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Summary

Strain rate, how fast a material is strained, is known to have an effect on the behaviour of
metals. Being able to measure the effect of strain rate in a material provides more reliable
material data as input for material models. Strain rates up to 10 s−1 can be tested using a
(fast) hydraulic testing machine. Strain rates upwards from 500 s−1 can be tested using a
Split-Hopkinson bar, but for the strain rates in between no such standard method is available.

The goal of this thesis is to provide a design guide for a reliable experiment that measures
the effect of strain rate, in the range 10-100 s−1, on the tensile stress-strain curve of a metal.
The test method proposed in this thesis consists of two parts. The first part is a test using
a universal testing machine to determine material behaviour at low strain rates of 0.001-10
s−1. A regular dogbone specimen with a longer grip section is used for the UTM tests, which
provides the material data to design specimens for the second part. The second part is an
impact test where a drophead impacts a specimen, causing it to strain. The specimens are
U-shaped strips with a dogbone at either side to test material behaviour at higher strain rates
of 10-100 s−1. For both tests, strains are recorded in the grip and gauge sections by means
of a DIC system.

The main advantages of the proposed test method are (i) that no sensors are required in the
drophead as the load is extracted from strain measurements in the linear elastic grip section,
while the gauge section is allowed to deform plastically and (ii) by using DIC, unobtrusive
measurements are taken of the strain field in the recorded area.

Two analytical models have been developed, one for the universal testing machine tests and
one for the impact tests. The analytical models for the UTM tests and the impact tests have
been compared to a finite element model of the same specimen. When plastic strain in the
gauge section becomes the most dominant component of the strain, both analytical and FE
strain curves show good agreement.

Numerical simulations of the impact test have been done by means of an explicit, dynamic,
non-linear impact simulation using finite element analysis. A parametric study has been done
using the FE model to determine the effect of drophead mass, impact velocity and specimen
dimensions on the strain rate in the gauge section and the measurement accuracy. Based on
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the results of this study, a guideline is presented for performing the experiment.

In conclusion, a novel test method and corresponding guideline to determine the stress-strain
curve of metals at intermediate strain rates in the range of 10-100 s−1 has been presented
and demonstrated by means of numerical simulations. As a future step, a set of experiments
should be performed to prove the validity of the proposed test method.
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Nomenclature

Roman Symbols

A Area mm2

b Width mm
D Coefficient Cowper-Symonds relation 1/s
dy Horizontal distance mm
dz Vertical distance mm
E Young’s modulus GPa
Epl Plastic Young’s modulus MPa
F Force N
h Thickness mm
K Strength coefficient for power law MPa
L Length mm
m Mass kg
N Number of data points -
n Strain hardening exponent for power law -
N Recording resolution px
P Reference point -
fc Friction coefficient -
q Coefficient Cowper-Symonds relation -
C Constant -
r Radius mm
R Radius mm
t Time s
u Displacement mm
v Velocity m/s
x x-coordinate mm
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y y-coordinate mm
z z-coordinate mm

Greek Symbols

α Angle dogbone part of specimen ◦

β0 Object displacement accuracy mm
β1 Image displacement accuracy px
δt Time step s
∆ε̄pl Incremental change in equivalent plastic strain −
∆t Time increment s
ε Strain -
ε̇ Strain rate s−1

ν Poisson’s ratio -
ρ Density kg/m3

σ Stress N/m2

ω Factor in determination of strain rate factor rad/s

Sub/Superscripts

0 flow
0 Initial
abq As given by Abaqus
c Parallel in the gauge section
clamp In the clamp section
down In the downward direction
d Drophead
d Dynamic
e Engineering
σε As given by the stress-strain input curve
ε Strain
FoV Field of view
gauge In the gauge section
grip In the grip section
m Measurement
moving Is moving
p In point p
q In point q
σ Stress
s Specimen
s Quasi-static
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tm In the section toward the middle
t True
u Ultimate
up In the upward direction
x In x-direction
y Yield
Z In Z-direction

Abbreviations

DIC Digital image correlation
FE Finite element
FEA Finite element analysis
FEM Finite element method
PEEQ Plastic equivalent strain
SHB Split-Hopkinson bar
SRF Strain rate factor
UTM Universal testing machine
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Chapter 1

Introduction

Strain rate, how fast a material is strained, is known to have an effect on the behaviour
of metals. This effect comes, for example, into play when ships collide or a car crashes.
The damage done in such unfortunate events can be predicted by models. Being able to
measure the effect of strain rate in a material provides more reliable material data as input
for material models and therefore improves our understanding of a ship’s or car’s structural
integrity during a collision. This information can then, for example, be used to improve safety
features to keep everyone and everything involved as safe as possible.

Therefore, in order to obtain more reliable material data at various strain rates, this thesis
presents a design guide for an experiment to measure the effect of strain rate on a sample of
steel in the strain rate range typical for colliding ships. Before going into the experiment in
the following chapters, this chapter presents background information on strain rate testing.
It is split in five parts. First the current state-of-the-art of strain rate testing is presented to
determine the research gap, which is then addressed by the research question in the second
part. The final three sections provide some general definitions, a general discussion on the
effect of strain rate on the stress-strain curve for metals, and some general background on
measurements by camera, respectively.

Following the introduction, the thesis is split in 7 additional chapters starting with the pro-
posed test method for the experiment in chapter 2. Next, chapters 3 and 4 discuss the
analytical approach and numerical simulation of the experiment. In order to determine the
correct experimental setup, chapter 5 presents a parametric study of various parameters that
influence the experiment to assess their impact. Finally, this results in a guideline for the
experiment, as presented in chapter 6 and the conclusions and recommendations in chapters
7 and 8.

1.1 Literature on tensile strain rate testing

The enormous amount of research done on the effects of strain rate on material behaviour is
enough to fill several books on the subject. Test methods can be roughly divided by range
of strain rates covered by each method. The lowest strain rates, up to about 10 s−1, can be
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Figure 1.1: Piezoelectric load washer data and strain gauge measurement data for the same
experiment (Source: Bruce et al. (2004))

tested using a universal testing machine. Standards such as ISO 6892-1 (2016) and ASTM
E8 (2016) are clear guidelines for this test method.

In order to measure the material behaviour at intermediate strain rates, up to 500 s−1, two
categories can be distinguished by their test method: (i) measurements using a high-speed
servo hydraulic machine and (ii) dropped-weight methods. Material behaviour at higher
strain rate, higher than 500 s−1, is commonly measured using a Split-Hopkinson bar. In the
following paragraphs, an overview of the different studies using these methods will be given,
after which I will summarise their advantages and disadvantages and illustrate the potential
for a new test methodology.

One example of the use of high-speed servo hydraulic test machines is the work by Bruce
et al. (2004), who used strain gauges and a piezoelectric load washer to the determine the
effect of strain rate in several types of automotive sheet steel. Figure 1.1 shows a comparison
between the measurements by a piezoelectric sensor and strain gauges. As can be seen,
oscillations are observed in the measured load by the piezoelectric sensor, while the strain
gauge shows a much smoother curve. These oscillations are caused by stress waves due to the
high-speed load introduction by the servo which is required to reach the desired strain rate.
Their impact on the material behaviour, however, is limited and they are not of interest for
the measurement. Therefore, the piezoelectric sensor proved to be impractical as it picks up
all dynamic waves at higher strain rates. A similar situation is described by Pape (2002),
who uses an adapted high-speed servo hydraulic machine to determine strain rate effects on
flow stress. Therefore, he applies filters on the piezoelectric sensor data to smooth out the
oscillations in post-processing of the measurement. An important parameter in these filters is
the cut-off frequency. This cut-off frequency has been investigated in more detail by Rusinek
et al. (2008). Figure 1.2 shows the effect of filtering using three different frequency domains
on the same data. Based on this Rusinek et al. (2008) concluded that, for example, “the yield
stress cannot be determined precisely.” and that the results of the measurements are highly
dependent on the chosen cut-off frequency in filtering the measurement data and care should
be taken in choosing this frequency.

Another important aspect in the measurements of the material behaviour is the potential
presence of bending waves resulting in large differences in strain throughout the thickness.
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Figure 1.2: Data filtered using different cut-off frequency domains (Source: Rusinek et al.
(2008))

Yang et al. (2014) demonstrate this with two strain gauges at opposite sides of a specimen,
illustrated in figure 1.3a. The measurement data shows that the strain oscillations are actually
caused by bending waves. Another measurement that shows oscillations which are very similar
in nature to these is found in the work by Alabi et al. (2018). Alabi et al. (2018) use digital
image correlation in combination with a load cell. The stress measured by the load cell
oscillates significantly, as can be seen in figure 1.4. These oscillations are attributed to “an
imbalance between internal and external forces at high strain rates” and a moving average is
employed to remove the oscillations in the measurements. One could conclude that the setup
used was insufficient in this case. Possibly, taking measurements on two sides of the specimen
and the assumption of linearity trough the thickness could have solved this issue, as was the
case for Yang et al. (2014). Furthermore, the work by Yang et al. (2014), as presented in
figure 1.3, also illustrates that the use of a moving average to remove oscillations would result
in a significant error in the measured material data and should be avoided at all cost.

The second method for intermediate strain rate tests is the dropped-weight method. This
method is mostly used for compression tests, but some have investigated its use in tensional
tests. One of these is the work by Chan (2009), who investigated two different setups and two
different measurement methods. In the first setup a weight is dropped on a horizontal I-beam
suspended by two dogbone specimens, as illustrated in figure 1.5a. The second setup has a U-
shaped specimen with a dogbone in each vertical side, where a weight is dropped in the middle
as illustrated in figure 1.5b. The first measurement method measures the force introduced
by a force sensor integrated in the drophead, while the second measurement method employs
strain gauges on the specimen to determine the force from the measured strains by assuming
linear elastic material behaviour in the grip section. A comparison between the setups reveals
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(a) Specimen and placement of strain gauges
(b) Effect of bending on ringing artifact

Figure 1.3: Specimen and measurements on two sides of a specimen to determine the effect
of bending on ringing (Source: Yang et al. (2014))

Figure 1.4: Measurement data of Alabi et al. (2018)



1.1 Literature on tensile strain rate testing 5

(a) I-beam test setup by Chan
(2009) (b) U-shaped test specimen setup by Chan (2009)

(Adapted from: Chan (2009))

(c) Test setup of Perogamvros et al. (2016)

Figure 1.5: Various setups for dropped weight experiments

that high frequency oscillations (ringing) in the I-beam of the first setup renders those results
useless, while results using the U-shaped specimen proved useful. But, there is still plenty
of room for improvement, for example, on filtering of stresses due to bending waves from
the results. Perogamvros et al. (2016) also proposes the use of a droptower, but rather
than dropping the weight directly on a specimen, it is dropped on a moveable frame, as is
illustrated in figure 1.5c. A specimen is attached on one side to a movable frame and on the
other side to a fixed frame. When the movable frame is hit by the drophead, the specimen
will stretch. A load cell in the drophead is used to record the force in the setup. The impact
needed to reach the desired strain rate, however, leads to a force overload in the load cell.
Moreover, since the load cell is used at high strain rates, high frequency measurements are
required, thus introducing noise in the measurements. Lastly, ringing of the frame adds
another source of noise, but a thick rubber absorber was placed between the drophead and
the frame to successfully combat this. Two different types of material were tested: metallic
and composite. A comparison between numerical calculations and experimental data given
in figure 1.6, however, shows the complexity of predicting material behaviour by numerical
simulations in this setup and hence potentially incorrect material data is obtained from the
measurements.

Strain rates higher than 500 s−1 are typically tested using a Split-Hopkinson bar (SHB),
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Figure 1.6: Measurement data of Perogamvros et al. (2016)

which is illustrated in figure 1.7. This setup consists of two straight (horizontal) bars, as
indicated in blue in the figure, with a specimen in between, as indicated in yellow. The
first bar is impacted such that a stress wave (purple) is created. This stress wave propagates
through the first bar and when it reaches the specimen, the wave breaks up in a reflected wave
(pink) that travels back through the first bar and a transmitted wave through the specimen
(blue). This transmitted wave causes the specimen to strain and is then partly transmitted
to the second bar. As explained by Spronk (2018), strain gauges (orange rectangles) are used
to measure the initial and reflected wave in both bars and the setup should, thus, be such
that these do not interfere. A low wave velocity and long way to travel aid in decreasing the
likelihood of interference. The wave velocity is the square root of the Young’s modulus divided
by the density and is, therefore, dependent on the material use for the bars. Furthermore,
dynamic equilibrium should be reached within the specimen before the impact ends to ensure
a valid measurement. Dynamic equilibrium is reached when the stress wave has travelled at
least three times back and forth according to Gray (2000). Therefore, having a short specimen
and high stress wave velocity are beneficial to reach dynamic equilibrium quickly. The force
in the specimen is determined by multiplication of the strain in the bar, the cross-sectional
area and the Young’s modulus. Spronk (2018) concludes that: “For low strain rates, one thus
wants a bar with a large radius to produce enough force with the small amount of strain.
Using a bar with a very high stiffness would namely imply the need for a very long bar as
the speed of sound would also rise.” SHB made from materials with a lower speed of sound
have also been explored as a means to test lower strain rates. Shim and Mohr (2009), among
others, use nylon for the horizontal bars. This setup, however, cannot practically be used to
measure the material behaviour of steel specimens, since nylon bars would yield before a steel
specimen does.

As shown, there is limited research on intermediate strain rate effects and, furthermore, what
stands out is the wide range of testing and measurement methods used. Starting with test
methods, each has its advantages and disadvantages, and unlike the UTM for low strain
rate and the SHB for high strain rates, there is no generally accepted best test method for
intermediate strain rates. Fast servo-hydraulic machines are often used but suffer from ringing
problems and might have limited availability. Dropped-weight methods mainly suffer from
lack of research, but also from ringing. Having to build a big device, which still rings, is not
appealing. Meanwhile, dropping a weight directly on to a specimen is promising, but needs
much more research. Furthermore, the use of a droptower is convenient, but other ways of
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Figure 1.7: Schematic representation of a Split-Hopkinson Bar

dropping a weight from a certain height precisely onto a target are also sufficient, which makes
this method very accessible.

When looking at measurement methods, classical strain gauges, piezoelectric sensors and
optical measurement methods (i.e. digital image correlation) have been used. Piezoelectric
sensors often prove to be too sensitive, especially when ringing is involved, while strain gauges
only measure the strain in a single location. Optical methods and digital image correlation
(DIC) on the other hand are unobtrusive and provide insight in the distribution of strain over
the recorded area, whereas covering the entire area with strain gauges is both inconvenient
and subject to error. When using multiple types of sensors on a single experiment, the signals
need to be synchronised, which can be difficult. DIC can record the complete specimen on
a single device, so synchronisation of different sensors is no longer required. The absence of
other sensors also means that the impactor can be just a piece of material in the right shape.

1.2 Research question

The previous section indicates the need for a reliable test method for intermediate strain rate
testing. The goal of this thesis is to provide a design guide for a reliable experiment that
measures the effect of strain rate, in the range 10-100 s−1, on the tensile stress-strain curve
of a material. Therefore the main question guiding the research presented in this thesis is:

How can the effect of strain rate on the tensile stress-strain curve at intermediate
strain rates of 10-100 s−1 be measured by means of DIC?

In order to answer this question, a test method is presented which is assessed with analytical
mechanics and numerical simulations.
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1.3 Definitions

Most of the terms and definitions used in this report are considered to be general knowledge
for engineers. To prevent confusion, however, a quick overview of the most used definitions
in this report can be found here. The meaning of all symbols and abbreviations used in this
report can also be found in the nomenclature.

1.3.1 Stress

Stress is load divided by cross-sectional area. For engineering stress, the stress is defined with
respect to the initial cross-sectional area:

σe(t) = F (t)
A0

(1.1)

where σe(t) is the engineering stress at time t due to load F (t) in a cross section with initial
cross-sectional area A0. True stress on the other hand defines the stress with respect to the
actual cross-sectional area at time, t:

σt(t) = F (t)
A(t) (1.2)

where σt(t) is the true stress at time t due to load F (t) in a cross section with corresponding
cross-sectional area A(t). For a uniaxial stress state, the change in cross-sectional area is
defined by the Poisson’s ratio of the material, which is different for linear elastic material
behaviour and plastic material behaviour. The Poisson’s ratio for mild steel is 0.3 in case of
linear elastic behaviour and 0.5 (constant volume) in case of plasticity. In case of a uniaxial
stress state, the deformed area thus becomes:

A = A0(1− ν · εt)2 (1.3)

in which the cross-sectional area, A, is a function of the Poisson’s ratio, ν, and the true strain
normal to the cross-section, εt.

1.3.2 Strain

Two types of strain are used; true and engineering strain. Engineering strain is defined as the
relative elongation:

εe(t) = L(t)− L0
L0

(1.4)

where εe(t) is the strain at time t, L(t) is the length at time t and L0 is the initial length.

The true or logarithmic strain is related to the engineering strain by:
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εt(t) = ln(1 + εe(t)) = ln
(
L(t)
L0

)
(1.5)

1.3.3 Strain rate

Similar to the strain, two definitions of strain rate can be recognised: the engineering strain
rate and the true strain rate. The engineering strain rate is the time derivative of engineering
strain:

ε̇e(t) = dεe(t)
dt = d

dt

(
L(t)− L0

L0

)
= v(t)

L0
(1.6)

where ε̇(t) is the strain rate at time t, ε is the strain at time t, L(t) is the length at time t,
L0 is the initial length and v(t) is the velocity at one end of L(t) relative to the other end.

True strain rate is the time derivative of the true strain and can be related to engineering
strain and engineering strain rate by:

ε̇t(t) = dεt(t)
dt = d

dt ln
(
L(t)
L0

)
= ε̇e(t)

1 + εe(t)
(1.7)

1.3.4 Stress-strain curve

The stress-strain curve describes the relation between stress and strain in a material. Figure
1.8 indicates some important points in a stress strain curve:

σy is the yield stress. After this point, the material will plastically deform.

σu is the ultimate stress. After this point, the material starts necking.

εy is the yield strain.

εu is the ultimate strain.

In order to describe the plastic behaviour up to the ultimate stress in a true stress-strain
curve, a power law is commonly used for metals, starting at σy:

σt = Kεnt (1.8)

where the coefficients K and n can be determined by a curve fit through measurement data.

1.4 Strain rate effects on stress-strain curve

The stress-strain curve of metals is dependent on the strain rate at which the strain is in-
troduced. Jones (2012) provides a comprehensive overview of research done on material
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Figure 1.8: Definitions regarding the stress-strain curve

Figure 1.9: Scaling of a stress-strain curve for mild steel using the Cowper-Symonds relation

characteristics of strain-rate-sensitive behaviour of materials. The yield stress and ultimate
tensile stress both increase when the strain-rate increases. In order to simulate these ef-
fects, the material model introduced by Cowper and Symonds (1957) is commonly used, who
introduced the following equation for strain rate sensitivity:

σt,d = σt,s

(
1 +

(
ε̇t
D

)1/q
)

(1.9)

where σt,d is the dynamic tensile true yield stress at uniaxial true strain rate ε̇t, σt,s is the
quasi static true yield stress and D and q are material specific constants.

It should be noted, however, that, as Jones (2012) also described, a decrease in fracture strain
and overall shortening of the stress-strain curve is observed when the strain-rate increases.
These effects are not relevant for the measurements simulated in this thesis, but it is important
to remember that these effects will manifest in a real sample of material. An example of the
scaling of a stress-strain curve, as defined by equation 1.9, is shown in figure 1.9 for various
strain rates.
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1.5 Digital image correlation

This section provides some background information on the use of a camera for measurements.
These are just the basic working principles, needed to understand the current thesis. More
details on DIC can be found in the work by Sutton et al. (2009). First a small introduction
is given into the fundamentals of DIC. Followed by how and why some factors affect the
accuracy of DIC measurements, and some unique challenges posed by working with cameras.

1.5.1 Basic working principles

DIC uses a digital camera to take a series of photos of a specimen while it is tested, or, in
this case, stretched. Then the difference between two consecutive photos is used to determine
what changed in the meantime. Usually a speckle pattern is applied on the specimen, which
is used for the detection of changes between two images. Four steps in this process are given
below and illustrated in figure 1.10 for a 1D example:

Step 1: Take at least two pictures The first picture will be the baseline, to which the
next is compared. In figure 1.10 blue illustrates the first image and purple the second.

Step 2: Select a subset from the first picture The subset is a small piece of the first
picture, of which the location will be tracked from the first to the second picture and
so on.

Step 3: Interpolate the subset The discrete pixels of the subset are interpolated to create
a grey-level intensity pattern. This is such that the pattern can be tracked from the first
to the second picture. When one would try to match the discrete pixels of the subset,
the area of the subset could, for example, be stretched, so it would be impossible to
find the exact pixel pattern in the second picture. With the intensity pattern, only the
pattern needs to match.

Step 4: Match the subset in the second picture Use the grey-level intensity pattern to
locate the subset in the second picture.

Multiple subsets combined give a complete displacement field. The difference in distance
between two subsets can then be used to calculate the strain with a spatial derivative. When
a single camera is used to record the specimen, it can only provide data in 2D, which is called
2D DIC. For 3D DIC, at least two cameras are required that are synchronised to take their
photos at the exact same moment.

1.5.2 Accuracy

Measurements are preferably as accurate as possible, so it is vital to know the accuracy of
a measurement method. Unfortunately, since DIC systems are commercial products, little
verified information is available on this. Sutton et al. (2009) provide an engineering approach
to determine the accuracy of a 2D DIC measurement:
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Figure 1.10: schematic representation of matching a subset from one image to the next

β0 = LFoV
N
· β1 (1.10)

in which the object displacement accuracy β0 is a function of the length of the field of view
LFoV , the recording resolution N and the image displacement accuracy β1, which is typically
0.01 px.

A minimum level of image plane oversampling is needed for accurate matching: “For accu-
rate matching, image plane speckles should be sampled by at least a 3 by 3 pixel array to
ensure minimal oversampling and reasonable intensity pattern reconstruction via interpola-
tion.” Furthermore, there is a minimum for the number of speckles in a subset: “Each image
plane subset of size N by N should contain at least 3 by 3 speckles to ensure reasonable
accuracy and isotropy in the subset matching process.” (Source: Sutton et al. (2009))

1.5.3 Factors influencing accuracy

For the most accurate measurements, it helps to know what influence various factors have
on the accuracy of measurements. Reedlunn et al. (2013) provide helpful insight with tips
and tricks on the use of DIC in experiments. They listed the main parameters that affect the
accuracy of a measurement. The ones relevant for this thesis are:

Speckle patern The best speckle pattern has a random, fluctuating grey-scale. It is matte,
rather than glossy and has a high contrast. Also, speckles should not fracture when
changing shape.

Camera, lens and environment The experiment should be clearly visible trough the lens
of the camera. Many of the following points are general rules of good camera use:

Exposure The exposure is the amount of light that enters the camera, this determines
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how bright the specimen is recorded, too much light blinds (overexposure) the
sensor but too little (underexposure) results in a dark image.

Lighting of experiment Related to the exposure, the setup needs to be well lit, not
too bright but certainly not too dark. Diffuse rather than focused lighting is
recommended.

Field of view The complete area of interest has to be captured by the camera, this is
the field of view.

Depth of field Blurred images can’t be used for measurements, so the area of interest
has to be fully in focus. A shallow depth of field means that only a small part of
the image is in focus.

Direct line of sight A direct line of sight often provides the best results. Distortions
or changes in light might be introduced by any medium in the line of sight between
a lens and its object.

The fish-eye effect Another possible source of distortions is the fish-eye effect. The
fish-eye effect is always present when using a lens, it is most prevalent at the edges
of the frame and when the lens of the camera is too close to the specimen.

Image spatial resolution versus speckle size The sensor in the camera used for DIC
has a certain spatial resolution. This means that a continuous image is converted to
a discrete number of pixels. A single speckle in the pattern should be comprised of
at least 3 pixels. When this is not the case, either speckles should be made larger or
resolution has to increase. This does not mean that bigger speckles are always better,
a speckle should not be so big that it makes a subset impossible to match. This could
happen for example when an entire subset is the same shade of grey.

Frame rate The number of photos taken in one second is defined as the frame rate. A
higher frame rate improves the accuracy of the measurements, since more data points
are available. When too many photos are taken, one can always remove the surplus.
When too few photos are taken, it is impossible to add any while maintaining the
measurement’s integrity.

Out-of-plane displacements This point is only applicable when using 2D DIC. Since 2D
DIC can only register displacements in two dimensions, out-of-plane displacements are
interpreted by the system as biaxial strain. When these are present, it can lead to errors
in matching of the subset.

Field of view This point is only applicable when using 3D DIC. The use of two cameras
to capture the same (piece of) specimen usually means that one or both do not have
the optimal view. For measuring out-of-plane displacements, an angle between both
cameras is needed. When this causes a camera to have less optimal view, it might
result in a worse overall field of view.

1.5.4 Camera considerations

The perfect DIC camera has an infinite frame rate, spatial resolution and depth of field. There
is no fish-eye effect, no noise from the sensor and the camera itself is free. Unfortunately we
live in the real world, so some trade-offs have to be made.
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The first is price, frame rate and spatial resolution. Cameras that combine a high frame
rate with a high spatial resolution are very expensive. A less expensive camera might have
lower frame rate, which is no problem for (quasi)static experiments. But a high frame rate
is preferred in experiments with a medium to high strain rate. An optimum should be found
between the spatial resolution and frame rate needed to capture experiment. Do note that
the measured areas should not take up the full frame. The fish-eye effect is most prevalent at
the edges of the frame, so measurements should not be taken there.

The second is sensor sensitivity, aperture and exposure time. Higher sensor sensitivity means
less light is needed for the same exposure, but also an increase in noise on the image. Aperture
is the size of the opening through which light enters a camera. A bigger opening lets in more
light but also leads to a more shallow depth of field. Exposure time expresses the time the
camera sensor records an image. Longer time lets in more light, but it also leaves time for
the specimen to move while the image is recorded, creating a blur. Blurred images cannot
be used for measurements. If the desired exposure cannot be reached, adding extra lighting
might help.



Chapter 2

Test method

The research question posed in the first chapter identified the need for a measurement method
to determine the effect of strain rate on the tensile stress strain curve by means of DIC. This
chapter presents a method for such a test. First, a broad overview of the proposed test
method is given, after which the setup for each part of the test method is discussed. Finally,
the design of the corresponding test specimens for mild steel are discussed.

2.1 Overview of the method

The proposed test method consists of two parts. The first part is a test using a universal
testing machine to determine material behaviour at low strain rates of 0.001-10 s−1, as was
done by Bruce et al. (2004) and Huh et al. (2008) among others. This provides the material
data to design specimens for the second part. The second part is a drop test based on the
work by Chan (2009). Material behaviour at higher strain rates of 10-100 s−1 is tested by the
impact of a drophead on a specimen, causing it to strain.

The specimens for the universal testing machine are regular dogbone specimens with a longer
grip section. Figure 2.1a illustrates one such specimen. The specimens for higher strain rates
are U-shaped strips with a dogbone at either side, as illustrated in figure 2.1b. In both cases
the displacements of the material in the dogbone are recorded by a (high speed) camera. The
area that is captured on camera is indicated in figure 2.1 by dots on both specimen types.

The displacement field of the specimens is determined using DIC as discussed in section
1.5. Recorded displacements are then converted to strains by the software from the DIC
system. The specimens need to be designed such that the strain field in the grip section of
the dogbone stays within the linear elastic domain, such that Hooke’s law can be used to
convert that strain field into a stress field. The ratio between the cross-sectional areas of the
grip and gauge section is then used to convert the stress from grip to gauge section. Combined
with the strains recorded in the gauge section, a stress-strain curve for a certain strain rate
can be constructed.
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(a) Low strain rates (b) Intermediate strain rates

Figure 2.1: Specimens for the proposed method

2.2 Universal testing machine setup

The experimental setup for the universal testing machine is illustrated in figure 2.2a. This
setup is used for tests at strain rates in the range of 0.001-10 s−1 (ASTM E8, 2016). A
specimen is clamped in the machine, the grip on one side is stationary while the other moves
with a velocity v, straining the specimen. The velocity is assumed to be as constant as
possible over the duration of the experiment, resulting in a constant strain rate. The first
test is carried out at a low strain rate, e.g. 0.001 s−1. This is used to determine a quasi-static
stress-strain curve. Then subsequent tests are performed with strain rates of 1 and 10 s−1.
The tests for each strain rate are carried out at least three times to reduce the chances of
experimental or measurement mistakes (ASTM E8, 2016). Bending waves are not expected
in these low-velocity, uniaxial strain tests, so a 2D DIC system is sufficient for the recording
of deformations in the specimen during the experiment.

Table 2.1: Characteristics for mild steel used for the specimens
Parameter Value
Young’s modulus E 210 GPa
Density ρ 7800 kg/m3

Poisson’s ratio (linear elastic) ν 0.3
Poisson’s ratio (after yield) ν 0.5
Yield stress σy 350 MPa
Yield strain εy 50
Ultimate stress σu 500 MPa
Ultimate strain εu 150
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(a) Test setup for universal testing machine (b) Dimensions of specimen for universal testing
machine

Figure 2.2: UTM test

Table 2.2: Dimensions of UTM specimen
Parameter Value
Thickness h 2 mm
Width grip section bgrip 20 mm
Width gauge section bgauge 12.5 mm
Parallel length gauge section Lc 57 mm
Length gauge section Lgauge 50 mm
Length radius LR 9 mm
Length moving grip section Lgrip,moving 50 mm
Length clamped grip section Lgrip 150 mm
Radius gauge section R 12.5 mm
Velocity grip v very low, 0.05, 0.5 m/s
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2.2.1 UTM specimen design

In this section, the specimen design for the low strain rate tests is discussed. The design
is based on the guidelines provided by ISO 6892-1 (2016) and ASTM E8 (2016) on tensile
testing. First the dimensions of the specimen are discussed, followed by deviations from the
standard design. Lastly, since the ISO and ASTM standards are defined for quasi-static tests,
several studies are discussed that investigated the effect of some of the parameters on strain
rate testing.

Mild steel is used as an example in the development of this method. The characteristics
of which are given in table 2.1. The specimen dimensions are given in table 2.2 using the
parameters as defined in figure 2.2b.

The thickness of the specimen, h, is chosen such that the stress distribution over the thickness
is constant. This means inhomogeneous material behaviour at grain level should be avoided
so the thickness should be significantly larger than the grain size of the material. This is for
mild steel in the order of 10-20 µm as given by ASTM E112-13 (2013). Furthermore, the
desire for membrane behaviour rather than bending along with practical considerations such
as storage and the mass needed to strain the specimen lead to the thickness of the specimen
being chosen as 2 mm.

With the thickness determined, the rest of the parameters are the ones given by the sheet-
type standard specimen of the ASTM, except for the grip length, Lgrip. DIC measurements
require that the grip length is longer than the length specified by the guideline, in order to
have a sufficient part of the grip section in view of the camera.

Finally, as can be noted in figure 2.2b, a distinction is made between the gauge length and
the parallel length. This distinction accounts for the fact that at the start of the parallel
section, the stresses are still influenced by the narrowing of the specimen and, hence, a non-
uniaxial stress state is obtained. Therefore, a minimum parallel length is required such that
the localized strains do not invalidate measurement in the gauge length. For this purpose,
Huh et al. (2008) used a servo hydraulic machine for tests of specimens with varying parallel
length to determine the best gauge length at strain rates ranging from 0.003 to 200 s−1.
The ratio of strain in a certain gauge length to strain over a longer length is compared for
different gauge lengths to determine the best gauge length for that parallel length. A careful
investigation of their results shows that for all specimens the best gauge length is the parallel
length minus 8 mm indicating a zone of influence on each end of 4 mm. Furthermore, as can
be observed from figure 2.3, all specimens fail at the same location: 5 mm from either end
of the parallel section. This leads to the conclusion that, as long as a sufficiently long gauge
length is used, the location of necking is not a function of gauge length. Variation of the gauge
length is, therefore, not considered useful. A longer grip section, however, does contribute,
since it lowers the ringing amplitude significantly, as was shown by Yang et al. (2014), who
investigated ringing in servo-hydraulic machines for strain rates between 10−5 and 500 s−1.

2.3 Impact test setup

The experimental setup for the impact test is illustrated in figure 2.4. Strain rates in the
range of 10-100 s−1 are tested using this setup. A drophead with mass md impacts a U-
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Figure 2.3: Specimens with a variation in gauge section after tensile tests
(Source: Huh et al. (2008))

shaped specimen with an initial velocity of v0, causing the specimen to strain. The specimen is
clamped at both ends and the drophead hits the middle section of the specimen. Deformations
of the specimen are captured by a 3D DIC system.

2.3.1 Specimen design impact test

While the specimen design for the UTM is defined by standards, this is not the case for the
impact test. Furthermore, the proposed test method of testing strain rate using impact tests
is not widely used, so limited literature is available. Combine that with strain measurements
using Digital Image Correlation (DIC), and the consequence is that no standardised specimen
is available and a new specimen design needs to be created. Starting from the design by Chan
(2009) and the specimen for the UTM, this section presents the beginnings of a design guide for
an impact testing specimen. The specimen design illustrated in figure 2.5 uses the dimensions
given in table 2.3.

A thickness h of 2 mm is maintained from the UTM specimen (see table 2.3), along with
the values for Lgauge, Lc, bgauge and R. Initially, the width of the grip section, which would
render the measurement invalid. bgrip, was also maintained, but this had to be increased due
to plasticity in the grip section. The rest of the dimensions will be used in a parametric study
to determine what effect each of them has on the accuracy of the measurements. Parameters
which are indicated to be used in the parameter study are still assigned a default value, which
is used when that parameter is not varied.
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(a) Top-view

(b) Side-view

Figure 2.4: Impact test setup

Figure 2.5: Impact test specimen
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Table 2.3: Dimensions of impact specimen and drophead
Parameter Value Varied? Range
Specimen
Thickness h 2 mm No
Width grip section bgrip 35 mm Yes 20-40
Width gauge section bgauge 12.5 mm No
Parallel length gauge section Lc 57 mm No
Length gauge section Lgauge 50 mm No
Length radius LR 9 mm No
Length toward middle section Ltm 50 mm Yes 0-450
Length grip section Lgrip 150 mm Yes 50-500
Radius gauge section R 12.5 mm No
Inner radius specimen r 50 mm Yes 50-58
Angle dogbone part α 90 ◦ Yes 45-90
Drophead
Mass md 30 kg Yes 3-50
Radius drophead rd 50 mm No
Height Ld 456.4 mm *
Velocity on impact v0 1.7 m/s Yes 1.5-6
Position of drophead dy 0 mm Yes 0-8

*Ld varies with the mass of the drophead
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Chapter 3

Analytical model

An analytical solution can be used as an easy and fast approach to provide a first estimate
of the expected stress and strain behaviour in the specimen. It also provides a check for
the numerical model in the next chapter. First the approximation of the material model for
mild steel is discussed, followed by the analytical models for the UTM setup and the impact
test setup. For each setup, the assumptions and simplifications applied to that setup are
discussed. Then an analytical equation is given to describe the strain, strain rate and stress
in the specimen, which are subsequently used to construct a strain-rate dependent stress-
strain curve. The complete derivation of these equations can be found in appendix A. Finally
an example is given for each setup.

3.1 Material models

The material of the specimens is mild steel. Figure 3.1a shows the stress-strain curve for the
quasi-static case. For the analytical estimate, material model is simplified using two different
models. The first considers a perfectly plastic material model neglecting the contribution
of the linear elastic part and simplifying the plastic regime to a constant flow stress for all
strains. The flow stress, σ0, is taken as the average of the yield stress and the ultimate
stress. The second expands the first model with using a linear plastic material model to
account for the effect of strain hardening under the assumption of a linear stress strain curve
in the plastic regime between the yield stress and the ultimate stress. The corresponding
stress-strain curves are shown in figure 3.1b and figure 3.1c for the perfectly plastic and linear
plastic model, respectively. In all cases, the effect of strain rate on the stress-strain curve is
accounted for by the Cowper-Symonds relation, as given by equation 1.9.

3.2 Flat specimen

The first case to consider is the setup for the universal testing machine. A regular flat dogbone
is clamped on one end and is given a velocity v(t) on the other. For the analytical model,
the dogbone specimen is simplified to three rectangles, as is illustrated in figure 3.2. The two
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(a) Original (b) Perfectly plastic (c) Linear plastic

Figure 3.1: Stress-strain curves of material models at ε̇→ 0

grip sections are assumed to be rigid, since the linear elastic strain in these sections is small
compared to the plastic strain in the parallel section, Lc.

Figure 3.2: Definitions flat specimen

3.2.1 Strain and strain rate

Engineering strain in the parallel section is given by equation 1.4. Since the two grip sec-
tions are assumed to be rigid, the difference in length of the parallel section is equal to the
displacement of the moving end. The displacement u(t) of the moving end is given by:

u(t) =
ˆ
v(t) dt (3.1)

Where the displacement u(t) in x-direction is the time integral of velocity v(t). The engineer-
ing strain is then given by:

εe(t) = u(t)
Lc,0

=
´
v(t) dt
Lc,0

(3.2)

in which εe(t) is the engineering strain, u(t) is the displacement of the moving end and Lc,0 is
the initial length of the parallel length. Next, equation 1.5 is used to convert the engineering
strain to the true strain. Using equation 1.6, the engineering strain rate is given by:
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ε̇e(t) = v(t)
Lc,0

(3.3)

The engineering strain rate, which is then converted to true strain rate by using equation 1.7.

3.2.2 Stress

After computing the strain, the engineering stress in the gauge section is determined using
the perfectly plastic and linear plastic material model, as presented in section 3.1.

Perfectly plastic

In case of a perfectly plastic material model ignoring the effect of strain rate, the engineering
stress in the gauge section is always equal to the flow stress, σ0. However, once equation 1.2 is
used to convert the engineering stress to the true and the effect of strain rate is accounted for
using the Cowper-Symonds law in equation 1.9, a non-constant stress is obtained, as presented
in figure 3.3c and further discussed in section 3.2.3.

Linear plastic

Assuming linear plasticity and ignoring the effects of strain rate, the engineering stress in the
parallel section increases linearly with strain:

σe(t) = Epl · εe(t) = Epl ·
´
v(t) dt
Lc,0

(3.4)

in which σe is the engineering stress, Epl is the plastic Young’s modulus, εe(t) is the engineering
strain and Lc,0 is the initial length of the parallel length. Similar to the perfectly plastic
material model, equation 1.2 is then used to convert the engineering stress to true stress,
after which the Cowper-Symonds law in equation 1.9 is used to account for the effect of strain
rate.

3.2.3 Example

Figure 3.3 shows an example of the analytical solution for a flat specimen using the parameters
given in table 3.1. The engineering and true strain in figure 3.3a show that, as expected, the
engineering strain increases linearly, while the true strain deviates slightly. As shown in 3.3b,
this is also reflected in the strain rate showing a constant engineering strain rate, because of
the constant velocity. The true strain rate, however, decreases as the length of the specimen
increases resulting in a lower relative velocity.

The corresponding stress curves for the perfectly plastic and linear plastic analytical solutions
are shown in figure 3.3c. As explained, all stress curves are scaled using the Cowper-Symonds
law for strain rate. Based on a constant engineering strain rate and perfectly plastic material
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behaviour, one would expect the perfectly plastic engineering stress to remain constant. How-
ever, the perfectly plastic engineering stress actually decreases slightly as time progresses, as
can be seen when comparing the perfectly plastic engineering stress to the constant reference
curve. This can be explained by the fact that the Cowper-Symonds law is actually based
on the true strain rate instead of the engineering strain rate. Therefore, the decreasing true
strain rate in figure 3.3b results in a decreasing perfectly plastic engineering stress.

Furthermore, as can be seen, the difference between the engineering and true stress increases
as time progresses. This can be explained by the decreasing cross-sectional area that is
accounted for in the true stress and, thus, results in a higher true stress than engineering
stress. A similar trend is also shown in the stress-strain curves in figure 3.3d.

(a) Strain in the parallel section (b) Strain rate in the parallel section

(c) Stress in the parallel section (d) Stress-strain curve

Figure 3.3: Plots of flat specimen example
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Table 3.1: Parameters used in the analytical solution of a flat specimen
Parameter Value
Thickness h 2 mm
Width grip section bgrip 35 mm
Width gauge section bgauge 12.5 mm
Length parallel section Lc,0 57 mm
Length moving grip section Lgrip,moving 62 mm
Length clamped grip section Lgrip 162 mm
Velocity grip v 1.7 m/s
Yield stress σy 350 MPa
Ultimate stress σu 500 MPa
Flow stress σ0 425 MPa
Plastic Young’s modulus Epl 1000 MPa
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3.3 Impact specimen

The setup of the impact test is described in section 2.3. Figure 3.4 illustrates the setup
and simplifications for the analytical computations. The top of the specimen is clamped and
the middle section (yellow) is impacted by the drophead (green). The dogbone part (blue)
is simplified to three rectangles, of which the grip section, Lgrip, and section towards the
middle, Ltm, are assumed to be rigid, while the gauge section deforms plastically, similar to
the assumptions for the analytical model of the flat specimen. Next, the middle section is
also assumed to be rigid such that the displacement of the two dogbones is directly given by
the displacement of the drophead, ud(t), and the angle α. Finally, since the strain is small
compared to the total length, the angle α is assumed to stay constant during the deformation.

Figure 3.4: Definitions of impact test specimen for analytical model

3.3.1 General equations

For the impact specimen, the displacement of the drophead is linked to the strain of the
specimen. Starting with Newton’s section law of motion for the drophead:

ΣFZ = md ·
d2ud(t)
dt2 (3.5)

in which ΣFZ is the sum of the forces in Z-direction, md is the mass of the drophead and
ud(t) is the displacement of the drophead in time. Starting the approximations from the
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moment the drophead hits the specimen, the effect of gravity is neglected, since its effect on
the dynamic behaviour is expected to be small, resulting in:

Fdown = 0 (3.6)

That leaves force exerted by the specimen on the drophead:

Fup = 2 · σe(t) ·A0 · sin(α) (3.7)

in which Fup is the force exerted by the specimen on the drophead, σe(t) is the engineering
stress in the gauge section, A0 is the initial cross-sectional area in the gauge section of a single
dogbone and α is the angle of the dogbone part of the specimen. Combining equations 3.5
and 3.7 relates the stress in the gauge section to the displacement of the drophead:

− 2 · σe(t) ·A0 · sin(α) = md ·
d2ud(t)
dt2 (3.8)

Stress and strain, and therefore displacement, are related via the material models described
in section 3.1.

3.3.2 Perfectly plastic

Integrating equation 3.8 twice, the engineering strain in the gauge section for the perfectly
plastic case is given by:

εe(t) = −σ0 ·A0 · t2

md · Lc,0
+ v0
Lc,0 · sin(α) · t (3.9)

in which εe(t) is the engineering strain, σ0 is the flow stress, A0 is the initial cross-sectional area
in the gauge section of a single dogbone, α is the angle of the dogbone part of the specimen,
Lc,0 is the initial parallel length of the gauge section, md is the mass of the drophead, t is
time and v0 is the impact velocity of the drophead. The complete derivation of this equation
is given in appendix A.1. Equation 1.5 is then used to convert the engineering strain to the
true strain. Using equation 1.6, the engineering strain rate is given by:

ε̇e(t) = −2 · σ0 ·A0 · t
md · Lc,0

+ v0
Lc,0 · sin(α) (3.10)

which can be converted to the true strain rate using equation 1.7. The engineering stress is
determined similar to the flat specimen, as was presented in section 3.2.2. Equation 1.2 is
then used to convert the engineering stress to true stress, after which the Cowper-Symonds
law in equation 1.9 is used to account for the effect of strain rate.
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3.3.3 Linear plastic

The engineering strain in the gauge section for the linear plastic case is given by:

εe(t) = − σy
Epl

+
v0 ·
√
md

sin(α) ·
√
Lc,0 · Epl · 2 ·A0

sin
(√

Epl · 2 ·A0
Lc,0 ·md

· t
)

+ σy
Epl

cos
(√

Epl · 2 ·A0
Lc,0 ·md

· t
)

(3.11)

in which εe(t) is the engineering strain, σy is the yield stress, Epl is the plastic Young’s
modulus, v0 is the impact velocity of the drophead, Lc,0 is the initial parallel length of the
gauge section, A0 is the initial cross-sectional area in the gauge section of a single dogbone,
α is the angle of the dogbone part of the specimen, md is the mass of the drophead and t is
time. The complete derivation of this equation is given in appendix A.1. Equation 1.5 is then
used to convert the engineering strain to the true strain. Using equation 1.6, the engineering
strain rate is given by:

ε̇e(t) = v0
Lc,0 · sin(α) cos

(√
2 · Epl ·A0
Lc,0 ·md

· t
)
− σy√

Epl

√
2 ·A0

Lc,0 ·md
sin
(√

2 · Epl ·A0
Lc,0 ·md

· t
)
(3.12)

which can be converted to the true strain rate using equation 1.7. The engineering stress is
determined similar to the flat specimen, as was presented in section 3.2.2. Finally, equation 1.2
is then used to convert the engineering stress to true stress, after which the Cowper-Symonds
law in equation 1.9 is used to account for the effect of strain rate.

3.3.4 Example

Figure 3.5 shows an example of the analytical solution for an impact specimen using the
parameters given in table 3.2. First of all, it can be seen that unlike the example of the flat
specimen, the true and engineering curves are almost equal. This can be explained by the
decreasing velocity of the drophead as time progresses, as shown in figure 3.5a, resulting in a
significantly smaller strain in the specimen and, thus, a smaller difference between engineering
and true strain. A similar conclusion can be drawn when looking at the strain rate in figure
3.5c, showing an almost equal true and engineering strain rate.

Furthermore, velocity and strain rate decrease faster for the perfectly plastic solution, because
the force exerted on the drophead by the specimen is initially larger than for the linear plastic
solution. This can be explained by the definition of the perfectly plastic stress, σ0, in the
perfectly plastic material model, which is larger than the yield stress of the material, thus
resulting in a larger exerted initial force. However, as expected, as time progresses, the
difference between the perfectly plastic and linear plastic solution reduces, because of the
strain hardening present in the linear plastic model.

This also explains the difference in the stress and stress-strain curves shown in figure 3.5d
and figure 3.5e. The perfectly plastic solution initially shows a higher stress after which the
difference decreases, because of the strain hardening in the linear plastic solution. Note that
both solutions show a decreasing stress related to a decrease in strain rate.
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(a) Velocity of the drophead (b) Strain in the parallel section

(c) Strain rate in the parallel section (d) Stress in the parallel section

(e) Stress-strain curve in the parallel section

Figure 3.5: Plots of impact specimen
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Table 3.2: Parameters used in the analytical solution of an impact specimen
Parameter Value
Thickness h 2 mm
Width grip section bgrip 35 mm
Width gauge section bgauge 12.5 mm
Total cross-sectional area gauge section A0 50 mm2

Parallel length gauge section Lc,0 57 mm
Length grip section Lgrip 150 mm
Length toward middle section Ltm 50 mm
Angle dogbone part α 90 ◦

Mass of drophead md 30 kg
Velocity on impact v0 1.7 m/s
Yield stress σy 350 MPa
Ultimate stress σu 500 MPa
Flow stress σ0 425 MPa
Plastic Young’s modulus Epl 1000 MPa



Chapter 4

Finite element analysis

In the analytical model from the previous chapter, some assumptions were made to simplify
the calculations. These include a simplified material model, which does not take linear elas-
ticity into account, the assumption of rigid grip and impact sections, and the assumption of
homogeneous stress and strain fields in the specimen. In reality though, these simplifications
do not hold. To accurately predict the experiment, numerical simulations are used. In this
chapter, a numerical simulation of the impact test using the finite element method (FEM)
is described. The chapter consists of four parts. The first describes what type of analysis is
used. The second describes the actual modelling of the experiment in the finite element pack-
age Abaqus, followed by the explanation of the post-processing of the numerical results in the
third section. Finally, the fourth addresses some modelling considerations in the definition of
the FE model.

4.1 Type of analysis

Numerical modelling of the experiment is done using the program Abaqus 2018. To determine
what type of analysis is typically used for these types of problems, the following aspects
are taken into account: elastic and plastic behaviour with a strain rate dependency in the
material model lead to material non-linearity. Contact non-linearity is caused by the impact
of the drophead on the specimen. The last type of non-linearity is geometric, because large
deformations are present. Given the short timespan of the impact, an explicit analysis is
used for a stable solution. Finally, the presence of vibrations caused by the impact requires a
dynamic analysis. All in all, this experiment requires an explicit, dynamic, non-linear impact
analysis.

4.2 Modelling

The creation of an FEA model in Abaqus and corresponding modelling considerations are
discussed in this section. Since the analysis is used to run a parametric study, a large number
of models is required. Python scripts are employed to generate models and input files for
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the parametric study. An example of one of the scripts can be found in appendix B and an
example of an input file can be found in appendix C.

4.2.1 Specimen

The specimen is modelled using thin shell elements (S4R), since transverse shear effects are
expected to be small, because of the small thickness of the specimen. According to the
Abaqus manual (Dassault Systèmes Simulia Corp, 2017): “S4R is a 4-node, quadrilateral,
stress/displacement shell element with reduced integration and a large-strain formulation.”
This means element type S4R can handle large strains and reduced integration saves running
time, while maintaining accuracy, provided that the elements are not loaded in in-plane
bending, which is not to be expected for the proposed test method. The shells are given a
shell thickness, h, with the middle as reference surface. This means that the radius of the
curved middle part of the specimen needs to be modelled as r + h/2 instead of only the
specimen inner radius, r. This is illustrated in figure 4.1 with the purple arrow indicating r
and the magenta indicating r + h/2.

A mesh convergence study on stress, strain and strain rate to determine the number of
elements across the width of the specimen was done, resulting in 16 elements across the width
of the specimen. The mesh for one of the specimens is given in figure 4.2. Also indicated
in this figure are the reference nodes (in red), two in the grip section and two in the gauge
section. For these nodes, displacements are recorded which are post-processed as if they were
DIC measurements. The exact procedure of this is discussed in section 4.3. Right in the
middle of a nodes pair is a node, that is part of four elements (in blue), for which strain,
strain rate and stress are recorded. These are later used for comparison to the post-processed
displacements.

Figure 4.1: Shell thickness and the radius of the specimen

4.2.2 Drophead

The drophead is a solid steel hemisphere with a cylinder on top, both with a radius of rd. In
order to investigate the simplification of modelling the drophead as a rigid, two options have
been investigated: an analytical rigid and a 3D deformable drophead. The corresponding
results are presented and discussed in section 4.4.2.

The analytical rigid is illustrated in figure 4.3a. A reference point Pd is created on the
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Figure 4.2: Specimen mesh with reference nodes (red) and middle elements (blue) around
the middle node (pink)
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(a) Rigid drophead (b) Deformable drophead (c) Deformable drophead

Figure 4.3: FEA model of the drophead

bottom to record the movements and control the placement on the specimen. The mass of
the drophead md is assigned as a point mass in this reference point. Combined with the
density and radius, the mass is used to determine the height of the drophead, Ld. This
formulation for the drophead is used in the entire thesis unless explicitly stated otherwise.

The same geometry is used to create the deformable drophead using solid 8-node linear brick
elements (C3D8), which is illustrated in figure 4.3b. The material of the drophead is the
same mild steel as the specimen. A mesh convergence study to determine the mesh size was
done on displacement of the drophead and stress, strain and strain rate in the specimen. This
resulted in the mesh shown in figures 4.3b and 4.3c for a drophead with a radius of 50 mm
and weight of 30 kg. Note that the mesh size varies along the blue lines, from a fine mesh
close to the specimen to a coarse mesh towards the top of the drophead.

4.2.3 Complete setup

The complete setup combines the drophead and specimen in to a single setup with boundary
conditions, as is illustrated in figure 4.4a. The boundary conditions are taken from the
experimental setup. Indicated in orange is the top of the specimen that is clamped at both
sides. Rotation of the drophead is constrained in all directions and translation is constricted in
x- and y-direction such that the drophead can only translate in z-direction, which is indicated
in magenta. Gravity is not modelled, as this is a static load and does not affect the dynamic
behaviour of the specimen. The drophead is given an initial velocity v0 and is positioned on
such short distance from the specimen that the effect of gravity on the velocity is negligible.
The position of the drophead relative to the specimen is illustrated in figure 4.4b, in which
dy is the horizontal and dz is vertical distance from the centre of the specimen.
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(a) FEA model with boundary conditions

(b) Drophead alignment relative to the specimen

Figure 4.4: Complete setup in FEA
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Figure 4.5: Stress-strain curves used as input for FEA

4.2.4 Material model

The material model for steel is the source of two non-linearities, plasticity and strain rate
dependency. The plastic behaviour is based on the power law approximation mentioned in
section 1.3.4. The input stress-strain curve given in figure 4.5 is a curve-fit through σy = 350
MPa and σu = 500 MPa at εu = 0.15. The strain rate dependency is implemented with
Cowper-Symonds coefficients, as mentioned in section 1.4. For steel: D = 40.4 s−1 and q =
5 (Cowper and Symonds, 1957). Furthermore, a Young’s modulus of 210 GPa is used and a
density of 7800 kg/m3. Note that this material model does not account for failure.

Strain rate factor

Strain rate dependency in the material model might introduce “non-physical high-frequency
oscillations in an explicit dynamic analysis” (Dassault Systèmes Simulia Corp, 2017). In
Abaqus, this is overcome by calculating the plastic strain rate in the current time step ac-
cording to Dassault Systèmes Simulia Corp (2017):

˙̄εpl
∣∣
t+∆t = ω

∆ε̄pl
∆t + (1− ω) ˙̄εpl

∣∣
t (4.1)

Where the ∆ε̄pl is the incremental change in equivalent plastic strain during the time incre-
ment ∆t and ˙̄εpl

∣∣
t and ˙̄εpl

∣∣
t+∆t are the strain rates at the beginning and end of the increment,

respectively. The factor ω (0 < ω ≤ 1) facilitates filtering high-frequency oscillations asso-
ciated with strain-rate-dependent material behaviour. After parametric study on strain rate
using strain rate factors from 0.1 to 0.9 in steps of 0.1, the strain rate factor ω is determined
at 0.3. Determination of the strain rate factor is in further detail discussed in chapter 4.4.1.

4.2.5 Contact

Since the drophead impacts the specimen, a contact definition is needed. It stipulates that
the drophead can deform the specimen, but not vice versa in the case of the analytical rigid.
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Furthermore, the drophead will not stick to the specimen, which means it will move back
up after impact. Finite sliding is used to force the software to constantly check which part
of the drophead interacts with which nodes of the specimen. Normal contact behaviour is
included by using the ‘hard’ contact formulation in Abaqus (equivalent to an infinite penalty
stiffness). Tangential contact behaviour, i.e. friction, can be added in the form of penalty
friction with a friction coefficient, fc. The assumption is that the static friction is overcome
by the impact such that the friction coefficient represents the sliding friction. Typical values
of steel on steel sliding friction coefficients are approximately 0.4 for dry surfaces and 0.05 for
greasy surfaces, but these values may vary greatly depending on the situation (Meriam et al.,
2003). The effect of the friction coefficient is discussed in further detail in section 4.4.3.

When using the deformable drophead, care should be taken with the mesh size of the drophead
compared to the mesh size of the specimen in the area of contact. In the current implemen-
tation in Abaqus, the drophead was selected as master surface and the specimen as slave
surface. As a consequence the drophead should have a larger mesh size than the specimen.
Otherwise the master-slave relation should be reversed.

4.2.6 Output

The output given for each simulation consists of displacements of the points indicated in
section 4.2.1. Furthermore, strains, strain rate and in-plane axial stresses are recorded for the
middle elements. Each of the two sets of middle elements share a single node in the middle
of the set. The average of the recorded data in all four elements represents the data in that
middle node. The strain, strain rate and stress of this node are then compared to the post-
processed displacement. As mentioned in the previous section, non-physical high frequency
oscillations might occur in the strain rate. An anti-aliasing filter on the strain rate output
smooths the data by excluding these high frequency data. In this case the cut-off frequency
is the history output frequency of 105 Hz. This is the highest frequency where the cut-off
frequency hardly affect the measurement data but only smooths it. The rest of the data does
not require the anti-aliasing filter, so it is not used.

4.3 Post-processing

Post-processing of the numerical simulations is done in three steps. First the relevant part of
the experiment has to be determined. Then strain, strain rate and stress are calculated using
the displacements found by the FE software as if it were DIC measurement data. Finally,
these ‘measurement data’ are compared to the corresponding output data from Abaqus to
assess their accuracy. The base specimen from section 2.3.1 is used as an example to show the
post-processed results. Results of the parameter study are discussed in the results chapter.

4.3.1 Measurement time

Measurement time is the timespan of the relevant part of the experiment. That is when the
gauge starts straining until drophead reaches zero velocity. The same total time has been
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used for each numerical simulation, but a different velocity or mass of the drophead will re-
sult in zero velocity at a different time, so the measurement time needs to be determined in
post-processing. Figure 4.6, for example, shows the different measurement times for two sim-
ulations. The blue dotted line shows the complete simulation time and the red line shows the
measurement time. The beginning is marked with the magenta arrow and the end is marked
with the green arrow. The simulations with a shorter measurement time will, as a result,
have less data points than simulations with a longer measurement time. The measurement
time is used in linking stress to strain for the stress-strain curve, for the determination of the
average strain rate, to determine whether the specimen can reach dynamic equilibrium and
to estimate the requirements on DIC systems.

(a) v0 = 1.7 m/s and md = 3 kg (b) v0 = 1.7 m/s and md = 30 kg

Figure 4.6: Differences in measurement times for different experiments

4.3.2 Strain

The relative distance between two reference points is used to determine the strain. At time
t, the engineering strain εe between points p at (xp(t), yp(t)) and q at (xq(t), yq(t)) in the
x-y-plane is given by:

εe(t) = L(t)− L0
L0

=

√(
xp(t)− xq(t)

)2
+
(
yp(t)− yq(t)

)2
−
√(

xp(0)− xq(0)
)2

+
(
yp(0)− yq(0)

)2

√(
xp(0)− xq(0)

)2
+
(
yp(0)− yq(0)

)2

(4.2)

in which the engineering strain εe is a function of the distance L(t) between the points at
time t, and L0, the initial distance. Both are given by the location (x, y) of each point. The
engineering strain is then converted to true strain by using equation 1.5.

Displacements of the reference points in the grip and gauge section are used to determine
the strain in those sections. In figure 4.7, an example of the measurements compared to the
in-plane membrane strain given by FEA is given for both grip and gauge section. In principle,
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these should of course be equal, but when they are not, it indicates a non-uniform strain in
either the grip or gauge section depending on which shows the error. This can, for example,
be caused by bending waves, stress waves, or necking.

(a) Grip section (b) Gauge section

Figure 4.7: True strain comparison for v0 = 1.7 m/s and md = 30 kg

4.3.3 Strain rate

Once the strain has been determined as described above, the strain rate is calculated by
taking the numerical derivative. The central difference method is used to take the numerical
derivative:

ε̇e(t) = ε(t+ δt)− ε(t− δt)
2δt (4.3)

in which the strain rate ε̇ at time t is a function of time step δt and the strain ε at times
(t + δt), and (t − δt). The engineering strain rate is then converted to true strain rate by
using equation 1.7.

The average strain rate over the measurement time is also determined such that a stress-strain
curve with an assumed constant strain rate can be constructed, which can be compared to
the measured stress-strain curve. The average is taken from the strain rate as given in the
Abaqus output. Figure 4.8 depicts an example of these three strain rates: the numerical
derivative as ‘Measurement’, strain rate as given in the Abaqus output as ‘Abaqus’ and the
average of the latter as ‘Abaqus average’.

4.3.4 Stress

Grip

Engineering stress in the grip section is determined in four ways. One uses the stress as
directly obtained from Abaqus (represented by ‘Abaqus’ in figure 4.9a), two apply Hooke’s
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law and one applies force equilibrium. Note that for comparison to FE results, all engineering
stresses are converted to true stress using equation 1.2.

For Hooke’s law to apply, the grip section should stay within the linear elastic regime. If
that is the case, strain can directly be converted to stress. The strain in the grip section is
available through the measurements and directly as Abaqus output, as previously mentioned.
This results in two different methods to determine the stress in the grip section, which are
shown as ‘Measurement’ and ‘Abaqus ε’ respectively in figure 4.9a. In principle these should
of course be equal, so when they are not, this is an indication that the strains obtained
through the measurements and directly as Abaqus output are not equal and one should
further investigate the difference in strain, as discussed in section 4.3.2.

The last method to determine stress assumes force equilibrium in the grip section and an even
stress distribution in the gauge section. This method is described by Rusinek et al. (2008),
where it is used as measure for the global material behaviour in the comparison of local to
global material behaviour to determine the best location for a strain gauge. The nominal
stress σ is determined by dividing force F in the cross section over the cross-sectional area
A0, as given in equation 1.1, where F is determined by the sum of the nodal reaction forces
at the top of the specimen in the direction of the specimen. This stress is shown as ‘Abaqus
F’ in figure 4.9.

In case ‘Abaqus ε’ is not equal to ‘Abaqus’, Hooke’s law apparently no longer applies, thus
indicating plasticity in the grip section. In case ‘Abaqus F’ is not equal to ‘Abaqus’, the
nominal stress in the grip section differs from the local stress in the middle of the grip section.
This can either indicate a stress concentration is present or dynamic equilibrium has not been
reached.

Gauge

Similar to the stress in the grip section, the engineering stress in the gauge section is also
determined in four ways. First of all, the stress is directly obtained from Abaqus, as repre-
sented by ‘Abaqus’ in figure 4.9b. Secondly, three different methods of force equilibrium are
used, since the presence of plasticity in the gauge section makes direct conversion of strain
into stress by Hooke’s law invalid, while force equilibrium still holds. For comparison to FE
results, all engineering stresses are converted to true stress using equation 1.2.

The first method of applying force equilibrium scales the stress in the gauge section from the
stress in the grip section, as given by the following equation:

σgauge = σgripbgrip
bgauge

(4.4)

in which σ is the stress and b is the width in the indicated section. Since the stress in the
grip section is available for both the measurements and directly from the Abaqus output, this
yields two results for the stress in the gauge section, as shown by ‘Measurement’ and ‘Abaqus
σgrip’, respectively, in figure 4.9b. In principle, these should of course be equal, so when they
are not, it is an indication that the two results for stress in the grip are not equal and the
investigation should be continued in the grip section.
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Finally, ‘Abaqus F’ is determined using the same method as for the grip section, but using
the cross-sectional area of the gauge section.

In case ‘Abaqus F’ is not equal to ‘Abaqus’, the same holds as for the grip section; the nominal
stress in the grip section differs from the local stress in the middle of the gauge section, thus
indicating either a stress concentration or that dynamic equilibrium has not been reached.

4.3.5 Stress-strain curve

The stress-strain curves given in figure 4.10 as ‘Measurement’ are a combination of the stress
and strain in the gauge section found by measurement. The same holds for the curve called
‘Abaqus’, which is comprised of the stress and strain in the gauge section as obtained directly
from the Abaqus output. The two curves called ‘Reference’ scale the input stress-strain
curve from the material model using the Cowper-Symonds law given in equation 1.9. The
expectation is that one of these can be reconstructed by combining stress and strain to a
stress-strain curve. ‘Reference ε̇ = C’ uses the average strain rate to scale the entire curve at
once and ‘Reference ε̇ 6= C’ uses the measured strain rate to determine the scaling for each
data point.

4.3.6 Objective functions

This section will explain the criteria that are used to evaluate parameters in the parameter
study. An objective function is a single parameter that helps in judging the accuracy of a
model. In the case of strain and stress, the difference between measurements and FEA output
is used to determine accuracy of the measurements. It is important to know that, although
FEA is treated as giving true results, it is still a simulation. This means that FEA can also
be wrong and results should be treated with caution.

That said, the objective function for strain and stress in time, given in equation 4.5, is defined
by average deviation of the measurement from the FEA output given in %. The objective
functions in equation 4.5 require the number of data points to be taken at the exact same
points in time.

ςσ[%] =

N∑
i=1

(∣∣∣σm(t(i))− σabq(t(i))∣∣∣
)

N∑
i=1

σabq
(
t(i)

) · 100% (4.5)

ςε[%] =

N∑
i=1

(∣∣∣εm(t(i))− εabq(t(i))∣∣∣
)

N∑
i=1

εabq
(
t(i)

) · 100%

in which the average deviation ςσ is a percentage, N is the number of data points, εm and
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Figure 4.8: Strain rate comparison in the gauge section for v0 = 1.7 m/s and md = 30 kg

(a) Grip section (b) Gauge section

Figure 4.9: Stress comparison for v0 = 1.7 m/s and md = 30 kg

Figure 4.10: Stress strain curve comparison for v0 = 1.7 m/s and md = 30 kg
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σm are the measurement strain and stress and, εabq and σabq are the in-plane strain and
membrane stress from Abaqus.

The first objective function for the stress-strain curve, given in equation 4.6, combines the
objective functions for stress and strain in the gauge section to determine the best overall
specimen. In order to mitigate the effect an outlier might have, the squared difference is
added to the sum of these two objective functions squared.

ςabq[%] =
√
ς2
σ + ς2

ε (4.6)

The second objective relates the measured stress-strain curve to the input curve. Two stress-
strain curves are constructed at the exact same strain intervals as the measured stress-strain
curve, as mentioned in the previous section. The deviation is determined accordingly for both
of these curves using the same method as stress and strain:

ςσε[%] =

N∑
i=1

(∣∣∣σm(εm(i)
)
− σε̇

(
εm(i)

)∣∣∣)
N∑
i=1

σε̇
(
εm(i)

) · 100% (4.7)

in which the average deviation ςσε is a percentage, N is the number of data points, σm(i) is
the stress at strain εm(i) and σε̇(i) is the stress of the input curve (ε̇ 6= C) at the same εm(i).
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4.4 Modelling considerations

This section discusses several modelling considerations and parameter choices that were made
in creating the finite element model for the impact test and their impact on the results.

4.4.1 Determination of the strain rate factor

As discussed in section 4.2.4, the strain rate factor is a factor used by Abaqus to combat
non-physical high-frequency oscillations introduced by the numerical simulation of strain rate
dependency in the material. The default strain rate factor used by Abaqus is 0.9. This is,
for example, used in the simulation results shown in figure 4.11a, in which the stress-strain
curve obtained directly from Abaqus is compared to the input material data at various strain
rates. In this case and for every other simulation with a strain rate factor of 0.9 in a set of
varying specimen dimensions, drophead mass and drophead velocity, the stress-strain curve
matches the case of the quasi-static input curve, marked as ‘Reference ε̇ → 0’, indicating
that the strain rate dependency of the material model is not properly accounted for in the
simulation. Based on the non-zero strain rate curve in figure 4.11b, the stress-strain curve
from Abaqus should be close to the stress-strain curve obtained from the material model for
either the average strain rate, marked as ‘Reference, ε̇ = C’ or the instantaneous strain rate,
marked as ‘Reference, ε̇ 6= C’.

In order to investigate the influence of the strain rate factor on this error, various simulations
have been done for strain rate factors ranging from 0.1 to 0.9 in steps of 0.1. An example of
the resulting stress-strain curves at various strain rate factors is shown in figure 4.12, which
shows that lower strain rate factors indeed result in a better match between the scaled input
curves and the stress-strain curve.

The next step is to determine what strain rate factor should be used for the simulations in
the parametric study. To this end, the analytical model from the previous section for the
narrow gauge section is used. The resulting comparison for various strain rate factors is
shown in figure 4.13. As can be seen, the best match is found for strain rate factors in the
range of 0.1-0.5. In order to narrow down this range, finally, a strain rate convergence study
is done. Figure 4.14a shows an example of the strain rate as determined by Abaqus for a
single experiment at various strain rate factors, while figure 4.14b shows a plot of the average
strain rate versus strain rate factor for various experiments. Based on these results 0.3 is
determined to be the best strain rate factor to use in the simulations.
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(a) Stress-strain curve (b) Strain rate curve

Figure 4.11: Stress-strain curve and strain rate curve for a strain rate factor of 0.9, where
v0 = 1.5 m/s and md = 40 kg

(a) Strain rate factor = 0.1 (b) Strain rate factor = 0.2 (c) Strain rate factor = 0.3

(d) Strain rate factor = 0.4 (e) Strain rate factor = 0.5 (f) Strain rate factor = 0.6

(g) Strain rate factor = 0.7 (h) Strain rate factor = 0.8 (i) Strain rate factor = 0.9

Figure 4.12: Stress-strain curves for various strain rate factors where v0 = 1.5 m/s and
md = 40 kg
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(a) Strain rate factor = 0.1 (b) Strain rate factor = 0.2 (c) Strain rate factor = 0.3

(d) Strain rate factor = 0.4 (e) Strain rate factor = 0.5 (f) Strain rate factor = 0.6

(g) Strain rate factor = 0.7 (h) Strain rate factor = 0.8 (i) Strain rate factor = 0.9

Figure 4.13: Strain rate curves for various strain rate factors where v0 = 1.7 m/s andmd = 30
kg

(a) Strain rate for various strain rate factors where
v0 = 1.5 m/s and md = 40 kg (b) Average strain rate for various strain rate factors

Figure 4.14: Strain rate for various strain rate factors
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4.4.2 Rigid and deformable drophead

As discussed in section 4.2.2, two options for modelling the drophead have been investigated:
as an analytical rigid and as a deformable body. A comparison of strain and strain rate in
the gauge section for both formulations can be seen in figure 4.15. The two formulations
show very similar results in the beginning but start to diverge after that. The cause for
this divergence can be found in the difference in shape between the analytical rigid and the
deformable drophead. The analytical rigid is a perfect hemisphere whereas the deformable is a
discretized hemisphere, as is illustrated in figure 4.16. As a consequence of the discretization,
the specimen slips away from under the drophead, since the contact has been defined as
frictionless. The specimen slipping away from the drophead is illustrated in figure 4.17,
where where both the deformed and undeformed specimen are shown to illustrate the sideways
movement of the deformed specimen. This slipping of the specimen leads to inhomogeneous
stress- and strain fields in the specimen and is therefore undesirable. Friction will, of course,
have an impact of these results. This will be addressed in the next section.

(a) Strain in the gauge section (b) Strain rate in the gauge section

Figure 4.15: Comparison of rigid and deformable drophead where v0 = 1.7 m/s, md = 30 kg
and α = 60◦

Figure 4.16: Difference in shape between rigid and deformable drophead

4.4.3 Effect of friction

So far, all tangential contact between the specimen and drophead has been assumed to be
frictionless. In reality, some amount of friction will always be present between the specimen
and drophead. In order to investigate the impact of friction on the results, friction between
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Figure 4.17: The specimen slips away from under the deformable drophead

the specimen and drophead is included for both the rigid and deformable drophead in the
form of a friction coefficient, fc, as mentioned in section 4.2.5. The corresponding results for
the average strain rate and measurement accuracy are shown in figure 4.18.

It can be observed that the strain rate increases as more friction is present. This can be
explained by the fact that more friction between the specimen and drophead allows for more
energy to be transferred from the drophead to the specimen, resulting in a higher strain rate.
This trend is also reflected by the detailed strain rate curves in figure 4.19. The strain rate
curves also show that in case of a deformable drophead more fluctuations are observed the
strain rate than for the assumption of a rigid drophead. This can be attributed to stress
waves in the drophead itself. Finally, it is interesting to note that the rigid and deformable
drophead initially show a similar strain rate curve, but as time progresses the deformable
drophead shows higher strain rates than the assumption of a rigid drophead.

Furthermore, as can be concluded from figure 4.20, a little friction is beneficial for the mea-
surement accuracy of the experiment, but once sufficient friction is present, no further impact
on measurement accuracy is observed. In conclusion, although friction has some influence on
the strain rate and measurement accuracy, the overall impact on the experiment is expected
to be small.

In a practical sense, these results indicate that it is desirable to have sufficient friction between
the specimen and drophead and avoid an extremely smooth interface.
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(a) On average strain rate in gauge section (b) On measurement accuracy

Figure 4.18: Effect of friction on rigid and deformable drophead where v0 = 1.7 m/s, md = 30
kg and α = 60◦

(a) Frictionless (b) fc = 0.1

(c) fc = 0.5 (d) fc = 0.9

Figure 4.19: Comparison of the strain rate in the gauge section for rigid and deformable
drophead where v0 = 1.7 m/s, md = 30 kg and α = 60◦
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(a) Frictionless (b) fc = 0.1

(c) fc = 0.5 (d) fc = 0.9

Figure 4.20: Comparison of the strain in the gauge section for rigid and deformable drophead
where v0 = 1.7 m/s, md = 30 kg and α = 60◦



Chapter 5

Results

First, in order to investigate the validity of the analytical solution and verify the FEA sim-
ulations, section 5.1 presents the results of a comparison between the analytical model from
chapter 3 and the numerical simulations from chapter 4. Furthermore, as already concluded
in chapter 4, the strain rate factor used as a parameter in the FEA solutions needs to be
determined, as is presented in section 4.4.1.

Finally, after the validity of the FEA simulations has been determined, section 5.2 presents
several parametric studies that have been carried out to investigate the influence of various
parameters on the strain rate and accuracy of the experiment.

5.1 Comparison analytical model and FEA

In order to assess the validity of the analytical solutions presented in chapter 3 and verify the
results of the FEA simulations, this section presents a comparison between both solutions.
Note that, as presented in chapter 2, two experiments are carried out, so two sets of compar-
ison have been done: one for the flat specimen used in the universal test machine and one for
the impact specimen used in the impact test.

5.1.1 Flat specimen

The example given in section 3.2.3 of a flat specimen that can be used in a UTM, is compared
to a finite element model of the same specimen. The dimensions can be found in table 5.1.
The material model is the same as in the other FE simulations, as discussed in section 4.2.4.
The FE model is fixed on side, while a constant velocity is applied to the other side. The
resulting comparison between the analytical solutions and the FE analysis is shown in figure
5.1.

A comparison between the true strain as given by the analytical model and strain directly from
the Abaqus output in figure 5.1a indicates that the analytical model overestimates the strain
with respect to Abaqus. This can be explained by the energy that is absorbed by strain
in linear elastic regime and in the grip section, both of which are not taken into account
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by the analytical model. Consequently this energy has to be absorbed by plasticity in the
gauge section resulting in higher strains. Therefore, initially the two curves diverge but as
time progresses, Abaqus and the analytical solution show a similar slope, since the relative
contribution of elastic strain to the strain in the FE model reduces as time progresses.

This is also reflected by the strain rate in figure 5.1b. The initial large oscillations of the
Abaqus strain rate are non-physical, numerical artefacts, as explained in section 4.2.4. The
curve marked as ‘measurement’, which is constructed as described in section 4.3.3, more
accurately represents the initial strain rate. As explained, since the analytical model does
not account for the linear elastic regime and for any strain in the grip section, the analytical
strain rate is initially overestimated with respect to ‘measurement’ but, as plasticity in the
gauge section becomes dominant, both curves converge as time progresses.

The stress in figure 5.1c and stress-strain curve in figure 5.1d show that both the perfectly
plastic and linear plastic material models initially overestimate the stress in the gauge sec-
tion, since neither takes linear elastic material behaviour into account. However, as can be
seen, both analytical solutions and the Abaqus solution show stresses in the same order of
magnitude, thereby verifying the Abaqus solution. The near perfect match of the perfectly
plastic stress in the second half of figure 5.1c is most likely a coincidence, where the errors
caused by the assumptions in the analytical material model negate the errors caused by the
overestimated strain rate. Furthermore, when looking at the stress-strain curve in figure 5.1d,
it is clear that both the perfectly plastic and linear plastic models show decent agreement
with the Abaqus results, thereby verifying the Abaqus solution.

Table 5.1: Specimen dimension for the flat specimen used in the comparison between analyt-
ical model and FEA

Parameter Value
Thickness h 2 mm
Width grip section bgrip 35 mm
Width gauge section bgauge 12.5 mm
Length parallel section Lc,0 57 mm
Length moving grip section Lgrip,moving 62 mm
Length clamped grip section Lgrip 162 mm
Velocity grip v 1.7 m/s
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(a) Strain in the gauge section (b) Strainrate in the gauge section

(c) Stress in the gauge section (d) Stress-strain curve

Figure 5.1: Comparison between analytical approach and FEA results for a flat specimen
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5.1.2 Impact specimen

The example given in section 3.3.4 of a specimen that be used for the higher strain rate impact
test is compared to a finite element model of the same specimen. The dimensions are given
in table 3.2. The setup of the FE model is discussed in chapter 4. In order to investigate the
influence of the impact section on the overall results, models were created for three different
widths of the gauge section: 6.25 mm, 12.5 mm, and 25 mm.

As can be seen in figure 5.2a, the match between the analytical solution and the FEA results
improves when the gauge section is more narrow. This can be explained by a combination of
two factors. First of all, as the gauge section becomes more narrow, it reaches plasticity easier
such that less energy is absorbed by the impact section and elastic deformation of the grips.
Second of all, since the assumption of a rigid impact section in the analytical model implies
no energy is absorbed by the impact section, the match between the analytical solution and
the FEA results should improve as the impact section and grips absorb less energy in the
FE analysis and, thus, as the gauge section becomes more narrow. This is also confirmed
by the stress distribution in figure 5.3, which shows the Von Mises stress distribution in the
specimen when the stress in the gauge section is at its peak. For the specimen with a narrow
gauge section, the highest stress and all plasticity is observed in the gauge section, while for
the specimen with the widest gauge section, no plasticity is observed in the gauge section and
the highest stresses are actually observed in the impact section. Note that the lag in the FEA
strain compared to the analytical solution is caused by the linear elastic deformation, which
is not accounted for in the analytical solution.

The strain rate curves in figure 5.4 again confirm the best fit for the model with the most
narrow gauge section, which is therefore used for the comparison. The lack of elastic de-
formation in the analytical model explains the difference in the first part of the strain rate
curves. The FEA total strain rate rises slower due to the elastic strain. However, in case of
the narrow gauge section, most of the energy of the drophead is absorbed by plasticity in the
gauge section resulting in a good match between the analytical solution and the FEA results
after the initial linear elastic part. As can be expected, as the drophead slows down, the
strain rate decreases, as is shown by both the analytical solutions and the FEA results.

Finally, the stress-strain curves in figure 5.5 show that, for the specimen with the narrow
gauge section, the analytical model yields a good approximation of the resulting stress-strain
curve. In conclusion, within the assumptions of the analytical solutions, the FEA results
and the analytical solution show good agreement, thereby verifying the FEA results. Yet, it
should be noted that the FEA results also show that the assumption of a rigid impact section
as used in the analytical solutions is not valid for the impact specimens considered in the
proposed test method. This, however, has no impact on the final results of the experiment
as long as the loss of energy in the middle section and consequently lower strain rate in the
gauge section are accounted for in the design of the specimen.
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(a) bgauge = 6.25 mm (b) bgauge = 12.5 mm (c) bgauge = 25 mm

Figure 5.2: Total strain in the gauge section for different widths of the gauge section for the
analytical and FE solutions.

Figure 5.3: Von Mises stress distribution at peak stress in the gauge section for different
widths of the gauge section
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(a) bgauge = 6.25 mm (b) bgauge = 12.5 mm (c) bgauge = 25 mm

Figure 5.4: Strain rate in the gauge section for different widths of the gauge section for the
analytical and FE solutions.

(a) bgauge = 6.25 mm (b) bgauge = 12.5 mm (c) bgauge = 25 mm

Figure 5.5: Stress-strain curve in the gauge section for different widths of the gauge section
for the analytical and FE solutions.
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5.2 Parametric study

This section describes the various parametric studies that have been carried out to investigate
the effect of different parameters on the experiments. The parametric study to determine the
effect of various parameters is described in this section. The following parameters have been
investigated:

• Width of the grip section
• Mass and velocity of the drophead
• The effect of bending waves
• Specimen length and position of the gauge section
• Angle of the dogbone section
• Mismatch and misalignment of drophead and specimen

The dimensions of the standard specimen can be found in table 5.2, where the range of
variation for each of the varied parameters can be found. The effect of each of these parameters
is first discussed separately, focusing on the impact on strain rate and measurement accuracy.
After this, section 5.2.7 shows some of the choices that can be made for an example experiment
at a given target strain rate.

Note that all measurements have been carried out with a measurement frequency of 104

measurements per second or in terms of DIC measurements: the frame rate is 104 frames per
second. This is not an extremely high frame rate for high speed DIC cameras, which can go
up to 2.1·106 frames per second (Limess Messtechnik & Software GmbH, 2020).

Table 5.2: Dimensions of impact specimen and drophead
Parameter Standard value Varied? Range
Specimen
Thickness h 2 mm No
Width grip section bgrip 35 mm Yes 20-40
Width gauge section bgauge 12.5 mm No
Parallel length gauge section Lc 57 mm No
Length gauge section Lgauge 50 mm No
Length radius LR 9 mm No
Length toward middle section Ltm 50 mm Yes 0-450
Length grip section Lgrip 150 mm Yes 50-500
Radius gauge section R 12.5 mm No
Inner radius specimen r 50 mm Yes 50-58
Angle dogbone section α 90 ◦ Yes 45-90
Drophead
Mass md 30 kg Yes 3-50
Radius drophead rd 50 mm No
Velocity on impact v0 1.7 m/s Yes 1.5-6
Position of drophead dy 0 mm Yes 0-8
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5.2.1 Effect of grip section width

As discussed in chapter 2 on the test method, it is important to ensure linear elastic behaviour
in the grip section. Therefore, as a first parameter study, simulations have been done for
various widths of the grip section to determine the correct width to be used in the experiment.

On strain rate in gauge section

As can be seen in figure 5.7a, varying the width of the grip section has little effect on the
average strain rate. As long as there is no plasticity in the grip section, this is to be expected,
since the linear elastic grip section will only absorb a small amount of energy. However, as
can be seen, when combining figure 5.6a and figure 5.6b, as soon as the grip section deforms
plastically, the strain rate in the gauge section drops, since a significant part of the energy of
the drophead is now also absorbed by the grip section. This is, for example, the case for the
outlier with a grip section width of 20 mm at md = 40 m/s and v0 = 4 m/s.

(a) Strain rate in gauge section (b) Plastic equivalent strain in the grip section

Figure 5.6: Effect of plasticity in the grip section for the case where v0 = 4 m/s, md = 30 kg
and bgrip = 20 mm

On measurement accuracy

Selecting the correct width of the grip section for the most accurate measurements is trade-off
between, on the one hand, selecting a grip section that is wide enough to avoid plasticity,
while, on the other hand, keeping it as narrow as possible to avoid measurement inaccuracies
resulting from too little strain to be measured.

Furthermore, it should be noted that plasticity in the grip section is more likely to be present
at higher strain rates, since a higher strain rate leads to a higher stress in the gauge section
because of the strain rate sensitivity of the material. Consequently the gauge section can
take a higher load, which in turn means there will be higher stress in the grip section. This
is also confirmed by figure 5.7c and, as can be seen in figure 5.7b, consequently the accuracy
of the measurement decreases drastically. Figure 5.7b also shows that the accuracy improves
significantly for a grip section width of 35 mm or more. Since a more narrow grip section
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(a) On average strain rate in gauge section (b) On measurement accuracy

(c) On maximum plastic equivalent strain in the grip
section

Figure 5.7: Effect of grip section width, mass and velocity

allows for easier measurements, a grip section width of 35 mm is chosen for the remainder of
the simulations.
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5.2.2 Effect of drophead mass and impact velocity

The analytical model indicates a strong relation between the strain rate and the mass and
impact velocity of the drophead, suggesting a trade-off can be made. Therefore, this section
presents a combined discussion on the effect of these parameters on the strain rate and
measurement accuracy.

On strain rate in gauge section

Figure 5.8 shows the effect of impact velocity and mass of the drophead on the average strain
rate. As can be seen, the average strain rate increases faster with drophead velocity than mass.
This can be explained using the analytical model, which predicts, within the assumptions of
the model, an initial strain rate, at t = 0, that is only dependent on the impact velocity
of the drophead and length of the gauge section and independent of the drophead mass, as
can seen in equation 3.10 and equation 3.12. The mass mainly affects the duration of the
experiment; in other words, a heavier drophead takes longer to slow down. Based on this,
it also not surprising that the increase in strain rate due to an increase in drophead mass is
less pronounced for low velocity. Similarly, the increase in strain rate due to an increase in
velocity is more pronounced when the drophead has a higher mass.

This is also observed in the following example where two cases with approximately the same
average strain rate, but different drophead and mass are compared. As is shown in figure 5.9,
even though the average strain rate is similar to actual strain rate curve differs significantly.
First of all, it can be observed that a higher drophead mass combined with a lower velocity
results in a smoother strain rate curve than a higher velocity combined with a lower mass.
Secondly, as can be seen when comparing figure 5.9c to figure 5.9d, a higher mass combined
with a lower velocity results in more plasticity in the gauge section and hence more mate-
rial data, which is to be expected, since a higher mass results in a longer duration of the
experiment.

Figure 5.8: Effect of mass and velocity on the average strain rate
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(a) Strain rate for v0 = 1.5 m/s and md = 30 kg (b) Strain rate for v0 = 3 m/s and md = 3 kg

(c) Stress-strain curve for v0 = 1.5 m/s and md = 30
kg (d) Stress-strain curve for v0 = 3 m/s and md = 3 kg

Figure 5.9: Effect of mass and velocity on strain rate and the stress-strain curve at a similar
average strain rate
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On measurement accuracy

The effect of drophead mass and impact velocity on measurement accuracy is shown in figure
5.10. Note that for clarity, the axes have been reversed with respect to figure 5.8. It can
be observed in figure 5.10 that measurement accuracy improves as the drophead mass or the
impact velocity increases, with an optimum at approximately v0 = 2.3 m/s and md = 50 kg.

A higher initial velocity results in more accurate measurements because there are less bending
waves, as will be discussed in the section 5.2.3 on bending waves. Furthermore, a higher mass
ensures a more stable measurement and longer measurement time, which positively affect the
measurement accuracy. When the energy from the drophead is too much, it will introduce
plasticity in the grip section. But when the energy input is too high, plasticity in the grip
section causes less accurate measurements and should be avoided.

Figure 5.10: Effect of mass and velocity on measurement accuracy
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5.2.3 Effect of bending waves

An example of the effect of bending waves on the experiment can be seen in figure 5.9c
in the previous section, which shows a significant difference between the measured stress-
strain curve and the stress-strain curve directly obtained from Abaqus. This is because the
bending waves introduce inhomogeneity in stress and strain fields over the thickness of the
material (Yang et al., 2014). In order to further investigate the effect and presence of bending
waves on the experiments, an additional FEA model is created in which bending waves are
eliminated by means of a constraint. This is achieved by constraining the pink areas of the
model in figure 5.11 in their local z-direction, thereby restricting out-of-plane movement and
thus eliminating bending waves. Finally, the results of these simulations are compared to the
initial simulations, while varying the drophead mass and impact velocity.

Figure 5.11: FEA model where bending waves are restricted

On strain rate in gauge section

As is to be expected, the absence of bending waves results in a higher average strain rate
compared to simulations with bending waves, as can be seen in figure 5.12a. This can be
explained by the fact that the energy that previously resulted in bending waves, now results
in additional axial strain in the specimen.

On measurement accuracy

Figure 5.12b shows that the accuracy of the measurements improves significantly for the
absence of bending waves. This can be seen in detail from the stress-strain curves in figure
5.13, where the case without bending waves has a exact match between the measurement
and Abaqus data. Furthermore, bending waves are more prevalent in the grip section, since
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(a) On average strain rate in gauge section (b) On measurement accuracy

Figure 5.12: Effect of bending waves

(a) Stress-strain curve with bending waves (b) Stress-strain curve without bending waves

Figure 5.13: Effect of bending waves on the stress-strain curve for the case where v0 = 1.7
m/s and md = 30 kg

the same out-of-plane displacements are relatively bigger in the grip section compared to the
gauge section.

When comparing all different simulations, it can be seen that there is less improvement for
the cases with higher velocity, for example along the line where v0 = 2 m/s, compared to the
cases with a higher mass, for example along the line of md = 40 kg. This indicates that there
are less bending waves present in the specimen when the velocity is higher.

Furthermore, it should be noted that there is hardly any difference between the cases with
and without bending waves when the gauge section remains in the linear elastic regime, for
example, When v0 = 1.5 m/s and md = 10 kg.
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5.2.4 Effect of specimen length and position of the gauge section

In order to investigate the effects of variation in length, the total length of the specimen is
varied along with the position of the gauge section. The position of the gauge section in the
specimen is determined by the length of the grip section, Lgrip, and the length of the section
toward the middle, Ltm, as illustrated in figure 5.14.

Figure 5.14: Definition of the parameters used to investigate the effect of specimen length
and position of the gauge section

On strain rate in gauge section

The effect of the length variations of the specimen on the strain rate is shown in figure 5.15a.
It can be observed that a longer specimen results in a lower average strain rate, as expected,
since the energy needed for straining the specimen is now distributed over more material. The
difference, however, is small, since the majority of the energy is still absorbed by the gauge
section.

A special case is the case when Ltm is zero, so when the drophead hits the specimen directly
next to the gauge section and no buffer zone is present between the impact section and the
gauge section. As can be seen, in this case the average strain rate increases irrespective of
the specimen length. This can be explained by the fact that the first part of Ltm, close
to the impact section, in general deforms plastically, thereby taking up some energy of the
impact and thus reducing the average strain rate in the gauge section. Consequently, when
this sections is removed by setting Ltm to zero, the average strain rate in the gauge section
increases.
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On measurement accuracy

The measurement accuracy in figure 5.15b clearly shows that there is a significantly larger
measurement error when Ltm is zero. This indicates that a small piece of material is needed
as a buffer between the impact zone and the gauge section to absorb bending waves. Further-
more, when looking at the accuracy along the line of Lgrip = 50 mm, the measurements are
consistently more accurate, because a larger part of the bending waves is already absorbed
by the rest of the specimen. This is also good news for the DIC measurements, because this
means that the required field of view becomes smaller, resulting in more accurate measure-
ments, as discussed in section 1.5.

(a) On average strain rate in gauge section (b) On measurement accuracy

Figure 5.15: Effect of length variation
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5.2.5 Effect of angle α

This section presents the effect of the angle of the dogbone section, α, on the strain rate
and measurement accuracy to first identify the effect of angle α in a perfect setup where the
drophead matches the specimen properly and is dropped exactly in the centre of the specimen.
However, as will be shown in section 5.2.6, α becomes especially important when considering
an imperfect setup.

On strain rate in gauge section

The strain rate results in figure 5.16a indicate a small change in average strain rate for
variation in α, as is also confirmed by the detailed strain rate curves in figure 5.17. The
effect of α is similar to that of the drophead mass, in that higher values of α slow down the
drophead faster, but the effect is significantly smaller.

On measurement accuracy

The effect of the angle on the measurement accuracy in figure 5.16b shows that as long as
a sufficiently small angle α, below 75◦, is used, the achieved measurement accuracy is fairly
constant and varying angle α has a limited influence on the measurement accuracy. However,
when using an angle α above 75◦ larger bending waves are present, thereby reducing the
accuracy of the measurement.

Furthermore, as can be seen, for an angle α of 55◦ or 70◦, a larger measurement error is
observed on the strain in the gauge section. As can be seen in figure 5.18, this results from
an overestimated strain in the measurements compared to the Abaqus results. A closer
investigation of the Abaqus results showed no significant differences between all cases from 45
to 70◦, leading to the conclusion that these small differences between experiments are to be
expected when a single strain measurement is used. However, it should be noted that these
errors will probably be mitigated in reality when DIC is used, because a complete strain field
is obtained instead of a single strain measurement.

Finally, the best results are obtained for an angle α of 65◦.

Combined effect of α and mass, velocity and length

Now that the best angle is determined to be 65◦, it is useful to verify whether the main
findings of the previous sections still hold for different values of α. Therefore, the parametric
study of angle α is expanded with a variation in drophead mass, impact velocity, specimen
length, and position of the gauge section.

The results for the average strain rate in figure 5.19a indicate that the same trends for a
variation in drophead mass and impact velocity are found for different angles, which means
that the previous conclusions regarding the effect of drophead mass and impact velocity still
hold for other values of α. The same conclusions can be drawn when looking at the trends of
varying specimen length and gauge position for various angles α, as is shown in figure 5.20a.
Finally, it should be noted that in general, α has a small impact on the average strain rate,
as was already concluded previously.
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(a) On average strain rate in gauge section (b) On measurement accuracy

Figure 5.16: Effect of angle α where v0 = 1.7 m/s and md = 30 kg

(a) α = 45◦ (b) α = 60◦

(c) α = 75◦ (d) α = 90◦

Figure 5.17: Detailed strain rate curves for various angles α where v0 = 1.7 m/s and md = 30
kg
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(a) α = 45◦ (b) α = 55◦

(c) α = 60◦ (d) α = 70◦

Figure 5.18: Effect of α on strain in the gauge section when v0 = 1.7 m/s and md = 30 kg
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The results for the measurement accuracy in figure 5.19b for a variation of drophead mass
and impact velocity and figure 5.20b for a variation in specimen length and position of the
gauge section indicate that indicate that the same trends in terms of measurement accuracy
are found for different angles, which means that the previous conclusions regarding the effect
of drophead mass, impact velocity, specimen length, and position of the gauge section still
hold for other values of α. Furthermore, the effect of angle α on the measurement accuracy
indicates that the smaller angles, of 45◦ and 60◦, yield consistently more accurate results than
when α is 90◦.

(a) On average strain rate in gauge section (b) On measurement accuracy

Figure 5.19: Effect of mass and velocity for various values of α

(a) On average strain rate in gauge section (b) On measurement accuracy

Figure 5.20: Effect of length for various values of α
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5.2.6 Effect of mismatch and misalignment between drophead and specimen

In prior sections, all parametric studies have been carried under the assumption that the
experiment is carried out perfectly, in the sense that the drop mass strikes directly in the
centre. However, as with all experiments, there is always a possibility that slight errors are
made. There might, for example, be a mismatch between the radii of the drophead and the
specimen, for example, due to spring back from forming the specimen. Furthermore, the
drophead might, for example, not be dropped exactly in the centre of the impact section.
Therefore, this section presents the effects of a mismatch and misalignment between the
drophead and specimen.

Misalignment is discussed for a mismatched drophead, where the specimen has a larger radius
than the drophead. The results in relation to misalignment are discussed with regard to both
the horizontal position of the drophead relative to the specimen and the distance of the
drophead to the measurement section, which is defined as:

distance = (r − rd)− dy (5.1)

where r is the inner radius of the specimen, rd is the radius of the drophead and dy is the
horizontal position of the drophead with respect to the centre of the specimen. Although it
might seem counter-intuitive to use this distance as a parameter rather than the position of the
drophead, as will be shown, the trends for measurement accuracy appear to be related to this
distance instead of the position of the drophead. The relation between distance and drophead
are also illustrated in figure 5.21, where they are defined with respect to the measurement
area of the specimen, which is marked in yellow. In the current section, three specimens with
different radii are discussed. The first is the perfectly matched specimen, where r = 50 mm,
which is used as a baseline for comparisons of the second and third, with specimen radii of
51 and 52 mm, respectively. The radius of the drophead is kept at 50 mm in all cases.

Figure 5.21: Definitions of misalignment



74 Results

On strain rate in gauge section

Figure 5.22a shows the effect of a mismatch and misalignment between drophead and specimen
for various angles α on the average strain rate. It can be observed that the strain rate
drops when the drophead is dropped off-centre, independent of the angle α of the specimen.
Furthermore, a mismatched drophead and specimen results in an increase in bending waves in
the specimen, which leads to a drop in average strain rate also discussed in section 5.2.3 on the
effect of bending waves. Finally, a difference can be observed between a horizontal position
of, for example, 2 mm and -2 mm. This is related to the fact that dropping the drophead
off-centre results in an asymmetric component in the experiment, while measurements are
only taken on one side.

On measurement accuracy

The effect of mismatch and misalignment on measurement accuracy is shown in figure 5.22b.
Do note that the effect on measurement accuracy in figure 5.22b is shown in relation to the
distance of the drophead to the measurement section, in contrast to the position as was used
for the effect on strain rate. The first thing to notice is the significant impact of a mismatch
between specimen and drophead radii on the measurement accuracy, especially for larger
angles α.

In order to investigate this in more detail, figure 5.23 and figure 5.24 show the comparison
between the Abaqus and measured strains in the grip section for various mismatches and
misalignments, for an angle α of 90◦ and 60◦, respectively. First of all, interestingly, both
figures show that, in case there is a mismatch between drophead and specimen radii, it is
beneficial for the measurement accuracy to drop the drophead closer to the measured side
instead of dropping the drophead in the centre of the impact section. Furthermore, as can be
seen, this effect is significantly more pronounced for a large angle α of 90◦ than for an angle
α of 60◦, indicating that a smaller angle α results in a more robust measurement compared
to using a large angle α. This can be explained when, for example, looking at the out-of-
plane displacements of the reference nodes in the grip section, as shown in figure 5.25 and
figure 5.26, for α equals 90◦ and 60◦ respectively. As can be seen, when the distance between
the drophead and measurement section increases, the out-of-plane displacement increases,
indicating an increase in bending waves and, thus, a loss of accuracy.

In conclusion, the effect of mismatch and misalignment is strongly dependent on the angle
chosen for the specimen, showing more robust measurement for smaller angles α. However,
independent of the angle, a perfect match between the radii of the drophead and specimen
results in the best measurements.
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(a) On average strain rate in gauge section (b) On measurement accuracy

Figure 5.22: Effect of α, distance and inner radius of the specimen

(a) Correctly matched specimen
(b) r = 52 mm

horizontal position is -2 mm
distance is 0 mm

(c) r = 52 mm
horizontal position is 0 mm

distance is 2 mm

(d) r = 52 mm
horizontal position is 2 mm

distance is 4 mm

Figure 5.23: The difference in strain measurements in the grip section for correctly and
incorrectly matched specimens where α = 90◦, v0 = 1.7 m/s and md = 30 kg
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(a) Correctly matched specimen
(b) r = 52 mm

horizontal position is -2 mm
distance is 0 mm

(c) r = 52 mm
horizontal position is 0 mm

distance is 2 mm

(d) r = 52 mm
horizontal position is 2 mm

distance is 4 mm

Figure 5.24: The difference in strain measurements in the grip section for correctly and
incorrectly matched specimens where α = 60◦, v0 = 1.7 m/s and md = 30 kg



5.2 Parametric study 77

(a) Correctly matched specimen
(b) r = 52 mm

horizontal position is -2 mm
distance is 0 mm

(c) r = 52 mm
horizontal position is 0 mm

distance is 2 mm

(d) r = 52 mm
horizontal position is 2 mm

distance is 4 mm

Figure 5.25: The difference in relative displacements of the reference points in the grip
section (location can be found in figure 4.2) for correctly and incorrectly matched specimens

where α = 90◦, v0 = 1.7 m/s and md = 30 kg
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(a) Correctly matched specimen
(b) r = 52 mm

horizontal position is -2 mm
distance is 0 mm

(c) r = 52 mm
horizontal position is 0 mm

distance is 2 mm

(d) r = 52 mm
horizontal position is 2 mm

distance is 4 mm

Figure 5.26: The difference in relative displacements of the reference points in the grip
section (location can be found in figure 4.2) for correctly and incorrectly matched specimens

where α = 60◦, v0 = 1.7 m/s and md = 30 kg
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5.2.7 Example experiment

In order to apply the conclusions drawn in the previous sections to an actual experiment and
illustrate some of the trade-offs to be made, figure 5.27 and figure 5.28 present the strain
rate as a function time and stress-strain curve, respectively, of various experiments that reach
the same average strain rate of around 16 s−1, but show significantly different results. For
each experiment, it is assumed that the DIC equipment has the same frame rate and thus
measurement frequency.

The first experiment has a high velocity of 5 m/s and low mass of 3 kg. As mentioned in
section 5.2.2 on the effect of mass and velocity, compared to the other experiments, this case
has a shorter duration and therefore less measurement data. This is most pronounced in
the stress-strain curve in figure 5.28a, where it is clear that this curve has significantly fewer
measurement points than the other experiments and, therefore, provides less material data.

The second experiment has a lower velocity of 3 m/s and higher mass of 40 kg. The first
thing to notice in figure 5.27b is an increase of the duration by a factor 5 compared to the
previous experiment in figure 5.27a. When looking at figure 5.28b, however, it becomes clear
that the measurement curve does not match the Abaqus curve. This is caused by plasticity
is in the grip section, thereby invalidating the experiment, as discussed in section 5.2.1 on
width of the grip section.

Plasticity in the grip section can, for example, be addressed by a wider grip section, as is done
in the third experiment or by a smaller angle α, as is done in the fourth experiment such that,
in both cases, plasticity is no longer present in the grip section. The resulting average strain
rate is slightly higher in the third experiment, but a comparison between figure 5.27c and
figure 5.27d shows there is little difference between the actual strain rate curves, except that
reducing the angle alpha has resulted in a smoother strain rate curve with fewer oscillations.
This is also reflected in the stress-strain curves in figure 5.28c and figure 5.28d, where the
reduced oscillations result in a smoother stress-strain curve.

Furthermore, making the grip section wider results in smaller deformations in the grip section.
This is illustrated in figure 5.29, which shows the relative displacements of the reference points
in the grip section for the third and fourth experiment. As can be seen, the displacements in
the narrow grip section are up to 20% bigger than those in of the wide grip section, which
allows for more accurate measurements.

In conclusion, when comparing these four experimental possibilities to achieve an average
strain rate of around 16 s−1, the best choice is the fourth experiment with v0 = 3 m/s,
md = 40 kg, α = 60◦ and bgrip = 35 mm.
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(a) v0 = 5 m/s
md = 3 kg
α = 90◦

bgrip = 35 mm

(b) v0 = 3 m/s
md = 40 kg
α = 90◦

bgrip = 35 mm

(c) v0 = 3 m/s
md = 40 kg
α = 90◦

bgrip = 40 mm

(d) v0 = 3 m/s
md = 40 kg
α = 60◦

bgrip = 35 mm

Figure 5.27: Effect of various parameters on strain rate at a similar average strain rate
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(a) v0 = 5 m/s
md = 3 kg
α = 90◦

bgrip = 35 mm

(b) v0 = 3 m/s
md = 40 kg
α = 90◦

bgrip = 35 mm

(c) v0 = 3 m/s
md = 40 kg
α = 90◦

bgrip = 40 mm

(d) v0 = 3 m/s
md = 40 kg
α = 60◦

bgrip = 35 mm

Figure 5.28: Effect of various parameters on the stress-strain curve at a similar average strain
rate

Figure 5.29: Relative in-plane displacement of the reference points in the grip section



82 Results



Chapter 6

Guideline

This chapter provides a guideline to carry out experiments based on the test method discussed
in this thesis and the results presented.

Steps to be taken

1. Perform quasi-static experiments to determine the stress-strain curve at very low strain
rates.

2. Use the material data obtained from the quasi-static experiments in a set of FE simu-
lations to determine the desired specimen dimensions, drophead mass, impact velocity
and setup parameters for the impact test:

• Use the impact velocity to tune the strain rate. In general, the velocity should be
as low as possible, while being sufficiently high to reach the desired strain rate.

• Use the drophead mass to tune the duration of the experiment. In general, the
drophead mass should be as high as possible, while maintaining the desired strain
rate.

• Adjust the width of the grip section to make sure no plasticity is present in the grip
section, while keeping it as narrow as possible for optimal measurement accuracy.

• Tune the different parameters, from both specimen and setup, such that bending
waves are minimised.

• The length of the specimen should, in general, be kept as low as possible. However,
the section between the gauge section and impact section should not be made too
short, since a buffer zone is needed between gauge and impact section.

• The angle α should be between 45◦ and 75◦, preferably around 60◦ for optimal
measurement accuracy.

3. Design the experimental setup using the information of the previous step and considering
the following:

• Ensure a matching drophead and specimen radius.
• The drophead should be dropped properly in the centre of the specimen.
• The drophead should not be overly smooth to ensure sufficient friction between

drophead and specimen.
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• It might be convenient to have a set of different dropheads of which the mass can
be further tuned by means of, for example, additional blocks of mass that can be
attached to or removed from the drophead.

4. Using DIC as a measurement method, pay attention to the following:
• The speckle pattern

Should be random and matte, have high contrast and should not fracture.
• Camera, lens and environment

Exposure, lighting of the experiment, field of view, depth of field, line of sight and
fish-eye effect.

• Image spatial resolution versus speckle size
A single speckle should be captured by at least 3 pixels, but should not be too big.

• Frame rate
Should be sufficiently high.

• Out-of-plane displacements
Should be avoided when using 2D DIC for the quasi-static experiments.

• Field of view
The angle between the 3D DIC cameras should be sufficient, while the line of sight
should be kept as optimal as possible.
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Conclusions

In the introduction the main question guiding the research presented in this thesis was posed:

How can the effect of strain rate on the tensile stress-strain curve at intermediate
strain rates of 10-100 s−1 be measured by means of DIC?

This chapter presents the conclusions of the previous chapters in order to formulate an answer
on this question.

7.1 Test method

The test method proposed in this thesis consists of two parts. The first part is a test using
a universal testing machine to determine material behaviour at low strain rates of 0.001-10
s−1. A regular dogbone specimen with a longer grip section is used for the UTM tests, which
provides the material data to design specimens for the second part. The second part is an
impact test where a drophead impacts a specimen, causing it to strain. The specimens are
U-shaped strips with a dogbone at either side to test material behaviour at higher strain rates
of 10-100 s−1. For both tests, strains are recorded in the grip and gauge sections by means
of a DIC system.

The main benefits of the proposed test method are:

• A single system records all measurements, so no time synchronisation of different sensors
is needed.

• The DIC system records a complete strain field, providing insight in the strain distri-
bution over the specimen.

• The drophead does not need any sensors and can thus be a piece of material in the right
shape with the correct weight.

• A droptower is not strictly needed, another method of dropping the drophead precisely
onto the specimen is also sufficient (for example, a drophead guided by a PVC pipe
dropped from a height).

• The same experimental setup can easily be used for tests at different strain rates.
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7.2 Analytical model

Two analytical models have been developed, one for the universal testing machine tests and
one for the impact tests. For each of these, two different material models have been used
to model a simplification of mild steel, which in both cases only account for plasticity, while
neglecting the contribution of the linear elastic part. The first is the perfectly plastic model,
in which the plastic regime is simplified to a constant flow stress for all strains. The second is
the linear plastic material model, in which the effect of strain hardening is accounted for by
the assumption of a linear stress strain curve in the plastic regime between the yield stress
and the ultimate stress. Furthermore, for both models, only deformation of the gauge section
is taken into account, while the grip sections and impact section (only in case of the impact
test) are assumed to be rigid.

The analytical models for the UTM tests and the impact tests have been compared to a
finite element model of the same specimen. For the impact tests, a comparison between
three specimen geometries showed that a specimen with a narrow gauge section had the best
agreement with the analytical model. The analytical models overestimate the strain in the
gauge section, because elastic strain, which is present in the finite element models, is not taken
into account by the analytical models. When plastic strain in the gauge section becomes the
most dominant component of the strain, both analytical and FE strain curves show good
agreement. This is also reflected by the strain rate, which is initially overestimated by the
analytical model, after which both models show good agreement. Finally, the stress-strain
curves show that both material models provide a decent match with the FE results, thereby
verifying the FE models.

It should be noted, however, that, even though the analytical models show reasonable agree-
ment to the FEA results in some cases and can be used to verify the FEA simulations, they
do have a limited range of validity related to the underlying assumptions that were made.
For example, the assumption of a rigid impact section disregards the energy absorption by
the impact section as a result of plastic deformation, while in case of a significant impact
there will be plasticity in the impact section absorbing a significant amount of energy. Fur-
thermore, bending waves are not accounted for as a result of the assumption that strain
is only in-plane, which is also preferable for the actual experiment, but not necessarily the
case. Lastly, the simplification of the material inherently results in an approximation of the
stress-strain behaviour of the specimen, which is different from the actual material behaviour.

7.3 Numerical simulations

Numerical simulations of the impact test have been done by means of an explicit, dynamic,
non-linear impact simulation using finite element analysis. A mild steel specimen, which is
modelled using thin shells, is impacted by a drophead, which is modelled as a rigid solid, at a
set impact velocity. The mild steel material model for the specimen is strain rate dependent.

Strain in the grip and gauge section of the specimen are determined by direct FEA output and
by post-processing the displacements of two reference points in each section as if they were
DIC measurements. The strain in the grip section is converted to stress in the grip section via
Hooke’s law. The ratio between the cross-sectional areas of the grip and gauge section is then
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used to convert the stress from grip to gauge section. Combined with the strains recorded
in the gauge section, a stress-strain curve for a certain strain rate can be constructed. The
measurement accuracy is defined by the difference between the data obtained directly from
the FEA output and the DIC measurements by means of the reference point displacements.

A parametric study has been done using the FE model to determine the effect of various
parameters on the strain rate in the gauge section and the measurement accuracy to provide
guidelines for the dimensions of the test specimen and the parameters of the experimental
setup. The following two lists detail the effect of each tested parameter on either the strain
rate in the gauge section or the measurement accuracy based on which the test specimens
or experimental setup can be tuned for the highest measurement accuracy at a given target
strain rate.

Effects of various parameters on strain rate in the gauge section:

Grip section width As long as a sufficiently wide grip section is selected such that it does
not deform plastically, the width of the grip section has negligible influence on the strain
rate in the gauge section.

Mass and velocity A higher impact velocity results in a higher initial strain rate, while a
heavier drophead takes longer to slow down and therefore results in a smoother strain
rate curve and a longer measurement duration.

Bending waves The presence of bending waves decreases the strain rate, since part of the
energy is now absorbed by the bending waves instead of axial strain in the specimen.

Length A longer specimen has a lower average strain rate, because the energy from the
drophead is distributed over a longer specimen.

Angle α Variation in angle α has hardly any direct effect on the strain rate, but does have
an effect on the presence of bending waves and through this on the strain rate.

Mismatch and misalignment A mismatch or misalignment between the specimen and
drophead introduces larger bending waves resulting in a lower average strain rate.

Friction More friction results in a higher strain rate because more energy is transferred from
the drophead to the specimen.

Effects of various parameters on measurement accuracy:

Grip section width Selecting the correct width of the grip section for the most accurate
measurements is trade-off between, on the one hand, selecting a grip section that is wide
enough to avoid plasticity, while, on the other hand, keeping it as narrow as possible to
avoid measurement inaccuracies resulting from too little strain to be measured.

Mass and velocity In general, a higher mass results in smoother and more accurate mea-
surements. Furthermore, a higher impact velocity results in less bending waves and
therefore more accurate measurements. But, when the overall energy input is too high,
the grip section will deform plastically rendering the measurement invalid.
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Bending waves The presence of bending waves decreases the measurement accuracy, since
the out-of-plane bending introduces a non-homogeneous strain through the thickness of
the specimen.

Length In general a shorter grip section and shorter section between the gauge section and
impact section yields the most accurate measurements. However, the section between
the gauge section and impact section should not be made too short, since a buffer zone
is needed between gauge and impact section for accurate measurements in the gauge
section. Furthermore, a short grip section is also beneficial for the DIC measurements,
since a smaller field of view of the camera is required, thereby increasing the accuracy
of the DIC measurements.

Angle α The highest measurement accuracy is obtained for alpha in the range of 45◦ to 75◦

with the best results around an angle of 60◦.

Mismatch and misalignment In general, a longer distance between the measurement sec-
tion and impact location of the drophead results in a loss of measurement accuracy.
However, the effect of a mismatch or misalignment between the specimen and drophead
is strongly affected by the angle α of the specimen. Lower values of α reduce the effect
of a mismatch and misalignment, but the best results are still obtained for a perfectly
matched specimen and drophead that is dropped nicely in the centre of the specimen.

Friction Some friction is beneficial for the measurement accuracy, but once sufficient friction
is present, there is no further impact on the measurement accuracy.



Chapter 8

Recommendations

The test method presented in this thesis is only a single step towards a generally accepted
best test method for testing intermediate strain rates. The next step would be to perform a
set of experiments, using different measurement methods to compare the results and validate
the proposed measurement method. Furthermore, the same material should be tested using
multiple different test methods at the same strain rate to validate the proposed test method.
One could, for example, test at 10 s−1 using the proposed test method and a (fast) hydraulic
test machine. Further research to improve and expand the proposed test method can be done
in several different directions:

Different materials Investigate the test methodology for different materials for both the
specimen and drophead. One could even consider a different material for the impact
section compared to the grip and gauge sections, when the specimen is not made from
a single sheet of material. For the drophead, a different material could, for example,
influence stress waves, bending waves or the transmission of impact energy.

Strain measurements on both sides of the specimen Investigate the possibility to mea-
sure strain on two sides of the specimen to: on the one hand, measure bending waves
and, on the other hand, have the possibility to average the strain between both sides of
the specimen to eliminate the influence of bending waves on the measured strains, as
was shown by Yang et al. (2014).

Damping between specimen and drophead Investigate the effect of a layer of damping
material between the specimen and the drophead to mitigate stress waves and bending
waves in the specimen.

Shape and size of the drophead Investigate the effect of the shape and size of the drop-
head, one could think of a solid U-shape as a drophead or the effect of a larger radius
for both drophead and specimen.

Linear elasticity in analytical model Expand the analytical model to include linear elas-
tic material behaviour.
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Appendix A

Derivation of analytical model impact
specimen

In this appendix, the analytical model given in chapter 3 is derived in more detail. The
setup of the impact test is described in section 2.3. Figure A.1 illustrates the setup and
simplifications for the analytical computations. The top of the specimen is clamped and
the middle section (yellow) is impacted by the drophead (green). The dogbone part (blue)
is simplified to three rectangles, of which the grip section, Lgrip, and section towards the
middle, Ltm, are assumed to be rigid, while the gauge section deforms plastically, similar to
the assumptions for the analytical model of the flat specimen. Next, the middle section is
also assumed to be rigid such that the displacement of the two dogbones is directly given by
the displacement of the drophead, ud(t), and the angle α. Finally, since the strain is small
compared to the total length, the angle α is assumed to stay constant during the deformation.

Figure A.1: Definitions analytical model
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A.1 Perfectly plastic

The stress strain curve of the rigid perfectly plastic case is given in figure A.2.

Figure A.2: Stress-strain curve for rigid perfectly plastic material

Start with Newtons second law of motion in the drophead:

ΣFZ = Fup (A.1)

= md ·
d2ud(t)
dt2

Fup is the force exerted by the specimen on the drophead:

Fup = −2 · σ0 ·A0 · sin(α) (A.2)

Resulting in:

ΣFZ = −2 · σ0 ·A0 · sin(α) = md ·
d2ud(t)
dt2 (A.3)

Divide by md :

d2ud(t)
dt2 = −σ0 · 2 ·A0 · sin(α)

md
(A.4)

Integrate the acceleration to get the velocity:
ˆ d2ud(t)

dt2 dt = dud(t)
dt = vd(t) (A.5)

=
ˆ (
−2 · σ0 ·A0 · sin(α)

md

)
dt

= −2 · σ0 ·A0 · sin(α) · t
md

+ c

The velocity at t = 0 is the impact velocity v0:

c = v0 (A.6)

vd(t) = −2 · σ0 ·A0 · sin(α) · t
md

+ v0 (A.7)
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Integrate the velocity to get displacement:
ˆ dud(t)

dt dt = ud(t) (A.8)

=
ˆ (
−2 · σ0 ·A0 · sin(α) · t

md
+ v0

)
dt

= −σ0 ·A0 · sin(α) · t2

md
+ v0 · t+ c

The displacement at t = 0 is 0:

c = 0 (A.9)

ud(t) = −σ0 ·A0 · sin(α) · t2

md
+ v0 · t (A.10)

Use the displacement to determine the engineering strain:

εe(t) = ∆L(t)
Lc,0

(A.11)

∆L(t) = us(t) = ud(t)
sin(α) (A.12)

εe(t) = ud(t)
Lc,0 · sin(α) = −σ0 ·A0 · t2

md · Lc,0
+ v0
Lc,0 · sin(α) · t (A.13)

And the engineering strain rate:

ε̇e = vd(t)
Lc,0 · sin(α) (A.14)

= −2 · σ0 ·A0 · t
md · Lc,0

+ v0
Lc,0 · sin(α) (A.15)
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A.2 Linear plastic

The stress strain curve of the rigid linear plastic case is given in figure A.3.

Figure A.3: Stress-strain curve for rigid linear plastic material
.

Start with Newtons second law of motion in the drophead:

ΣFZ = md ·
d2ud(t)
dt2 (A.16)

Fup is the force exerted by the specimen on the drophead:

Fup = − (σy + Epl · εe) · 2 ·A0 · sin(α) (A.17)

Resulting in:

ΣFZ = − (σy + Epl · εe) · 2 ·A0 · sin(α) (A.18)
= −2 · σy ·A0 · sin(α)− 2 · Epl · εe ·A0 · sin(α)

Divide by md :

d2ud(t)
dt2 = −2 · σy ·A0 · sin(α)

md
− 2 · Epl · εe ·A0 · sin(α)

md
(A.19)

Use the displacement to determine the engineering strain:

εe = ud(t)
Lc,0 · sin(α) (A.20)

d2ud(t)
dt2 = −2 · σy ·A0 · sin(α)

md
− 2 · Epl ·A0

Lc,0 ·md
· ud(t) (A.21)

This is a second order linear ODE:
d2ud(t)
dt2 = −C1 − C2 · ud(t) (A.22)

in which:

C1 = 2 · σy ·A0 · sin(α)
md

C2 = 2 · Epl ·A0
Lc,0 ·md
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The solution is:
ud(t) = −C1

C2
+ C3 sin

(√
C2 · t

)
+ C4 cos

(√
C2 · t

)
(A.23)

The displacement at t = 0 is 0:

ud(0) = −C1
C2

+ C4 ⇒
C1
C2

= C4 = σy · Lc,0
Epl

(A.24)

The velocity at t = 0 is the impact velocity v0:

dud(t)
dt = vd(t) = C3

√
C2 cos

(√
C2 · t

)
− C4

√
C2 sin

(√
C2 · t

)
(A.25)

vd(0) = C3
√
C2 = v0 ⇒ v0√

C2
= C3 (A.26)

The displacement of the drophead is:

ud(t) = −C1
C2

+ C3 sin
(√

C2 · t
)

+ C4 cos
(√

C2 · t
)

(A.27)

in which:

C1 = 2 · σy ·A0 · sin(α)
md

C2 = 2 · Epl ·A0
Lc,0 ·md

C3 = v0√
C2

=
v0 ·

√
Lc,0 ·md√

2 · Epl ·A0

C4 = C1
C2

= σy · Lc,0 · sin(α)
Epl

Resulting in:

ud(t) = −σy · Lc,0 · sin(α)
Epl

+
v0 ·

√
Lc,0 ·md√

2 · Epl ·A0
sin
(√

2 · Epl ·A0
Lc,0 ·md

· t
)

+σy · Lc,0 · sin(α)
Epl

cos
(√

2 · Epl ·A0
Lc,0 ·md

· t
)

(A.28)
Use the displacement to determine the strain:

εe(t) = ud(t)
Lc,0 · sin(α) =

−C1
C2

+ C3 sin
(√
C2 · t

)
+ C4 cos

(√
C2 · t

)
Lc,0 · sin(α) (A.29)

= − σy
Epl

+
v0 ·
√
md

sin(α) ·
√
Lc,0 · Epl · 2 ·A0

sin
(√

2 · Epl ·A0
Lc,0 ·md

· t
)

+ σy
Epl

cos
(√

2 · Epl ·A0
Lc,0 ·md

· t
)

And the engineering strain rate:

ε̇e = vd(t)
Lc,0 · sin(α) (A.30)

= C3
√
C2 cos

(√
C2 · t

)
− C4

√
C2 sin

(√
C2 · t

)
Lc,0 · sin(α)

= v0
Lc,0 · sin(α) cos

(√
2 · Epl ·A0
Lc,0 ·md

· t
)
− σy√

Epl

√
2 ·A0

Lc,0 ·md
sin
(√

2 · Epl ·A0
Lc,0 ·md

· t
)
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Appendix B

Python code to generate model

This appendix provides python code which can be used to generate the FEA models in Abaqus
2018.

Main.py

This file is used as the main file from which all other files are called and in which most of the
variables are defined.
from abaqus import *
from abaqusConstants import *
backwardCompatibility.setValues(includeDeprecated=True, reportDeprecated=False)
from caeModules import *
import sketch
import part
import regionToolset
import section
import material
import assembly
import step
import load
import mesh
import job
import visualization

modelname='MyModelName'
jobname= modelname

# Variabels drophead
r=50.0 #[mm] Radius of drophead
m_drophead= 0.03 # [*1000 kg] mass of drophead (0.03 = 30 kg)
v_0 = -(float(17)*100) # [mm/s] initial velocity of drophead (15 is 1.5 m/s)
rho=7800 # [kg/m^3]
h=((m_drophead*1000)/rho-4./6.*(r/1000)**3.*pi)/(pi*(r/1000)**2)*1000 #[mm] Height of drophead

# Variabels specimen
B=35.0 # [mm] Width of specimen
t = 2.0 # [mm] thickness
alpha = float(60) # [deg] Python works in radians, whereas Abaqus works in degrees.
alphaRad = radians(alpha) # [rad] alpha in rad
alphaMiddle= radians(90-alpha) # [rad] angle of semicircle
r_specimen = float(valueSpecimen) + t/2 # [mm] radius of specimen
b = 12.5 # [mm]
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L_L = 150.0 # [mm]
R = 12.5 # [mm]
L_c = 57.0 # [mm]
L_tm = 50.0 # [mm]
L_R= sqrt(R**2 - (R-((B-b)/2))**2 ) # [mm]
L = L_L+L_c+2*L_R+L_tm # [mm]
MeshSize = B/16 # Mesh size aan boven kant specimen

# General variables
Duration=0.005 # [s]
SRF=str(float(3)/10) # Strain rate factor
FricCoeff=0.5 # Friction Coefficient
dx = float(value) # [mm] offset of drophead tov middle of specimen
dy = 0.5+ (-sqrt(r_specimen**2 - abs(dx)**3 )+r_specimen)# [mm] clearance between drophead and specimen

myModel = mdb.Model(name=modelname)

# # # Choose rigid or deformable drophead # # #
# Comment the lines that run the other files

# # # For rigid drophead:
execfile('C:\...\...\PartsSpecimen.py')
execfile('C:\...\...\PartsRigidDrophead.py')
execfile('C:\...\...\Material.py')
execfile('C:\...\...\Section.py')
execfile('C:\...\...\Instance.py')
execfile('C:\...\...\Sets.py')
execfile('C:\...\...\Meshen.py')
execfile('C:\...\...\Step.py')
execfile('C:\...\...\Output.py')
execfile('C:\...\...\Contact.py')
execfile('C:\...\...\BC.py')
# # # # # # # # # # # # # # # # # # # # # # # #

# # # For deformable drophead:
execfile('C:\...\...\PartsSpecimen.py')
execfile('C:\...\...\PartsDeformableDrophead.py')
execfile('C:\...\...\Material.py')
execfile('C:\...\...\Section.py')
execfile('C:\...\...\SectionDeformableDrophead.py')
execfile('C:\...\...\InstanceDeformableDrophead.py')
execfile('C:\...\...\Sets.py')
execfile('C:\...\...\Meshen.py')
execfile('C:\...\...\MeshenDeformableDrophead.py')
execfile('C:\...\...\Step.py')
execfile('C:\...\...\OutputDeformableDrophead.py')
execfile('C:\...\...\ContactDeformableDrophead.py')
execfile('C:\...\...\BCDeformableDrophead.py')
# # # # # # # # # # # # # # # # # # # # # # # #

# # #
# # # # # # # # # Job # # # # # # # # # # # #
# # #
myJob=mdb.Job(name=jobname, model=myModel, description='Description of the job')
myJob.writeInput(consistencyChecking=OFF)

PartsSpecimen.py

This file is used to generate the specimen part.
# # #
# # # # # # # # # Specimen Geometry # # # # # # # # # # # #
# # #
SketchSpecimen = myModel.ConstrainedSketch(name='Sketch side view of specimen', sheetSize=100)
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PartSpecimen = myModel.Part(name='Specimen', dimensionality=THREE_D, type=DEFORMABLE_BODY)

# Sketch Specimen
P1 = (-abs(cos(alphaMiddle))*r_specimen, -abs(sin(alphaMiddle))*r_specimen)
P2 = (abs(cos(alphaMiddle))*r_specimen, -abs(sin(alphaMiddle))*r_specimen)
P3 = ( abs(cos(alphaMiddle))*r_specimen+abs(cos(alphaRad))*L , -abs(sin(alphaMiddle))*r_specimen+abs(sin

(alphaRad))*L )
P4 = ( -abs(cos(alphaMiddle))*r_specimen-abs(cos(alphaRad))*L , -abs(sin(alphaMiddle))*r_specimen+abs(

sin(alphaRad))*L )
SketchSpecimen.ArcByCenterEnds(center=(0.0, 0.0), point1=P1, point2=P2, direction=COUNTERCLOCKWISE)
SketchSpecimen.Line(point1=P2, point2=P3)
SketchSpecimen.Line(point1=P1, point2=P4)
PartSpecimen.BaseShellExtrude(sketch=SketchSpecimen, depth=B)

# Cutsketch for specimen
# cutsketch is made in plane, this plane is later projected on the plane of the specimen.
CutSketchSpecimen = myModel.ConstrainedSketch(name='Cut sketch for specimen', sheetSize=100)
C1 = ( L_L , 0.0 )
C2 = ( (L_L+L_R) , (B-b)/2 )
C3 = ( (L_L+L_R+L_c), (B-b)/2 )
C4 = ( (L_L+2*L_R+L_c) , 0.0 )
CM1 = ( (L_L+L_R) , ((B-b)/2-R))
CM2 = ( (L_L+L_R+L_c) , ((B-b)/2-R) )
C11 = ( L_L , B )
C12 = ( (L_L+L_R) , B-(B-b)/2 )
C13 = ( (L_L+L_R+L_c), B-(B-b)/2 )
C14 = ( (L_L+2*L_R+L_c) , B )
CM11 = ( (L_L+L_R) , ((B-b)/2+b+R))
CM12 = ( (L_L+L_R+L_c) , ((B-b)/2+b+R) )
CutSketchSpecimen.ArcByCenterEnds(center=CM1 , point1=C1, point2=C2, direction=CLOCKWISE)
CutSketchSpecimen.ArcByCenterEnds(center=CM2 , point1=C3, point2=C4, direction=CLOCKWISE)
CutSketchSpecimen.Line(point1=C2, point2=C3)
CutSketchSpecimen.Line(point1=C1, point2=C4)
CutSketchSpecimen.ArcByCenterEnds(center=CM11 , point1=C11, point2=C12, direction=COUNTERCLOCKWISE)
CutSketchSpecimen.ArcByCenterEnds(center=CM12 , point1=C13, point2=C14, direction=COUNTERCLOCKWISE)
CutSketchSpecimen.Line(point1=C12, point2=C13)
CutSketchSpecimen.Line(point1=C11, point2=C14)
y_revolve=P2[0]/cos(alphaRad) # Distance where two lines cross each other measured from the bottom of

the dogbone
CutSketchSpecimen.ConstructionLine(point1=(y_revolve+L, 0 ) , angle=90)

# Cut out using the cutsketch
f, e = PartSpecimen.faces, PartSpecimen.edges
SP=f.getByBoundingBox(xMax= P1[0])
SUE=e.findAt((P1[0], P1[1], B/2), )
transf = PartSpecimen.MakeSketchTransform(sketchPlane=SP[0], sketchUpEdge=SUE, sketchPlaneSide=SIDE1,

sketchOrientation=RIGHT, origin=(-abs(cos(alphaMiddle))*r_specimen-abs(cos(alphaRad))*L , -abs(sin(
alphaMiddle))*r_specimen+abs(sin(alphaRad))*L, 0))

s = myModel.ConstrainedSketch(name='TijdelijkeCutSketch', sheetSize=224.84, gridSpacing=5.62, transform=
transf)

g, v, d, c = s.geometry, s.vertices, s.dimensions, s.constraints
PartSpecimen.projectReferencesOntoSketch(sketch=s, filter=COPLANAR_EDGES)
s.retrieveSketch(sketch=CutSketchSpecimen)

# If alpha is 90 deg, don't use cutrevolve but extrude
if alpha == 90.0:
PartSpecimen.CutExtrude(sketchPlane=SP[0], sketchUpEdge=SUE, sketchPlaneSide=SIDE1, sketchOrientation=

RIGHT, sketch=s)
else:
PartSpecimen.CutRevolve(sketchPlane=SP[0], sketchUpEdge=SUE, sketchPlaneSide=SIDE1, sketchOrientation=

RIGHT, sketch=s, angle=180.0, flipRevolveDirection=OFF)

del myModel.sketches['TijdelijkeCutSketch']

# Make partitions
PartitionSketchSpecimen = myModel.ConstrainedSketch(name='Partition sketch for specimen', sheetSize=100)
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PP1 = ( 0.0 , B/2 )
PP2 = ( L_L , B/2 )
PP3 = ( (L_L+2*L_R+L_c+(B-b)/3) , B/2 )
PP4 = ( L , B/2 )
PartitionSketchSpecimen.Line(point1=PP1, point2=PP4)
PartitionSketchSpecimen.Line(point1=PP3, point2=C4)
PartitionSketchSpecimen.Line(point1=PP3, point2=C14)

# Make square in the middle of the gauge section, Smal
SQM = ( (L_L+L_R+L_c/2) , B/2 )
SQA1 = ( (L_L+L_R+L_c/2-25.0) , (B-b)/2 )
SQE1 = ( (L_L+L_R+L_c/2-25.0) , B-(B-b)/2)
SQA3 = ( (L_L+L_R+L_c/2) , (B-b)/2 )
SQE3 = ( (L_L+L_R+L_c/2) , B-(B-b)/2)
SQA5 = ( (L_L+L_R+L_c/2+25.0) , (B-b)/2 )
SQE5 = ( (L_L+L_R+L_c/2+25.0) , B-(B-b)/2)
PartitionSketchSpecimen.Line(point1=SQA1, point2=SQE1)
PartitionSketchSpecimen.Line(point1=SQA3, point2=SQE3)
PartitionSketchSpecimen.Line(point1=SQA5, point2=SQE5)
PartitionSketchSpecimen.Line(point1=C2, point2=C12)
PartitionSketchSpecimen.Line(point1=C3, point2=C13)

# Create reference points in grip section: Breed
CBA1 = ( L_L/4 , 0 )
CBA3 = ( L_L/2 , 0 )
CBA5 = ( L_L*3/4 , 0 )
CBC1 = ( L_L/4 , B/2 )
CBC3 = ( L_L/2 , B/2 )
CBC5 = ( L_L*3/4 , B/2 )
CBE1 = ( L_L/4 , B )
CBE3 = ( L_L/2 , B )
CBE5 = ( L_L*3/4 , B )
PartitionSketchSpecimen.Line(point1=CBA1, point2=CBC1)
PartitionSketchSpecimen.Line(point1=CBC1, point2=CBE1)
PartitionSketchSpecimen.Line(point1=CBA3, point2=CBC3)
PartitionSketchSpecimen.Line(point1=CBC3, point2=CBE3)
PartitionSketchSpecimen.Line(point1=CBA5, point2=CBC5)
PartitionSketchSpecimen.Line(point1=CBC5, point2=CBE5)

# First partition sketch
f, e = PartSpecimen.faces, PartSpecimen.edges
SUE= e.getByBoundingBox(zMax=B+0.001, zMin=B-0.001, xMin=P4[0], xMax=P1[0])
SP=f.getByBoundingBox(xMax= P1[0])
transf = PartSpecimen.MakeSketchTransform(sketchPlane=SP[0], sketchUpEdge=SUE[0], sketchOrientation=TOP,

origin=(P4[0], P4[1], 0))

s = myModel.ConstrainedSketch(name='TijdelijkePartitionSketch', sheetSize=224.84, gridSpacing=5.62,
transform=transf)

g, v, d, c = s.geometry, s.vertices, s.dimensions, s.constraints
s.retrieveSketch(sketch=PartitionSketchSpecimen)
PartSpecimen.PartitionFaceBySketch(sketchUpEdge=SUE[0], faces=SP[0], sketch=s, sketchOrientation=TOP)
del myModel.sketches['TijdelijkePartitionSketch']

# Second partition sketch, is voor de andere kant
SUE= e.getByBoundingBox(zMax=B+0.001, zMin=B-0.001, xMin=P2[0], xMax=P3[0])
SP=f.getByBoundingBox(xMin= P2[0])
transf = PartSpecimen.MakeSketchTransform(sketchPlane=SP[0], sketchUpEdge=SUE[0], sketchPlaneSide=SIDE1,

sketchOrientation=BOTTOM, origin=(P3[0], P3[1], B))
s = myModel.ConstrainedSketch(name='TijdelijkePartitionSketch', sheetSize=224.84, gridSpacing=5.62,

transform=transf)
g, v, d, c = s.geometry, s.vertices, s.dimensions, s.constraints
s.retrieveSketch(sketch=PartitionSketchSpecimen)
PartSpecimen.PartitionFaceBySketch(sketchUpEdge=SUE[0], faces=SP[0], sketch=s, sketchOrientation=BOTTOM)
del myModel.sketches['TijdelijkePartitionSketch']

# Make partition impact section
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P11 = (-abs(cos(alphaMiddle))*r_specimen, -abs(sin(alphaMiddle))*r_specimen, B/2)
P21 = (abs(cos(alphaMiddle))*r_specimen, -abs(sin(alphaMiddle))*r_specimen, B/2 )
SP = f.getByBoundingBox(yMax= P2[1])
PartSpecimen.PartitionFaceByShortestPath(point1=P11, point2=P21, faces=SP[0])

P00 = (0, -r_specimen, 0)
P01 = (0 , -r_specimen, B )
SP = f.getByBoundingBox(yMax= P2[1])
PartSpecimen.PartitionFaceByShortestPath(point1=P00, point2=P01, faces=SP)

# Edges partition
e1 = PartSpecimen.edges
#Breed: Grip section
e11 = e1.getByBoundingBox(

xMin= P4[0]+abs(cos(alphaRad))*CBA5[0] - 1.E-6,
xMax= P4[0]+abs(cos(alphaRad))*CBA5[0] + 1.E-6,
yMin= P4[1]-abs(sin(alphaRad))*CBA5[0] - 1.E-6,
yMax= P4[1]-abs(sin(alphaRad))*CBA5[0] + 1.E-6)

PartSpecimen.PartitionEdgeByPoint(edge=e11[1], point=PartSpecimen.InterestingPoint(edge=e11[1], rule=
MIDDLE))

PartSpecimen.PartitionEdgeByPoint(edge=e11[0], point=PartSpecimen.InterestingPoint(edge=e11[0], rule=
MIDDLE))

e11 = e1.getByBoundingBox(
xMin= P4[0]+abs(cos(alphaRad))*CBA3[0] - 1.E-6,
xMax= P4[0]+abs(cos(alphaRad))*CBA3[0] + 1.E-6,
yMin= P4[1]-abs(sin(alphaRad))*CBA3[0] - 1.E-6,
yMax= P4[1]-abs(sin(alphaRad))*CBA3[0] + 1.E-6)

PartSpecimen.PartitionEdgeByPoint(edge=e11[1], point=PartSpecimen.InterestingPoint(edge=e11[1], rule=
MIDDLE))

PartSpecimen.PartitionEdgeByPoint(edge=e11[0], point=PartSpecimen.InterestingPoint(edge=e11[0], rule=
MIDDLE))

e11 = e1.getByBoundingBox(
xMin= P4[0]+abs(cos(alphaRad))*CBA1[0] - 1.E-6,
xMax= P4[0]+abs(cos(alphaRad))*CBA1[0] + 1.E-6,
yMin= P4[1]-abs(sin(alphaRad))*CBA1[0] - 1.E-6,
yMax= P4[1]-abs(sin(alphaRad))*CBA1[0] + 1.E-6)

PartSpecimen.PartitionEdgeByPoint(edge=e11[1], point=PartSpecimen.InterestingPoint(edge=e11[1], rule=
MIDDLE))

PartSpecimen.PartitionEdgeByPoint(edge=e11[0], point=PartSpecimen.InterestingPoint(edge=e11[0], rule=
MIDDLE))

#Smal: Gauge section
e11 = e1.getByBoundingBox(

xMin= P4[0]+abs(cos(alphaRad))*SQA1[0] - 1.E-6,
xMax= P4[0]+abs(cos(alphaRad))*SQA1[0] + 1.E-6,
yMin= P4[1]-abs(sin(alphaRad))*SQA1[0] - 1.E-6,
yMax= P4[1]-abs(sin(alphaRad))*SQA1[0] + 1.E-6)

PartSpecimen.PartitionEdgeByPoint(edge=e11[1], point=PartSpecimen.InterestingPoint(edge=e11[1], rule=
MIDDLE))

PartSpecimen.PartitionEdgeByPoint(edge=e11[0], point=PartSpecimen.InterestingPoint(edge=e11[0], rule=
MIDDLE))

e11 = e1.getByBoundingBox(
xMin= P4[0]+abs(cos(alphaRad))*SQA3[0] - 1.E-6,
xMax= P4[0]+abs(cos(alphaRad))*SQA3[0] + 1.E-6,
yMin= P4[1]-abs(sin(alphaRad))*SQA3[0] - 1.E-6,
yMax= P4[1]-abs(sin(alphaRad))*SQA3[0] + 1.E-6)

PartSpecimen.PartitionEdgeByPoint(edge=e11[1], point=PartSpecimen.InterestingPoint(edge=e11[1], rule=
MIDDLE))

PartSpecimen.PartitionEdgeByPoint(edge=e11[0], point=PartSpecimen.InterestingPoint(edge=e11[0], rule=
MIDDLE))

e11 = e1.getByBoundingBox(
xMin= P4[0]+abs(cos(alphaRad))*SQA5[0] - 1.E-6,
xMax= P4[0]+abs(cos(alphaRad))*SQA5[0] + 1.E-6,
yMin= P4[1]-abs(sin(alphaRad))*SQA5[0] - 1.E-6,
yMax= P4[1]-abs(sin(alphaRad))*SQA5[0] + 1.E-6)

PartSpecimen.PartitionEdgeByPoint(edge=e11[1], point=PartSpecimen.InterestingPoint(edge=e11[1], rule=
MIDDLE))
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PartSpecimen.PartitionEdgeByPoint(edge=e11[0], point=PartSpecimen.InterestingPoint(edge=e11[0], rule=
MIDDLE))

PartsRigidDrophead.py
# # #
# # # # # # # # # Drophead Geometry # # # # # # # # # # # #
# # #
SketchDrophead = myModel.ConstrainedSketch(name='Sketch of the drophead', sheetSize=100)
PartDrophead = myModel.Part(name='ZDrophead', dimensionality=THREE_D, type=ANALYTIC_RIGID_SURFACE)

# Sketch Drophead
SketchDrophead.ArcByCenterEnds(center=(0.0, 0.0), point1=(0.0,-r), point2=(r, 0.0), direction=

COUNTERCLOCKWISE)
SketchDrophead.Line(point1=(r, 0.0), point2=(r, h))
SketchDrophead.Line(point1=(r, h), point2=(0.0, h))
SketchDrophead.ConstructionLine(point1=(0.0, 0.0), angle=90.0)
PartDrophead.AnalyticRigidSurfRevolve(sketch=SketchDrophead)

# Assign reference point to Drophead
PartDrophead.ReferencePoint(point=(0.0, -r, 0.0))

# create set for bottom of drophead
q = PartDrophead.referencePoints
refPoints=(q[2], )
OnderkantDropheadSet=PartDrophead.Set(referencePoints=refPoints, name='OnderkantDrophead')

# Create inertia for drophead
region=PartDrophead.sets['OnderkantDrophead']
PartDrophead.engineeringFeatures.PointMassInertia(name='MassDrophead', region=region, mass=m_drophead)

PartsDeformableDrophead.py
# # #
# # # # # # # # # Drophead Geometry # # # # # # # # # # # #
# # #
SketchDrophead = myModel.ConstrainedSketch(name='Sketch of the drophead', sheetSize=100)
SketchDropheadExtrusion = myModel.ConstrainedSketch(name='Sketch of the drophead extrustion', sheetSize

=100)
PartDrophead = myModel.Part(name='ZDrophead', dimensionality=THREE_D, type=DEFORMABLE_BODY)

# Sketch Drophead hemisphere
SketchDrophead.ArcByCenterEnds(center=(0.0, 0.0), point1=(0.0,-r), point2=(0.0, r), direction=

COUNTERCLOCKWISE)
SketchDrophead.Line(point1=(0.0, r), point2=(0.0, -r))
SketchDrophead.ConstructionLine(point1=(0.0, 0.0), angle=90.0)
PartDrophead.BaseSolidRevolve(sketch=SketchDrophead,angle=180.0)

# Add extrusion to hemisphere
SketchDropheadExtrusion.CircleByCenterPerimeter(center=(0.0, 0.0), point1=(r, 0.0))
f, e = PartDrophead.faces, PartDrophead.edges
transf = PartDrophead.MakeSketchTransform(sketchPlane=f[2], sketchUpEdge=e[2], sketchPlaneSide=SIDE1,

sketchOrientation=RIGHT, origin=(0.0, 0.0, 0.0))
TempExtrusionSketch = myModel.ConstrainedSketch(name='Temporary extrusion sketch', sheetSize=223.6,

gridSpacing=5.59, transform=transf)
PartDrophead.projectReferencesOntoSketch(sketch=TempExtrusionSketch, filter=COPLANAR_EDGES)
TempExtrusionSketch.retrieveSketch(sketch=SketchDropheadExtrusion)
PartDrophead.SolidExtrude(sketchPlane=f[2], sketchUpEdge=e[2], sketchPlaneSide=SIDE1, sketchOrientation=

RIGHT, sketch=TempExtrusionSketch, depth=h, flipExtrudeDirection=OFF)
del myModel.sketches['Temporary extrusion sketch']

c1, v1, d1 = PartDrophead.cells, PartDrophead.vertices, PartDrophead.datums

# Add principle datum axis Z
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zAxisDatum=PartDrophead.DatumAxisByPrincipalAxis(principalAxis=ZAXIS)

# Create partitions
# Split hemisphere from cilinder
NormalDatum = PartDrophead.datums[zAxisDatum.id]
PartDrophead.PartitionCellByPlanePointNormal(point=v1[1], normal=NormalDatum, cells=c1[0])

# Create square partition on both circular faces
r1=30.0
f, e = PartDrophead.faces, PartDrophead.edges
SP=f.getByBoundingBox(zMax=-h+0.1)
SUE=e.getByBoundingBox(zMax=-h+0.1)
transf = PartDrophead.MakeSketchTransform(sketchPlane=SP[0], sketchUpEdge=SUE[0], sketchPlaneSide=SIDE1,

origin=(0.0, 0.0, -h))
PartitionSketch = myModel.ConstrainedSketch(name='Partition sketch for drophead', sheetSize=955.56,

gridSpacing=23.88, transform=transf)
PartitionSketch.Line(point1 = (r, 0.0) , point2 = (r1, 0.0) )
PartitionSketch.Line(point1 = (r1, 0.0) , point2 = (0.0, -r1) )
PartitionSketch.Line(point1 = (0.0, -r1) , point2 = (0.0, -r) )
PartitionSketch.Line(point1 = (0.0, r) , point2 = (0.0, r1) )
PartitionSketch.Line(point1 = (0.0, r1) , point2 = (-r1, 0.0) )
PartitionSketch.Line(point1 = (-r1, 0.0) , point2 = (-r, 0.0) )
PartitionSketch.Line(point1 = (-r1, 0.0) , point2 = (0.0, -r1) )
PartitionSketch.Line(point1 = (0.0, r1) , point2 = (r1, 0.0) )
PartDrophead.PartitionFaceBySketch(sketchUpEdge=SUE[0], faces=SP[0], sketch=PartitionSketch)

SP=f.getByBoundingBox(zMax=0.0+0.1, zMin=0.0-0.1)
SUE=e.getByBoundingBox(zMax=0.0+0.1, zMin=0.0-0.1)
transf = PartDrophead.MakeSketchTransform(sketchPlane=SP[0], sketchUpEdge=SUE[0], sketchPlaneSide=SIDE1,

origin=(0.0, 0.0, 0.0))
TempPartitionSketch=myModel.ConstrainedSketch(name='Temporary partition sketch for drophead', sheetSize

=955.56, gridSpacing=23.88, transform=transf)
TempPartitionSketch.retrieveSketch(sketch=PartitionSketch)
PartDrophead.PartitionFaceBySketch(sketchUpEdge=SUE[0], faces=SP[0], sketch=TempPartitionSketch)
del myModel.sketches['Temporary partition sketch for drophead']

# Use the face partitions to partition drophead
pickedCells = c1.getByBoundingBox(zMax=0.0+0.1)
pickedEdges=e.findAt(

(( (r-r1)/2+r1 , 0.0 , -h) , ) ,
(( 0.0 , (r-r1)/2+r1 , -h) , ) ,
(( r1/2, r1/2 , -h) , ) ,
(( sqrt(0.5)*r, sqrt(0.5)*r , -h) , ) ,)

PartDrophead.PartitionCellByExtrudeEdge(line=NormalDatum, cells=pickedCells, edges=pickedEdges, sense=
FORWARD)

pickedCells = c1.findAt((( -sqrt(0.5)*r, -sqrt(0.5)*r , -h) , ) ,)
pickedEdges=e.findAt(

(( -(r-r1)/2-r1 , 0.0 , -h) , ) ,
(( 0.0 , -(r-r1)/2-r1 , -h) , ) ,
(( -r1/2, -r1/2 , -h) , ) ,
(( -sqrt(0.5)*r, -sqrt(0.5)*r , -h) , ) ,)

PartDrophead.PartitionCellByExtrudeEdge(line=NormalDatum, cells=pickedCells, edges=pickedEdges, sense=
FORWARD)

pickedCells = c1.findAt(((0.0, 0.0 , -h) , ) ,)
pickedEdges=e.findAt(

(( r1/2, r1/2 , -h) , ) ,
(( -r1/2, r1/2 , -h) , ) ,
(( -r1/2, -r1/2 , -h) , ) ,
(( r1/2, -r1/2 , -h) , ) ,)

PartDrophead.PartitionCellByExtrudeEdge(line=NormalDatum, cells=pickedCells, edges=pickedEdges, sense=
FORWARD)

# Use the same face partitions for partition the hemisphere
pickedCells = c1.getByBoundingBox(zMin=0.0-0.1)
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pickedEdges=e.findAt(
(( (r-r1)/2+r1 , 0.0 ,0.0) , ) ,
(( 0.0 , (r-r1)/2+r1 , 0.0) , ) ,
(( r1/2, r1/2 , 0.0) , ) ,
(( sqrt(0.5)*r, sqrt(0.5)*r , 0.0) , ) ,)

PartDrophead.PartitionCellByExtrudeEdge(line=NormalDatum, cells=pickedCells, edges=pickedEdges, sense=
FORWARD)

pickedCells = c1.findAt((( -sqrt(0.5)*r, -sqrt(0.5)*r , 0.0) , ) ,)
pickedEdges=e.findAt(

(( -(r-r1)/2-r1 , 0.0 , 0.0) , ) ,
(( 0.0 , -(r-r1)/2-r1 , 0.0) , ) ,
(( -r1/2, -r1/2 ,0.0) , ) ,
(( -sqrt(0.5)*r, -sqrt(0.5)*r , 0.0) , ) ,)

PartDrophead.PartitionCellByExtrudeEdge(line=NormalDatum, cells=pickedCells, edges=pickedEdges, sense=
FORWARD)

pickedCells = c1.findAt(((0.0, 0.0 , 0.0) , ) ,)
pickedEdges=e.findAt(

(( r1/2, r1/2 , 0.0) , ) ,
(( -r1/2, r1/2 , 0.0) , ) ,
(( -r1/2, -r1/2 , 0.0) , ) ,
(( r1/2, -r1/2 , 0.0) , ) ,)

PartDrophead.PartitionCellByExtrudeEdge(line=NormalDatum, cells=pickedCells, edges=pickedEdges, sense=
FORWARD)

Material.py

# # #
# # # # # # # # # Material # # # # # # # # # # # #
# # #
MaterialSteel = myModel.Material('Steel')
MaterialSteel.Elastic(table=((210.E3 , 0.3), ))
MaterialSteel.Density(table=((7.8E-09, ), ))
MaterialSteel.Plastic(rate=OFF, table=(

(350.0, 0.0),
(381.8449394, 0.005),
(403.4111867, 0.01),
(416.5869563, 0.015),
(426.1954757, 0.02),
(433.80078, 0.025),
(440.1154005, 0.03),
(445.5259947, 0.035),
(450.2666001, 0.04),
(454.4899625, 0.045),
(458.3014449, 0.05),
(461.7768789, 0.055),
(464.9727094, 0.06),
(467.9321162, 0.065),
(470.6888889, 0.07),
(473.2699794, 0.075),
(475.6972393, 0.08),
(477.9886375, 0.085),
(480.1591333, 0.09),
(482.2213162, 0.095),
(484.1858847, 0.1),
(486.0620084, 0.105),
(487.8576079, 0.11),
(489.5795733, 0.115),
(491.2339359, 0.12),
(492.8260069, 0.125),
(494.3604873, 0.13),
(495.8415593, 0.135),
(497.27296, 0.14),
(498.6580427, 0.145),
(499.999828, 0.15)))
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MaterialSteel.plastic.RateDependent(table=((40.4, 5.0), ))

# Material Orientation
e1 = PartSpecimen.edges
e11 = e1.getByBoundingBox(

xMin= P4[0]+abs(cos(alphaRad))*SQM[0] - 1.E-6,
xMax= P4[0]+abs(cos(alphaRad))*SQM[0] + 1.E-6,
yMin= P4[1]-abs(sin(alphaRad))*SQM[0] - 1.E-6,
yMax= P4[1]-abs(sin(alphaRad))*SQM[0] + 1.E-6,
zMax= B/2)

e12 = e1.getByBoundingBox(
xMin= P4[0]+abs(cos(alphaRad))* SQM[0] - 1.E-6,
xMax= P4[0]+abs(cos(alphaRad))*(SQM[0]+25.0) + 1.E-6,
yMin= P4[1]-abs(sin(alphaRad))*(SQM[0]+25.0) - 1.E-6,
yMax= P4[1]-abs(sin(alphaRad))* SQM[0] + 1.E-6,
zMin= B/2 - 1.E-6,
zMax= B/2 + 1.E-6 )

myCsys=PartSpecimen.DatumCsysByTwoLines(CARTESIAN, line1=e12[0], line2=e11[0], name='TweedeCsys')

Section.py
# # #
# # # # # # # # # Section # # # # # # # # # # # #
# # #
# Section maken
Section = myModel.HomogeneousShellSection(name='SpecimenSection', material='Steel', thickness=t)

# Section toekennen
f = PartSpecimen.faces
region = regionToolset.Region(faces=f[0:len(f)])
PartSpecimen.SectionAssignment(region=region, sectionName='SpecimenSection')

SectionDeformableDrophead.py
# # #
# # # # # # # # # Section # # # # # # # # # # # #
# # #
# Create section for drophead
SectionDH = myModel.HomogeneousSolidSection(name='DropheadSection', material='Steel', thickness=None)

# Section toekennen
c1 = PartDrophead.cells
region = regionToolset.Region(cells=c1[0:len(c1)])
PartDrophead.SectionAssignment(region=region, sectionName='DropheadSection')

Instance.py
# # #
# # # # # # # # # Instance # # # # # # # # # # # #
# # #
# Instance maken van beide parts (assembly maken)
myAssembly = myModel.rootAssembly
DropheadInstance = myAssembly.Instance(name='Drophead', part=PartDrophead, dependent=ON)
SpecimenInstance = myAssembly.Instance(name='Specimen', part=PartSpecimen, dependent=ON)

# Instances positioneren
myAssembly.translate(instanceList=('Drophead', ), vector=(dx, -(r_specimen-r)+t/2+dy , B/2))

InstanceDeformableDrophead.py
# # #
# # # # # # # # # Instance # # # # # # # # # # # #
# # #
# Instance maken van beide parts (assembly maken)
myAssembly = myModel.rootAssembly
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DropheadInstance = myAssembly.Instance(name='Drophead', part=PartDrophead, dependent=ON)
SpecimenInstance = myAssembly.Instance(name='Specimen', part=PartSpecimen, dependent=ON)

f = DropheadInstance.faces
TopDrophead=f.getByBoundingBox(zMax=-h+0.1)
TopDropheadSet = myAssembly.Set(faces=TopDrophead, name='DropheadTop')

# Instances positioneren
myAssembly.rotate(instanceList=('Drophead', ), axisPoint=(0.0, 0.0, r), axisDirection=(1.0, 0.0, 0.0),

angle=90.0)
myAssembly.translate(instanceList=('Drophead', ), vector=(dx, -(r_specimen-r)-r+t/2+dy , B/2-r))

Sets.py

# # #
# # # # # # # # # Sets # # # # # # # # # # # #
# # #
# Create geometry set 'BovenkantSpecimen'
e1, f1 = SpecimenInstance.edges, SpecimenInstance.faces
BovenkantSpecimenSet=myAssembly.Set(edges=e1.findAt(

(( -abs(cos(alphaMiddle))*r_specimen-abs(cos(alphaRad))*L , -abs(sin(alphaMiddle))*r_specimen+abs(sin(
alphaRad))*L, B/4),),

(( -abs(cos(alphaMiddle))*r_specimen-abs(cos(alphaRad))*L , -abs(sin(alphaMiddle))*r_specimen+abs(sin(
alphaRad))*L, 3*B/4),),

(( abs(cos(alphaMiddle))*r_specimen+abs(cos(alphaRad))*L , -abs(sin(alphaMiddle))*r_specimen+abs(sin(
alphaRad))*L, 3*B/4),),

(( abs(cos(alphaMiddle))*r_specimen+abs(cos(alphaRad))*L , -abs(sin(alphaMiddle))*r_specimen+abs(sin(
alphaRad))*L, B/4), ), ), name='BovenkantSpecimen')

# Create geometry set 'AllFacesSpecimen'
f = PartSpecimen.faces
AllFacesSpecimenSet=PartSpecimen.Set(faces=f, name='AllFacesSpecimen')

# Create assembly set 'FacesBreedSpecimen'
fBreed=f1.getByBoundingBox(yMin=P3[1]-abs(sin(alphaRad))*L_L*3/4, yMax= P3[1]-abs(sin(alphaRad))*CBC1

[0])
FacesBreedSet= myAssembly.Set(faces=fBreed, name='FacesBreedSpecimen')

# Create assembly set 'FacesSmalSpecimen'
fSmal=f1.getByBoundingBox(yMin= P3[1]-abs(sin(alphaRad))*SQA5[0], yMax= P3[1]-abs(sin(alphaRad))*SQA1

[0])
FacesSmalSet= myAssembly.Set(faces=fSmal, name='FacesSmalSpecimen')

# Create assembly set 'NodeBreedSpecimen'
v = SpecimenInstance.vertices
v1= v.getByBoundingBox(

xMin= P4[0]+abs(cos(alphaRad))*CBC3[0] - 1.E-6,
xMax= P4[0]+abs(cos(alphaRad))*CBC3[0] + 1.E-6,
yMin= P4[1]-abs(sin(alphaRad))*CBC3[0] - 1.E-6,
yMax= P4[1]-abs(sin(alphaRad))*CBC3[0] + 1.E-6,
zMin= B/2 - 1.E-6,
zMax= B/2 + 1.E-6 )

BreedNodeSet= myAssembly.Set(vertices=v1, name='BreedNode')

# Create assembly set 'SmalNode'
v = SpecimenInstance.vertices
v1= v.getByBoundingBox(

xMin= P4[0]+abs(cos(alphaRad))*SQM[0] - 1.E-6,
xMax= P4[0]+abs(cos(alphaRad))*SQM[0] + 1.E-6,
yMin= P4[1]-abs(sin(alphaRad))*SQM[0] - 1.E-6,
yMax= P4[1]-abs(sin(alphaRad))*SQM[0] + 1.E-6,
zMin= B/2 - 1.E-6,
zMax= B/2 + 1.E-6 )

SmalNodeSet= myAssembly.Set(vertices=v1, name='SmalNode')

# Create assembly set 'BreedA' and 'SmalA'



107

v = SpecimenInstance.vertices
v1= v.getByBoundingBox(

xMin= P4[0]+abs(cos(alphaRad))*CBA1[0] - 1.E-6,
xMax= P4[0]+abs(cos(alphaRad))*CBA1[0] + 1.E-6,
yMin= P4[1]-abs(sin(alphaRad))*CBA1[0] - 1.E-6,
yMax= P4[1]-abs(sin(alphaRad))*CBA1[0] + 1.E-6,
zMin= B - 1.E-6,
zMax= B + 1.E-6 )

v2= v.getByBoundingBox(
xMin= P4[0]+abs(cos(alphaRad))*CBA5[0] - 1.E-6,
xMax= P4[0]+abs(cos(alphaRad))*CBA5[0] + 1.E-6,
yMin= P4[1]-abs(sin(alphaRad))*CBA5[0] - 1.E-6,
yMax= P4[1]-abs(sin(alphaRad))*CBA5[0] + 1.E-6,
zMin= B - 1.E-6,
zMax= B + 1.E-6 )

BreedNodeSetA= myAssembly.Set(vertices=(v1,v2), name='BreedA')
myList=[v1,v2]
v1= v.getByBoundingBox(

xMin= P4[0]+abs(cos(alphaRad))*SQA1[0] - 1.E-6,
xMax= P4[0]+abs(cos(alphaRad))*SQA1[0] + 1.E-6,
yMin= P4[1]-abs(sin(alphaRad))*SQA1[0] - 1.E-6,
yMax= P4[1]-abs(sin(alphaRad))*SQA1[0] + 1.E-6,
zMin= B-(B-b)/2 - 1.E-6,
zMax= B-(B-b)/2 + 1.E-6 )

v2= v.getByBoundingBox(
xMin= P4[0]+abs(cos(alphaRad))*SQA5[0] - 1.E-6,
xMax= P4[0]+abs(cos(alphaRad))*SQA5[0] + 1.E-6,
yMin= P4[1]-abs(sin(alphaRad))*SQA5[0] - 1.E-6,
yMax= P4[1]-abs(sin(alphaRad))*SQA5[0] + 1.E-6,
zMin= B-(B-b)/2 - 1.E-6,
zMax= B-(B-b)/2 + 1.E-6 )

SmalNodeSetA= myAssembly.Set(vertices=(v1,v2), name='SmalA')
myList.append(v1)
myList.append(v2)

# Create assembly set 'BreedB' and 'SmalB'
v = SpecimenInstance.vertices
v1= v.getByBoundingBox(

xMin= P4[0]+abs(cos(alphaRad))*CBA1[0] - 1.E-6,
xMax= P4[0]+abs(cos(alphaRad))*CBA1[0] + 1.E-6,
yMin= P4[1]-abs(sin(alphaRad))*CBA1[0] - 1.E-6,
yMax= P4[1]-abs(sin(alphaRad))*CBA1[0] + 1.E-6,
zMin= B*3/4 - 1.E-6,
zMax= B*3/4 + 1.E-6 )

v2= v.getByBoundingBox(
xMin= P4[0]+abs(cos(alphaRad))*CBA5[0] - 1.E-6,
xMax= P4[0]+abs(cos(alphaRad))*CBA5[0] + 1.E-6,
yMin= P4[1]-abs(sin(alphaRad))*CBA5[0] - 1.E-6,
yMax= P4[1]-abs(sin(alphaRad))*CBA5[0] + 1.E-6,
zMin= B*3/4 - 1.E-6,
zMax= B*3/4 + 1.E-6 )

BreedNodeSetB= myAssembly.Set(vertices=(v1,v2), name='BreedB')
myList.append(v1)
myList.append(v2)
v1= v.getByBoundingBox(

xMin= P4[0]+abs(cos(alphaRad))*SQA1[0] - 1.E-6,
xMax= P4[0]+abs(cos(alphaRad))*SQA1[0] + 1.E-6,
yMin= P4[1]-abs(sin(alphaRad))*SQA1[0] - 1.E-6,
yMax= P4[1]-abs(sin(alphaRad))*SQA1[0] + 1.E-6,
zMin= (B-b)/2+3./4.*b - 1.E-6,
zMax= (B-b)/2+3./4.*b + 1.E-6 )

v2= v.getByBoundingBox(
xMin= P4[0]+abs(cos(alphaRad))*SQA5[0] - 1.E-6,
xMax= P4[0]+abs(cos(alphaRad))*SQA5[0] + 1.E-6,
yMin= P4[1]-abs(sin(alphaRad))*SQA5[0] - 1.E-6,
yMax= P4[1]-abs(sin(alphaRad))*SQA5[0] + 1.E-6,
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zMin= (B-b)/2+3./4.*b - 1.E-6,
zMax= (B-b)/2+3./4.*b + 1.E-6 )

SmalNodeSetB= myAssembly.Set(vertices=(v1,v2), name='SmalB')
myList.append(v1)
myList.append(v2)

# Create assembly set 'BreedC' and 'SmalC'
v = SpecimenInstance.vertices
v1= v.getByBoundingBox(

xMin= P4[0]+abs(cos(alphaRad))*CBA1[0] - 1.E-6,
xMax= P4[0]+abs(cos(alphaRad))*CBA1[0] + 1.E-6,
yMin= P4[1]-abs(sin(alphaRad))*CBA1[0] - 1.E-6,
yMax= P4[1]-abs(sin(alphaRad))*CBA1[0] + 1.E-6,
zMin= B/2 - 1.E-6,
zMax= B/2 + 1.E-6 )

v2= v.getByBoundingBox(
xMin= P4[0]+abs(cos(alphaRad))*CBA5[0] - 1.E-6,
xMax= P4[0]+abs(cos(alphaRad))*CBA5[0] + 1.E-6,
yMin= P4[1]-abs(sin(alphaRad))*CBA5[0] - 1.E-6,
yMax= P4[1]-abs(sin(alphaRad))*CBA5[0] + 1.E-6,
zMin= B/2 - 1.E-6,
zMax= B/2 + 1.E-6 )

BreedNodeSetC= myAssembly.Set(vertices=(v1,v2), name='BreedC')
myList.append(v1)
myList.append(v2)
v1= v.getByBoundingBox(

xMin= P4[0]+abs(cos(alphaRad))*SQA1[0] - 1.E-6,
xMax= P4[0]+abs(cos(alphaRad))*SQA1[0] + 1.E-6,
yMin= P4[1]-abs(sin(alphaRad))*SQA1[0] - 1.E-6,
yMax= P4[1]-abs(sin(alphaRad))*SQA1[0] + 1.E-6,
zMin= B/2 - 1.E-6,
zMax= B/2 + 1.E-6 )

v2= v.getByBoundingBox(
xMin= P4[0]+abs(cos(alphaRad))*SQA5[0] - 1.E-6,
xMax= P4[0]+abs(cos(alphaRad))*SQA5[0] + 1.E-6,
yMin= P4[1]-abs(sin(alphaRad))*SQA5[0] - 1.E-6,
yMax= P4[1]-abs(sin(alphaRad))*SQA5[0] + 1.E-6,
zMin= B/2 - 1.E-6,
zMax= B/2 + 1.E-6 )

SmalNodeSetC= myAssembly.Set(vertices=(v1,v2), name='SmalC')
myList.append(v1)
myList.append(v2)

# Create assembly set 'BreedD' and 'SmalD'
v = SpecimenInstance.vertices
v1= v.getByBoundingBox(

xMin= P4[0]+abs(cos(alphaRad))*CBA1[0] - 1.E-6,
xMax= P4[0]+abs(cos(alphaRad))*CBA1[0] + 1.E-6,
yMin= P4[1]-abs(sin(alphaRad))*CBA1[0] - 1.E-6,
yMax= P4[1]-abs(sin(alphaRad))*CBA1[0] + 1.E-6,
zMin= B/4 - 1.E-6,
zMax= B/4 + 1.E-6 )

v2= v.getByBoundingBox(
xMin= P4[0]+abs(cos(alphaRad))*CBA5[0] - 1.E-6,
xMax= P4[0]+abs(cos(alphaRad))*CBA5[0] + 1.E-6,
yMin= P4[1]-abs(sin(alphaRad))*CBA5[0] - 1.E-6,
yMax= P4[1]-abs(sin(alphaRad))*CBA5[0] + 1.E-6,
zMin= B/4 - 1.E-6,
zMax= B/4 + 1.E-6 )

BreedNodeSetD= myAssembly.Set(vertices=(v1,v2), name='BreedD')
v1= v.getByBoundingBox(

xMin= P4[0]+abs(cos(alphaRad))*SQA1[0] - 1.E-6,
xMax= P4[0]+abs(cos(alphaRad))*SQA1[0] + 1.E-6,
yMin= P4[1]-abs(sin(alphaRad))*SQA1[0] - 1.E-6,
yMax= P4[1]-abs(sin(alphaRad))*SQA1[0] + 1.E-6,
zMin= (B-b)/2+b/4 - 1.E-6,
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zMax= (B-b)/2+b/4 + 1.E-6 )
v2= v.getByBoundingBox(

xMin= P4[0]+abs(cos(alphaRad))*SQA5[0] - 1.E-6,
xMax= P4[0]+abs(cos(alphaRad))*SQA5[0] + 1.E-6,
yMin= P4[1]-abs(sin(alphaRad))*SQA5[0] - 1.E-6,
yMax= P4[1]-abs(sin(alphaRad))*SQA5[0] + 1.E-6,
zMin= (B-b)/2+b/4 - 1.E-6,
zMax= (B-b)/2+b/4 + 1.E-6 )

SmalNodeSetD= myAssembly.Set(vertices=(v1,v2), name='SmalD')

# Create assembly set 'BreedE' and 'SmalE'
v = SpecimenInstance.vertices
v1= v.getByBoundingBox(

xMin= P4[0]+abs(cos(alphaRad))*CBA1[0] - 1.E-6,
xMax= P4[0]+abs(cos(alphaRad))*CBA1[0] + 1.E-6,
yMin= P4[1]-abs(sin(alphaRad))*CBA1[0] - 1.E-6,
yMax= P4[1]-abs(sin(alphaRad))*CBA1[0] + 1.E-6,
zMin= - 1.E-6,
zMax= 1.E-6 )

v2= v.getByBoundingBox(
xMin= P4[0]+abs(cos(alphaRad))*CBA5[0] - 1.E-6,
xMax= P4[0]+abs(cos(alphaRad))*CBA5[0] + 1.E-6,
yMin= P4[1]-abs(sin(alphaRad))*CBA5[0] - 1.E-6,
yMax= P4[1]-abs(sin(alphaRad))*CBA5[0] + 1.E-6,
zMin= -1.E-6,
zMax= 1.E-6 )

BreedNodeSetE= myAssembly.Set(vertices=(v1,v2), name='BreedE')
v1= v.getByBoundingBox(

xMin= P4[0]+abs(cos(alphaRad))*SQA1[0] - 1.E-6,
xMax= P4[0]+abs(cos(alphaRad))*SQA1[0] + 1.E-6,
yMin= P4[1]-abs(sin(alphaRad))*SQA1[0] - 1.E-6,
yMax= P4[1]-abs(sin(alphaRad))*SQA1[0] + 1.E-6,
zMin= (B-b)/2 - 1.E-6,
zMax= (B-b)/2 + 1.E-6 )

v2= v.getByBoundingBox(
xMin= P4[0]+abs(cos(alphaRad))*SQA5[0] - 1.E-6,
xMax= P4[0]+abs(cos(alphaRad))*SQA5[0] + 1.E-6,
yMin= P4[1]-abs(sin(alphaRad))*SQA5[0] - 1.E-6,
yMax= P4[1]-abs(sin(alphaRad))*SQA5[0] + 1.E-6,
zMin= (B-b)/2 - 1.E-6,
zMax= (B-b)/2 + 1.E-6 )

SmalNodeSetE= myAssembly.Set(vertices=(v1,v2), name='SmalE')

BoeiendStukSet = myAssembly.Set(vertices=myList, name='BoeiendStuk')

# Create geometry set 'ContactOppSpecimen'
f11=f1.getByBoundingBox(yMax= P2[1])
ContactOppSpecimenSet = myAssembly.Set(faces=f11, name='ContactOppSpecimen')

# Create geometry set 'HalfSpecimen'
f = PartSpecimen.faces
f11=f.getByBoundingBox(xMax= 0.0)
HalfSpecimenSet = PartSpecimen.Set(faces=f11, name='HalfSpecimen')

# Material orientation
f = PartSpecimen.faces
faces = f.getByBoundingBox(yMin= P1[1], yMax= P3[1], xMax=0)
region = regionToolset.Region(faces=faces)
orientation = PartSpecimen.datums[myCsys.id]
PartSpecimen.MaterialOrientation(region=region, localCsys=orientation, axis=AXIS_3)

Meshen.py

# # #
# # # # # # # # # Meshen of specimen# # # # # # # # # # # #
# # #
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# assign element type
regionSpecimen=PartSpecimen.faces
regionSpecimenOvergang=PartSpecimen.faces.getByBoundingBox(yMax= P3[1]-abs(sin(alphaRad))*L_L*3/4+0.01,

yMin= P3[1]-abs(sin(alphaRad))*C2[0]-0.01)
elemType = mesh.ElemType(elemCode=S4R)
PartSpecimen.setElementType(regions=AllFacesSpecimenSet, elemTypes=(elemType, ))

# assign global seed for part
PartSpecimen.seedPart(size=MeshSize)

# assign edge seed for smal part
e = PartSpecimen.edges
pickedEdges = e.findAt(

((P4[0]+abs(cos(alphaRad))*(C2[0]+SQA1[0])/2, P4[1]-abs(sin(alphaRad))*(C2[0]+SQA1[0])/2, C2[1]),),
((P4[0]+abs(cos(alphaRad))*(C2[0]+SQA1[0])/2, P4[1]-abs(sin(alphaRad))*(C2[0]+SQA1[0])/2, SQM[1]),),
((P4[0]+abs(cos(alphaRad))*(C2[0]+SQA1[0])/2, P4[1]-abs(sin(alphaRad))*(C2[0]+SQA1[0])/2, C12[1]),),
((P4[0]+abs(cos(alphaRad))*(SQA3[0]+SQA1[0])/2, P4[1]-abs(sin(alphaRad))*(SQA3[0]+SQA1[0])/2, C2[1]),)

,
((P4[0]+abs(cos(alphaRad))*(SQA3[0]+SQA1[0])/2, P4[1]-abs(sin(alphaRad))*(SQA3[0]+SQA1[0])/2, SQM[1])

,),
((P4[0]+abs(cos(alphaRad))*(SQA3[0]+SQA1[0])/2, P4[1]-abs(sin(alphaRad))*(SQA3[0]+SQA1[0])/2, C12[1])

,),
((P4[0]+abs(cos(alphaRad))*(SQA3[0]+SQA5[0])/2, P4[1]-abs(sin(alphaRad))*(SQA3[0]+SQA5[0])/2, C2[1]),)

,
((P4[0]+abs(cos(alphaRad))*(SQA3[0]+SQA5[0])/2, P4[1]-abs(sin(alphaRad))*(SQA3[0]+SQA5[0])/2, SQM[1])

,),
((P4[0]+abs(cos(alphaRad))*(SQA3[0]+SQA5[0])/2, P4[1]-abs(sin(alphaRad))*(SQA3[0]+SQA5[0])/2, C12[1])

,),
((P4[0]+abs(cos(alphaRad))*(C3[0]+SQA5[0])/2, P4[1]-abs(sin(alphaRad))*(C3[0]+SQA5[0])/2, C2[1]),),
((P4[0]+abs(cos(alphaRad))*(C3[0]+SQA5[0])/2, P4[1]-abs(sin(alphaRad))*(C3[0]+SQA5[0])/2, SQM[1]),),
((P4[0]+abs(cos(alphaRad))*(C3[0]+SQA5[0])/2, P4[1]-abs(sin(alphaRad))*(C3[0]+SQA5[0])/2, C12[1]),),
((P3[0]-abs(cos(alphaRad))*(C2[0]+SQA1[0])/2, P4[1]-abs(sin(alphaRad))*(C2[0]+SQA1[0])/2, C2[1]),),
((P3[0]-abs(cos(alphaRad))*(C2[0]+SQA1[0])/2, P4[1]-abs(sin(alphaRad))*(C2[0]+SQA1[0])/2, SQM[1]),),
((P3[0]-abs(cos(alphaRad))*(C2[0]+SQA1[0])/2, P4[1]-abs(sin(alphaRad))*(C2[0]+SQA1[0])/2, C12[1]),),
((P3[0]-abs(cos(alphaRad))*(SQA3[0]+SQA1[0])/2, P4[1]-abs(sin(alphaRad))*(SQA3[0]+SQA1[0])/2, C2[1]),)

,
((P3[0]-abs(cos(alphaRad))*(SQA3[0]+SQA1[0])/2, P4[1]-abs(sin(alphaRad))*(SQA3[0]+SQA1[0])/2, SQM[1])

,),
((P3[0]-abs(cos(alphaRad))*(SQA3[0]+SQA1[0])/2, P4[1]-abs(sin(alphaRad))*(SQA3[0]+SQA1[0])/2, C12[1])

,),
((P3[0]-abs(cos(alphaRad))*(SQA3[0]+SQA5[0])/2, P4[1]-abs(sin(alphaRad))*(SQA3[0]+SQA5[0])/2, C2[1]),)

,
((P3[0]-abs(cos(alphaRad))*(SQA3[0]+SQA5[0])/2, P4[1]-abs(sin(alphaRad))*(SQA3[0]+SQA5[0])/2, SQM[1])

,),
((P3[0]-abs(cos(alphaRad))*(SQA3[0]+SQA5[0])/2, P4[1]-abs(sin(alphaRad))*(SQA3[0]+SQA5[0])/2, C12[1])

,),
((P3[0]-abs(cos(alphaRad))*(C3[0]+SQA5[0])/2, P4[1]-abs(sin(alphaRad))*(C3[0]+SQA5[0])/2, C2[1]),),
((P3[0]-abs(cos(alphaRad))*(C3[0]+SQA5[0])/2, P4[1]-abs(sin(alphaRad))*(C3[0]+SQA5[0])/2, SQM[1]),),
((P3[0]-abs(cos(alphaRad))*(C3[0]+SQA5[0])/2, P4[1]-abs(sin(alphaRad))*(C3[0]+SQA5[0])/2, C12[1]),),
)

PartSpecimen.seedEdgeBySize(edges=pickedEdges, size=(MeshSize*b/B), constraint=FIXED)

# assign edge seed for smal part midden
e = PartSpecimen.edges
pickedEdges = e.findAt(

((P4[0]+abs(cos(alphaRad))*SQA1[0], P4[1]-abs(sin(alphaRad))*SQA1[0], (B-b)/2+b/8 ),),
((P4[0]+abs(cos(alphaRad))*SQA1[0], P4[1]-abs(sin(alphaRad))*SQA1[0], (B-b)/2+b*3/8 ),),
((P4[0]+abs(cos(alphaRad))*SQA1[0], P4[1]-abs(sin(alphaRad))*SQA1[0], (B-b)/2+b*5/8 ),),
((P4[0]+abs(cos(alphaRad))*SQA1[0], P4[1]-abs(sin(alphaRad))*SQA1[0], (B-b)/2+b*7/8 ),),
((P4[0]+abs(cos(alphaRad))*SQA3[0], P4[1]-abs(sin(alphaRad))*SQA3[0], (B-b)/2+b/8 ),),
((P4[0]+abs(cos(alphaRad))*SQA3[0], P4[1]-abs(sin(alphaRad))*SQA3[0], (B-b)/2+b*3/8 ),),
((P4[0]+abs(cos(alphaRad))*SQA3[0], P4[1]-abs(sin(alphaRad))*SQA3[0], (B-b)/2+b*5/8 ),),
((P4[0]+abs(cos(alphaRad))*SQA3[0], P4[1]-abs(sin(alphaRad))*SQA3[0], (B-b)/2+b*7/8 ),),
((P4[0]+abs(cos(alphaRad))*SQA5[0], P4[1]-abs(sin(alphaRad))*SQA5[0], (B-b)/2+b/8 ),),
((P4[0]+abs(cos(alphaRad))*SQA5[0], P4[1]-abs(sin(alphaRad))*SQA5[0], (B-b)/2+b*3/8 ),),
((P4[0]+abs(cos(alphaRad))*SQA5[0], P4[1]-abs(sin(alphaRad))*SQA5[0], (B-b)/2+b*5/8 ),),
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((P4[0]+abs(cos(alphaRad))*SQA5[0], P4[1]-abs(sin(alphaRad))*SQA5[0], (B-b)/2+b*7/8 ),),
((P3[0]-abs(cos(alphaRad))*SQA1[0], P4[1]-abs(sin(alphaRad))*SQA1[0], (B-b)/2+b/8 ),),
((P3[0]-abs(cos(alphaRad))*SQA1[0], P4[1]-abs(sin(alphaRad))*SQA1[0], (B-b)/2+b*3/8 ),),
((P3[0]-abs(cos(alphaRad))*SQA1[0], P4[1]-abs(sin(alphaRad))*SQA1[0], (B-b)/2+b*5/8 ),),
((P3[0]-abs(cos(alphaRad))*SQA1[0], P4[1]-abs(sin(alphaRad))*SQA1[0], (B-b)/2+b*7/8 ),),
((P3[0]-abs(cos(alphaRad))*SQA3[0], P4[1]-abs(sin(alphaRad))*SQA3[0], (B-b)/2+b/8 ),),
((P3[0]-abs(cos(alphaRad))*SQA3[0], P4[1]-abs(sin(alphaRad))*SQA3[0], (B-b)/2+b*3/8 ),),
((P3[0]-abs(cos(alphaRad))*SQA3[0], P4[1]-abs(sin(alphaRad))*SQA3[0], (B-b)/2+b*5/8 ),),
((P3[0]-abs(cos(alphaRad))*SQA3[0], P4[1]-abs(sin(alphaRad))*SQA3[0], (B-b)/2+b*7/8 ),),
((P3[0]-abs(cos(alphaRad))*SQA5[0], P4[1]-abs(sin(alphaRad))*SQA5[0], (B-b)/2+b/8 ),),
((P3[0]-abs(cos(alphaRad))*SQA5[0], P4[1]-abs(sin(alphaRad))*SQA5[0], (B-b)/2+b*3/8 ),),
((P3[0]-abs(cos(alphaRad))*SQA5[0], P4[1]-abs(sin(alphaRad))*SQA5[0], (B-b)/2+b*5/8 ),),
((P3[0]-abs(cos(alphaRad))*SQA5[0], P4[1]-abs(sin(alphaRad))*SQA5[0], (B-b)/2+b*7/8 ),),
)

PartSpecimen.seedEdgeBySize(edges=pickedEdges, size=(MeshSize*b/B), constraint=FIXED)

# use structured meshing
PartSpecimen.setMeshControls(regions=regionSpecimen, technique=SWEEP)
PartSpecimen.setMeshControls(regions=regionSpecimenOvergang, technique=FREE, algorithm=MEDIAL_AXIS)

# Generate mesh
PartSpecimen.generateMesh()

# Element sets maken
q = PartSpecimen.nodes
q1= q.getByBoundingBox(

xMin= P4[0]+abs(cos(alphaRad))*SQM[0] - 1.E-4,
xMax= P4[0]+abs(cos(alphaRad))*SQM[0] + 1.E-4,
yMin= P4[1]-abs(sin(alphaRad))*SQM[0] - 1.E-4,
yMax= P4[1]-abs(sin(alphaRad))*SQM[0] + 1.E-4,
zMin= B/2 - 1.E-6,
zMax= B/2 + 1.E-6 )

q11=q1[0].getElements()
PartSpecimen.SetFromElementLabels(elementLabels=(q11[0].label, q11[1].label, q11[2].label, q11[3].label)

, name='ElMidSmal' )
q2 = q.getByBoundingBox(

xMin= P4[0]+abs(cos(alphaRad))*CBC3[0] - 1.E-4,
xMax= P4[0]+abs(cos(alphaRad))*CBC3[0] + 1.E-4,
yMin= P4[1]-abs(sin(alphaRad))*CBC3[0] - 1.E-4,
yMax= P4[1]-abs(sin(alphaRad))*CBC3[0] + 1.E-4,
zMin= B/2 - 1.E-6,
zMax= B/2 + 1.E-6 )

q22=q2[0].getElements()
PartSpecimen.SetFromElementLabels(elementLabels=(q22[0].label, q22[1].label, q22[2].label, q22[3].label)

, name='ElMidBreed' )

q = PartSpecimen.nodes
q3 = q.getByBoundingBox(

xMin= P4[0] - MeshSize/2,
xMax= P4[0] + MeshSize/2,
yMin= P4[1] - MeshSize/2,
yMax= P4[1] + MeshSize/2,
zMin= 0 - MeshSize/2,
zMax= B + MeshSize/2)

PartSpecimen.Set(nodes=q3, name='BovenkantSpecimenNodes')

MeshenDeformableDrophead.py

# # #
# # # # # # # # # Meshen of specimen# # # # # # # # # # # #
# # #
NrElDH1=7 # number of elements along the edges of the middle square
NrElDH2=3 # Number of elements along the diagonal egdes from square to side
SizeBias1=7.0 # Mesh sizes for bias in drophead
SizeBias2=25.0
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# assign element type
c1 = PartDrophead.cells
regionDH = regionToolset.Region(cells=c1[0:len(c1)])
elemTypeDH = mesh.ElemType(elemCode=C3D8)
PartDrophead.setElementType(regions=regionDH, elemTypes=(elemTypeDH, ))

# assign edge seed for square and edge of drophead
e = PartDrophead.edges
pickedEdges = e.findAt(

(( r1/2, r1/2 , 0.0) , ) ,
(( -r1/2, r1/2 , 0.0) , ) ,
(( -r1/2, -r1/2 , 0.0) , ) ,
(( r1/2, -r1/2 , 0.0) , ) ,
(( r1/2, r1/2 , -h) , ) ,
(( -r1/2, r1/2 , -h) , ) ,
(( -r1/2, -r1/2 , -h) , ) ,
(( r1/2, -r1/2 , -h) , ) ,
(( -sqrt(0.5)*r, sqrt(0.5)*r , 0) , ) ,
(( -sqrt(0.5)*r, -sqrt(0.5)*r , 0) , ) ,
(( sqrt(0.5)*r, -sqrt(0.5)*r , 0) , ) ,
(( sqrt(0.5)*r, sqrt(0.5)*r , 0) , ) ,
(( -sqrt(0.5)*r, sqrt(0.5)*r , -h) , ) ,
(( -sqrt(0.5)*r, -sqrt(0.5)*r , -h) , ) ,
(( sqrt(0.5)*r, -sqrt(0.5)*r , -h) , ) ,
(( sqrt(0.5)*r, sqrt(0.5)*r , -h) , ) , )

PartDrophead.seedEdgeByNumber(edges=pickedEdges, number=NrElDH1, constraint=FIXED)

# assign edge seed for diagonal egdes from square to side
pickedEdges = e.findAt(

(( (r-r1)/2+r1 , 0.0 , -h) , ) ,
(( 0.0 , (r-r1)/2+r1 , -h) , ) ,
(( -(r-r1)/2-r1 , 0.0 , -h) , ) ,
(( 0.0 , -(r-r1)/2-r1 , -h) , ) ,
(( (r-r1)/2+r1 , 0.0 , 0) , ) ,
(( 0.0 , (r-r1)/2+r1 , 0) , ) ,
(( -(r-r1)/2-r1 , 0.0 , 0) , ) ,
(( 0.0 , -(r-r1)/2-r1 , 0) , ) , )

PartDrophead.seedEdgeByNumber(edges=pickedEdges, number=NrElDH2, constraint=FIXED)

# Determine the direction of the edges, the directions of end1Edges and end2Edges are opposite
pickedEdges = e.findAt(

(( r1, 0.0 , -h/2) , ) ,
(( 0.0, r1 , -h/2) , ) ,
(( -r1, 0.0 , -h/2) , ) ,
(( 0.0 , -r1 , -h/2) , ) ,
(( r, 0.0 , -h/2) , ) ,
(( -r, 0.0 , -h/2) , ) ,
(( 0.0, -r , -h/2) , ) ,
(( 0.0, r , -h/2) , ) , )

pickedEdges1=[]
pickedEdges2=[]
for i in range(len(pickedEdges)):

CheckDirection=pickedEdges[i].getVertices()
if CheckDirection[0]<CheckDirection[1]:

pickedEdges1.append(pickedEdges[i])
else:

pickedEdges2.append(pickedEdges[i])

PartDrophead.seedEdgeByBias(biasMethod=SINGLE, end1Edges=pickedEdges1,
end2Edges=pickedEdges2, minSize=SizeBias1, maxSize=SizeBias2, constraint=FIXED)

pickedEdges = e.findAt(
(( r1, 0.0 , r1/2) , ) ,
(( 0.0, r1 , r1/2) , ) ,
(( -r1, 0.0 , r1/2) , ) ,
(( 0.0 , -r1 , r1/2) , ) , )



113

PartDrophead.seedEdgeBySize(edges=pickedEdges, size=SizeBias1, constraint=FINER)

# Assign structured meshing on the entire drophead
PartDrophead.setMeshControls(regions=c1, technique=STRUCTURED)

# Then change that by assigning sweep mesh to side cells
c11 = c1.findAt(

(( r1 , 0.1 , -h/2) , ) ,
(( r1 , -0.1 , -h/2) , ) ,
(( -r1 , 0.1 , -h/2) , ) ,
(( -r1 , -0.1 , -h/2) , ) , )

PartDrophead.setMeshControls(regions=c11, technique=SWEEP, algorithm=ADVANCING_FRONT)
c11 = c1.findAt(

(( r1 , 0.1 , r1/2) , ) ,
(( r1 , -0.1 , r1/2) , ) ,
(( -r1 , 0.1 , r1/2) , ) ,
(( -r1 , -0.1 , r1/2) , ) , )

PartDrophead.setMeshControls(regions=c11, technique=SWEEP, algorithm=MEDIAL_AXIS)

# Generate mesh
PartDrophead.generateMesh()

RadiusEl=(r1*2/NrElDH1)
# Make Node set for element on the bottom of the drophead
q = PartDrophead.nodes
q1= q.getByBoundingCylinder(

center1= (0.0 , 0.0 , r + 1.E-4 ),
center2= (0.0 , 0.0 , r -SizeBias1/3),
radius= (RadiusEl + 1.E-4))

q2=[q1[0].label, q1[1].label, q1[2].label, q1[3].label]
PartDrophead.SetFromNodeLabels(nodeLabels=(q2), name='NodesOnderkantDrophead')

Step.py

# # #
# # # # # # # # # Step # # # # # # # # # # # #
# # #
# Drop
myModel.ExplicitDynamicsStep(name='Drop', previous='Initial', timePeriod=Duration)

Output.py

# # #
# # # # # # # # # Field Output Requests # # # # # # # # # # # #
# # #
del myModel.fieldOutputRequests['F-Output-1']
region=myModel.rootAssembly.sets['BoeiendStuk']
myModel.FieldOutputRequest(name='FieldOutput', createStepName='Drop', region=region, variables=('UT',) ,

timeInterval=1e-04, timeMarks=ON)

# # #
# # # # # # # # # History Output Requests # # # # # # # # # # # #
# # #
del myModel.historyOutputRequests['H-Output-1']
region = myAssembly.instances['Drophead'].sets['OnderkantDrophead']
myModel.HistoryOutputRequest(name='Drophead', createStepName='Drop', variables=('U2', 'V2'),

timeInterval=1e-04, region=region)
region = BreedNodeSet
myModel.HistoryOutputRequest(name='Breed', createStepName='Drop', variables=('U1', 'U2', 'U3'),

timeInterval=1e-04, region=region)
region = SmalNodeSet
myModel.HistoryOutputRequest(name='Smal', createStepName='Drop', variables=('U1', 'U2', 'U3'),

timeInterval=1e-04, region=region)

region=myAssembly.instances['Specimen'].sets['ElMidSmal']
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myModel.HistoryOutputRequest(name='ElSmal', createStepName='Drop', variables=('S11', 'S22', 'LE11', '
LE22', 'PEEQ'), timeInterval=1e-04, region=region)

myModel.HistoryOutputRequest(name='ElSmalER', createStepName='Drop', variables=('ER11', 'ER22'),
timeInterval=1e-05, region=region, filter=ANTIALIASING)

region=myAssembly.instances['Specimen'].sets['ElMidBreed']
myModel.HistoryOutputRequest(name='ElBreed', createStepName='Drop', variables=('S11', 'S22', 'LE11', '

LE22', 'PEEQ'), timeInterval=1e-04, region=region)
myModel.HistoryOutputRequest(name='ElBreedER', createStepName='Drop', variables=('ER11', 'ER22'),

timeInterval=1e-05, region=region, filter=ANTIALIASING)

region=myModel.rootAssembly.instances['Specimen'].sets['BovenkantSpecimenNodes']
myModel.HistoryOutputRequest(name='Proef', createStepName='Drop', variables=('RT', ), timeInterval=1e

-04, region=region)

OutputDeformableDrophead.py

# # #
# # # # # # # # # Field Output Requests # # # # # # # # # # # #
# # #
del myModel.fieldOutputRequests['F-Output-1']
region =myModel.rootAssembly.sets['BoeiendStuk']
myModel.FieldOutputRequest(name='FieldOutput', createStepName='Drop', region=region, variables=('UT',) ,

timeInterval=1e-04, timeMarks=ON)

# # #
# # # # # # # # # History Output Requests # # # # # # # # # # # #
# # #
del myModel.historyOutputRequests['H-Output-1']
region = myAssembly.instances['Drophead'].sets['NodesOnderkantDrophead']
myModel.HistoryOutputRequest(name='Drophead', createStepName='Drop', variables=('U2', 'V2'),

timeInterval=1e-04, region=region)
region = BreedNodeSet
myModel.HistoryOutputRequest(name='Breed', createStepName='Drop', variables=('U1', 'U2', 'U3'),

timeInterval=1e-04, region=region)
region = SmalNodeSet
myModel.HistoryOutputRequest(name='Smal', createStepName='Drop', variables=('U1', 'U2', 'U3'),

timeInterval=1e-04, region=region)

region=myAssembly.instances['Specimen'].sets['ElMidSmal']
myModel.HistoryOutputRequest(name='ElSmal', createStepName='Drop', variables=('S11', 'S22', 'LE11', '

LE22', 'PEEQ'), timeInterval=1e-04, region=region)
myModel.HistoryOutputRequest(name='ElSmalER', createStepName='Drop', variables=('ER11', 'ER22'),

timeInterval=1e-05, region=region, filter=ANTIALIASING)

region=myAssembly.instances['Specimen'].sets['ElMidBreed']
myModel.HistoryOutputRequest(name='ElBreed', createStepName='Drop', variables=('S11', 'S22', 'LE11', '

LE22', 'PEEQ'), timeInterval=1e-04, region=region)
myModel.HistoryOutputRequest(name='ElBreedER', createStepName='Drop', variables=('ER11', 'ER22'),

timeInterval=1e-05, region=region, filter=ANTIALIASING)

region=myModel.rootAssembly.instances['Specimen'].sets['BovenkantSpecimenNodes']
myModel.HistoryOutputRequest(name='Proef', createStepName='Drop', variables=('RT', ), timeInterval=1e

-04, region=region)

Contact.py

# # #
# # # # # # # # # Contact # # # # # # # # # # # #
# # #
# contact interaction properties
ContactPropertie=myModel.ContactProperty('BoemProp')
ContactPropertie.TangentialBehavior( )
ContactPropertie.NormalBehavior( )
# Uncomment when contact is not frictionless
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# ContactPropertie.tangentialBehavior.setValues(formulation=PENALTY, table=((FricCoeff, ), ),
maximumElasticSlip=FRACTION, fraction=0.005)

# Contact interaction
f1= DropheadInstance.faces
f11=f1.getByBoundingBox(yMax=r)
DropheadContact = regionToolset.Region(side1Faces=f11)

myModel.SurfaceToSurfaceContactExp(name='Boem', createStepName='Drop', master=DropheadContact , slave=
ContactOppSpecimenSet , sliding=FINITE, interactionProperty='BoemProp')

ContactDeformableDrophead.py
# # #
# # # # # # # # # Contact # # # # # # # # # # # #
# # #
# contact interaction properties
ContactPropertie=myModel.ContactProperty('BoemProp')
ContactPropertie.TangentialBehavior( )
ContactPropertie.NormalBehavior( )
# Uncomment when contact is not frictionless
# ContactPropertie.tangentialBehavior.setValues(formulation=PENALTY, table=((FricCoeff, ), ),

maximumElasticSlip=FRACTION, fraction=0.005)

# Contact interaction
f1= DropheadInstance.faces
f20=f1.getClosest(coordinates=((r, dy-r/2, r),),)
f21=f1.getClosest(coordinates=((r, dy-r/2, -r),),)
f22=f1.getClosest(coordinates=((-r, dy-r/2, -r),),)
f23=f1.getClosest(coordinates=((-r, dy-r/2, r),),)
f24=f1.getClosest(coordinates=((0, dy-r, 0),),)
InteractionSurfDHSet=myAssembly.Set(faces=f1.findAt(((f20[0][1]),), ((f21[0][1]),), ((f22[0][1]), ), ((

f23[0][1]),), ((f24[0][1]),) ), name='IntSurfDH')
DropheadContact = regionToolset.Region(side1Faces=InteractionSurfDHSet.faces)

myModel.SurfaceToSurfaceContactExp(name='Boem', createStepName='Drop', master=DropheadContact, slave=
ContactOppSpecimenSet, sliding=FINITE, interactionProperty='BoemProp')

BC.py
# # #
# # # # # # # # # Boundary Conditions # # # # # # # # # # # #
# # #
# constrict movement drophead
region = myAssembly.instances['Drophead'].sets['OnderkantDrophead']
myModel.DisplacementBC( name='ConstrictDrophead', createStepName='Initial', region=region, u1=SET, u3=

SET, ur1=SET, ur2=SET, ur3=SET)

# Clamp specimen
myModel.EncastreBC(name='Inklemming Specimen', createStepName='Initial', region=BovenkantSpecimenSet)

# # #
# # # # # # # # # Predefined Field # # # # # # # # # # # #
# # #
# (drophead velocity)
region = myAssembly.instances['Drophead'].sets['OnderkantDrophead']
myModel.Velocity(name='DropheadVelocity', region=region, velocity1=0.0, velocity2=v_0, velocity3=0.0,

omega=0.0)
myAssembly.regenerate()

# # #
# # # # # # # # # Keyword file aanpassen # # # # # # # # # # # #
# # #
# Find the line where steel is defined
myModel.keywordBlock.synchVersions()
blockPrefix='*Material'
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pos=0
for block in myModel.keywordBlock.sieBlocks:

if block[0:len(blockPrefix)].lower()==blockPrefix.lower():
break

else:
pos=pos+1

myModel.keywordBlock.replace(pos, """*Material, name=Steel, srate factor="""+SRF)

BCDeformableDrophead.py
# # #
# # # # # # # # # Boundary Conditions # # # # # # # # # # # #
# # #
# constrict movement drophead
myModel.DisplacementBC( name='ConstrictDrophead', createStepName='Initial', region=TopDropheadSet, u1=

SET, u3=SET)

# Clamp specimen
myModel.EncastreBC(name='Inklemming Specimen', createStepName='Initial', region=BovenkantSpecimenSet)

# # #
# # # # # # # # # Predefined Field # # # # # # # # # # # #
# # #
# drophead velocity
DropheadComplete = regionToolset.Region(cells=DropheadInstance.cells)
myModel.Velocity(name='DropheadVelocity', region=DropheadComplete, velocity1=0.0, velocity2=v_0,

velocity3=0.0, omega=0.0)
myAssembly.regenerate()

# # #
# # # # # # # # # Adjust keyword file for SRF # # # # # # # # # # # #
# # #
# Find the line where steel is defined
myModel.keywordBlock.synchVersions()
blockPrefix='*Material'
pos=0
for block in myModel.keywordBlock.sieBlocks:

if block[0:len(blockPrefix)].lower()==blockPrefix.lower():
break

else:
pos=pos+1

myModel.keywordBlock.replace(pos, """*Material, name=Steel, srate factor="""+SRF)
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Abaqus input file

This appendix provides an example input file for Abaqus 2018.
*Heading
Description of the job

** Job name: MyJobName Model name: MyModelName
** Generated by: Abaqus/CAE 2018
*Preprint, echo=NO, model=NO, history=NO, contact=NO
**
** PARTS
**
*Part, name=Specimen
*Node

[Plenty of nodes]

*Element, type=S4R

[Plenty of elements]

*Element, type=S3

[A few elements]

*Element, type=S3
4065, 5410, 5422, 5421
7794, 8542, 8554, 8553
*Nset, nset=_PickedSet19, internal, generate

1, 10625, 1
*Elset, elset=_PickedSet19, internal, generate

1, 9986, 1
*Nset, nset=AllFacesSpecimen, generate

1, 10625, 1
*Elset, elset=AllFacesSpecimen, generate

1, 9986, 1
*Nset, nset=HalfSpecimen

[Plenty of nodes]

*Elset, elset=HalfSpecimen

[Plenty of elements]

*Elset, elset=ElMidSmal
6337, 6586, 6849, 6881

*Elset, elset=ElMidBreed
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8005, 8035, 8514, 8784
*Nset, nset=BovenkantSpecimenNodes

80, 81, 85, 1986, 1987, 1988, 1989, 1990, 1991, 1992, 2185, 2186, 2187, 2188, 2189, 2190
2191,

** Region: (SpecimenSection:Picked)
*Elset, elset=_I1, internal

[Plenty of elements]

** Section: SpecimenSection
*Shell Section, elset=_I1, material=Steel
2., 5
*Orientation, name=Ori-1

0., -1., 0., 0., 0., -1.
3, 0.
** Region: (SpecimenSection:Picked), (Material Orientation:Picked)
*Elset, elset=_I2, internal

[Plenty of elements]

** Section: SpecimenSection
*Shell Section, elset=_I2, material=Steel, orientation=Ori-1
2., 5
*End Part
**
*Part, name=ZDrophead
*End Part
**
**
** ASSEMBLY
**
*Assembly, name=Assembly
**
*Instance, name=Drophead, part=ZDrophead

0., 0.5, 10.
*Node

1, 0., -50., 0.
*Nset, nset=Drophead-RefPt_, internal
1,
*Nset, nset=OnderkantDrophead
1,

*Surface, type=REVOLUTION, name=RigidSurface_, internal
START, 0., 456.374183872498
LINE, 50., 456.374183872498
LINE, 50., 0.
CIRCL, 0., -50., 0., 0.

*Rigid Body, ref node=Drophead-RefPt_, analytical surface=RigidSurface_
*Element, type=MASS, elset=OnderkantDrophead_MassDrophead_
1, 1
*Mass, elset=OnderkantDrophead_MassDrophead_
0.03,
*End Instance
**
*Instance, name=Specimen, part=Specimen
*End Instance
**
*Nset, nset=BoeiendStuk, instance=Specimen
48, 50, 51, 59, 60, 61, 66, 70, 71, 79, 82, 83

*Nset, nset=BovenkantSpecimen, instance=Specimen
38, 39, 80, 81, 84, 85, 1184, 1185, 1186, 1187, 1188, 1189, 1190, 1986, 1987, 1988

1989, 1990, 1991, 1992, 2086, 2087, 2088, 2089, 2090, 2091, 2092, 2185, 2186, 2187, 2188, 2189
2190, 2191

*Elset, elset=BovenkantSpecimen, instance=Specimen
5018, 5019, 5020, 5021, 5022, 5023, 5024, 5025, 8747, 8748, 8749, 8750, 8751, 8752, 8753, 8754
9227, 9228, 9229, 9230, 9231, 9232, 9233, 9234, 9979, 9980, 9981, 9982, 9983, 9984, 9985, 9986

*Nset, nset=BreedA, instance=Specimen
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71, 83
*Nset, nset=BreedB, instance=Specimen
70, 82

*Nset, nset=BreedC, instance=Specimen
66, 79

*Nset, nset=BreedD, instance=Specimen
65, 78

*Nset, nset=BreedE, instance=Specimen
67, 77

*Nset, nset=BreedNode, instance=Specimen
74,

*Nset, nset=ContactOppSpecimen, instance=Specimen

[Plenty of nodes]

*Elset, elset=ContactOppSpecimen, instance=Specimen

[Plenty of elements]

*Nset, nset=FacesBreedSpecimen, instance=Specimen

[Plenty of nodes]

*Elset, elset=FacesBreedSpecimen, instance=Specimen

[Plenty of elements]

*Nset, nset=FacesSmalSpecimen, instance=Specimen

[Plenty of nodes]

*Elset, elset=FacesSmalSpecimen, instance=Specimen

[Plenty of elements]

*Nset, nset=SmalA, instance=Specimen
51, 61

*Nset, nset=SmalB, instance=Specimen
50, 60

*Nset, nset=SmalC, instance=Specimen
48, 59

*Nset, nset=SmalD, instance=Specimen
47, 58

*Nset, nset=SmalE, instance=Specimen
49, 57

*Nset, nset=SmalNode, instance=Specimen
53,

*Surface, type=NODE, name=ContactOppSpecimen_CNS_, internal
ContactOppSpecimen, 1.
*End Assembly
**
** MATERIALS
**
*Material, name=Steel,srate factor=0.3
*Density
7.8e-09,

*Elastic
210000., 0.3
*Plastic

350., 0.
381.845, 0.005
403.411, 0.01
416.587, 0.015
426.195, 0.02
433.801, 0.025
440.115, 0.03
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445.526, 0.035
450.267, 0.04
454.49, 0.045

458.301, 0.05
461.777, 0.055
464.973, 0.06
467.932, 0.065
470.689, 0.07
473.27, 0.075

475.697, 0.08
477.989, 0.085
480.159, 0.09
482.221, 0.095
484.186, 0.1
486.062, 0.105
487.858, 0.11
489.58, 0.115

491.234, 0.12
492.826, 0.125
494.36, 0.13

495.842, 0.135
497.273, 0.14
498.658, 0.145

500., 0.15
*Rate Dependent
40.4,5.

**
** INTERACTION PROPERTIES
**
*Surface Interaction, name=BoemProp
*Friction
0.,
*Surface Behavior, pressure-overclosure=HARD
**
** BOUNDARY CONDITIONS
**
** Name: ConstrictDrophead Type: Displacement/Rotation
*Boundary
Drophead.OnderkantDrophead, 1, 1
Drophead.OnderkantDrophead, 3, 3
Drophead.OnderkantDrophead, 4, 4
Drophead.OnderkantDrophead, 5, 5
Drophead.OnderkantDrophead, 6, 6
** Name: Inklemming Specimen Type: Symmetry/Antisymmetry/Encastre
*Boundary
BovenkantSpecimen, ENCASTRE
**
** PREDEFINED FIELDS
**
** Name: DropheadVelocity Type: Velocity
*Initial Conditions, type=VELOCITY
Drophead.OnderkantDrophead, 1, 0.
Drophead.OnderkantDrophead, 2, -1700.
Drophead.OnderkantDrophead, 3, 0.
** ----------------------------------------------------------------
**
** STEP: Drop
**
*Step, name=Drop, nlgeom=YES
*Dynamic, Explicit
, 0.01
*Bulk Viscosity
0.06, 1.2
**
** INTERACTIONS
**
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** Interaction: Boem
*Contact Pair, interaction=BoemProp, mechanical constraint=KINEMATIC, cpset=Boem
Drophead.RigidSurface_, ContactOppSpecimen_CNS_
**
** OUTPUT REQUESTS
**
*Restart, write, number interval=1, time marks=NO
**
** FIELD OUTPUT: FieldOutput
**
*Output, field, time interval=0.0001, time marks=YES
*Node Output, nset=BoeiendStuk
UT,
**
** HISTORY OUTPUT: ElBreedER
**
*Output, history, filter=ANTIALIASING, time interval=1e-05
*Element Output, elset=Specimen.ElMidBreed
ER11, ER22
**
** HISTORY OUTPUT: ElSmalER
**
*Element Output, elset=Specimen.ElMidSmal
ER11, ER22
**
** HISTORY OUTPUT: Proef
**
*Output, history, time interval=0.0001
*Node Output, nset=Specimen.BovenkantSpecimenNodes
RT,
**
** HISTORY OUTPUT: Breed
**
*Node Output, nset=BreedNode
U1, U2, U3
**
** HISTORY OUTPUT: ElBreed
**
*Element Output, elset=Specimen.ElMidBreed
LE11, LE22, PEEQ, S11, S22
**
** HISTORY OUTPUT: ElSmal
**
*Element Output, elset=Specimen.ElMidSmal
LE11, LE22, PEEQ, S11, S22
**
** HISTORY OUTPUT: Drophead
**
*Node Output, nset=Drophead.OnderkantDrophead
U2, V2
**
** HISTORY OUTPUT: Smal
**
*Node Output, nset=SmalNode
U1, U2, U3
*End Step
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