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Abstract —
To make interactions between humans and robots safer, soft robots
may offer a solution. The autonomous closed loop control of these
robots so far, however, is not accurate enough to perform specific
tasks as handovers. The purpose of this paper is to propose a control
algorithm that can make the control of soft robots accurate enough
for human-to-robot handovers. The main focus within this research
was on the state estimation and the Jacobian based control. Due to
gravity, the internal system state is not an accurate representation of
the actual system behavior. The optimized pose estimation solves
this problem. In order to test the proposed algorithm, the complete
control architecture has been implemented including the object and
end-effector detection. Experiments have shown that the algorithm
works with different step sizes within the Jacobian based control,
consistently resulting in a successful handover. A second experiment
has shown that the handovers are still successful and faster when a
human guides the robot toward the right position. Lastly, a possible
use case has been shown.

soft robotics | autonomous control | visual servoing | handovers | Helix

1. Introduction

Robots have been around for a while and these robots operate
in all kind of disciplines, including agriculture, automotive,
logistics and healthcare where both simple tasks (within a
controlled environment) and challenging tasks (with lots of
uncertainties) are performed [14]. This research focuses on a
complex task: Automated human-robot handovers.

These handovers could be done by ‘traditional’ rigid robots,
like the KUKA robots [10] and the TIAGo robot of PAL
robotics [12]. These robots are composed of connected rigid
segments. Due to the rigid segments, these robots generally do
not deform (significantly) under loads. They can be modeled
relatively easy and (partly because of this) controlled with high
accuracy [13].

There are, however, also downsides to these rigid robots.
First of all, these rigid robots have limited efficiency when
the encountered situations are unknown or uncertain, with
unknown environments and possible external disturbances
from real world interactions. This comes forth due to the
lack of compliance. Besides this, the rigidness of the robot
can make it unsafe for humans to interact with it. This risk
can be reduced by separating robots and humans as much as
possible, but it will inevitably be present during human-robot
interactions like handovers [13].

This is where soft robots, inspired by the compliance and
softness of animals, come into play. The vast majority of
animals are soft bodied and these soft structures enables them
to move effectively in complex natural environments [2].
Soft robotics try to mimic this behavior in a certain way;
creating compliant structures to adaptively perform operations
in interactions within unknown environments [11]. This has
two main advantages:

• Soft robots can handle environmental impacts. Due to the
high compliance, the soft structures will elastically deform

rather than break or plastically deform. This has been
shown on physical systems [4, 5].

• Soft robots by design can safely interact with humans.
This is a big advantage over rigid robots.

Based on this idea, a lot of different soft robots have been
designed. One important distinguish that can be made, is the
difference between articulated soft robots and continuum soft
robots.

Articulated soft robots are quite similar to vertebrate muscle-
skeletal system [1], with elastic components, making them much
more compliant than regular rigid robots. Although these are
soft systems due to the incorporated elastic components, these
systems still include rigid elements. The modeling and control
of such articulated soft robots is very similar to the modeling
and control of (multibody) rigid systems.

Continuum soft robots, on the other hand, are based
on invertebrates. As a consequence, these continuum soft
robots (or continuous robots) are generally much more
compliant as they in essence don’t have any rigid parts.
Where rigid robots and articulated soft robots do have a
certain number of degrees of freedom, a continuous soft
robot has in theory infinite degrees of freedom, as they
can bend at any point. In a certain way it can therefore
be seen as a continuum of joints. This makes the model-
ing and control significantly different than that of rigid systems.

It has been noticed that automated handovers have been done
with rigid robot arms, but not yet with continuum soft robot
arms. There is, to the knowledge of the author, currently no
research on soft robots used for automated handover tasks.
This is probably not done because handovers are a complex
task incorporating accurate computer vision, accurate control
and the interacting with a human which lead to an uncer-
tain environment. It is, however, important to research this
topic because soft robots are, due to their compliance, gener-
ally very safe for interaction with humans, therefore they can
make human-robot collaborative tasks safer and possibly more
pleasant for the interacting human.

As a result, this research is based on a single research
question:

How can a control-architecture for soft robots combined with
a visual servoing setup be developed to perform automated
handovers?

This question reflect the urge for improving the overall algo-
rithm for the autonomous control of soft robotic system, by not
only incorporating the whole integrated system (from camera
setup and computer vision algorithm to accurate control), but
also enhancing the control accuracy, making it accurate enough
for the handovers to take place.

Within this research, the main focus will be on the model
and the control algorithm, rather than the computer vision for
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the detection of the end-effector and object to handover.
The background information will be provided in section 2.

The method will be discussed in section 3, followed by the
results (section 4) and the discussion (section 5). Section 6
contains the conclusion. After the references four appendices
are attached.

2. Background: Model

This section contains the background information concerning
the used model. There are various different modeling methods
for soft robots (including continuum mechanics models, discrete
material models and surrogate models). This research focuses
on the kinematic piecewise constant curvature model, as it has
a relatively low amount of degrees of freedom compared to
the other models, while it still provides a sufficiently accurate
representation of the actual system. Research also shows that
this model can be used for different kinds of soft continuum
robots, including tendon driven systems [8].

2.1. Constant curvature model.

The constant curvature model assumes that the robot will
create a constant moment along the arm, and as a consequence
this leads to a constant curvature. Although this approximation
is not accurate, it can lead to satisfying results when used on
actual robots [7, 9]. One of the main advantages is the Degrees
of Freedom (DOF). As can be seen in Figure 1b, the model can
be described using only 3 parameters. These can be the angle
ϕ that specifies the plane and direction of the curvature, the
robot length l (or L) and segment curvature angle θ. There
are multiple variations in choosing the state. One could also
use the curvature radius r = l

θ
or the curvature κ = θ

l
.

Fig. 1. Schematic overview of the piecewise constant curvature model. Figure is
derived from [3].

The actuator space is different for every soft robot. For
tendon driven robots this actuator space can include the various
tendon lengths or the motor torques while for a pneumatic
robot, the applied pressures are important in order to describe
the robot state. Each robot that is modeled with the constant
curvature model, will have its own specific transformation q =
g−1(.) towards the configuration space. In this configuration
space, the robot kinematics can be described with variables that
can be used for every constant curvature model. These include
the robot length l, segment curvature κ and the curvature-
plane rotation ϕ. In that case the state is specified using arc
geometry [15].

The configuration space can be used to find the state in the
task space (using X = f(q)), which is usually (but not neces-
sarily) the 3D position in Cartesian space. This transformation
is no longer dependent on the actual robot properties, but
only on the kinematic properties described in the configuration
space.

2.1.1. Piecewise constant curvature.

When the robot consists of multiple segment, or is actuated on
various points, it can be useful to model the robot as multiple
segments with each its own constant curvature. This leads to
the piece-wise constant curvature model (PCC). As a single
constant curvature model can be expressed with 3 parameters in
the configuration space, each added segment will consequently
lead to 3 additional parameters, as indicated in the top image
of Figure 1a.

2.1.2. Mathematical representation.

When using the constant curvature model, one can construct
a homogeneous transform from the local frame at the end of
a segment with respect to the local frame at the start of the
segment. With multiple segments, these can be multiplied as
the end frame of the previous segment is the starting frame
for the next. The rotation matrix is shown in Equation 1, and
the translation vector in Equation 2. In these equations, Cx

represents cos(x) and Sx represents sin (x).

Ri
i−1 =

[
C2

ϕi
(Cθi − 1) + 1 Sϕi Cϕi (Cθi − 1) Cϕi Sθi

Sϕi Cϕi (Cθi − 1) + 1 S2
ϕi

(Cθi − 1) Sϕi Sθi

−Cϕi Sθi −Sϕi Sθi Cθi

]
(1)

ti
i−1 = l

θ

[
Cϕi (1− Cθi ) Sϕi (1− Cθi ) Sθi

]T (2)

It should be noted that the the angle θ can be expressed as
a function of the curvature κ and the length l, so θ = κl.

The obtained transform is accurate for constant curvature
robots, but for systems without curvature (θ = κl = 0) the
transformation will become singular. To prevent this, the
coordinates can be remapped to other coordinates, using ∆x,i,
∆y,i and the length l, as was proposed by Della Santina et al.
[3]. These describe the rotation along the relative x and y axis
and relate to the previously introduces parameters ϕi and θi

as in Equation 3.

ϕi(qi) = arccos(∆x,i

∆i
) = arcsin(∆y,i

∆i
)

θi(qi) = ∆i

si

∆2
i = ∆2

x,i + ∆2
y,i

(3)

When this is used, one obtains the rotation matrix and
translation vector as in Equation 4 and 5. This configuration
has no singularities with a straight segment and therefore this
representation was used to model the system.

Ri
i−1=


( ∆xi

∆i
)2(C ∆i

di

− 1) + 1 ∆yi∆xi

∆2
i

(C ∆i
di

− 1) ∆xi
∆i

S ∆i
di

∆yi∆xi

∆2
i

(C ∆i
di

− 1) + 1 ( ∆yi

∆i
)2(C ∆i

di

− 1) ∆yi

∆i
S ∆i

di

−∆xi
∆i

S ∆i
di

−∆yi

∆i
S ∆i

di

C ∆i
di


(4)

ti
i−1 = l

θ

[
lidi( ∆xi

∆2
i

)(1− C ∆i
di

) lidi( ∆yi

∆2
i

)(1− C ∆i
di

) lidi
∆i

S ∆i
di

]T

(5)
By multiplying the homogeneous transforms (T i

i−1) of the
consecutive segments, the transform from the base to the end-
effector (T N

0 ) can be computed as in Equation 6.

T N
O = T 1

OT 2
1 · · ·T N

N−1 (6)
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Here the state can be written as in Equation 7.

q =
[
∆x,1 ∆y,1 l1 · · · ∆x,N ∆y,N lN

]T (7)

3. Method

In this section the methods used during this research will be
discussed. First, the used robot will be discussed, followed by
the computer vision system. After that, the control architecture
is presented. Lastly, the experiments that have been performed
are discussed.

3.1. Continuum soft robot: the Helix.

During the experiments, the Helix robot was used [6]. A photo
of the Helix is shown in Figure 2. This continuum soft robot
consists of three actuated segments, followed by a gripper.
Due to its design, it has a big workspace, which is useful for
interacting tasks. As there are three segments, the system is
modeled with nine state variables.

Fig. 2. The Helix robot. The system contains 3 actuated segments. The two lower
segments are themselves built up of 2 similar segments.

Each segment is actuated independently, using Bowden
cables. Actuation is done by 3 tendons evenly distributed
around the segment (with an angle of 120 degrees between the
tendons). The gripper is also tendon driven and can simply
be opened and closed by pulling and letting go of this single
tendon. The transform from the system state q to the tendon
lengths lt is a nonlinear function g(.) based on the known
kinematic model of the Helix system, where lt = g(q).

Before the experiments start, the arm is calibrated. Af-
ter this calibration process all three segments are hanging
down, without any angle and the initial lengths as described
in the model. The first/top segment has a length of 0.12
meter, the other two have a length of 0.24 meter. This re-
sults in an initial state X0 = [0, 0, 0.12, 0, 0, 0.24, 0, 0, 0.24].
Consequently, the initial length vector can be described as
lt,calib = [0.12, 0.12, 0.12, 0.24, 0.24, 0.24, 0.24, 0.24, 0.24], as
each segment has 3 tendons. The motor positions are saved as
calibration values.

The nine driving motors for the arm motion can be con-
trolled by publishing the desired change of the tendon lengths
compared to the calibrated lengths (∆lt = lt,desired − lt,calib)
on a ROS-topic. The Raspberry Pi 5 inside the Helix system
uses these values together with the motor radii and calibration
values to find the new motor position.

3.1.1. System limits.

It is important to stress out that the system has some limits
in its workspace. These are needed as too much tension on the
tendons can lead to a system failure and no tension will lead
to an unresponsive system.

The limits are represented in the (6D) DL-space (with state
qDL), as shown in Equation 8.

qDL =
[
d1 l1 d2 l2 d3 l3

]T (8)

Whereas the state q includes the variables dxi and dyi, the
DL-space uses di =

√
∆2

x,i + ∆2
y,i, as indicated in Equation 9.

qDL =
√

Aq,qDL q2

Aq,qDL =


1 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 0 1


(9)

As dxi and dyi both represent an angle along their own
unit vector direction, and this direction is chosen arbitrarily,
limiting these parameters independently does not make sense.
As di represents the magnitude of the total angle, this is a
logical variable to limit the systems curvature.

By staying in the limits, as indicated in Equation 10, the
tendons will not become too short or too long, preventing both
a system failure as well as segments without enough tension.
The used limits are shown in Equation 11.

Lsys,LB ≤ qDL ≤ Lsys,UB (10)
0

0.08
0

0.16
0

0.16

 ≤


d1
l1
d2
l2
d3
l3

 ≤


π
4

0.14
π
2

0.26
π
2

0.26

 (11)

3.2. Camera system.
The camera system is used to detect items of interest, which
are twofold:

• A green colored ball. This is the object to grasp.

• The end-effector pose. This will be used for estimating
the pose of the full robot arm as well as for the control of
the arm to the desired location.

The camera system includes various different elements. It
includes the camera placement, distortion correction of the sep-
arate cameras and calibration. Moreover, this system describes
how the ball and end-effector are detected and how the info is
processed to get an estimation of the current position of the
objects.

3.2.1. Camera placement.

The first part of the camera system is the placement of the
cameras. For the system, 2 cameras (Logitech Brio) are used.
There are many different options on how the cameras can be
placed. A few things should be noted.

The two cameras are used together to get an 3D position
estimation of the ball and end-effector. If the two cameras are
places close to each other, the depth estimation can become
more uncertain. A small baseline, leads to small disparity
(as baseline and disparity are proportional), and as depth
is inversely proportional to disparity, the depth estimation
becomes more uncertain. Therefore, it is desired to place the
camera’s far apart from each other.
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Another aspect that needs to be considered for the camera
placement is occlusion. As the robot arm moves, it is possi-
ble that the arm blocks the view of one camera, which as a
consequence can not detect the ball. On the other end, it is
also possible that the object to grasp or the human hand is
blocking the view, making it not possible for the camera to
detect the pose of the arm.

Different camera placements can be chosen to minimize the
occlusion and maximize the (depth) accuracy of the detected
element. Within this research it was was chosen to use two
cameras beside each other. They were positioned behind the
arm, at approximately the hight of the gripper. Figure 3 shows
the setup. As a result the cameras can capture both the object
in the hand as well as the end-effector. The exact placement
of the cameras is not needed to be known, as the camera
system is calibrated. This makes it easier to modify the camera
placement if needed.

Fig. 3. The setup. Picture from behind.

3.2.2. Duo camera calibration.

After the camera images are undistorted, the stereo camera
setup is calibrated to find the 3D position based on the pixel
positions in the camera frames. This is executed with a cali-
bration box, placed at a specific position. 6 corners, of which
the 3D position is known in a specified world frame are se-
lected in the two camera images. Using ’cv2.solvePnP()’ the
transform from the world frame to the camera frame can be
found. Together with the intrinsic camera matrix this leads to
a transform from the world frame to the pixel frame. Using
these transforms it is also possible to find the 3D location of a
point based on two pixel values. The first step is to represent
both pixel values in their own camera pixel frame as a line
in the 3D world frame space. This can be done by using the
obtained transforms. Secondly, the intersection of these two
lines can be used as the 3D location. As it is generally not the
case that these two lines meet at one point, the algorithm finds
the point that is closest to both lines. It is assumed that this
point is the location of the object of interest.

3.2.3. Ball detection.

As mentioned, the object that will be used for the handover
is a green colored ball. The color was chosen to make the
detection easier. The ball detection consists of a few steps.
First, the image is blurred, which smoothens the image. As a
result, adjacent pixels will more likely be classified the same in
the next step. In this next step, the images are filtered to only
select pixels in which the HSV values are within some bounds.
The bounds have been chosen so the green color of the ball is
within these bounds.

(a)

(b)

Fig. 4. A typical image of how the cameras detect the ball and end-effector. Image (a)
shows the result of the left camera, image (b) the right camera. The detected ball is
indicated with the red dot at the center and a yellow circle around it. The dark blue
indicates the middle of the end of the third segment and the yellow point indicate the
gripper position.

The resulting image is a black and white mask. Next, the
contours of this image are found and used to find the minimum
enclosing circle. This leads to the most likely place and radius
(in pixels) of the detected ball based on the single image. Using
the algorithm discussed in section 3.2.2 this leads to a 3D
position estimation of the ball. Figure 4 shows an example of
how the ball is detected in the separate images.

3.2.4. End-effector detection.

The end-effector is detected using Aruco markers. A ring of
Aruco markers (20mm) is places around the end of the third
segment, denoted as the wrist. The cameras detect both the
position and the direction of these markers. The detected
position of these markers is shifted along their own z-axis to
get an estimation of the middle point of the wrist. In addition,
these positions can be shifted along their own y-axis to get an
estimation of the gripper location, which is located 0.1 meters
apart from the wrist.

It is important to note that for the detection of the Aruco
markers only one camera is needed, as the size of the markers
is known. Both cameras are, however, still used to detect the
markers. The detected position of the wrist is based on the
average of all separately estimated locations. The direction
estimation is simply the average of the detected directions.
Together with the position of the wrist, this direction is used
to get the estimation of the position of the gripper. Figure 4
shows an example of how the Aruco markers are detected and
how this leads to an estimation of the gripper position.

The measured gripper pose Xmeas can therefore be described
as in Equation 12, where the first and second part of the pose
represent the 3D wrist location and the 3D gripper location,
respectively. These two locations must stick to Equation 13,
as the gripper has a fixed length.

Xmeas =
[
xwrist ywrist zwrist xgrip ygrip zgrip

]T (12)

∥∥∥∥∥
[

xwrist
ywrist
zwrist

]
−

[
xgrip
ygrip
zgrip

]∥∥∥∥∥
2

= dgripper (13)
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3.2.5. Filter.

So far, we have described how the ball and end-effector are
detected. It should however be noted that it can occur that
one or both of these are not detected at a time instance. On
the other hand there will always be some uncertainty in the
position estimations.

Therefore, a Kalman filter has been added for the position
estimation of the ball, wrist and vector from the wrist to the
gripper. In these three filters, an new incoming measurements
(Xnew) is filtered based on the estimated measurement uncer-
tainty (R) and the model uncertainty (Q), in order to get an
unbiased estimation of the state X with minimum variance
P . This is obtained by using the Kalman gain Kkalman. The
Kalman filter contains two updates:

• During the prediction update, a model is used to predict
the next state X based on the current state. As no specific
movement is expected from the ball nor from the gripper,
the prediction of the next state in this research is just the
same as the current state. The variance (P ) of the state,
however, will slightly increase as the system can move
between the current step and the next, and therefore the
uncertainty of the state increases. The prediction update
is shown in Equation 14, where Q represents the model
uncertainty.

X ← X

P ← P + Q
(14)

• The second update is the measurement update. When a
new measurement Xnew comes in, the state X and vari-
ance P are updated based on the Kalman gain Kkalman.
This gain specifies the weight given to both the current
state estimation X and the new measurement Xnew based
on their uncertainties (P and R, respectively). The calcu-
lation of the measurement update is shown in Equation
15.

Kkalman ← P (P + R)−1

X ← X + Kkalman(Xnew −X)
P ← P −KkalmanP

(15)

The position estimations that come out of the Kalman filter
(for the ball, wrist and gripper) are used in the rest of the
algorithm. For future references, this Kalman filter is denoted
as filter.

3.3. Control architecture.
Apart from the detection, the control architecture is build up
with two main components:

• A state estimation and update

• A Jacobian based control

Both parts are crucial for the system, as will be discussed
in this section.

3.3.1. State estimation.

With the cameras and object detection in place, the next step
is to estimate the actual pose of the robot arm. This is not
needed in the general robotics case. For many rigid robots the
state and endpoint position can be accurately obtained if the
actuator inputs are known.

This is however not generally the case with soft robots. If
all tendons are under tension, the lengths of these tendons can
give a fairly good indication of the system state and the gripper
pose, using forward kinematics. The gripper pose X can simply
be computed with X = f(q), where f represents the forward
kinematics of the system, discussed in Section 2.1.2.

(a) (b)

Fig. 5. Illustrations of the difference between the desired (model-based) state and
the actual state of the system. (a) shows a measurement, where the black graph
illustrates the model based system and the blue dots represents the measured data
points based on a motion capture system. The dots (connected by the linear dashed
lines) represent the segment links and the curve shows the PCC model. (b) shows a
illustrative example of this type of behavior on the Helix. The arm that is supported by
the hand is in an configuration where all tendons are under tension (and therefore a
representation of the internal model), whereas the other arm shows how the system
deforms without support. In this configuration not all tendons are under tension.

Due to gravity, however, the arms will tend to fall down.
As the tendons can only exert tensile forces and no compres-
sive forces, the arm will fall down at the locations where the
tendons are under compressive load. In these cases the for-
ward kinematics is no longer an adequate representation of the
system.

When the internal system state qsys is then still used, the
gripper pose based on the model Xsys and the actual (measured)
pose Xmeas will be completely different. This is shown in Figure
5 with both a graph and an illustration with the Helix. Using
the model-based pose in a Jacobian based control approach
will not be effective as the Jacobian will be evaluated at a pose
that is different from the actual pose.

With this paper we propose that this problem can be solved
by adding an additional state representation which is based
on the observed gripper pose. With this method the system
can be described with two states. qsys represents the internal
system state. This is used in the model to compute the tendon
lengths. Consequently, this state representation should adhere
to the system limits as described in Section 3.1.1.

The second state, qest represents the estimation of the sys-
tem state based on how the arm is observed by the cameras.
When this state is used in the forward kinematics, the resulting
estimated gripper pose f(qest,n) = Xest,n should be close to
the actual gripper pose.

The pose estimation is done based on a weighted and con-
straint squared error optimization function as shown in Equa-
tion 16. The function is adressed as the state optimization
function (SOF) for later references. The following optimization
is done at every timestep n:

SOF: min
qest,n

∥Apose,upd(qest,n − qsys,n)∥2

s.t. ∥f(qest,n)−Xmeas,n∥2 ≤ ϵpose,bound

(16)

As can be seen, the optimization function find the state qest,n

which minimizes the difference between the system state qsys,n

and the state estimation qest,n. Apose,upd is a (9x9) scaling
matrix, indicating how important it is for different parts of the
state estimation to be close to the system state. Within this
research this was chosen to be a diagonal matrix. As the higher
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segments have more weight hanging on them, their curvatures
are more influenced by the gravity. As a consequence their
weight in Apose,upd is lower than for the lower segments.

The constraint makes sure that the gripper pose of the
resulting state is close to the estimated actual gripper pose,
where ϵpose,bound represents the bound on the difference be-
tween the measured gripper pose Xmeas,n and the estimation
of the gripper pose based on the froward kinematics f(qest,n).

The found state estimation qest,n will be used within the
controller. This is discussed in the next section.

3.3.2. Jacobian based control.

Jacobian based control is a widely used control method. Based
on the error of the end effector pose X and the Jacobian J(q),
the change of the state ∆q is computed as ∆q = J−1(q)Xerror,
where the state error is the difference between the goal state
and the measured current state (Xerror = Xgoal − Xmeas).
As the inverse of the Jacobian does not exist in the general
case with a Jacobian that is not generally squared, the pseudo
inverse J+(q) can be used, where J+ = JT (JJT )−1.

The state is updated by adding this ∆q to the previous state
q. In the general case this is done with some scaling factor α,
with α ∈ (0, 1].

qn+1 = qn + αJ+(qn)Xerror (17)

In the case of the control of the Helix robot, this leads to a
control as shown in Equation 18, where both the new system
state qsys,n+1 and the estimated state qest,n+1 are computed.
The Jacobian that is used, is calculated with the obtained
estimation of the current state qest, as this gives the best
representation of the actual current state of the system.

qest,n+1 =qest,n + αJ+(qest,n)(Xgoal,n −Xmeas,n)
qsys,n+1 =qsys,n + αJ+(qest,n)(Xgoal,n −Xmeas,n)

(18)

Although this is a relatively simple way to compute the new
system state qsys, there is no guarantee that the system stays
within the system limits.

3.3.3. Jacobian based control in loop.

One way to make the system stay within the system limits,
is by using the weighted pseudo-inverse matrix (19) within a
loop. This is based on previous work in the research group.
Here, K is a (9x9) matrix, which represents a virtual stiffness
of the system. Normally, this is a diagonal matrix. If the first
three diagonal values are higher than the others, this indicates
that the first segment is relatively stiffer than the other two
segments. As a consequence the change in tendon lengths for
the first segment will be relatively smaller than for the other
two segments. The new state will be computed similarly, as
can be seen in Equation 20.

J+
K = K−1JT (JK−1JT )−1 (19)

qest,n+1 =qest,n + αJ+
K(qest,n)(Xgoal,n −Xmeas,n)

qsys,n+1 =qsys,n + αJ+
K(qest,n)(Xgoal,n −Xmeas,n)

(20)

To find a suitable new state which reaches the goal and
adheres to the system limits, these equations can be used in a
loop, while the virtual stiffness matrix K is varied.

As the step size α is normally smaller than 1, this step size
basically shifts the goal location closer to the current location.
When used in a loop, however, this goal location is shifted to a
different new location every iteration of the loop. To prevent
this, it is needed to get α out of the loop, which leads to an
update of the desired gripper pose Xgoal based on the step α.
This leads to Xgoal,α, as shown in Equation 21. Equation 20
can then be written as in Equation 22. This can be used in
the control algorithm.

Xgoal,α,n = αXgoal,n + (1− α)Xmeas,n (21)

qest,n+1 =qest,n + J+
K(qest,n)(Xgoal,α,n −Xmeas,n)

qsys,n+1 =qsys,n + J+
K(qest,n)(Xgoal,α,n −Xmeas,n)

(22)

The control loop is shown in Algorithm 1, where its called
JBC for future references. First, the state representations of
the system qsys and the estimated model qest are initialized,
as well as the virtual stiffness matrix K, the goal pose and
measured gripper pose. Before the system enters the first loop,
the corrected goal pose Xgoal,α is computed, followed by the
error e.

When the system enters the loop (line 5), the desired change
in state vector ∆qJ is computed using the weighted pseudo
inverse of the Jacobian J+

K and the error e. This is added to
both the state estimation of the model qest and the state of
the system qsys to obtain the constraint free desired states.

In line 12, the newly found desired system state qsys,J is
compared with the constraints. This function is named SKU
and its pseudo-code is shown in Algorithm 2. If the state is
within bounds, nothing changes (so qsys ← qsys,J . If qsys,J is
not within bounds, the parameters are updated:

• If the length of one of the segments is out of bound,
this length is cropped to fit within the boundaries. Next
the corresponding index on the diagonal inverse stiffness
matrix K−1 is divided by 100. In the next iteration,
this segment will be considered much stiffer along the
longitudinal direction. In Algorithm 2, the subscript l
denotes that the code only uses the indices that represent
a length.

• If the angle of one of the segments is too big, the code
checks which element of the angle (∆x = Dx or ∆y = Dy)
is the biggest. This one is cropped to make sure the
total angle is cropped to fit within the boundaries. Next
the corresponding index on the diagonal inverse stiffness
matrix K−1 is divided by 100. In the next iteration, this
segment will be considered much stiffer along this angular
direction. In Algorithm 2, the subscript D denotes that
the code only uses the indices that represent segment
rotations.

In line 13 of Algorithm 1, the change in the system state
as the result of the limits is computed. Based on this the
state estimation qest is updated as well. The computed new
state estimation is used in the forward kinematics model to
find its corresponding end effector pose Xest, which is used
to determine the next estimated error e compared to the goal
location Xgoal,α.

This code loops till the found error is within some bounds
ϵcontrol, or till the the maximum iteration Nmax,iter is reached.
In this last case the system did not find a new system state
and corresponding estimation state that adheres to the system
limits and have a small enough error from the goal position.
Because the error is computed based on the estimation of the
state, it is important that the model evaluated at the state
estimation qest is an accurate representation of the actual pose
(Xmeas ≈ Xest). With a more accurate state estimation (and
a more accurate model), the resulting control action will be
more effective.

3.4. Integrated system.

In order to perform the handover tasks, all previously discussed
methods have been implemented into one control system. This
is shown in Algorithm 3. First, all parameters are initialized,
for both the gripper pose estimation of the gripper and ball as
well as for the system state and state estimation.
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Algorithm 1 JBC: Jacobian based control approach with
virtual stiffness

1: qest ← qest,cur

2: qsys ← qsys,cur

3: K−1 ← K−1
initialize

4: Xgoal ← Xgoal,initialize

5: Xmeas ← Xmeas,initialize

6: Xgoal,α ← αXgoal + (1− α)Xmeas

7: e← Xgoal,α −Xmeas

8: for m = 1, . . . , Nmax,iter do
9: ∆qJ ← J+

K−1 (qest, K−1)e
10: qest,J ← qest + ∆qJ

11: qsys,J ← qsys + ∆qJ

12: qsys ← SKU(qsys,J , K−1)
13: ∆qL ← qsys − qsys,J

14: qest ← qest,J + ∆qL

15: Xest ← f(qest)
16: e← Xgoal,α −Xest

17: if ∥e∥2 < ϵcontrol then
18: qest,new ← qest

19: qsys,new ← qsys

20: return qest,new, qsys,new

Algorithm 2 SKU: State and stiffness update based on limits
1: qsys ← qsys,initialize

2: K−1 ← K−1
initialize

3: Aq,qDL ← Aq,qDL,initialize

4: qDL ←
√

Aq,qDL q2
sys

5: if Lsys,LB ≤ qDL ≤ Lsys,UB then
6: continue
7: else
8: for index i with instance qsys,l,i in qsys,l do
9: if qDL,l,i < Lsys,LB,l,i or qDL,l,i > Lsys,UB,l,i then

10: qsys,l,i ← crop(qsys,l,i, (Lsys,LB,l,i, Lsys,UB,l,i))
11: K−1

l,i ← K−1
l,i /100

12: for index i with instance qDL,D,i in qDL,D do
13: if qDL,D,i > Lsys,UB,D,i then
14: qDL,D,i ← crop(qDL,D,i, (0, Lsys,UB,D,i))
15: if qsys,Dx,i > qsys,Dy,i then
16: qsys,Dx,i ←

√
q2

DL,D,i − q2
sys,Dy,i

17: K−1
Dx,i ← K−1

Dx,i/100
18: else
19: qsys,Dy,i ←

√
q2

DL,D,i − q2
sys,Dx,i

20: K−1
Dy,i ← K−1

Dy,i/100
21: return qsys

Algorithm 3 Integrated system
1: Xmeas ← Xmeas,init

2: Xball,meas ← Xball,meas,init

3: qest ← qest,init

4: qsys ← qsys,init

5: while e > ϵthreshold do
6: Xmeas ← filter(Xmeas, Xmeas,new)
7: Xball,meas ← filter(Xball,measXball,meas,new)
8: e← ∥Xball,meas −Xmeas∥2

9: if e < ϵthreshold then
10: break
11: qest ← SOF(qsys, Xmeas)
12: qsys, qest,new ← JBC(qsys, qest)
13: lt,sys ← g(qsys)
14: Publish on ROS-topic: ∆lt,sys = lt,sys − lt,calib

15: Close gripper

In the main loop, the system first updates the measured
position of both the gripper and the ball. This follows the pro-
cedure of Section 3.2. The filtered measurement of the gripper
position is used to make a new estimation of the state qest (as
discussed in Section 3.3.1). This is used within the controller to
find the desired new system state qsys and corresponding new
state estimation qest (Section 3.3.3). Using the Helix model,
this is transformed to the desired new tendon lengths.
The difference between these lengths and the calibration lengths
are then published on the specific ROS topic, where the Rasp-
berry Pi 5 transforms this into the motor rotations, as discussed
in Section 3.1. The main loop stops when the error between the
desired gripper pose and the measured gripper pose is smaller
than a set threshold. As can be seen in Algorithm 3, this error
is specified as the l2-norm between the two gripper pose vectors.
The gripper closes by publishing the tendon retraction to the
specific gripper-topic.

3.5. Experiments.
To investigate the performance of the proposed control archi-
tecture, three experiments has been executed. These consist of
2 qualitative experiments focused on the handover and one ex-
periment to demonstrate a simple use case in which a handover
is performed after which the arm moves to a desired location.

For the experiments, the proposed algorithm has been im-
plemented in Python. During the experiments, the Helix robot
starts in its calibrated position, hanging down. A human hand
holds the ball in the camera frames. When the operator starts
the algorithm, the robot arm will move. As explained in Section
3.5, the arm-movement stops when the error becomes small
enough. After that, the gripper closes, where the amount of
retraction was predefined and took 10 seconds.

In order to make the actual handover possible, two decisions
have been made. First of all, it was specified that the Helix
should grip the ball from above. The orientation of the grip-
per was therefore fixed during the execution of the algorithm.
Secondly, the control towards the ball was done in two steps.
First the desired location was set to be dgrasp−offset = 0.05
meter on top of the ball. When the l2-norm error was below
the threshold (ϵthreshold = 0.05 m), the next desired location
was set to be the location of the ball. This two step control
strategy was implemented to make sure the gripper does not
bump into the object to grasp, but approaches the object from
above.

3.5.1. Experiment 1: Handovers.

The first and main experiment has been performed to test the
automated human-to-robot handover. It has been performed
with three different values for the step size α. These were set
to α = [0.1, 0.2, 0.4]. The bigger α is, the bigger the change
in tendon lengths will be. This means that the system will
probably be at the desired location within a shorter time. On
the other had, the Jacobian will be evaluated fewer times,
which can possible lead to overshoot of the system.

For every condition of α, 8 runs of the system have been
executed. The human hand (with ball) was held at 4 different lo-
cations, with two runs per location. The locations are, observed
from the camera looking toward the Helix: front, front-left, left
& back-left. As an actual human hand was holding the ball,
the hand (and so object) locations were never completely the
same. As there are 8 measurements per condition, this can
however still give valuable results.

All acquired data (including images and calculated variables)
is stored per timestep.

3.5.2. Experiment 2: Human guidance.

In addition to the fully automated handovers, a second exper-
iment was added to see if and how the implemented system
could cooperate with a human to perform the task.
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The basis of the experiment was the same as with the auto-
mated handovers (in the first experiment). The only difference
was that a human was now involved in the handover task, with
the goal to guide the arm to the desired position.

This experiment has been performed with 2 step sizes
α = [0.1, 0.2] and with 2 runs of the system for both of the
conditions.

3.5.3. Experiment 3: Use case demonstration.

Lastly, experiment 3 was performed to show a use case, where
the handover is only a part of a task. The use case was simple:
Start form the initial position, perform the human-to-robot
handover, move the object to a specified location (where a bowl
is located) and drop the object into the bowl.

As the bowl was put at a specified hard-coded location, no
additional camera detection was needed. Therefore, the pro-
posed and implemented code would suffice for this experiment.
This experiment has been performed eight times with step size
α = 0.1.

4. Results

This section shows the results of the experiments. A discussion
of the result will follow in the next section.

As mentioned in Section 3.5.1, there are 8 measurements per
condition for the first experiment. As each measurement has
the goal position at a different location, the results will focus
on the l2-norm of the obtained data, as this not only maps
the 6-dimensional pose X toward a single number which can
easily be plotted. It also takes away the directional component,
which is not needed as the system performance should not be
dependent on the radial angle.

It should be noted that all 24 runs completed the handover
task successful. Figure 6 shows the evolution of one of these
runs.

Fig. 6. The evolution of one of the performed handover tasks. The first image shows
the starting position, the second shows the system where the gripper is just above the
ball, and the last shows the system when the handover task is just finished.

As the measurements are uncertain, the discussed results
will focus on the average values of those measurements. The
length of these average values will be the median length of
the measurements. Figure 7 shows how the average of the 8
measurements is obtained for the measured error (with α = 0.1).
As can be seen, there is one run that took much longer than
the others. Because the median length is used for the average
line, outliers have less influence on the resulting time.

4.1. Comparison of different step size conditions.
The average of the measured errors for the three conditions of
the step size α over time, are shown in Figure 8. It should be
noted that these graphs represent the time for the motion of the
Helix arm to the desired position. As mentioned in Section 3.5,
closing the gripper takes 10 seconds. As the physical handover
is only finished when the gripper is closed, these 10 seconds

Fig. 7. The single measurements and the average and standard deviation of the error
between the measured and desired position for step size α = 0.1. The length of the
average ling is the median of the 8 runs.

Table 1. The time (in seconds) for the arm movement with the different step sizes
α. The minimum and maximum time of the 8 different runs are presented, as
well as the mean and median. All minimum, maximum and median values have
an uncertainty of 0.01 seconds. It should be noted that the time for the handover
task takes 10 seconds longer, as this was the time needed to grasp the object.
The average timestep duration is shown in the last row.

α [-] 0.1 0.2 0.4
Minimum 42.9 28.4 14.6
Median 98.3 39.6 22.3
Maximum 214.9 57.6 29.5
Mean 104.8 (± 52.0) 42.2 (± 10.8) 22.4 (± 4.3)
Timestep 1.38 (± 0.02) 1.51 (± 0.18) 1.45 (± 0.05)

need to be added to the time for moving the arm in order
to find the total handover-time. Table 1 shows the median
and average time needed to move the Helix arm to the correct
position. The measurement with the fastest (minimum) and
slowest (maximum) time are also shown, as well as the average
(and standard deviation) of the timestep length.

Fig. 8. The averages and standard deviation of the error between the measured and
desired position for step sizes α = [0.1, 0.2, 0.4]. The length is the median of the 8
runs.

4.2. Comparison of measurements with system model state
and state estimation.

The pose estimation discussed in Section 3.3.1 is one of the
main elements in the control architecture. This is based on
the idea that the internal system model does not provide an
accurate estimation of the actual position of the end-effector.
To check this, the model based end-effector position and the
(filtered) measured position using α = 0.1 are compared in
Figure 9. The shown distance represents the distance between
the 3D gripper position [xgrip, ygrip, zgrip] with respect to the
calibrated starting position [0, 0,−0.7]. The shown error is the
distance between the model based position and the measured
position. The results using different step sizes α are very
similar, as can be seen in the appendix.

To see the effect of the state estimation, Figure 10 shows
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Fig. 9. The averages and standard deviation of the error between the measured and
desired position (blue) and the measurements (red). The distance between the two
position estimations is shown in green. The used step size α = 0.1.

Fig. 10. The average and standard deviation of the norm of the gripper location with
respect to the calibrated starting position using the state estimation in the model (blue)
and the measurements (red). The distance between the two position estimations is
shown in green. The used step size α = 0.1.

the gripper position when the state estimation is used in the
model. This is again compared with the measured values to
get the error of the state estimation. Again, other step sizes
lead to similar results.

4.3. Comparison between automated and human guided han-
dovers.

When considering the experiments in which a human was
present to guide the Helix arm towards the desired position,
it should be noted that all 4 runs successfully completed the
handover task. Figure 11 shows the evolution of one of these
runs with human guidance. It can be seen that the human
only guided the robot after the system initialization.

Fig. 11. The evolution of one of the performed handover tasks with human guidance.
The first image shows the starting position, the second shows the system when the
human has guided the arm towards the ball, and the last shows the system when the
handover task is just finished.

Figure 12 shows the comparison between the automated
handovers and the two runs where the handover was guided by

Fig. 12. The averages and standard deviation of the error between the measured and
desired position for the 8 runs without human guidance (blue) and 2 runs with human
guidance (red). The used step size α = 0.1.

a human. As can be seen, both runs with the human guided
handover are very similar and lead to a handover. that is
significantly faster than the fully automated cases. A step size
of α = 0.2 leads to similar results, as can also be seen in the
appendix.

4.4. Use case.

Figure 13 gives an impression on how the system perform the
demonstration discussed in Section 3.2.3. It can be seen that
the ball was taken from the hand and dropped in the bowl.
For all 8 runs, the ball was taken from the hand and correctly
dropped into the bowl.

Fig. 13. The evolution of one of the performed use case tasks. The first image shows
the starting position, the second and third show the handover task. The fourth and fifth
image show the movement of the arm (with ball) towards to desired location. The last
image shows the system when the task is just finished.

5. Discussion

In this section the results of the previous section will be dis-
cussed. After this, the non-idealities will be discussed and some
improvements will be suggested.
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5.1. Comparison of different step size conditions.
When Figure 8 is considered, a few things can be noticed. First
of all, it can be seen that for all step sizes α the shape of the
decent in error is similar. The slope of the decrease in error
is the highest with the biggest error and gradually decreases
as the gripper comes closer to the object to grasp. This is
a logical behavior for Jacobian based control, as the control
action is proportional to the error distance.

Secondly, it can be seen in both the figure and in Table 1
that the handover time decreases with an increasing step size α.
This is in line with the expectation. It should be noted that the
average errors start with a relatively smooth decrease, followed
by a rougher decrease. This can be partially explained by the
two step control strategy, as the error to the goal suddenly
increases slightly with the transition from the first goal position
(with the dgrasp−offset) to the second goal position (without the
offset). Another aspect that plays a role in the rough behavior
are the uncertainties present in the measurements of both the
gripper pose and the ball.

It was expected that increasing the step size from 0.1 to
0.2 and from 0.2 to 0.4 would lead to a decrease in completion
time by half. When comparing the different configurations, it
can indeed be seen that the arm motion takes roughly twice
as long if the step size is halved. This time is slightly shorter
when comparing α = 0.2 with α = 0.4, but slightly higher
when comparing α = 0.1 with α = 0.2. This shows that the
control algorithm is not ideal, which is probably caused by the
set of inaccuracies present in the model, the state estimation,
and the measurements all together.

5.2. Comparison of measurements with system model state
and state estimation.

When Figure 9 is considered, it can be seen that there is a
big mismatch between the measured gripper location and the
gripper location based on the internal system model. At the
start, the model assumes that the system is hanging straight
(with an offset of 0) while the measurements show that the
system does not actually start at the desired starting location.

As the arm moves outwards, towards the object to grasp,
the difference between the system model and the measured
values increases. At the final position, when the gripper Xmeas

is about 16 cm away from the calibrated staring position, the
internal model based gripper position Xsys is 29 cm away form
the starting position, 14 cm away form the measured position.
This behavior caused by gravity on the system, leading to a loss
of tension in some tendons, was already discussed in Section
3.3.1.

All together, Figure 9 clearly shows that using the systems
internal model as assumption for the actual system behavior
is not even close to a sufficient representation, when using the
system in the whole workspace.

When the state estimation as discussed in Section 3.3.1 is
used, and the resulting state is used in the model, this leads to
a much more accurate representation of the measurements as
can be seen in Figure 10. It can be seen that the error between
the estimated state model and the measurements is generally
very small. When the control error (Xerror) is considered, this
is always (for all conditions and all timesteps) equal to the
bound ϵpose,bound. This is not surprising based on how the
optimization function was defined. As the error between the
internal system model estimation Xsys and the measurements
Xmeas is always bigger that the chosen bound ϵpose,bound, the
constraint ‘pushes’ the estimation towards the measurements,
but not further than the set bound.

5.3. Comparison between automated and human guided han-
dovers.

As was shown in Section 4.3, the handovers with human guid-
ance were significantly faster than the fully automated han-

(a)

(b)

Fig. 14. An overview of the approximate workspace in the camera spaces. Image (a)
shows the result of the left camera, image (b) the right camera.

dovers. This is not surprising, as the fastest automated han-
dover took 14.6 seconds, while a healthy human can do a similar
task much faster. Therefore, having a human in the loop that
guides to arm towards the desired position can significantly
increase the handover time, as the implemented control algo-
rithm only has to add small tendon length changes to move
within the bounds of the desired position.

This experiment also shows that the implemented control
algorithm is an adaptive system as it can handle unexpected
and uncertain interactions with a human in the loop. This is a
useful property as many systems will operate in an unknown
and uncertain environment.

5.4. Improvements.
When analyzing both the algorithm and the results, a few
improvements can be suggested, ranging form the computer
vision to the control architecture.

5.4.1. Camera and camera placement.

Within the used setup, the two cameras were placed behind
the robot arm with an approximate distance of about 50 cm.
For the algorithm it is needed that both the Aruco markers
on top of the gripper and the object to grasp are visible by
the cameras. In the current setup the handover workspace was
not limited by the robot workspace, but by the space that was
captured by the two cameras. As can be seen in Figure 14, the
workspace was limited on the left side by the right camera and
vice versa. Moving more in either one of these directions would
suggest that one camera could not detect the scene. A lot of
motion in the upward and downward direction was also limited
as both the Aruco markers and the ball needed to be detected.

This limited workspace can be improved with various meth-
ods. First of all, different cameras can be used with a bigger
field of view. This way, a bigger workspace can be observed
while the cameras can stay at approximately the same location.
Secondly, the cameras can be placed at a bigger distance from
the robot. A combination of those is also possible.

A closely related topic is the camera placement. In the used
setup, both cameras were beside each other behind the robot
arm. It can be investigated how the detection performances
changes when other camera placements are used with for in-
stance one of the cameras looking down from the top or one of
the cameras observing the system from one of the sides. This
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might lead to a better position estimation of the object as the
depth can possibly be better observed than with two cameras
beside each other. In these cases, however, the risk of occlusion
should be considered.

Other possibilities in setup that can be investigated are
either setups with depth cameras, where one camera could
suffice. Using more than 2 cameras (in a redundant system)
can help against the risk of occlusion, but probably needs more
processing time.

5.4.2. Detection system.

When the computer vision is analyzed, a few improvements
can be made.

First of all, the detection does not always works flawless.
As can be seen in Figure 15, there are cases where the ball is
partially occluded by the gripper, leading to an inaccurate de-
tection. This will lead to an inaccurate ball position estimation
and therefore makes the handover task more challenging.

Fig. 15. An example of an inaccurate ball detection.

Secondly, the object to grasp was now specified to be a
ball with a specific green color. The algorithm to detect this
object uses this knowledge of both color and shape to detect
the object. This thus means that the algorithm is very object
specific. Using a computer vision model that is more general
and does not need object specifics for a decent position esti-
mation would significantly improve the overall performance
towards real applications.

This is also related to the grasp angle. Within this report,
the handover was simplified by prescribing that the ball was
lying in the hand and that the desired orientation of the grasp
would be from the top. In real world scenarios this is not
generally the case as objects can have different sizes and shapes.
An improved detection system could also provide the best grasp
angle, which could be used by the control algorithm.

When considering the detection of the arm, the Helix arm
was now observed with the use of Aruco markers. This is
sufficient in a controlled environment, but will not always
suffice outside of this environment. Therefore, a more robust
detection system would be desired. This can include a more
sophisticated detection algorithm that does not need any Aruco
markers, but can also use different sensors in and/or on the
Helix.

Lastly, the Kalman filter can be improved. Within the used
system, the model and measurement uncertainties for both
the gripper pose and the ball position were fixed. This can be
improved by making the measurement uncertainties dependent
on the estimation of these uncertainties, based on the detection
algorithm. This way, an uncertain measurement will have less
influence on the position estimation, and vice versa, leading
to more accurate position estimations and therefore to more
effective control and faster handovers.

5.4.3. Estimation method.

As discussed in Section 3.3.1, the constraint specifies that the
distance between the measured gripper pose and pose computed

with the the state estimation in the model should not be higher
than a fixed value ϵpose,bound. Apart from simplicity, there is
however no good reason to set this as a constant value. Making
this value dependent on the filtered measurement uncertainty
will increase the accuracy of the system.

A similar situation holds for the diagonal scaling matrix
Apose,upd. The diagonal values of this matrix have been fixed by
the programmer. This was set as a hyperparameter, but there
might be values that lead to a better performance. The loss
of tendon tension occurs to a bigger extent when the segment
is longer (leading to less internal pressure to keep the tendons
under tension) and when the segment and/or the segment(s)
above are curved. Therefore, this scaling matrix can be made
dependent on the internal system state qsys to get a better
representation of the actual system.

Is is also possible to use a completely different state estima-
tion method, that is for instance completely computer vision
based. Further research can investigate these options for soft
robots.

5.4.4. Jacobian control.

As discussed in Section 5.1, the constraint Jacobian based
control algorithm controls the soft robotic arm towards the
goal position. This happened for all values of the step size
α. During the experiments these step sizes were constant.
In general a higher step size is useful when the error is big,
since the goal is reached faster. As the error becomes smaller,
however, a smaller step size can be desirable to prevent the risk
of overshoot. In order to improve the overall performance for
fast control and handover tasks, follow-up research can focus
on a variable step size, which is dependent on the error.

5.4.5. Processing speed.

Lastly, it can be concluded that the processing speed of the
whole system is not high, with each timestep taking more than
a second. This should increase, which can be achieved in two
ways. Firstly, a critical look on all the separate functions is
needed as this can significantly improve the total algorithm
speed. Secondly, the used hardware can be improved, as better
hardware has a higher computational performances. Optimiz-
ing both the software and hardware can together result in a
much faster control, which can make the interaction with hu-
mans much smoother and therefore potentially more pleasant.

6. Conclusion

Within this research, a control architecture to automated han-
dovers with a soft robot using visual servoing has been proposed
and tested. Although, the main focus was put on the pose
estimation and control algorithm, the research also included
the detection algorithm to detect both the robot arm and the
object to grasp.

The two main contributions within the system that made
the control accurate enough for automated handovers (given
the detection algorithm) are firstly the optimization based state
estimation, leading to a much better representation of the sys-
tem, which could be used for the Jacobian based control. The
second contribution was the constraint jacobian based control,
where the state estimation was used within the jacobian, while
the internal system state was used to fit in the constraints.

All together, the proposed control architecture was able to
consequently perform the human-to-robot handover task for all
tested jacobian step sizes α = [0.1, 0.2, 0.4], where the system
was clearly the fastest with the highest step size. It was shown
that the system can adaptively deal with a human that guides
the robot towards the object in the hand, resulting in a faster
handover. Lastly, a demonstration of a simple use case was
shown that performed as intended.

As such, this research proposes a baseline for automated han-
dovers with soft robots where further research can build upon
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in order to make the handovers more general (with different
objects and grasp techniques) and faster.
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A. Parameters

The used parameters used in this report are listed below with their definition, value and unit.

Parameter Description Value Unit
l and L Length of a CC segment variable m

li Length of segment i in the PCC model variable m

ϕ Curvature plane rotation in the CC model variable rad

ϕi Curvature plane rotation of segment i in the PCC model variable rad

θ Segment rotation in the PCC model variable rad

θi Segment rotation of segment i in the PCC model variable rad

κ Curvature of a CC segment variable m−1

r Radius of a CC segment variable m

Ri
i−1 Rotation matrix from the end of segment i with respect to the end

of the previous segment i − 1
variable 1

ti
i−1 Translation matrix from the end of a segment i with respect to the

end of the previous segment i − 1
variable 1

T i
i−1 Homogeneous transform from the end of a segment i with respect

to the end of the previous segment i − 1
variable 1

∆x,i x-component of the rotation of segment i in the PCC model variable rad

∆x,i y-component of the rotation of segment i in the PCC model variable rad

∆i and di Rotation of segment i in the PCC model variable rad

q State that describes the PCC model variable rad and m

qsys System state that is used to calculate the tendon lengths variable rad and m

qsys,initialize System state that is used to calculate the tendon lengths 0.12[0, 0, 1, 0, 0, 2, 0, 0, 2] rad and m

qest Estimated state used for the Jacobian control variable rad and m

qDL 6 dimensional state used for the limits variable rad and m

Aq,qDL
Matrix used for calculating qDL from qsys See Equation 9 1

Lsys,LB Lower bound of the system limits See Equation 11 rad and m

Lsys,UB Upper bound of the system limits See Equation 11 rad and m

lt Tendon lengths variable m

lt,calib Calibrated tendon lengths 0.12[1, 1, 1, 2, 2, 2, 2, 2, 2] m

X 6 dimensional pose variable m

X0 Calibrated system pose [0, 0, 0.6, 0, 0, 0.7] m

Xmeas Measured gripper pose variable m

Xball Measured ball pose variable m

Xnew New measurement of the system pose variable m

Xgoal Goal pose variable m

Xgoal,α Goal pose, corrected for step size α variable m

dgripper Distance between the gripper and wrist 0.10 m

dgrasp−offset Distance between the ball and the initial goal position above the
ball

0.05 m

P Variance of the pose X variable rad2 and m2

Pinit Initial variance of the pose Ball, wrist and gripper direction: 2000I rad2 and m2

Q Variance of the model Ball: 0.1I, Wrist: 0.01I, Gripper direction: 0.1I rad2 and m2

R Variance of the measurements Ball: 0.01I, Wrist: 0.1I, Gripper direction: 0.01I rad2 and m2

Kkalman Kalman gain matrix variable 1
Apose,upd Weighted matrix used in the pose estimation optimization diag([1, 1, 1, 1.05, 1.05, 1.05, 1.1, 1.1, 1.1]) 1
ϵpose,bound Bound around the measurement for the pose estimation optimiza-

tion
0.005 m

J Jacobian matrix of the PCC model variable 1
JK Jacobian matrix of the PCC model with virtual stiffness variable 1
α step size [0.1, 0.2, 0.3] 1
K Virtual stiffness matrix variable 1
Kinitialize Initial virtual stiffness matrix diag([0.2, 0.2, 2, 0.1, 0.1, 1, 0.1, 0.1, 1]) 1
Nmax,iter Maximum of iterations for the Jacobian loop 20 1
ϵcontrol Threshold for the Jacobian controller 0.005 m

ϵthreshold Threshold for the measured values 0.05 m
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B. Results for other step sizes

This appendix contains the relevant plots that were not shown
in the main body of the paper.

B.1. Single measurements.

This section contains the plots with the single measurements
and the average for the step sizes α = 0.2 (in Figure 16) and
α = 0.3 (in Figure 17).

Fig. 16. The single measurements and the average and standard deviation of the error
between the measured and desired position for step size α = 0.2. The length of the
average ling is the median of the 8 runs.

Fig. 17. The single measurements and the average and standard deviation of the error
between the measured and desired position for step size α = 0.3. The length of the
average ling is the median of the 8 runs.

B.2. Comparison of measurements with system model state
and state estimation.

This section contains the plots comparing the measured gripper
location with the system model gripper location for the step
sizes α = 0.2 (in Figure 18) and α = 0.3 (in Figure 20). It also
shows the plots comparing the measured gripper location with
the estimated model gripper location for the same step sizes in
Figure 19 and Figure 21, respectively.

Fig. 18. The average and standard deviation of the norm of the gripper location
with respect to the calibrated starting position using the system model (blue) and the
measurements (red). The distance between the two position estimations is shown in
green. The used step size α = 0.2.

Fig. 19. The average and standard deviation of the norm of the gripper location with
respect to the calibrated starting position using the state estimation in the model (blue)
and the measurements (red). The distance between the two position estimations is
shown in green. The used step size α = 0.2.

Fig. 20. The average and standard deviation of the norm of the gripper location
with respect to the calibrated starting position using the system model (blue) and the
measurements (red). The distance between the two position estimations is shown in
green. The used step size α = 0.3.
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Fig. 21. The average and standard deviation of the norm of the gripper location with
respect to the calibrated starting position using the state estimation in the model (blue)
and the measurements (red). The distance between the two position estimations is
shown in green. The used step size α = 0.3.

B.3. Comparison of system with and without human guidance.

This section contains the plot comparing the automated system
with the human guided system for step size α = 0.2 in Figure
22.

Fig. 22. The averages and standard deviation of the error between the measured and
desired position for the 8 runs without human guidance (blue) and 2 runs with human
guidance (red). The used step size α = 0.2.
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C. Hardware specifications

Raspberry Pi 5 Laptop: HP ZBook Studio G4
2.4 GHz quad-core
64-bit Arm Cortex-A76 CPU

2.4 GHz quad-core
Intel Core i7-7700HQ

4GB RAM 8GB RAM
VideoCore VII GPU Nvidia Quadro M1200 4GB GDDR5
Wifi: 802.11ac, 2.4GHz and 5.0GHz Wifi: 802.11ac, 2.4GHz and 5GHz

D. Code

For reproducibility, all source code used within the experiment that was executed on the laptop is available through the zip-file in
this url: https://drive.google.com/file/d/1j45YhBTt1GUMbrJw8H3uS0gh6nbvFvVX/view?usp=drive_link. The zip-file also contains the
results.

All code that was running on the Helix Raspberry Pi 5 is available through this url: https://github.com/helix-robotics-ag.
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