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Abstract: High efficiency paradigms and rigorous normative standards for new and existing buildings
are fundamental components of sustainability and energy transitions strategies today. However,
optimistic assumptions and simplifications are often considered in the design phase and, even when
detailed simulation tools are used, the validation of simulation results remains an issue. Further,
empirical evidences indicate that the gap between predicted and measured performance can be
quite large owing to different types of errors made in the building life cycle phases. Consequently,
the discrepancy between a priori performance assessment and a posteriori measured performance
can hinder the development and diffusion of energy efficiency practices, especially considering the
investment risk. The approach proposed in the research is rooted on the integration of parametric
simulation techniques, adopted in the design phase, and inverse modelling techniques applied
in Measurement and Verification (M&V) practice, i.e., model calibration, in the operation phase.
The research focuses on the analysis of these technical aspects for a Passive House case study,
showing an efficient and transparent way to link design and operation performance analysis,
reducing effort in modelling and monitoring. The approach can be used to detect and highlight the
impact of critical assumptions in the design phase as well as to guarantee the robustness of energy
performance management in the operational phase, providing parametric performance boundaries to
ease monitoring process and identification of insights in a simple, robust and scalable way.

Keywords: building performance simulation; parametric modelling; energy management; model
calibration; energy efficiency; Passive House

1. Introduction

The increasing effort towards resource efficiency and sustainability in the building sector [1]
is progressively changing the way buildings are designed and managed. The decarbonisation of
the built environment is a key objective for energy and environmental policies in the EU [2,3] and
worldwide [4]. New efficiency paradigms (i.e., NZEBs) regarding existing and new buildings [5] have
been introduced in recent years in the EU and other countries, at the global level. Passive design
strategies making use of solar energy and internal gains are well established [6]. However, optimistic
assumptions are often made in the design phase and semi-stationary calculation methodologies are
still commonly employed [7]. Further, the gap between simulated and measured performance is a
general issue [8] and the benefits of “green” design practices should be critically evaluated [9,10],
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by assessing transparently the impact of human and technical factors [11]. With respect to human
factors in particular, the effects of occupants’ behaviour [12] and of their comfort preferences [13] on
building performance are generally overlooked in the design phase. This paper aims to present a way
to integrate modelling methodologies used across building life cycle phases, from design to operation,
in a simple and scalable way. A residential building has been chosen as a case study. The building is a
detached single family certified Passive House built in Italy, in the Province of Forlì-Cesena, in the
Emilia Romagna region. It has been monitored for three years, learning incrementally insights by
comparing the original design phase simulation data with actual measured data.

2. Background and Motivation

The research work answers to the necessity of linking parametric performance analysis and
model calibration from a conceptual and practical point of view. Building performance parametric
and probabilistic analysis is an essential tool today to ensure robustness of performance and the
importance of the Design of Experiments (DOE) is becoming clear [14–17], both for new and retrofitted
buildings [18,19]. For example, accounting for the robustness of performance estimates with respect to
economic indicators (e.g., in cost-optimal analysis [20–22]) is important because uncertainty can affect
the credibility and, consequently, hinder the success of policies oriented to investments on efficiency in
the built environment. In this research, baseline design simulation, i.e., original design simulation for
the building project, was used as baseline and multiple Design of Experiments (DOE) simulations were
run to compute the impact of the variability of multiple inputs (envelope components performance,
operational settings, occupant’s behaviour and comfort preferences, etc.), as specified in detail in
Section 3.1. The parametric approach aims at detecting critical assumptions in the preliminary design
stage, to guarantee a more robust evaluation of performance [15,23]. In simpler terms, the objective
of the parametric simulation is to include from the very beginning more realistic, and possibly less
optimistic, assumptions, and use the simulation outcomes as boundaries for comparative performance
analysis during the operation phase. In order to reduce the computational effort, meta-modelling
techniques can be used [24] (i.e., surrogate, reduced-order). The choice of meta-modelling techniques
depends on several factors [25]: they are very flexible and they can be employed for different uses
such as the optimization of design [26], model calibration [24] and control [27]. Additionally, different
meta-models can give similar performance on the same problem [24,28]. In this research regression
models were tested for performance prediction, using energy signatures [29,30] regressed against
weather data [24,31–33]. Therefore, multiple piecewise linear multivariate regression models are
trained first on simulation data, as described in Section 3.2. These models are, then, updated and
calibrated on measured data during three years of operation. Visualization and numerical techniques
are combined to allow an intuitive results interpretation as well as to facilitate human interaction in the
calibration process, encompassing model training and testing phases. While being less sophisticated
than other machine learning techniques available today, multivariate regression models have been
chosen because of a set of important features. First of all, standardization [29,30], temporal [34,35]
and spatial scalability [36,37], weather normalization using Variable Base Degree-Days (VBDD) [38,39].
After that, the applicability to multiple types of building end-uses [33] and the flexibility with respect to
diverse operational strategies and conditions [12,40,41], e.g., accounting for different levels of thermal
inertia [42]. Further, the possibility to easily extend their applicability using techniques such as Monte
Carlo simulation [41], Bayesian analysis [43,44], eventually exploiting the approximated physical
interpretation of coefficients [33,45]. Finally, this technique is suitable for performance tracking with
periodic recalibration in changing climate conditions [46,47] and can complement the analysis of
performance of technologies such as heat pumps and cooling machines [48,49], considering also exergy
balance [50,51]. In the next Section the research methodology is explained, starting from parametric
simulation and, then, moving to regression analysis on energy signatures.



Energies 2020, 13, 621 3 of 14

3. Research Methodology

In the original design of the building, Passive House Planning package (PHPP) [52] was used for
simulation. Instead, in this study we used a validated grey-box dynamic model [53,54] to perform
multiple simulation runs in a reduced time frame. Indeed, grey-box models are very flexible and can
be used in the inverse mode to estimate lumped properties of the actual building, eventually extending
their applicability with Bayesian analysis [55,56] or Dempster-Shafer theory of the evidence [57].
In this case, the original building design configuration was considered as a baseline. Then parametric
simulations were run using the Design of Experiments (DOE) methodology [58], similarly to other
research studies on the variability in building performance simulation [15,16,59]. Variations and
multiple runs are meant to reproduce the actual variability of the performance of envelope components,
air-change rates and of occupants’ behaviour and comfort preferences. As described before, these
variations in the operation phase (generally) entail a significant gap between simulation and actual
measured performance.

3.1. Parametric Performance Analysis of the Case Study

The case study chosen is a single family detached Passive House built in Italy, in the Province
of Forlì-Cesena, in the Emilia Romagna region. The case study was chosen because it represents an
example of a high efficiency building design and we wanted to analyse its actual performance in
operation (as well as its evolution in time) together with the applicability of the approach proposed,
based on an extension of well-established M&V techniques. The approach proposed substantially
anticipates the use of inverse modelling at the design stage and the goal of parametric simulation is that
of creating an envelopment of data to be considered as possible scenarios of actual building performance
in operation. The building has a high level of insulation of envelope components and it is equipped
with mechanical ventilation with heat recovery (air/air heat exchanger), a solar thermal to integrate
DHW production, a ground-source heat pump system (GSHP) and a PV plant for local electricity
production. Simulation input data are summarized in Table 1, reporting baseline configuration with
respect to the two level Design of Experiments (DOE) configurations. The U values in Table 1 were
averaged with respect to the external surface of components (summarized then in the heat loss surface
area) and considered the impact of thermal bridges. Technical systems data are synthesized hereafter
in Table 2.

Table 1. Simulation data from baseline and two-level Design of Experiments (DOE).

Group Type Unit Baseline

Design of Experiment

Levels

−1 +1

Climate UNI 10349:2016 -

Geometry

Gross volume m3 1557
Net volume m3 1231

Heat loss surface area m2 847
Net floor area m2 444

Surface/volume ratio 1/m 0,54

Envelope
U value external walls W/(m2K) 0.18 0.23 0.27

U value roof W/(m2K) 0.17 0.21 0.26
U value transparent components W/(m2K) 0.83 1.04 1.25

Activities Internal gains (lighting, appliances and occupancy,
daily average) W/m2 1 1 1.5

Occupants - 5 5 5

Control and
operation

Heating set-point temperature ◦C 20 20 22
Cooling set-point temperature ◦C 26 26 28

Air-change rate (infiltration and mechanical
ventilation with heat recovery in heating mode) vol/h 0.2 0.2 0.4

Shading factor (solar control summer mode) - 0.5 0.5 0.7
Domestic hot water demand l/person/day 50 50 70

Schedules—DOE constant operation - 0.00–23.00 0.00–23.00 0.00–23.00
Schedules—DOE behaviour 1 - 7.00–22.00 7.00–22.00 7.00–22.00

Schedules—DOE behaviour 2 - 7.00–9.00,
17.00–22.00

7.00–9.00,
17.00–22.00

7.00–9.00,
17.00–22.00
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Table 2. Technical systems data.

Technical System Technology Type Unit Value

Heating/Cooling
system

Ground Source Heat Pump Brine/Water Heat Pump kW 8.4

Ground heat exchanger Borehole Heat Exchanger
(2 double U boreholes) m 100

On-site energy
generation

Building Integrated
Photo-Voltaic (BIPV) Polycrystalline Silicon kWp 9.2

Solar Thermal Glazed flat plate collector m2 4.32
Domestic Hot Water storage m3 0.74

In order to simulate realistically multiple operating conditions, different schedules for internal
gains (lighting, appliances and people), heating, cooling and air-exchange rates (ventilation/infiltration)
have been created. Three DOE simulation runs were performed, one for each operational schedule,
(simulating diverse occupants’ behaviour) namely continuous operation (constant operation profile),
operation mainly from 7.00 to 22.00 (behaviour 1), operation mainly from 7.00 to 9.00 and from 17.00 to
22.00 (behaviour 2).

The typical Key Performance Indicators (KPIs) considered in building energy analysis are final
energy use (e.g., thermal demand for heating, cooling and domestic hot water), energy demand
(e.g., energy carriers such as electricity, natural gas, etc.), cost of energy services, primary energy
use and CO2 emissions. In this study, we concentrate on aggregated electricity demand for heating,
cooling, domestic hot water (DHW), lighting and appliances, because all these services are supplied
by electricity.

3.2. Parametric Performance Analysis and Model Calibration Integrated Workflow

The choice in this research is to adopt a piecewise linear multivariate regression approach, using
energy signature technique [29] to analyse both data generated by means of parametric simulation
in the design phase and monitored data during the calibration phase. As a matter of fact, for the
calibration purpose, many types of meta-models are available. A regression approach is proposed
in this study following the arguments presented in Section 2. Table 3 shows the piecewise linear
multivariate regression models [30] implemented. Three linear sub-models compose the overall
predictive model, each one defined between specific boundaries for heating and cooling and baseline
demand, respectively. Dummy variables are added to enable a piecewise linear model formulation.
Dummy variables are binary (0,1) and are multiplied by the original independent variable to obtain
interaction variables, in such a way that the total model is the sum of heating, cooling and base load
components (piecewise linear components). Regression models consider only external temperature
dependence, in the case of model type 1 while, external temperature together with solar radiation
dependence, in the case of model type 2.

Table 3. Regression models for heating, cooling and baseline demand analysis.

Demand Model Type 1 Model Type 2

Heating qh,1 = a0 + a1θe + ε qh,2 = b0 + b1θe + b2Isol + ε
Cooling qc,1 = c0 + c1θe + ε qc,2 = d0 + d1θe + d2Isol + ε

Base load qb,1 = e0 + e1θe + ε qb,2 = f0 + f1θe + f2Isol + ε

To assess and compare the simulation data in the design phase and measured data in the operation
phase, basic statistical indicators are used together with statistical indicators specific for state-of-the-art
model calibration procedures [30,60,61]. The basic statistical indicators chosen were R2 and Mean
Absolute Percentage Error (MAPE). The determination coefficient R2 expresses the goodness of a
regression model fit, varying from 0 to 1 (or 0% to 100%), where the maximum values indicate that
the model fits perfectly the data. The R2 was calculated as 1 minus the ratio between the sum of the
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squares of residuals and total sum of the squares using Equation (1). Mean Absolute Percentage Error
(MAPE) represents the average absolute value of the difference between measured and predicted data,
normalized to measured data. Equation (2) reports the MAPE calculation (we can substitute Mi with Si
when simulated data are used instead of measured ones).

R2 = 1−
SSres

SStot
= 1−

∑
i
(yi − ŷi)

2

∑
i

(
yi − yi

)2 (1)

MAPE =
1
n

∑
i

∣∣∣∣∣Mi − Pi
Mi

∣∣∣∣∣·100 (2)

Going to the specific indicators for calibration, Normalized Mean Bias Error (NMBE) and Cv(RMSE)
Coefficient of Variation of Root Mean Squared Error (RMSE) were used. NMBE is the total sum of
the differences between measured (or simulated in the case of design phase, replacing Mi with Si)
and predicted energy consumption at the calculated time intervals, in this case monthly, divided by
the sum of the measured (or simulated) energy consumption. NMBE is reported in Equation (3). An
overestimation of energy consumption determines a positive value of NMBE while an underestimation
determines a negative one.

NMBE = −

∑
i
(Mi − Pi)∑

i
Mi

·100 (3)

Cv(RMSE) is the normalized measure of the differences between measured Mi (or simulated Si
in the case of design phase) and predicted data Pi. It is based on RMSE, a measure of the sample
deviation of the differences among values measured and predicted by the model divided by A, which
represents measured (or simulated in the case of design phase, replacing Mi with Si) average energy
consumption. The lower the Cv(RMSE) value the better calibrated the model is. Cv(RMSE) calculation
is illustrated in Equations (4), (5) and (6).

Cv(RMSE) =
RMSE

A
·100 (4)

RMSE =

√√√∑
i
(Mi − Pi)

2

n
(5)

A =

∑
i

Mi

n
(6)

The threshold metrics considered in different protocols for M&V and calibration at the
state-of-the-art [23,44,45], are discussed in the literature [62] and reported in Table 4 for calibration
with monthly data.

Table 4. Threshold limits of metrics for model calibration with monthly data.

Metric ASHRAE Guidelines 14 IPMVP FEMP

NMBE (%) ±5 ±20 ±5
Cv(RMSE) (%) 15 - 15

Finally, the analysis of deviations (differences) between measurements and predictions can be
useful to discover hidden patterns in data. Equation (7) was used for this purpose. The energy
consumption is underestimated when a positive deviation occurs at a certain point (i.e., measured
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consumption Mi is higher than predicted Pi) while an overestimation takes place when a negative
deviation derives from calculation (i.e., measured consumption Mi is lower than predicted Pi).

Di = Mi − Pi (7)

4. Results and Discussion

This study aimed to illustrate an integrated workflow from the parametric performance analysis
to model calibration through its essential steps, using a Passive House case study as example. First,
the results obtained from the baseline and DOE simulations, performed according to the input data
reported in Section 3.1 in Table 1, were used to calculate Key Performance Indicators (KPIs) on a yearly
base. These indicators serve as a basis for the comparison of parametric simulation output data. In
Figure 1 we report a summary of the weather data used for simulation (design weather data file)
and during model calibration (the monitoring period). More specifically, weather data reported are
monthly average external air temperatures and daily average global solar radiation on the horizontal
surface. These data are representative of typical average days for every month.
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Figure 1. Weather data used in the study

While the integrated workflow presented could be applied in a more general way, following the
arguments reported in Section 2, the focus of this study was put on analysing the aggregated electricity
demand data. Electricity demand was divided by the square meters of the net floor area and reported
hereafter in Table 5 for the baseline, lower bound (LB) and upper bound (UB), which corresponded to
the envelopment of outputs from the DOE simulation.

Table 5. Comparison of the baseline and two-level DOE simulation data—lower bound and upper
bound of Key Performance Indicator (KPI) yearly values with respect to the baseline.

KPI Unit Baseline
Design of Experiment

LB UB

Electricity consumption kWh/m2 20.8 16.9 31.7

In Figure 2 the detailed composition of electricity demand for baseline simulation configuration
(input configuration is provided in Table 1) is shown. The electricity demand for domestic hot water
service was negligible in the summer months as it was supplied by the solar thermal system (Table 2).
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Simulation data were then used to train regression models type 1 and type 2, as explained in
Section 3.2. In this phase models were still uncalibrated, i.e., they were not calibrated on measured
data but simply trained on simulation data, in order to verify their applicability and goodness of fit
(i.e., the ability to approximate the results of dynamic simulations). The statistical indicators obtained,
introduced in Section 3.2, are reported in Table 6, showing that both model types can fit simulation
data reasonably well, even though the performance of model type 2 was comparatively higher.

Table 6. Model training on the design phase data (uncalibrated models, a priori data)

Model
Type

Calibration
Process Stage Training Dataset Testing

Dataset Statistical Indicators

R2 MAPE NMBE Cv(RMSE)

% % % %

Type 1 Uncalibrated DOE - Overall LB - 93.65 9.34 0.06 13.58
Type 1 Uncalibrated DOE - Overall UB - 96.64 7.33 0.02 9.01

Type 2 Uncalibrated DOE - Overall LB - 99.90 1.42 −0.02 1.65
Type 2 Uncalibrated DOE - Overall UB - 99.78 1.93 −0.01 2.36

Subsequently, the first step of the parametric analysis corresponds to the comparison of monthly
electric energy demand data for the baseline and DOE lower bound and upper bound configurations,
as in Table 1 (parametric simulation input). The comparison is reported in Figure 3, showing on the
left side the monthly energy values obtained by simulation and on the right side the corresponding
parametric energy signatures (expressed as average power). Energy signatures enable the comparison
between simulated and measured data during the subsequent monitoring process and represent the a
priori knowledge we have about the building performance, which we could use to identify anomalies
visually and numerically. Indeed, the regression models developed were independent of the specific
weather data used, as weather data were the independent variables (air temperature and solar radiation
in this case), while the average power was the dependent variable. As shown in Figure 1, 4 years of
weather data were considered in this study, 1 design weather data file and 3 years of monitoring data.
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Figure 3. Electricity demand—DOE parametric model simulation and training (a priori knowledge) for
monitoring purpose.

After that, the results of the incremental model calibration process during the three year monitoring
period are reported for both model types in Table 7. The measured data were more scattered compared
to the simulated ones, leading to higher R2, MAPE and Cv(RMSE). In this phase, the type 1 model did
not reach the calibration threshold with 2 years of monthly data because Cv(RMSE) was 19.75%, higher
than 15% threshold reported in Table 4. So, it could be defined as partially calibrated. Instead, model
type 2 was calibrated, as confirmed by statistical indicators in training and testing phases.

Table 7. Model training and testing on the operation phase data (calibrated models, a posteriori
knowledge).

Model
Type

Calibration
Process Stage Training Dataset Testing Dataset Statistical Indicators

R2 MAPE NMBE Cv(RMSE)

% % % %

Type 1 Partial Calibrated Measured
data—Year 1 and 2 82.64 11.44 0.04 13.44

Measured
data—Year 3 69.74 18.40 −6.95 19.75

Type 2 Calibrated
Measured

data—Year 1 and 2 - 86.07 9.97 0.05 12.02

- Measured
data—Year 3 87.54 11.97 −2.21 12.50

In any case, a reasonable amount of data and a corresponding time span are needed. In this
case study, two years of monthly data to reach calibration or partial calibration of regression models
were necessary. As described before, uncalibrated design models, reported in Table 6 and depicted
in Figure 3, could provide a useful support in the monitoring process, as they represent estimated
bounds of performance (lower and upper bounds of a data envelopment) determined by means of
parametric simulation. The assumptions that characterize parametric building performance simulation
themselves can be updated based on experience gained in model calibration processes in real buildings,
e.g., by reducing or increasing the level of variability of a certain input quantity (Table 1) when more
detailed information is available. For this purpose, a priori knowledge represented by simulated data,
i.e., uncalibrated models can be compared with a posteriori knowledge, represented by measured data,
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as shown on the left side of Figure 4. In the same figure, on the right side, a posteriori knowledge, i.e.,
calibrated models with measured data (at the end of the monitoring period) are reported for comparison.
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The analysis of the changes of models’ regression coefficients during the calibration process and, in
particular, changes of slopes and break points for piecewise linear energy signature models, constitute
starting points for a more in depth analysis, based on approximate physical interpretation as explained
in Sections 2 and 3. Hereafter, we illustrate how the monitoring process evolved in time. By plotting
the data with respect to time, i.e., months of monitoring, we obtained Figures 5 and 6 for uncalibrated
(a priori knowledge) and calibrated (a posteriori knowledge) models, respectively.Energies 2020, 13, 621 11 of 15 
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As reported in Table 7, the calibrated models were trained on the first two years of data and
then tested on the third year of data (36 months of the total monitoring period). In Figure 5 we
could observe the evolution of building performance in time with respect to our (pre)established
performance boundaries, while in Figure 6 we could verify how measured data and calibrated (or
partially calibrated in the case of type 1) models data reasonably overlaps on a monthly base. On the
right side of both Figures 5 and 6, the deviations between measured and predicted data are plotted.
Deviations in Figure 5 indicate that, at many points in time, the building had an energy consumption
near to the upper bound of simulated electricity consumption while, in just a few points in time, it has
an energy consumption near to the lower bound of simulation.

Finally, in Figure 6 the deviations between measured and predicted data exhibited a pattern in
time (similar for both types of models). Variations can depend on multiple factors and, among them,
on behavioural change of occupants that may have determined different values of internal gains and/or
differences in operation schedules and settings of technical systems. Understanding this requires a
more in depth analysis that will be part of future research, together with the application of the same
methodology for a multi-level (regression-based) model calibration with physical interpretation of
regression coefficients, as reported before.

5. Conclusions

Rigorous normative standards for new and existing buildings are an essential part of energy and
sustainability policies today. The effort put in modelling in the design phase is not, by itself, a guarantee
of optimal measured performance. Optimistic assumptions and simplifications are often considered
in the design phase and the validation of simulation results represents an issue, as well as model
calibration on measured data and long-term monitoring. In this research a simple and scalable way to
validate and monitor building performance using monthly data was proposed. It uses an envelopment
of data generated in the design phase by means of the Design Of Experiment (DOE) technique together
with multivariate regression models, periodically retrained during building operation. In this way, a
continuous improvement in design and operation practices becomes possible by linking parametric
performance analysis to model calibration, i.e., using inverse modelling already in the design phase,
considering multiple configurations. In fact, the assumptions that characterize building performance
analysis can be updated based on the experience gained in model calibration, e.g., by reducing or
increasing the level of variability of a certain input quantity when more detailed information is
available. Further research should be devoted, on the one hand, to the creation of a transparent
connection between this approach and ongoing technical standardization, using verification and
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validation standards for forward models. On the other hand, the use of inverse modelling techniques,
i.e., surrogate models, meta-models, in Measurement and Verification (M&V) during the operation
phase should become increasingly common, making use of the current state-of-the art of technical
standardization. All these elements are scientifically and empirically consolidated but their integration
and synthesis are still open issues. Therefore, we believe that future research efforts should be oriented
in this direction, in particular with respect to the robustness of performance estimates, i.e., identification
of realistic boundaries for performance at multiple levels such as building zones, technical systems
and meters under realistic operating conditions. It must be also considered the possibility to scale
models from single buildings to building clusters and stock for large scale performance benchmarking.
In fact, scalability of analysis techniques can greatly contribute to the definition of effective policies in
energy and sustainability transition in the future, supported by large scale data analytics.
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Nomenclature

Variables and Parameters

A average value
a,b,c,d,e,f regression coefficients
Cv(RMSE) coefficient of variation of RMSE
D deviation, difference between measured and simulated data
I radiation
M measured data
MAPE mean absolute percentage error
NMBE normalized mean bias error
q specific energy transfer rate (energy signature)
P predicted data
R2 determination coefficient
RD relative deviation
RMSE root mean square error
S simulated
SS sum of the squares
y numeric value
θ temperature

Subscripts and Superscripts

- average
ˆ predicted value
b baseline
c cooling
h heating
i index
res residual
sol solar
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