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A B S T R A C T

We propose a multi-time scale energy management framework for a smart photovoltaic (PV) system that can
calculate optimized schedules for battery operation, power purchases, and appliance usage. A smart PV system
is a local energy community that includes several buildings and households equipped with PV panels and
batteries. However, due to the unpredictability and fast variation of PV generation, maintaining energy balance
and reducing electricity costs in the system is challenging. Our proposed framework employs a model predictive
control approach with a physics-based PV forecasting model and an accurately parameterized battery model.
We also introduce a multi-time scale structure composed of two-time scales: a longer coarse-grained time scale
for daily horizon with 15-minutes resolution and a shorter fine-grained time scale for 15-minutes horizon with
1-second resolution. In contrast to the current single-time scale approaches, this alternative structure enables
the management of a necessary mix of fast and slow system dynamics with reasonable computational times
while maintaining high accuracy. Simulation results show that the proposed framework reduces electricity costs
up 48.1% compared with baseline methods. The necessity of a multi-time scale and the impact on accurate
system modeling in terms of PV forecasting and batteries are also demonstrated.
1. Introduction

The reduction of CO2 emissions and achieving a sustainable future
motivate a broader integration of such renewable energy sources as
solar and wind into energy systems worldwide. In particular, using
renewable generators that are close to the demand-side instead of
centralized generation can reduce transmission losses [1]. However, the
massive introduction of renewable energy can cause supply–demand
mismatches and the frequency change of electricity due to its vari-
ability [2]. To address such energy issues, the renovation of conven-
tional grids toward a smart energy system is critical for effectively
using renewable energy. A smart energy system is an advanced power
scheme that can make such systems more resilient, energy-efficient,
and eco-friendly by integrating renewable generation and demand
control [3].

To put smart energy systems into practice, an energy management
system (EMS) has the most critical role [4]. EMS’s main function is to
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optimize an objective function that can be composed of one or more
critical system criteria, such as electricity cost minimization, peak-cuts,
grid failure rate, and ramp rate. An EMS generally manages the energy
balance among appliances, batteries, and the power supply provided
by grids and such renewable sources as solar energy [5]. However,
harnessing the unpredictability and short-term variability of renewable
sources is clearly complicated [6]. EMSs currently rely on battery
systems to deal with the fluctuations of renewable sources [7]. Hence,
improved battery modeling and proper incorporation of the workload-
dependent storage aspects in EMSs are desirable [8]. This approach also
includes a local battery management system (BMS), which is typically
present in battery pack systems [9].

Most of the EMSs presented in the literature have formulated energy
management for smart energy systems as an optimization problem
with integers or continuous variables and constraints. In particular,
battery scheduling and demand control with renewable generation
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are deemed to be promising EMS applications [10]. Regarding de-
mand control, household appliances, which can be shifted in time,
e.g., washing machines and tumble dryers, are often scheduled using
a mixed-integer programming (MIP) model [11]. Each appliance is
modeled with detailed energy consumption profiles that correspond
to their operational cycle. A appliance scheduling is an effective so-
lution so that the demand-side fits the electricity price policies [12]
and minimizes electricity peaks as well as the consumption rate of
photovoltaic (PV) generation [13]. Many researchers have reported the
effectiveness of a battery system and appliance scheduling combination.
A previous work [14] proposed a home energy management system
(HEMS) controller based on a multi-objective MIP model to mini-
mize electricity costs and peaks. An economic analysis was performed
on battery investment with appliance scheduling in residential sec-
tors. The mixed-integer non-linear programming (MINLP)-based EMS
is was formulated [15], which considers electrical or thermal demand
control and day-ahead energy storage scheduling. Sensitivity analysis
concludes that the best option to reduce operation costs is electrical
demand control with battery scheduling. The above methodology usu-
ally solves the scheduling problem once a day, but the forecast errors
of PV generation and the latest state of the battery system is ignored
during the day.

On the other hand, model predictive control (MPC) is widely used in
EMSs as an optimization process. MPC’s main advantage is the ability
of adjusting the control input that depends on the latest system state
by iterating the prediction of future system behavior and optimization
for a finite time horizon. In particular, MPC is applied to such EMS
applications as the battery system scheduling to deal with renewable
uncertainties by wind turbine and PV panels attached to the house [16],
the indoor climate control with the heating, ventilation, and air condi-
tioning (HVAC) scheduling in the house [17] or in office buildings [18],
and the cooperative energy management for networked energy commu-
nities [19]. With the recent growth of computing resources, the scale
of problems that can be handled by MPC has been expanding. Another
study proposed a comprehensive HEMS [20] that includes quadratic
cost functions with a huge number of variables and constraints for
thermal and energy storage as well as appliances and PV generation.
The mixed-integer quadratic programming (MIQ)-based MPC obtains
solution with 15 min resolution based on such future predictions as
occupancy to improve human comfort and reduce operation costs.
Meanwhile, the performance of MPC mainly depends on the accuracy
of prediction models. The prediction model was integrated [21] for
renewable generation and integrated the demand load, and the MIP-
based MPC provides an effective solution for battery scheduling. In
general, MPC performance mainly depends on the accuracy of the
prediction model. To guarantee both prediction accuracy and solution
quality, MPC’s planning horizon includes up to a few days with such
coarse-grain resolution as 15 min or one hour.

Although much literature has studied the scheduling of the smart
energy system, they are only dealt with slow dynamics, which affects
the subsequent 24 hour horizon with hourly or tens of minutes of
resolution. Not considering such fast dynamics as short-term PV fluctua-
tions or battery’s transient response leads to real-time energy imbalance
that will cause energy loss.

The time scale of the control sequence of an EMS is a non-negligible
factor in its performance. In practice, most smart system contexts
exhibit a mix of fast and slow dynamics, which puts too much stress
on the run-times when accuracy must also be maintained. As presented
above, an EMS application should consider a daily change of renewable
generation and electricity demand for a longer time scale up to a few
days [22]. Furthermore, demand control (e.g., appliance scheduling),
which is also either performed daily or hourly [23], effectively matches
the demand–supply in local energy communities, including buildings
and homes with many appliances. On the contrary, for a short time
scale with a time resolution of a few seconds, the real-time energy
2

imbalance between renewable generation and demand can directly
cause energy loss. Real-time decision-making generally employs a rule-
based control approach [24] or a fuzzy-logic [25] controller to balance
the demand–supply mismatch rather than the prediction-based opti-
mization. These approaches do not require detailed systems; however,
the solution’s optimality is not guaranteed because only simplified
models and real-time information are considered. Therefore, we must
precisely optimize the battery’s operation based on forecast information
for expected renewable generation to achieve optimal real-time control.
The time scales vary widely that should be managed by the EMS to
properly control the system; the purpose of different time scales also
differs. Thus, when accuracy is paramount, an EMS design suitable for
each purpose and each time scale is required to simultaneously meet
all these criteria. We tackle this problem in this paper by employing a
multi-time scale energy management framework.

Several studies have proposed a multi-time scale MPC like the one
introduced in this work. Abreu et al. [26] proposed a hierarchical MPC
method to manage a set of different sub-systems, such as appliances
and their loads. Its upper layer calculates the maximum power limit,
and its lower layer individually optimizes load schedules; however,
the paper ignores renewable energies and batteries. Another work [27]
also proposed a hierarchical EMS that focused on a building, a battery
system, and PV generation. It integrated a scheduling upper layer with
a 7 hour horizon and a pilot lower layer with a 5-minute horizon. A
hierarchical EMS was developed [28] for dealing with day-ahead sched-
ules and intra-hour adjustment in an office building that contained
PV systems and batteries in electric vehicles. However, none of these
above papers addressed appliance scheduling. Their demand flexibility
is also limited. The PV forecasting model is also relatively simple,
and short-term PV fluctuation does not receive sufficient attention. A
hierarchical two-layer HEMS [29] reduced daily electricity costs and
increased PV self-consumption. In its upper layer, the scheduling of
the battery system and the appliances were performed for the next
24 h, using the previous day’s PV generation profiles as PV forecast
data. Although the lower layer is a rule-based real-time controller that
compensates for PV fluctuation, it is relatively simple algorithm based
on no short-term PV forecast data.

The scheduling of the battery system and the appliances were
scheduled for the next 24 h. Although the lower layer is a rule-
based real-time controller that compensates for PV fluctuation, it is a
relatively simple algorithm based on no short-term PV forecast data.
The importance of accurate PV forecasting in energy management has
been proved [30] and significantly affects the EMS performance [31].
Finally, none of these papers provided a detailed view of PV forecasting
and battery states at the level of seconds and minutes. Combining
them in the inner time loop is crucial for the accurate management
of supply–demand balance.

In this paper, we developed a multi-time scale energy manage-
ment framework for a smart PV system that exhibits a mix of fast
and slow dynamics. Our smart PV system is a local community with
several buildings and homes equipped with batteries, PV panels, and
controllable appliances. For implementing real-time control, the MPC
approach is employed by accurately forecasting PV generation and the
most recent battery state. We also introduce a detailed battery model
that accurately captures the I–V characteristics and the state-of-charge
(SOC) to achieve precise energy management in a smart PV system.
Our proposed framework’s multi-time scale structure successfully treats
the fast and slow dynamics of energy management in one integrated
optimization loop by dividing the time scale into two-time scales:
coarse-grained and fine-grained. In this way, the modeling capability
and computational time are improved. The main contributions and
originality of this work are shown below:

• The multi-time scale energy management framework presents
real-time optimizing methodology to reduce electricity costs
while taking into account a mix of such fast and slow dynamics as
PV, energy demand fluctuations, and battery transient responses.

Two time scales are introduced: coarse-grained and fine-grained.
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• With a comprehensive approach, three detailed component mod-
els are integrated: (1) a time-shiftable appliance model, (2) a
physics-based PV forecasting model that provides a fine-grained
forecast with 1-second resolution, and (3) a parameterized battery
model that represents accurate I–V characteristics and SOC levels.

• The model predictive control (MPC) approach copes with the
forecast error of PV and reflects the latest battery state. The
predictions of PV generation and the battery system’s state are it-
erated as well as the optimization of the schedules of the batteries,
the appliances, and power purchases.

• Simulation results show that the proposed framework reduces
electricity costs up to 48.1% compared to baseline methods.
The computational time is short enough to allow for real-time
control of smart PV systems. We explored the effect of PV fore-
casting error and battery capacity and investigated the necessity
of the multi-time scale structure by comparing single-time scale
methods.

This paper is structured as follows. First, an overview of the pro-
posed framework and its multi-time scale structure are given in Sec-
tion 2. Section 3 explains the introduced system models in detail, and
Section 4 describes the mathematical formulation of a multi-time scale
optimization problem. Finally, we demonstrate the effectiveness of the
proposed method by simulations with measured data in Section 5 and
summarize it in Section 6.

2. Multi-time scale energy management framework

This section gives an overview of our proposed framework that
employs a model predictive control approach: a multi-time scale energy
management framework. The key ideas of the multi-time scale structure
are also discussed in this section.

2.1. Overview of proposed framework based on model predictive control
approach

Fig. 1 shows an overview of the proposed framework. Its overall
objective is to minimize electricity costs. This framework’s input is
electricity demand information and forecasting data of PV generation.
Its output is an operation plan that includes power purchases from
the utility grid, battery charges/discharges, and appliance schedules.
We utilize the MPC approach in the proposed framework for real-time
energy management.

MPC is an effective means of dealing with control problems that
have many variables and future disturbances [32]. Recent works have
successfully applied it to the energy management problem [33]. In
the MPC approach, the process of computing the optimal solution that
minimizes a given objective for a finite time horizon is performed at
every time step. MPC’s key idea is to improve a system’s operation by
iterating predictions and optimizations. At sample time step 𝑡, a sys-
tem’s predicted behavior is provided as input to solve an optimization
problem for a given period. Only the first sample of the solution is
applied to the system, and the others are discarded. At next sample
time step 𝑡 + 1, the new predicted input appears, and the optimization
problem is recalculated for the following receded period. Note that one
advantage of the MPC approach is that its feedback structure poten-
tially compensates for the uncertainty of variable load demand and PV
generation [34]. Therefore, we apply MPC to the energy management
framework.

The main processes of the proposed framework based on the MPC
approach are iterated as follows. First, the framework obtains the PV
forecasting data for the very near future, such as the upcoming half
hour or a few days. Then it optimizes energy utilization to minimize
electricity costs from the utility grid. Energy utilization includes battery
charges/discharges, power purchases, and appliance schedules. This op-
timization problem is mathematically formulated, and a mathematical
3

Fig. 1. Overview of proposed methodology; multi-time scale optimization framework
for smart PV systems.

solver can obtain optimal results. Finally, the obtained plan is applied
to the system operation. In the next time step, the same process is
performed. In this way, the latest system information is reflected for
creating a real-time control that interpolates the energy balance.

2.2. Multi-time scale structure

The main idea of a multi-time scale structure is to solve one in-
tegrated optimization loop that covers two-time scales: coarse-grained
and fine-grained. These time scales take into account appliance schedul-
ing, a variation of demand load, PV generation, and accurate battery
characteristics. First, the coarse-grained time scale is responsible for
energy management in the near-term period (up to a few days) based
on coarse changes in time resolution for demand and PV generation.
PV forecasting models suitable for the long-term, such as artificial
intelligence, are usually less accurate when the time resolution is less
than a few minutes [35]. Hence, resolution for coarse-grained loops
can be rough, e.g., 15 min. Next, real-time control achieves a short-
term energy balance in the fine-grained time scale between highly
fluctuating renewable generation and fast-varying battery storage un-
der the demand conditions derived from the long-term planning loop.
The time resolution in the fine-grained loop should be under a few
seconds for real-time control and managing the short-term variation of
PV generation. This is because the electrical time constants of PV panels
are a few seconds and above. The energy production of PV panels
mainly depends on both PV cell temperature and solar irradiance. The
PV cell temperature responds to such fast-varying weather conditions as
the irradiance and wind, and its fastest thermal time constants are a few
seconds and above [36]. The irradiance has a significant impact on the
power output of PV panels, and the fastest time constants are also mini-
mally a few seconds due to moving cloud coverage [37]. The irradiance
variation, which would vary even faster, is expected to be negligible
in magnitude differences. Furthermore, the most critical electrical time
constants of a battery system are also at least a few seconds and match
that of PV generation. Clearly, the EMS framework deals with different
problems that act on different time scales: appliance scheduling and
demand load on the one hand and the fluctuation of PV generation
and battery operation. However, the proposed framework can still treat
these problems in one integrated optimization loop (not independently)
as needed to obtain high accuracy for optimizing the balance.

Based on the above description, we formulated a multi-time scale
structure for a smart PV system (Fig. 2). Let 𝑡 be a set of the global
time steps for the whole process, where multi-time scale optimization is
dispatched at every control point with resolution 𝛥𝑡. Since optimization
problems are discretized in time, time windows (planning periods)
are divided by a given resolution. First, a coarse-grained time scale
with time index 𝑡𝐿, which corresponds to slower system dynamics, is
designed to consider a daily variation of demand and PV generation.
Thus, a coarse-grained time scale consists of a time window with long
planning period 𝑇 with resolution 𝛥𝑡 . Their typical values are: 𝑇
𝐿 𝐿 𝐿
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Fig. 2. Schematic view of proposed approach with multi-time scale structure.

Fig. 3. Targeted smart PV system structure with mathematical symbol of each variable.

is 24 h, and 𝛥𝑡𝐿 is 15 min. By solving a coarse-grained optimization,
rough schedules of a smart PV system are obtained. Following the MPC
approach, the solution of the first 𝛥𝑡𝐿 is usually applied to the system
and interpolated by solving a fine-grained optimization to consider such
fast system behavior as real-time energy balancing. Optimal schedules
with fine time granularity are calculated using the solution for the
first 𝛥𝑡𝐿 as a reference set-point. Keeping the time scale consistent, the
planning period of fine-grained time scale 𝑇𝑆 generally equals 𝛥𝑡𝐿. The
fine-grained time scale’s time window is divided by fine resolution 𝛥𝑡𝑆
whose value is typically 1 s. Finally, as marked by the red window in
Fig. 2, the obtained solution is applied to the system.

3. Model development

This section provides a detailed overview of the smart PV system
and the mathematical model introduced in the proposed framework. It
includes a smart PV system model, a PV forecasting model, a battery
model, and a smart appliance model, all of which are discussed in more
detail.

3.1. Targeted smart PV system structure

A smart PV system is a local energy community that is comprised
of several building and households. Such isolated energy system com-
munities allow real-time data collection and control. The systems are
connected to a network to exchange information with other parts of
the systems and obtain such third-party information as meteorological
data for PV generation forecasting. Fig. 3 shows a schematic view of
4

our smart PV system model. The main components of the smart PV
system are PV panels and battery systems, especially with lithium-ion
batteries. The battery system stores the generated energy and supplies
demand when (1) the energy generated by PV is insufficient and (2)
the EMS decides to supply the required load from the battery rather
than the grid. Two sets of appliances are assumed: non-shiftable and
shiftable. The former includes lights and refrigerators whose starting
times and operation cannot be deferred or interrupted. Shiftable appli-
ances include dishwashers and washing machines whose starting times
can be shifted to another time slot to avoid interruptions.

In the framework, both the battery system and the shiftable appli-
ances are scheduled to balance demand and PV production by solving
an optimization problem with a constraint of user preferences. The EMS
collects information on the energy balance and the system state from
the smart PV system while managing the overall energy flow based on
the solution obtained by the framework shown in the previous section.
The smart PV system buys electricity from the utility grid during power
shortages. To prevent grid instability caused by a reverse power flow,
we assume that this system is denied from selling surplus generated
energy to the utility grid. The surplus energy is consumed by smart
appliances and batteries as much as possible; otherwise, it is wasted
inside the system.

In general, the energy balance inside the system must be kept at any
time 𝑡, which is formulated by:

𝑆𝑡 + 𝐺𝑡 + 𝐸𝑡 = 𝐷𝑏𝑎𝑠𝑒
𝑡 +𝐷𝑠ℎ𝑓𝑡

𝑡 + 𝑌𝑡, ∀𝑡, (1)

where 𝑆𝑡, 𝐺𝑡, and 𝐸𝑡 respectively denote the energy purchased from
the utility grid, the energy generated by the PV system, and the
charging/discharging energy of the batteries. Let 𝐷𝑏𝑎𝑠𝑒

𝑡 , 𝐷𝑠ℎ𝑓𝑡
𝑡 , and

𝑌𝑡 respectively be the demand load of the non-shiftable appliances,
the demand load of the smart appliances, and the wasted energy.
Charging/discharging energy 𝐸𝑡 takes a positive value when charging
and a negative value when discharging.

In addition, purchased energy 𝑆𝑡 and wasted energy 𝑌𝑡 cannot be
negative values, as given by Eqs. (2) and (3):

0 ≤ 𝑆𝑡𝐿 , ∀𝑡, (2)

0 ≤ 𝑌𝑡𝐿 , ∀𝑡. (3)

Note that this model does not consider such components as wind
turbines, air conditioning systems, and electric vehicle management
because this paper focuses on the effect of PV forecasting and accu-
rate battery models on EMS performance. We can potentially add or
remove other components by mathematically formulating their behav-
iors. However, since our work is ongoing, adding so many complex
options in a single paper seems overwhelming and counterproductive.

3.2. Accurate physics-based PV forecasting model

PV generation has high fluctuation due to meteorological stochastic
phenomena. Therefore, the real-time forecast data of PV generation
is necessary to smooth the fluctuation by balancing demand and PV
generation with battery scheduling. In this paper, we use the forecast
data provided by the PV nowcasting model [38], which can predict
short-term generation based on sky images, neural network models,
and a highly accurate physics-based modeling framework of PV gen-
erators [39]. This model’s major benefit is that it provides PV energy
forecasting with high temporal resolution. Such forecasts are provided
over a horizon of 15 min with a 1-second resolution. Furthermore, the
forecast can be updated every minute, a time period which is sufficient
for iterating a fine-grained battery scheduling loop.

On the other hand, PV forecasting for the coarse-grained time scale
is also important to capture a long-term energy balance for up to a few
days. We assume that the PV forecasting data for a coarse-grained time
scale are available by a network from a local meteorological station.
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3.3. Appliance model

Each shiftable appliance is characterized by four parameters [40]:
(1) its operating time, (2) its configuration time denoted by 𝑇 𝑐𝑜𝑛𝑓 ,
which is the time required to start the appliance, (3) a deadline denoted
by 𝑇 𝑑𝑒𝑎𝑑 , which is the time by which it must finish its task, and (4)
the electrical energy required by its operation. Shiftable appliances
must be scheduled from their configuration times until their deadlines.
The scheduling problem is solved under user preferences, and shiftable
appliances automatically start based on the obtained solution.

A brief introduction of the formulation of shiftable appliances is
presented here. We model the operating cycle of each appliance. Let
𝑚 be the index of the shiftable appliances. The operating time of each
appliance is divided by the time resolution of 𝛥𝑡, and the index of
each divided operating phase is represented by 𝑝. Binary variables 𝑞𝑚,𝑝,𝑡
represent the state of the shiftable appliances; 𝑞𝑚,𝑝,𝑡 = 1 if appliance
𝑚 is in operation phase 𝑝 at time 𝑡, otherwise 0. We also introduce
binary variables 𝑟𝑚,𝑝,𝑡 as a finished flag; 𝑟𝑚,𝑝,𝑡 = 1 if operation phase
𝑝 of appliance 𝑚 is already finished at time 𝑡, otherwise 0. We can also
formulate the shiftable appliance scheduling:

𝐷𝑠ℎ𝑓𝑡
𝑡 =

𝑀
∑

𝑚=1

𝑃
∑

𝑝=1
𝑞𝑚,𝑝,𝑡 ⋅𝐷

𝑎𝑝𝑝
𝑚,𝑝 , ∀𝑡, (4)

𝑞𝑚,𝑝,𝑡 + 𝑟𝑚,𝑝,𝑡 ≤ 1, ∀{𝑚, 𝑝, 𝑡}, (5)

𝑞𝑚,𝑝,𝑡−1 − 𝑞𝑚,𝑝,𝑡 ≤ 𝑟𝑚,𝑝,𝑡, ∀{𝑚, 𝑝}, 2 ≤ 𝑡 ≤ 𝑇 , (6)

𝑟𝑚,𝑝,𝑡−1 ≤ 𝑟𝑚,𝑝,𝑡, ∀{𝑚, 𝑝}, 2 ≤ 𝑡 ≤ 𝑇 , (7)

𝑞𝑚,𝑝,𝑡 ≤ 𝑟𝑚,𝑝−1,𝑡, ∀{𝑚, 𝑡}, 2 ≤ 𝑝 ≤ 𝑃 , (8)

𝑟𝑚,𝑝−1,𝑡 − 𝑟𝑚,𝑝,𝑡 = 𝑞𝑚,𝑝,𝑡, ∀{𝑚, 𝑡}, 2 ≤ 𝑝 ≤ 𝑃 , (9)
𝑇
∑

𝑡=1
𝑞𝑚,𝑝,𝑡 = 1, ∀{𝑚, 𝑝}, (10)

𝑞𝑚,𝑝,𝑡 = 0, ∀{𝑚, 𝑝}, 1 ≤ 𝑡 ≤ 𝑇 𝑐𝑜𝑛𝑓
𝑚 , 𝑇 𝑑𝑒𝑎𝑑

𝑚 ≤ 𝑡 ≤ 𝑇 , (11)

where 𝐷𝑎𝑝𝑝
𝑚,𝑝 is the demand energy of phase 𝑝 of appliance 𝑚. Eq. (4)

aggregates the shiftable demand. Eqs. (5)–(10) shows the scheduling
logic of the shiftable appliances. Eq. (11) denotes the user preference
for the timing of the appliance usage. This scheduling problem is solved
at the coarse-grained time scale.

3.4. Accurate parameterized battery model

Battery system models are critical tools for designing energy man-
agement systems in terms of scheduling and simulation. The main
contribution of this paper is building a battery module model from a
battery cell model [41] and leveraging it to accurately follow SOC pro-
files and charge–discharge loss. As described in Section 1, most related
studies have utilized a simple battery model that linearly represents
such losses without accurately capturing the battery characteristics.

Assuming that each cell is identical in the battery module, the
battery module’s configuration is shown in Fig. 4. 𝑁𝑠 and 𝑁𝑝 are a
number of series- and parallel-connected cells. We use the equivalent
circuit model as a battery model that shows good agreement with
the measurements of battery run-time and non-linear I–V characteris-
tics [41].

Based on a previous work [41], an aggregated equivalent circuit
model of the battery module used in this paper is shown in Fig. 5. The
left part of the equivalent circuit expresses the battery lifetime. Here
voltage source 𝑉𝑆𝑂𝐶 represents the stored energy level of the battery,
i.e., SOC, ranging from 0.0 (0%) to 1.0 (100%). The terminal current
of battery 𝐼𝑏𝑎𝑡𝑡 is positive when it is discharging and negative when it
is charging. In addition, the nominal capacity of the battery module,
denoted by 𝐶𝑛𝑜𝑚, is calculated from cell capacity 𝐶𝑐𝑒𝑙𝑙:

𝐶 = 𝑁 ⋅ 𝐶 , (12)
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𝑛𝑜𝑚 𝑝 𝑐𝑒𝑙𝑙
Fig. 4. Configuration of battery module composed of 𝑁𝑠 cells in series and 𝑁𝑝 cells
in parallel.

and the change in the SOC level is calculated based on the terminal
current:

𝑆𝑂𝐶𝑡+1 = 𝑆𝑂𝐶𝑡 − ∫

𝑡+1

𝑡

𝐼𝑏𝑎𝑡𝑡
𝐶𝑛𝑜𝑚

𝑑𝑡. (13)

The right part of the equivalent circuit represents the I–V charac-
teristics of the battery. The left parallel RC branch and the right one
are in charge of the shorter and longer transient responses of the I–V
characteristics. Here voltage source 𝑉𝑏𝑎𝑡𝑡 is the terminal voltage of the
battery module. Each cell consists of open circuit voltage 𝑉𝑂𝐶 , resis-
tances (𝑅𝑆 , 𝑅𝑇𝑆 , 𝑅𝑇𝐿), and capacitances (𝐶𝑇𝑆 , 𝐶𝑇𝐿). These parameters
are a function of the SOC level and given by:

𝑉𝑂𝐶 = 𝑎1 ⋅ exp(𝑎2 ⋅ 𝑆𝑂𝐶) + 𝑎3

+ 𝑎4 ⋅ 𝑆𝑂𝐶 + 𝑎5 ⋅ 𝑆𝑂𝐶2 + 𝑎6 ⋅ 𝑆𝑂𝐶3, (14)

𝑅𝑆 = 𝑎7 ⋅ exp(𝑎8 ⋅ 𝑆𝑂𝐶) + 𝑎9, (15)

𝑅𝑇𝑆 = 𝑎10 ⋅ exp(𝑎11 ⋅ 𝑆𝑂𝐶) + 𝑎12, (16)

𝑅𝑇𝐿 = 𝑎16 ⋅ exp(𝑎17 ⋅ 𝑆𝑂𝐶) + 𝑎18, (17)

𝐶𝑇𝑆 = 𝑎13 ⋅ exp(𝑎14 ⋅ 𝑆𝑂𝐶) + 𝑎15, (18)

𝐶𝑇𝐿 = 𝑎19 ⋅ exp(𝑎20 ⋅ 𝑆𝑂𝐶) + 𝑎21, (19)

where {𝑎𝑛,∀𝑛 = 1…21} are the coefficients of the battery cell. We use
the values provided in the literature [41]. Finally, terminal voltage 𝑉𝑏𝑎𝑡𝑡
and charge–discharge energy 𝐸 in kWh are calculated:

𝑉𝑏𝑎𝑡𝑡 = 𝑁𝑠 ⋅ 𝑉𝑂𝐶 − 𝐼𝑏𝑎𝑡𝑡 ⋅
𝑁𝑠 ⋅ 𝑅𝑆

𝑁𝑝
− 𝑈𝑇𝑆 − 𝑈𝑇𝐿, (20)

𝐸 = 𝐼𝑏𝑎𝑡𝑡 ⋅ 𝑉𝑏𝑎𝑡𝑡∕1000, (21)

where 𝑈𝑇𝑆 and 𝑈𝑇𝐿 are the voltage of the left parallel RC branch and
the voltage of the right one, calculated by the following equations:
𝑑𝑈𝑇𝑆
𝑑𝑡

= −
𝑈𝑇𝑆

𝑅𝑇𝑆 ⋅ 𝐶𝑇𝑆
+ 𝐼𝑏𝑎𝑡𝑡 ⋅

𝑁𝑠
𝑁𝑝 ⋅ 𝐶𝑇𝑆

, (22)

𝑑𝑈𝑇𝐿
𝑑𝑡

= −
𝑈𝑇𝐿

𝑅𝑇𝐿 ⋅ 𝐶𝑇𝐿
+ 𝐼𝑏𝑎𝑡𝑡 ⋅

𝑁𝑠
𝑁𝑝 ⋅ 𝐶𝑇𝐿

. (23)

In this paper, a full equivalent circuit model is used in the system
simulation to estimate accurate battery states. The modified equivalent
circuit model is implemented in the optimization problem to obtain
effective battery utilization with reasonable computation time. The de-
tails of the battery model’s modification are described in the following
section.

4. Mathematical formulation of multi-time scale optimization

The proposed framework’s objective is to calculate the optimal
schedules of a smart PV system, which includes power purchases, a
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Fig. 5. Circuit diagram of equivalent circuit model of battery module composed of 𝑁𝑠
cells in series and 𝑁𝑝 cells in parallel.

Fig. 6. Multi-time scale optimization flow of proposed framework.

battery system, and shiftable appliances. As mentioned in Section 2.2,
the proposed framework employs a multi-time scale MPC composed
of multiple optimization problems. First, we show the optimization
flow implemented in the proposed framework and introduce a detailed
mathematical formulation.

Fig. 6 shows the multi-time scale optimization flow of the proposed
framework. The optimization loop, which is composed of multiple
optimization problems, is executed in every internal period of 𝛥𝑡. First,
coarse-grained time scale optimization is performed. This time scale
has two optimization problems: (1) appliance scheduling (AS) and
(2) coarse-grained energy management (CGEM). The AS problem is
solved to determine the schedule of shiftable appliances. The CGEM
problem is solved with the obtained appliance schedule to calculate the
battery’s reference solution. The CGEM includes the equivalent circuit
battery model, and the battery characteristics are precisely considered.
The planning period is still long at these optimizations, and the PV
generation forecasting is roughly updated with coarse-grain resolution.
After that, fine-grained time scale optimization decides the precise
control. The PV forecasting model, mentioned in Section 3.2, gener-
ates PV energy profiles, and fine-grained energy management (FGEM)
optimization is solved with forecast information and reference values
obtained by coarse-grained optimization. The reference values consist
of the demand profiles of the shiftable appliances and the battery
energy profiles of charging and discharging. The fine-grain schedules
of the battery system calculated by the FGEM are directly applied to
the system. Based on optimal schedules, actual behavior is simulated
with the full equivalent circuit battery model, and the battery state is
updated. The AS, CGEM, and FGEM formulations are described in the
following section.
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4.1. Appliance scheduling

This section shows a detailed mathematical formulation of AS.
Because of the coarse-grained time scale, the time index is 𝑡𝐿 with a
time resolution of 𝛥𝑡𝐿. The problem includes some binary variables,
and AS is a mixed-integer linear programming (MIP) problem. The
following formulation describes AS’s optimization problem:

minimize
𝑇𝐿
∑

𝑡𝐿=1
𝜉𝑡𝐿 ⋅ 𝑆𝑡𝐿 , (24)

subject to (1)–(13), (21), ∀𝑡𝐿,

input

{𝐺𝑡𝐿 , 𝐷
𝑏𝑎𝑠𝑒
𝑡𝐿

, 𝜉𝑡𝐿}, ∀𝑡𝐿,

decision variables

{𝑆𝑡𝐿 , 𝑌𝑡𝐿 , 𝐼𝑏𝑎𝑡𝑡,𝑡𝐿 , 𝑞𝑚,𝑝,𝑡𝐿 , 𝑟𝑚,𝑝,𝑡𝐿}, ∀{𝑚, 𝑝, 𝑡𝐿},

where 𝜉𝑡𝐿 is the electricity price of the power company. Note that
AS employs the simplified battery model obtained by fixing battery
terminal voltage 𝑉𝑏𝑎𝑡𝑡 to the constant nominal value, i.e., the I–V char-
acteristics of the battery are not considered in AS. This is because the
AS formulation includes integer variables, and an AS with non-linear
equivalent circuits is too complex to solve. This simplification is com-
pensated in the following CGEM by re-solving the battery scheduling
concern with the equivalent circuit model.

The objective is to minimize electricity costs, and the AS solution
contains optimal scheduling for the shiftable appliances, the battery,
the wasted energy, and power purchases from the utility grid. Only the
optimal schedule of shiftable appliances, 𝐷𝑠ℎ𝑓𝑡

𝑡𝐿
and 𝑞𝑚,𝑝,𝑡𝐿 , is applied

to the system and other optimizations. The rest are discarded and
recalculated in the following problem.

4.2. Coarse-grained energy management

This section shows the detailed mathematical formulation of CGEM,
which is the outer loop for the battery scheduling that shares an
identical time scale with AS. In the CGEM, capacitances 𝐶𝑇𝑆 and 𝐶𝑇𝐿
are removed from the circuit model (Fig. 5) because the dynamics of
the transient response represented by these capacitances are very fast:
20 s - 4 min. It makes no sense to include these dynamics in the coarse-
grained time scale. Hence, the battery equation is reformulated using
resistance value 𝑅𝑡𝑜𝑡𝑎𝑙:

𝑅𝑡𝑜𝑡𝑎𝑙 = 𝑅𝑆 + 𝑅𝑇𝑆 + 𝑅𝑇𝐿, (25)

𝑉𝑏𝑎𝑡𝑡 = 𝑁𝑠 ⋅ 𝑉𝑂𝐶 − 𝐼𝑏𝑎𝑡𝑡 ⋅
𝑁𝑠 ⋅ 𝑅𝑡𝑜𝑡𝑎𝑙

𝑁𝑝
. (26)

Because the CGEM includes non-linear equations of the battery
model, it is a non-linear programming (NLP) problem. CGEM’s formu-
lation is finally described:

minimize
𝑇𝐿
∑

𝑡𝐿=1
𝜉𝑡𝐿 ⋅ 𝑆𝑡𝐿 , (27)

subject to (1)–(3), (12)–(17), (21), (25), (26), ∀𝑡𝐿
input

{𝐺𝑡𝐿 , 𝐷
𝑏𝑎𝑠𝑒
𝑡𝐿

, 𝐷𝑠ℎ𝑓𝑡
𝑡𝐿

, 𝜉𝑡𝐿}, ∀𝑡𝐿,

decision variables

{𝑆𝑡𝐿 , 𝑌𝑡𝐿 , 𝐼𝑏𝑎𝑡𝑡,𝑡𝐿}, ∀𝑡𝐿,

where the objective is identical with that of the AS to minimize elec-
tricity costs. The CGEM contains optimal scheduling for the battery, the
wasted energy, and power purchases from the utility grid.

The obtained battery schedule is more effective than the AS solution
because the CGEM contains equations that accurately expresses the I–V
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characteristics. The reference value of battery energy 𝐸𝑟𝑒𝑓 is input to
the FGEM, as defined by:

𝐸𝑟𝑒𝑓 = 1
1000

⋅ 𝐼𝑏𝑎𝑡𝑡1 ⋅ 𝑉 𝑏𝑎𝑡𝑡
1 ⋅

𝛥𝑡𝑆
3600

, (28)

where the FGEM decides the fine-grained battery schedule based on
𝐸𝑟𝑒𝑓 , and this prevents a greedy solution that discharges the battery
system to minimize electricity costs.

4.3. Fine-grained energy management

FGEM is the inner loop for battery scheduling to interpolate high
fluctuations of PV generation. The time index is 𝑡𝑆 with 𝛥𝑡𝑆 resolution,
nd length 𝑇𝑆 normally equals resolution 𝛥𝑡𝐿. The full equivalent
ircuit of the battery module is employed to express the battery dy-
amics, i.e., the transient response. In addition, the battery trajectory
n the fine-grained time scale should follow the schedules of the coarse-
rained time scale. Thus, based on the reference value from the CGEM
enoted by 𝐸𝑟𝑒𝑓 , the charging/discharging energy of the battery is
onstrained by Eq. (29):

𝑡𝑆 − 𝐸𝑟𝑒𝑓 ≤ 𝜀 ⋅ |𝐸𝑟𝑒𝑓
|,∀𝑡𝑆 , (29)

here 𝜀 denotes the relative error from the reference value, e.g., it is
et to 5%.

Because FGEM includes the non-linear equations of the battery
odel, it is an NLP problem. The following formulation finally shows

GEM’s optimization problem:

inimize
𝑇𝑆
∑

𝑡𝑆=1
𝜉𝑡𝑆 ⋅ 𝑆𝑡𝑆 , (30)

ubject to (1)–(3), (12)–(14), (20)–(23), (29),∀𝑡𝑆 ,
nput

{𝐺𝑡𝑆 , 𝐷
𝑏𝑎𝑠𝑒
𝑡𝑆

, 𝐷𝑠ℎ𝑓𝑡
𝑡𝑆

, 𝜉𝑡𝑆 }, ∀𝑡𝑆 ,

decision variables

{𝑆𝑡𝑆 , 𝑌𝑡𝑆 , 𝐼𝑏𝑎𝑡𝑡,𝑡𝑆 }, ∀𝑡𝑆 ,

where the AS solution for appliances 𝐷𝑠ℎ𝑓𝑡 is also input, and the
objective is identical as the other problems to minimize electricity costs.
The FGEM solution contains the optimal scheduling for the battery, the
wasted energy, and the power purchases from the utility grid.

We applied these optimal solutions to the smart PV system and
simulated actual battery behavior with a complete equivalent circuit
model in the system simulation. Note that the simulation of the battery
system remains a critical step in the actual implementation. Since the
battery’s internal state cannot usually be directly measured, simulation
is required to accurately estimate such battery states as SOC.

5. Simulation results

In this section, we explain several key simulation experiments to
demonstrate the effectiveness of our proposed framework with practical
assumptions. The experimental setup is first described, and then the
case studies are performed under different settings of the proposed
framework. The impact of PV forecasting error on the performance is
also investigated. Finally, the proposed framework is compared with
other baseline methods in terms of electricity costs.

5.1. Simulation setup

The parameters of the proposed framework are shown here. In all
the experiments, the simulation period is ten days, and every simulation
day starts at 12 p.m. midnight. The time resolutions in the coarse- and
fine-grained time scales were set to 15 min and 1 s, i.e., 𝛥𝑡𝐿 = 900 [s]
nd 𝛥𝑡𝑆 = 1 [s]. The planning periods of the coarse- and fine-grained
7

ime scales were set to 24 h and 15 min, and thus, 𝑇𝐿 = 96 [900 s]
able 1
arameters settings of battery system.
Description Symbol Value

Initial SOC 𝑆𝑂𝐶 𝑖𝑛𝑖𝑡 0.5 (50%)
Terminal SOC 𝑆𝑂𝐶 𝑡𝑒𝑟𝑚 0.5 (50%)
Min. SOC 𝑆𝑂𝐶 0.2 (20%)
Max. SOC 𝑆𝑂𝐶 1 (100%)
Min. current 𝐼𝑏𝑎𝑡𝑡 −0.5 ⋅ 𝐶𝑛𝑜𝑚 (50% of capacity)
Max. current 𝐼𝑏𝑎𝑡𝑡 0.5 ⋅ 𝐶𝑛𝑜𝑚 (50% of capacity)
Number of cells in series 𝑁𝑠 25
Number of cells in parallel 𝑁𝑝 191
Nominal voltage 𝑉𝑐𝑒𝑙𝑙 4.1 [V]
Nominal capacity 𝐶𝑐𝑒𝑙𝑙 0.85 [Ah]
Battery capacity – 15 [kWh]

and 𝑇𝑆 = 900 [s]. AS is a MIP problem solved by a commercial solver
called CPLEX [42]. CGEM and FGEM comprise an NLP problem solved
by an open-source solver called IPOPT [43]. The computing platform
on which the simulation is run uses an Intel Core-i7 6600U CPU with
two cores, a 2.60 GHz clock frequency, and 16 GB of DDR3 RAM.

The battery parameters in the optimization problems are described
in Table 1. The coefficients of battery cell {𝑎𝑛,∀𝑛 = 1…21} are
provided by the literature [41]. The relative error of the charging/
discharging energy between CGEM and FGEM denoted by 𝜀 is set to
0.05 (5%). The electricity price is the time-of-use (TOU) policy widely
employed in Japan: 21.66 ¥/kWh during daytime (7 a.m.–11 p.m.) and
10.7 ¥/kWh during nighttime (11 p.m.–7 a.m.) [44].

The PV generation profiles and other environmental data were
collected with 1-second resolution at the University of Oldenburg from
June to July, 2015 [38]. Ten days (June 18 to 27) are used as input
for the simulation, and PV generation profiles are scaled by a constant
value as to simulate a 15 kWp PV system (Fig. 7). It has to be noted
that the simulated days were rather cloudy. Therefore, the simulated
PV generation is highly fluctuating, and forecasting such PV generation
profiles is extremely complex. Hence, high forecasting error can be
expected; in other words, this simulation study is under a worst-case
scenario to test the worst-case performance of the proposed method.
Regarding PV forecasts, the fine-grained forecast of PV generation is
provided by the PV forecasting model [38], whose average forecasting
error is less than 12% even with cloudy scenarios. The coarse-grained
forecast of PV generation is manually generated by adding error distri-
bution to the actual measured profiles, and its average error is 20%.
Thus, we assumed a Gaussian distribution as the error distribution,
whose relative standard deviation is set to 20% of the mean value of
the measured PV generation profiles.

The demand profiles of the non-shiftable appliances, which are
based on the Dutch Residential Energy Dataset (DRED) [45], were
collected from July to December 2015 with a 1-second resolution.
Ten days of demand profiles (July 5 to 14) are extracted from the
dataset and used as input for the simulation. As for the PV generation
profiles, also demand profiles are scaled by a constant value. The mean
value of the non-shiftable appliances per day was set to 50.1 kWh.
The shiftable appliances profiles are shown in Table 2. We assumed
three shiftable appliances: a washing machine, a tumble dryer, and
a dishwasher. There are four appliances in each type, i.e., there are
totally twelve shiftable appliances. Each appliance is operated once a
day. The configuration time is randomly generated within the range
shown in Table 2, and the deadline is decided by adding the shiftable
time to the configuration time. The power profiles of each shiftable
appliance with 1-second resolution are provided by the dataset [46].

5.2. Comparison study with baseline methods

In this section, we compared the proposed framework with several
representative baseline methods to evaluate the effectiveness of appli-
ance and battery scheduling. The baseline methods are described as
follows:
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Fig. 7. PV generation profiles for ten days (June 18 to July 27) used in simulation, collected at University of Oldenburg.
Table 2
Profiles of three types of smart appliances used in simulations.

Appliance Total energy Operation time Conf. time Shiftable time

Washing machine 0.22 kWh 45 min 8 a.m.–10 a.m. 7 h
Tumble dryer 1.86 kWh 75 min 8 a.m.–10 a.m. 7 h
Dishwasher 1.88 kWh 75 min 12 p.m.–15 p.m. 8 h
Table 3
Comparison of electricity cost results for ten days and improved rates of electricity
costs of proposed method with three different methods: ASAP, NBS, and ASAP-NBS.

Method Proposed ASAP NBS ASAP-NBS

Electricity cost for ten days
[¥]

3004 3319 4408 5784

Improved rate of electricity
cost of proposed

– 9.5% 31.9% 48.1%

(1) Using Shiftable Appliances As Soon As Possible (ASAP):
smart appliances are not scheduled by optimization. They are
turned on as soon as the configuration time comes. The battery
schedule is optimized by CGEM and FGEM.

(2) No Battery Scheduling (NBS): CGEM and FGEM are removed
from the proposed method while the AS is being solved. The
battery is assumed to be charged at a constant C-rate 10% over
night (11 p.m.–7 a.m.) and discharged at a constant C-rate 5%
during the day (7 a.m.–11 p.m.).

(3) ASAP-NBS: since this method combines ASAP and NBS, no
optimization problem is solved.

Table 3 shows the results of the electricity costs for ten days and
the improved rate of Proposed with respect to the other methods. The
proposed framework achieved the lowest electricity cost in all methods,
and the maximum improving rate was 48.1%. Appliance scheduling
can fill the energy gap between generation and demand. Electricity
costs were clearly reduced. We also identified battery scheduling as
the major contributing factor for reducing electricity costs. When the
battery is charged and discharged by such constant current as NBS,
the battery cannot control the balance between renewable generation
and demand. As a result, the purchased energy increases to ensure that
demand is fulfilled.

5.3. Impact of planning period on coarse-grained time scale

In this section, the impact of the planning period on the coarse-
grained time scale is investigated. The proposed framework is per-
formed with different planning periods 𝑇𝐿 from six to 48 h.

Table 4 shows the electricity costs over ten days and the mean value
of the computational times for each optimization problem. Electricity
costs decrease until the planning period increases to 24 h. However,
when the planning period exceeds 24 h, electricity costs increase.
This is because that the battery operation solution changes depending
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Table 4
Electricity cost results for ten days and computational times with different planning
periods from 6 to 48 h.

Planning period [h] Electricity costs [¥] Computational times [seconds]

𝑇𝐿 AS CGEM FGEM

6 3194 0.95 0.19 3.11
12 3106 1.63 0.27 3.03
24 3004 4.32 0.43 3.51
36 3044 8.65 0.63 3.12
48 3055 17.59 0.94 3.24

on whether 36- and 48 hour planning periods are chosen. The end
state of the battery’s SOC after a ten-day simulation is 53.1% when
it employs a 24 hour period, and its value is 65.1% and 65.8% when
it employs 36- and 48 hour periods. From a longer input perspective,
the battery operation solution changes, and the remaining energy in
the battery increases. Also, shiftable appliance schedule solution also
change. When it employs 24 hour periods, some shiftable appliances
in the last simulation day were shifted to the next day (outside the
evaluation period). In contrast, employing 36- and 48 hour periods,
these appliances were scheduled within that day. Over a 24 hour
period, we assume that the reduction of electricity costs is saturated.

On the other hand, the computational time of each optimization
problem increases as the planning period increases. When the plan-
ning period reaches 48 h, the computational time of AS significantly
increases. This is because the longer the planning period, more decision
variables and smart appliances must be scheduled. However, since
the sum of the computational time is much less than the length of
time resolution 𝛥𝑡𝐿, our proposed framework is applicable for all the
simulated planning periods. In addition, daily (24 h) planning is most
efficient with home and building applications because of the repetitive
nature of some of the daily demands of the occupants. When the
planning period of the coarse-grained time scale is set to 24 h, the
proposed framework achieves good performance.

5.4. Impact of number of smart appliances

Next we demonstrate the impact of the number of smart appliances
on the computational times. Every type of smart appliances was in-
creased from 2 to 10, i.e., the total number of smart appliances was
changed from 6 to 30. Since each appliance is scheduled once a day,

the AS daily calculates the optimal schedule for 6–30 appliances.
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Table 5
Results of average computational times under scenarios with different numbers of smart
appliances ranging from 6 to 30.

Shiftable appliances per day Computational times [seconds]
AS

6 2.13
12 4.32
18 6.67
24 8.79
30 10.39

Table 5 shows the average computational times for each optimiza-
tion problem. Naturally, the computational time of AS increases with
more appliances. However, the requirements for the computational
times, that every optimization flow must be completed within 𝛥𝑡𝐿 = 900
s, are always met, and the computational time is appropriately short.
Thus, if a smart PV system has several buildings and as many as 30
smart appliances or more, AS is sufficient in both accuracy and time
complexity for planning shiftable appliances.

5.5. Impact of PV forecasting error and battery size

In this section, we analyzed the performance of our proposed frame-
work with different PV forecasting errors. We used the same method
described in Section 5.1 to generate the coarse-grained forecast of PV
generation, and its average forecasting error was set to 20, 30, or 40%.
In the fine-grained time scale, two different forecasting schemes are
compared: energy forecasting [38] and power forecasting [38]. The
average forecasting errors for the 15-minute horizons of the energy and
power forecasting are about 12 and 20%. As an ideal case, we would
employ the perfect forecasting method, assuming that the forecasting
error for both time scales is 0%. To investigate the effect of battery
sizing, we also changed the battery capacity from 3 to 18 kWh.

Fig. 8 shows the results of electricity costs for various PV forecasting
errors and battery capacities. Detailed values of the electricity costs are
shown in Table 6. In Fig. 8, the black line indicates the electricity costs
during perfect forecasting, and the red and blue lines denote the energy
and power forecasting for fine-grained time scales. As seen from these
results, when the battery capacity is too large (such as 18 kWh), the
improvement of electricity costs is often saturated or reduced. This is
because the negative effect of misunderstanding future PV generation
is also enhanced as the battery size increases; i.e., the effect of battery
misoperation due to PV forecasting error exceeds the effect of reduction
in electricity costs from more battery capacity. Note that we did not
choose larger battery sizes for practical reasons, including high capital
costs.

On the other hand, looking at the forecasting error for the coarse-
grained time scale, when the battery capacity exceeds 9 kWh, the
smaller is the forecasting error, and the lower is the electricity costs.
However, when the battery capacity is 3 or 6 kWh, the coarse-grained
prediction error has little effect on electricity costs. The PV forecasting
scheme for the fine-grained time scale greatly improves the electric-
ity costs: better forecasting equals energy forecasting. Therefore, the
accuracy of the forecasting scheme for the fine-grained time scale
is a significant factor for the performance of energy management. A
10% improvement in fine-grained forecast error is equivalent to a
remarkable 30%–50% reduction in battery size and achieves identical
electricity costs.

5.6. Impact of multi-time scale structure

To investigate the necessity of the multi-time scale structure, the
proposed framework is compared with two single-time scale methods
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for the scenario presented in Section 5.2:
Fig. 8. Results of electricity costs for ten days under scenarios with different PV
forecasting errors and battery capacities.

(1) Only Coarse-grained Optimization (OC): only AS and CGEM
in the coarse-grained time scale are executed, and their solutions
are directly applied to the system without using FGEM.

(2) Only Fine-grained Optimization (OF): only FGEM in the fine-
grained time scale is executed. The smart appliances are oper-
ated as soon as possible in ASAP, and CGEM is removed.

Table 7 shows the results of the electricity costs for ten days and
the improving rate of the proposed method with respect to OC and
OF. Our proposed framework also achieved the best performance, and
the maximum improving rate of the electricity costs was 47.5%. The
multi-time scale structure is effective in terms of electricity costs.

Figs. 9 and 10 show the results of the SOC profiles and the battery
power profiles for the same day. OF clearly falls into myopic optimiza-
tion, i.e., where the battery is discharged to reduce electricity costs
as long as energy is available from it. Since only OF knows about
the upcoming 𝑇𝑆 of 15 min without the coarse-grained time scale, its
solution is not optimized for longer-term changes of energy demand
and PV generation. Comparing the proposed and OC methods, the
proposed method reaches higher SOC of the battery system than OC.
Although OC provides a solution that captures the long-term changes
of PV generation, the accumulated errors of PV fluctuation in the fine-
grained time scale cause a loss of opportunities to charge the battery
with the PV generation. Our proposed method follows the reference
solution of the coarse-grained time scale and compensates for the
fast variations in the smart PV system at the fine-grained time scale.
The multi-time scale structure eventually improves battery and energy
management.

The proposed methodology focuses on both the fast and slow dy-
namics of PV generation and battery. Of course, energy demand is also
highly volatile, but the time scales are on the order of many minutes
and different from the fast variations in PV generation and battery. As
a result we can absorb the energy demand fluctuations in the coarse-
grained optimization loop of our multi-time scale approach. The fast
responses of battery charges and discharges allow us to effectively deal
with energy demand fluctuations, as demonstrated by our simulation
results. Indeed, if the demand side becomes more sophisticated and
more active in the market, energy demand variations will also become a
major constraint to be solved. In the current market situation, although
such a development would be challenging, it is currently beyond the
scope of this paper and represents future work.
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Fig. 9. Simulation results of SOC profiles of 15 kWh battery system on first day, corresponding to three methods: Proposed, OC, and OF.
Fig. 10. Simulation results of power output of 15 kWh battery system on first day, corresponding to three methods: Proposed, OC, and OF; positive values denote discharging,
therwise charging.
Table 6
Detailed values of electricity costs in ¥ for ten days with different PV forecasting errors and battery capacities.

Battery capacity [kWh] Perfect forecasting

Forecasting scheme for coarse-grained

Energy forecasting (error <12%) Power forecasting (error <20%)

Forecast error for fine-grained Forecast error for fine-grained

20% 30% 40% 20% 30% 40%

3 3450 3558 3529 3579 3610 3570 3612
6 3146 3309 3292 3360 3437 3404 3477
9 3025 3181 3227 3272 3334 3381 3420

12 2821 3037 3118 3171 3202 3289 3353
15 2739 3004 3094 3185 3182 3271 3379
18 2719 3027 3092 3205 3193 3281 3384
Table 7
Results of electricity costs for ten days and comparison of improving rate of electricity
costs among our proposed method, OC, and OF.

Method Proposed OC OF

Electricity cost for ten days [¥] 3004 3183 5717
Improving rate of electricity costs
of Proposed

– 5.6% 47.5%

6. Summary

We proposed a multi-time scale energy management framework for
a smart photovoltaic (PV) system. In the proposed framework, a model
predictive control (MPC) approach is employed that uses PV generation
forecasting as input to deal with highly volatile PV generation. The
proposed framework simultaneously solves three interconnected opti-
mization problems using the multi-time scale structure and considers
long- and short-term system dynamics. The multi-time scale consists of
two-time scales: coarse-grained and fine-grained. In the coarse-grained
time scale, smart appliances are scheduled to shift operating times,
and the battery charge/discharge profiles are optimized to deal with
the daily variations of PV generation and demand. In the fine-grained
10
time scale, the battery’s precise control is achieved by introducing
an accurate battery model that is combined with the fine-grained PV
forecasting model. The results, which are compared with representative
baseline methods, demonstrate that the proposed framework reduces
electricity costs under different scenarios up to a maximum of 48.1%.
We also investigated the impact of PV forecasting error and battery
capacity on the performance of the proposed framework. If an accurate
PV forecasting model were introduced, electricity costs could be signif-
icantly reduced, even with small batteries. The combination of accurate
PV forecasting and our proposed energy management framework might
also reduce installation costs since a smaller battery system could be
used.

Future work will extend our proposed framework to multi-objective
optimization for maximizing user comfort and minimizing system cost,
perhaps incorporating heat ventilation and air conditioning (HVAC)
systems. Another important direction is implementing the proposed
framework in actual systems with online system management, includ-
ing data processing, data transmission, and fast-responding decisions.
The proposed framework manages the entire system’s operation by
providing practical solutions as a core part of energy management
systems. The modeling result will be validated again by experiments
in our implemented system.
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