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Summary
In this study the contribution of the low-frequency residuals to the sea-level variability has been exam-
ined. This is done using 106-year old sea-level record obtained at Hoek van Holland. Computing the
mean sea-level per season each year and the corresponding standard deviation one finds an increase
in both these features of the sea-level record. The rise of the mean sea-level implies the effect of cli-
mate change. Moreover, it is found that the standard deviation in the sea-level, thus the intensity of
variation, is the highest during fall and winter. This implies that the sea-level variability has a seasonal
dependency. Furthermore, one finds an increase in the standard deviation on the long term. However,
since a big part of the mean sea-level is influenced by tidal events, the increase in standard deviation
is possibly linked to climate change in meteorological factors as has been found is in the study car-
ried out by Gerkema and Duran-Matute(2017). With the use of the computational algorithms such as
the Fast Fourier Transformation and the Wavelet Transformation one can extract the low-frequency
residuals from the sea-level record. Inspired by the study of Gerkema and Duran-Matute(2017) a cor-
relation between the wind speed and the low-frequency residuals have been found. Using the Wavelet
Transformation it is found that the low-frequency residuals obtain the most energy during fall and win-
ter, this empowers the finding that these low-frequency residuals are seasonal dependent. Moreover,
when studying the low-frequency residuals closely it is found that the frequencies below 0.60 1

day obtain
the most energy during fall and winter, especially the frequencies near 0.10 1

day . With these findings
one can say that the contribution of the low-frequency signals, thus the low-frequency residuals, is
correlated to meteorological events, such as the wind. Moreover, it is found that the variation in the
low-frequency residuals is much smaller during spring and summer compared to the case during winter
and fall. This seems not to be the case for the sea-level variability due to the tidal constituents and the
high-frequency waves. Therefore, one may conclude that these low-frequency residuals contribute to
a great extent in the standard deviation of the sea-level.
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1
Introduction

The Dutch coast borders to the southern North Sea. This southern North Sea can be seen as a basin.
The waves in this basin consist of different type of waves, like seiches and tides. Records of the sea-
level along the Dutch coast are available. However, these records does not make a clear separation
between the different frequencies occurring in the sea-level. Tidal events are relatively easy to pre-
dict, since these events are cyclic events dependent on the gravitational forces of the Sun and the
Moon as the rotation of the Earth(NOAA, 2021). However, a part of the sea-level variability is due to
low-frequency signals. This low-frequency sea-level variability is harder to predict since it seems to be
non-stationary. The main research question that arises discussing this phenomena is in this case:

What is the contribution of the low-frequency signals to the sea-level variability along the Dutch
coast?

To be able to answer this question, one should try to analyse data along the Dutch coast and see
if there is a correlation between these low-frequency signals and non-tidal mechanisms(e.g. meteo-
rological factors). Making use of mathematical tools to decompose the sea-level record into separate
signals with different frequencies makes it possible to analyse this data. The fundamental mathematical
tools that will be used are the so-called Fast Fourier Transformation and the Wavelet Transformation.

1.1. Background

Figure 1.1: Circulation pattern of the water in the North Sea(reproduced from Hofmann et al. (2005))

The variability in the sea-level in the North Sea is due to multiple factors. As one can see in figure 2.2
the North Sea can be seen as a big basin. The water flows from the Atlantic Ocean into this big basin
and flows along the coasts. Because of this phenomenon the variability in the sea-level in the North

1
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Sea is partly driven by so-called seiches. Seiches are standing waves that occur in a (semi-)enclosed
body of water because of the oscillation between the boundaries of this body(NOAA, 2019). Moreover,
tides are important factors in the sea-level variability. Tidal events are due to gravitational forces of
the Sun and the Moon as the rotation of the Earth(NOAA, 2021). The variability in the sea-level due
to the different driving forces consist of different frequency waves. In this study, the main focus will
be laid on the low-frequency waves one can find in the sea-level. It is of big interest to find the contri-
bution of these low-frequency waves and examine the driving force behind it. It is believed that these
low-frequency waves are mainly due to meteorological factors(Munk, 1950). Therefore, the relation be-
tween the meteorological factors and these low-frequency waves will be closely examined in this study.

A study to the correlation of meteorological factors and the variability in the sea-level has already
been carried out in the Netherlands. In the article written by Gerkema and Duran-Matute(2017) the
relation between the annual mean sea-level and the annual wind records has been studied. It is of big
interest to understand the variation in relative mean sea-level, since the sea-level affects the coastal
areas(Gerkema & Duran-Matute, 2017). According to FitzGerald et al.(2008) as cited by Gerkema and
Duran-Matute(2017) the risk of flooding and the forming of barrier island systems for instance are all
affected due to this variability in sea-level. Asmentioned before, this variability in sea-level is due to mul-
tiple factors, such as seiches and tides. The frequencies of the tidal constituents and the driving force
of these tides are known and therefore relatively easy to predict. Researches about seiches and the
correlation between these seiches and non-tidal mechanisms have been carried out all over the world.
de Jong et al.(2003) has carried out such a research in the Netherlands to understand the behaviour of
these seiches in the Port of Rotterdam. However, because seiches consist of relatively high-frequency
waves, the variability in the sea-level due to these seiches is relatively easy averaged out(Gerkema
& Duran-Matute, 2017). However, the interannual sea-level variability because of the low-frequency
waves is found to be irregular and large(Philip L. Woodworth | National Oceanography Centre et al.,
2011 as cited by Gerkema and Duran-Matute, 2017). Therefore, to identify any climatic trend one has
to examine a record that is long enough(Gerkema & Duran-Matute, 2017).

From the study carried out by Gerkema and Duran-Matute(2017) a few important things can be un-
derstood and taken into account when carrying out this current study. To find a trend in the sea-level
variability due to low-frequency waves one has to examine a long record. The record used in the study
of Gerkema and Duran-Matute(2017) is a 20-year record. The record used in this study dates from
1900 up to 2018. However, the examination of the low-frequency waves will be done from the 1990
up to 2016, thus a 26-year old record will be examined closely. Moreover, the correlation between the
wind and the sea-level has been examined in the study of Gerkema and Duran-Matute(2017). However,
Gerkema and Duran-Matute(2017) carried out the correlation study between the wind and the sea-level
variability without excluding the tides and the frequency waves, such as seiches, from the record. In
this study, the correlation between the meteorological factors and low-frequency waves only will be
examined. Thus, the main goal of this study is to understand the contribution of these low-frequency
waves on the sea-level variability in its entirety.

From the study carried out by Gerkema and Duran-Matute(2017) important conclusions can be made.
There is a correlation found between the wind and the annual mean sea level, dependent on the wind
direction(Gerkema & Duran-Matute, 2017). Wind direction plays an important role in the correlation
coefficient(Gerkema & Duran-Matute, 2017). Furthermore, one finds a trend in the mean sea-level
rise when distinguishing two main periods in a year(Gerkema & Duran-Matute, 2017). The mean
sea-level rise during the winter half-year, that is the first and fourth quarter of a year combined, is
steeper than the sea-level rise during the summer half-year, that is the second and third quarter of
a year combined(Gerkema & Duran-Matute, 2017). This finding implies seasonal dependency in the
sea-level variability indicating the importance of this feature in view of coastal protection(Gerkema &
Duran-Matute, 2017). Moreover, it is concluded that changes in the wind speed due to climate change
have a significant influence on the sea-level(Gerkema & Duran-Matute, 2017).
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1.2. Goal and Objectives
The goal of this research is to understand the behaviour of low-frequency waves along the Dutch
coast so they are easier to predict. This will be achieved by finding the driving force behind these
low-frequency sea-level variability. In this study, mainly local factors will be studied, such as wind
records along the Dutch coast. However, this study can be seen as a preliminary study for researches
to non-local factors influencing the sea-level variability such as low-frequency standing waves due to
the previously discussed phenomenon in a basin. Understanding and predicting the sea-level variability
is of big relevance for hydraulic engineering. Using the gained knowledge and insights one can design
prediction models of the sea-level variability. These models help improving the coastal protection for in-
stance. Moreover, the usage time of harbours and canals can be extended. Generally, understanding
the behaviour of the sea-level variability makes it possible to optimise civil engineering structures along
the Dutch coast. Optimising these structures will prevent or limit the chance of failure in the future.

1.3. Method of Approach
First, an analysis will be carried out on the entire data that expresses the sea-level variability. By
computing the seasonal sea-level means of each year from 1900 up to 2018 and their corresponding
standard deviation deviation, one can find a trend on the long term. Thus, one can understand the
variation in the sea-level as a function of the four seasons.

In order to analyse the frequencies in the sea-level variability a couple mathematical tools should be
considered. The sea-level record that will be analysed cannot be examined for the described purposes
before decomposing it in multiple separate waves with different frequencies. Some of the frequencies
are understood, such as the tidal driven waves, or not relevant, such as seiches and high-frequency
wind waves.

Using the Fast Fourier Transformation and the filtering criteria, the irrelevant frequencies can be fil-
tered out the data. Fast Fourier Transformation is handy to observe tidal related frequencies since they
can be considered as stationary waves. Because low-frequency waves are more difficult to predict
and do not have specific predictable patterns, it is not possible to say anything essential about these
waves using Fast Fourier Transformation. However, using Inverse Fast Fourier Transformation makes
it possible to obtain the data only containing the low-frequency waves which are not related to tides, se-
iches or wind waves. Using wind records along the Dutch coast one can then search for the correlation
between these low-frequency residuals and the wind. To observe the correlation as a function of time
between these low-frequency waves and the wind, for instance, one could make use of the so-called
Wavelet transformation.

In the final step of the research one should try to link the information between the low-frequency
waves, so-called residuals, in the sea water and (extreme) weather events. Using the spectrogram,
which is the visualisation of the Wavelet Transformation, it is possible to find specific low frequencies
that may be triggered due to meteorological factors or due to seasonal dependency.

A similar method of approach has been applied in the research to seiches in the Port of Ferrol by
López et al.(2012). Research in the Port of Ferrol has shown that low wave energy related to seiches
are strongly correlated with the off-shore swell energy(López et al., 2012). In this study the focus will
be mainly laid on waves that have periods greater than 24 hours.

In chapter 2 the used data and methods will be explained. In chapter 3 the results obtained will be pre-
sented with a brief explanation of the observations made. In chapter 4 these results will be discussed
and compared to earlier studies. In chapter 5 the conclusion is given and the research question is
answered. In the appendices one can find the used source code and further results.



2
Data and Methods

Introduction
In this chapter the used data and the used methods for this study will be discussed. In section 2.1 the
type of waves one can differentiate in sea-level will be discussed. In section 2.2 the used datasets and
their corresponding locations of the measurement gauges will be presented. Furthermore, the inter-
polation method will be explained. In section 2.3 the Fast Fourier Transformation and its background
will be briefly explained. In section 2.4 the visualisation of the Fast Fourier Transformation using the
power spectrum will be explained. In section 2.5 the Wavelet Transformation and a brief explanation
about its background will be explained. Finally, the extraction method used to obtain the low-frequency
residuals will be explained.

2.1. Type of Waves
First, a clear distinction should be made in the type of waves that occur in the sea-level variability.
These frequencies will be considered in this research. The waves that occur at the coastal waters can
be seen as the summation of separate waves with different frequencies and different amplitudes. An
ocean wave can be broken down into dozens of classes, each class with its own characteristics. For
the sake of simplicity, the distinction between three (main) classes will be considered: tides, seiches,
and trans-tidal waves. These three classes of waves have their own bandwidth of frequencies and are
generated by different forces.

Tides
So-called tides are waves with known frequencies that are due to cyclic events dependent on the
gravitational attraction forces of the Sun and the Moon as the rotation of the Earth(NOAA, 2021). These
tides are considered to be stationary, which mean they do not change in time.

Seiches
So-called seiches occur when water is considered to be flowing in a basin. In a (semi-)enclosed
body of water a wave will oscillate between these boundaries, resulting in standing waves, known
as seiches(NOAA, 2019). This phenomenon will be primarily strengthened due to the presence of
meteorological conditions and earthquakes(Toffoli & Bitner-Gregersen, 2017).

Trans-tidal Waves
So-called trans-tidal waves are waves which have periods longer than 24 hours. There are tidal waves
with similar periods that could be explained due to solar- and lunar-phenomena, but it is believed that
these are over-classed by other meteorological factors(Munk, 1950). The definition of meteorological
events can be considered to be broad, but for the convenience of this study the definition will be lim-
ited to specific influence factors. These trans-tidal waves are the low-frequency waves this study will
primarily focus on with the goal to find a clear correlation between them and the meteorological events.

4



2.1. Type of Waves 5

Type of waves Classification Period bandwidth Generating force(s)
Seiche Long-period waves 5 min to 12 h Atmospheric pressure gradients and earthquake

Tides Ordinary tidal waves 12-24 h Gravitational attraction

Trans-tidal waves Trans-tidal waves >24 h Trans-tidal waves

Table 2.1: Classification of the ocean waves (adapted from Toffoli and Bitner-Gregersen(2017))

Figure 2.1: Classification of the ocean waves (reproduced from Toffoli and Bitner-Gregersen(2017))

As one can see in table 2.1, the variability in sea-level is due to three main type of waves, which
are: long-period seiche waves, tides and so-called trans-tidal waves. Higher frequency waves should
not be considered as relevant waves for the sea-level variability, since higher frequency waves mainly
affect the variability in the sea surface.

As one can see in figure 2.1, there are higher frequency waves if one considers the entire variation
in the sea-level as in the sea surface. However, this study is mainly focused on the analysis of the
sea-level variability. Thus, because of the Nyquist theorem (explained later in the report) and the sam-
pling frequency of the data, waves with periods less than 20 minutes should not be considered relevant.

Considering the interest in the correlation between the low-frequency trans-tidal waves and non-tidal
mechanisms, one should extract the long-period trans-tidal signal, so-called residuals, from the data.
These residuals should then be analysed in combination with the local meteorological events.
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2.2. Datasets and Locations
Sea-level Record
The data collected to do this research is from a coastal area in the Netherlands known as Hoek van
Holland. The dataset contain information about the sea-level expressed in meters. The data dates from
a relatively long time ago. The data obtained in Hoek van Holland dates from 1900 up to 2018. Because
the data is relatively long, the problem arises that for some time intervals the data is inconsistent. Some
of the datapoints are missing and cannot be used for analysis. Furthermore, the time intervals between
the measurements of the sea-level have changed during the course of the years. For the analysis part
using the Fast Fourier Transformation and the Wavelet Transformation, it is chosen to consider only
the part of the data where this time-step between the measurements is chosen to be 10 minutes.

Figure 2.2: Location corresponding to data measurements

Meteorological Measurements
In order to answer the research question, it is necessary to have data of meteorological events at the
same location of the gauge used for the sea-level measurements. The data used is of the Koninklijk
Nederlands Meteorologisch Instituut, known as the KNMI. The data can be downloaded from the official
website of the KNMI. Multiple meteorological observations are represented as time series. The dataset
with the measurements at Hoek van Holland dates from 1971.
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Interpolation
A problem which arises when working with these kind of datasets is inconsistency within the data, such
as missing datapoints. A consistent dataset is a necessity when performing any kind of Fast Fouier
Transformation analysis, this will be clarified later in the report. Using Python, interpolation of the data
can be carried out to obtain consistent time-steps between the datapoints. The following steps should
be carried out:

1. First, an array should be constructed that begins with a chosen starting date and ends with a
chosen end date. The build-up from the starting date up to the end date can be specified by
passing the chosen discrete timestep. The discrete timestep used in the initial sea-level record
for instance is 10 minutes. Now, an array containing consistent discrete timesteps(10 minutes)
has been constructed.

2. Using the NumPy interpolation function in Python, three things need to be passed: the array
containing the consistent timesteps, the initial time array containing inconsistency in timesteps
and its related datapoints.

3. Based on the initial time array and its related datapoints, an array containing interpolated data-
points will be returned that matches the constructed time array with consistent discrete timesteps.

In order to check for the correctness of interpolation a plot should be carried out before continuing
with any analysis using the interpolated data. This to prevent any critical manipulation of the initial data.

Figure 2.3: The upper graph shows the interpolated data. The middle graph shows the actual data. The lower graph shows
the overlapping of the interpolated data and the actual data.

Figure 2.3 shows that the interpolation, over 1 month, worked correctly since the overlapping of the
interpolated data on the initial data does not contradict the initial data.
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2.3. Fast Fourier Transformation (FFT)
To extract the low-frequency waves from the data, a Fast Fourier Transformation should be carried
out on the data. This Fast Fourier Transformation is an optimised computational algorithm based on
the Discrete Fourier Transformation. Using the Fast Fourier Transformation it is possible to transform
the data from amplitude-time domain into an amplitude-frequency domain. Hence, one can compute
the power spectrum of the frequencies, which indicates the dominance of each frequency in the signal.
Making use of Inverse Fast Fourier Transformation and filtering criterion one can convert the signal
back to amplitude-time domain, but now containing the relevant frequencies of the initial signal. This
mathematical tool is used in this study. Therefore, one should have a clear understanding of the math-
ematics behind this algorithm.

Mathematical Background
The Fast Fourier Transformation is based on the mathematical concept which is known as the Fourier
series. Using Fourier series one can decompose a periodical function into a summation of cosine and
sine series and a constant, this comes down to the following formula (Xu, 2015):

f(t) =
1

2
· a0 +

∞∑
k=1

(ak · cos(2πkt) + bk · sin(2πkt)) (2.1)

As one can see in equation 2.1, the summation consists of multiple cosine and sine functions with
different frequencies because of the changing k in the summation. In Fast Fourier Transformation this
same concept is applied, by transforming a wave from its frequency-time domain into a frequency-
amplitude domain. In case one is dealing with a continuous function, say x(t), this can be expressed
in the following mathematical way (Xu, 2015):

X(F ) =

∫ ∞

−∞
x(t)e−j2πFtdt (2.2)

The formula 2.2 describes how the product between the function x(t) and the analysing function
e−j2πFt is computed. The analysing function is is the complex notation for sinusoids, where F stands
for the frequency. This analysing function can be linked to the cosine and sine functions in equation
2.1 having Euler’s identity in mind. After taking the product between the function x(t) and this analysing
sinusoidal function, an integration is carried out over a infinite time domain. This operation returns
a complex coefficient related per frequency, which contains information about the amplitude and the
phase of that related frequency(Xu, 2015).
Since in this study computational power is used to carry out this Fourier transformation, it is not con-
venient to continue considering this formula which is only valid for continuous functions. In this study,
one is dealing with discrete datapoints. Therefore, a discrete notation of formula 2.2 is needed, which
comes down to the following (Xu, 2015):

Xk =

N−1∑
n=0

xne
−j2πkn

N (2.3)

Formula 2.3 is directly derived from 2.2, but is valid for discrete points. The following relation can
be found:

k

N
∼= F ; n ∼= t (2.4)

The summation is evaluated at all N discrete sample points. Therefore, it is necessary to have
consistent data without missing discrete sample points. Formula 2.3 returns a frequency coefficient at
the k-th frequency bin of the considered frequency bins. The set of frequency bins is dependent on the
number of samples and the sample frequency (Xu, 2015).
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The formula 2.3 gives a complex coefficient for the related frequency bin, which has the following
form (Xu, 2015):

Xk = Ak +Bkj (2.5)

The information this complex number carries corresponding to its frequency bin is stored in the imagi-
nary and real part of the complex number. Hence, one can know the amplitude of the corresponding
frequency and its phase by plotting this complex number in a complex plane, where the following rela-
tions follow (Xu, 2015):

Amp =
√
A2

k +B2
k ; θ = tan−1Bk

Ak
(2.6)

Figure 2.4: Illustration of a signal with amplitude on the y-axis(reproduced from Audio(n.d.))

In figure 2.4 the essence of the Fourier Transformation is illustrated, expressing a signal in the
amplitude-frequency domain, instead of amplitude-time domain. Therefore, one can have a clear im-
age of the dominating frequencies in a signal.

Nyquist Frequency
The Nyquist theorem states that the highest frequency that can be found when performing a Fast
Fourier Transformation on a discrete signal is at maximum the half of the sampling frequency(Garg
& Wang, 2005). This means that if the sampling frequency is fs Hz, then the highest frequency com-
ponent that should be included to fully obtain the initial periodic waveform as accurate as possible is
fs
2 Hz(Weisstein, 2022). Hence, only waves with periods greater than 20 minutes will be able to get
extracted from the data. This theorem should be kept in mind, when considering the Inverse Fourier
Transformation when filtering the data.
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2.4. Power Spectrum (PS)
After performing the Fast Fourier Transformation on a signal, it is handy to plot the results visually so
the filtering step can be carried out. However, the Fast Fourier Transformation will return an array con-
taining the frequency coefficients expressed in complex numbers. The so-called power spectrum is the
mathematical concept one could use to obtain real numbers that give information about the energy per
frequency bin(DEMPSTER, 2001).

One should realize that the intensity, thus the energy, of a specific frequency in a real signal is
directly related to the magnitude of the amplitude squared(Semmlow, 2012). Hence, the definition of
the power spectrum for the discrete case is(Semmlow, 2012):

PS(k) = Xk ·X∗
k (2.7)

Figure 2.5: An example of a visualised power spectrum of a signal in a so-called periodogram(reproduced from Kawachi et
al.(2018))

As can be seen in the example in figure 2.5, the power has been set out along a logarithmic scaled
y-axis, whereas the considered frequencies have been set out along a logarithmic scaled x-axis. There
is a clear peak at 104 Hz, which indicates that the signal analysed is strongly dominated by a wave with
104 Hz frequency. Information about the phase per frequency is not given in this periodogram.

Inverse Fast Fourier Transformation (IFFT)
The Inverse Fast Fourier Transformation is themathematical concept used to transform the Fast Fourier
Transformation complex coefficients back to a real signal. Using computational power and software,
like Python, this can be achieved. As discussed before, the power spectrum gives the ability to filter
certain frequencies out of the Fast Fourier Transformation. That can be simply achieved by only In-
verse Fourier transforming the frequencies one is interested in. The frequencies which are not relevant
can be filtered out by disabling specific entries in the Fast Fourier Transformation array in accordance
with the filtering criterion.

As mentioned before, the Nyquist frequency is the largest frequency which should be included to fully
recover the initial signal when doing an Inverse Fast Fourier Transformation. For the discrete case
when using computational power, only the upper half of the Fast Fourier Transformation array should
be considered. Therefore, one should only pass the upper half of the Fast Fourier Transformation array
to the Inverse Fast Fourier Transformation function. Fortunately, the NumPy package in Python takes
this into account.



2.5. Wavelet Transformation 11

2.5. Wavelet Transformation
The Wavelet Transformation is an alternative for those who are interested in the relation between
amplitude-frequency in a signal as function of time. As one can see in formula 2.3, the Fourier Transfor-
mation for each frequency bin is carried out on the entire signal, from the first discrete signal point up to
the last discrete signal point. Thus, the Fourier Transform does not show when in time the frequencies
occur(Nicoll, 2020). Therefore, Fourier Transformation is more suitable for stationary signals(Nicoll,
2020).

This limitation of Fourier Transformation is solved by the invention of the so-called Wavelet Transfor-
mation. The Wavelet Transformation is a mathematical concept where the signal is split up in portions,
so-called windows. With the assumption that the non-stationary frequencies in the entire signal can be
considered stationary in these windows, one can compute the same concept of the Fourier Transforma-
tion on these windows(Nicoll, 2020). However, according to the uncertainty principle it is not possible
to know the exact frequencies at what time instances, but instead it is possible to know the frequency
bins at what time intervals(Nicoll, 2020). This theorem is expressed as the following(Nicoll, 2020):

∆t∆f ≥ 1

4π
(2.8)

One should realize that the window width is directly related to ∆t in formula 2.8. To correctly find
the low-frequency components in a signal, one should have high frequency resolution since these low
frequency components can last a long period of time(Nicoll, 2020). According to formula 2.8 this can
be achieved by using a big∆t and therefore a bigger window. Vice versa goes for high frequency com-
ponents, since these last for a short period of time and therefore need a higher time resolution(Nicoll,
2020). This can be achieved by using small ∆t and therefore a smaller window according to formula
2.8.

Figure 2.6: The concept of Wavelet Transformation and varying window width(adapted from Nicoll(2020))

As one can see in 2.6, for high frequencies smaller windows are used to obtain high time resolution,
whereas for low frequencies larger windows are used to obtain high frequency resolution.

Instead of using sine and cosine as analysing functions, one uses so-called wavelets. These wavelets
are used as window functions, meaning the same concept described in formula 2.2 can be applied, such
as at the Fourier Transformation, but now at each separate window using this windows function(Nicoll,
2020). This is done so that the amplitude-frequency relation of that specific window can be computed(Nicoll,
2020). An example of such a wavelet is the so-called Morlet wavelet, which will be used in this study
inspired by the study carried out by de Jong et al.(2003).
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2.6. Extracting the Low-frequency Waves
Combining these previously discussed concepts one can start to extract the low-frequency waves from
the initial sea-level data. To give a clear illustration of this process, it is convenient to look at the data
over a course of 1 year at Hoek van Holland. The same process goes for other time-frames.

As discussed before, interpolating the data should be done for further analysis. Using a plot of the
interpolated data is used to prevent manipulation of the initial data. This can be seen in figure 2.7.

Figure 2.7: The initial sea surface height data and the interpolated sea surface height data

The interpolated data can then be passed to the Fast Fourier Transformation function of the NumPy
package in Python. This returns an array with the complex coefficients corresponding to the considered
frequencies. The power spectrum can then be computed according to the definition 2.7. Plotting the
power spectrum in a so-called periodogram shows the dominant frequencies. An example can be seen
in figure 2.8. The frequencies that are clearly visible in the periodogram are the frequencies due to tides.
Some of the tides one can see clearly in figure 2.8 are the M2, K1 and Mf tides, which can be found
in table 2.2 with their corresponding frequencies.

Tidal Constituents Symbol Frequency per day
Principal lunar M2 1.93

Luni-solar diurnal K1 1.00

Lunar fortnightly Mf 0.07

Table 2.2: Tidal constituents(adapted from Chelton and Enfield(1986))



2.6. Extracting the Low-frequency Waves 13

Figure 2.8: The red part in the periodogram shows the frequencies of the residuals, whereas the blue part shows the
frequencies of the filtered tides and irrelevant high-frequency signals.

As mentioned before, the goal of this study is to extract the low-frequency waves found in the sea-
level variability. Obviously, all signals with periods less than 24 hours should get filtered out. However,
some of the tidal constituents have periods larger than 24 hours. Fortunately, by knowing the exact
frequencies of these tidal constituents it is possible to filter those out of the signal. Thus, one should
remain with the low-frequency signals not due to the tides. The low-frequency tidal-constituents that
are filtered out can be found in table B.1.

From figure 2.8 the periodogram of one year can be seen. The red part in the periodogram shows
the extracted frequencies to obtain the residuals. The long red stripes that dip to zero power are the
low-frequency tidal constituents that had to be filtered out. That is the reason these frequencies dip to
a power of zero, since they are silenced out in the low-frequency residuals.

Using the previously described filtering criterion and the Inverse Fast Fourier Transformation function
in Python, the low-frequency signals can be extracted from the data. In figure 2.9, these so-called
residuals can be seen.
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Figure 2.9: The yellow signal is the initial signal without filtering. The green signal shows the signal consisting of the tides and
irrelevant high-frequency signals. The purple signal is the extracted low-frequency residuals one is interested in.

Now having the residuals, one can be interested to do the Wavelet Transformation. Since these
residuals contain non-stationary frequencies, the Wavelet Transformation comes in handy.

As one can see in appendix B, the Wavelet Transformation gives a visualisation of the power of the
frequencies as a function of time, the brighter the color, the bigger the power of the frequency bin. Fur-
thermore, a white dashed line is plotted in the figure, which is the boundary of the so-called cone of
influence. The cone of influence is the area within the two dashed lines that should be considered accu-
rate and relevant for study. As discussed before and as can be seen from the figures in appendix B, the
higher the frequency, the bigger the frequency bandwidth and thus the higher the time resolution. Vice
versa goes for the low frequencies, the lower the frequency, the smaller the frequency bandwidth and
thus the lower the time resolution. This goes in accordance with the uncertainty principle expressed in
2.8.



3
Results

In this section the obtained results will be presented. The results will reflect the long-term trend found
in the sea-level and the correlation found between the low-frequency residuals and the wind records.
Moreover, in order to satisfy the main goal of this study, that is understanding the contribution of the
low-frequency residuals to the sea-level variability along the Dutch coast, the low-frequency residuals
as function of time will be examined using the Wavelet Transformation. This in order to distinguish
particular low-frequencies and their energies as a function of time.

Figure 3.1: The upper graph shows the mean sea-level per season per year computed over the entire length of the sea-level
data. The lower graph shows the corresponding standard deviation per season per year computed over the entire length of the

sea-level data.

From figure 3.1 the seasonal sea-level means per year can be seen. The upper graph in figure 3.1
shows that the mean sea-level each year during fall is the highest among the other seasons. Moreover,
the rise in seasonal sea-level mean for all seasons goes in approximately same speed. However,

15
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when observing the standard deviations corresponding to the seasonal means per year, one can find
something interesting. The standard deviation, thus the variation in sea-level, is the highest during the
winter. Moreover, there is an clear increase in the standard deviation during spring, summer and winter.
The standard deviation corresponding the fall season does not increase as hard as the other seasons.

Figure 3.2: The yellow signal is the initial signal without filtering. The green signal shows the signal consisting of the tides and
irrelevant high-frequency signals. The purple signal is the extracted low-frequency residuals one is interested in.

From figure 3.2(see B.1 for the bigger figure) one can see the extracted low-frequency residuals as
the purple signal, the filtered out tides and high-frequency signal as the green signal and the original
sea-level as the orange signal. The figure is obtained from the sea-level record from the year 1990 up
to 2016. This figure is obtained by performing the Fast Fourier Transformation and using the previously
described filtering criterion to decompose the sea-level record using the Inverse Fast Fourier Transfor-
mation.

From figure 3.3 one can see the computed correlation between the wind and the low-frequency resid-
uals dependent on the wind direction. The correlation coefficient used is the Pearson correlation coef-
ficient defined as:

ρX,Y =
cov(X,Y )

σXσY
(3.1)

Using the Wavelet Transformation it is possible to obtain the spectrogram visualized in figure 3.4.
From figure 3.4 the energy of the low-frequencies can be examined as a function of time. Hence, using
this spectrogram it is possible to not only discuss the correlation between the low-frequency residuals
and the wind speed, but to find specific frequencies triggered by the meteorological factors. In appendix
B the spectrograms from year 1990 up to 2016 can be found.



17

Figure 3.3: The four graphs show the correlation between the wind speed and the low-frequency residuals depending on the
wind direction computed from the year 1990 to 2016.
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Figure 3.4: The upper graph shows the overlapping of the low-frequency residuals on the wind speed record. The middle
figure is the spectrogram computed on the wind speed. The lower graph is spectrogram computed on the low-frequency

residuals. This figure applies to the wind speed records and low-frequency residuals from 2006 up to 2011.



4
Discussion

In this section the results and the observations of this study will be discussed. First, the entire sea-level
data will be discussed by the computed means and standard deviations. Thereafter, the low-frequency
residuals obtained from the sea-level record over a period of 26 years will be discussed. Using data
containing the wind speeds, one can then search for correlation between the wind speed and these
low-frequency residuals. Finally, using the spectrograms we can observe the low frequencies closely.

4.1. Key findings
The main goal of this study is to understand the contribution of the low-frequency residuals to the sea-
level variability in its entirety. Figure 3.1 indicates that the sea-level on the long term rises. This same
finding was found in the study carried out by Gerkema and Duran-Matute(2017). However, Gerkema
and Duran-Matute(2017) distinguished two seasons per year, whereas in this study four seasons per
year have been distinguished. Gerkema and Duran-Matute(2017) found that the annual summer half-
year mean sea-level, that is the summer and spring combined, is higher than the annual winter half-year
mean sea-level, that is the fall and winter combined. This corresponds to the same finding illustrated in
figure 3.1. However, according to Gerkema and Duran-Matute(2017), the rise of the annual mean sea-
level in the summer half-year is steeper compared to the rise of the annual mean sea-level in the winter
half-year. From figure 3.1 the annual mean sea-level seems to rise in one pace for all the considered
seasons. Something to notice from figure 3.1 is the standard deviation of the mean sea-level found
per season. The standard deviation corresponding to the sea-level seems barely to rise during the
fall season. Whereas, during the summer, winter and spring season one can see that the standard
deviation increases on the long term.
From figure 3.2 the variation in the low-frequency residuals compared to the variation in sea-level due
to tides and high-frequency waves can be observed. When observing this figure closely, one can
notice the large variation in the low-frequency residuals during the first and last quarter of the years
compared to the small variation in the low-frequency residuals during the second and third quarter of
the years. This observation seems not to be the case for the sea-level variation due to tidal events and
high-frequency waves. Figure 3.3 indicates that there is a correlation between the found low-frequency
residuals and the wind. Depending on the wind direction the correlation coefficient differs in magnitude
and sign. The study carried out by Gerkema and Duran-Matute(2017) found a correlation between
the wind and the mean sea-level. However, in this study the correlation is computed between the low-
frequency residuals and the wind. Figure 3.4 illustrates the energy contained in the frequencies of the
residuals and the frequencies of the wind speed. From the lower spectrogram one can see that the
frequencies contain more energy during the first and fourth quarter of the years.
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4.2. Interpretation of the results
From the first finding we not only find that the sea-level rises, but more interesting we find that the
variation in the sea-level seems to get intenser on the long term. This finding is relevant considering
the risk of flooding. The definition of the risk of flooding is been defined based on the annual mean
sea-level(Gerkema & Duran-Matute, 2017). However, the forming of barrier island systems is strongly
dependent on the intensity of variation in sea-level. It is commonly assumed that the rise in sea-level is
mainly due to the climate change. Therefore, we can assume that the rise in sea-level found in figure
3.1 is due to the climate change. Moreover, we find that the standard deviation in sea-level does not
rise during fall. This means that the variation in sea-level during fall season is approximately the same
during the entire length of the sea-level records. Moreover, we find that the standard deviation of the
sea-level during spring and summer are the lowest. Whereas, the variation in sea-level during winter
and fall are the highest. Since the tidal events can be considered to be stationary during all seasons in
a year we can assume that the difference in standard deviation dependent on the season is because
of non-stationary factors. During fall and winter extreme weather events occur which are considered to
be non-stationary events. Therefore, we decompose the sea-level record in two signals, the stationary
signal due to tidal events and the non-stationary signal containing the low-frequency residuals.

From figure 3.2 this difference in standard deviation dependent on the season can be explained. The
variation in amplitude of the low-frequency residuals seem to be much bigger during the first and last
quarter of the years, whereas the variation in amplitude of the low-frequency residuals seem to be much
smaller during the second and third quarter of the year. Hence, we can assume that the variation in
sea-level is strongly influenced by the variation found in the low-frequency residuals.

As similarly done in the study of Gerkema and Duran-Matute(2017) a correlation can be found be-
tween these low-frequency residuals and the wind speed. In case the wind blows on-shore, we find
the highest positive correlation. Thus, the amplitude of the low-frequency residuals increase when the
wind speed increases. In case the wind blows off-shore we find a negative correlation coefficient, thus
the low-frequency residuals decrease when the wind speed increases. In case the wind blows along-
shore we find the correlation coefficient to have relatively small magnitudes. However, something that
can be noticed is the difference in sign. The South-Western wind has a positive correlation coefficient,
whereas the North-Eastern wind has a negative correlation coefficient. This can be explained due to
the so-called Ekman transport. The Ekman transport is due to the Coriolis effect, where because of the
rotation of the Earth the water will flow in the direction of the wind and in the direction perpendicular to
the direction of the wind. These findings support the assumption that the intense variation in sea-level
due to the low-frequency residuals is correlated with the wind speed. This finding is important in case
one would like to design a model that describes the low-frequency residuals. Moreover, in line with
the previously made interpretation of figure 3.1 we can say that the rise in standard deviation of the
sea-level indicates the rise of the standard deviation of the wind speed. Thus, more extreme storm
surges occur on the long term. This corresponds to the conclusion made in the study of Gerkema and
Duran-Matute(2017), where it is shown that the annual mean sea-level is influenced significantly due
to climatic change in wind speed from any wind direction(Gerkema & Duran-Matute, 2017).

From figure 3.4 we observe that the frequencies in the low-frequency residuals contain more energy
during the first and last quarter of the year. This means that the amplitude of the low-frequency resid-
uals have a bigger magnitude during fall and winter, which was already expected from the previous
findings. This indicates that the low-frequency residuals are seasonal dependent. Observing the spec-
trogram closely we find that the frequencies that are the most triggered during fall and winter are all
below 0.60 1

day , especially the frequencies around 0.10 1
day contain the most energy during fall and

winter. This finding has not been found in the research done by Gerkema and Duran-Matute(2017).
Finding these frequencies is relevant in case one would like to design a simple model that describes
these low-frequency residuals. In appendix B we can observe the spectrogram of specific years. We
see that triggered signals in the low-frequency residuals can be found in the spectrogram of the resid-
uals. Thus, when a high-energy signal in the low-frequency residual is observed we find a high-energy
signal in the wind speed at the same instance. However, the opposite finding is not found, which may
indicate the dependency of the wind direction.



4.3. Limitations 21

4.3. Limitations
During this study we used one record of the sea-level. This record presented the sea-level at Hoek
van Holland from 1900 up to 2018. However, unfortunately the entire record was not homogeneous.
Therefore, the Fast Fourier Transformation and theWavelet Transformation could only by performed on
a small part of the data. The Fast Fourier Transformation and the Wavelet Transformation are carried
out on a 26-year long part of the record. Moreover, the Wavelet Transformation is a relatively intense
computational operation. This made it more complicated to observe a larger frequency spectrum.

4.4. Recommendation
This study was primarily focused on the correlation between the low-frequency residuals and local me-
teorological events. However, using the Fast Fourier Transformation and the Wavelet Transformation
it is possible to research non-local factors. Since the southern North Sea can be seen as a basin, one
can wonder if certain frequencies in the sea-level can be observed because of the standing waves
occurring in the southern North Sea.



5
Conclusion

The goal of this study is to answer the following research question:

What is the contribution of low-frequency signals to sea-level variability along the Dutch coast?

The low-frequency signals are the low-frequency residuals in the sea-level. From the results ob-
tained one can conclude that these low-frequency residuals are highly correlated to the wind. The
correlation coefficients found are dependent on the wind direction. For on-shore wind, one finds the
highest positive correlation. This means that in case the wind is blowing on-shore, these low-frequency
residuals increase in amplitude. For the case where wind blows off-shore, one finds the highest neg-
ative frequency. This means that in case the wind is blowing off-shore, these low-frequency residuals
decrease in amplitude. Furthermore, one can conclude that the low-frequency residuals are dependent
on the seasons based on the results. During fall, these low-frequency residuals have a larger ampli-
tude, whereas during summer these low-frequency residuals have a relatively small amplitude. This
observation can be confirmed by performing the Wavelet Transformation, where one can see greater
power in the low-frequency residuals during winter and fall. These findings can be summarised into a
brief answer to the research question:

The contribution of the low-frequency signals, thus the low-frequency residuals, is correlated
to meteorological events, such as the wind. The amplitude of these low-frequency residuals are
seasonal dependent. Thus, the sea-level variability is directly influenced by these low-frequency
residuals since the tidal driven waves are stationary, whereas the low-frequency residuals are
non-stationary. Because of this non-stationary low-frequency residuals, the sea-level variability
can be assumed to be non-stationary. One can therefore conclude that the intensity of varia-
tion in sea-level is in a large extent influenced by the intensity of variation in the low-frequency
residuals.
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A
Source Code - Python

1# -*- coding: utf-8 -*-
2"""
3Created on Tue Apr 19 19:41:32 2022
4

5@author: Kareem El Sayed
6"""
7

8import numpy as np
9import matplotlib.pyplot as plt
10import netCDF4 as nc
11import pandas as pd
12import scipy as sc
13import pywt
14import pycwt
15from scipy.signal import chirp
16from scipy import signal
17import datetime as datetimee
18import calendar
19from scipy.interpolate import interp1d
20import matplotlib.dates as mdates
21from matplotlib.dates import date2num
22import xarray as xr
23

24plt.rcParams['figure.figsize'] = [8, 6]
25plt.rcParams.update({'font.size' : 12})
26#%% Loading in data
27fn = 'C:/Users/Kelsa/OneDrive/Bureaublad/BEP/WaterLevel_records/HOEKVHLD.nc' #path to netcdf

file
28ds = nc.Dataset(fn) # read as netcdf dataset
29

30tides_const = pd.read_csv("C:/Users/Kelsa/OneDrive/Bureaublad/BEP/WaterLevel_records/
tidal_const.txt") #Tidal Constituents

31tides_const['freq'] = tides_const['freq'] * 24 #Frequency from 1/h to 1/day
32

33ds_pandas = xr.open_dataset('C:/Users/Kelsa/OneDrive/Bureaublad/BEP/WaterLevel_records/
HOEKVHLD.nc')

34df_pandas = ds_pandas['sea_surface_height'].to_dataframe()
35df_pandas['sea_surface_height'] = ds_pandas['sea_surface_height'].to_dataframe()
36df_pandas['time'] = ds_pandas['time'].to_dataframe()
37

38with nc.Dataset(fn) as dataset:
39time = nc.num2date(dataset['time'][:],
40dataset['time'].units,
41only_use_cftime_datetimes=False)
42sea_height = dataset['sea_surface_height'][:] #get data for sea height in m - stable part

- beginning from 1987-01-01
43

44mul = 1 #mul is used to interpolate between the data and
get a higher frequency spectrum, however this is not used

45

25



26

46day_ = (144) # 1 day = 144 data points if mul = 1
47month_ = (144 * 30) # 1 month = 144 * 30 data points
48year_ = (144 * 365) # 1 year = 144 * 365 data points
49

50day = (144) * mul # 1 day = 144 data * mul points if mul >= 1
51month = (144 * 30) * mul # 1 month = 144 * 30 * mul data points if

mul >= 1
52year = (144 * 365) * mul # 1 year = 144 * 365 * mul data points if

mul >= 1
53

54SCH_lon = ds['lon'][:]
55SCH_lat = ds['lat'][:]
56

57ds_SCH = datetimee.date(1987,1,1)
58de_SCH = datetimee.date(2018,1,12)
59

60def ndays(date1, date2):
61return (date2-date1).days
62

63numofdays = ndays(ds_SCH, de_SCH)
64#%%
65df_pandas["time"] = pd.to_datetime(df_pandas["time"])
66

67

68def MaandnaarSeizoen(x):
69global seizoen
70if x == 1 or x == 2 or x == 3:
71seizoen = "Winter"
72elif x == 4 or x == 5 or x == 6:
73seizoen = "Spring"
74elif x == 7 or x == 8 or x == 9:
75seizoen = "Summer"
76elif x == 10 or x == 11 or x == 12:
77seizoen = "Fall"
78else:
79seizoen = np.nan
80return seizoen
81

82def SeizoenElkJaar(x):
83global Seizoen_Jaar
84if x.month == 1 or x.month == 2 or x.month == 3:
85Seizoen_Jaar = "Winter" + str(x.year)
86elif x.month == 4 or x.month == 5 or x.month == 6:
87Seizoen_Jaar = "Lente" + str(x.year)
88elif x.month == 7 or x.month == 8 or x.month == 9:
89Seizoen_Jaar = "Zomer" + str(x.year)
90elif x.month == 10 or x.month == 11 or x.month == 12:
91Seizoen_Jaar = "Herfst" + str(x.year)
92else:
93Seizoen_Jaar = np.nan
94return Seizoen_Jaar
95

96

97def MaandnaarMaand(x):
98global maand
99if x == 1:
100maand = "January"
101elif x == 2:
102maand = "February"
103elif x == 3:
104maand = "March"
105elif x == 4:
106maand = "April"
107elif x == 5:
108maand = "May"
109elif x == 6:
110maand = "June"
111elif x == 7:
112maand = "July"
113elif x == 8:
114maand = "August"
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115elif x == 9:
116maand = "September"
117elif x == 10:
118maand = "October"
119elif x == 11:
120maand = "November"
121elif x == 12:
122maand = "December"
123else:
124maand = np.nan
125return maand
126

127

128def MaandElkJaar(x):
129global maand
130if x.month == 1:
131maand_jaar = "January" + str(x.year)
132elif x.month == 2:
133maand_jaar = "February" + str(x.year)
134elif x.month == 3:
135maand_jaar = "March" + str(x.year)
136elif x.month == 4:
137maand_jaar = "April" + str(x.year)
138elif x.month == 5:
139maand_jaar = "May" + str(x.year)
140elif x.month == 6:
141maand_jaar = "June" + str(x.year)
142elif x.month == 7:
143maand_jaar = "July" + str(x.year)
144elif x.month == 8:
145maand_jaar = "August" + str(x.year)
146elif x.month == 9:
147maand_jaar = "September" + str(x.year)
148elif x.month == 10:
149maand_jaar = "October" + str(x.year)
150elif x.month == 11:
151maand_jaar = "November" + str(x.year)
152elif x.month == 12:
153maand_jaar = "December" + str(x.year)
154else:
155maand_jaar = np.nan
156return maand_jaar
157

158

159def YearlyMean(x):
160global jaar
161jaar = str(x)
162return jaar
163

164

165

166df_pandas['Season'] = df_pandas['time'].dt.month.apply(lambda x : MaandnaarSeizoen(x))
167df_pandas['Maand'] = df_pandas['time'].dt.month.apply(lambda x : MaandnaarMaand(x))
168df_pandas['Jaar'] = df_pandas['time'].dt.year.apply(lambda x : YearlyMean(x))
169df_pandas['Season Per Year'] = df_pandas['time'].dt.date.apply(lambda x : SeizoenElkJaar(x))
170df_pandas['Month Per Year'] = df_pandas['time'].dt.date.apply(lambda x : MaandElkJaar(x))
171

172SeasonalVariations = df_pandas.groupby(df_pandas["Season"]).agg(['mean','std'])
173SeasonalVariations = SeasonalVariations.reindex(['Winter', 'Spring', 'Summer', 'Fall'])
174

175MonthlyVariations = df_pandas.groupby(df_pandas["Maand"]).agg(['mean','std'])
176MonthlyVariations = MonthlyVariations.reindex(['January', 'February', 'March', 'April', 'May'

, 'June', 'July', 'August', 'September', 'October', 'November', 'December'])
177

178YearlyVariations = df_pandas.groupby(df_pandas["Jaar"]).agg(['mean','std'])
179

180SeasonPerYearVariation = df_pandas.groupby(df_pandas["Season Per Year"]).agg(['mean','std'])
181#%%
182Jaartallen = YearlyVariations.index
183

184SeasonalVariations = np.array(SeasonalVariations)
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185MonthlyVariations = np.array(MonthlyVariations)
186YearlyVariations_ = np.array(YearlyVariations)
187

188SV = np.reshape(SeasonalVariations, -1)
189MV = np.reshape(MonthlyVariations, -1)
190YV = np.reshape(YearlyVariations_, -1)
191

192m, b = np.polyfit(np.arange(len(YearlyVariations_)), YV[::2], 1) #Fitting a linear line for
MSL variability

193

194

195Seizoenen = ['Winter (JFM)', 'Spring (AMJ)', 'Summer (JAS)', 'Fall (OND)']
196Maanden = ['January', 'February', 'March', 'April', 'May', 'June', 'July', 'August', '

September', 'October', 'November', 'December']
197

198fig, axs = plt.subplots(4, 1, sharex=False)
199fig.subplots_adjust(hspace=0.8)
200

201axs[0].bar(np.arange(4), SV[::2], yerr = SV[1::2], align='center', alpha=0.75, ecolor='black'
, capsize=2, color = 'black')

202axs[0].xaxis.set_ticks(np.arange(4), Seizoenen)
203axs[0].set_xticks(np.arange(4))
204axs[0].set_xticklabels(Seizoenen)
205axs[0].set_ylabel("Sea Level Variability [m]")
206axs[0].set_title("Seasonal means from 1900-2018 with standard deviations")
207axs[0].grid(True)
208

209axs[1].bar(np.arange(12), MV[::2], yerr = MV[1::2], align='center', alpha=0.75, ecolor='black
', capsize=2, color = 'black')

210axs[1].set_xticks(np.arange(12))
211axs[1].set_xticklabels(Maanden)
212axs[1].set_ylabel("Sea Level Variability [m]")
213axs[1].set_title("Monthly means over 1900-2018 with standard deviation")
214axs[1].grid(True)
215

216

217axs[2].plot(np.arange(len(YearlyVariations_)), YV[::2], 'ko'
218,np.arange(len(YearlyVariations_)), m*np.arange(len(YearlyVariations_))+b,
219'--k')
220axs[2].set_xticks(np.arange(len(YearlyVariations_)))
221axs[2].set_xticklabels(Jaartallen, rotation = 90)
222axs[2].set_ylabel("Sea Level Variability [m]")
223axs[2].set_title("Trend - Yearly means from 1900-2018")
224axs[2].set_xlabel('Date')
225axs[2].legend(['Datapoints', 'Linear Regression'])
226axs[2].grid(True)
227

228n, v = np.polyfit(np.arange(len(YearlyVariations_)), YV[1::2], 1) #Fitting a linear line for
MSL variability

229

230axs[3].plot(np.arange(len(YearlyVariations_)), YV[1::2], 'ko',np.arange(len(YearlyVariations_
)), n*np.arange(len(YearlyVariations_))+v,

231'--k')
232axs[3].set_xticks(np.arange(len(YearlyVariations_)))
233axs[3].set_xticklabels(Jaartallen, rotation = 90)
234axs[3].set_ylabel("Sea Level Variability [m]")
235axs[3].set_title("Trend - Yearly standard deviation from 1900-2018")
236axs[3].set_xlabel('Date')
237axs[3].legend(['Datapoints', 'Linear Regression'], loc = 4)
238axs[3].grid(True)
239#%%
240herfstjaren = []
241winterjaren = []
242lentejaren = []
243zomerjaren = []
244

245herfstmeanyear = []
246wintermeanyear = []
247lentemeanyear = []
248zomermeanyear = []
249
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250herfststdyear = []
251winterstdyear = []
252lentestdyear = []
253zomerstdyear = []
254

255for i in range(len(SeasonPerYearVariation)):
256if SeasonPerYearVariation.index[i][0] == 'H':
257herfstjaren.append(SeasonPerYearVariation.index[i][-4:])
258herfstmeanyear.append(SeasonPerYearVariation['sea_surface_height']['mean'][i])
259herfststdyear.append(SeasonPerYearVariation['sea_surface_height']['std'][i])
260if SeasonPerYearVariation.index[i][0] == 'Z':
261zomerjaren.append(SeasonPerYearVariation.index[i][-4:])
262zomermeanyear.append(SeasonPerYearVariation['sea_surface_height']['mean'][i])
263zomerstdyear.append(SeasonPerYearVariation['sea_surface_height']['std'][i])
264if SeasonPerYearVariation.index[i][0] == 'L':
265lentejaren.append(SeasonPerYearVariation.index[i][-4:])
266lentemeanyear.append(SeasonPerYearVariation['sea_surface_height']['mean'][i])
267lentestdyear.append(SeasonPerYearVariation['sea_surface_height']['std'][i])
268if SeasonPerYearVariation.index[i][0] == 'W':
269winterjaren.append(SeasonPerYearVariation.index[i][-4:])
270wintermeanyear.append(SeasonPerYearVariation['sea_surface_height']['mean'][i])
271winterstdyear.append(SeasonPerYearVariation['sea_surface_height']['std'][i])
272

273

274herfstmeanyear_ip = np.interp(np.array(Jaartallen).astype(float),
275herfstjaren,
276herfstmeanyear)
277

278wintermeanyear_ip = np.interp(np.array(Jaartallen).astype(float),
279winterjaren,
280wintermeanyear)
281

282lentemeanyear_ip = np.interp(np.array(Jaartallen).astype(float),
283lentejaren,
284lentemeanyear)
285

286zomermeanyear_ip = np.interp(np.array(Jaartallen).astype(float),
287zomerjaren,
288zomermeanyear)
289

290herfststdyear_ip = np.interp(np.array(Jaartallen).astype(float),
291herfstjaren,
292herfststdyear)
293

294winterstdyear_ip = np.interp(np.array(Jaartallen).astype(float),
295winterjaren,
296winterstdyear)
297

298lentestdyear_ip = np.interp(np.array(Jaartallen).astype(float),
299lentejaren,
300lentestdyear)
301

302zomerstdyear_ip = np.interp(np.array(Jaartallen).astype(float),
303zomerjaren,
304zomerstdyear)
305#%%
306

307fig, axs = plt.subplots(1, 1, sharex=False)
308#fig.subplots_adjust(hspace=0.8)
309

310nh, vh = np.polyfit(np.arange(len(Jaartallen)), herfstmeanyear_ip, 1) #Fitting a linear line
for MSL variability

311nl, vl = np.polyfit(np.arange(len(Jaartallen)), lentemeanyear_ip, 1)
312nz, vz = np.polyfit(np.arange(len(Jaartallen)), zomermeanyear_ip, 1)
313nw, vw = np.polyfit(np.arange(len(Jaartallen)), wintermeanyear_ip, 1)
314

315nhs, vhs = np.polyfit(np.arange(len(Jaartallen)), herfststdyear_ip, 1) #Fitting a linear line
for MSL variability

316nls, vls = np.polyfit(np.arange(len(Jaartallen)), lentestdyear_ip, 1)
317nzs, vzs = np.polyfit(np.arange(len(Jaartallen)), zomerstdyear_ip, 1)
318nws, vws = np.polyfit(np.arange(len(Jaartallen)), winterstdyear_ip, 1)
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319

320p1, = plt.plot(np.array(Jaartallen), herfstmeanyear_ip, label = 'Fall (OND)', marker = 'o',
alpha = 0.25)

321p2, = plt.plot(np.array(Jaartallen), wintermeanyear_ip, label = 'Winter (JFM)', marker = 'o',
alpha = 0.25)

322p3, = plt.plot(np.array(Jaartallen), zomermeanyear_ip, label = 'Summer (JAS)', marker = 'o',
alpha = 0.25)

323p4, = plt.plot(np.array(Jaartallen), lentemeanyear_ip, label = 'Spring (AMJ)', marker = 'o',
alpha = 0.25)

324

325p5, = plt.plot(np.arange(len(Jaartallen)), nh*np.arange(len(Jaartallen)) + vh, label = '
Linear Regression - Fall', linestyle = '--', color = 'blue')

326p6, = plt.plot(np.arange(len(Jaartallen)), nl*np.arange(len(Jaartallen)) + vl, label = '
Linear Regression - Spring', linestyle = '--', color = 'red')

327p7, = plt.plot(np.arange(len(Jaartallen)), nz*np.arange(len(Jaartallen)) + vz, label = '
Linear Regression - Summer', linestyle = '--', color = 'green')

328p8, = plt.plot(np.arange(len(Jaartallen)), nw*np.arange(len(Jaartallen)) + vw, label = '
Linear Regression - Winter', linestyle = '--', color = 'orange')

329

330plt.ylabel('Sea-Level [m]')
331plt.xlabel('Year')
332

333plt.xticks(np.arange(len(Jaartallen)), Jaartallen, rotation = 65)
334

335l1 = plt.legend(handles=[p1,p2,p3,p4], loc = 'upper left')
336plt.gca().add_artist(l1)
337plt.legend(handles=[p5,p6,p7,p8], loc = 'lower right')
338

339plt.title('Mean sea-level per season from 1900-2018 at Hoek van Holland')
340#%%
341p1, = plt.plot(np.array(Jaartallen), herfststdyear_ip, label = 'Fall (OND)', marker = 'o',

alpha = 0.25)
342p2, = plt.plot(np.array(Jaartallen), winterstdyear_ip, label = 'Winter (JFM)', marker = 'o',

alpha = 0.25)
343p3, = plt.plot(np.array(Jaartallen), zomerstdyear_ip, label = 'Summer (JAS)', marker = 'o',

alpha = 0.25)
344p4, = plt.plot(np.array(Jaartallen), lentestdyear_ip, label = 'Spring (AMJ)', marker = 'o',

alpha = 0.25)
345

346p5, = plt.plot(np.arange(len(Jaartallen)), nhs*np.arange(len(Jaartallen)) + vhs, label = '
Linear Regression - Fall', linestyle = '--', color = 'blue')

347p6, = plt.plot(np.arange(len(Jaartallen)), nls*np.arange(len(Jaartallen)) + vls, label = '
Linear Regression - Spring', linestyle = '--', color = 'red')

348p7, = plt.plot(np.arange(len(Jaartallen)), nzs*np.arange(len(Jaartallen)) + vzs, label = '
Linear Regression - Summer', linestyle = '--', color = 'green')

349p8, = plt.plot(np.arange(len(Jaartallen)), nws*np.arange(len(Jaartallen)) + vws, label = '
Linear Regression - Winter', linestyle = '--', color = 'orange')

350

351plt.ylabel('Sea-Level [m]')
352plt.xlabel('Year')
353

354plt.xticks(np.arange(len(Jaartallen)), Jaartallen, rotation = 65)
355

356l1 = plt.legend(handles=[p1,p2,p3,p4], loc = 'upper left')
357plt.gca().add_artist(l1)
358plt.legend(handles=[p5,p6,p7,p8], loc = 'lower right')
359

360plt.title('Standard deviation of sea-level per season from 1900-2018 at Hoek van Holland')
361#%%
362

363fig, axs = plt.subplots(2, 1, sharex=True)
364#fig.subplots_adjust(hspace=0.8)
365

366nh, vh = np.polyfit(np.arange(len(Jaartallen)), herfstmeanyear_ip, 1) #Fitting a linear line
for MSL variability

367nl, vl = np.polyfit(np.arange(len(Jaartallen)), lentemeanyear_ip, 1)
368nz, vz = np.polyfit(np.arange(len(Jaartallen)), zomermeanyear_ip, 1)
369nw, vw = np.polyfit(np.arange(len(Jaartallen)), wintermeanyear_ip, 1)
370

371nhs, vhs = np.polyfit(np.arange(len(Jaartallen)), herfststdyear_ip, 1) #Fitting a linear line
for MSL variability
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372nls, vls = np.polyfit(np.arange(len(Jaartallen)), lentestdyear_ip, 1)
373nzs, vzs = np.polyfit(np.arange(len(Jaartallen)), zomerstdyear_ip, 1)
374nws, vws = np.polyfit(np.arange(len(Jaartallen)), winterstdyear_ip, 1)
375

376p1, = axs[0].plot(np.array(Jaartallen), herfstmeanyear_ip, label = 'Fall (OND)', marker = 'o'
, alpha = 0.25)

377p2, = axs[0].plot(np.array(Jaartallen), wintermeanyear_ip, label = 'Winter (JFM)', marker = '
o', alpha = 0.25)

378p3, = axs[0].plot(np.array(Jaartallen), zomermeanyear_ip, label = 'Summer (JAS)', marker = 'o
', alpha = 0.25)

379p4, = axs[0].plot(np.array(Jaartallen), lentemeanyear_ip, label = 'Spring (AMJ)', marker = 'o
', alpha = 0.25)

380

381p5, = axs[0].plot(np.arange(len(Jaartallen)), nh*np.arange(len(Jaartallen)) + vh, label = '
Linear Regression - Fall', linestyle = '--', color = 'blue')

382p6, = axs[0].plot(np.arange(len(Jaartallen)), nl*np.arange(len(Jaartallen)) + vl, label = '
Linear Regression - Spring', linestyle = '--', color = 'red')

383p7, = axs[0].plot(np.arange(len(Jaartallen)), nz*np.arange(len(Jaartallen)) + vz, label = '
Linear Regression - Summer', linestyle = '--', color = 'green')

384p8, = axs[0].plot(np.arange(len(Jaartallen)), nw*np.arange(len(Jaartallen)) + vw, label = '
Linear Regression - Winter', linestyle = '--', color = 'orange')

385

386axs[0].set_ylabel('Sea-Level [m]')
387axs[0].set_xlabel('Year')
388

389plt.xticks(np.arange(len(Jaartallen)), Jaartallen, rotation = 65)
390

391l1 = axs[0].legend(handles=[p1,p2,p3,p4], loc = 'upper left')
392axs[0].add_artist(l1)
393axs[0].legend(handles=[p5,p6,p7,p8], loc = 'lower right')
394

395axs[0].set_title('Mean sea-level per season from 1900-2018 at Hoek van Holland')
396

397p1, = axs[1].plot(np.array(Jaartallen), herfststdyear_ip, label = 'Fall (OND)', marker = 'o',
alpha = 0.25)

398p2, = axs[1].plot(np.array(Jaartallen), winterstdyear_ip, label = 'Winter (JFM)', marker = 'o
', alpha = 0.25)

399p3, = axs[1].plot(np.array(Jaartallen), zomerstdyear_ip, label = 'Summer (JAS)', marker = 'o'
, alpha = 0.25)

400p4, = axs[1].plot(np.array(Jaartallen), lentestdyear_ip, label = 'Spring (AMJ)', marker = 'o'
, alpha = 0.25)

401

402p5, = axs[1].plot(np.arange(len(Jaartallen)), nhs*np.arange(len(Jaartallen)) + vhs, label = '
Linear Regression - Fall', linestyle = '--', color = 'blue')

403p6, = axs[1].plot(np.arange(len(Jaartallen)), nls*np.arange(len(Jaartallen)) + vls, label = '
Linear Regression - Spring', linestyle = '--', color = 'red')

404p7, = axs[1].plot(np.arange(len(Jaartallen)), nzs*np.arange(len(Jaartallen)) + vzs, label = '
Linear Regression - Summer', linestyle = '--', color = 'green')

405p8, = axs[1].plot(np.arange(len(Jaartallen)), nws*np.arange(len(Jaartallen)) + vws, label = '
Linear Regression - Winter', linestyle = '--', color = 'orange')

406

407axs[1].set_ylabel('Sea-Level [m]')
408axs[1].set_xlabel('Year')
409

410#plt.xticks(np.arange(len(Jaartallen)), Jaartallen, rotation = 65)
411

412l1 = axs[1].legend(handles=[p1,p2,p3,p4], loc = 'upper left')
413axs[1].add_artist(l1)
414plt.legend(handles=[p5,p6,p7,p8], loc = 'lower right')
415

416plt.title('Standard deviation of sea-level per season from 1900-2018 at Hoek van Holland')
417#%%
418duration = 5*year
419duration_ = 5*year_
420#From 31-12-1986 23:00 the sea height

was measured every 10 minutes
421end = 6 * year + 51840 # x years from end(2018-01-13) of

dataset
422end_ = 6 * year_ + (893340)
423

424#From ~04-04-2016 the data is each minute (HOEKVHLD)
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425

426f = sea_height.flatten() # in meters
427t = np.array(time).astype(datetimee.datetime).flatten() # in days
428

429def to_float(d, epoch=t[0]):
430return (d - epoch) / datetimee.timedelta(minutes=10)
431

432to = np.arange(ds_SCH, de_SCH,
433datetimee.timedelta(days=1/(day))).astype(datetimee.datetime)
434

435fo = np.interp(to_float(to)[-end-duration:-end+1].astype(float),
436to_float(t).astype(float),
437f)
438

439inc = 1
440

441tod = to[::inc]
442fod = fo[::inc]
443

444fig, axs = plt.subplots(3, 1, sharex=True)
445fig.subplots_adjust(hspace=0.2)
446

447#axs[0].xaxis.set_minor_locator(mdates.DayLocator())
448axs[0].plot(tod[-end-duration:-end+1], fod, LineWidth = 0.2, color = 'red')
449axs[0].set_ylabel("Sea-Level [m]")
450axs[0].set_title("Interpolated Data")
451

452axs[1].plot(t[-end_-duration_:-end_+1], f[-end_-duration_:-end_+1], LineWidth = 0.2)
453axs[1].set_ylabel("Sea-Level [m]")
454axs[1].set_title("Initial Data")
455

456axs[2].plot(tod[-end-duration:-end+1], fod, LineWidth = 0.2, color = 'red')
457axs[2].plot(t[-end_-duration_:-end_+1], f[-end_-duration_:-end_+1], LineWidth = 0.2)
458axs[2].set_title("Overlapping initial data and interpolated data")
459axs[2].set_ylabel("Sea-Level [m]")
460axs[2].set_xlabel("Date")
461

462plt.show()
463

464print(tod[-end-duration:-end+1])
465#%%
466n = len(fod) # Total number of discrete points
467T = duration_/144 # Total sampling time in days
468dt = T/n # sampling period
469fs = 1/dt # sampling frequency
470

471fhat = np.fft.rfft(fod) # Compute the FFT for a real signal
472freq = np.fft.rfftfreq(n,dt) # Natural frequencies (1/dt)
473

474PSD = np.abs((fhat * np.conj(fhat))) #Power spectrum(power per frequency)
475L = np.arange(1, np.floor(n/(20*mul)), dtype = 'int') #Spectrum of frequencies
476

477

478#plt.axvline(1.00, alpha = 0.25) #M2 Tide
479#plt.axvline(0.07, alpha = 0.25) #K1 Tide
480#plt.axvline(1.93, alpha = 0.25) #Mf Tide
481

482plt.xscale("log")
483plt.yscale("log")
484plt.plot(freq[L], PSD[L], color = 'c', LineWidth = 0.75)
485plt.xlabel('frequency[1/day]')
486plt.ylabel(r'The power[$m^{2}$]')
487plt.title('Periodogram Sea Level: 1990 - 2018')
488#%% Getting the low frequency waves
489L = np.arange(1, np.floor(n/(100*mul)), dtype = 'int') #Spectrum of frequencies
490plt.xscale("log")
491plt.yscale("log")
492plt.xticks(np.linspace(0,7,100), rotation = 65)
493plt.plot(freq[L], PSD[L], color = 'c', LineWidth = 0.75)
494plt.xlabel('frequency[1/day]')
495plt.ylabel(r'The power[$m^{2}$]')
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496plt.legend()
497#%% Getting the tides and high-frequency signals
498tides_24h = np.array(tides_const['freq'][tides_const['freq'] < 1]) #Tides with periods larger

than 24 hour
499indices = np.zeros(len(PSD))
500

501for i in tides_24h:
502nearest_freq_tide = np.abs(freq - i)
503indices[np.where(nearest_freq_tide == np.amin(nearest_freq_tide))] = 1
504

505indices[freq > 1] = 1
506indices = np.array(indices, dtype = bool)
507

508PSDClean = PSD * indices
509fhatclean = fhat * indices
510ffilt = np.real_if_close(np.fft.irfft(fhatclean), tol = 1000)
511plt.figure()
512plt.xscale("linear")
513plt.yscale("log")
514plt.title('Periodogram Sea-Level Hoek van Holland: 2015 - 2016')
515#plt.plot(tod[-end-duration:-end], ffilt, LineWidth = 0.5)
516plt.plot(freq[L], PSDClean[L], color = 'c', LineWidth = 0.75, label = 'Irrelevant tidal 

frequencies and high-frequencies')
517

518plt.show()
519#%% Residuals
520tides_24h = np.array(tides_const['freq'][tides_const['freq'] < 1]) #Tides with periods larger

than 24 hour
521indices = np.ones(len(PSD))
522

523for i in tides_24h:
524nearest_freq_tide = np.abs(freq - i)
525indices[np.where(nearest_freq_tide == np.amin(nearest_freq_tide))] = 0
526

527indices[freq > 1] = 0
528indices = np.array(indices, dtype = bool)
529

530PSDClean = PSD * indices
531fhatclean = fhat * indices
532resid = np.real_if_close(np.fft.irfft(fhatclean), tol = 1000)
533#plt.figure()
534plt.xscale("linear")
535plt.yscale("log")
536plt.axvline(1.00, alpha = 0.25) #M2 Tide
537plt.axvline(0.07, alpha = 0.25) #K1 Tide
538plt.axvline(1.93, alpha = 0.25) #Mf Tide
539#plt.plot(tod[-end-duration:-end], resid, LineWidth = 0.5)
540plt.plot(freq[L], PSDClean[L], color = 'red', LineWidth = 0.75, alpha = 0.65, label = '

Relevant low-frequencies [period > 24 hours]')
541plt.xlabel('frequency[1/day]')
542plt.ylabel(r'The power[$m^{2}$]')
543plt.legend()
544plt.show()
545#%%
546fig, axs = plt.subplots(1, 1, sharex=True)
547

548axs.plot(tod[-end-duration:-end], fod[:-1], color = 'darkorange', label = 'Original sea level
 without filtering')

549axs.plot(tod[-end-duration:-end], ffilt, color = 'lightseagreen', alpha = 0.8, label = '
Irrelevant tidal signals and high frequency signals')

550axs.plot(tod[-end-duration:-end], resid, color = 'indigo', alpha = 0.6, label = 'Relevant low
-frequency residuals')

551

552axs.set_xlabel("Date")
553axs.set_ylabel("Sea level in meters")
554axs.set_title("Decomposition of the sea level signal into the low-frequency residuals and 

irrelevant tidal signals and high frequency signals")
555

556axs.xaxis.set_minor_locator(mdates.YearLocator())
557

558axs.legend()
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559#%% Wavelet Transformation and Plotting Scalogram
560scales = np.arange(100,1101,25)
561dt = T/n
562coef, freqs = pywt.cwt(resid, scales, 'morl',dt) #Finding

CWT using a morlet wavelet
563_,_,_,coi,_,_ = pycwt.wavelet.cwt(resid, dt, wavelet = 'morlet', freqs = freqs)
564coif = 1/coi
565

566fig, axs = plt.subplots(2, 1, sharex=True)
567# Remove horizontal space between axes
568fig.subplots_adjust(hspace=0.5)
569

570axs[0].plot(tod[-end-duration:-end], resid)
571axs[0].set_ylabel("Residual-level in meters")
572axs[0].set_xlabel("Date")
573axs[0].set_title("The extracted residuals from the original sea-level")
574

575axs[1].pcolor(tod[-end-duration:-end], freqs, abs(coef))
576axs[1].plot(tod[-end-duration:-end], coif, linestyle = "--", color = 'white')
577axs[1].set_ylim(freqs[-1], freqs[0])
578axs[1].set_title("Spectrogram Wavelet Transformation using a Morlet wavelet")
579axs[1].set_ylabel("Frequency (1/day)")
580axs[1].set_xlabel("Date")
581

582plt.show()
583#%%
584# BRON: KONINKLIJK NEDERLANDS METEOROLOGISCH INSTITUUT (KNMI) (KNMI, n.d.)
585weer = pd.read_csv("C:/Users/Kelsa/OneDrive/Bureaublad/BEP/WaterLevel_records/WeatherHVHLD.

txt",
586skiprows = 50, skipinitialspace=True, parse_dates = [1], index_col = 1,

dayfirst=True)
587#%%
588ds_weerHVHLD = datetimee.date(1971,1,1)
589de_weerHVHLD = datetimee.date(2022,5,2)
590

591def ndays(date1, date2):
592return (date2-date1).days
593

594numofdays = ndays(de_weerHVHLD, de_weerHVHLD)
595#%%
596FG = weer['FG']
597PG = weer['PG']
598DDVEC = weer['DDVEC']
599FHVEC = weer['FHVEC']
600#%%
601lowerbound = tod[-end-duration]
602upperbound = tod[-end]
603

604print(tod[-end-duration], tod[-end])
605

606FGi = FG[lowerbound : upperbound].interpolate()
607PGi = PG[lowerbound : upperbound].interpolate()
608DDVECi = DDVEC[lowerbound : upperbound].interpolate()
609FHVECi = FHVEC[lowerbound : upperbound].interpolate()
610

611residmean = np.mean(resid[:].reshape(-1,144), axis = 1) #computing the daily mean of the low-
frequency residuals

612

613time_nw = FGi[((DDVECi[:] - 43) <= 275) & ((DDVECi[:] - 43) >= 265)].index
614time_se = FGi[((DDVECi[:] - 43) <= 95) & ((DDVECi[:] - 43) >= 85)].index
615time_sw = FGi[((DDVECi[:] - 43) <= 185) & ((DDVECi[:] - 43) >= 175)].index
616time_ne = FGi[((DDVECi[:] - 43) <= 5) & ((DDVECi[:] - 43) >= -5)].index
617

618fig, axs = plt.subplots(2, 1)
619fig.subplots_adjust(hspace=0.2)
620

621#axs[0].xaxis.set_minor_locator(mdates.DayLocator())
622axs[0].plot(FGi)
623

624# for i in range(len(time_ne)):
625# axs[0].axvline((time_ne[i]), color = 'green')
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626

627axs[0].set_ylabel("Daily mean wind speed expressed in 0.1 m/s") (KNMI, n.d.)
628

629axs[1].plot(PGi)
630axs[1].set_ylabel("Daily mean sea-level pressure expressed in 0.1 hPa") (KNMI, n.d.)
631

632ax2 = axs[0].twinx()
633ax2.plot(tod[-end-duration:-end:144], residmean, color = 'red', alpha = 0.7)
634ax2.set_ylabel("Residual wave height in m")
635

636plt.show()
637#%%Wavelet windspeed
638scales_windspeed = np.arange(0.8,8.1,0.1)
639dt_ws = 1
640FGi_ws = np.array(FGi)
641coef_ws, freqs_ws = pywt.cwt(FGi_ws, scales_windspeed, 'morl',dt_ws)

#Finding CWT using a morlet wavelet
642_,_,_,coi_ws,_,_ = pycwt.wavelet.cwt(FGi_ws, dt_ws, wavelet = 'morlet', freqs = freqs_ws)
643coif_ws = 1/coi_ws #Cone of Influence
644

645#Wavelet residuals - For small timeframe(high computational power needed, higher resolution)
646# scales_resid = np.arange(110,1211,50)
647# dt_rs = T/n
648# coef_rs, freqs_rs = pywt.cwt(resid, scales_resid, 'morl',dt_rs)

#Finding CWT using a morlet wavelet
649# _,_,_,coi_rs,_,_ = pycwt.wavelet.cwt(resid, dt_rs, wavelet = 'morlet', freqs = freqs_rs)
650# coif_rs = 1/coi_rs
651

652

653#Wavelet Residuals - For large timeframe(lower computational power needed, lower resolution)
654scales_resid = np.arange(0.8,8.1,0.1)
655dt_rs = 1
656coef_rs, freqs_rs = pywt.cwt(residmean, scales_resid, 'morl',dt_rs)

#Finding CWT using a morlet wavelet
657_,_,_,coi_rs,_,_ = pycwt.wavelet.cwt(residmean, dt_rs, wavelet = 'morlet', freqs = freqs_rs)
658coif_rs = 1/coi_rs
659

660fig, axs = plt.subplots(3, 1, sharex=True)
661fig.subplots_adjust(hspace=0.5)
662

663axs[0].plot(FGi)
664# for i in range(len(time_ne)):
665# axs[0].axvline((time_ne[i]), color = 'green')
666

667axs[0].set_ylabel("Daily mean windspeed (in 0.1 m/s)")
668axs[0].set_xlabel("Date")
669axs[0].set_title("The filtered residuals from initial sea surface heights")
670axs[0].legend(['Wind speed'], loc = 2)#, 'NE-Wind'], loc = 2)
671ax2 = axs[0].twinx()
672ax2.plot(tod[-end-duration:-end:144], residmean, color = 'red', alpha = 0.7, label = '

Residuals')
673ax2.set_ylabel("Residual wave height in m")
674ax2.legend()
675

676#----------------------------------------------------------------------------------
677axs[1].pcolor(tod[-end-duration:-end+1:144], freqs_ws, abs(coef_ws))
678# for i in range(len(time_ne)):
679# axs[1].axvline((time_ne[i]), color = 'white', alpha = 0.5)
680

681axs[1].plot(tod[-end-duration:-end+1:144], coif_ws, linestyle = "--", color = 'white')
682axs[1].set_ylim(freqs_ws[-1], freqs_ws[0])
683axs[1].set_title("Spectrogram - Windspeed")
684axs[1].set_ylabel("Frequency (1/day)")
685axs[1].set_xlabel("Date")
686axs[1].set_yticks(np.linspace(freqs_ws[0], freqs_ws[-1], 10))
687axs[1].grid(True)
688

689im_ws = axs[1].pcolor(tod[-end-duration:-end+1:144], freqs_ws, abs(coef_ws))
690fig.colorbar(im_ws, ax=axs[1], orientation = 'horizontal', label = 'power [-]')
691#----------------------------------------------------------------------------------
692#axs[2].pcolor(tod[-end-duration:-end], freqs_rs, abs(coef_rs)) #Enable when using Wavelet
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for small timeframe
693axs[2].pcolor(tod[-end-duration:-end:144], freqs_rs, abs(coef_rs)) #Enable when using Wavelet

for large timeframe
694# for i in range(len(time_ne)):
695# axs[2].axvline((time_ne[i]), color = 'white', alpha = 0.5)
696

697#axs[2].plot(tod[-end-duration:-end], coif_rs, linestyle = "--", color = 'white') #Enable
when using Wavelet for small timeframe

698axs[2].plot(tod[-end-duration:-end:144], coif_rs, linestyle = "--", color = 'white') #Enable
when using Wavelet for large timeframe

699axs[2].set_ylim(freqs_rs[-1], freqs_rs[0])
700axs[2].set_title("Spectrogram - Residuals")
701axs[2].set_ylabel("Frequency (1/day)")
702axs[2].set_xlabel("Date")
703axs[2].set_yticks(np.linspace(freqs_rs[0], freqs_rs[-1], 10))
704axs[2].grid(True)
705

706#im_rs = axs[2].pcolor(tod[-end-duration:-end:144], freqs_rs, abs(coef_rs)) #Enable when
using Wavelet for small timeframe

707im_rs = axs[2].pcolor(tod[-end-duration:-end:144], freqs_rs, abs(coef_rs)) #Enable when using
Wavelet for large timeframe

708fig.colorbar(im_rs, ax=axs[2], orientation = 'horizontal', label = 'power [-]')
709

710

711plt.show()
712#%%
713FGii = FGi[:-1]
714

715nw_resid = residmean[((DDVECi[:-1] - 43) <= 275) & ((DDVECi[:-1] - 43) >= 265)] #On shore
716nw_wind = FGii[((DDVECi[:-1] - 43) <= 275) & ((DDVECi[:-1] - 43) >= 265)] #On shore
717

718se_resid = residmean[((DDVECi[:-1] - 43) <= 95) & ((DDVECi[:-1] - 43) >= 85)] #Off shore
719se_wind = FGii[((DDVECi[:-1] - 43) <= 95) & ((DDVECi[:-1] - 43) >= 85)] #Off shore
720

721sw_resid = residmean[((DDVECi[:-1] - 43) <= 185) & ((DDVECi[:-1] - 43) >= 175)] #Along shore
south-west

722sw_wind = FGii[((DDVECi[:-1] - 43) <= 185) & ((DDVECi[:-1] - 43) >= 175)] #Along shore
south-west

723

724ne_resid = residmean[((DDVECi[:-1] - 43) <= 5) & ((DDVECi[:-1] - 43) >= -5)] #Along shore
north-east

725ne_wind = FGii[((DDVECi[:-1] - 43) <= 5) & ((DDVECi[:-1] - 43) >= -5)] #Along shore
north-east

726

727

728fig, axs = plt.subplots(2, 2)
729fig.subplots_adjust(hspace=0.5)
730

731fig.suptitle('Correlation between wind speed and residuals from 1990 - 2016')
732

733covariance_nw = np.corrcoef(nw_resid,nw_wind) #Correlation between north-western wind and
residuals

734covariance_se = np.corrcoef(se_resid, se_wind) #Correlation between south-eastern wind and
residuals

735covariance_sw = np.corrcoef(sw_resid, sw_wind) #Correlation between south-western wind and
residuals

736covariance_ne = np.corrcoef(ne_resid,ne_wind) #Correlation between north-eastern wind and
residuals

737

738axs[0,0].plot(nw_resid, nw_wind, 'o', color = 'black', markersize = 1)
739axs[0,0].set_ylabel("Daily mean wind speed (in 0.1 m/s)")
740axs[0,0].set_xlabel("Daily mean residual height in meters")
741axs[0,0].set_title(f"On shore wind - Pearson correlation coefficient r � {covariance_nw

[0,1]:.2f} \n number of events: {len(nw_resid)}")
742

743

744axs[0,1].plot(se_resid, se_wind, 'o', color = 'black', markersize = 1)
745axs[0,1].set_ylabel("Daily mean wind speed (in 0.1 m/s)")
746axs[0,1].set_xlabel("Daily mean residual height in meters")
747axs[0,1].set_title(f"Off shore wind - Pearson correlation coefficient r � {covariance_se

[0,1]:.2f} \n number of events: {len(se_resid)}")
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748

749axs[1,0].plot(sw_resid, sw_wind,'o', color = 'black', markersize = 1)
750axs[1,0].set_ylabel("Daily mean wind speed (in 0.1 m/s)")
751axs[1,0].set_xlabel("Daily mean residual height in meters")
752axs[1,0].set_title(f"Along shore: South-Western wind - Pearson correlation coefficient r � {

covariance_sw[0,1]:.2f} \n number of events: {len(sw_resid)}")
753

754axs[1,1].plot(ne_resid, ne_wind,'o', color = 'black', markersize = 1)
755axs[1,1].set_ylabel("Daily mean wind speed (in 0.1 m/s)")
756axs[1,1].set_xlabel("Daily mean residual height in meters")
757axs[1,1].set_title(f"Along shore:North-Eastern wind - Pearson correlation coefficient r � {

covariance_ne[0,1]:.2f}\n number of events: {len(ne_resid)}")
758

759plt.show()
760

761print(covariance_nw[0][1])
762print(covariance_se[0][1])
763print(covariance_sw[0][1])
764print(covariance_ne[0][1])
765

766print(len(nw_resid))
767print(len(se_resid))
768print(len(sw_resid))
769print(len(ne_resid))
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Tables and Figures

Filtered Tidal Constituents Frequency per day
Z0 0.000000

SA 0.002738

SSA 0.005476

MSM 0.031435

MM 0.036292

MSF 0.067726

MF 0.073202

ALP1 0.825518

2Q1 0.856952

Filtered Tidal Constituents Frequency per day
SIG1 0.861809

Q1 0.893244

RHO1 0.898101

O1 0.929536

TAU1 0.935012

BET1 0.960970

NO1 0.966446

CHI1 0.971303

PI1 0.994524

P1 0.997262

Table B.1: Filtered out low-frequency signals due to tide(periods larger than 24 hours)
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Extracted low-frequency residuals: 1990 - 2016

Figure B.1: The yellow signal is the initial signal without filtering. The green signal shows the signal consisting of the tides and
irrelevant high-frequency signals. The purple signal is the extracted low-frequency residuals one is interested in.



40

Spectrograms(per 1 year)

Figure B.2: Wavelet Transformation for sea level at Hoek van Holland: 1990-1991



41

Figure B.3: Wavelet Transformation for sea level at Hoek van Holland: 1995-1996
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Figure B.4: Wavelet Transformation for sea level at Hoek van Holland: 2000-2001
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Figure B.5: Wavelet Transformation for sea level at Hoek van Holland: 2005-2006
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Figure B.6: Wavelet Transformation for sea level at Hoek van Holland: 2010-2011



45

Figure B.7: Wavelet Transformation for sea level at Hoek van Holland: 2015-2016
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Spectrograms 1990-2016

Figure B.8: Wavelet Transformation for sea level at Hoek van Holland: 1990-1996
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Figure B.9: Wavelet Transformation for sea level at Hoek van Holland: 1996-2001
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Figure B.10: Wavelet Transformation for sea level at Hoek van Holland: 2001-2006
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Figure B.11: Wavelet Transformation for sea level at Hoek van Holland: 2006-2011
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Figure B.12: Wavelet Transformation for sea level at Hoek van Holland: 2011-2016
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Location Sea Level Gauge - Hoek van Holland

Figure B.13: Location sea level gauge: Hoek van Holland (Adapted from Tide-forecast(n.d.))
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