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Abstract: Large Multimodal Models are emerging general Al models capable of processing and
analyzing diverse data streams, including text, imagery, and sequential data. This paper explores
the possibility of exploiting multimodality to develop more interpretable Al-based predictive tools
for the water sector, with a first application for sewer defect detection from CCTV imagery. To
this aim, we test the zero-shot generalization performance of three generalist large language-vision
models for binary sewer defect detection on a subset of the SewerML dataset. We compared the
LMDMs against a state-of-the-art unimodal Deep Learning approach which has been trained and
validated on >1 million SewerML images. Unsurprisingly, the chosen benchmark showcases the
best performances, with an overall F1 Score of 0.80. Nonetheless, OpenAl GPT4-V demonstrates
relatively good performances with an overall F1 Score of 0.61, displaying equal or better results
than the benchmark for some defect classes. Furthermore, GPT4-V often provides text descriptions
aligned with the provided prediction, accurately describing the rationale behind a certain decision.
Similarly, GPT4-V displays interesting emerging behaviors for trustworthiness, such as refusing to
classify images that are too blurred or unclear. Despite the significantly lower performance from the
open-source models CogVLM and LLaVA, some preliminary successes suggest good potential for
enhancement through fine-tuning, agentic workflows, or retrieval-augmented generation.

Keywords: artificial intelligence; asset management; generative Al; sewer defect classification

1. Introduction

Urban drainage systems are large integrated infrastructures often comprising sev-
eral hundreds of kilometers of underground piped networks. To ensure the continued
functioning of these systems, a good understanding of the functional state of the assets is
necessary. Traditionally, this is performed through manual CCTV inspection, though this
method is labor-intensive and heavily relies on human interpretation [1]. In recent years,
Deep Learning (DL) models have become increasingly popular to automate the analysis
of CCTV images [2]. However, these models yield outputs that are not easily explainable,
limiting their practical utility. Post-hoc methods for explainability do not yet yield signif-
icant improvements. Advances in Generative Al, specifically Large Multimodal Models
(LMMs), have unlocked the potential for interpreting complex semantic and visual data,
an unexplored capability in urban water management. This research investigates whether
LLMs can help overcome the challenges of semantic interpretation for automatic sewer
defect identification [3], mitigating the lack of interpretability of traditional DL models by
delivering accurate predictions coupled with human-intelligible explanations.

2. Methods and Materials

Vision-language models are LLMs that seamlessly integrate visual information with
linguistic context. In their simplest form, these models typically utilize distinct pre-trained
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foundational models for vision and language. The integration is then achieved by align-
ing the two modalities through a trainable projection matrix, which transforms visual
representations into language embeddings, enabling subsequent fine-tuning of the lan-
guage component to accommodate the combined vision-language data [4]. In this work,
we compared the performance of the proprietary OpenAl GPT4-V and two open-source
alternatives, LLaVA-v1.6-13B [4] and CogVLM-17B [5]. The LMMs were prompted to
function as virtual sewer technicians and asked to analyze CCTV images and summarize
their observations before making a classification. The prompt required the assessment of
various aspects of the pipes, including material and condition. Basic information on the
five types of defects was also provided. The LLMs were tested against the binary Deep
Learning classifier in [6].

We carried out an experiment using the SewerML open-access dataset [7]. We created a
dataset by semi-randomly sampling 200 images from the SewerML validation dataset. The
images represented normal conditions (No Defects, ND) and different types of defects (D):
cracks, breaks, and collapses (RB), Surface Damage (OB), Production Error (PF), Roots (RO),
and Deformations (DE). The subset features 100 images with defects (20 per defect class)
and 100 without. We chose the dataset to represent frequently occurring and impactful
defects, whilst maintaining an analyzable spread of defect types and considering the cost
associated with running the LMMs. We assessed model performances with a thorough
set of binary classification metrics, including Accuracy, Recall, Precision, and F1 Score.
We also analyzed the paired descriptions yielded by the LMMs with their predictions. It
is important to highlight that the used benchmark was trained and validated on >1 M
SewerML images, including those used here for testing. On the other hand, the LLMs were
assessed in a zero-shot generalization fashion, that is, they were given no prior exposure to
the specific domain of sewer images and no specialized training on SewerML.

3. Results and Discussion

Table 1 shows that the benchmark outperforms all tested LMMSs. Nevertheless, GPT4-V
showcases good detection capabilities, by reaching an overall F1 Score of 0.61. Furthermore,
it achieves equal or better performances than the benchmark for defect classes RB and RO,
as illustrated in Table 2. On the other hand, all LMMs struggled particularly with DE and
OB, which are typically more nuanced defects to classify. When provided with a basic
prompt containing limited information on the task and no information on the defects to
identify, the performance of GPT4-V decreases, although they are still superior to those of
the open-source alternatives.

These findings suggest that accurate prompting improves zero-shot generalization,
but the capabilities of the underlying LMM play a more decisive role. The gap is also
evident when comparing the text provided by the LLMs to justify predictions. GPT4-V
provides more accurate descriptions, generally aligned with the predictions. One of the key
examples of this can be seen in Figure 1a, which shows a clear crack, which was identified
by all the LMMs but missed by the benchmark model. On the other hand, CogVLM is more
keen on refusing to predict images that are hard to predict or of poor quality, leading to
a higher number of non-predicted images (Table 1). However, this tendency sometimes
contradicts related classifications, as shown in Figure 1b, where it labels an image as too
blurry, yet still proceeds to identify a defect.

Table 1. Performance metrics of tested models for the identification of observed defects.

Model Accuracy Recall Precision  F1 Score Not Predicted
Xie et al. [6] 0.81 0.75 0.85 0.80 0
GPT4-V 0.65 0.54 0.70 0.61 3
GPT4-V (basic prompt) 0.61 0.49 0.65 0.56 2
CogVLM 0.60 0.40 0.69 0.50 16

LLaVA 0.52 0.26 0.53 0.35 0




Eng. Proc. 2024, 69, 158

3o0f4

(a) RB defect
Xie et al., 2019 (ND), GPT4-V (D)

GPT4-V description: The image

Table 2. F1 Score performance per defect type. The best performance per defect type is highlighted
in bold.

. GPT4-V
Defect Type  Xie et al. [6] GPT4-V (Basic Prompt) CogVLM LLaVA

DE 0.75 0.42 0.33 0.29 0.33

OB 0.92 0.40 0.57 0.20 0.18

PF 0.75 0.62 0.57 0.57 0.18

RB 0.95 0.95 0.86 0.86 0.67

RO 0.89 0.91 0.82 0.69 0.57
NoDefect 0.93 0.87 0.85 0.90 0.87
Overall 0.80 0.61 0.56 0.50 0.35

(b) No defect, blurry image (c) No defect (d) RO Defect

Xie et al,, 2019 (D), CogVLM (D) Xie et al,, 2019 (ND), GPT4-V (D) Xie et al.,, 2019 (ND), GPT4-V(D)

CogVLM description: The image ap-  GPT4-V description: The image GPT4-V description: The image

shows the interior surface of a sewer pears to be a blurred and unclear  shows an interior view of a sewer  shows the interior of a sewer pipe

pipe with a visible longitudinal

due to the lack of clarity and light- pipe with a small amount of water at with moderate lighting conditions

crack running across the frame and ing conditions. It is difficult to make the bottom [...]. There is a notable [...]. There is an object that resembles

[...] surface appears to be concrete. out specific details or defects in the presence of root infiltration near the  an insect on the right side of the
There is no visible presence of water, image. Therefore, I would classify center of the pipe, where a cluster of pipe. There are visible cracks on the

roots, or blockage around the crack this image as DEFECTIVE. roots is visible hanging from the top top right side of the pipe, where a

area. The crack itself is a clear sign

and extending downward, partially  piece of the pipe wall has broken

of structural integrity compromise. obstructing the passage. [...] away, creating an irregular edge and

an opening [...].

Figure 1. An overview of various images that were assessed by the LMMs, showing the data and the
classifications according to the benchmark model in [6], GPT4-V and CogVLM. (a) shows a crack that
was identified correctly by most of the LMMSs but not by the reference AI model, (b) shows a blurry
image that was correctly identified as such by CogVLM, but still classified (c,d) to show examples of
CCTV images that resulted in LMM hallucinations.

One of the drawbacks of zero-shot LLM generalization is their propensity to halluci-
nate, which is very prominent for LLaVA, but it is also observed for GPT4-V and CogVLM.
For example, the image in Figure 1c was classified as a (RO) defect by GPT4, which identi-
fies the lateral inflow as roots. Showing similar hallucinations, Figure 1d was reported as
containing “large insect on the right side” instead of the visible roots. This hallucinating
behavior, although inherent in LLMs and LMMs, is exacerbated here as none of the LMMs
have seen this type of imagery during their training/fine-tuning process. No trend in
hallucination extent and frequency could be observed in the dataset.

We did not perform extensive prompt optimization, aiming to show the relative
baseline power of LMMs for sewer classification. Fine-tuning the models on domain-
specific data, retrieval augmented generation, and advanced prompting techniques will
likely result in improved performances and reduced hallucinations. We do anticipate that
the performance of the LMMs can be significantly improved beyond the performance of
the non-specialist models we present here.
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4. Outlook

This work showed the performance assessment of three generalist Large Multimodal
Models (LMMs) prompted to assess if a CCTV image of a sewer pipe included defects and
if so, to classify that defect. Although the LMMs were overall outperformed by a state-of-
the-art CNN model used for benchmarking, their relative performance was encouraging
for future optimization. In future work, the LMMs should be fine-tuned with a build-
for-purpose curated dataset, based on CCTV imaging to improve the performance and
minimize hallucination in the output. Alternatively, retrieval-augmented generation can
be considered to further optimize the performance potential of LMMs for sewer defect
identification. Additionally, the LMM linguistic output can be automatically interpreted
and corrected via an additional Al agent.
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