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Boussinesq modelling with higher-order dispersion

Abstract

In this thesis the modelling of water wave propagation over uneven bottoms using
Boussinesg-like models with higher-order frequency dispersion is studied. Boussinesq-like
equations describe the propagation of weakly non-linear shallow water waves. As for long
waves the depth-dependence of the velocity field is almost absent, the vertical coordinate z
has been removed in deriving Boussinesqg-like models.

A problem with Boussinesq-like models which were in use some time ago, is that they do
not have particularly good frequency dispersion characteristics, especially not at depths where
practical problems had to be solved. Therefore, many efforts have been spent to improve the
dispersion characteristics.

Dingemans (1994b) has started with a higher-order dispersion relation written in the form of
a rational polynomial as obtained by Schiffer and Madsen (1994). Using operator
correspondence four different Boussinesq-like models with only third and lower derivatives
can be derived for horizontal bottom. Uneven bottom terms can be obtained by splitting (kh)?
in hk*h and h*k* whereupon operator correspondence is applied by replacing & by id,. In this
manner a total number of 48 different models is obtained each with four degrees of freedom,
denoted by v,. By comparing the linear shoaling coefficient with the exact linear shoaling
coefficient the +’s are optimized. It turned out that 24 models have exactly the same linear
shoaling coefficient, which is very accurate up to kh=5. However, the models (may) differ
in higher-order shoaling behaviour.

The higher-order shoaling is invesitigated by solving the models numerically using the
Keller’'s Box compact difference scheme. This scheme is implicit and therefore
unconditionally stable and it has a second-order accuracy. The procedure is to rewrite the set
of two third-order partial differential equations to a set of six first-order partial differential
equations by introducing four more variables. The system of linear finite difference equations
has block-diagonal structure, which fits in a 17 diagonal matrix and is solved by a Thomas
algorithm. Subsequently, a weakly reflecting boundary condition is formulated by the
Sommerfeld radiation condition for the classical shallow water equations together with a
sponge layer resulting in a reflection coefficient of O( 10%).

The numerical models are validated against the measurements used in the intercomparison
study of Dingemans (1994a). It turned out that the best correspondence with measurements
is obtained by four models with essentially the same accuracy.

It is concluded that the new Boussinesq-like equations with higher-order dispersion has
increased the applicability of Boussinesq modelling for wave propagation over uneven
bottoms and that Keller’s Box method is a very suitable method for integrating Boussinesg-
like equations.
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1 Introduction

In engineering practice a need exists for wave propagation models which predict the wave
properties in space. The basic problem in water wave propagation is that the waves have a
propagation space and a cross space. The propagation space is in horizontal directions and
has a distinct wave character. But in vertical direction, i.e. the cross space, the solution is
altogether different and is not wave-like. This is in contrast with for example sound waves;
these waves have a propagation space in three dimensions.

The implication is that two different solutions should be found. These solutions have a
different character, but are interrelated. This makes a description of water waves
complicated. Therefore, many approaches are based on separation of the propagation space
and cross space.

The waves in a coastal zone are fairly long waves. It is known that the velocity field is
almost depth-independent. A perturbation approach can be used assuming that the intrinsic
scale of wave motion, the wave length L, is very much larger than the characteristic depth,
see for example Boussinesq (1872) or Peregrine (1967). This also limits the possible bottom
slopes. At least one wave should fit in a region in which no appreciable changes in water
depth occur. Boussinesq-like models are derived within these restrictions and are therefore
only valid for fairly long waves. We speak of Boussinesq-like equations, since many different
forms exist, but all of them are asymptotically equivalent. Yet the Boussinesq-like equations
may behave totally different for engineering purposes. Although Boussinesg-like models are
only valid for long waves, for applications an extension to deeper water is desired.

For a long time efforts have been spent in deriving Boussinesq-like models with properties
which are as good as possible. Most models did not have particularly good frequency
dispersion behaviour, especially not for deeper water where practical problems had to be
solved. Consequently, the correct wave profile is computed at a wrong place.

Witting (1984) suggested to use a [1/1] Padé expansion of the exact linear dispersion relation
in (kh)?. The remaining problem was finding the corresponding equations. This matter has
been taken up by Madsen et al. (1991) who devised the most accurate Boussinesq-like model
by perturbation techniques at that time. Later, Schiffer and Madsen (1994) devised a
Boussinesq-like model based on a [2/2] Padé expansion of the dispersion relation, but
needing only the usual third derivatives. Dingemans (1994b) started with the [2/2] Padé
expansion of the dispersion relation and constructed a Boussinesq-like model with several
degrees of freedom with respect to the depth-dependent terms.

The first aim of the present study is to optimize the shoaling characteristics of the
Boussinesq-like models which are derived by Dingemans on the basis of [2/2] Padé expansion
of the dispersion relation. To achieve this, all possibilities have to be considered and
evaluated. The model with the best shoaling characteristics is selected.

Boussinesq-like equations are difficult to treat numerically, since they contain third-order

derivatives. In practice a variety of methods is used and many of them are ad hoc methods.
Here, a more general method for solving Boussinesq-like equations is used. The idea is as

1
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follows. Neglecting the typical Boussinesq terms, the Boussinesg-like equations reduce to the
classical shallow water equations. In practice, the shallow water equations are mostly
integrated by means of Keller’s Box method or (similar) Preissman method, at least in one-
dimensional cases.

The second aim of this study is to develop a method based on the Keller’s Box method for
integrating Boussinesq-like equations. The advantage of such a method is that 1D shallow
water models are easily modified to Boussinesq-like models without a drastical change in the
numerical formulation.

Finally, the selected Boussinesq-like equations are implemented into a numerical model,
which is validated by comparison with measurements. The findings will lead to a conclusion
on practical applicability of the new optimized Boussinesq-like model.

The outline of the report

In Chapter 2 one specific Boussinesq-like model will be discussed briefly and some
characteristics will be given. This model is used as reference. Chapter 3 describes the
derivation of a new set Boussinesq-like equations which corresponds to a higher order
dispersion relation. Subsequently, the shoaling properties of the various models, which arise
due to many degrees of freedom, are investigated. This finally results in a set of equations
optimized with respect to the shoaling characteristics. In Chapter 4 the discretization of these
new Boussinesq-like equations is discussed. This will result in a numerical code, which is
verified on the basis of measurements in Chapter 5. At last, in Chapter 6 the conclusions of
this study are drawn.
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2 A Boussinesg-like equation with improved dispersion

In this chapter one specific Boussinesq-like model is briefly discussed. It is not the intention
to give an overview of the different types of Boussinesq models, since this has recently been
done in for example Dingemans (1994a). The characteristics of this model are used as
reference in Chapter 3. In Chapter 5 some numerical results of this model are used for
validating the numerical method. The reason why only this model is used is because of
availability of numerical data on disk, which enables a more accurate comparison than only

by means of figures.

Madsen and Serensen (1992) derived a Boussinesq-like model which is valid for small bottom
slopes and written in fluxes. This model can be considered as a reduction of a model valid
for larger bottom slopes given by Dingemans (1994b). The model derived by Dingemans is
rewritten in the depth-averaged velocity u and has been used in the study of Boussinesq
modelling of wave-induced particle velocities (Bosboom, 1995). This model, which in that
study is called DUT?2, reads

9 4 =] = 0 2.1a)

ot ox

ou ou at _ [1+b]h63hu 1., du
2

PRt ~he -+
ox2t 6 dx%ot

2.1b)

where b=1/15.
Dispersion relation

As argued before the main concern with Boussinesq-like equations is the poor representation
of the dispersion characteristics. The linear dispersion relation according to the linear Stokes
theory is used as reference, which reads

ﬁ = k2 tanh(kh) (2.2)
ah Kh
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Madsen et al. (1991) showed that the dispersion relation pertaining to equations (2.1) can be
written as

2 1+blkn)
= 2.3)

N [%w](zm)z

The value b=1/15 is obtained by matching with the [1/1] Padé expansion of equation (2.2)
in the parameter (kk)®. In figure (2.1) the exact linear dispersion relation and the Padé

approximation are presented.
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Figure (2.1) Dispersion relation normalized with (gh I

As can be seen, the approximation is quite good for values up to ka=3. For higher values
of kh the deviation increases. For applications both the basic waves and the significant higher
harmonics, which are due to non-linearities, should have a value of kA less than three, so that
the phase velocity is represented correctly. In many cases it turns out that the dispersion is
not good enough for higher harmonics.

Shoaling

In the context of this study the linear shoaling coefficient is defined as

ala
= X __ 2.4
%" WTh @4
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Equation (2.4) can be written as

a h
s g (2.5)
a % h

The subscripts x denote derivatives with respect to x. The shoaling coefficient o, according
to the linear Stokes theory reads

ot = —khT(l_"E@_(l;T_? 2.6)
[T+kh(1 -T2)]
where
T = tanh(kh)

A procedure for determining the shoaling coefficient of equations (2.1) is described in detail
by Bosboom (1995). The procedure is similar to the one used by Madsen et al. (1991).

The exact shoaling coefficient according to the linear Stokes theory and the shoaling
coefficient pertaining to equations (2.1) are presented in figure (2.2).

exact

Figure (2.2) Shoaling coefficient

As can be seen, the shoaling coefficient is represented quite acceptably even for values of
kh up to 5. In general the dispersion relation is much more important, therefore higher

deviations in «, are acceptable.
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3 Boussinesq-like equations with higher order dispersion

In this chapter the derivation of a new set of Boussinesq-like equations based on a [2/2] Padé
expansion of the exact linear dispersion relation in the parameter (kh)? will be given. In order
to achieve this, use is made of systems in Fourier space and operator correspondence. These
subjects will be discussed first.

3.1 Systems in Fourier space and operator correspondence

A system of linear partial differential equations can be written in Fourier space. Here only
systems of two partial differential equations in u(x,t) and {(x,) are considered. The solutions
for u(x,t) and {(x,t) are written in complex notation as

u(x,t) = Re{Ue ™}
(3.1)

cx,f) = Re{zet®en}

where U and Z are constant complex amplitudes.

By differentiating u(x,7) with respect to x, we get

o,fuecn) = St = Re{ua‘f';j””} = RefikUe'} = Refikux,n} (3-2)

which shows that the differential operator d, corresponds to a multiplication ik. By
differentiating ¢(x,r) with respect to 7, we get

ot} = e = Re{zae':;'””} = Ref-iwZe'=)} = Re{~iwf0,)} (3-3)

where the operator 9, is substituted by -iw. By analogy, it can be proved that 0°, corresponds
to -k%. These substitutions are usually referred to as operator correspondence.

By using operator correspondence a set of linear partial differential equations is transformed
into a system in Fourier space.
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In order to illustrate this, a set of linear partial differential equations is written in a Fourier
space. For this purpose, the linearized equations (2.1), written in averaged velocities, are
used:

af 0 - 4
= .3}.[}14 0 (3.42)

ot ox

ou +g2§ _ [é+th63hu _ Lys Fu

2 %t 6 ox’or
x x (3.4b)

& [, a¢
bgh—— 1 h-=>
8 8x2{ 3XJ

where p=1/15.

Substituting the differential operators yields after dividing by i ¢’ and writing in a matrix
form

ck+bohk®hk o [1 + [%m] hk%—%h%ﬂ z

=0 (3.5)

-w hk

Equations (3.5) are written in Fourier space.

In order for a system in Fourier space to have non-trivial solutions for U and Z, it is needed
that equations (3.5) are consistent. Therefore, the determinant of the matrix should be equal
to zero. Computing the determinant of the matrix in equation (3.5) yields

gk h+bgk*h?-w? [l+ [%ﬂb} k%{l =0 (3.6)

which can be written as
1 + bk?h?
1 + [b + .1.] k?h?
3

2 - 2
w = ghk 3.7)

Equation (3.7) is the linear frequency dispersion relation pertaining to equations (3.4) and
is equal to equation (2.3).

In the next section, a system in Fourier space is formulated of which the determinant
corresponds to a (higher order) Padé expansion of the dispersion relation. Using operator
correspondence, this system is transformed into a set of partial differential equations, valid
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for horizontal bottoms. Subsequently, this set of equations is extended for small bottom
slopes and optimized for shoaling characteristics.

3.2 Boussinesq-like equations with higher order dispersion for horizontal bottom

Schiffer en Madsen (1994) derived a model with a dispersion relation which corresponds to
a [2/2] Padé expansion in (kh)* by addition of higher order terms. This dispersion relation
is in the form

k2 (1 + o, (kh)*) (1 + a,(kh)?)

= oh 3.8
YA TR D (- B -9

which can also be written as

WP (1 +B, (khy?) (1 +B,(kh)*) = kh(l +a,(kh)?)(1 +a,(kh)?)gk = 0 (3.9

In order to determine the parameters «; and 3;, a comparison with the [2/2] Padé expansion
of the exact linear dispersion relation in the parameter (kh)* should be made. To that end
equation (3.8) is written as
ﬁi _ 1 + (al+a2)(kh)2 + (alaz)(kh)4 (3.10)
gh L+ (B, +B,) (khy* + (B,8,) (kh)'

The exact linear dispersion relation, known from the linear wave theory, reads

? tanh(kh) (3.11)

Yoo p2

gh kh

The [2/2] Padé expansion of the exact linear dispersion in the parameter (k#)* reads

1+ L+ gy
2 9 945
_“’_}_ = k2 - : + O(k'°h'?) (3.12)
&n 1+ Z(kh)? + — (kh)*
+ 9( 1) 63( 1)

In figure (3.1) the exact dispersion relation, the [1/1] and the [2/2] Padé expansion of the
exact relation are plotted. The dispersion relation of the DUT2 model corresponds to the
[1/1] Padé expansion, see Chapter 2.
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Dingemans (1994b) has started with the dispersion relation in the form of equation (3.8) and
has derived the corresponding equations by using operator correspondence. This procedure
is followed here as well.

The right-hand side of equation (3.9) can be interpretated as the determinant of the matrix
in the Fourier system, which pertains to the partial differential equations we are looking for.
In order to find the elements of the matrix, equation (3.9) should be split. One of the

possible forms is

zZ
U

(3.15)

(1 +B,(kh)?) hk(l+a, (kh)?)
gh(l+o,(kh)) -w(l+B, (kh))

Notice that the dimensions match. Checking the dimensions yields L 7™ for the continuity
equation (first row) and yields L 7~ for the momentum equation (second row).

Since four solutions are obtained for equation (3.14), the following four different sets of
equations in Fourier space can be discerned:

~w (1 +B, (kh)Y) hk(l +a, (kh)?

model 1 (=5, (&) (e G ) 17 -0 (3.16a)
gh(1 +a,(kh)?) -w(1+8,kh) | U
—w(] + 2 . 2

model 2 (=6, Wh7) k>, (0D | 1z o (3.16b)
gk(l +a, (k)Y -w(1+B8,(kMY | (U
—w(] + 2 " 2

model 3 U B () Ao G | 7 o G169
gk(l+a,(kh)») -w(1+8,(kW)?) | |U
~w (1 +8, (kR hk(1 +a, (khy

model 4 U By (ky) k(L =e, ()Y | 17 ,  G.l6d
gk(l+a, (kh)Y) -w(1+6,(kh)) | |U

Each of the factors within parenthesis, like (I+8,(kh)?), is dimensionless, since the factor
kh has no dimension. Therefore the distribution of w, sk and gk follows from dimensional
arguments. This means that every factor containing (kh)* is preceded by either w or k. By
using operator correspondence, always derivatives of the third order occur. Thus, a factor
(kh)® or even (kh)* yields a fourth or fifth derivative. These derivatives make the numerical
integration more complicated and are not desired. Thus, equations (3.16a) through (3.16d)
are the only possibilities which contain no higher derivatives than the third.

Eventually, we have to determine the shoaling behaviour of each of the four models. But first

10
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equations (3.16a) will be considered. By using operator correspondence, the linear equations
(3.16a) in case of a horizontal bottom are transformed into

3, U g L a0
o ox " ox2or " oax?
3.17)
u ot , &u L 8¢
il 2 = (A + he >
A P L v S v

3.3 Boussinesq-like equations for uneven bottoms

In equations (3.17), no derivatives of 4 with respect to x occur. Thus, the effect of the
bottom slope is not included. A way to introduce A,-terms is by changing the sequence of &
and A. In the case of kh a derivative &, arises after using operator correspondence, whereas
hk gives no h,-terms. To avoid that one possibility rules out the other, ki can be split into
kh and hk. The most common combination of kh is in (kh)?, which occurs in every element
in the matrices of equations (3.16). Considering equations (3.16a), splitting the factor (kh)?
can be done at four different locations. We only do not know how to split (k#)*. In view of
this the factor (kh)® is written as

(kh)? = (1 + v)hk*h - yh*k’ v i=12734 (3.18)

where 1, is the splitting coefficient. However, the splitting need not to be the same in all the
four cases. Therefore, the suffix 7/ is added.

Other splitting possibilities exist, for example k*h*. By using the operator correspondence for
this case the term d *(h°u) is obtained. In the usual Boussinesq-like equations this term does
not occur. Thus, it seems permissible to disregard this possibility. The same reasoning holds
for the possibility ki, because the term d,(h°d u) does not occur in the usual equations

either.

It is important to notice that different values of y do not affect the dispersion relation and the
Boussinesq-like equations in case of a horizontal bottom. They only affect the equations in
case of an uneven bottom. In general, a variation in depth causes a variation in wave
amplitude. This effect is called shoaling. Consequently, the ; have to be determined in such
a way that the model has the best possible shoaling properties.

3.3.1 Working out the elements in the matrix separately

In the previous subsection it was made clear that the sequence of expressions containing &
result after use of operator correspondence, in different Boussinesq-like equations. In this

11
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section, the first element is worked out in detail in order to show the application of operator
correspondence on terms like (1+43,(k#)%), which is similar for all elements. In the second
and third element an additional degree of freedom occurs, which gives several possibilities.
The fourth term is similar to the first and is not considered. Subsequently, from the
alternative formulations of the second and the third element one possibility is selected, so that
one model remains, of which the linear shoaling behaviour is investigated. Later, the other
possibilities will be considered.

The first element

The complete first element in the matrix (equation (3.16a)) reads

[-o(l + B,(khD)]Z (3.19)

For simplicity the term (k#) is taken apart. Multiplying this term by Z and splitting yields
*h)’Z = (1 + Yhk¥hZ) - vh*%k*Z (3.20)

Using the operator correspondence k — id, yields

~(1 + yhdihg) + v,h20:¢ =

-h*¢., - 2hh ¢, - hh § - 2y hh i, - vhh § = (3.21)
-h*¢. - 2(1 + yphh$ + O(h) =

-[h%2 + 2(1 + y)hhd )¢ + Oh,)

Since we are only interested in contributions to linear shoaling, the terms containing 4,, are
omitted. The term (I +3,(kh)?) results in

(1 - Bh%; - 28,1 + vDhhd) (3.22)

Finally, the whole element becomes

o1 - B,h%; - 2B,(1 + y)hhJ) (3.23)

The second element

The factor (/+a,(k#)?) in the second element is treated in the same way as in the first
element. However, the factor kh gives an additional degree of freedom, and can be written
as kh=(1+6)hk-6kh. To limit the number of possibilities, only the cases §=0 and §=-1 are
considered.

12
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With =0, the following three possibilities can be formed:

hk(1 + o, (k)?) = hk(1 + a,(kh)?) (3.249)
= h(l + a,(kh))k (3.24b)
= (1 + o, (kh))hk (3.24¢)

With §=-1, three possibilities can be formed as well, which read:

= k(1 + a,(kh))Hh (3.24d)
= (1 + a(kh))kh (3.24¢)
= kh(1 + o,(kh)?) (3.241)

In the first instance option (3.24f) is selected. The other possibilities will be considered later.

The third element

The factor (I +os(kh)?) is also treated in the same way as in the first element. The additional
degree of freedom is obtained by the position of k. The third element reads

gk(1+a,(kh)?) (3.25a)

Another form that can be discerned is:

g(1+a,(kh))k (3.25b)

In the first instance (3.25b) is selected. Option (3.25a) will be considered later.

The provisional model

So far, in equations (3.16a), the degrees of freedom, provided by the splitting of (kh)y, are
represented by four v;. Furthermore, alternative formulations of the second and third element
are concerned. For both elements one alternative is selected in advance, resulting in a model
with four indefinite «;. Of this model the shoaling behaviour is determined. Subsequently,
models formulated with the other alternatives are considered. In this manner, 2 x 6 models

13
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can be made from equations (3.16a). The same holds for equations (3.16b) through (3.16d),
we have 48 different models.

The provisional model is given by equations (3.16a), where equations (3.24f) and (3.25b)
represent the second and the third element respectively and (kh)* is written as equation
(3.22). Using operator correspondence, this model is transformed into a system valid for
small bottom slopes, since the higher order terms of / are neglected in equation (3.21). This
system reads

8 (1-B,120°-B,6,hh3) 8 [h(1-0,h?d’~a,d,hh 3] [

§ (3.26)
=0
g(l-o,h?di-a,8.hh 80, 8,(1-B,h 292-B,8,hh.0) ]

u

where 6, = 2(1++,).

The linear system (3.26) can be written as

o, W _ o 9 [}ﬂaz” . 5zh2hx3u:l v B ’:h, ¢ L sn azg}(3.27a)

or ox Yax | ax? Ox 919x? e 9r0x

du at o*u 0%u a° 2%
22 v g2 =B} d,h hih== + 5h—| (3.27b)
ot ox 6-7[73)&3[ i 42"8!8le . a2g7[7ax3 MRekrre

In the next section the §, for this and other models will be optimized for good shoaling
behaviour. The model with the best shoaling properties will be written with v; and the usual
non-linear terms will be inserted, yielding a non-linear Boussinesq-like model valid for larger
bottom slopes.

3.4 Shoaling

In the previous section it is shown that several models can be formulated, which obey to the
[2/2] Padé approximation of the exact dispersion relation. From these models one provisional
model is selected, which still has four degrees of freedom represented by the factors §,. The
factors §; are determined in such a way that the shoaling coeffient of this model matches as
good as possible to the exact linear shoaling coefficient.

First, a method for the derivation of the shoaling coefficient is given. Subsequently, the
procedure followed to optimize the shoaling coefficient is described. Here after, the other

models are considered.
In this section use is made of the mathematical symbolic software package MAPLE. Many
computations are extremely extensive. Therefore, only where necessary results are given.
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3.4.1 Derivation of the shoaling coefficient o,

As argued before, a condition for Boussinesq-like equations is that the bottom slope is at
most so large that at least one primary wave length fits in a region in which no appreciable
changes in water depth occur. This implies that amplitudes and wave lengths vary much more
slowly than phases. To that end a slowly varying parameter X=px, with <1, is introduced.

To investigate the shoaling properties we put:

fen) = laBx) +iBe@olexp | -ivr + -;-swx) (3.28)

wx,r) = [b(Bx)+iBd(Bx))exp | ~iwt + éS(Bx) (3.29)

i -

where
a(Bx)+iBc(Bx) denotes a slowly varying in space complex elevation amplitude,
b(Bx)+iBd(Bx) denotes a slowly varying in space complex velocity amplitude and

§ k(Bx) dx = B'S(Bx)

The complex contributions ic(8x) and id(Bx) represent a phase-shift in the surface elevation
function and the velocity function respectively. These terms will be needed later in this
section in order to provide a solvability condition. Notice that the complex contribution
id(Bx) has also been used by Schiffer and Madsen (1994).

Substituting equations (3.28) and (3.29) in the set of linear equations (3.27) yields two
equations in which terms of O(8%) can be ignored. Consequently, we have two equations

containing B’-terms and §'-terms.

The zeroth-order approximation of these two equations reads

(3.30)

o

—o(1+B8,(khy) hk(1+a, (kh)D)] [,
gh(1+a,(kh)?) -1+, | |p

Equation (3.30) can be written symbolically as

a (3.31)
0o

Since equations (3.30) are homogenous, a nontrivial solution is found if and only if
Det(4)=0. From Det(4) =0 follows the dispersion relation, see section (3.1).
A homogeneous system with a determinant being zero is a system with consistent equations.

15
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Therefore, both the first and the second equation in the system (3.30) can be used to expres
b(Bx) in terms of a(Bx):

b = f’_ﬂw (3.32)
" (1+akh?)

For the B'-terms an inhomogeneous system is obtained, which reads symbolically
P cl " (3.33)
r2
where

r, = —QuBh%ka, + GBah*kb-wf h*a)k, +
(3a1hzkzb—wﬁlélhka+b+a162h2k2b)h_t + (h+3a,h*k®b,

r, = (g+3ga,h’kPa, + (Bga,h’ka-B,h’wb)k, +

(g, 0.1k *a-B,8 hkwb)h, — (20,5 %kw)b,
The subscripts x denote derivatives with respect to x.
As Det(A)=0, solutions for ¢ and d from equation (3.33) only follow under certain
conditions on the right-hand side. These solvability conditioins demand the right-hand side
of equation (3.33) to be orthogonal to every solution of the adjoint homogeneous system, e.g,

see Nayfeh (1981), section 15.1.
The homogeneous adjoint system reads

vl
= [ } o (3.34)
V2

where A" =A" because 4 is real.

16
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Solving v, for v, yields

1
= (3.35)
VIR ot k)
gk(1+a,(kR)?)
where u is any constant.
Orthogonality demands that the innerproduct v« r=0.
Thus,
- (JJ(I +61(kh)->r : 0 (3.36)

1 2

gk(1+a,(khy?)

This lengthy expression is a relation between the quantities a, b, k, h and their first
derivatives. Notice that ¢(8x) and d(Bx) need not be solved, but are only used to formulate
solvability conditions. By differentiation of equation (3.32) with respect to x and substituting
this expression together with equation (3.32) in equation (3.36), both b and b, can be
eliminated, which leads to the expression

a h, k. 0 (3.37)

+ (12.71_ -+ a3.7(_.

By differentiating equation (3.8) with respect to x yields

_ ke h, (3.38)

0 -—014—1-(- +oz5_h‘_

Substituting equation (3.38) in equation (3.37) gives

a4 _ ol (3.39)

- = —a, —

a h

where
B _ _ Oty T O30

o, o,

After substitution of the dispersion relation, i.e. equation (3.8), for w” the shoaling coefficient
a2 only contains the arguments §; and kh. Because of the lengthy expression of «,”, it will
not be presented here. In the next section, §; are optimized in such a way that the shoaling
coefficient o,® compares well to the exact linear shoaling coefficient o,".

17
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3.4.2 Determination of ¢,

It is known that the exact linear shoaling coefficient reads

i _ khtanh(kh) (1 -khtanh(kh)) (1 -tanh’(kh)) (3.40)
’ [lanh(kh) + kh(1 - tanh’(kh))]

For optimizing the §,, the least-squares method is used, i.e. minimizing
kh=kh,

Integrated Error = (af—af)zd (kh)

f1=0

(3.41a)

First (a,*-o)? is computed. Because of the complexity of this expression MAPLE is not able
to integrate this analytically. Numerical integration is not possible either, as the §; are still
unknown. Therefore, the right-hand side of equation (3.40) is expanded in a power series by
a Padé [8/8] expansion in (kh). The advantage is that " and «,” are of the same type: a
polynomial in kk, so they can easily be subtracted. It turns out that the denominator of the
normalized expression (o,%-a,")* does not contain any §,. By collecting all terms with kk
raised to the same power, the integration of (x,*-o,%)* can be split in a summation of
subintegrations:

chlqz Gl G0y < | : dg +
1 +dq® +dyq* + ... 1 +dq*+dq*+ ..
2
ij 7 dq - G410
1 +dqg* +dq*+ ..
q4
c dq + ...
2I1 +dq* + dyq* + ... 1

where g = kh.
MAPLE is capable to perform the subintegrations in the right-hand side of equation (3.41b)

numerically, as no §, occur in d..

The integration range in k# has not yet been discussed. It is obvious that the lower value for
kh is equal to zero. On the other hand the upper value for kA is the problem. As «” is a
polynomial the approximation is only accurate for low values of kk (kh<O(1)) and will
diverge for increasing kh. For engineering practice an upper limit for kA of three suffices.
To achieve a reliable model the §, are determined by an integration from kh=0 to kh=5. On
the other hand, the dispersion relation is used to derive the shoaling coefficient. Therefore
it is expected that the range, on which the shoaling behaviour is reliable, is a little bit smaller
than the range on which the dispersion relations is reliable. From figure (3.1), it follows that
the dispersion relation is reliable for k# up to 6 or 7, consequently the upper value k=35
is found.

18
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Integrating equation (3.41b) from kh=0 to k=5 yields an expression for the integrated error
in 8,, 8,, 8 and §,. The integrated error is minimized by partially differentiation of the
integrated error with respect to §; and equating the four expressions to zero. In this manner
four linear equations are obtained from which §; are easily solved. The results obtained for
the provisional model are tabulated below.

i 5, Vi

1 3.00 0.500
2 2.79 0.394
3 0.354 -0.823
4 1.77 | -0.111

The shoaling coefficient o2, in which the §; tabulated above are substituted, is given in
Appendix J.

In figure (3.3) o,%, o,”U" and «," are plotted as function of kh. This plot shows that the
shoaling coefficient «® is almost exact up to kA=5. It can also be seen that the shoaling
coefficient pertaining to model DUT2 performs worse.

0.3r

exact
——— Boussinesq

0.2

01

0.0

shoaling coeff.

—-0.1 F

-0.2 1 i I L J

kh

Figure (3.3) Shoaling coefficient

In order to quantify the accuracy, the computed §; are substituted in the integrated error,
yielding a numerical value. This quantity is a measure for the squared area enclosed by the
curve of the exact shoaling coefficient and the curve of the Boussinesq shoaling coefficient.
The integrated error in the case of the provisional model equals 0.36-107. The integrated
error pertaining to the DUT2 model can be obtained directly by (numerical) integration of
(0. P-a)? with respect to kk from O to 5 yielding 0.72-10°, which is much larger the
integrated error of the provisional model.

Until now only the provisional model has been considered. In the next section the remaining
models are investigated.
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3.4.3 Investigation of the remaining models

In Section 3.2, four models have been derived with higher order dispersion, which contain
only third-order derivatives. These four basic models are denoted here as model 1, model
2, model 3 and model 4. In Section 3.3 the model 1, i.e. set (3.16a), is considered in the
case of uneven bottoms. The second element in the matrix of (3.16a) gives 6 different
models, which are denoted here by the letters (a..f), see equations (3.24). The third element
gives 2 different models, which are denoted here by an A or B, see equations (3.25). Thus,
12 different models based on set (3.16a) can be formed. Of these models one provisional
model, here after called as model 1fB, has been investigated. In this section both the other
11 models and the 3x12 models that can be formed similarly from sets (3.16b) through
(3.16d) are considered. First the basic models 1fB, 2fB, 3fB and 4fB are compared.
Subsequently, the variants a through f and A and B are considered.

Comparing of the four basic models

Equations (3.16a) through (3.16d) look similar. The only difference is found in the
coefficients o; and 8, which can be interchanged, see section 3.2. The shoaling coefficients
corresponding to equations (3.16b, 3.16¢ and 3.16d) are computed by MAPLE as well. It is
found that, if all §; are taken equal to some value A, all four models ( 1fB, 2fB, 3fB and 4fB)
have the same expression for shoaling coefficient. But, if no assumptions are made for the
§,, different expressions in kA and §, are found. Below the optimized §; in the models 1fB,
2fB, 3fB and 4fB are tabulated.

Model 1fB | Model 2fB | Model 3fB | Model 4fB

5, 3.00 3.00 1.77 1.77

0, 2.79 0.354 2.79 0.354

03 0.354 2.79 0.354 2.79

5, 1.77 1.77 3.00 3.00
Integrated error | 0.36-107 0.30-107 | 0.31-107 0.33-107

It can be seen that all models have the same optimized values, but spread over the ¢,
differently. The integrated error is almost the same. The differences are due to the numerical
integration. From these results it can be concluded that apart from the values for §,, the
models have equivalent linear shoaling coefficients. Therefore, we will continue investigating
model 1fB and models 2, 3 and 4 will be left out of consideration.
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Comparison of the alternative formulations of the third element of the matrix

The third element of the matrix in equation (3.27) is written as

g(l + a,(kh))k (3.42)

Multiplying (3.42) by Z and using operator correspondence as usual, an expression is
obtained in which Z is replaced by {. Substituting equation (3.28) and neglecting the terms
with 82, 8° and B yields

go,hh fak?s,+g(a B+iak+3a,h’a Bk*+3a,h’ak Bk +ia,hak?) (3.43)
The third element of the matrix in equation (3.27) can also be written as
gk(l + a,(kh)?) (3.44)

Repeating the same procedure as used for equation (3.42), a different expression is obtained.
Substituting equation (3.28) and neglecting the terms with 8%, 87 and 8° yields

ga,hh Bak?s +g(a S +iak+2a,hh Bak>+3a,h’a Bk?+3ohak Sk+ic,h’ak?) (3-43)

Equating equation (3.43) and (3.45) yields

go,hh Bak?s +2gahh Bak?-ga,hh fak?s, = 0 (3.46)
277 x a 277 270N b

Solving for §, yields
(3.47)

Apparently, if equation (3.47) is satisfied, equations (3.25a) and (3.25b) are identical, at least
to order (3"). For higher powers of 8 the two equations may differ, but it is not possible to
make a choice for these orders based on linear shoaling behaviour.

Comparing MAPLE’s results for optimized §; in the following table, it can be concluded that
equations (3.25a) and (3.25b) affect only §;. And indeed, &;, equals 6;,-2.

model 1fA | model 1fB

5, 3.00 3.00

5, 2.79 2.79

5, -1.646 0.354

5, 1.77 1.77
Integrated error | 0.32-107 0.36:107
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Computing v;, Tesp. 7 from d;, resp. 0, by

b= 22 (3.48)

gives 75, =-1.823 and 7, =-0.823.

Although the models 1fA and 1fB have the same linear shoaling behaviour, the model 1fB,
based on equation (3.25b), is preferred, since v;, has a more logical value. A logical value
for v would be between -1 and 1, see equation (3.17). Apparently, the extra derivatives
introduced by & in equation (3.25a) do not contribute to a better (linear) shoaling behaviour
and therefore they are eliminated by taking <y, =v3-/. Since the formulation according to
equation (3.25b) is preferred above equation (3.25a), the addition B in the name-giving will

be dropped hereafter.
The limit behaviour of the shoaling coefficient for kh—0

Before we continue with the discussion of equations (3.24), the limit behaviour of the
shoaling coefficient for k#—0 should be discussed first. Because dissipation is left out of
consideration in Boussinesq-like equations in general, no wave energy is produced or
dissipated. Therefore, energy is conserved, i.e. the energy flux remains constant. This can

be written as
V'(CgE> =0 (3.49)

where in the case of uni-directional propagation and very shallow water, equation (3.49)
reduces to

%;( al) = 0

ﬁ.gagﬁ sa L LIy (3.50)

Thus, the shoaling coefficient approaches to '/, for kh—0. This is known as Green’s law. The
reader should notice the minus sign in front of the shoaling coefficient.

22



Boussinesq modelling with higher-order dispersion

Comparison of the alternative formulations for the second element of the matrix

The second element of the matrix in equations (3.16) can be formulated at six different ways,
leading to six different models, see equation (3.24). In this section the models 1a through 1f

are considered.
The models la through 1f can be divided into two groups. The first group, derived with
9=0, contains models la, 1b and lc. The second group, derived with =-1, contains models

1d, le and 1f.
First, model la is considered. Although MAPLE is able to compute the optimized §,, the

resulting graph does not make any sense. Even the limit value for k-0 is wrong. The
coefficient o f(kh=0) equals -/, in stead of +'/,, see figure (3.4). This error cannot be
corrected by choosing §;, since if k4=0 no §; are involved. This model is disapproved
immediately, as it violates Green’s law. Exactly the same problems arises for model 1b and
1c. Obviously, all equations derived with §=0 are useless.

The second group, containing the models 1d, le and 1f is investigated. These models satisfy
the condition o, f(kh=0)=-'/,. The second element of the matrix is worked out in terms of

O(B"). For model 1d we get
3.51)
(hb+a 8, 1% k?b+hbp+Sh o h*kb-hkd+3a,hk kb~ h*k*d+3a,h*k bp)B

and for both model le and model 1f we get
(3.52)
(hb+3h o, h*k?b+hb ~hkd+3a,h*k?b +3a,h %k kb-a b k’d+a 8,/ *h k*b)g

Obviously, the linear shoaling coefficient of model le is equivalent to the linear shoaling
coefficient of model 1f. Equating expression (3.51) to (3.52) and solving for 6,, or &, yields

_Qah*h kb +Ba b, /1*h kD)
o oa,hh Bk?b

(3.53)
62f=2 +0,,

Thus, if equation (3.53) is satisfied, the models 1d and 1f have exactly the same linear
shoaling behaviour. The §; for the models 1d, le and 1f, optimized by the least-squares
method, are tabulated below.
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Model 1d | Model le | Model If

5, 3.00 3.00 3.00

0, 0.792 2.792 2.792

03 0.354 0.354 0.354

5, 1.77 1.77 1.77
Integrated error | 0.19-107 | 0.30-107 | 0.36-107

From the table above it can be seen that the models le and 1f have the same optimized ¢,
This was expected, since the expression for the O(BY)-terms of model le and 1f is identical.
From this tabel it can also be seen that 6,=6,,+2, which is in accordance with equation
(3.53).

As mentioned earlier, the models la, 1b and Ic do not satisfy because o, (kh=0) #'/,. This
does not necessarily mean that terms with 4k are not allowed. Therefore 6 is taken equal to -
1/,. This model will be called model 1t. The second element now becomes

1

5(1 war,(kh)ik + %(1 <o, (kh)Jkh (3.54)

The model 1t also turns out to have a wrong limit behaviour. The shoaling coefficient of
model 1t for kh=0 equals 0. In figure (3.4) the corresponding o, B for §=0, §=-"2 and 6=-1
and o, are plotted as function of kk. From this figure it may be assumed that 6 affects
aF(kh=0) linearly, so that the limit behaviour is only correct when 6=-1.

03r

——  model 4f
——— model 4a
0.2F o model 4t
01t
¢ 0.0

-01F

-02F

-0.3

Figure (3.4) Shoaling coefficient
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3.4.4 The remaining models with the same linear shoaling characteristics

The models 1d, le and If turn out to have the same linear dispersion relation and the same
linear shoaling behaviour (with optimized 9;). Yet, different sets of equations are obtained.
The system in Fourier space corresponding to model 1d (using equations (3.17), (3.24d) and
(3.26)) reads

_w{l +5;[(1 +y,Yhk2h~y,h zkz}} k{l * O‘l[(l +y )k h=y,h zsz}h

Z] . (3.55)
et vk wdk -oft <8 [y omen )

The system in Fourier space corresponding to model le (using equations (3.17), (3.24e) and
(3.26)) reads

—w{l +B[(1+y bk =y, ZkZ]} {1 v [(1+y k=1 ZkZ}}kh

Z] (3.55b)
g{l -, |(L+y ik h =y QkZ}}k -w{l 8,1 ey k= 2/4}

The system in Fourier space corresponding to model 1f (using equations (3.17), (3.24f) and
(3.26)) reads

-w{l +8a wl)hkzh—»ylh%z}} kh{l rayf(1 +72)hk2h—72h2k2]} 2l 355
u| ~°
g{l +a2[( 1 +73)hk2h—73hzk2]}k —w{l +B2[(1 +y Yhk*h—y,h zkz}}
Using the operator correspondence and inserting the non-linear terms yields
a4 a*h¢ ¢
h+{u hi(l+ R (3.56a)
ot [( ou] = 6, [( 7‘)axza v prery
ou du ar d*hu P u
T + ”-E + g——- B,h [(1'*')’4) Ey —74hax231‘:] *
(3.56b)

. ] ¢
o,gh i:(l 73)_—_ [ha ] 7311-6—;}
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The models 1d, le, If have each a different expression for R in equation (3.56a).

_ 9 0%hu 0%hu
R, = al'b‘)‘c“ [h{(l""l’z) o2 - 'Yzh'b-;z—}:l (3.57a)
d? ohu d*hu 3.57b
R, = o {(l ""Yz)h-“—‘ [h—a—;jl - v,h? 8x3:| ( )
0 d*hu u
Rf = al_é; [/’12{(1+'yz) p - 'yzhb_;}} 3.57¢)

The &, and +, pertaining to model 1d, le and 1f are summarized in the next table.

F Yi 0, Y2 0; Vs o, Y4
model 1d | 3.00 | 0.500 | 0.792 | -0.606 | 0.354 | -0.823 | 1.77 | -0.111
model 1e | 3.00 | 0.500 | 2.792 | 0.394 | 0.354 | -0.823 | 1.77 | -0.111

model 1f | 3.00 | 0.500 | 2.792 | 0.394 | 0.354 | -0.823 | 1.77 | -0.111

Since no discrimininating analytical criterion is found, comparisons with measurements has
to give the decisive answer to which model is to be proposed.

3.4.5 Extension to deeper water

The §,, which are determined by minimizing the integration of (e,*-a 5?2 from kh=0 to kh= 5

give a shoaling behaviour with excellent results for kh€[0,5], but beyond this range ol

diverges. For kh->oo the limit value of o,” equals -4. Although the limit value of o equals
0, this is not a bad result. Most polynomials have no asymptotes. In figure (3.5) o is
plotted for kh€[0,10].
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Figure (3.5) Shoaling coefficient
Instead of
optimizing the
8, by integration of (a,*-a,")? from kh=0 to kh=35, the §, can also be optimized by integration
from kh=0 to kh=38. Other coefficients are found, which are tabulated below.

model 1f model 1f
integrated to kh=8 | integrated to kh=5
d, 3.08 3.00
5, 3.36 2.79
83 1.62 0.354
04 2.99 1.77
Integrated error 0.52-10* 0.36-107

As argued before the quality of the shoaling depends on the quality of the dispersion relation.
In figure (3.1) it can be seen that the dispersion relation is not very accurate any more for
values of kh larger than 7 or 8. The advantage of integrating from k=0 to kh=8 is that the
shoaling behaviour performs relatively well up to k2=9. But, over the whole range small
deviations occur. In figure (3.6) a”,, .. and o, are plotted as function of kA. The integrated
error of a,f,, , 5 is expected to be larger than the integrated error of o, s since the
integration is carried out over a larger range. However, the difference is about a factor 1000
and that is significantly less accurate. In figure (3.7) (at-af ., o5 and (e ol .5 are
plotted. Absolute errors are preferred against relative error, as a,” has one zero and a limit

value equal to zero.
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Figure (3.7) Absolute deviation

Usually, a maximum value of kh of 3 suffices. Therefore, 6, corresponding to a integration
from kh=0 to kh=5 is recommended. But in the special case that higher values of kh of 5
are wanted, the 8, corresponding to an integration from kh=0 to k2=8 can be useful. The
values for 8, and v, are tabulated for the case in which they are optimized by integration of
kh=0 to kh=38.

i 5 Yi

1 3.08 0.539
2 3.36 0.681
3 1.62 -0.191
4 2.99 0.497

These values only hold for model 1f. To obtain values for other models, the v; have to be
interchanged like usual, see section 3.4.3.
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4 Numerical computation of Boussinesg-like equations

4.1 Introduction

In Chapter 3, three sets of Boussinesq-like equations were derived. In almost all cases, no
analytical solution can be obtained. Therefore, we have to solve these equations numerically.
In this chapter, the application of Keller’s Box method will be described. In the case of
solving the classical shallow water equations, the use of the Preissman method, which is
similar to Keller’s Box method, is quite common. The question is how far existing shallow
water models can be extended with Boussinesq-like terms without changing the numerical
method drastically. Therefore, no other methods for solving Boussinesq-like equations are
considered.

Since most problems will consist in a given surface elevation at a certain point and the
question how this wave will behave over a given bathymetry, no inconvenient reflections of
any border are wanted. In order to keep the computational domain as small as possible and
with that, the computation time as small as possible, special attention will be paid to weakly
reflecting boundaries.

4.2 Keller’s Box method

Keller’s Box method is a simple, second-order accurate and efficient method for solving the
laminar and turbulent boundary-layer equations (Cebeci and Smith,1974). The method was
developed by Keller (1970) and turned out to be easier to program, much faster and more
flexible than most other numerical methods that have been employed for such problems.
Because of its box structure the method allows varying mesh-sizes.

These boundary-layer equations contain both non-linear terms and third derivatives, like the
Boussinesg-like equations do. In the next sections, we will formulate the method for the case
of one dimensional Boussinesq-like equations.

One of the basic features of the procedure is to write the system of third-order partial
differential equations in the form of a first-order system. Thus, some derivatives of uand ¢
must be introduced as new unknown functions. The first-order partial differential equations
are approximated on an arbitrary rectangular grid, using simple centred-difference quotients
and averages at the midpoints of grid rectangles to get O(Ax*,Ar) accurate finite-difference
equations.

The scheme is implicit and unconditionally stable, but the equations are non-linear as well.
In general, solving non-linear equations has to be done by means of iteration. As will be
shown, it is possible to discretize the non-linear terms in such a way that linear finite-
difference equations occur.
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4.2.1 Keller’s Box method for Boussinesqg-like equations

For the sake of convenience, the set Boussinesq-like equations pertaining to model 1f are
repeated here

as . d . ahf a*¢ .
s 5;[01 ou] = 8,h [ (o) T2 axzat]

ot a 62h a? (4.12)
2 u_ u
ou ou ¢ _ d*u
du , ou L ,9C gl n oy
o e T 627[( Wy ’ar v axzaz] )
(4.1b)

agh [(1 w15 - -27}}

For later use, equations (4.1a and 4.1b) are expanded. Due to this operation the equations
are not written in conservative form any more. If no discontinuities occur, the solution is
sufficiently smooth and if both Ax and Ar are small enough, the non- -conservative equations
will converge as well. The Boussinesq-like equations are solved within these restrictions.

The expanded equations read for the continuity equation

A G A A AU AU AU A U U = 0 (4.22)
where
A = -G N(1+y) As = -ah P (5+2v,)
A, = 28/hh(1+7) A = -oui’
A, = B A, = h3agh B +yy)-dah2h(1+7)
A, = h-2ah hh(1+y)-01h,,,

and for the momentum equation

Bl§t+BZ§'n+BB§—xu+B4uxt+35uxxl+36u1+u‘ux = O (42b)
where
B, = g-ogh i(l1+73) B, = -2B8hh(1+7,)
B2 - ‘2a2ghl]1(1+'yq) B5 poud -Bzhz
By = -ayght’ By = 1B, h(1+7s)
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First the (expanded) continuity equation (4.2a) and the (expanded) momentum equation (4.2b)
have to be written as a system of first-order partial differential equations. For that purpose,
we introduce four new dependent variables ux(u), wex(ux), ¢x(¢) and {xx({x) such that the
equations (4.2a and 4.2b) can be written as

00 g ) = 04

Ala§+A (%) +A, a(m) +A,u+A (W) +A,
ot ot

B,(5x)+B,((xx)+B, a(m) ., 3 ,p 9w g a(“) su) =0 (4.3b)

Y] ot
_ Ou _ Oux . of - 0% 4.3¢
S T T il - el (4.30)

We now consider a rectangular grid shown in figure (4.1). We denote the grid points by

t, =t + A, n =1,2,...,N
Xa - )54 + Z&)% j = 1,2,...,J

ty

0
Xo 0

i

The quantities ({, u, {X, ux, {xx, uxx) at the grid points (x;,,/,+;) are approximated by grid

functions denoted by (&%, uih', ottt wxh', fogth!, walh'). Quantities midway between
grid points are defined for any grid functlon qihi by

n+l

Givp = l/2((11'"+l * (lj':l) (4.4)

.

n+i

__////// ___________________
L

R

L% DR A

 SSNSUININ SO, <P
Y

X) Xpe Xp1 X

Figure 4.1 Grid definition
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Thus, equation (4.3c) is approximated by a finite difference equation as follows:

n+l n+l
nel _ Wisr TY
lej“/z T e
Ax
un+l _un+1 uxn*l +uxn+l
L W Wy (.5)
Ax 2
n+l n+l
nel vl Y UX;
uxj',,n/: =

Similarly, the approximating equations of (4.3d), (4.3e) and (4.3f) read

ux/sy - ) worfsy -+ woe! (4.6)
Ax 2
g,;:l] '_S"Hl i ngri;l + Sv,xjrﬁl (47)
Ax 2
n+l n+i n+l n+l
X1~ $X; _ XXy + $xx; 4.8)
Ax 2

Although equations (4.3a) and (4.3b) are more complicated, the procedure of formulation is
quite similar, except for the non-linear terms, which may result in non-linear difference
equations. As illustration, the non-linear term u,{ is considered. The difference equation may
be defined as

n

g‘% = A j:l}:uxj:/i * 1/251*‘/2uxf'1'/3 =
4.9)
et ) [ et )
o1 5 \UXj U + PN T
3 8

In equation (4.9) products containing two quantities at a new time level occur. Because of
that the resulting difference equation is non-linear. In order to solve a non-linear system of
equations, an iteration method has to be used, which is not attractive.
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A slightly different approximating equation is

au +1 +1
f“é}' = 1/2§'+1,5LLXJ-’1,/ + /2?1 A Jrin/z =

(4.10)

(e g Yoot ) (5= g oo )
8 8

Expansion of equation (4.10) will result in quite a few products, however, none of them
produce non-linear equations. Therefore, the resulting system of equations is relatively easy
to solve without iteration.

Equation (4.10) is not the only possibility resulting in linear equations. Another form is

+1 +1 +1 +1
Xy G . G+ wg” 4.11)
4 4

du
— =
g—<9x

Both equation (4.10) as (4.11) have a truncation error of O(A2, AP, AxAr). Formulation
(4.11) corresponds to the representation of A; and B;, in which 4 and its derivatives occur.
In every 4, and B, the quantities &, h,, h, and h,, are averaged over x; and x;,,. In equation
(4.10), the known quantities u and { are averaged as well. Only for this reason equation
(4.10) is chosen instead of equation (4.11).

Working out very carefully all terms of equation (4.3a), its approximating equation yields
after some manipulation

A M.X +1 Az u’jz'/: n+l A3 n+l A4 g‘xjt‘/: n+l A7 ?J,""'/: n+l AS A6 n+l
e+ YE T (L DY, A Y P u; AL+ ux: (- 2uxx:
v I G L i v A e e A vl
A ux +ia Ujfv: wen As w44 §'ij% w1 Ay f;“/: an A5 Ag a+l
Lt i H(— Uy + + Ux;,; +(—=+——)uxx,,; =
Al )fﬂ 2 )ngl A[gxle (2 2 )]1 2 2 j+l (2 Ax) j+1
A A n n A n n
(& )T 0 (o )
A A w A, n
( o1 TU; ")~ ——(U +1+W(x )”-—( +1+uxxj)“——(uxj+1+u~xj)
2 4.12)

Notice that the right-hand-side contains only known quantities at time level n.
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Finally, the approximating equation of (4.3b) reads

Bl n+1 B2 B3 n+l Bﬁ uxjf‘/: n+l 4 ujz‘/z n+i BS n+l1
o (- M G u. A+ e e+
2% (2 Ax)m’ (Ar 2)’ (Af 2)J Ar

Bl n+l 2 B3 n+l B6 u’xj':‘/z n+l B4 uj:‘é n+l BS n+l
—_— (= ALY LSRR /MR (RRETEARE 17) SRS S ) SR
5 S (5 Ax)m”(AI p e gy g G (4.13)

Bl n n BZ n n B3 n n
_—“2—(§xj+l+§—xj )‘—2—(§7ij+1+§3ij )‘Kx-(ixqu’fﬁ?ij )
B4 n n BS n n Bﬁ n n
¥y (G + U )+ (K XX, )+ Wty )

The equations (4.5), (4.6), (4.7), (4.8), (4.10), (4.12) and (4.13) can be written in matrix
notation as

cl, cr =[r, , 0000 (4.14)

J j+1}
j+1

where
T

+1 +1 +1 +1 +1 +1
Q = [if wg' Py W ijn]

Al A n n A? n n
ro= E(ﬁﬂﬁ?}’)zi(iqu*ij )—A—;(mjﬂ"'mj)

[

A4 n n AS n n A(S n n A7 n n
—_i_(uj+l +U; )—._2_(uxxj+1+uxxj )-K;(uxxﬁﬁuxxj )—_Q.(uxj”ﬂlxj )

BI n n B2 n n B3 " "
r, = ——2—(§xj+l+§xj )-—2-(§7cxj+l+§7“f )'Kx‘(mf*‘+§xxf)

B B
4 n n 5 n n 6 n n
e (UX T UX; )+ ——(UXX ;i +UXX; )+ — Ui T U;
!r(jl j) 'f( j+1 ]) :[(jl j)

The (6 x 6) matrices Cl; and Cr;,; are inserted in Appendix B.
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In fact, the sequence of the quantities in @ is arbitrary. However, the sequence as suggested
in equation (4.14) will later be more convenient. The system (4. 14) holds only for any single
grid point. A system encompassing all grid points reads

MQ =R 4.15)
where
[Cl, Cr, )
cl, Cry
0
M =
0 ca,, Cr
cil,., Cr,
R = ["1 Py Ty Ty Ts To o o Taya Tas Ty Tem rw]T
) =[Qo Q1 o Q.I-l QJ]T

The matrix M appears to be a block diagonal matrix. Many techniques are available solving
systems of linear equations. Because its simplicity and speed a direct solver is preferable.
However, direct solvers may suffer from severe matrix conditions.

4.2.2 Solving the system of linear equations

In section (4.3) the boundary conditions are discussed in detail. First, we will confine
ourselves to state that six boundary conditions are needed to solve equations (4.3). Besides
prescribing u and ¢, their first and second spatial derivatives have to be prescribed as well.
In most cases, the boundary values will be spread over the boundaries in equal numbers, 1.€e.
three at both sides. Other combinations are possible and the same procedure can be followed.

Let us consider the case that we prescribe {, ux, {xx at the left boundary and u, {x, wxx at
the right boundary. This is in agreement with the sequence of quantities in @,
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For each left boundary quantity, a relation can be formulated. The most simple form for any
function q is ¢=gq,,{f), but other relations may be formulated as well, such as a relation

between two quantities. For the left boundary we get

SondD)
BND Q, = | wx,, (0 (4.16)
£X,,0(0)
After some manipulations, the (3x6) BND matrix can be written as
[1 0 0 bnd,, bnd, bnd,,]
0 1 0 bnd,, bnd,; bnd, 4.17)

BND =

0 0 1 bnd,, bnd,, bnd

In the simple case that ¢=g,,(f), all bnd;=0. When one or more relations between two
quantities are specified, some coefficients bnd; = 0.

By subtracting the rows of equation (4.17) from the matrix Cl,, the matrix Cl, can be
reduced to

(000¢ d, e]
000c¢cd e
% oo an
000 ¢ d e
000 ¢ dg ¢

Similar procedure can be applied for the right boundary. But instead of vanishing of the first
three columns, the last three columns vanish. Consequently, the matrix M reduces to a (6J
x 6J) block diagonal matrix, which can be solved with a Thomas-like algorithm. The Thomas
algorithm is a very efficient method for solving tridiagonal matrices, see Golub and Van
Loan (1983). The matrix we are considering, may be conceived as a kind of a diagonal
matrix. To solve this matrix, the Thomas algorithm is extended.
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4.2.3 Solving the blockdiagonal matrix with an extended Thomas algorithm

The matrix M can be written as a diagonal matrix. With the band-width of 17 elements all
elements of Cl; and Cr, are encompassed, see figure (4.2).

% A N

\\\: \\\ \\
S N _

\—f 17 elem. ——
N N '

S N .
- .
N N
AN
,,,,,,,,,,,, T S

Figure 4.2 Matrix M

The hatched areas are the eliminated boundary conditions, which fall outside the actual
square matrix M.

37



Boussinesq modelling with higher-order dispersion

Diagonalizing M yields

doe fi & h i J k|
d e, f, & h L, kb |
dy ey fy, & hy i Jy Kk L 0
d, e, f, & h i Jo ko
dy es fy & hs is Js ki L
8 he g Jo ke lg mg Mg 0 DPg Gy T
g, hy i, j, k, L, m; n, 0o, p; q; I (4.19)
M = .
8 hy Iy g ﬁ ly mg ng o0y Py Gy Ty

g9 h9 l‘) J 9 k9 !_2 ’779 n‘9 09 4 9 q9 r9
gl() hl() 110 le k10 llO mlO n’lO 010 pl() qu rlO
gll hll 111 —]ll kll Ill mll E!l 011 pll (]11 rll

To solve the matrix M, the matrix is swept once from top to bottom, followed by a back
substitution. The sweeping procedure will be discussed briefly.

The element d, is made zero by subtracting the first row multiplied by d,/d, from the second.
The second row now reads

d d d

0 e,-l¢ -2 o -2g L. (4.20)
v h d]fl g8

Similarly, all d,, (i> 1), can be made zero. This procedure is repeated for all ¢; (i >2) and
so on until all elements below the main diagonal, the bold and underlined elements, are
eliminated. For this procedure it is important that the main diagonal is dominant, i.e. larger
than all other elements in the row. If this is the case, it is a sufficient condition for limited
round-off errors, see Golub and Van Loan (1983). The diagonal dominance can be enhanced
by re-ordering the equations (4.3a through 4.3f) and/or by changing the sequence of
quantities in equation (4.14), but all quantities specified at the left border should be ordered
left from all quantities specified at the right boundary.
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Subsequently, we continue with the back substitution, beginning from the bottom. Equation
(4.21) represents a detail of the bottom of matrix M.

Wiis Xis Yies Zes E Ty

Wia Xiea Yia S m ¥, 4
Wi X3 Vi3 % G| _ |7 4.21)

Xp2 Y2 %2 4 E)

Yist % 41 Tia1

4 4, Ty

d - - - =

The unknown ¢, can be solved directly as r,/z,. The equation for J-1 is containing only
unknown ¢, since ¢, is just computed. Thus, ¢,, can be computed by substitution of ¢,.
This procedure is repeated until all g, are solved.

Now that the quantities at the new time level are computed, they are used in the repeated
computation of the quantities at the next time level.

However, the diagonal matrix used here still contains quite a number of permanent zero
elements. In a computer program only the diagonal elements have to be stored, which is in
this case 6Jx17 elements, where J equals the number of nodes. In Appendix A, a different
solving technique is described where the matrix M reduces to a hepta-diagonal matrix. This
method has the advantage that it reduces the size of the allocated memory with about 40%.
But it turned out that it was impossible to solve reduced Boussinesq-like equations in this
manner.

4.3 Boundary conditions

A set of differential equations has no definite solution unless appropriate boundary conditions
are specified. Boundaries are used to enclose the region of interest. Here, only one-
dimensional problems are considered, like waves in a flume. In practice, a boundary can be
a physical boundary, like a shore or a wall. Another possibility is an open boundary. This
is an imaginary line in the flume. At an open boundary mostly { is prescribed, as these data
can be obtained quite easily and accurately.

It should be emphasized that the boundary conditions have to be specified with care, since
they are fully responsible for the behaviour of the solution in the flume. In other words,
specifying wrong boundary conditions can mean that a different problem is solved and, as
will be shown later, even instabilities may occur.

Prescribing boundary conditions cannot be done before knowing which and how many
boundary conditions are needed. First this question can be answered from the perspective of

solvability of the system of linear equations.
Although every node has 12 unknowns, i.e. six at grid point x; and six at grid point x;, 4, six
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of them are shared with a preceding node, which results in six unknowns per node. Only the
first node does not have a preceding node. Therefore the total number of unknowns equals
6J+6, where J equals the number of nodes. On the other hand, every node has six equatlons

which makes the number of equations equal to 6&J. Thus, from this point of view, six
boundary values are needed to close the problem.

From a mathematical point of view also six boundary conditions have to be speciefied. This
is explained as follows. Considering set (4.3), all quantities u, ux, wxx, {, {x and {xx are
differentiated with respect to x. Therefore, when set (4.3) is integrated with respect to X, Six
integration constants occur. Consequently, six boundary conditions have to be specified.

From a physwal point of view, the boundary conditions are determined by the behaviour of
characteristics, i.e. lines that carry information in the x-¢ plane. This is explained in the next

section.
4.3.1 Determination of characteristic directions

As argued before, the behaviour of the characteristics is essential for the boundary choices.
Information is carried along the characteristic lines. Thus, the number of information carriers
has to be equal to the number of information providers, i.e. boundary conditions.

To analyze the characteristics, equations (4.3) are written in the form

f] (4.22)

U

af+ af+ =
EBax =0, f[

We find for A and B the matrices

A A, A, 0 0 0 (00 000 4,

0 0 0 B, B, B, 00B 00 0
L.l0o00000f L 100000 4.23)

000000 010000

000000 000100

00000 0] 00001 0]

The characteristic directions p = dr/dx follow from Det(poB-A)=0, yielding the condition

-AB,p*+AByp* = 0 (4.24)
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The solutions of equation (4.24) are

3 YoucaBibogh (4.25)

0, = *
12 o, gh

= 0

P34

Obviously, the characteristic directions are independent of the solution of either { or u. This
is rather remarkable, since the usual Boussinesq-like equations have characteristics depending
on u, see Otta and Dingemans (1994).

According to equation (4.25), p; and p, have an opposite direction. Consequently, ¢ and u
must be specified at different boundaries.

4.3.2 Initial conditions

Formally, the line at time =0 is also a boundary of region in the x-r space. The rule on the
number of boundary conditions (here initial conditions) applies just as well. As all
characteristics are entering the region across this line, we need six initial conditions in any
case. This is in agreement with what we found in section 4.3.

A problem which can arise in practice is that we do not know precise initial data. Some
assumptions have to be made. The simplest one is taking all initial quantities equal to zero,
i.e. the fluid is in rest and the water level is horizontal. This situation can be considered as
a disturbance on the real situation. This disturbance will travel through the computational
domain. Fortunately, the influence of wrong initial data gradually fades out due to damping.
(Bottom friction is not accounted in Boussinesq-like equations.) The fading can be increased
by using weakly reflecting boundaries, see the next section. When the disturbance hits a
weakly reflecting boundary, it will be reflected scarcely and after some time, approximately
two times the travel time from boundary to boundary, the disturbance will have vanished.
In the meantime, the solution gets more and more influenced by the incoming waves.

4.4 Weakly reflecting boundaries

In practice, it is not desirable to have boundaries that reflect waves. For example, if we are
investigating the case of figure (4.3), waves generated at location A are propagating to
location B. If the waves arriving at B are reflected, they cause disturbances in the domain
of interest. Thus, waves should be absorbed totally at location B or the right boundary should
be put far away, in order that the reflected waves do not reach the domain of interest before
the end of the computation. The latter option is very time consuming and is not preferred.
Therefore, efforts are made in deriving weakly reflecting boundaries.
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Figure 4.3 Situation sketch

To achieve this, a weakly reflecting shallow water boundary condition or Sommerfeld
condition is used. Though for the classical shallow water equations this condition is 100%
absorbing, for Boussinesq-like equations some partial reflection will occur. To enhance the
boundary performances, the computational domain is extended by a sponge layer, see figure
(4.4). It works similar to its physical variant: the sponge layer reduces the waveheight by
means of damping and is most effective for higher harmonics. The Sommerfeld condition can
be applied accurately on the basic wave. The combination of these two methods leads to a
boundary causing very weakly reflections.

i computational domain :
-] z
} domain of interast | spongelayer ;
| z :

I c— ;
AL A B c
4 o — P

RRRRRARAAR

Figure 4.4 Situation sketch with weakly reflecting boundaries

Next, we first will discuss the weakly reflecting shallow water condition and the sponge layer
separately. Subsequently, the combination of the two conditions will be evaluated.
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4.4.1 The weakly reflecting shallow water condition

By taking o; and (3; equal to zero and leaving out the non-linear terms, the equations (4.1)
are reduced to

9__‘(_‘ + h?ﬁ = O
ot ox
(4.26)
ou as
—_— —_— = O
ar 8 ax
which are often referred to as the linearized classical shallow water equations.
Assuming that the solution is in the form of
(4.27)

¢ - o itke-an
U

the equations (4.26) can be written in Fourier space

-w hk | | Z]| 0 (4.28)
gk -w vl
Computing the eigenvectors yields

1 1
{V;] ) [V;} _ (4.29)
v l g ’ v
1 1 ]7 13 2 )

For simplicity, we assume that the computational domain holds for x <0. A general boundary
condition at x =0 can be formulated as follows

au + B¢ =0 (4.30)

U

>{oo
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The functions ¢ and u can be considered as a summation of an outgoing wave with amplitude
a, and an incoming wave with amplitude a,. At x=0, the functions { and u read

¢ = (a + ape™

4.31)
R

The function f{r) must have the same phase function ¢*, otherwise different waves are
generated. The function f can be written as

A1) =Fe (4.32)

Substituting equations (4.31) and (4.32) into equation (4.30) yields after some manipulation

r o og + B/h _ Fh (4.33)
afg -Bn 9

where

o

(4.34)

=
0
— I (S8

R is called the reflection coefficient.

Apparently, the reflection coefficient R is dependent on the amplitude a, of the outgoing
wave. This dependency can be avoided by taking F equal to zero. Then we have no reflection
if R is equal to zero, which can be achieved by taking a=1 and Bz-\/ﬁ

With this, the boundary condition finally reads

u - _& g‘ =0 (435)
h

The boundary condition (4.35) absorbs every wave when it is applied to the classical shallow
water equations. When applying condition (3.35) on Boussinesq-like equations, the reflection
coefficient R increases for increasing values of kA, as the difference between the Boussinesq
phase velocity and the shallow water phase velocity, ¢ = \/:q_h— , increases for increasing
values of kh.
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Analytical determination of Ry, uesq

In the previous section a boundary condition is determined which gives no reflection when
it is applied to the linearized shallow water equations. In this section the reflection coeffient
is determined in the case that condition (4.35) is applied to Boussinesq-like equations.

Instead of the shallow water equations in Fourier space, we start with the Boussinesq-like

1
Y1

equations in Fourier space, e.g. equation (3.16a). This system has two different eigenvectors

and . The equations (4.31) can be written more general as

= (a, + a,)e™
i 2

(4.36)
u = lay, +a2v2]e lal
Substituting equation (4.36) into equation (4.35) and some manipulations yields
R = .f(wsk’hu sapaz’B]aBQ) (4'37)

The factor kh is considered to be a single parameter. By substitution equation (3.12), w, g
and the remaining single parameters / vanish. With this, equation (4.37) becomes

3
_ 2kha,+2+kh T (B,-B)) kB3 T(B, -, +4kh (o, +a,) +4(1 +kh ‘o)) (4.38)

3
Dkh’a,+2+kh 2T (B, ~B,) +/kh*T(B,-B,)* +4kh *(at, +a,) +4(1 +kh*a,t,)

where

T = tanh(kh)

o = Lo, V23S o = L v23 Y35
L8 630 218 630

6 o2 07 6 -2 VT
1“‘9‘ 27 F

63 9 63

As can be seen from equation (4.38) the reflection coefficient is dependent on k. In the next
section, the reflection coefficient, determined by numerical experiments is determined and
the reflection coefficient according to equation (4.38) is compared with the numerical
reflection coefficient.
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Numerical determination of Ry, qinesq

Above, an expression for R is derived. In this section, results of numerical experiments are

given. The reflection coefficient is determined for the two cases:

_ linear waves : H =0.0002m, 3.10° < .:.' < 5.10°

- non-linear waves : %1 = 0.20

In both cases the bottom is horizontal and the wave signal is sinusoidal with an amplitude of
H/2 and a period T=2.02 s. For various values of kh the depths are computed by solving the
linear dispersion relation (3.12) with 7=2.02 s resulting in the following table:

kh() | L@m) | h@m k (m™)
0.25 1.56 | 6.21-102 | 4.03
050 | 2.94 | 2.34-10" | 2.13

0.6725 3.74 4.00-10" 1.68
1.0 4.85 7.72-10 1.30
2.0 6.14 1.96 1.02

3.0 6.34 3.03 9.91-10"
4.5 6.37 4.56 9.87-10

In order to estimate the reflection, for every value of ki two runs are made with Ar=0.0125
s and Ax=0.025 m. In the first run, the computational domain is 80 m long. In the second
run, the right boundary condition is specified at 30 m from the left boundary condition.
Output is given at X=10 and X=29 m. After some time, the signal of the second run is
getting influenced by reflections. Subtracting the two signals yields the reflected signal. The
amplitude of the reflected signal can be estimated. The reflection coefficient can be calculated
by dividing the amplitude of the reflected wave by the amplitude of the signal of the 80 m

run.

It has to be said that this procedure is not very accurate, it is just an indication. Within the
range of accuracy, the locations X=10 m and X=29 m give the same results. The results are
plotted in figure (4.5). It appears that non-linear waves have a higher reflection coefficient,
as expected, but the influence is rather small.

In figure (4.5), the analytical reflection coefficient is compared with numerical results. In this
figure two analytic reflection coefficients are plotted: Analyrical 1, pertaining to equations
(3.16a) and Analytical 1I, pertaining to equations (3.16b). Both lines are according to
equation (4.38).
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It is quite remarkable that the analytic reflection coefficient of model (3.16b) predicts
numerical reflection coefficient better than the analytic reflection coefficient of model
(3.16a), while the numerical results are obtained by model (3.16a).

However, the comparison of the analytical and numerical reflection coefficient is not
completely fair, since two different systems are compared. In the analytical approach, the
two third order partial differential equations are the basis. But in the numerical model, these
two equations are written as six first order partial differential equations, see section 4.2.1 As
argued before, this implies specifying three boundary quantities at the weakly reflecting
boundary. In section 4.4.1, a relation for the first quantity, u, is formulated, see equation
(4.35). The remaining quantities {x and uxx are taken equal to zero, which means they cause
100% reflections. Apparently, the numerical reflection coefficient is some weighted mean
of the three separate reflection coefficients.

However, by differentiating equation (4.35), conditions for {, and uxx similar to condition
(4.35) can be formulated, which read

ux - % &x =0
(4.39)

uxx - -g_g‘xx=0
h

It is found that the use of one or both equations (4.39) in combination with equation (4.35)
leads to instabilities. This may be explained by the fact that no new information is provided
by equations (4.39), so the problem is not well posed.
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Boussinesq modelling with higher-order dispersion

The damping is introduced by a term ».{ in the continuity equation (4.1a) and by a term »,,u
in the momentum equation:

58+ Slnegu] = 1| (1) ;3’;? —yh 2% } :

or x <0t dx’ar (4.402)
a 9 h?)( 3hu_7]7ﬂ -v{
"ox Pax? 7 ax? ¢
du ou §‘ Shu du
= — = vh
A Y [( " ax2arjl )
(4.40b)
R 98 ¢
h | (1+y)— | h=>| - v;h—| - v,u
a,gh |:( +Y3) x*[ ax] 78x£| v.u

The dimension of the damping coefficients v. and »,, equals T"'. For sake of convenience, »,
and v, are taken equal to v. In order to let the differential equations be valid for the whole
domain the coefficient » is made dependent on x, such that, within the domain of interest (see
figure 4.4), »(x)=0 and within the sponge layer »(x)#0.

It is very likely that a sponge layer itself causes some reflections, especially if the transition
to the sponge layer is quite abrupt. Therefore, the transition should be smooth and reaches
its maximum damping capacity gradually. In order to avoid inconsistency, the damping
capacity of the sponge layer should be zero at the boundary. This can be accomplished by
using the smoothing formula suggested by Hill (1995).

B -L, (4.41)
v(x) = v f, i
where
[ 7r(4x—1)]
£ = tatanh 2 h L 0 <x <
1 -(4x-1)
(4.42)

2
1 -(-4x+3)°

sin [ w(-4x+3)

f(x) = ‘Atanh ] +h . < x £ 1

L and L, are scaling parameters. L denotes the length of the sponge layer which starts at
x=L,.
In figure (4.6), equation (4.42) is plotted.
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Smoothing function

Figure 4.6 Smoothing function

It is clear that the length of the sponge is essential for its functioning. A short sponge layer
demands strong damping, which result in relatively large reflections. A long sponge layer,
however, suffices with a weakly damping sponge with weak reflections, but needs a larger
computational domain. Therefore, the length of the sponge layer is limited to approximately
five times the characteristic wavelength. In order to find an optimized value for », some
numerical experiments are performed.

The determination of the damping coefficient »

The damping coefficient » is determined for the case

h = 0.4 m

T = 2.02s

H/h = (.2

Longe =20m = 5 Lipucteristic wave

30m | 20m 30m
Spongelayer ﬂ
| |

Figure 4.7 Situation sketch
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Boussinesq modelling with higher-order dispersion

4.4.3 Resulting reflections of the sponge layer and the shallow water condition together.

As seen in the previous section, the sponge layer damping features are satisfactory. On the
reflections, however, nothing has been said. The reflection of waves is assumed to be
proportional to the gradient of »(x). Thus, the reflection coefficient is not constant and
reaches its maximum at about 1/3 and 2/3 of the sponge layer. This results in a highly
complex pattern of reflected waves, since some reflections stay within the sponge layer, but
are strongly reduced then.

The main question stays how much is the total reflection of the combination of both types.
To answer this question, a procedure is used similar to the procedure followed in order to
estimate the reflection coefficient of the shallow water boundary condition alone.

The same conditions as in the former section are used, except for the sponge layer length,
which is reduced to 12 m, i.e. approximately 3 Lryererisiic wave> and the shallow water condition
is applied just behind the sponge layer.

Very roughly, the reflection coefficient can be estimated from the results of the two
conditions separately. Say, a wave with amplitude a, enters the sponge layer. The reduction
because of the sponge layer is to about 10%, see figure (4.8). The reflection of the shallow
water condition for kh=0.6725 is about 8%. These reflected waves are reduced to 10 %
again yielding a total reflection coefficient of O( 10°%).

In figure (4.9) a detail of the reflected waves for the »=0.5 s', v=2 s, y=4 s and »=6
s is presented. It appears that the amplitude of the reflected waves decreases with decreasing
values for ». Lower values of v result in waves that are lagging in phase. This phenomenon
can be explained as follows. The lower the values of », the lower is the damping. Thus,
waves can penetrate deeper into the sponge layer before they are reflected, which causes the
phase difference.

However, the reflections in the case of »=0.5 s' and »=2 s do not differ very much in
amplitude any more, but only in phase. The behaviour of the reflections is a little bit
different. The reflections in the case »=2 s seems to be slightly less. Thus, the proposed
value of » equals 2 s
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Figure 4.9 Detail of the reflected wave

From figure (4.9) the amplitude of the reflected wave is estimated as 2- 10* m, although most
reflected waves have smaller amplitudes. The incident wave amplitude is equal to 6-10. The
reflection coefficient R equals approximately 3-10°, which is in agreement with the estimated
value. The conclusion that can be drawn is that the combination of the shallow water
boundary condition and a sponge layer results in a boundary condition with a reflection
coefficient of O(10%) or even smaller.

However, when cases are considered with different scale magnitudes, different values of »
may be found.
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5 Validation and verification

In Chapter 4 Keller’s Box method applied to Boussinesg-like equations is described resulting
in a numerical model. Before accepting the numerical model, it is subjected to tests. In
section 5.1, some qualitative tests have been performed. Subsequently, the representation of
the dispersion relation and the shoaling behaviour is investigated and compared with the
analytical characteristics. In section 5.2 the best model is selected on the basis of
comparisons with measurements, since in Chapter 3 it has turned out that 24 models, namely
4 basic models, 3 options in equation (3.24) and 2 options in equation 3.25, have the same
linear shoaling coefficient. Finally, in section (5.3) Keller’s Box method is applied to set
(2.1). In this manner the equations integrated by the DUT2 model are also integrated by Box
method. Since the same problem is solved with the same equations, the results have to
correspond. This provides an additional test for Box method.

5.1 Testing the programme code

5.1.1 General test procedures

Before accepting a numerical model, we have to be convinced that no mistakes are made in
the formulations of the difference equations or in the programme code. Only by passing all
tests it can be made likely that the numerical model is correct, but it may contain not detected
errors.

Qualitative tests

In this subsection three qualitative tests are described:

1) The first test is the so called zero test. The functions u(x,t)=0 and {(x,t)=0 are,
although trivial, solutions of the sets equations (3.56). When the initial boundary
values u(x,0), §(x,0) and their first and second derivatives with respect to x are taken
equal to zero, the still water situation is represented. When, subsequently, no signal
is put at one or both boundaries, the water surface should stay at rest.

2) The zero test can be extended by raising the still water level to z=z,, where z,#0.
In this case the water level should stay at rest at z=z,.

3) The third test is a sinusoidal wave entering a region being at rest. The wave period
is chosen such that the value k% is about 1. In this case the waves are dispersive and
the group velocity is less than the phase velocity. The ratio is about 0.7. The
phenomenon that should occur is that the waves disappear in the wave front.
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The tests described above indicated some programme errors. After fixing the programme
errors the tests are passed. However, these test are not severe enough to accept the model.
In the next subsection some quantitative tests are described.

Quantitative tests

In Chapter 3 new Boussinesq-like models have been derived which obey the [2/2] Padé
approximation of the linear dispersion relation. Furthermore, the corresponding linear
shoaling coefficient is determined. The correspondence of these two numerical and analytical
characteristics indicates the quality of the numerical model. In this subsection the numerical
characteristics are determined and compared with the (linear) analytical characteristics, but
first the mesh sizes have to be determined in order to make accurate computations.

By mesh refinement it can be determined whether the numerical solutions converge. If after
some refinements the numerical solution does not change, the numerical solution converges
and further mesh refinement is not necessary. In order to do convergence investigation the
following test problem is used. The scale of the problem corresponds to the test conditions
described in section 5.2. The bottom is horizontal and the water depth is 0.4 m. At the left
boundary the incoming wave is sinusoidal with a wave period T=2.02 s. The amplitude of
the incoming wave equals 1-10° m which is much smaller than the amplitudes used in section
5.2, but in these tests only linear waves are considered which limits the amplitude.

Besides the mesh sizes, the CFL parameter is of importance as well. It reads

crL = 2LJeh 5.1)
Ax

Since Keller’s Box scheme is implicit and therefore unconditionally stable, the CFL
parameter is not a measure for stability like for explicit schemes. But it is an indication for
the difference between the propagation velocity of the physical wave and the numerical wave.
It is obvious that no difference is desired.

In (Petit, 1994) the dissipation and dispersion of various numerical schemes, amongst others
Keller’s Box scheme, is considered in the case of hyperbolic equations. In figure (5.1) the
ratio of the numerical phase velocity c, to the physical phase velocity ¢ versus L/Ax is
presented.
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2 5 10 50 100
AAx (- 2n/a]

Figure 5.1 Ratio of ¢, to ¢ versus L/Ax, from Petit (1994)

From figure (5.1) it follows that p=CFL=1 is the best choice, but for a large number of
nodes per wavelength, ¢ /c converges to 1 for both higher and lower CFL-values.

In practice fairly long waves are considered, which do not have a phase velocity exactly
equal to (gh)”. Besides, higher harmonics are generated due to non-linearities and the
bathymetry affects the (local) phase velocity. Thus, for only one component it is possible to
choose the ideal CFL=1 and only if the bottom is horizontal. In order to obtain sufficient
accuracy, a rather high number of nodes per wavelength is needed, which allows some
deviation of CFL=1.

Now, we know that the CFL parameter should be approximately 1. As a first guess for At,
we take approximately 80 time intervals per wave period: At=T/80=0.025 s. According to
equation (5.1) the Ax by which CFL equals 1 is equal to 0.050 m. More accuracy is obtained
by mesh refinement. Halving At and Ax keeps CFL constant and gives the table below.

run # At (s) Ax (m)

1 0.0500 | 0.1000
0.0250 | 0.0500
0.0125 | 0.0250

[OSI I S

Three runs have been carried out with the mesh sizes in the table above. In all runs {, ux and
oor are specified at the left boundary, whereas u, {x and wxx are specified at the right
boundary. { is prescribed by a sine, the other quantities are all taken equal to zero. Output
is given at X=5 m in a computational domain of 40 m. The numerical results are presented

in figure (5.2).
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Figure 5.2 Converging solutions

From figure (5.2), it can be seen that the solution does not change if At=0.0250 s is halved.

Therefore, for the tests in this section, At=0.0250 s and Ax=0.0500 m are used.

Phase velocities

The linear Boussinesq-like equations for horizontal bottom have a dispersion relation that
matches a [2/2] Padé expansion in (k#)* of the exact linear dispersion relation. In case of a
horizontal bottom, all remaining models are equal, so we do not have to bother about the

model differences.

The phase velocity is determined as follows. For various values of kh the wave profile is
computed with time intervals of Ar. From a detail plot, see figure (5.3), the covered way
(i.e. Ax in the figure) is measured and divided by the At, which gives the phase velocity.

rarion

2%

L X-axis

surface el

Figure 5.3 Two wave profiles ar different times

The values of kh for which the phase velocity is determined are tabulated below.
corresponding depths are listed as well in the case that the wave period equals 2.02 s.
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kh () h (m)
0.25 0.0621
0.50 0.2343
0.6725 | 0.4000

1.0 0.7722
2.0 1.9550
3.0 3.0267
4.5 4.5616

The measured numerical phase velocities are plotted together with the phase velocity

according to the [2/2] Padé approximation in figure (5.4).
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1.00 ez

0.80

F o ——
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0.20

0.00 T :
0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00 4.50 5.00

kh

[ % Numerical modsl — [2/2] Pode ]

Figure 5.4 Numerical versus analytical phase velocity

From this figure it can be seen that the phase velocity is represented correctly and that the
deviations are minimal. This good result indicates that the numerical method gives reliable

output in the case of a horizontal bottom and linear waves.
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Shoaling

In this subsection the shoaling characteristics are considered. To that end the test section is
extended with a bottom with a constant slope, see figure (5.5). Near to the wavemaker, the
value of kh equals 1.6. At the end of the flume kh equals approximately 0.4.

Again, the incoming wave signal is a sine with a wave period T=2.02 s and an amplitude

of 1-10° m.

I h=0.172 m

Figure 5.5 Sketch of flume for shoaling investigation

In this test the shoaling coefficient is defined differently from equation (3.39). From energy
conservation it follows

d
drpep=0 5.2
o ©-2)

where
F =Ec,=%pgaec,
D = Energy dissipation

Neglecting energy dissipation (by bottom friction, wave breaking) it follows that

E ¢, = constant.
Thus:

P 5.3)

The initial values q, and c,, are defined at deep water. According to the linear wave theory
we get

. 8r
o= 5 (5.4

The group velocity at the first station is also computed by the linear wave theory.
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Consequently, the K, at the first station can be computed from equation (5.3). The wave
height at the first station can be estimated from numerical experiments, which gives an
estimation for a.

In order to determine the K, corresponding to the numerical model, at several locations in
the flume, the amplitude is computed. Although the incoming waves have a small amplitude,
the waves do show some non-linear effects, like non-constant waveheights. The amplitudes
a, are determined as the mean of the wave amplitudes which exceed the value of 90% of the
peak amplitude. This is done in order to eliminate the dominance of incidentally high
amplitudes.

The numerical shoaling coefficient K, together with the shoaling coefficient pertaining to the
analytical model, which is actually based on the group velocity, are presented in figure (5.6).

1.20 )
!

1.15 %

1.10

0.85

‘ P
- | .

0.830

T
0.40 0.6¢ 0.80 1.0 1.20 1.40 1.80 1.80

"k (9)

1 # Ks #:0.9'Hmax — Ks Pode i

Figure 5.6 Numerical versus analytical shoaling cocfficient

From this figure it can be seen that the shoaling characteristics do not appear as accurate as
the phase veloctity, but are still satisfying. The deviations may be ascribed to the difficult
and rather inaccurate determination of the amplitudes. The waves in the flume are not as
regular as they are expected to be. This irregularity may be caused by reflections due to the
bottom slope.

Group velocity

The determination of the group velocity is even more difficult than that of the shoaling
characteristics. One way of determining c, is to make a wave group by adding two sines with
slightly different frequencies. For accuracy a small frequency difference is needed, which
results in a long wave groups. The group velocity can be estimated by determination of the
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velocity of the envelope. This procedure is extremely sensitive to errors and will not be
followed here. Another way is using equation (5.3).

In the previous test shoaling both ¢,, and g, are determined. In this manner the values of ¢,
at the locations in the flume can be computed in accordance with equation (5.3). However,
c, at the first station is estimated by the linear theory in order to determine a,. Therefore this
location is skipped. In figure (5.7) both the numerical values of ¢, and ¢, according to the

analytical model presented dimensionless.

0.80

-
0.70 %
N

—

0.20 =]
—

0.10

0.00
0.40 0.60 0.80 1.00 1.20 1.40 160 1.8Q

kh (=)

| —— Poge + Numerical |
! ;

Figure 5.7 Numerical versus analyrical group velocity

From this figure it can be seen that correspondence is even better than in figure (5.6) where
the shoaling behaviour is presented. Because of the correspondence in derivation it is
expected that the correspondence should be roughly the same. That this is not the case is
ascribed to the non-dimensionalisation procedure, which reduces the absolute deviation for
larger values of h. For these larger values of i and with that k# the numerical shoaling

coefficient is not very accurate.

Conclusion

From the tests on the phase velocity, shoaling and group velocity which are described above,
it is concluded that when linear waves are considered, the numerical model is able to
represent the disperision and the shoaling characteristics correctly.
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5.2 Comparison with measurements

It has already been mentioned in Chapter 1 that the major discrepancies between
computations with Boussinesg-like models and measurements are due to the inaccurate
representation of the linear frequency dispersion in the Boussinesq-like models. As argued
before, Boussinesq-like equations are only valid for fairly long waves. However, due to non-
linearity, higher harmonics are generated. Some higher harmonics are phase locked and move
with the velocity of the basic wave. Other short wave components move freely in accordance
with the dispersion relation. Particularly for these waves, the correct representation of the
dispersion relation is of great importance.

A discriminating test for Boussinesq-like models is provided by a bar-type geometry. On the
upward slope effects of non-linearity generate higher harmonics and on the backward slope
the difference between the locked and free components becomes clearly visible. In case of
a bad representation of the dispersion relation the free components travel with a wrong
velocity, which changes the surface profile. If the depth increases fast, the difference between
computation and measurement will be visible after short distances.

In 1993 a number of flume experiments on a bar-type geometry for fairly long waves had
been performed by Klopman of Delft Hydraulics. These experiments are equivalent to the
tests done by Beji (see Battjes and Beji, 1993), but with a linear scale of two. In order to
perform the test under dynamically similar conditions, the wave period is scaled by a factor
V2. The tests have been performed with an active wave absorber.

The geometry considered in this context is given in figure (5.8). This geometry is slightly
different than the scaled geometry of the flume test, but these differences are estimated to
be not significant, see Dingemans (1994a). The locations of the gauges are given in the table

below.

station | location (m) || Station | location (m)
1 2.00 7 14.50
2 4.00 8 15.70
3 5.70 9 17.30
4 10.50 10 19.00
5 12.50 11 21.00
6 13.50

The stations 1, 2, 10 and 11 were not included in the tests performed by Beji.

Three wave conditions have been used:

A T=2.02 sand H =20 cm non-breaking waves
B T=2.525 sand H =29 cm spilling breakers between 13.3 and 15.3 m
C T=1.01 sand H = 4.1 cm non-breaking waves
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In this context only tests A and C are used for comparison.
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Figure 5.8 Test geomerry (measures in meters)

5.2.1 Boundary specifications

In section 4.3.1 the specification of the boundary conditions has briefly been discussed. A
suggestion for spreading the six variables over the boundaries is done, but many
combinations are possible. However, the variables u and { have to be specified at different
boundaries, which follows directly from the characteristic directions, see section (3.4.1). By
means of numerical experiments the suggested and other spreading possibilities are
investigated. The remaining problem is how to specify the boundary conditions. Mostly { is
given as a function of time, but some derivatives of either { or u with respect to x have to
be specified. In this section it is indicated how to deal with this problem.

The first step we have to make is to determine how many possibilities exist. As argued
before, u and { always have to be specified at different boundaries, which reduces the
number of possibilities. Thus, we have:

3:3=412!-2!) =6

2:4=2-4/@3!-1) =38

1:5=2-41/(4!-01) =2

16 possibilities.
In the numerical experiments the boundary conditions are specified as follows:
{=asin(w), X =0ox =u=ux =wx = 0.

The numerical tests pointed out that at both boundaries three variables have to be specified,
otherwise the model is unconditionally unstable. Thus, the number of possibilities reduces
to six. Notice that this instability has nothing to do with the (in)stability of the numerical
method, but is obviously due to a lack of information.
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Of these six remaining possibilities the following possibilities are considered:

I Left: z ux zxx Right: u zx uxx

I Left: z ux zx Right: u zxx uxx

III Left: z zx zxx Right: u ux uxx
From numerical experiments it appears that all three distributions give scarcely different
solutions. Since in practice mostly only surface elevation records are available and the
relation between the surface elevation { and the computational velocity u is not unambiguous,
the third possibility is preferred.

For so far it is determined where to specify the variables. The remaining question is how.
To answer that question two ways of prescribing { are considered.

The first way is prescribing { as a function of (x,r). For example, { is specified as {(x,r) =
a-sin(kx-wt). Subsequently, the derivatives of { can be specified as {x(x,r) = ak-cos(kx-wr)
and fx(x,f) = -ak*-sin(kx-wr), which gives no difficulties.

The second way is prescribing { as a function of (¢) in the form of a time registration. In this
case, the function cannot be differentiated with respect to x, but {x and {xx have to be
specified. To that end the time registration is transformed into Fourier series, so that a
summation of sines is obtained. Of every Fourier component the wave number k can be
calculated from the linear disperision relation (3.12), since the frequency and the depth are
known. Thus, the derivatives of { with respect to x can be specified according to the case
where {(x,f) is prescribed.

From the above it may be clear that the specification of the boundary conditions should be
done with care. However, for long waves a fair approximation may be achieved by taking
the boundary conditions for {x and {xx equal to zero. This can be justified as follows. For
long waves the wave slope, characterized by {x, is a small quantity compared to {, whereas
higher-order derivatives of { are even smaller. Thus, a wrong but simplified specification of
the derivatives of ¢ will affect the solution very little as long as only long waves are
considered.

5.2.2 Convergence investigation

Before performing numerical tests, it is necessary to know what mesh-sizes should be taken
for accurate results. To that end four runs are performed. The relevant parameters are
tabulated below.

run At Ax CFL nodes per
(s) (m) ) wave period
1 2.500-10° 5.000-10° 1.0 80
2 1.250-107 2.500-107 1.0 160
3 6.250-10° 1.250-107 1.0 320
4 3.125-10° 1.250-107 0.5 640
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The CEL-number is determined for h=0.4 m. For the fourth run Ax is not halved, because
apparently, for Ax=6.250-10" m the limit of floating point accuracy during solving the
system of linear equations is exceeded. In figure (5.9) the results of the four experiments are
plotted in a time window for X=21 m. At this location which is behind the bar, see figure
(5.8), higher harmonics are clearly present. These higher harmonics have to be represented
accurately as well. Therefore, convergence investigation has been performed for location

X=21m.

surlace el» ation im)

Fioure 5.9 Converging solutions
£ ging

From figure (5.9) it can be seen that At=2.500-10 ? s is not small enough. Further, it follows
that At=6.250-10" s gives scarcely different results than At=3.125-107 s. Thus, the mesh
sizes used for all condition A computations are At=6.250-107 s and Ax=1.250-10? m. The
corresponding CFL number at a depth of 0.4 metres equals 1. The number of available grid

points per harmonic is tabulated below.

harmonic T grid points per L grid points per
(s) wave period (m) wave length
0 2.020 320 3.7 296
1 1.010 160 1.5 120
2 5.050-10"! 80 0.71 57
3 2.2525-10" 40 0.40 32

From the table above it can be seen that the number of grid points available for the third
harmonic is about 30 in space. The minimum number of grid points which is needed to
model a wave is about 10. Thus, the number of grid points for the third harmonic is

adequate.
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5.2.3 Evaluation of Boussinesq-like models with the same optimized linear shoaling
behaviour by comparison with measurements

Quite a number of different models with the same optimized linear shoaling behaviour can
be formulated, as seen in Chapter 3. In this section the results of a number of the remaining

models are compared with measurements.
First the basic models are compared. On the basis of these results it is decided which

model(s) could give still better results and which models are supposed to be less good. The
computations are compared at the three locations:

1 station 6 13.5m

2 station 10 19.0 m

3 station 11 21.0m

The basic models

First, the four basic models 1f, 2f, 3f and 4f are compared with measurements. In Appendix
C the results are presented. From figures (C.1), (C.2) and (C.3) it can be seen that compared
with the measurements model 3f gives too high amplitudes, whereas the amplitudes of model
2f are too small. The peaks represented by model 4f are almost equal to the peaks of the
measurements. Model 1f performs less good than model 4f but better than model 2f and 3f.
On the basis of these results model 4 is proposed.

The variants d, e and f

In Chapter 3, the variants d, e and f remained from equations (3.19). Since model 4f
performs better than model 1f, 2f and 3f, only the models 4d, 4e and 4f are compared with
measurements in order to limit the numerical experiments. The numerical results together
with measurements are presented in Appendix D. From figure (D.1) it can be seen that all
three numerical results are identical, but from the figures (D.2) and (D.3) it follows that
model 4d performs remarkably worse. The models 4e and 4f give equivalent and better
results.

For completeness it is mentioned that the use of equation (3.25a) instead of equation (3.25b)
gives no different results.

The conclusion that can be drawn from the comparisons with measurement condition A is
that both model 4e and 4f have the best correspondence with measurements. Since in the
Chapters 3 and 4 model 1f, which can be transformed to model 4f by interchanging o; and
8;, has been discussed, model 4f is preferred.
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The Boussinesq-like equations pertaining to model 4f read

3 3
i, %[(hq)u] = B | ey I8y 2 ] +

ot dx?or ax*or (4.52)
d 6212u u
ety
du ac _ *hu *u
e - hi(l _y
g e [ AP axzaz] ’
_ (4.5b)

0x ax

3
o gh <1+v3)—x—2[ f’—f} - m%}

1L S
630

18 630

a =

B~2+‘/1—9—‘/7— B_z_ﬁé'ﬁ
179 2 63

63 29
.= -0.111 y, = -0.823
, = 0.394 v, = 0.500

In the next two sections model 4f is compared with both measurements and the results with
the DUT2 model, which is introduced in Chapter 2, for the wave conditions A and C.

67



Boussinesq modelling with higher-order dispersion

5.2.4 Comparison between model 4f, DUT2 and measurements
Wave condition A
In this section model 4f and DUT2 are compared with measurements. In this manner the

importance of the higher-order dispersion can be made clear.

Specifications of model 4f:

Ar = (.00625 s
Ax = 0.01250 m
(0] = q-sin(w-r)
&x(r) = -qk-cos(w-f)
(o) = -ak*sin(w-1)

where ¢=0.01 m
w=27/2.02 rad/s
k=1.7 m.

The value for k is computed from the dispersion relation (3.12) for 7=2.02 s and #=0.4 m.
At the right boundary the weakly reflecting boundary condition is applied as described in
section (4.4).

The specification for {(#) in DUT2 equals that in model 4f. The other specifications of the
DUT?2 model are given by Bosboom (1995). Here, only the numerical results are used.

In Appendix E the results of the computations with model 4f together with the measurements
are presented. In Appendix F the results of DUT2 together with the measurements are

presented for comparison.

From the figures of Appendix E it can be seen that the correspondence at all locations is
quite accurate. This holds especially for the wave profile, indicating that the dispersion is
represented very well. The small deviations in amplitude are due to the shoaling errors.
From comparing the results of DUT2 in Appendix F with the results of model 4f and the
measurements, it follows that the correspondence is improved significantly at locations X=19
m and X =21 m, whereas at the other locations both models perform equally well. This result
is ascribed to the higher-order dispersion.

In section 5.2.1 it is mentioned that in case of long waves the simplification of the
specification of the derivatives of { with respect to x by taking them equal to zero, is a fair
approximation. The specification of =0 and {xx=0 gives the same results as the correct
specification. This is expected since in wave condition A at the beginning of the flume fairly
long waves are considered (kh=0.67). Thus, for wave condition A it is allowed to simplify
the boundary conditions for the derivatives of { with respect to x.
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Wave condition C

The correspondence of model 4f with measurements is very good in the case of wave
condition A. Here model 4f is subjected to a comparison with measurements and DUT2 in
case of wave condition C, where shorter waves are considered. In this case the dispersion
characteristics become even more important. For this test the following specifications are

used.

Specifications of model 4f:

At = (0.003125 s
Ax = (0.01250 m
(0] = g-sin{w-f)
&x() = -qk cos(w-r)
oxx(r) = -ak?-sin(w*7)

where ¢=0.0205 m
w=27/1.01 rad/s
k=42 m.

The value for k is computed from the dispersion relation for 7=1.01 s and #=0.4 m.

The time step Ar has been halved, since the wave period has been halved. The spatial step
has not been changed, since smaller values for Ax than 0.01250 m give floating point errors
during solving the matrix of difference equations. Therefore the CFL number equals 0.5,
which is good enough since small deviations are allowed, see section 5.1.

The specifications of the DUT2 model for condition C are given by Bosboom (1995) as well.

In Appendix G the results of the computations with model 4f together with the measurements
are presented. In Appendix H the results of DUT2 together with the measurements are

presented for comparison.

From the figures of Appendix G it can be seen that the correspondence at all locations is still
good but less accurate than the correspondence for wave condition A. However, this is
expected, since shorter waves are considered. It is remarkable that the computational
amplitude at location X=2 m is too small, but at farther locations the computational
amplitude recovers. Perhaps the measurements are not accurate at X=2 m.

It is mentioned that the numerical warm-up time is about 6 seconds longer than the physical
warm-up time. Therefore the computed signal is shifted 6 periods to the left.

From comparing the results of DUT2 in Appendix H with the results of model 4f and the

measurements, it follows that the correspondence is improved significantly at locations
X =17.3 m and X=19 m, whereas at the other locations both models perform equally well.
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However, it is remarkable that the correspondence at location X=21 m is so good, since
especially for DUT2, the correspondence at earlier stations is less good. This can be
explained by the fact that not all higher harmonics have already arrived at the farthest

focations.

For wave condition A the consequences of the simplification of the specification of the
derivatives of { with respect to x have been considered. By numerical experiments it turns
out that it is allowed. The simplification in the case of wave condition C is considered as
well. The results of the computation with the specification of both {x and {xx equal to zero
are presented in Appendix I. From these results it can be seen that at all stations the
amplitude is too small. The exception is location X=19 m, where the correspondence is
extremely good, but this is considered to be accidental. From the comparison of the results
obtained by correct boundary specifications (Appendix F) and simplified boundary
specifications (Appendix I) it is concluded that in the case of wave condition C it is not
allowed to simplify the boundary condition. The value for k% in this the case of condition C
equals approximately 1.7 which indicates that the waves are in intermediate depth.

5.3 An additional test by recomputing DUT2 results with Keller’s Box method

In this section, the Box method is used in order to integrate the equations (2.1), on which
the DUT?2 model is based. The results are recomputed for wave condition A for the locations
X=13.5 m and X=17.3 m. By this test it is shown that the numerical method solves indeed
the problem that is desired to solve and possibility to solve models which are a reduction of
the new Boussinesg-like equations.

The numerical model is based on the new Boussinesg-like equations, but set (2.1) is a
reduction of set (3.58). By changing some coefficients set (3.58) together with (3.59c¢) turns
into set (2.1). The relevant parameters are tabulated below.

o 0

a, 1/15

B, 0

B, 2/5

i any number
Y2 any number
Y3 0

V4 5/12
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The specification of the boundary conditions and the mesh-sizes is equivalent to specifications
for wave condition A, see section 5.2.4. The Box method results and the DUT2 results are

presented in figure (5.10) and (5.11).
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From figure (5.10) it can be seen that the results are almost equivalent. However, from
figure (5.11) it can be seen that small deviations occur. Probably, the DUT?2 mesh sizes are
not small enough for an accurate representation of free-moving higher harmonics, since from
comparison with measurements, see for example Appendix F, it seems that Keller’s Box
method gives better corresponding results. From this test it is concluded that the numerical
method based on Keller’s Box method is an appropriate method to integrate both the new
Boussinesg-like equations and reductions of the new Boussinesq-like equations.
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6 Conclusions and recommendations

In this thesis, a set of Boussinesq-like equations with higher order dispersion is optimized
with respect to the shoaling characteristics. Subsequently, a numerical method is formulated
in order to integrate Boussinesq-like equations and tested. In section 6.1 the conclusions of
this study are drawn and in section 6.2 some recommendations for further investigation are

presented.
6.1 Conclusions
Derivation and optimization of Boussinesq-like models

Boussinesq-like models with a linear frequency dispersion which corresponds to the [2/2]
Padé expansion of the exact linear dispersion relation in the parameter (kh)?, have been
derived by Dingemans (1994b). The models have been optimized with respect to the shoaling
characteristics. The derivation of the Boussinesq-like equations is performed by operator
correspondence. Four basic models can be formulated, which contain only (mixed) third-
order and lower order derivatives and which are valid for horizontal bottom.

Extending the equations for applications of uneven bottoms results in 48 different models.
Of these models, 24 models turn out to have equivalent optimized linear shoaling
characteristics. The optimized shoaling characteristics compared with the shoaling
characteristics according to linear theory match very well up to kh=5, whereas the dispersion
relation pertaining to the Boussinesq-like model is accurate up to k2=8. These results are a
significant step forwards compared to the common Boussinesq-like models.

Formulation of a numerical method for integrating Boussinesq-like equations

In order to integrate Boussinesg-like equations by Keller’s Box method, it is necessary that
the third-order Boussinesq-like equations are transformed in a set of first-order partial
differential equations by means of introduction of new variables. Since the Box method is an
implicit scheme all equations have to be solved simultaneously every time step. The matrix
to be solved is a block-diagonal matrix.

This matrix can be reduced to a hepta-diagonal matrix, which is relatively easy to solve with
a Thomas algorithm. However, it turns out that it is not possible to solve this matrix using
the diagonal elements as usual, but a slightly different procedure should be followed, see
Appendix A. This is caused by a poor matrix-condition. The consequence of the different
solving technique is that no other Boussinesg-like equations which are reductions of the set
considered here, can be solved. Therefore, a slightly different method is considered. Instead
of reducing the block matrix to a hepta-diagonal matrix, a diagonal matrix is constructed with
a band-width of 17 elements, in which the block-diagonal fits exactly. The condition of the
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matrix can be enhanced by changing the sequence of equations and/or variables. The standard
Thomas algorithm can be applied, which allows solving other Boussinesg-like equations.
With regard to the specification of boundary conditions it is mentioned that the Box forces
the user to specify six boundary conditions, which is in fact equal to the number of boundary
conditions demanded by the differential equations. In order to have a stable model it is
needed that at both boundaries three variables are specified. The combination {, {x and {xx
at one boundary and u, ux and wxx at the other boundary is most attractive, since no
assumptions have to be made for the relation of { and the computational velocity u.
Unlike other methods used in Boussinesq-context where often only two boundary conditions
have to be specified, the Box method provides full control on the problem, but the boundary
conditions should be treated with care.

Verification and validation

By means of numerical experiments both the (numerical) linear dispersion and the
(numerical) linear shoaling characteristics are determined. From a comparison between the
linear analytical characteristics pertaining to the new Boussinesq-like equations and the
numerical characteristics, it is concluded that the numerical model represents the linear
characteristics very well. This holds especially for the dispersion characteristics.

In Chapter 3 24 models remained which all have the same optimized linear shoaling
characteristics. By subjecting these models to a comparison with measurements it has turned
out that best correspondence is obtained by both model 4e and model 4f, which gave identical
results. Model 4f is preferred, since model 1f, which has been discussed in detail in Chapter
3 and 4, can be transformed to model 4f by only interchanging «; and B;. Subsequently,
model 4f has been subjected to a comparison with measurements and DUT?2 results for wave
conditions A and C.

From these tests it is concluded that in the case of wave condition A, the results are very
good, even at the farthest locations X=19 m and X=21 m where DUT2 deviates clearly. In
the case of wave condition C, the correspondence with measurements is less good than for
wave condition A. However, the performances of model 4f and DUT?2 are similar as far as
the back of the bar, but from this point model 4f performs better than DUT2. The better
performances of model 4f are ascribed to the higher-order dispersion relation of the new
Boussinesg-like equations.

Summarizing it is concluded that the higher-order dispersion results in a significant
improvement in the correspondence with the measurements of wave condition A and C. With
the new Boussinesq-like equations the applicability of Boussinesq modelling for wave
propagation over uneven bottoms has been increased.
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With regard to Keller’s Box method for solving Boussinesq-like equations it is mentioned that
it satisfies for several reasons:

- the method is quite fast,

- the method gives full control over the boundary conditions,

- the application of a weakly reflecting boundary gives no complications.

Only when very small mesh-sizes, which are not needed for an accurate solution instability

oCcCurs.

6.2 Recommendations

The derivation of the Boussinesq-like equations with higher order dispersion is performed by
a kind of back-door procedure. First the dispersion relation is formulated and subsequently,
the pertaining equations are constructed. Thus, no use is made of a mass- and momentum
balance principle. Using balance principles can give more insight in how to specify the
boundary conditions.

Although the method used for optimizing the shoaling characteristics give excellent results,
this does not mean that no other combinations of =, exist, which lead to equivalent linear
characteristics but to different (and perhaps better) non-linear shoaling characteristics. To find
this out, further investigation is needed.

It is indicated that when at the {-boundary the value kh ¢ 1 the specification of the
derivatives is important. When random waves are considered, the specification of the
derivatives becomes more important according as the frequency of the wave components
increases. In order to determine the derivatives with respect to x, the {(t)-record can be
transformed into Fourier components. These components can be differentiated with respect
to x. The summation of these differentiated components yields the signals for {x and {xx.
It should be investigated whether this procedure is appropriate for application to random

waves.

With regard to the matrix-solver it is mentioned that, although the 17-diagonal solver is quite
fast, perhaps more efficient methods exist to solve the actual block-diagonal matrix.

During convergence investigation it has turned out that the possibility of mesh refinement is

limited. Especially when Ax is refined instabilities occur. It should be investigated what
really causes this phenomenon.
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elevation amplitude
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imaginary elevation amplitude
phase velocity

group velocity

imaginary velocity amplitude
energy per m’

acceleration of gravity

wave height

water depth

shoaling coefficient

wave number

wave lenght

reflection coefficient

wave period

time

(computational) velocity

first derivative of the (computational) velocity with respect to x
second derivative of the (computational) velocity with respect to x
horizontal coordinate

shoaling coefficient

exact linear shoaling coefficient

Boussinesq linear shoaling coefficient

surface elevation

first derivative of the elevation respect to x

second derivative of the elevation with respect to x
damping coefficient
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Appendices
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Appendix A Constructing and solving the heptadiagonal matrix

In this appendix an alternative diagonal matrix is formulated. The purpose is to show a
different method to solve the linear differential equations. The advantage of this method is
that only a heptadiagonal matrix is constructed which demands less memory than the used
17-diagonal matrix. However, it appears that the resulting diagonal matrix is poorly
conditioned. Therefore, a slightly different solution technique has to be applied, which is

decribed below.

We start with the equation (4.14). For the sake of convenience equation (4.14) is repeated
here

[CL; Cr.i] [QQ} =[r, 1, 0000 (A.1)
J+1

Sweeping the matrix[Cl, Cr,,,] in such a way that a heptadiagonal matrix is left, yields
j J*l y

Ciy €y €3 €4 €5 €6 €7 0 00

11 12 13

0 €y € €3 €y Cp5 Cg €y 0 0

0

0
[Cl. . = 0 0 ¢ €3 €33 €y €35 C36 ¢33 0 0 (A.2)
o 0 0 ¢ Cp €y Cy Cps €45 €y O

O O O O o

0
0 0 0 0 ¢y ¢y €5y €y Cs5 C Co
0

0 0 0 0 C61 C62 C63 C64 C65 C66 C67

Notice that the right-hand side of equation (A.l) is swept as well.



A system that encompasses the whole x-domain, reads

MQ =R (A.3)
where
Cl, Cr, i
Cl, Cr,
M =
a,, Cr,

cl,., Cr,
= [ - T
R ‘[’1 Py T3 Ty Is Ts o o Tog T T Tem re"]

Q = [Q() Q[ L Q.I-l QJ]T

Working out the elements Cl; and Cr; shows that M is a (6]) x (6J+6) heptadiagonal matrix.

Solving the system of linear equations

As in the case of the 17-diagonal matrix, the first three elements of Q, and the last three
elements of Q, are specified as boundary conditions and are moved together with the
corresponding elements in matrix M to the (known) vector R. The resulting system now
reads M Q = R where M equals a hepta-diagonal (6] x 6J) matrix and both Q and R are
vectors with lengt (6]). The Thomas algorithm is a very efficient method to solve tridiagonal
matrices. Since we are dealing with a heptadiagonal matrix, the Thomas algorithm is
extended.



Solving the heptdiagonal matrix with an extended Thomas algorithm

Now, the matrices M and R read

d e fi & (]
1
¢, d, ¢, f, & r
2
by ¢; dy ey f; & .
3
a, b, ¢, d, e, fi & ,
4
as by ¢ dy es  fi & -
5
M = s R -_—
a b o, d . e, f To-a
o4 Pssa Cosa 9ey-a Coia Joua 8e-a
a b C d e f or-3
-3 Dar-s Coz Yoz €z Jouz Ser-s
a,., b, c,., d,, e, f Tor-2
o-2 P2 Cor U2 o2 Jora
a,. b, . c,.d, e oot
6 -1 6/ -1 6/-1 6J-1 &/ -1
r./
6761 l’é! Ces ‘16J L (IA;.Z )

To solve the matrix M, the matrix is swept three times from top to bottom and three times
from bottom to top. The first sweep makes the elements a; equal to zero by

a.

a. _
row, = row, - ——row,_, , 1, =r~—r._, i=456..6 (A.5)

i i
i-1 i-1

The second sweep makes the elements b; equal to zero by

. b.
_ _ i s . s
rOwW; = row, = —1ow,., , R R 3.4.,5,...,.6J (A.6)

i-1 i-1

The third sweep makes the elements c; equal to zero by
¢ ¢ .
row, = row, - ——row,_, , r, =r-——r_ , i=234,.6& (A.7)
i-1 i-1

We continue the procedure with three sweeps in opposite direction. The fourth sweep makes
the elements g; equal to zero by
" égi . é:[ .
row, = row, - =~ row, ro= r-—Ltr i = (6J-3),(6J-4),...,1 (A.8)

f i+l i i f i+l
Ji+l i+l



The fifth sweep makes the elements f; equal to zero by
; Y
row,, , r =7r-

ei+l i+l

row, = row, -

i+l

And, finally, the sixth sweep makes the elements e; equal to zero by

e, 4
oW, » I i

i+l i+l

row, = row; -

i+l 2

The matrix M is reduced to single diagonal matrix and reads

i = (6J-2),(6J-3),...

CrL = (6-1),(60-2),..

The matrix Q can easily be calculated by

r.

qiz_(z’ | =

1 (A9
.1 (A.10)
(A.11)
(A.12)
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Appendix C Numerical results of models 1f, 2f, 3f and 4f compared
with measurements
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Figure C.1 4 Basic models at X=13.5 m
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Figure C.3 4 Basic models at X
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Appendix J The optimized shoaling coefficient «”

In this appendix the numerical evaluation of the optimized shoaling coefficient is given. The
optimized §; have already been substituted. The shoaling coefficient reads

1 2 4 6 8 10 12 14 16
S0, 0 00 0 1, P40,

ol = a1
(1 +b2(]2+b4q4+b6(]6+b8q8)2

where

q = kh
and

a, = -0.1390

a, = -(.2490-10"

ag = 0.4393-10°

ag = (0.4898-10*

ay = -0.3970-10°

d;y = 0.1356-10°

Ay = 0.1150-10°%

dis = -0.1600-10°
and

b, = (.2222

b, = 0.3668-10"

b, = 0.9406-10*

bg = 0.1680-10"



