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On the Sensitivity to Height and Motion of Bistatic
SAR Interferometry: A Spectral View

Andreas Theodosiou, and Paco López-Dekker, Senior Member, IEEE

Abstract—Assessing the performance of interferometers and
processing interferograms require accurate knowledge of the tem-
poral lag, sensitivity, and spectral shift. While these parameters
are well-defined for conventional interferometric configurations,
their definition becomes opaque for complex configurations, such
as bistatic systems with formation-flying satellites. According to
the principle of diffraction tomography, each instrument samples
a distinct region of the scattering surface’s Fourier domain.
Using this principle, we introduce a wavenumber-domain method
for calculating the temporal lag, spectral shift, and sensitivity
to height of synthetic-aperture radar (SAR) interferometers.
The method calculates interferometric parameters by aligning
the ground-projected wavenumber support of the SAR images
forming the interferogram. Although the wavenumber-support
method agrees with the conventional geometric formulations of
the temporal lag and sensitivity in geometrically simple cases,
the two methods diverge in more complex geometries. We show
that when the two SAR satellites fly in a close-formation or have
lines of sight that are squinted with respect to the zero-Doppler
direction, then the geometric formulations are inadequate and the
wavenumber-support method is needed to accurately estimate the
interferometric parameters.

Index Terms—SAR, interferometry, InSAR, formation flying,
squint, line of sight, squinted geometry, spectral support, bistatic
SAR, multistatic SAR, bistatic SAR interferometry, diffraction
tomorgraphy.

I. INTRODUCTION

WHAT is the temporal lag and the height sensitivity of a
synthetic-aperture radar (SAR) interferometer? Scien-

tists familiar with the instrument would consider the answer
obvious. When the instrument look direction is perpendicular
to the flight direction, these two parameters are proportional
to the projections of the antennas’ physical separation in the
relevant directions. For example, an along-track interferometer
(ATI) with two antennas on a single platform has a temporal
lag directly proportional to the along-track separation [1]–
[3]. Similarly, a cross-track interferometer (XTI) with sensors
that are only separated in the plane normal to the flight
direction has a sensitivity proportional to the baseline of the
two antennas perpendicular to the line of sight [4], [5].

The link between interferometric parameters, namely height
sensitivity and temporal lag, and geometric parameters stems
from a geometric approach to interferometry. The geometric
approach relates the phase of an interferogram to, in the case
of XTI, the elevation of the surface, and in the case of ATI
to the radial motion of the surface. This approach hinges on
the assumption that the SAR signal is monochromatic. In

A. Theodosiou, and P. López-Dekker are with the Department of Geo-
science and Remote Sensing, Delft University of Technology, 2628 Delft,
The Netherlands.

other words, it assumes that the signal bandwidth in range
and azimuth is small enough to be considered negligible.
The monochromatic assumption hides the role that the ground
reflectivity spectrum plays in interferometry. Gatelli explained
the implications of considering the ground-range wavenumber
shift for a conventional XTI [6]. One that has separation
only perpendicular to the line of sight. This has led to the
introduction of spectral shift filtering in the processing of
interferograms [6]–[8].

Nevertheless, the monochromatic approach remains the pri-
mary view of interferometry, if for no other reason that it
is intuitive. The approach and consequently the geometric
methods of calculating interferometric parameters, while in-
tuitive, break down in more complex geometries. Consider an
interferometer operating bistatically with a squinted line of
sight, e.g. a system similar to TanDEM-X [9] or Harmony [10].
The time taken for the lagging phase center to see a given
point on the surface with the same viewing geometry as
the leading phase center is not a function of the along-track
separation alone. Hence, the temporal lag is not equal to half
the tangential separation of the midpoint of the phase centers,
as is the case for bistatic interferometers with a line of sight
perpendicular to the flight direction.

Likewise, since the bistatic lines of sight do not share a
common radial-normal plane, they first need to be aligned
before calculating the perpendicular baseline, which drives
the geometric expression of the sensitivity. However, the lines
of sight of the two sensors do not necessarily align during
the illumination time of a given point, since the transmitter-
receiver pairs have a bistatic line of sight with a common end-
ing point but different starting points and different directions.
Thus, applying the geometric method is not possible.

Employing the monostatic equivalent (ME) of each
transmitter-receiver pair [11] provides a workaround to this
problem and allows one to geometrically compute the interfer-
ometric baselines. Nevertheless, the location of the monostatic
equivalent of a system that has a three-dimensional separation
and squinted line of sight becomes complicated. A different
monostatic equivalent exists for each combination of slow time
and look angle, as shown in Figure 1.

In this paper, we present a more accurate method to solving
this problem. The fundamental relation of diffraction tomog-
raphy states that the field scattered by an object is directly
proportional to the object function’s Fourier transform at the
wavenumbers that correspond to the incident and scattered
wave vectors. Building on this idea, we propose using the
wavenumber support of the two SAR images to calculate
these interferometric parameters. In the following sections,
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Fig. 1. The locations of the monostatic equivalents for a given slow time
and two different look angles. As the look angle increases, the location of the
monostatic equivalent shifts along the line segment connecting the transmitter
to the receiver. Thus, the monostatic equivalent system does not have a single
location for a given slow time, as a true monostatic system would.

we show that by finding the temporal and spectral shifts that
align the wavenumber supports of the two sensors, we can
calculate the temporal lag and the interferometer sensitivity.
Our technique applies to all interferometers, mono and bistatic,
with temporally varying or fixed separations, and regardless of
squint.

II. A SPECTRAL APPROACH TO SAR INTERFEROMETRY

A. The Fundamental Relation of Diffraction Tomography

Before delving into interferometry, we will first motivate
our wavenumber-domain approach by linking the fundamental
principle of diffraction tomography to the region of support,
i.e. the subset of the image domain that maps to non-zero val-
ues, of a SAR image. Consider an instrument illuminating an
object, with complex reflectivity o(rs) where rs represents the
position vector, with a monochromatic electromagnetic wave.
A second instrument, receives the scattered electromagnetic
wave. Assuming that the object is homogeneous, that the Born
approximation is valid, and neglecting geometric attenuation,
the received field is [12]

u(rT , rR) =

∫∫∫
V

o(r′s)e
−jk0(RT (rT ,r′

s)+RR(rR,r′
s)) dr′s,

(1)
where rT , rR are the positions of the transmitter and receiver
respectively, RT , RR are the distances to the object from the

transmitter and receiver respectively, and the integration is
taken over the volume of the object.

We now consider a small neighborhood around the object
at r0 and carry out the first-order Taylor expansion of the dis-
tances for a given position of the transmitter and receiver. The
expansion yields the well-known plane wave approximation of
spherical waves

Rn(rn, rs) ≈ Rn(r0) +∇Rn(r0) · (rs − r0), (2)

where the subscript n can be either T or R. ∇Rn is the
gradient of the slant range and since Rn represents the
distance along a spherical wave, the gradient points in the
line of sight direction. For a typical SAR satellite in a low-
Earth orbit, such as Sentinel-1, with altitude 693 km, a look
angle of 26◦, assuming a rectilinear geometry, and setting
rs = (10m, 2.5m, 0m)T to correspond to half a resolution
cell, the relative error between the expansion in (2) and the
true slant range is 8.8×10−9 %. Hence, from this point on, we
proceed with our analysis using the plane wave approximation.

Substituting (2) into (1), and moving the constant phase
terms out of the integral, we note that the volume integral
becomes the three-dimensional Fourier transform of the scat-
tering density õ [13]:

u(rT , rR) ≈ õ(kT + kR) (3)

where kT = k0∇RT (r0) and kR = k0∇RR(r0) are the
transmitter and receiver wave vectors respectively, and we
have neglected the leading phase term. This is the fundamental
principle of diffraction tomography [13], [14]. Equation (3)
states that the received field is proportional to the Fourier
transform of the illuminated object at the components of
the total wave vector, kT + kR. The result demonstrates
that the instrument samples the Fourier space of the object’s
reflectivity at one point in the spatial frequency domain. The
line of sight of the instrument and the carrier wavelength
determine the point in the spatial frequency domain at which
the object is sampled. By varying the viewing geometry, for
example moving the location of the transmitter and receiver,
or changing the look and squint angles of the antennas, the
instrument can sample different points of the Fourier domain.

A SAR samples the scattered electromagnetic field with a
certain impulse response. Thus, the signal of the SAR image
becomes [4]

u(x, η) = e−jk0R0(f ∗ χ)(x, η), (4)

where ∗ denotes the linear two-dimensional convolution, R0 =
RT (r0) + RR(r0), and we have used the range coordinate,
η, and the azimuth coordinate, x, as the image coordinates,
and the elevation, ζ, which is perpendicular to both as the
third axis. In this expression, we have assumed that setting
the azimuth position, sets the positions of the receiver and
transmitter. χ(x, η) is the system impulse response, and we
have defined the following symbol for brevity:

f(x, η) = e−jk·rs

∫
Z

o(rs) dζ. (5)

The plane wave exponential has been moved out of the
integral because any component of rs along the elevation
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direction will, by definition, be perpendicular to the wave
vector. Additionally, the system impulse response does not
depend on the elevation, since it is perpendicular to the plane
of the SAR image. Consequently, the integral with respect to
elevation only contains the object’s reflectivity. It represents
the projection of the scattering object onto the range and
azimuth axes. Thus, each sample in a SAR image is a single
tomographic projection of the scattering object, shifted by
the plane wave exponential and filtered by the instrument’s
impulse response [4].

SARs do not transmit and receive monochromatic waves.
On the contrary, they use chirp waveforms that have a certain
bandwidth. Therefore, with each pulse, the radar samples the
Fourier domain of the object along the line k0(fr)(∇RT (r0)+
∇RR(r0)), where k0(fr) is the instantaneous wavenumber
that corresponds to the frequency fr of the chirp signal.
Acquiring a second SAR image, from a different position,
produces a different tomographic projection of the scattering
object. Cross-track interferometry uses these two different
projections of the scattering object to infer the relative height
of the scatterer.

B. A Mathematical Derivation of the Spectral Shift in Two
Dimensions

The fundamental principle of the method discussed in this
paper is that only the energy that comes from the wavenumbers
that coincide between the two images contributes to the inter-
ferometric signal. In cases where the wavenumber supports
of the two images are disjoint, the interferometric signal
drops to zero. Therefore, forming an interferogram aligns the
wavenumber supports of the two images, and the temporal
lag and wavenumber shifts correspond to the moment in time
and shift in frequency where the wavenumber supports of
the two images are aligned. Prati and Rocca first proved this
in [8] for the range wavenumbers and for an interferometer
that has only a perpendicular separation. Gatelli et al. [6]
expanded on the spectral shift due to different look angles
and on its exploitation for the improvement of interferometric
techniques. The idea that only the overlapping parts of the
spectra in two dimensions, in range and azimuth, contribute
to interferometric information has also been used in [15] to
correct for the large angle between acquisitions coming from
satellites that followed crossing orbits. In this section we
provide a derivation of this principle in two dimensions, range
and azimuth, for a bistatic interferometer with an arbitrary
separation between the two SARs that compose it.

Consider a cross-track interferometer where two bistatic
SARs illuminate a region on the surface as shown in Figure 2.
The first pair of instruments illuminate the surface with look
angles θ1T , θ1R and squints ψ1T , ψ1R while the second pair has
look angles θ2T , θ2R and squints ψ2T , ψ2R , where subscripts
T and R refer to transmitter and receiver respectively. The
azimuth direction is x and the ground range direction is y; the
two-way slant range to the center of the resolution cell is R0.
The signal representing the processed image of the ith SAR
for i ∈ {1, 2} is

ui(x, y) = e−jk0R0(fi ∗ χ)(x, y), (6)

where χ(x, y) denotes the system impulse response in terms
of azimuth and ground range. We introduce the following
symbols in the interest of brevity:

fi(x, y) = s(x, y)e−jki·rs , (7)

rs = (x, y, z(x, y))
T
, (8)

kiT = k0(sinψiT , cosψiT sin θiT ,− cosψiT cos θiT )
T
, (9)

kiR = k0(sinψiR , cosψiR sin θiR ,− cosψiR cos θiR)
T
, (10)

ki = kiT + kiR , (11)

where ki is the ith bistatic wave vector, and we have assumed
that the surface scattering described by the reflectivity s(x, y)
is coming from the surface described by z(x, y). The carrier
wavenumber, k0 = 2π/λ0, depends on the carrier wavelength
λ0 of the instrument, which we assume is common between the
two sensors. The wave vectors kiT and kiR are equivalent to
those in Section II-A, but here we have defined them in terms
of the look and squint angles of the instruments instead of the
gradients of the slant ranges. In monostatic operation, the wave
vector ki reduces to 2kiT , and the modulus is two times the
carrier wavenumber. The modulus of the bistatic wave vector
is smaller than 2k0.

We express a single realization of an interferogram as

V (x, y) = u1(x, y)u2(x, y)
∗. (12)

The Fourier transform of the interferogram is

Ṽ (k′x, k
′
y) = F{u1(x, y)u2(x, y)∗}(kx, ky),

= (ũ1 ⋆ ũ2)(kx, ky),

=

∫∫
ũ1(kx, ky)

∗
ũ2(kx + k′x, ky + k′y) dkx dky,

(13)

where ⋆ denotes the cross-correlation operation and the Fourier
transform of the image (6) is given by

ũi(kx, ky) = f̃i(kx, ky)χ̃(kx, ky). (14)

Assuming that the vertical component of rs is constant with x
and y allows us to express the Fourier transform of the image
as the shifted reflectivity filtered by the instrument frequency
response in the wavenumber domain

ũi(kx, ky) = s̃(kx + kix, ky + kiy)e
−jkizzχ̃(kx, ky), (15)

where the notation kij denotes the jth component of wave
vector ki and j ∈ {x, y, z}. Equation (15) states that each
sensor samples the surface reflectivity across a band of range
and azimuth wavenumbers. Since the surface reflectivity is not
bandlimited, the bandwidth of the image is determined by the
system frequency response. Each ground-range and azimuth
wavenumber at which the sensor samples the reflectivity is
shifted by kiy and kix respectively. Thus, each instrument
captures a different wavenumber band of the surface reflec-
tivity. The band that each instrument captures depends on the
wave vector of the instrument.
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(a) (b)
Fig. 2. An illustration of the two SAR instruments sampling ground-projected range and azimuth wavenumbers of a given resolution cell. ki is the surface-
projected wavenumber vector that the ith instrument samples. (a) The beginning of an acquisition. (b) The end of an acquisition.

Substituting (15) into (13) yields the linear cross-correlation
of the two image spectra

Ṽ (kx, ky) =

∫∫
s̃(k′x + k1x, k

′
y + k1y)

∗

s̃(k′x + k2x + kx, k
′
y + k2y + ky)

ej∆kzzχ̃(k′x, k
′
y)

∗

χ̃(kx
′ + kx, k

′
y + ky) dk

′
x dk

′
y, (16)

where ∆kz = k1z − k2z is the z component of the wave
vector difference.

We assume that the surface reflectivity, s(x, y), is a circular
complex stochastic process. Thus, as shown in the Appendix,
the Fourier transform of the surface reflectivity, s̃(kx, ky), is
uncorrelated

E{s̃(kx, ky)s̃(κx, κy)∗} = R̃s(kx, ky)δ(kx − κx, ky − κy),
(17)

where R̃s(kx, ky) is the Fourier transform of the surface
reflectivity’s spatial correlation. For a wide-sense stationary
process R̃s(kx, ky) is the power spectral density of the surface
reflectivity, according to the Wiener–Khinchin theorem. The
Dirac delta function in (17) represents an idealized case, which
follows from the assumption that at the scales of interest, the
autocorrelation length of the surface roughness is short. A

practical surface can be modeled by replacing the Dirac delta
with a finite-bandwidth function, such as a Gaussian kernel,
to model the distribution of the power spectral density over a
band of wavenumbers.

We are interested in the expected interferogram, so we
take the expectation over the surface ensemble of (16) and
apply (17)

Ĩ(kx, ky) =

∫∫
R̃s(kx

′ + k1x, ky
′ + k1y)

δ(kx +∆kx, ky +∆ky)

ej∆kzzχ̃(kx
′, ky

′)
∗

χ̃(kx
′ + kx, k

′
y + ky) dk

′
x dk

′
y, (18)

where ∆kx = k1x − k2x, and ky = k1y − k2y . The Dirac
delta function is not a function of the integration variables,
so we can move it out of the integral. We describe Ĩ as the
product of the delta function and the cross-correlation of the
frequency response with itself filtered by the power spectral
density of the surface reflectivity

Ĩ(kx, ky) = δ(kx +∆kx, ky +∆ky)e
j∆kzz

(R̃′
sX ⋆X)(kx, ky), (19)

where R̃′
s is the shifted Fourier transform of the spatial

correlation of the surface reflectivity R̃′
s(kx, ky) = R̃s(kx +

This article has been accepted for publication in IEEE Transactions on Geoscience and Remote Sensing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TGRS.2024.3399598

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.



IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 5

k1x, ky + k1y). Taking the inverse Fourier transform of (19)
yields

I(x, y) = F−1{Ĩ(kx, ky)}(x, y)
= ej∆kzzK̃(∆kx,∆ky)e

j(∆kxx+∆kyy), (20)

where K̃(kx, ky) = (R̃′
sχ̃ ⋆ χ̃)(kx, ky). We can readily inter-

pret (20). The expected interferogram is a complex sinusoid
in the spatial domain with phase proportional to the height of
the surface. The amplitude is the wavenumber-domain cross-
correlation of the product R̃′

sχ̃ with the system frequency
response, evaluated at the shift between the two images. The
product R̃′

sχ̃ is the frequency response of the system filtered
by the shifted power spectral density of the reflectivity.

C. The Wavenumber Support

We express the wavenumber support of a SAR image as
a function of slow time, t, and range frequency fr. The
wavenumbers forming the support of a resolution cell located
at the transmitter look angle θl satisfy

ki(t, fr; θl) = k0(fr)(l̂Ti(t) + l̂Ri(t)), (21)

where k0(fr) = 2πfr/c0 is the wavenumber magnitude, l̂Ti is
the unit vector in the direction of the transmitter’s line of sight,
and l̂Ri is the unit vector in the direction of the receiver’s line
of sight. The line of sight of the ith sensor is

l̂Si(t) =
rSi(t)− rp
∥rSi(t)− rp∥

, (22)

where S is either T for the transmitter line of sight, or R for
the receiver line of sight, and rp is the position vector of the
resolution cell. The time variable for a given resolution cell
varies from τc−τl/2 to τc+τl/2, where τc is the beam center
time and τl is the illumination duration. The range frequency
is centered around the carrier frequency, fc, and its bounds
are given by the bandwidth of the transmitted pulse.

Equation (21) provides insight into the relationship between
the signal space and the observation space. For a given
resolution cell, slow time and range frequency parameterize
the signal space, while in the observation space range and
azimuth wavenumbers are the parameters. Assume the conven-
tional viewing geometry of a monostatic SAR that is looking
perpendicular to the azimuth direction. For a given slow time,
the instrument samples the resolution cell with a band of
frequencies determined by the transmitted pulse. The sampling
of the resolution cell repeats every pulse repetition interval
during the illumination time. The locus of slow time and range
frequency that make up the samples of the resolution cell are
shown on the left panel of Figure 3a. The vertical extent of
the region is the illumination time of the instrument, and the
width is the pulse bandwidth.

The support of the signal in terms of slow time and range
frequency map to wavenumbers projected on the plane tangent
to the surface at the resolution cell according to (21). The
region of support of a resolution cell in terms of wavenumbers
is shown in the right panel of Figure 3a. The diagram has been
produced by exaggerating the illumination time to highlight

the curvature of the region of support as the time moves away
from the beam center time.

We now move on to a bistatic case with a common transmit-
ter. Assume that the transmitter maintains the same viewing
geometry and transmits the same pulse as in the previous case.
The receiver lags the transmitter along the same orbital plane.
As a result, l̂R is squinted forward with respect to l̂T . Since the
transmitted pulse and the illumination time have not changed,
the time-frequency support of the signal is the same as before.
However, the different viewing geometry changes the mapping
to the wavenumber domain. The squint of the bistatic line of
sight means that for a fixed slow time, as the range frequency
is sweeping, both the range and the azimuth wavenumbers are
changing, as Figure 3b shows. Additionally, for a fixed range
frequency the line of sight of the instrument is always squinted,
which breaks the symmetry of the wavenumber support about
kx. The coupling of the range and azimuth wavenumbers
means that they are no longer separable in terms of time and
range frequency. The isolines in the left panel of Figure 3b
show that a fixed value of range or azimuth wavenumbers
traverses both and time and frequency.

D. Temporal Lag and Spectral Shift

We are interested in the difference between the supports of
two SAR images acquired by two instruments with a physical
separation ∆r(t). We express the wavenumbers in the support
of the first sensor by setting i = 1 in (21), and define the
support of the second sensor as

k2(t, fr; θl) = k0(fr)
(
l̂T1(t) + l̂R1(t)

+ ∆lT (t) + ∆lR(t)
)
, (23)

where

∆lS(t) =
rS1(t) + ∆rS(t)− rp
∥rS1(t) + ∆rS(t)− rp∥

− l̂S1(t), (24)

is the difference between the line of sight vectors due to the
relative position of the second instrument with respect to the
first. The first-order Taylor expansion of (23) about (τc, fc)

k2(t, fr; θl) ≈ (k0 +∆k)(l̂T1(τc) + l̂R1(τc) + ∆lT (τc)

+ ∆lR(τc)) + k0
∂

∂t
(l̂T1 + l̂R1

+∆lT +∆lR)(τc)∆t (25)
= k1(t, fr; θl) + (k0 +∆k)∆l(τc)

+ k0
∂∆l

∂t
(τc)∆t, (26)

where we have used k0 = k0(fc), ∆k = ∂k0

∂fr
(fc)(fr − fc),

∆t = t − τc, ∆l = ∆lT (τc) + ∆lR(τc) for brevity, and we
have neglected ∆f∆t cross terms.

To align the two images we fix the support of the first image
at the beam crossing time and at the center frequency and solve
for the (∆t,∆k) where the second support intersects the first

k1(τc, fc; θl) = k2(t, fr; θl). (27)

Simplifying (27) leads to

∆k(l+∆l) + k0
∂(l+∆l)

∂t
(τc)∆t = −k0∆l(τc), (28)
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(b)
Fig. 3. The time-frequency and the corresponding wavenumber region of support of a resolution cell for (a) a monostatic and (b) a bistatic interferometer.
We note that the modulus of the bistatic wave vectors is smaller than that of the monostatic wave vectors for the same range frequency. We illustrate the
modulus of the bistatic wave vector at the minimum range frequency in both support diagrams. The difference of the moduli is exaggerated in the diagram
for the purposes of illustration. Furthermore, the aperture time that we consider for these diagrams is larger than what is typically used in real-world systems
to illustrate the shape of region of support. In a real-world radar, the wavenumber region of support in (a) would look rectangular, and that in (b) trapezoidal
as they would only be a slice of illustrated regions.

where l = l̂T1(τc) + l̂R1(τc).
Until now, no assumption has been made on the reference

frame of vectors k1 and k2. Recalling II-B, the informa-
tion in the interferogram comes from the surface-projected
wavenumbers where the regions of support of the two images
coincide. Thus, to relate the difference in the support to the
temporal lag and spectral shift, we need to solve (27) in a
reference frame where two of the basis vectors are aligned with
the ground range and azimuth directions. Equation (28) is an
overdetermined system of three equations and two unknowns.
However, we can remove one equation from the system
by projecting the wavenumbers on the plane tangent to the
surface. After coordinate transformation and projection, (27)
becomes

k1xy(τc, fc; θl) = k2xy(t, fr; θl), (29)

where k1xy(τc, fc; θl) = Γk1(τc, fc; θl) and k2xy(t, fr; θl) =
Γk2(t, fr; θl) and Γ is a matrix representing the surface
projection to the tangent plane of the resolution cell. Figure 4
shows the tangent plane for a given point on the surface, the
two basis vectors along the plane and the basis vector normal
to the plane, and the wave vectors of two instruments and their
projections at the temporal lag and spectral shift where they
align.

We model the surface projection by

Γ = QXx

(
I − n̂n̂T

)
, (30)

where QXx is the direction cosine matrix from the reference
frame that the vectors are expressed in to the local tangent
frame, and n̂ is the unit vector normal to the surface expressed
in the reference frame of the wavenumber vectors. We define
the local tangent plane with two basis vectors that lie within
the plane, one aligned with interferogram’s ground range

direction and one with the azimuth direction, and complete
it with n̂. The second term of (30) projects the vector on the
tangent plane, while the first term transforms the vector to the
local tangent frame. Hence, a vector multiplied by Γ defined
in (30) will have a third component equal to 0.

Multiplying both sides of (28) by Γ yields(
k0(

∂(l+∆l)
∂t (τc))x (l+∆l)x

k0(
∂(l+∆l)

∂t (τc))y (l+∆l)y

)(
∆t
∆k

)
= −k0∆l. (31)

Equation (31) provides an analytic solution to ∆t and ∆k,
and it is valid if ∆t and ∆k are sufficiently small for second
and higher order terms to be neglected. In cases where the
first-order expansion is invalid, we can compute the solution
to (27) numerically using an optimization method.

E. Height Sensitivity

After solving for the temporal and spectral shift according
to (31), the sensitivity can be computed from the difference of
the aligned wavenumber supports. The interferometric phase
of a resolution cell is

ϕ(∆t,∆f) = ∆k(∆t,∆f) · ζ, (32)

where ζ is the elevation vector and ∆k(∆t,∆f) is the
difference of the aligned supports

∆k(∆t,∆f) = k2(τ +∆t, fc+∆f ; θl)−k1(τ, fc; θl). (33)

Figure 4 illustrates the supports of the aligned surface-
projected wavenumber supports. The orange line on the tan-
gent plane represents the surface projection of the first support
k1xy at the beam crossing time τc. Examining the definition
of the wave vector in (21) reveals that by not fixing the range
frequency of the wave vector, k1xy becomes a line that is
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Fig. 4. The figure shows the plane tangent to a given point on the surface
and the basis vectors of the reference frame used to align the wavenumber
support of the two SAR systems. Two SAR satellites with different look angles
and squints are shown. The wave vectors of the first and second system are
shown in orange and blue colors, respectively. For ease of illustration, the
figure omits the transmitting satellites and instead displays two monostatic
satellites, thus the bistatic wave vector reduces to ki = 2kiT . The concept
remains the same for bistatic systems. The surface-projected wave vectors of
the two instruments, k1xy and k2xy , at the moment of alignment, are shown
on the tangent plane. The circle at the midpoint of k1xy represents the point
at which we fix the support of the first acquisition when solving (29). The
figure also illustrates the component of the difference of the aligned wave
vectors in the elevation direction, ∆kζ(∆t,∆f). The difference of these
vectors drives the sensitivity to the surface height.

parallel to the surface projection of the line of sight and
passes through the origin. At the solution of (29), the surface-
projected support of the second wave vector coincides in the
Fourier space with the surface-projected support of the first
acquisition at the beam crossing time and center frequency.
While the surface projections of the supports are equal to
each other, their components in the normal direction to the
surface are different. The dot product of this difference with
the elevation gives rise to the interferometric phase, and drives
the sensitivity.

In a SAR image, a scatterer is placed at the intersection of
the iso-range and iso-Doppler surfaces. In the monostatic case,
these reduce to the known iso-range sphere and iso-Doppler
cone. Generally, the range and Doppler surfaces are

R ellipsoid: R = ∥lT (t)∥+ ∥lR(t)∥ (34)

fD surface: fD =
1

λc

(
l̂T (t) · vT (t) + l̂R(t) · vR(t)

)
= ν̃c

(
l̂T0(t) · vT (t) + l̂R0(t) · vR(t)

+
r

∥lT0(t) + r∥
· vt(t)

+
r

∥lR0(t) + r∥
· vR(t)

)
≈ fD(r0) + ν̃cr ·

(
vT (t)

∥lT0∥
+

vR(t)

∥lR0∥

)
,

(35)

TABLE I
THE PARAMETERS OF THE INTERFEROMETER USED IN THE DIFFERENT

SIMULATION SCENARIOS.

Case a∆e / m a∆Ω / m Operation

1 50 0 Monostatic & Bistatic
2 0 650 Bistatic
3 125 650 Bistatic

where in the equation of the Doppler shift we have expressed
the scatterer location as the sum of a reference position and
a relative position rp = r0 + r and approximated ∥lT0(t) +
r∥ and ∥lR0(t) + r∥ as ∥lT0∥ and ∥lR0∥ respectively. The
locus of points that satisfy conditions (34) and (35) is a line.
Conventionally, SAR images are focused at the zero-Doppler
location, i.e. fD = 0. Thus, the solution lies on a line on the
surface of the range ellipsoid. All scatterers at the same range
and with the same zero-Doppler location are positioned along
this line, regardless of the incidence angle of their location.

Cross-track interferometry (XTI) solves for the missing
third dimension by positioning a scatterer at a look angle on
the line of constant range and Doppler. After applying the
plane-wave approximation at the vicinity of the scatterer, the
curve along which the solution lies becomes a straight line.
XTI locates the scatterer along the fronts of the plane wave.
Hence, an interferometer is sensitive to the elevation along this
line, normal to the range and Doppler directions. The height
normal to the surface is related to the elevation

z(t) = ζ(t)ζ̂ · ẑ, (36)

where ζ is orthogonal to both the iso-range lines and the iso-
Doppler lines

ζ = (l̂T + l̂R)×
(

vT

∥lT ∥
+

vR

∥lR∥

)
(37)

and ζ̂ = ζ/∥ζ∥.
Taking the derivative of the interferometric phase (32) with

respect to height yields the sensitivity of the interferometer to
height

∂ϕ

∂z
= ∆kζ(∆t,∆f)

∂ζ

∂z
, (38)

where ∆kζ(∆t,∆f) is the ζ component of the aligned support
difference and from (36) we can express the derivative of the
elevation with respect to height as 1/ζ̂ ·ẑ. Thus, the sensitivity
is the difference between the aligned supports, in the elevation
direction, inverted to the vertical direction.

III. SIMULATIONS AND RESULTS

A. Simulations

We simulate three different interferometers. In all three, the
receiving SAR satellites are flying in a Helix formation [16].
The first has a tangential and radial separation between the
two sensors, and we simulate both monostatic and bistatic
operation with a common transmitter. The two antennas point
in the zero-Doppler direction. The second also looks in the
zero-Doppler direction, but only has a normal separation and
operates monostatically. Thus, the effective temporal lag is 0 s.
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Fig. 5. An illustration of the three different satellite configurations used for the simulation experiments. (a) is the first case, with a tangential and radial
component that vary with time. (b) is the second case, with only a normal component that varies with time. (c) is the third case with separations in the three
directions varying with time.

Fig. 6. The temporal lag of case number 1 in Table I. The left panel shows
the temporal lag of monostatic interferometer and the right panel that of a
bistatic interferometer.

The third is a system inspired by Harmony and consists of
three SAR satellites: an illuminator and two formation-flying
receivers, that lag the illuminator by 350 km [17]. The Helix
formation combines radial, normal, and tangential separations
that vary sinusoidally along the orbit. Due to the bistatic
operation the two receivers are looking forward, i.e. they have
a squint, with respect to the zero-Doppler direction. Table I
lists the parameters of the three simulation scenarios, where
a∆e and a∆Ω are the magnitudes of the relative eccentricity
and relative inclination vectors of the formation, as defined
in [16], and both vectors have a phase of −π/2. Figure 5
illustrates the satellite configurations of the three cases.

The first two scenarios use a formation that models a pure
ATI and a pure XTI respectively. In the first case, we expect
the temporal lag calculated using the wavenumber method to
match the along-track physical separation between the two
formation satellites. Similarly, we expect the sensitivity of

the cross-track interferometer to match the sensitivity calcu-
lated from the conventional equation in the second case. We
simulate the second case in a flat-Earth frame to eliminate
the effect of the Earth’s rotation and curvature. In the other
cases we carry out the simulations in an Earth-centered Earth-
fixed frame before transforming to a local-tangent local-normal
frame as discussed in (30).

The last scenario poses challenges, as it cannot be accu-
rately modeled with conventional geometric approaches. The
combination of bistatic operation and a squinted line of sight
results in under or overestimating the temporal lag if only
the physical separation is used. Locating the shift needed for
the lines of sight of the two receivers to align yields a more
accurate estimate, but the bistatic operation means that the two
receivers do not have a single line of sight between them and
the surface.

Using the monostatic equivalent can offer a way out, but
the questions of where to place the equivalent system and
how to convert the along-track and perpendicular baselines
of the formation to those of the equivalent system are not
trivial. Our numerical experiments have shown that using the
geometric method of aligning the monostatically equivalent
lines of sight of the two systems approaches the results of the
wavenumber method when the monostatic equivalent system
is placed at the intersection of the bistatic line of sight and
the line segment between the transmitter and receiver. Hence,
a unique ME exists for each combination of incidence angle
and slow time, as Figure 1 illustrates. The geometric method
is explained in detail in the Appendix.

B. Results

In this subsection, we present the temporal lag and sen-
sitivity to height of three different interferometric configu-
rations based on computational simulations. Figure 6 shows
the temporal lag of a Helix interferometer with only an
a∆e component (case 1). This means that the along-track
separation of the interferometer varies sinusoidally along the
orbit with an amplitude of 2a∆e [16]. The temporal lag of
a monostatic interferometer that looks perpendicular to the
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Fig. 7. A formation with a 650m ascending node difference. Left panel:
The sensitivity to height. Right panel: The relative error of the sensitivity
calculated using the wavenumber method with respect to the conventional
sensitivity expression.

Fig. 8. A formation with a 650m ascending node difference and a 125m
radial difference. Left panel: The temporal lag using the wavenumber method.
Right panel: The absolute error between the temporal lag calculated spectrally
and the temporal lag calculated using the geometric method.

flight direction is equal to the along-track separation divided
by the flight velocity. If the interferometer operates bistatically,
then the along-track baseline halves. The along-track baseline,
calculated using the wavenumber method of (31), matches the
expected result.

Figure 7 illustrates the sensitivity to height of a Helix
formation that has a separation only in the normal direction
(case 2). The sensitivity is calculated as follows:

1) Find the temporal lag and a frequency shift given
by (31).

2) Compute the spectral support of the first sensor at the

Fig. 9. A formation with a 650m ascending node difference and a 125m
radial difference. Left panel: The sensitivity to height. Right panel: The
relative error of the sensitivity calculated using the wavenumber method with
respect to the conventional sensitivity expression.

beam crossing time and the center frequency. Compute
the spectral support of the second sensor at the shifts
found in the previous step.

3) Calculate the sensitivity using (38).
The sensitivity of a monostatic cross-track interferometer with
an unsquinted line of sight is described by the well known
expression in the literature [4], [5]. The right panel in Figure 7
shows the relative error between the sensitivity calculated
using the method proposed in this paper and the classical
expression of the interferometric sensitivity.

Moving on to a more complex geometry, Figure 8 shows
the temporal lag of Helix interferometer with a∆e = 125m
and a∆Ω = 650m. In this case, two factors complicate the
geometry:

1) The bistatic operation of the receivers with an illumina-
tor that is significantly ahead of the Helix formation.

2) The significant line-of-sight squint of the receiving in-
struments that is needed to follow the transmitter’s beam.

We compare the temporal lag obtained using the wavenumber
method to the temporal lag calculated using the geometric
method of finding the along-track shift that aligns the lines of
sight of the monostatic equivalents. The absolute error between
the two methods peaks at 0.40ms.

The sensitivity to height of the configuration is shown in
the left panel of Figure 9. The right panel displays the relative
difference between the spectrally-derived sensitivity and the
sensitivity calculated using the monostatic equivalent method
explained in the Appendix. We used the angle between the
monostatic equivalent’s line of sight and the normal to the
surface as the incidence angle when computing the sensitivity
with the geometric method. A different result, which is closer
to the sensitivity obtained with the spectral method, is obtained
when the complementary angle to the angle between the
elevation direction ζ̂ and the normal to the surface is used as
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Fig. 10. The relative difference between the height sensitivity obtained with
the proposed wavenumber-domain method and the range-dependent adjusted
geometric approach discussed in the Appendix.

the incidence angle. We have defined this angle mathematically
in (47). Figure 10 shows the relative difference between the
spectrally-derived sensitivity and the sensitivity based on the
geometric method, with the latter definition of the incidence
angle.

IV. DISCUSSION

The first two simulation scenarios act as tests to validate
that the proposed wavenumber method for calculating the
temporal lag and sensitivity produces sensible results. In the
first scenario, we are testing the calculation of the temporal lag.
Hence, we set up a Helix formation whose separation vector
has a dominant along-track component, and a smaller radial
component. In the baseline case, which is shown in the left
panel of Figure 6, we model both instruments as monostatic
SARs with no squint. In this case, we expect to see the along-
track baseline to closely match the along-track separation of
the formation and to have a small dependence on range. If the
second receiver operates bistatically, using the first instrument
as a transmitter, then the along-track baseline should be half
the along-track separation. The results in Figure 6 match these
results.

In the second simulation scenario, we set up a Helix
formation with a significant normal separation. Like the first
scenario, we assume that the instruments operate monostati-
cally and look in the zero-Doppler direction. Hence, we expect
the spectrally-derived sensitivity to agree with the expression
for the sensitivity found in the literature. Figure 7 shows that
the results are in agreement with the conventional expression
for the sensitivity.

We have verified that the wavenumber method agrees with
the conventional expressions of along-track baseline and sen-
sitivity for geometrically simple cases. We now move on to
the more interesting case of a bistatic interferometer with an

illuminator that leads the receivers by 350 km. The receivers
are flying in a Helix formation with both an ascending node
difference and an eccentricity difference. Thus, the separation
of the receiving satellites varies in all three directions, the
radial, the normal, and the tangential, sinusoidally with time.

Figure 8 shows the temporal lag estimated using (31) on the
left, and the geometric approximation on the right. Here we
are starting to see the two methods diverging. While a peak
absolute difference of 0.40ms might sound small, it is con-
siderable when two SAR images need to be precisely aligned
before processing is carried out to produce interferometric
estimates. Furthermore, considerable effort was spent to have
the geometrically calculated temporal lag approach the spectral
temporal lag. Each satellite position and each incidence angle
produce a unique monostatic equivalent system, for each of
the two pairs of transmitter and receiver.

The computationally cheaper and conceptually simpler ap-
proach of positioning the monostatic equivalent at the midpoint
of the transmitter and receiver, thus having a common ME
position for all incidence angles at a given instance of time,
performs worse compared to the results presented in Figure 8.
The simpler geometric method overestimates the extremes of
the temporal lag by 7ms and misses its distribution with
respect to time and range. In contrast to both variants of
the geometric approach, the wavenumber method works for
both monostatic and bistatic systems without requiring the
calculation of virtual equivalent systems.

Figure 9 illustrates the sensitivity to height of the same
Helix formation in the left panel. The distribution of the
values, and the variation with time and incidence angle, are
in agreement between the two methods. There is small but
not insignificant difference in the magnitude of the sensitivity.
The relative difference in the sensitivity estimated with the two
methods is plotted in the right panel. The largest difference,
which tends to 7%, is in the near range and over the equator,
which is where the normal separation of the formation also
reaches its maximum.

During our experiments we have found that changing the
incidence angle used for the computation of the geometric sen-
sitivity to the one defined by complementary angle to the angle
between the elevation and the normal directions reduces the
relative error between the spectral sensitivity and the geometric
sensitivity in scenarios that involve a complex formation, such
as in the third scenario of Table I. Figure 10, illustrates
the improvement in the relative error, with a reduction of
the maximum relative difference from 7% to 0.12% in the
near range at equatorial latitudes, and a marked improvement
throughout the domain. The latter definition of θi accounts
for the fact that the line of sight and the elevation direction
are not coplanar, when the line of sight is squinted. The
spectral method accounts for this directly by computing the
wavenumber support difference along ζ̂. Thus, making this
adjustment to the geometric method brings the results closer
to those obtained with the spectral method.

Furthermore, for both sensitivity calculations of scenario 3
we have scaled the expression of the sensitivity by the modulus
of the bistatic line of sight. Whereas in a true monostatic
system the scaling factor would be equal to 2, in a bistatic
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system, the modulus of the line of sight is less than 2. The
divergence of the modulus from 2 increases as the bistatic
angle increases. Thus, in the monostatic equivalent of such an
interferometer the true modulus of the line of sight should be
used. We discuss the line of sight modulus scaling factor and
its effect on the results further in the Appendix.

We note to the reader that we were able to arrive to these
modifications to the conventional expression of the sensitivity
by iteratively experimenting with different adjustments and
scaling factors. In this light, the result of Figure 10 serves
as a cross-check of the geometric method against the spectral
method. In configurations with larger bistatic angles or larger
separations the two methods diverge further. Thus, we believe
that the spectral method of calculating the temporal lag,
spectral shift, and sensitivity to height is superior as it works
regardless of the complexity of the separation between the two
SARs or whether the system operates mono- or bistatically
without the need of computing virtual systems and introducing
scaling factors.

V. CONCLUSION

We have presented a method that uses the wavenumber
support to compute the temporal lag and sensitivity of single-
pass interferometers. Our method solves the problems that
arise due to the difficulty of applying the monostatic equiv-
alent approximation to interferometers with complex geome-
tries. The proposed method accommodates both monostatic
and bistatic interferometers without requiring adjustments to
switch between the two. Furthermore, using the first order lin-
ear expansion of the spectral support provides a simple system
of equations that can be efficiently solved computationally.

Results from simulations show that for a Helix formation,
the geometric method overestimates the temporal lag. Further-
more, the sensitivity estimated using the geometric method has
a relative difference of up to 7% compared to the sensitivity
estimated using the wavenumber method. Accurate knowledge
of these parameters is necessary when designing cross-track
interferometers to estimate the relative topography of dynamic
surfaces, such as the ocean. Additionally, accurate knowledge
of the temporal lag and wavenumber shift between SAR
surveys will benefit the processing of interferograms from
future SAR missions that will feature squinted lines of sight
and bistatic operation. The method is also useful to repeat-
pass interferometry, as it allows the accurate computation of
the reference orbits for processing. In the future, we aim to
expand on this work by validating the method with an end-to-
end simulation of SAR observables from a dynamic surface.

APPENDIX

CIRCULAR COMPLEX WIDE-SENSE STATIONARY
PROCESSES AND THEIR FREQUENCY COMPONENTS

To prove (17) we need to assume that the complex stochastic
process s(x) has a mean of zero, E{s(x) = 0}, and that
it is circular, i.e. E{s(x)s(u)} = 0. Thus, the second-order
statistics of the process are encapsulated by the autocorrelation
function

E{s(x)s(u)∗} = Rs(x, u). (39)

The following proof is an extension of theorem 4 of [18] to
continuous processes. The correlation of the Fourier transform
of the stochastic process, s̃(kx), is

E{s̃(k)s̃(κ)∗} = E
{∫

s(x)e−jkx dx

(∫
s(u)e−jκu du

)∗}
=

∫∫
E{s(x)s(u)∗}e−jkx dxejκu du

=

∫∫
Rs(x− u)e−jkx dxejκu du

= R̃s(k)

∫
ej(κ−k)u du

= R̃s(k)δ(k − κ), (40)

where the last equality follows from the definition of the
delta function. Furthermore, since s(x) is a circular complex
process, then by Fourier inversion theorem s̃(kx) is also a
circular complex process. Thus, the wavenumber components
of s̃(kx) are uncorrelated.

THE GEOMETRIC METHOD FOR CALCULATING THE
SENSITIVITY

In the case of bistatic SAR where the transmitter has
position vector rt and the receiver has position vector rr,
the line of sight to a point on the surface rp is

le =
rt − rp
∥rt − rp∥

+
rr − rp
∥rr − rp∥

. (41)

We define the monostatic equivalent as the system that would
observe a given point with the same line of sight as the bistatic
SAR. Thus, the line of sight of the monostatic equivalent is
parallel to le. We position the monostatic equivalent at the
intersection of the line that starts at rp and follows le and
the line segment that connects the transmitter and receiver.
Thus, we can find the position of the monostatic equivalent
by solving the following system of equations

rp + sle = rt + q(rr − rt) (42)

where s, and q are the unknowns to solve for.
rp varies with look angle and time, while the positions of

the transmitter and receiver vary with time only. Thus, (42)
has a unique solution for each combination of look angle and
time. Consequently, each resolution cell in the SAR signal will
have a corresponding pair of monostatic equivalents, one for
each receiver.

Once the two monostatic equivalents for a given resolution
cell are found, the relative position vector of the two equivalent
systems is

∆re = re2 − re1, (43)

where re2 is the position of the equivalent system of the
transmitter with the second receiver, and re1 that of the
transmitter with the first receiver. We use the relative position
of the equivalent systems to calculate the effective along-track
baseline [17]

B∥ = −∆reT
+∆reN

leT

leN

, (44)
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where the subscripts T and N denote the tangential and
normal component of the vector respectively. The temporal
lag between acquisitions is equal to the effective along-track
baseline divided by the flight speed of the satellite.

The perpendicular baseline of the interferometer is

B⊥ = ∆rc · ζ̂, (45)

where ∆rc = (∆reN
leT

/leN
,∆reN ,∆reR)

T is the relative
position after shifting the two equivalent systems to align
their lines of sight. We use the perpendicular baseline to
calculate the sensitivity to height of the interferometer using
the conventional relation [4], [5]

∂ϕ

∂h
=

2π∥le∥B⊥

λ0Rs sin θi
, (46)

where in this case the slant range Rs is equal to the slant
range from the position of the monostatic equivalent to the
resolution cell, and the incidence angle θi is the angle formed
by the bistatic line of sight and the normal to the surface.

The careful reader would have noticed that the sensitivity is
scaled by the modulus of the bistatic line of sight. It effectively
scales the wavelength by the inverse of the modulus of the
bistatic line of sight. The scaling arises becauses modulus of
the bistatic line of sight is smaller than the modulus of the
monostatic line of sight. While the monostatic, two-way, line
of sight has a modulus of 2, the bistatic line of sight is smaller
than that by the cosine of half the bistatic angle. The smaller
modulus scales the wave vector. Hence, where the monostatic
wave vector would have a modulus of 2k0, the bistatic wave
vector would have a modulus of ∥l̂Ti + l̂Ri∥k0, effectively
scaling the wavenumber, thus the wavelength.

An alternative choice for the incidence angle is to calculate
it based on the elevation vector and the normal to the surface

θi = arcsin (ζ̂ · n̂). (47)

The two definitions of θi are congruent for a monostatic
system with line of sight in the zero-Doppler direction.

Figure 11 shows the relative difference between the
spectrally-derived sensitivity and the sensitivity obtained with
the geometric method according to (46). For this result, we
replaced ∥le∥ by 2 and used (47) for θi. Comparing the results
with Figure 10 shows that ignoring the scaling due to the
bistatic wave vector, and instead modeling the system as a
monostatic interferometer, produces a markedly less accurate
result.
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