the languages for the ”topology” of signals. For
instance, Chisel has ground types (bits), bundles, and vectors to represent different hierarchies, and
also VHDL and System Verilog have similar constructs to indicate a the shape.

On the other hand, the type information as introduced in this thesis in Section 2.4 refers to the actual
displayed type in the source language rather than the hierarchical structure of the signal. This data is
represented in TyVcd through TypeInfo and ConstructorParams; two structs that reflect the definitions
of Listing 4.3.

Similarly to scope definitions, enum definitions are also handled through a shared reference be-
cause they can be associated with one or more variables. As anticipated in Subsubsection 4.2.2.1 the
map of the named variants of an enum can be implemented as HashMap to enable fast lookup, not
as a vector because the named variants might not have contiguous values. This way, when the wave
container passes an integer value of the trace associated, the enum variants can be accessed in 𝑂(1).
Finally, depending on how many signals are defined as enums in the design and on the number of
variants, a definition can become huge and a shared reference helps to reduce the memory cost.

Node Children Description

TyVcd ScopeDef The root of the whole data structure.
It stores a list of scope definitions.

ScopeDef ScopeDef, Variable,
TypeInfo

Represent a single scope definition.
It has a name, a path (from the root), type information
associated, and it may have zero or more
subscopes/variables.

Variable TypeInfo, VariableKind,
EnumValMap

Represent a variable of any type (declaration, subfield...).
It has a name, type information, a generic kind, and optionally
a link to an enum definition.

TypeInfo ConstructorParams Represents the tywaves type information.
It therefore has a name and a list of constructor parameters.

ConstructorParams - Stores parameters associated with a twaves type.

VariableKind - An Enum that represents a kind of a Variable.
It can be Ground, Struct, Vec or External.
Struct and Vec may have links to other variables.

EnumValMap - A hasmap: HashMap<i64, String>
following the definition of enum def in the debug dialect.

Table 5.1: Nodes and respective children of the TyVcd intermediate data structure

5.1.1.2. TyVcd builder
Tywaves-rs implements TyVcdBuilder<T>, a parametric struct that provides methods to build TyVcd
from another input type T (the IRs in Figure 5.1). To define the methods of a Rust structs the impl
keyword should be used. In the case of a struct with generics, it can be implemented for a generic type
and for a specific concrete type. The first case happens when impl TyVcdBuilder<T> is used, while
the second happens with impl TyVcdBuild<MyStruct1> or impl TyVcdBuild<MyStruct2>
and we refer to these cases as struct specializations for that specific types. Since the purpose of this
builder is to bridge only supported debug formats with TyVcd, the builder is not implemented to handle
the generic case.

To improve the robustness and coherence of different TyVcdBuiler specializations, Tywaves-rs
defines a GenericBuildertrait which provides a fixed interface for every builder specialization. It is
reported in Listing 5.1 together with an example of TyVcdBuilder specialization for generating TyVcd
from HGLDD.

5.1. Extending Surfer 33

pub trait GenericBuilder {
fn build(&mut self) -> Result<()>;
fn get_ref(&self) -> Option<&TyVcd>;
fn get_copy(&self) -> Option<TyVcd>;

}

/// A concrete builder for the TyVcd object.
pub struct TyVcdBuilder<T> {

// The input list of objects from which the TyVcd object will be built
origin_list: Vec<T>,
// The target TyVcd object
tyvcd: Option<TyVcd>,

// Cache the enum definitions
enum_def_map: EnumDefMap,

}

impl GenericBuilder for TyVcdBuilder<hgldd::Hgldd> {
// Implementation ...

}

Listing 5.1: The GenericBuilder

Example of building Tyvcd from HGLDD
To give an illustration of how a specialized builder can be implemented, in this case, to enable Tydi-
Chisel waveforms, the TyVcdBuilder<hgldd::Hgldd> is defined in Tywaves-rs. As introduced
by Figure 5.1 the output debug information of CIRCT is passed as input and parsed using the serde
library which allows to easily serialize and deserialize Rust data structures. In the specific case of
HGLDD the JSONmodule is used to automatically deserialize it. Moreover, CIRCT outputs one HGLDD
data structure per module definition either in a single or multiple files, therefore the HGLDD parser in
Tywaves-rs is able to read over multiple files and convert them into a single intermediate representation.

HGLDD is deserialized into a hgldd::Hgldd data structure that reflects the layout of the file. The
specialized TyVcdBuilder reads through the deserialized HGLDD and extracts all useful information
needed to populate TyVcd. Since the module definitions and struct definitions are stored in the same
list, a DFS approach would complicate the work. In fact, in HGLDD, these definitions are pointed by a
variable or instance declared in other modules but the definition itself does not point back to its module
since it can be used in multiple places. Therefore, at the first iteration, all module and struct definitions
are cached into a map and then traversed. This way, any time a variable or instance is encountered,
the id name can be used to access the respective definition with 𝑂(1) complexity. Then, the respective
TyVcd entry is created following the meanings in Table 5.1. For instance, all the module definitions
and instances are defined as ScopeDef in TyVcd, similarly, variables and struct definitions are defined
through Variable and VariableKind.

5.1.1.3. Vcd rewriter
Surfer loads simulation values from a trace file using Wellen [41], a library that provides an efficient in-
terface to read multiple trace formats. As shown in Figure 5.1, these signals are converted into a Rust
data structure and loaded into a wave container by Surfer. After that, when a signal is selected by a user
from the GUI, the wave container passes the meta-data of the signal, stored in the IR, to the selected
translator for rendering its raw value. This flow might cause some issues when the fields of aggregated
variables are flattened like in the case of Chisel-CIRCT compilation. Flattening occurs when subfields
of struct-like or vec-like variables are rewritten as multiple independent signals as shown by Listing 5.2
and 5.3 which show the Verilog representation and corresponding VCD header of wireBundle from
Listing 2.4.

34 5. Tywaves frontend

// wireBundle.a
logic wireBundle_a;
// wireBundle.b
logic [6:0] wireBundle_b;
// wireBundle.nested.x
logic [7:0] wireBundle_nested_x;
// wireBundle.v
logic [31:0] wireBundle_v_0,

wireBundle_v_1, wireBundle_v_2,
wireBundle_v_3, wireBundle_v_4,
wireBundle_v_5, wireBundle_v_6;

Listing 5.2: The flattened fields of wireBundle
from Listing 2.4

$var wire 1 # wireBundle_a [0:0] $end
$var wire 7) wireBundle_b [6:0] $end
$var wire 8 (wireBundle_nested_x [7:0] $end
$var wire 32 / wireBundle_v_0 [31:0] $end
$var wire 32 & wireBundle_v_1 [31:0] $end
$var wire 32 % wireBundle_v_2 [31:0] $end
$var wire 32 $ wireBundle_v_3 [31:0] $end
$var wire 32 ? wireBundle_v_4 [31:0] $end
$var wire 32 ” wireBundle_v_5 [31:0] $end
$var wire 32 ! wireBundle_v_6 [31:0] $end

Listing 5.3: The corresponding var entries dumped in VCD

In this case, Surfer loads each subfield as a separate value and rendering the whole wireBundle
with preserved hierarchy is impossible. That said, a workaround consists of rewriting the input VCD
file such that the value entries corresponding to subfields of aggregates are concatenated and dumped
again as a single VCD variable. This way, the value of the whole aggregate can be passed to the
translator, and the concatenation is decoded based on the information contained in TyVcd.

It is worth noticing that this solution is not optimized for performance because it needs one additional
file write/read operation. A better implementation would consist of changing the flow for accessing the
values from a trace file in order to allow the user to select the signals based on TyVcd and query the
traces to get the raw values, in other words, the opposite way of the current flow. However, this neces-
sitates either changes in Wellen to support TyVcd or in the internals of the wave container. Moreover,
it would break the translator system implemented in Surfer requiring additional work. Since the main
objective of the thesis is to provide a more intuitive debugging experience closer to the source language
rather than the fastest signal rendering, this second solution is left for future improvements.

5.1.2. Tywaves translator
The final component that is implemented to give support for a type-based representation in Surfer
is presented in this subsection. As introduced at the beginning of this section, the translator system
controls the rendering of the raw values of signals. Specifically, multiple translators can be defined
to show different customized visualizations of signals, i.e. integer or character values instead of a
bit-vector. Each of them extends the same Translator trait providing a common interface for the
wave container. As depicted by Figure 5.1, the TywavesTranslator is responsible for accessing the
TyVcd data structure and processing the value in order to visualize signals with source-level types and
hierarchies. The translator unpacks the concatenated values, rebuilds the hierarchies of aggregates,
and shows the type information defined by Tywaves in Section 2.4.

This project focuses on Chisel and Tydi-Chisel, therefore an example of the output result and com-
parison with the former visualization are illustrated in Figure 5.2. As can be seen when the debug
information is loaded and the Tywaves enabled, the hierarchies of the signals are kept and types are
displayed next to the values. Thus, the variable info can be retrieved immediately from the viewer. The
visualization of Figure 5.2a reduces the gap of the waveforms with the source code of Detect2Ones
compared to Figure 5.2b. Named values of enum variants are displayed instead of a number, relieving
the user from the tedious task of manually interpreting the raw value. In addition, the translator provides
multiple representations for a value. This allows to distinguish between bits, integers, characters, float,
and more representations for a value while still preserving the hierarchies and type information.

5.2. Tywaves-Chisel API
The last component highlighted in the general software architecture of the Tywaves project of Figure 3.1
is a ChiselSim API that hides the details for using together the updated compilation backend and Surfer
for Tywaves and completes the generalized HGL simulation flow of Figure 2.7 for Tydi-Chisel. As ini-
tially shown by Figure 2.4, the two core components of ChiselSim (svsim and the PeekPoke API) can
be combined to create high-level simulators that developers can use to write testbenches and launch
tests. As mentioned, the PeekPoke API of ChiselSim [14] allows an easy transition from ChiselTest [40]

5.2. Tywaves-Chisel API 35

(a) Tywaves enabled

(b) Only VCD loaded

Figure 5.2: Comparison of waveforms when only VCD is loaded and when Tywaves is enabled for the FSM of Figure 2.6a

and implements methods to control the simulation, feed and read IO signals. However, the state of the
art of ChiselSim implements only simple EphemeralSimulator for ephemeral simulations (see Ap-
pendix B). This simulator only enables running a simulation and it does not keep any information about
the test as the name suggests, like emitting a trace. Moreover, no control settings for the underlying
CIRCT compiler are available with high-level abstractions, but they can only be used by manually using
svsim and firtool. Thus, none of the features introduced in Chapter 4 are available in ChiselSim yet.

This section presents two new simulators, shown in Figure 3.1 to improve the current abstractions
of ChiselSim:

• Parametric simulator: a simulator for parametrizing the ChiselSim simulations through a set of
predefined parameters, referred to as simulator settings.

• Tywaves simulator: an extension of the previous simulator that calls the tools in order to gen-
erate and process Tywaves information and launch the updated waveform viewer directly from a
ChiselSim testbench.

While TywavesSimulator is tightly coupled with the proposed debug compilation pipeline and
updates to Surfer, ParametricSimulator is more generic and it cannot access Tywaves features.
Table 5.2 sums up the simulator settings available. Two interesting settings are WithFirtoolArgs
and WithTywavesWaveforms since they allow to customize the compilation of the simulated Verilog
coded and generate debug information with updated Tywaves features directly from the testbench.

Running a Tywaves simulation
To conclude the section, an example of usage of the API to enable simulation and a code comparison
with the existing EphemeralSimulator in ChiselSim and ChiselTest are provided. Both ChiselSim
and ChiselTest can be integrated into the ScalaTest framework, thus providing good IDE support for
launching unit tests.

36 5. Tywaves frontend

Setting Description SupportedSimulator

VcdTrace
Enable the VCD output optimizing out signals starting
with an underscore (_) in the final verilog Both

VcdTraceWithUnderscore Enable the VCD output (including ”underscored” signals) Both

SaveWorkdir
Save the workdir of ‘svsim‘ with a name based on the current
timestamp of the simulation Both

SaveWorkdirFile(name: String) Save the workdir with a specific name Both
NameTrace(name: String) Save the VCD trace with a custom name Both
WithFirtoolArgs(args: Seq[String]) Pass arguments to the CIRCT compiler under the simulation Both

WithTywavesWaveforms(runWaves: Boolean)
Enable the generation of extra debug information (to fully exploit
the tywaves project) and (optionally runWaves=true) launch the
waveform viewer directly once the simulation has been completed

Only TywavesSimulator

WithTywavesWaveformsGo(runWaves: Boolean)
Same as WithTywavesWaveforms but without blocking sbt if
runWaves is true Only TywavesSimulator

Table 5.2: Simulator settings for Parametric and Tywaves simulators

Listing 5.5, 5.6 and 5.7 reports specific code examples for testing Detect2Ones of Figure 2.6a
with the TywavesSimulator, EphemeralSimulator and ChiselTest. As can be noticed, the three
examples have a really similar code and they are all compatible with the same peek poke test function
of Listing 5.4. Therefore, switching between testing frameworks or simulators is trivial since, apart from
a few differences in the syntax, the code is almost identical.

// Define a test function using the PeekPoke API. It can be used both in ChiselSim
and ChiselTest without any changes

def runTest(fsm: DetectTwoOnes) = {
// Inputs and expected results
val inputs = Seq(0, 0, 1, 0, 1, 1, 0, 1, 1, 1)
val expected = Seq(0, 0, 0, 0, 0, 1, 0, 0, 1, 1)

// Reset and run
fsm.io.in.poke(0)
fsm.clock.step(1)
for (i <- inputs.indices) {

fsm.io.in.poke(inputs(i))
fsm.clock.step(1)
fsm.io.out.expect(expected(i))

}
}

Listing 5.4: The testbench function using peek/poke can be used both in ChiselSim and ChiselTest testbench

import tywaves.simulator._
import tywaves.simulator.simulatorSettings._
import TywavesSimulator._
// Scala test
class DetectTwoOnesTest extends AnyFunSpec with Matchers {

describe(”TywavesSimulator”) {
it(”runs DetectTwoOnes correctly”) {

simulate(
new DetectTwoOnes(),
settings = Seq(VcdTrace, WithTywavesWaveforms(true)), // List of simulator

settings
simName = ”runs_detect2ones”

) { dut => runTest(dut) }
}

}
}

Listing 5.5: Testing Detect2Ones in ChiselSim with TywavesSimulator to enable source-level waveform debugging

5.2. Tywaves-Chisel API 37

import chisel3.simulator.EphemeralSimulator._
// Scala test
class DetectTwoOnesTest extends AnyFunSpec with Matchers {

describe(”EphemeralSimulator”) {
it(”runs DetectTwoOnes correctly”) {

simulate(new DetectTwoOnes()) { fsm => runTest(fsm) }
}

}
}

Listing 5.6: Testing Detect2Ones in ChiselSim with EphemeralSimulator to simply run a test

import chiseltest._
// Scala test
class DetectTwoOnesTest extends AnyFunSpec with Matchers with ChiselScalatestTester

{
describe(”ChiselTest”) {

it(”runs DetectTwoOnes correctly”) {
test(new DetectTwoOnes())

.withAnnotations(Seq(WriteVcdAnnotation)) { fsm => runTest(fsm) }
}

}

}

Listing 5.7: Detect2Ones in ChiselTest to generate VCD traces (only at Verilog level)

Finally, the integration and compatibility with ScalaTest enables abstractions to launch and divide
tests in Scala test classes and test cases to further improve organization and readability. Moreover, this
guarantees the support of some IDE functionalities, i.e. running a single test or multiple by pressing
a button from the interface of IntelliJ IDEA [34] or using the command line sbt test or testOnly
options [3].

6 | Results
The updates in the Chisel and CIRCT repositories, the tywaves-rs and the Tywaves-Chisel API dis-
cussed in the previous chapters contribute to the development of Tywaves: a type-based waveform
viewer. Specifically, the implementation is intended to be used for testing real Chisel designs. There-
fore, this chapter contains an evaluation of whether and how the output reflects the source code repre-
sentation and a comparison with the standard visualization. However, since the main focus of a viewer
is to show signal values, the designs used as evaluation metrics do not need to implement any fancy
or complicated behavior. According to this, three tests are made:

• The Chisel constructs used in the presentation paper [11] are evaluated in Section 6.1.

• The Tydi representation is inspected using the example of Tydi-Chisel implementing a simple
pipeline in [23] in Section 6.2.

• A critical case of conflicting Verilog names.

6.1. Evaluating Chisel constructs
Chisel’s paper [11] presented the highlighting features when the language was introduced. The Data
Types Overview section in its repository [15] and the documentation of the official main page [16] have
introduced updates to the data types. Among them, the data types evaluated here are:

• Basic data types: UInt, SInt and Bool;

• Aggregate data type: Bundles and Vec also nested;

• Enumerations;

• Temporary signals or values.

6.1.1. Behavior of the design
Since themain purpose of this section is not to test the behavior of a specific circuit but rather to show the
difference in waveforms, we decided to reproduce a design that is easy to understand. A FIFO (First-In-
First-Out) implements a queue where elements that are pushed first are also the first to be processed.
In other words, a FIFO is an ordered memory block where elements are inserted (enqueue) on one side
and taken (dequeue) from the other side of the memory. Listing 6.1 implements the code of the module
retrieved from the book ”Digital Design with Chisel” [52, p. 159-171]. The circuit is simple; writing and
reading interface types are declared at the top of the code as WriterIO and ReaderIO, and a Buffer
module with these interfaces is created to store a single element, representing a memory block. Finally,
the top module BubbleFifo, implementing the same IO interface, instantiates and connects multiple
buffers.

Internally, each buffer preserves a state that tells whether it is full or empty, thus if the register can
be written or read. This state is consequently ”exposed” through the IO interfaces. As a consequence,
when a writing or reading operation is requested (io.enq.write and io.deq.read true), either
externally or from another connected buffer, the dataReg can be written or read when the state is
empty or full respectively.

Behaviorally, when a write operation is requested, the value is inserted in the first buffer and shifted
to the next every cycle. Insertion and shift operations can be executed if the buffers to be written are
empty. With this kind of FIFO, an output is available after depth cycles, where depth is the size of
the FIFO.

For completeness of the types coverage, the BubbleFifo is wrapped into another module shown
in Listing 6.2 (Collector) which implements the same IO interface and collects all the values inserted
in the FIFO in a 2D Chisel vector to cache the history of the FIFO.

38

6.1. Evaluating Chisel constructs 39

class WriterIO[T <: Data](private val gen: T) extends Bundle {
val write = Input(Bool())
val full = Output(Bool())
val din = Input(gen)

}

class ReaderIO[T <: Data](private val gen: T) extends Bundle {
val read = Input(Bool())
val empty = Output(Bool())
val dout = Output(gen)

}

// Store an element of the FIFO
class Buffer[T <: Data](gen: T) extends Module {

val io = IO(new Bundle {
val enq = new WriterIO(gen)
val deq = new ReaderIO(gen)

})

object StateBuff extends ChiselEnum { val EMPTY, FULL = Value }

val stateReg = RegInit(StateBuff.EMPTY) // Flag
val dataReg = Reg(gen) // Store the data of the buffer

when(stateReg === StateBuff.EMPTY) {
// Temporary signal
val nextState = Mux(io.enq.write, StateBuff.FULL, StateBuff.EMPTY)
when(io.enq.write) {

dataReg := io.enq.din
}
stateReg := nextState

}.elsewhen(stateReg === StateBuff.FULL) {
when(io.deq.read) {

stateReg := StateBuff.EMPTY
dataReg := DontCare // just to better see empty slots in the waveform

}
}.otherwise { /* There should not be an otherwise state */ }
io.enq.full := (stateReg === StateBuff.FULL)
io.deq.empty := (stateReg === StateBuff.EMPTY)
io.deq.dout := dataReg

}

class BubbleFifo[T <: Data](gen: T, depth: Int) extends Module {
val io = IO(new Bundle {

val enq = new WriterIO(gen)
val deq = new ReaderIO(gen)

})
val buffers = Array.fill(depth)(Module(new Buffer(gen)))
for (i <- 0 until depth - 1) {

buffers(i + 1).io.enq.din := buffers(i).io.deq.dout
buffers(i + 1).io.enq.write := ~buffers(i).io.deq.empty
buffers(i).io.deq.read := ~buffers(i + 1).io.enq.full

}
// Connect head and tail
io.enq <> buffers(0).io.enq
io.deq <> buffers(depth - 1).io.deq

}

Listing 6.1: BubbleFifo example from ”Digital Design with Chisel” [52, p. 159-171]

40 6. Results

class Collector[T <: Data](gen: T, depth: Int) extends Module {
val io = IO(new Bundle {
val enq = new WriterIO(gen)
val deq = new ReaderIO(gen)

})
val fifo = Module(new BubbleFifo(gen, depth))
io.enq <> fifo.io.enq
io.deq <> fifo.io.deq

val history = Reg(Vec(depth, Vec(depth, gen)))
val readCounter = new Bundle { val i, j = Counter(depth) }

when(io.enq.write && !io.enq.full) {
history(readCounter.i.value)(readCounter.j.value) := io.deq.dout
readCounter.j.inc()
when(readCounter.j.value === (depth - 1).U) {

readCounter.j.reset()
readCounter.i.inc()

}
}

}

Listing 6.2: Collector example implementing a 2D Chisel vector

6.1.2. Waveforms
The FIFO design example uses all the constructs listed at the beginning of this section. Specifically, it
uses both user-defined (WriterIO and ReaderIO) and anonymous bundles, a chisel enumeration to
represent the state of a buffer and a temporary value result of an operation (nextState). Moreover,
io anonymous bundle represents a nested structure in the code. As shown throughout the previous
chapters, this information is lost once Chisel is compiled into Verilog, either due to the compiler opti-
mizations or limitations of the classic HDL.

To evaluate the waveforms generated when Tywaves is enabled, this section compares the Tywaves
output of a testbench of the Collector example with the case when only VCD is loaded.

6.1.2.1. Basic types and aggregates
First of all, the basic and aggregate data types are analyzed in Figure 6.1. As can be seen, the Tywaves
waveforms (Figure 6.1b) keep the same appearance as the original code. The fields of the bundles in
io (blue signals) are grouped together as a tree, this way the structure as well as the field names match
the original representation. Moreover, as addressed by the research questions of Section 1.3, types
are successfully displayed next to the signal values. This helps to make a clear distinction between
types. For instance, io is marked as an AnonymousBundle while io.enq and io.deq are shown
as WriterIO and ReaderIO. Similarly, the red signals represent the 2-dimensional vector history
and reflect the indexed view.

On the other hand, Figure 6.1a reflects the target Verilog view without abstractions. In fact, no
Scala-type information is available, io.deq.empty is not shown as Bool and io.deq.dout is not
a UInt<10> to give an example. Fields of io and elements of history are represented as parallel
signals without any grouping. This view, not only does not correspond with the source code, but it also
may cause an explosion of signals, making the analyses of the values difficult especially with huge
vectors, i.e. in the case of importing a whole vector, each signal must be imported separately and
it cannot be collapsed. Whereas, Tywaves view allows to collapse and expands both struct-like and
vec-like aggregates. Finally, additional artifacts generated by the compiler and emitted in Verilog and
VCD are displayed when Tywaves is not enabled, Tywaves removes them from the view.

6.1.2.2. Hardware type and binding
Section 2.4 introduced a distinction between hardware and Scala type. In the waveforms, this is
shown as the binding of the type (Bind[Type]). To give an illustration, the full types IO[Bool]
and Reg[UInt<10>] from Figure 6.1b make a clear distinction also about the hardware type of a

6.1. Evaluating Chisel constructs 41

(a) Standard waveform output of anonymous bundle io and the 2D vector history

(b) Tywaves output of anonymous bundle io and the 2D vector history

Figure 6.1: Comparison of Tywaves and standard waveform outputs for the basic data types and aggregate types of
Collector (Listing 6.2)

signal. Such information is not available in a VCD file, either because of transformations and opti-
mizations performed by the CIRCT compiler or because the specific hardware type is missing from the
VCD format.

Sometimes, users assign temporary results to Scala val like shown in Listing 6.1 where nextState
is declared inside a when statement and assigned from an operation directly. This kind of operation is
translated to a signal in Verilog. As a consequence, it is shown using wire type. However, Chisel has
a different representation for this binding called OpResult. This difference is highlighted by Figure 6.2
and Figure 6.2b proves that Tywaves is able to retrieve and display both custom Scala data types,
hardware types, and custom bindings.

6.1.2.3. Enumerations
Finally, Figure 6.2 shows that Tywaves is able to successfully render the named variant of enumera-
tion. The figure reports the case of stateReg in BufferFifo which is of type StateBuff whose
values are EMPTY and FULL. When the raw values are displayed instead, as in Figure 6.2a, designers
must manually map the number to the actual state name by looking at the order of the states in the
ChiselEnum declaration. Although it does not seem a problem with small enums, this association may
not be trivial for large enumerations.

42 6. Results

(a) Standard waveform output of stateReg and nextState

(b) Tywaves output of stateReg and nextState

Figure 6.2: Comparison of Tywaves and standard waveform outputs for enumeration and temporary values in
BufferFifo (Listing 6.1)

6.2. Evaluating Tydi-Chisel example
As introduced by Section 2.1 and Section 2.4 types cover a crucial role in Tydi circuits and streams.
Figure 6.3 the waveform results (VCD only and Tywaves) of the PipelineExample implementing the
Spark code of Listing 2.1. From a comparison of the two outputs, it is clear that there is no actual
distinction between the two types of stream in the Reducer module, highlighted in blue and red in
Figure 6.3a. Although the difference is clearly visible from the Tydi-lang and Chisel code (full code in
Appendix A), the designer can get it only from the signal names.

In Tywaves instead, streams encapsulate the control signals and data buses in a single collapsable
namespace. This result is expected after the results of Section 6.1 since Tydi-Chisel implements
streams as extensions of Chisel bundles. All signals have their own type and the data bus of the stream
reports the actual type of the value exchanged over the stream. For instance, reducer.inStream.data
is represented as a NumberGroup, including its hierarchical view while in the classic waveforms, all the
signals contained in the stream are flattened, causing an explosion of parallel signals. Tywaves avoids
the issue of creating confusion by representing these signals in a grouped and formatted manner.

(a) Standard waveform output of a Tydi-Chisel stream

Figure 6.3: Comparison of Tywaves and standard waveform outputs for Tydi streams using the example retrieved from Listing 2.1
and Appendix A

6.3. Circuit with conflicting names in the final Verilog 43

(b) Tywaves output of a Tydi-Chisel stream

Figure 6.3: Comparison of Tywaves and standard waveform outputs for Tydi streams using the example retrieved from Listing 2.1
and Appendix A

6.3. Circuit with conflicting names in the final Verilog
Finally, one critical case of debugging Chisel circuits with standard waveforms is when the serialization
of source code names creates conflicting names in the output Verilog. For instance, this is something
that happens with the code of Listing 6.3.

class ConflictNames extends Module {
val io = IO(new Bundle {

val a : UInt = Input(UInt(4.W))
val a_ : UInt = Input(UInt(1.W))
val b : Bool = Output(Bool())

})

// Variables causing conflicts
val io_a = Wire(Bool())
val io_a_ = Wire(Bool())
val io_b = Wire(UInt(1.W))

io_a := true.B
io_a_ := true.B
io_b := 1.U

io.b := a > 2.U
}

Listing 6.3: Chisel example which leads to conflicting names when serialized to verilog

The Chisel compiler tries to serialize io.a and io_a with the same name but they conflict. There-
fore, it appends an additional underscore character at the end of the signal name, resulting in io_a
and io_a_. In the example, this later leads to a new conflict between io.a_ and io_a_ both tried
to be serialized with the same name. This process is repeated by the compiler until all the conflicts
are solved. Unfortunately, the user cannot know to what source variable the names io_a_, io_a__0,
io_a__1 and so on refer to and they may not know at all how the compiler works. Thus, the view
of standard waveforms in Figure 6.4a might create confusion while debugging. On the contrary, Fig-

44 6. Results

ure 6.4b shows the same waveforms with Tywaves and proves how it is able to reconstruct the source
view also in this case.

This example has been created on purpose to show that Tywaves solves this issue, but it is some-
thing that might happen in real-case scenarios. Since the source code allows to have those situations
a waveform viewer for Chisel should handle it.

(a) Standard waveform output of the ConflictNames example

(b) Tywaves output of the ConflictNames example

Figure 6.4: Comparison of Tywaves and standard waveform outputs in the case of conflicting names (Listing 6.3)

6.4. Drawbacks
The results above proved how Tywaves is able to reduce the gap with the Chisel source code by
keeping the same signal hierarchies, transmitting and showing the type information, properly displaying
enumeration variants and assessing custom hardware bindings. However, the frontend is not able yet
to display any type information for the module types type although this information is available to the
viewer and successfully propagated as explained in Chapter 4.

Furthermore, the viewer does not allow to load subfields of aggregates separately from the others.
This is due to the current limitation of Surfer which reads the values from the VCD input and asks
the selected translator for a custom rendering. As explained in Subsubsection 5.1.1.3 a VCD rewrite
has been implemented to permit the custom representation of signals. Updating Wellen would have
required additional changes, shifting the focus of the project from finding a way of propagating debug
information though the compilation pipeline.

Finally, even though Tydi streams have benefited from a type-based representation compared to the
classic waveforms, better abstractions could be used in Surfer to represent Tydi streams. For instance,
showing only what is passing over a stream without details about the control logic.

7 | Summary, conclusions and recommen-
dations

7.1. Summary
This thesis presents a novel kind of type-based waveform viewer to raise the abstraction level for
debugging modern HDLs with typed circuit components. A new debug format for reconstructing the
source level view and displaying custom data types is defined to reduce the gap between the source
code and waveforms with Chisel and Tydi-Chisel circuits.

In Chapter 2, we discussed the Tydi specification and its integration within Chisel for defining and
exchanging custom data types between components and over hardware streams. This led to the def-
inition of typed circuit components in the Chisel language, identifying modules and signals as typed
constructs. The simulation and compilation flow of Chisel is described and the current work for gen-
erating debug information through the CIRCT debug dialect and the HGLDD file format is presented.
Moreover, we gave a brief overview of how HGL/HDL simulators work and how they can be combined
with waveform viewers. On top of that, a generalized simulation flow for high-level hardware languages
is discussed. Finally, the end of the chapter presents previous and current developments in testing and
debugging tools for classic and modern hardware languages.

The implementation requirements to collect and elaborate type information, to pass the informa-
tion to a waveform viewer, and to keep compatibility with the Chisel simulation library were presented
in Chapter 3. We examined two different alternatives that could contribute to the final functionality.
The observations made in the chapter suggested that a solution integrated within the Chisel-CIRCT
compilation was preferable over an external tool to target maintainability, stability, and performance.
Therefore, the updated simulation flow is described and the Tywaves software architecture is outlined.

Integrating the proposed functionality within the compiler is challenging. It requires a deep under-
standing of the internal implementations and finding proper methods to exchange extra information.
Chapter 4 illustrates how this is achieved for Tywaves. The Chisel library is updated first to generate
type information from the source and associate it with the IR input of CIRCT through the FIRRTL anno-
tations. Then, the updates to CIRCT are implemented to integrate the new information in the existing
MLIR debug dialect and to emit a new file format, originating from HGLDD, to associate the source
type view with the final output traces. Throughout the chapter, an alternative to FIRRTL annotations
for future improvements is explored.

In Chapter 5, we discussed how Surfer is extended to handle the debug information emitted by
Chisel and CIRCT. The chapter also illustrates the tywaves-rs library which is created to decouple the
internal functionality of the viewer from the debug file. The library is built such that it can be extended
to support other input formats. The debug input is parsed and converted to an internal data structure
that is independent from any language. The end of the chapter presents a Chisel API both to improve
the current high-level simulators of ChiselSim and use the Tywaves functionality from Scala.

At the end of the thesis, the visualization results and comparisons with standard waveform visu-
alization are provided in Chapter 6. Two circuits of Chisel and Tydi-Chisel are tested to highlight the
differences with classic waveforms and the advantages introduced by Tywaves. Finally, a critical case
that creates conflicting names in the compiled HDL is tested. This last example illustrates how standard
waveforms are not suitable for modern HDLs and proves the robustness of Tywaves.

7.2. Conclusions
The main research question was formulated starting from the challenges addressed at the beginning
of the thesis and it asked: How can a type-based waveform viewer be effectively developed to raise
the abstraction level while debugging modern HDLs and HGLs, specifically reducing the gap between
the waveform visualization and source code?

45

46 7. Summary, conclusions and recommendations

To answer this main question, multiple subtopics have been defined:

1. How can types be associated with values output from simulations and the source language be
reconstructed from a compiled output not matching the source?
Subsection 4.1.1 and 4.1.4 accomplish the generation and collection of type information from
Chisel. This information is subsequently elaborated in CIRCT through an updated MLIR dialect
(debug dialect in Subsection 2.3.1) linking the compiled output with source types.

2. What are the necessary steps to improve multiple compilers and tools involved in simulation of
modern HDLs in order to create debug information for a waveform viewer?
This work presented updates in the simulation flow of Chisel (Section 3.3), targeting multiple
phases and tools of Chisel compilation. Both the Chisel library and CIRCT compiler were up-
dated to integrate new debug information into the existing debug dialect and HGLDD output. The
sections also show what exact information is exchanged between the tools to emit a debug for-
mat (Subsection 4.2.4) for a waveform viewer which contributed to improve the overall simulation
flow.

3. How can types be displayed in a graphical user interface and how to show the source view?
The translator mechanism offered by the Surfer waveform viewer allows associating custom data
types of signals with their values as explained in Section 5.1. The tywaves-rs library implemented
an interface with the HGLDD file format for the reconstruction of Chisel source view from Surfer,
including the types of the signals.

4. How should types and, more in general, debug information be generated, encoded, and propa-
gated throughout the compilation and simulation pipelines?
In Tywaves, type information is generated directly from the compilers used for Chisel. Then, it
is encoded in FIRRTL IR, subsequently passed to CIRCT and re-emitted in the form of a docu-
mented debug file (HGLDD) to conclude the debug compilation (Chapter 4). Encoding information
within the IR exchanged through the compilers ensured the communication of types within the
pipeline.

5. Due to the multiplicity and diversity of modern HDLs, can a method be found and defined to
support multiple languages or, possibly, to extend support easily by re-utilizing much of the in-
frastructure so as to have a greater impact in the open-source community?
In the work presented in this thesis, the integration within CIRCT and Surfer guarantees the op-
portunity for future extensions with other languages. Both tools are open-source and widely used
in the field, which contributes to having a bigger impact on the community. CIRCT implements the
MLIR and LLVM design methodologies to embed multiple sources in the same compiler infras-
tructure. Surfer is thought for extensibility and its community is open to support new languages.
Decoupling the various steps in the Tywaves pipeline enables easier integration of language
pipelines and file formats with re-usage of parts of the tool.

7.3. Recommendations for future work
To conclude, based on the work done in this thesis and the results obtained, the future work and
recommendations are presented below:

• Use intrinsics as a communication method to propagate type information between Chisel and
CIRCT to replace the FIRRTL annotations used. Intrinsics are a new and more robust method
to associate metadata in FIRRTL, more suitable with the MLIR operation mechanism. Moreover,
this would not require changes in the debug dialect and file format but only in the reading interface
which creates the debug operations.

• Create a new debug file format free from the code patterns and limitations of VCS-internals.
HGLDD uses some names and methods that overcomplicate the format in the general case.

• Extend and test the infrastructure of Tywaves to support other languages that are integrated into
CIRCT. As said, the whole backend can be re-used without changes with the exception that the
language should generate the same FIRRTL intermediate representation. Otherwise, in the case
of another IR, it could use the same updated debug dialect presented in this thesis.

7.3. Recommendations for future work 47

• A performance improvement for tywaves-rs can be achieved by providing a parallelized version
of the TyVcdBuilder. TyVcd already supports its employment in a multithreaded environment
since it uses internally Arc<RwLock<T>>.

• A second performance improvement consists of removing the VCD rewriter step. It would require
the integration of TyVcd within Wellen such that also the wave container in Surfer can access
the generic HDL view also when hierarchical signals are flattened by compilers.

• The Tywaves pipeline provides type information also about module definitions of chisel circuits,
following the type definition introduced in this thesis. A feature improvement consists of displaying
this type in the UI since it is not currently enabled.

• Automatically choosing how to render a value based on the type name could be an interesting
improvement. For instance, any type that may represent an integer like UInt, unsigned, long
could have an integer representation automatically selected. Another approach could be defining
an API that allows designers to select how to render a value, similarly to a toString() method
used in many software languages.

• Enabling switching between multiple representations in the viewer would contribute in simplifying
more the debugging experience. For instance, providing a functionality to switch from Chisel to
FIRRTL to Verilog representation from the same Surfer session.

• Finally, another future work point could consist of supporting specific visualization abstractions
for hardware streaming interfaces. This would help to make debugging Tydi streams simpler.

Bibliography
[1] GCC, the GNU Compiler Collection - GNU Project. URL https://gcc.gnu.org/. Accessed:

2024-07-25.

[2] GDB: The GNU Project Debugger. URL https://sourceware.org/gdb/. Accessed: 2024-
07-25.

[3] Sbt Reference Manual — Testing. URL https://www.scala-sbt.org/1.x/docs/
Testing.html. Accessed: 2024-07-21.

[4] WaveTrace VCD. URL https://www.wavetrace.io/. Accessed: 2024-07-25.

[5] Scala documentation: Scala reflection overview. URL https://docs.scala-lang.org/
overviews/reflection/overview.html. Accessed: 2024-07-25.

[6] IEEE Standard for SystemVerilog–Unified Hardware Design, Specification, and Verification Lan-
guage. IEEE Std 1800-2017 (Revision of IEEE Std 1800-2012), pages 653–673, February
2018. doi: 10.1109/IEEESTD.2018.8299595. URL https://ieeexplore.ieee.org/
document/8299595.

[7] Cocotb, 2024. URL https://www.cocotb.org/. Accessed: 2024-07-25.

[8] CHIPS Alliance. GITHUB chipsalliance/firrtl. CHIPS Alliance, December 2023. URL https:
//github.com/chipsalliance/firrtl. Accessed: 2024-07-25.

[9] CHIPS Alliance. Specification for the FIRRTL Language: Version 3.2.0, sep 2023. URL https://
github.com/chipsalliance/firrtl-spec/releases/latest/download/spec.pdf.

[10] Christiaan Baaij, Matthijs Kooijman, Jan Kuper, Arjan Boeijink, and Marco Gerards. C?aSH: Struc-
tural Descriptions of Synchronous Hardware Using Haskell. In 2010 13th Euromicro Conference
on Digital System Design: Architectures, Methods and Tools, pages 714–721, September 2010.
doi: 10.1109/DSD.2010.21. URL https://ieeexplore.ieee.org/document/5615430.

[11] Jonathan Bachrach, Huy Vo, Brian Richards, Yunsup Lee, Andrew Waterman, Rimas Avižienis,
John Wawrzynek, and Krste Asanović. Chisel: Constructing hardware in a Scala embedded lan-
guage. In Proceedings of the 49th Annual Design Automation Conference, pages 1216–1225,
San Francisco California, June 2012. ACM. ISBN 978-1-4503-1199-1. doi: 10.1145/2228360.
2228584. URL https://dl.acm.org/doi/10.1145/2228360.2228584.

[12] Anthony Bybell. Appendix F: Implementation of an Efficient Method for Digital Waveform Com-
pression. In GTKWave 3.3 Wave Analyzer User’s Guide, pages 137–145. November 2020. URL
https://gtkwave.sourceforge.net/gtkwave.pdf.

[13] Cadence. Virtuoso ADE Suite. URL https://www.cadence.com/en_US/home/tools/
custom-ic-analog-rf-design/circuit-design/virtuoso-ade-suite.html. Ac-
cessed: 2024-07-25.

[14] Chisel. Migrating from ChiselTest | Chisel, . URL https://www.chisel-lang.org/docs/
appendix/migrating-from-chiseltest. Accessed: 2024-06-30.

[15] Chisel. Home | Chisel, . URL https://www.chisel-lang.org/. Accessed: 2024-07-25.

[16] Chisel. Chipsalliance/chisel. CHIPS Alliance, January 2024. URL https://github.com/
chipsalliance/chisel. Accessed: 2024-07-25.

[17] Fred Chow. Intermediate Representation: The increasing significance of intermediate represen-
tations in compilers. Queue, 11(10):30–37, October 2013. ISSN 1542-7730. doi: 10.1145/
2542661.2544374. URL https://doi.org/10.1145/2542661.2544374.

48

https://gcc.gnu.org/
https://sourceware.org/gdb/
https://www.scala-sbt.org/1.x/docs/Testing.html
https://www.scala-sbt.org/1.x/docs/Testing.html
https://www.wavetrace.io/
https://docs.scala-lang.org/overviews/reflection/overview.html
https://docs.scala-lang.org/overviews/reflection/overview.html
https://ieeexplore.ieee.org/document/8299595
https://ieeexplore.ieee.org/document/8299595
https://www.cocotb.org/
https://github.com/chipsalliance/firrtl
https://github.com/chipsalliance/firrtl
https://github.com/chipsalliance/firrtl-spec/releases/latest/download/spec.pdf
https://github.com/chipsalliance/firrtl-spec/releases/latest/download/spec.pdf
https://ieeexplore.ieee.org/document/5615430
https://dl.acm.org/doi/10.1145/2228360.2228584
https://gtkwave.sourceforge.net/gtkwave.pdf
https://www.cadence.com/en_US/home/tools/custom-ic-analog-rf-design/circuit-design/virtuoso-ade-suite.html
https://www.cadence.com/en_US/home/tools/custom-ic-analog-rf-design/circuit-design/virtuoso-ade-suite.html
https://www.chisel-lang.org/docs/appendix/migrating-from-chiseltest
https://www.chisel-lang.org/docs/appendix/migrating-from-chiseltest
https://www.chisel-lang.org/
https://github.com/chipsalliance/chisel
https://github.com/chipsalliance/chisel
https://doi.org/10.1145/2542661.2544374

Bibliography 49

[18] CIRCT. Debug Dialect - CIRCT. URL https://circt.llvm.org/docs/Dialects/Debug/
#dbgscope-circtdebugscopeop.

[19] CIRCT. CIRCT - Circuit IR Compilers and Tools, 2024. URL https://circt.llvm.org/.
Accessed: 2024-07-25.

[20] CIRCT. ’firrtl’ Dialect - CIRCT, 2024. URL https://circt.llvm.org/docs/Dialects/
FIRRTL/. Accessed: 2024-07-25.

[21] Casper Cromjongh. Ccromjongh/Tydi-Chisel, December 2023. URL https://github.com/
ccromjongh/Tydi-Chisel. Accessed: 2024-06-30.

[22] Casper Cromjongh. Ccromjongh/tydi-lang-2-chisel, September 2023. URL https://github.
com/ccromjongh/tydi-lang-2-chisel.

[23] Casper Cromjongh, Yongding Tian, Peter Hofstee, and Zaid Al-Ars. Tydi-Chisel: Collaborative and
Interface-Driven Data-Streaming Accelerators. In 2023 IEEE Nordic Circuits and Systems Con-
ference (NorCAS), pages 1–7, Aalborg, Denmark, October 2023. IEEE. ISBN 9798350337570.
doi: 10.1109/NorCAS58970.2023.10305451. URL https://ieeexplore.ieee.org/
document/10305451/.

[24] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and F. Kenneth Zadeck. Effi-
ciently computing static single assignment form and the control dependence graph. ACM Trans.
Program. Lang. Syst., 13(4):451–490, October 1991. ISSN 0164-0925. doi: 10.1145/115372.
115320. URL https://doi.org/10.1145/115372.115320.

[25] Benjamin Darnell. Ben1152000/sootty, July 2024. URL https://github.com/Ben1152000/
sootty. Accessed: 2024-07-25.

[26] John Demme, Fabian Schuiki, Mike Urbach, and Andrew Young. Charting CIRCT: The
present and future landscape. URL https://llvm.org/devmtg/2021-11/slides/
2021-ChartingCIRC-TThePresentAndFutureLandscape.pdf.

[27] Andrew Dobis, Tjark Petersen, Hans Jakob Damsgaard, Kasper Juul Hesse Rasmussen, Enrico
Tolotto, Simon Thye Andersen, Richard Lin, and Martin Schoeberl. ChiselVerify: An Open-Source
Hardware Verification Library for Chisel and Scala. In 2021 IEEE Nordic Circuits and Systems
Conference (NorCAS), pages 1–7, Oslo, Norway, October 2021. IEEE. ISBN 978-1-66540-712-
0. doi: 10.1109/NorCAS53631.2021.9599869. URL https://ieeexplore.ieee.org/
document/9599869/.

[28] Andrew Dobis, Kevin Laeufer, Hans Jakob Damsgaard, Tjark Petersen, Kasper Juul Hesse
Rasmussen, Enrico Tolotto, Simon Thye Andersen, Richard Lin, and Martin Schoeberl. Ver-
ification of Chisel Hardware Designs with ChiselVerify. Microprocessors and Microsystems,
96:104737, February 2023. ISSN 0141-9331. doi: 10.1016/j.micpro.2022.104737. URL
https://www.sciencedirect.com/science/article/pii/S0141933122002666.

[29] FOSSi Foundation. Latch-Up 2024: April 19-21, 2024 in Cambridge, MA, USA. URL https:
//fossi-foundation.org/latch-up/2024. Accessed: 2024-07-17.

[30] Tristan Gingold. GHDLWaveform (GHW) - 4.0.0-dev. URL https://ghdl.github.io/ghdl/
ghw/index.html. Accessed: 2024-07-25.

[31] GTKWave. GTKWave documentation. URL https://gtkwave.github.io/gtkwave/
index.html. Accessed: 2024-07-25.

[32] John Hennessy and David Patterson. A new golden age for computer architecture: Domain-
specific hardware/software co-design, enhanced security, open instruction sets, and agile chip
development. In 2018 ACM/IEEE 45th Annual International Symposium on Computer Archi-
tecture (ISCA), pages 27–29, June 2018. doi: 10.1109/ISCA.2018.00011. URL https:
//ieeexplore.ieee.org/document/8416813.

https://circt.llvm.org/docs/Dialects/Debug/#dbgscope-circtdebugscopeop
https://circt.llvm.org/docs/Dialects/Debug/#dbgscope-circtdebugscopeop
https://circt.llvm.org/
https://circt.llvm.org/docs/Dialects/FIRRTL/
https://circt.llvm.org/docs/Dialects/FIRRTL/
https://github.com/ccromjongh/Tydi-Chisel
https://github.com/ccromjongh/Tydi-Chisel
https://github.com/ccromjongh/tydi-lang-2-chisel
https://github.com/ccromjongh/tydi-lang-2-chisel
https://ieeexplore.ieee.org/document/10305451/
https://ieeexplore.ieee.org/document/10305451/
https://doi.org/10.1145/115372.115320
https://github.com/Ben1152000/sootty
https://github.com/Ben1152000/sootty
https://llvm.org/devmtg/2021-11/slides/2021-ChartingCIRC-TThePresentAndFutureLandscape.pdf
https://llvm.org/devmtg/2021-11/slides/2021-ChartingCIRC-TThePresentAndFutureLandscape.pdf
https://ieeexplore.ieee.org/document/9599869/
https://ieeexplore.ieee.org/document/9599869/
https://www.sciencedirect.com/science/article/pii/S0141933122002666
https://fossi-foundation.org/latch-up/2024
https://fossi-foundation.org/latch-up/2024
https://ghdl.github.io/ghdl/ghw/index.html
https://ghdl.github.io/ghdl/ghw/index.html
https://gtkwave.github.io/gtkwave/index.html
https://gtkwave.github.io/gtkwave/index.html
https://ieeexplore.ieee.org/document/8416813
https://ieeexplore.ieee.org/document/8416813

50 Bibliography

[33] Adam Izraelevitz, Jack Koenig, Patrick Li, Richard Lin, Angie Wang, Albert Magyar, Donggyu
Kim, Colin Schmidt, Chick Markley, Jim Lawson, and Jonathan Bachrach. Reusability is FIRRTL
ground: Hardware construction languages, compiler frameworks, and transformations. In 2017
IEEE/ACM International Conference on Computer-Aided Design (ICCAD), pages 209–216, Irvine,
CA, November 2017. IEEE. ISBN 978-1-5386-3093-8. doi: 10.1109/ICCAD.2017.8203780.
URL http://ieeexplore.ieee.org/document/8203780/.

[34] JetBrains. IntelliJ IDEA – the Leading Java and Kotlin IDE. URL https://www.jetbrains.
com/idea/. Accessed: 2024-07-25.

[35] Nachiket Kapre and Samuel Bayliss. Survey of domain-specific languages for FPGA computing. In
2016 26th International Conference on Field Programmable Logic and Applications (FPL), pages
1–12, Lausanne, Switzerland, August 2016. IEEE. ISBN 978-2-8399-1844-2. doi: 10.1109/FPL.
2016.7577380. URL http://ieeexplore.ieee.org/document/7577380/.

[36] Lucas Klemmer and Daniel Große. WAVING Goodbye to Manual Waveform Analysis in HDL
Design With WAL. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, pages 1–1, 2024. ISSN 1937-4151. doi: 10.1109/TCAD.2024.3387312. URL
https://ieeexplore.ieee.org/document/10496480.

[37] Jack Koenig. CCC22 - Chisel Breakdown 3, . URL https://docs.google.com/
presentation/d/1gMtABxBEDFbCFXN_-dPyvycNAyFROZKwk-HMcnxfTnU.

[38] Jack Koenig. Latch-Up Conference presentation of ”Chisel 6 and beyond” - Jack Koenig (2024) -
YouTube, . URL https://youtu.be/A5iz6mnPNW4?si=wudOacyveSVYMv9U.

[39] Dexter C. Kozen. Depth-First and Breadth-First Search, pages 19–24. Springer New York, New
York, NY, 1992. ISBN 978-1-4612-4400-4. doi: 10.1007/978-1-4612-4400-4_4. URL https:
//doi.org/10.1007/978-1-4612-4400-4_4.

[40] Kevin Laeufer. Ucb-bar/chiseltest. UC Berkeley Architecture Research, June 2024. URL https:
//github.com/ucb-bar/chiseltest.

[41] Kevin Laeufer and Oscar Gustafsson. ekiwi/wellen: v0.9.14, July 2024. URL https://doi.
org/10.5281/zenodo.12774825.

[42] C. Lattner and V. Adve. LLVM: A compilation framework for lifelong program analysis & trans-
formation. In International Symposium on Code Generation and Optimization, 2004. CGO 2004.,
pages 75–86, March 2004. doi: 10.1109/CGO.2004.1281665. URL https://ieeexplore.
ieee.org/document/1281665.

[43] Chris Lattner, Mehdi Amini, Uday Bondhugula, Albert Cohen, Andy Davis, Jacques Pienaar,
River Riddle, Tatiana Shpeisman, Nicolas Vasilache, and Oleksandr Zinenko. MLIR: Scal-
ing Compiler Infrastructure for Domain Specific Computation. In 2021 IEEE/ACM International
Symposium on Code Generation and Optimization (CGO), pages 2–14, February 2021. doi:
10.1109/CGO51591.2021.9370308. URL https://ieeexplore.ieee.org/abstract/
document/9370308.

[44] Andrew Lenharth and Chris Lattner. CIRCT: Lifting hardware development out of the 20th cen-
tury. LLVM Developer Meeting, 2021. URL https://llvm.org/devmtg/2021-11/slides/
2021-CIRCT-LiftingHardwareDevOutOfThe20thCentury.pdf.

[45] LLVM. TableGen Overview— LLVM 19.0.0git documentation. URL https://llvm.org/docs/
TableGen/. Accessed: 2024-06-30.

[46] Lramseyer. Lramseyer/vaporview, July 2024. URL https://github.com/Lramseyer/
vaporview. Accessed: 2024-07-25.

[47] Dina Mahmoud. Hardware Acceleration. In Valentin Mulder, Alain Mermoud, Vincent Lenders,
and Bernhard Tellenbach, editors, Trends in Data Protection and Encryption Technologies, pages
109–114. Springer Nature Switzerland, Cham, 2023. ISBN 978-3-031-33386-6. doi: 10.1007/
978-3-031-33386-6_20. URL https://doi.org/10.1007/978-3-031-33386-6_20.

http://ieeexplore.ieee.org/document/8203780/
https://www.jetbrains.com/idea/
https://www.jetbrains.com/idea/
http://ieeexplore.ieee.org/document/7577380/
https://ieeexplore.ieee.org/document/10496480
https://docs.google.com/presentation/d/1gMtABxBEDFbCFXN_-dPyvycNAyFROZKwk-HMcnxfTnU
https://docs.google.com/presentation/d/1gMtABxBEDFbCFXN_-dPyvycNAyFROZKwk-HMcnxfTnU
https://youtu.be/A5iz6mnPNW4?si=wudOacyveSVYMv9U
https://doi.org/10.1007/978-1-4612-4400-4_4
https://doi.org/10.1007/978-1-4612-4400-4_4
https://github.com/ucb-bar/chiseltest
https://github.com/ucb-bar/chiseltest
https://doi.org/10.5281/zenodo.12774825
https://doi.org/10.5281/zenodo.12774825
https://ieeexplore.ieee.org/document/1281665
https://ieeexplore.ieee.org/document/1281665
https://ieeexplore.ieee.org/abstract/document/9370308
https://ieeexplore.ieee.org/abstract/document/9370308
https://llvm.org/devmtg/2021-11/slides/2021-CIRCT-LiftingHardwareDevOutOfThe20thCentury.pdf
https://llvm.org/devmtg/2021-11/slides/2021-CIRCT-LiftingHardwareDevOutOfThe20thCentury.pdf
https://llvm.org/docs/TableGen/
https://llvm.org/docs/TableGen/
https://github.com/Lramseyer/vaporview
https://github.com/Lramseyer/vaporview
https://doi.org/10.1007/978-3-031-33386-6_20

Bibliography 51

[48] Raffaele Meloni. Rameloni/tywaves-chisel-demo: A repository that implements Tywaves: En-
abling a type-based waveform debugging for Chisel and Tydi-Chisel. Mapping from Chisel level
code to values dumped by simulators is now possible thanks to Tywaves! URL https:
//github.com/rameloni/tywaves-chisel-demo.

[49] Johan Peltenburg, Jeroen Van Straten, Matthijs Brobbel, Zaid Al-Ars, and H. Peter Hofstee. Tydi:
An Open Specification for Complex Data Structures Over Hardware Streams. IEEE Micro, 40(4):
120–130, July 2020. ISSN 0272-1732, 1937-4143. doi: 10.1109/MM.2020.2996373. URL
https://ieeexplore.ieee.org/document/9098092/.

[50] pieter3d. Pieter3d/simview, February 2024. URL https://github.com/pieter3d/simview.
Accessed: 2024-07-25.

[51] Matthijs A Reukers, Yongding Tian, Zaid Al-Ars, Peter Hofstee, Matthijs Brobbel, Johan Pel-
tenburg, and Jeroen van Straten. An Intermediate Representation for Composable Typed Stream-
ing Dataflow Designs.

[52] Martin Schoeberl. ChselBook: Digital Design with Chisel. URL http://www.imm.dtu.dk/
~masca/chisel-book.pdf. Accessed: 2024-06-20.

[53] Ofer Shacham, Omid Azizi, Megan Wachs, Wajahat Qadeer, Zain Asgar, Kyle Kelley, John
Stevenson, Stephen Richardson, Mark Horowitz, Benjamin Lee, Alexandre Solomatnikov, and
Amin Firoozshahian. Rethinking Digital Design: Why Design Must Change. Micro, IEEE, 30:
9–24, January 2011. doi: 10.1109/MM.2010.81.

[54] Siemens. ModelSim HDL simulator. URL https://eda.sw.siemens.com/en-US/ic/
modelsim/. Accessed: 2024-07-25.

[55] Frans Skarman and Oscar Gustafsson. Spade: An HDL Inspired by Modern Software Lan-
guages. In 2022 32nd International Conference on Field-Programmable Logic and Applica-
tions (FPL), pages 454–455, August 2022. doi: 10.1109/FPL57034.2022.00075. URL
https://ieeexplore.ieee.org/document/10035162.

[56] Frans Skarman, Lucas Klemmer, Kevin Laeufer, and Oscar Gustafsson. Surfer 0.2.0. Zenodo,
June 2024. URL https://doi.org/10.5281/zenodo.11447243.

[57] Wilson Snyder. Veripool: Verilator. URL https://www.veripool.org/verilator/. Ac-
cessed: 2024-07-25.

[58] Emanuele Del Sozzo, Davide Conficconi, Alberto Zeni, Mirko Salaris, Donatella Sciuto, and
Marco D. Santambrogio. Pushing the Level of Abstraction of Digital System Design: A Survey on
How to Program FPGAs. ACM Computing Surveys, 55(5):106:1–106:48, December 2022. ISSN
0360-0300. doi: 10.1145/3532989. URL https://dl.acm.org/doi/10.1145/3532989.

[59] Synopsys. VCS Functional Verification Solution | Synopsys Verification, . URL https://www.
synopsys.com/verification/simulation/vcs.html. Accessed: 2024-07-25.

[60] Synopsys. Verdi Automated Debug System | Synopsys Verification, . URL https://www.
synopsys.com/verification/debug/verdi.html. Accessed: 2024-07-25.

[61] Yongding Tian, Matthijs Reukers, Zaid Al-Ars, Peter Hofstee, Matthijs Brobbel, Johan Peltenburg,
and Jeroen Straten. Tydi-lang: A Language for Typed Streaming Hardware. In Proceedings of
the SC ’23 Workshops of The International Conference on High Performance Computing, Net-
work, Storage, and Analysis, pages 521–529, Denver CO USA, November 2023. ACM. ISBN
9798400707858. doi: 10.1145/3624062.3624539. URL https://dl.acm.org/doi/10.
1145/3624062.3624539.

[62] Lenny Truong and Pat Hanrahan. A Golden Age of Hardware Description Languages: Apply-
ing Programming Language Techniques to Improve Design Productivity. LIPIcs, Volume 136,
SNAPL 2019, 136:7:1–7:21, 2019. ISSN 1868-8969. doi: 10.4230/LIPICS.SNAPL.2019.
7. URL https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SNAPL.
2019.7.

https://github.com/rameloni/tywaves-chisel-demo
https://github.com/rameloni/tywaves-chisel-demo
https://ieeexplore.ieee.org/document/9098092/
https://github.com/pieter3d/simview
http://www.imm.dtu.dk/~masca/chisel-book.pdf
http://www.imm.dtu.dk/~masca/chisel-book.pdf
https://eda.sw.siemens.com/en-US/ic/modelsim/
https://eda.sw.siemens.com/en-US/ic/modelsim/
https://ieeexplore.ieee.org/document/10035162
https://doi.org/10.5281/zenodo.11447243
https://www.veripool.org/verilator/
https://dl.acm.org/doi/10.1145/3532989
https://www.synopsys.com/verification/simulation/vcs.html
https://www.synopsys.com/verification/simulation/vcs.html
https://www.synopsys.com/verification/debug/verdi.html
https://www.synopsys.com/verification/debug/verdi.html
https://dl.acm.org/doi/10.1145/3624062.3624539
https://dl.acm.org/doi/10.1145/3624062.3624539
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SNAPL.2019.7
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SNAPL.2019.7

52 Bibliography

[63] twoentartian. Twoentartian/tydi-lang-2, November 2023. URL https://github.com/
twoentartian/tydi-lang-2. Accessed: 2024-06-30.

[64] Xilinx. Vivado Overview. URL https://www.xilinx.com/products/design-tools/
vivado.html. Accessed: 2024-07-25.

[65] Keyi Zhang. Hardware Generator Debugger. URL https://hgdb.dev/. Accessed: 2024-06-
20.

[66] Keyi Zhang, Zain Asgar, and Mark Horowitz. Bringing source-level debugging frameworks to hard-
ware generators. In Proceedings of the 59th ACM/IEEE Design Automation Conference, pages
1171–1176, San Francisco California, July 2022. ACM. ISBN 978-1-4503-9142-9. doi: 10.1145/
3489517.3530603. URL https://dl.acm.org/doi/10.1145/3489517.3530603.

https://github.com/twoentartian/tydi-lang-2
https://github.com/twoentartian/tydi-lang-2
https://www.xilinx.com/products/design-tools/vivado.html
https://www.xilinx.com/products/design-tools/vivado.html
https://hgdb.dev/
https://dl.acm.org/doi/10.1145/3489517.3530603

A | Tydi-lang to Tydi-Chisel: a one-to-one
translation

Tydi-lang is a domain-specific language (DSL) designed to reduce disparities between hardware and
software implementations. It provides a syntax to express custom data types similarly to software
development. For instance, software structs can be defined with full flexibility as Tydi Group and
integers can be defined as UInt_t = Bit(32), SInt_t = Bit(32) or long = Bit(64) and so
on. This allows to make the translation from a software program to hardware more straightforward for
developers, especially software developers. These latter do not have the same broad knowledge and
experience about classic HDLs as hardware engineers. Thus, Tydi-lang abstractions become essential
to facilitate developers’ initial approach and push Tydi between those high-level languages to speed
up the accelerators’ implementations and, as a consequence, to combat the performance limitations of
software programs [32].

This appendix reports an example of such a case, provided by Cromjongh et al. in [23]. As shown
by Figure 2.1 and the Tydi-Chisel toolchain flow in [23, Figure 3], software specifications and data types
can be easily defined through the Tydi-lang constructs (Listing A.1 and A.2). Then, the compiler and
transpiler transform the Tydi code into Chisel boilerplate code with all data types and connections al-
ready defined in Scala. The Chisel data type hierarchy [37, p. 37] ensures enough flexibility to translate
exactly the Tydi types previously defined as shown in Listing A.3. At this point, the user makes use
of the Tydi-Chisel library and the Chisel language and pipeline to design and test the behavior of the
accelerator or, more generically the circuit.

As can be observed by the listings, each data type in tydi-lang defined from the original spark code
is translated one-to-one with a Chisel data type. Serving as an example, UInt_64_t = Bit(64)
is defined in Chisel as class UInt_64_t extends BitsEl(64.W). This exact mapping further
justifies the choice of using the Chisel testing infrastructure and the fact that no extra information from
Tydi-lang is needed to implement Tywaves.

df.filter(col(”value”) >= 0).agg(
min(”value”).as(”min_value”),
max(”value”).as(”max_value”),
sum(”value”).as(”sum_value”),
avg(”value”).as(”avg_value”)

)

Listing A.1: Example of Spark code. From Tydi-Chisel: Collaborative and Interface-Driven Data-Streaming Accelerators [23,
Listing 1]

package pack0;
UInt_64_t = Bit(64); // UInt<64>
SInt_64_t = Bit(64); // SInt<64>

Group NumberGroup {
value: SInt_64_t;
time: UInt_64_t;

}

Group Stats {
average: UInt_64_t;
sum: UInt_64_t;
max: UInt_64_t;
min: UInt_64_t;

}

53

54 A. Tydi-lang to Tydi-Chisel: a one-to-one translation

NumberGroup_stream = Stream(NumberGroup, t=1.0, d=1, c=1);
Stats_stream = Stream(Stats, t=1.0, d=1, c=1);

package pack1;
use pack0;

streamlet NumsFilter_interface {
std_out : pack0.NumberGroup_stream out;
std_in : pack0.NumberGroup_stream in;

}

impl NonNegativeFilter of NumsFilter_interface {}

streamlet NumsToStats_interface {
std_out : pack0.Stats_stream out;
std_in : pack0.NumberGroup_stream in;

}

impl Reducer of NumsToStats_interface {}

impl PipelineExample of NumsToStats_interface {
instance filter(NonNegativeFilter);
instance reducer(Reducer);

filter.std_out => reducer.std_in;
reducer.std_out => self.std_out;
self.std_in => filter.std_in;

}

Listing A.2: Corresponding Tydi-lang code. From Tydi-Chisel: Collaborative and Interface-Driven Data-Streaming Accelera-
tors [23, Listing 2]

package Pack1
import nl.tudelft.tydi_chisel._
import chisel3._
import chisel3.experimental.ExtModule

object MyTypes {
def UInt_64_t: UInt = UInt(64.W)
assert(this.UInt_64_t.getWidth == 64)
def SInt_64_t: SInt = SInt(64.W)
assert(this.SInt_64_t.getWidth == 64)

}

class UInt_64_t extends BitsEl(64.W)
class SInt_64_t extends BitsEl(64.W)

class NumberGroup extends Group {
val time = MyTypes.UInt_64_t
val value = MyTypes.SInt_64_t

}

class Stats extends Group {
val average = MyTypes.UInt_64_t
val max = MyTypes.UInt_64_t
val min = MyTypes.UInt_64_t
val sum = MyTypes.UInt_64_t

}

55

class Stats_stream extends PhysicalStreamDetailed(e=new Stats, n=1, d=1, c=1,
r=false, u=Null())

object Stats_stream {
def apply(): Stats_stream = Wire(new Stats_stream())

}

class NumberGroup_stream extends PhysicalStreamDetailed(e=new NumberGroup, n=1,
d=1, c=1, r=false, u=Null())

object NumberGroup_stream {
def apply(): NumberGroup_stream = Wire(new NumberGroup_stream())

}

class NumsFilter_interface extends TydiModule {
protected val inStream: PhysicalStreamDetailed[NumberGroup, Null] =

NumberGroup_stream().flip
val in: PhysicalStream = inStream.toPhysical

protected val outStream: PhysicalStreamDetailed[NumberGroup, Null] =
NumberGroup_stream()

val out: PhysicalStream = outStream.toPhysical
}

class NonNegativeFilter extends NumsFilter_interface {
inStream := DontCare
outStream := DontCare

}

class NumsToStats_interface extends TydiModule {
protected val inStream: PhysicalStreamDetailed[NumberGroup, Null] =

NumberGroup_stream().flip
val in: PhysicalStream = inStream.toPhysical

protected val outStream: PhysicalStreamDetailed[Stats, Null] = Stats_stream()
val out: PhysicalStream = outStream.toPhysical

}

class Reducer extends NumsToStats_interface {
inStream := DontCare
outStream := DontCare

}

class PipelineExample extends NumsToStats_interface {
// Fixme: Remove the following line if this impl. contains logic. If it just

interconnects, remove this comment.
inStream := DontCare
// Fixme: Remove the following line if this impl. contains logic. If it just

interconnects, remove this comment.
outStream := DontCare

// Modules
private val filter = Module(new NonNegativeFilter)
private val reducer = Module(new Reducer)
// Connections
reducer.in := filter.out
out := reducer.out
filter.in := in

}

Listing A.3: Corresponding Tydi-Chisel boilerplate code

B | EphemeralSimulator: The default
high-level simulator in ChiselSim

ChiselSim is the new simulation front-end for Chisel. Its adoption has been recommended since
Chisel 5, when the development team switched from the Scala FIRRTL Compiler to the CIRCT MLIR
compiler [14]. As depicted in Figure 2.4, ChiselSim interfaces with low-level RTL simulators and is
composed of two components which can be combined to create a complete testing framework similar
to ChiselTest [40]: svsim and PeekPoke API. Currently, the Chisel library implements one high-level
simulator, called EphemeralSimulator, providing basic functionality of the PeekPoke API without
any control of the underlying CIRCT compiler.
Both svsim and backend simulators, such as Verilator, support emitting trace files, but users cannot
exploit this feature through the EphemeralSimulator provided. Furthermore, CIRCT integrates dif-
ferent options, enabling different grades of optimizations and allowing the emission of some debug
information linking firrtl and Verilog as introduced in Section 2.3.
Listing B.1 reports an example testbench code using the EphemeralSimulator. The simulate
method does not accept any parameter, preventing any possibility for customization of the simulation.
This is confirmed by Listing B.2 which illustrates the signature of simulate1.

import chisel3._
import chisel3.simulator.EphemeralSimulator._
import org.scalatest.flatspec.AnyFlatSpec

class MyModuleSpec extends AnyFlatSpec {
behavior of ”MyModule”
it should ”do something” in {
simulate(new MyModule) { c =>

c.io.in.poke(0.U)
c.clock.step()
c.io.out.expect(0.U)
c.io.in.poke(42.U)
c.clock.step()
c.io.out.expect(42.U)
println(”Last output value : ” + c.io.out.peek().litValue)

}
}

}

Listing B.1: ChiselSim testbench using the EphemeralSimulator

def simulate[T <: RawModule](module: => T)(body: (T) => Unit): Unit = {
makeSimulator.simulate(module)({ module => body(module.wrapped) }).result

}

Listing B.2: simulate method implemented by EphemeralSimulator in Chisel 6.4.0

Allowing the emission of signal traces is an essential feature for using open-source waveform viewers in
ChiselSim. In addition, abstractions for accessing the options of the underlying compiler are necessary
for supporting the extension of generating and dumping extra debug information.

1EphemeralSimulator in Chisel 6.4.0 https://github.com/chipsalliance/chisel/blob/v6.4.0/src/main/
scala/chisel3/simulator/EphemeralSimulator.scala

56

https://github.com/chipsalliance/chisel/blob/v6.4.0/src/main/scala/chisel3/simulator/EphemeralSimulator.scala
https://github.com/chipsalliance/chisel/blob/v6.4.0/src/main/scala/chisel3/simulator/EphemeralSimulator.scala

C | TableGen of debug dialect updated
def ScopeOp : DebugOp<”scope”> {

let summary = ”Define a scope for debug values”;
let arguments = (ins

StrAttr:$instanceName,
StrAttr:$moduleName,
Optional<ScopeType>:$scope

);
let results = (outs ScopeType:$result);
let assemblyFormat = [{

$instanceName `,` $moduleName (`scope` $scope^)? attr-dict
}];

}

def VariableOp : DebugOp<”variable”, [AttrSizedOperandSegments]> {
let summary = ”A named value to be captured in debug info”;

let arguments = (ins
StrAttr:$name,
AnyType:$value,
OptionalAttr<StrAttr>:$typeName,
OptionalAttr<ArrayAttr>:$params,
Optional<EnumDefType>:$enumDef,
Optional<ScopeType>:$scope

);
let assemblyFormat = [{

$name `,` $value (`scope` $scope^)? attr-dict (`enumDef` $enumDef^)?
`:` type($value)

}];
}

def SubFieldOp : DebugOp<”subfield”> {
let summary = ”A named value to be captured in debug info which is a

subfield of an aggregate”;
let arguments = (ins

StrAttr:$name,
AnyType:$value,
OptionalAttr<StrAttr>:$typeName,
OptionalAttr<ArrayAttr>:$params,
Optional<EnumDefType>:$enumDef

);
let results = (outs SubFieldType:$result);
let assemblyFormat = [{

$name `,` $value attr-dict (`enumDef` $enumDef^)? `:` type($value)
}];

}

def StructOp : DebugOp<”struct”, [
Pure,
PredOpTrait<”number of fields and names match”,

CPred<”$fields.size() == $names.size()”>>
]> {

57

58 C. TableGen of debug dialect updated

let summary = ”Aggregate values into a struct”;
let arguments = (ins Variadic<AnyType>:$fields, StrArrayAttr:$names);
let results = (outs StructType:$result);
let hasCustomAssemblyFormat = 1;

}

def ArrayOp : DebugOp<”array”, [Pure, SameTypeOperands]> {
let summary = ”Aggregate values into an array”;
let arguments = (ins Variadic<AnyType>:$elements);
let results = (outs ArrayType:$result);
let hasCustomAssemblyFormat = 1;

}

def ModuleInfoOp : DebugOp<”moduleinfo”> {
let summary = ”Define extra debug information for a module”;
let arguments = (ins

StrAttr:$typeName,
OptionalAttr<ArrayAttr>:$params

);
let assemblyFormat = [{ attr-dict }];

}

def EnumDefOp : DebugOp<”enumdef”> {
let summary = ”Define the value variants of an enumeration”;
let arguments = (ins

StrAttr:$enumTypeName,
I16Attr:$id,
DictionaryAttr:$variantsMap,
Optional<ScopeType>:$scope

);
let results = (outs EnumDefType:$result);
let assemblyFormat = [{
$enumTypeName `,` `id` $id `,` $variantsMap (`scope` $scope^)? attr-dict

}];
}

Listing C.1: Updated TableGen code for the debug dialect to handle new high-level type information for debugging

D | UML diagrams
D.1. Sequence diagram of Chisel side

Figure D.1: Sequence diagram of the full call stack

59

60 D. UML diagrams

D.2. Sequence diagram of Surfer side

Figure D.2: Sequence diagram of Surfer

D.3. Class diagram of Hgldd 61

D.3. Class diagram of Hgldd

Figure D.3: Class diagram of the Hgldd data structure in Tywaves-rs

62 D. UML diagrams

D.4. Class diagram of TyVcd

Figure D.4: Class diagram of the TyVcd data structure in Tywaves-rs

	Introduction
	Context
	Challenges
	Problem statement and research question
	Contributions
	Outline

	Background
	Tydi, Tydi-Chisel and Tydi-lang
	Chisel and simulation flow
	CIRCT
	CIRCT debug dialect
	Integration of CIRCT in ChiselSim

	Typed hardware circuits
	Example of a typed-circuit in Chisel
	Differences between Chisel and FIRRTL types

	HDL/HGL simulators and waveform viewers
	Related work
	Hardware Generator Debugger
	Surfer for the Spade language
	Synopsys Verdi HGL viewer
	Conclusion

	Generating waveforms for typed Chisel circuits
	Implementation requirements
	Implementation alternatives
	Updated simulation flow

	Tywaves backend
	Collecting and passing the type information to CIRCT through FIRRTL
	Updated phases to generate source language type information
	Tywaves Annotation: encoding types in FIRRTL
	An alternative to the FIRRTL annotation
	Details about the collection of the type information

	Associate original source code info with dumped traces
	Consuming the Tywaves annotations in CIRCT
	Updated debug dialect
	Materializing the debug dialect
	Emitting a debug file for external programs

	Tywaves frontend
	Extending Surfer
	Tywaves-rs: bridging Tywaves information in Rust
	Tywaves translator

	Tywaves-Chisel API

	Results
	Evaluating Chisel constructs
	Behavior of the design
	Waveforms

	Evaluating Tydi-Chisel example
	Circuit with conflicting names in the final Verilog
	Drawbacks

	Summary, conclusions and recommendations
	Summary
	Conclusions
	Recommendations for future work

	Bibliography
	Tydi-lang to Tydi-Chisel: a one-to-one translation
	EphemeralSimulator: The default high-level simulator in ChiselSim
	TableGen of debug dialect updated
	UML diagrams
	Sequence diagram of Chisel side
	Sequence diagram of Surfer side
	Class diagram of Hgldd
	Class diagram of TyVcd

