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SUMMARY
Migration constructs a subsurface image by mapping band-limited seismic data to reflectors
in the Earth, given a background velocity model that describes the kinematics of the seismic
waves. Classically, the reflectors correspond to impedance perturbations on length scales of
the order of the seismic wavelength. The Born approximation of the visco-acoustic wave
equation enables the computation of synthetic data for such a model. Migration then amounts
to solving the linear inverse problem for perturbations in density, velocity, and attenuation.
Here, the problem is simplified by assuming the density to be constant, leaving only veloc-
ity and attenuation perturbations. In the frequency domain, a single complex-valued model
parameter that depends on subsurface position describes both. Its real part is related to the
classic reflectivity, its imaginary part also involves attenuation variations. Attenuation scat-
tering is usually ignored but, when included in the migration, might provide information
about, for instance, the presence of fluids. We found, however, that it is very difficult to solve
simultaneously for both velocity and attenuation perturbations. The problem already occurs
when computing synthetic data in the Born approximation for a given scattering model: after
applying a weighted Hilbert transform in the depth coordinate to a given scattering model,
we obtained almost the same synthetic data if the scatterers had small dip and were located
at not-too-shallow depths. This implies that it will be nearly impossible to simultaneously
determine the real and imaginary part of the scattering parameters by linearized inversion

without imposing additional constraints.
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1 INTRODUCTION

The oil and gas industry acquires seismic data to obtain an image
of the subsurface that may reveal hydrocarbon bearing formations.
Because a 3-D full visco-elastic inversion is computationally still
out of reach, various approximations of the wave equation are em-
ployed, often based on ray tracing or one-way wave equations. These
are often sufficiently accurate to obtain a structural image. A pre-
cise characterization of the subsurface that allows for volumetric
estimates of the amounts of hydrocarbons in place requires a more
accurate description. Visco-acoustic or visco-elastic full waveform
inversion is computationally tractable in a 2-D approximation. How-
ever, the presence of local minima in the least-squares misfit func-
tional makes the solution of the inverse problem difficult. One cause
for this problem is the absence of low frequencies, below 8—10 Hz,
in the seismic data.

The inverse problem becomes considerably simpler when lin-
earized. Classic methods for velocity analysis provide a back-
ground velocity model. An operation called migration maps the
band-limited seismic data to reflectors in the subsurface. Mathe-
matically, this method amounts to a single iteration of a gradient
based minimization of the least-squares misfit functional between
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observed and modelled data, using the Born approximation of the
wave equation. Because this approximation assumes single scatter-
ing, the direct arrival and multiple reflections should be removed
from the data before migration.

Examples (Jstmo et al. 2002; Mulder & Plessix 2004) show that
with proper weighting or preconditioning (Plessix & Mulder 2004),
one or a few iterations with the conjugate-gradient method suffice
to obtain a solution to the inverse problem when using the Born
approximation of the constant-density visco-acoustic wave equa-
tion. The method works in the frequency-domain and reconstructs
scatterers that represent perturbations of the background velocity
model. In the frequency-domain, these are represented by complex
numbers. The real part is almost entirely related to impedance per-
turbations, usually caused by abrupt changes in rock properties. If
we include the imaginary part, we can formally obtain both ve-
locity and attenuation perturbations. The latter, however, appeared
to have no relation to physically realistic values in our numerical
experiments.

To better understand why it may be difficult to reconstruct the
imaginary part of the scattering perturbations, we consider the
simple case of a 1-D model consisting of horizontally layered
scatterers in a homogeneous background for the constant-density
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visco-acoustic equation in Section 2. The scatterers correspond to
perturbations both in velocity and attenuation. In Section 3, we
derive the scattered wave field in the high-frequency case by means
of the method of stationary phase. It turns out that there is an ambi-
guity that already occurs at the forward-modelling level: if we apply
a weighted Hilbert transform in the depth coordinate to the scat-
terers, we obtain almost the same reflection data as for the original
scatterers. As a consequence, least-squares fitting of observed data
will lead to an inverse problem that is close to singular. We show
that the ‘true-amplitude’ migration of the data, which amounts to
the first iteration of a preconditioned conjugate-gradient minimiza-
tion of the least-squares error, produces a reconstruction of the
perturbations that is the average of the original and the transformed
scattering model and has a minimum-norm property.

In Section 4, we address the question to what extent these conclu-
sions carry over to a complex velocity model and dipping reflectors.
We perform 2-D finite-difference simulations with a frequency-
domain code that solves the system of equations that represents the
Born approximation of the constant-density visco-acoustic wave
equation.

We discuss the results in Section 5 and summarize the main
conclusion in Section 6.

2 GOVERNING EQUATIONS

Migration maps seismic data recorded at the Earth’s surface into
an image of the subsurface. The implicit assumption is that the
data only contain primaries and that surface or interbed multiples
are absent or negligible. We can generate such data using the Born
approximation of the wave equation. In this approximation, the sub-
surface model is split into a part that does not produces significant
reflections in the seismic frequency band and perturbations that
generate the reflection data. For the acoustic wave equation, reflec-
tions can be avoided by defining the density in such a way that
the impedance is constant. For constant-density acoustics, we use
a smooth background velocity. The perturbations are then obtained
as the difference between the original rough velocity model and its
smoothed version that serves as the background model.

In the frequency domain, the constant-density visco-acoustic
wave equation is

wZ
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Here p(w, x) is the pressure, @ = 27 f with f the frequency,
s(w, X) is a source term and the complex velocity v(w, X) is given
by (¢f. Aki & Richards 1980, eq. 5.88)

11 1 i
v—c[l anaﬁu»+2Q}
with real-valued velocity c(x) and quality factor Q(x). The latter is
usually much larger than 1. Causality requires the logarithmic term
with reference frequency f.

By linearizing eq. (1) with respect to the model, we obtain the
Born approximation

—w'vopo — Apy =5, —w'vpr — Apr = &’ po. )

with model parameters v = v=2 = v, + v;, where vo(w, X) = vaz

represents a smooth background velocity model v, that should not
produce significant scattering in the seismic frequency band and
vi(w,X)=v"% — vy 2 a perturbation term that is responsible for the
scattering of incoming waves. For simplicity, we will assume that
vi(w, X) = v((x), independent of w.
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For the Fourier transform in time, we adopt the convention
p(x,t) = Qm)™! ffow P(w, x)e™ ' dw. We will denote the Hilbert
transform of a function g(z), depending on z, by H.[g]. This amounts
to convolution with (77z)~! in the depth domain.

3 3-D HOMOGENEOUS BACKGROUND
WITH 1-D SCATTERING MODEL

3.1 Scattered wavefield

We make the following simplifying assumptions. The background
velocity model is defined by the constants ¢y and Qy, whereas the
perturbation v;(z) only depends on depth. The source is a delta
function located at x, = —h < 0, y; = 0, z;, = 0, and we consider
a single receiver at x, = +h, y, = 0, z, = 0. We assume that o is
finite but large enough to justify the application of the method of
stationary phase.
The background pressure is given by the 3-D Green’s function

R eikorv w
Po(w, X) = kh=—, ri=+V(x+h?+y*+22

4mr,’ Vo

Note that k¢ is complex because vy is. The scattered field at the
receiver is

00 ) 00 2eiko(s+rr)
ﬁl(a),h):/ dx/ dy/ dz Tentrr vi(2), 3)
—00 —o0 0 T sty
with . = /(x — h)? + y*> 4+ z2. We assume that scattering only
occurs beyond a depth z,, > 0, so vi(z) = 0 for z < z,,.
Integration over x and y of eq. (3) with the method of stationary
phase leads to

iwcy
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with
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3.2 Ambiguity

While inspecting migration images obtained with a 2-D constant-
density visco-acoustic finite-difference code, we noted that the
real and imaginary parts resembled each other’s Hilbert transform.
This suggested that demigration, which amounts to forward mod-
elling of the scattering model obtained by migration, would yield
data that should closely resemble the original data. This indeed
turned out to be the case and led to the conclusion that a given
scattering model and its Hilbert transform, with suitable weight-
ing and scaling, would produce the same data. For the simpli-
fied model problem considered in this section, this means that
ff‘;o dz fip should be the same as —iffzo dz fi’H.[n]. Because
[ dz fiH.[u] = — [ dz wH.[ f1], we can proceed without 4(2)
and concentrate on H_[ f1]. If we could prove that iH.[ fi] = fi,
then we would have demonstrated that  and —iH,[] would lead
to the same data for arbitrary p(z), so for any scattering model. It
will turn out that iH.. [ fi] and /' are different, but that the difference
may be small.

To evaluate the integral /; = H,[f1], we consider the closed
contour C sketched in Fig. 1, which can be interpreted as two
closed contours glued together, one in the first quadrant of the
complex plane and one in the third. The integral

1
I(z) = ;‘/;Zflfi)d;‘ =0.
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Figure 1. Two closed contours are glued together to evaluate H[ fi]. The
blue lines mark the branch-cuts of /A2 + ¢2. The cross indicates the pole.

Now [ = 11 + 12 + ]3 + 14 + 15, with 11 = Hz[ﬁ],lz the
contribution at the pole ¢ = z, I3 the result for the arc in the
first quadrant when its radius goes to infinity, /4 the integral over
the imaginary axis downward, where we have to stay on the proper
side of the branch-cut of /42 + ¢2, and I5 the result for the arc in
the third quadrant. The residual theorem yields /, = if(z) at the
pole if z > 0. For z < 0, we have to traverse the pole, which now lies
on the negative real axis, from below, resulting in [, = —if(z).
Therefore, /,(z) = if(z)sign(z). The arcs provide /3 = 0 and
Is = 0. The integral over the imaginary axis leads to

1 0 e2ikon/ 2 =7
/ d(in) ————
oo z—1

Ii=-— = —ilAE) + fA@)
with

25 1 eia 1—n2 25 oo e—a,\/nz—l
fZ(Z)Z;/O d’?m, fs(Z)Z;/ d’?w-

Here Z = z/h and o = 2koh with @, = Rea > 0 and o; = Im o >
0. As a result,

Ja(@) = isign@YH-[/i] = /i + (/2 + f3) sign(z). ©)

We have now found that iH.[ f1] and /| are different. Apart from
the extra factor, sign(z), which is just a technicality if u(z) = 0 for
z < 0, there is a remainder (f, + f3)sign (z). If we could show
that both | /| and | /3| are significantly smaller than | /', |, we would
have the relation isign(z)H.[ f1] =~ fi. Then, the recorded pressure
is proportional to

f dz A = —i / dz fi (Y. () sign(2)],

which implies that almost the same data will be observed for v,(z)
and 7y(z) = —il|z|H.[vi(2)/z].

Before considering the remainder ( f, + f3) sign (z), we will use
eq. (5) to refine the definition of the depth-weighted, scaled Hilbert
transform. We assumed earlier that v,(z) = 0 for negative z. The
transformed model ¥,(z), however, may have non-zero values for
negative z. Because f(z) is symmetric in z, we can take ¥;(z) for
z < 0, mirror it with respect to z = 0, and add it to the transformed
model at positive z. This can be summarized by defining the depth-
weighted, scaled Hilbert transform of a function g(z) as

Mglz) = &(z) + &(—2), &(z) = —ilz[H:[g/=],

where z > 0, and we assume that g(z) = 0 forz < 0.

It still remains to be shown under which conditions the term in
eq. (5) with f, and /75 is small relative to /1. We list some bounds
that may help to evaluate for which parameters of the background
model and for which depths, given by Z = z/ A, f, and f; are much
smaller than /. We have

il = eV,
and, assuming Z > 0,
2z (! 1 2
< = dn ——— = — arctan(1/Z2),
Ile_n/O ) = aetan(1/2)

whereas

5 oo —ar(n—1) 5
A2 ot =
— ) 1+ n? o, 1+ 22

The bounds for | f,| and | /3| are not very sharp.

To understand the bound on 7, recall that « = 2koh = a; + ia;.
If the damping of the background model is small, then o; < o,
and Reky >~ w/cy. The bound for /| merely states that the data
amplitudes for larger depths will decrease due to damping. Note that
the amplitude decay due to the geometrical spreading is contained
in the factor 1/z that was absorbed in the definition of w. If | f}]
becomes significantly smaller than 1, then the data will not be useful
in practice when noise is present.

The bound on f3 contains «,, which generally is much larger
than 1—otherwise the method of stationary phase would not be
applicable. As a result, the bound on | /3| is much smaller than the
bound on | f5].

At this point, it still is not clear whether or not the term with
f2 + f5 in eq. (5) is much smaller than f; so, we will continue
with a numerical example.

3.3 Example

We choose a background velocity ¢y = 1500 ms™!, a quality factor

Qo = 100, a frequency f = 15 Hz and a reference frequency f; =
1 Hz. These are typical values for a marine seismic survey. Fig. 2
plots the moduli of 1, f andf7 as a function of z /4 for half-offsets
h of 50 and 1000 m. We observe that /| is much larger than f, and

f3 over a range of depths. The contribution of /3 can be neglected.

At larger depths, the graph of | /|| drops because of the damping in
the background medium. By the time it reaches f>, the signal may
have become too weak to be useful in practice, in the presence of
noise, multiples and so on. At the other end, where depth is small
relative to offset, we can no longer neglect /. For a large range of
depths, however, the term f, + f3 in eq. (5) will be small relative
to f 1-

Evenif f, + f7is small compared with f1, P, = ff; dz [ fa(2)+
f3(2)]sign(z) u(z) does not have to be small relative to P, =
ffzo dz fi(z)u(z). Figs 3 and 4 show that f(z) is oscillatory,
whereas £, is smooth and /5 negligible. If 1(z) represents an iso-
lated reflector localized at not too small a depth, with a thickness of
the order of the wavelength of the dominant signal or less, we can
expect P, to be smaller than P;. If, however, u varies slowly over
many oscillations of f, the net result may be that P, becomes of
the same size or smaller than P,.

We will first give a numerical example and then study the spatial
Fourier transform in depth to obtain more insight into which models
wu(z) will provide similar data after a weighted Hilbert transform.
Fig. 5 shows a scattering model with a number of isolated reflectors
and its transform. The recorded pressure data are displayed in Fig. 6,
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Figure 2. Moduli of f, f2, f3 at half-offsets of 50 and 1000 m, showing that /| dominates /7 and /3 over a substantial range of depths. Note the difference

in range for the vertical axis between the two cases.
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Figure 3. Real (left-hand panel) and imaginary (right-hand panel) part of £, f2, f3 at a half-offset of 50 m, showing that /| dominates /> and f3 over a
substantial range of depths but is also far more oscillatory. Note the logarithmic scale for z/4.
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Figure 4. As Fig. 3, but for a half-offset of 1000 m.
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Figure 5. The left-hand panel shows the scatterer model v;(z). The blue line represents the real part of the squared slowness perturbation, the green line its
imaginary part. The right-hand panel displays M[v;], its scaled, depth-weighted Hilbert transform.

x10°

Re p1(h)
=
—

0 500 1000 1500 2000 2500 3000
h (m)

x10°

Im pq(h)
o

0 500 1000 1500 2000 2500 3000
h (m)

Figure 6. Real part (left-hand panel) and imaginary part (right-hand panel) of the recorded pressure, in arbitrary units, as a function of the half-offset 4. The
blue line represents the pressure for the original model, the red one the difference between the data for the transformed and original model.

together with the difference between the data for the transformed and
original model. The differences are an order of magnitude smaller
than the data for the entire range of half-offsets. We found a similar
behaviour for smaller and larger frequencies within the typical seis-
mic frequency band of 8-80 Hz or so. This clearly illustrates that
two different models, related by a scaled, depth-weighted Hilbert
transform, provide nearly identical data.

Note that the data difference between the two models could have
been computed directly by taking a scattering model v; — M[v,].
This implies that a given scattering model v,(z) can be ‘cloaked’
by replacing it with v; — M[v,], shown in Fig. 7 for the current
example.

3.4 Fourier representation

To learn more about which scattering models provide more or less
the same data before and after a weighted Hilbert transform, we
consider the Fourier transform in depth.

The spatial Fourier transform [i(x) as a function of wavenumber
« is defined in such a way that u(z) = (2)~" [*_ dk fi(k)e"*. Note
that the use of the hat in the notation is potentially confusing, as we
used it earlier for the temporal Fourier transform. We can write

| e heme = [ aiwa6o,

where

G = 5 [ dz fie = ot /1, ©

with n = ,/4k? — k2. This is a generalization of eq. (3.914) in
Gradshteyn & Ryzhik (1965). Here H'" (¢) is a Hankel function
of the first kind. Note that G(k) = G(—«) for real k. Also, jﬂ(x) =
27G (k). Recall that Re ko > 0 and Im &y > 0.

In the Fourier domain, the Hilbert transform amounts to mul-
tiplication by — isign (k). The Fourier transform of fi(z) =
isign(z)H.[ f1] is

Jalie) = —iH, [ fi (k) sign()].

Because we have assumed that pu(z) = 0 for z < z,, with z,, > 0,
we should have u(z) = H(z)u(z), where H(z) is the Heaviside or
unit step function. This results in & = —iH, [4] and

[ dic Ja)jitic) = / dic J30)ju(i) sign(—).
If 4(z) >~ f1(z), we find that

[ dic Ji)fu(k) sign(—x) ~ / dic Fi)a(e). ™)

oo —
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Figure 7. Model that directly produces the data difference in Fig. 6 and
therefore can be considered a cloaked version of the original model in Fig. 5.
The blue line corresponds to the real part and the green to the imaginary
part of vi — M[v].

This means that the recorded pressure hardly depends on the positive
wavenumbers of fi(x).

As an illustration, Fig. 8 displays the Fourier transforms of /| and
f4 for a half-offset of 50 m. The other parameters are the same as
before. The real part has large peaks at k = £Re 2k, which is the
wavelength of the scattering model to which the wavefield is most
sensitive. The functions ]A(‘I(K) and ﬂ(/c) agree quite well except
for small «, where a singularity in ﬁ(/c) appears. Fig. 9 shows the
same functions at a half-offset of 1000 m. The singularity at « = 0
is prominent. At this larger offset, the wavefield is sensitive to a
wider range of wavelengths, involving the less oscillatory compo-
nents of the scattering model. This fact was exploited by Sirgue &
Pratt (2004) to reduce the number of frequencies required to obtain
sufficient wavelength coverage in frequency-domain full waveform
inversion.

From these figures, we learn that the effect on the recorded data
of the difference between f1(«) and f3(x) will be small if /i(x), the
Fourier transform of the scattering model, does not contain small
wavenumbers. This means that u(z), or v,(z), should be sufficiently
oscillatory as a function of depth. Since u(z) was defined as the

Offset 50 m
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1200 —Re f ,

1000} “Rehi ]

800 1
600 1
400 1

200F 1

077 -
-200f V

]
|
!
-0.1 -0.05 0 0.05 0.1 0.15
K
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depth-weighted difference between a rough earth model and its
smoothed version, it will be oscillatory by construction. As seismic
data are band-limited, linearized inversion or migration will only
construct the oscillatory components of the scatterers—the bound-
aries between different types of rock. In that case, the ambiguity
will show up. We will consider this next.

3.5 Migration

Given measured data, we can reconstruct the reflectivity v;(z) by
solving the inverse problem. In geophysics, this operation is called
migration. Migration is usually implemented as a single iteration
step for a gradient-based minimization method with a suitable
weighting or preconditioning, based on the diagonal of the Hessian
of the inverse problem (Beylkin 1985; Docherty 1991; ten Kroode
et al. 1994; Gray 1997; Chavent & Plessix 1999; Shin et al. 2001;
Plessix & Mulder 2004).

Consider the least-squares error J = %Zh,w |D1(w, h) —
P8 (w, h)|?, where p; = Fv; are modelled data and p¢* observed
data for receivers located at a finite number N, of offsets. The lin-
ear operator F is defined by eq. (4). The inverse problem requires
the solution of F1Fv; = F"pos. Here FM denotes the conjugate
transpose. The Hessian F™ F is singular or close to singular, as
follows from the previous section.

The weighted migration result is

o0
Z1l pi _
m(z)) o Y :wZ/ dz, 121 it Koy, (z,).
w,h Zm 2

Here ry, =, /zi + h? for k = 1, 2. The asterisk denotes the complex
conjugate. The weighted Hilbert transform, H.[m/|z,|], involves
H.[f;]. Therefore, H,[m/|z1]] = i(m/|z1]). This shows that m/|z|
has a minimum-norm property in the following sense.

Among all linear combinations (1 — w)u — wiH[u] with com-
plex w, the one with w =! has the smallest norm. To prove this,
we start with the norm of a complex-valued function a(z): ||a|| =
[/, lal*dz]"/. The Hilbert transform of a(z) is abbreviated as
a = H[a], and we set b = —id. Then by = Reb = & = Ima

and b; = Imb = —a, = —Rea. The Hilbert transform has the
property that ||a,|| = ||&| and ||ai|| = ||a]|. Also, [ abidz =

—[Z addz = 0 and [ abdz = [ addz = 0. Let

Offset 50 m
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—Im f;
-~ ~-Im f,,l
5001 ]
|
|
i
0 P |
=500t . . . , . ]
-0.1 -0.05 0 0.05 0.1 0.15
K

Figure 8. Fourier transforms of f|(z), the kernel between the scattering model and the recorded pressure, and f4(z), its weighted Hilbert transform, at a
half-offset of 50 m. The left-hand panel shows the real part of these functions, the right-hand panel the imaginary part. The functions fi(x) and f4(«) are nearly
identical at larger wavenumbers «. The peaks in the real part occur near k = £Re 2kg.
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Figure 9. As Fig. 8, but for a half-offset of 1000 m. Again, the functions fl (k) and ﬂ(K) are nearly identical at larger wavenumbers «. The differences at

small wavenumbers are substantial.

¢ = (1 — w)a + wb and choose w = 1 4 B. Using the properties
mentioned above, we find that ||c||? = %Ha + b2+ 181216 —all?,
which is smallest for 8 = 0.

It is easy to show that the linear combination with the smallest
norm, po = 3(u — iH[u]), obeys po = —iH[o]. As we found
earlier that this relation approximately holds form /|z; |, we conclude
that migration of measured data provide a reconstruction of the
model that approximately has this minimum-norm property.

A similar conclusion can be reached by considering the spatial
Fourier transform discussed earlier in Section 3.4. If the ambiguity
occurs, the recorded pressure is fairly insensitive to the positive
wavenumbers of [i(x) according to eq. (7). We then can choose
(k) = 0 for k > 0 without significantly changing the data. This
implies ji(k) = —sign(k)(x), so u = —iH.[u]. The result is the
same as the minimum-norm solution obtained by migration. The
ambiguity can be removed by requiring the scattering model to be
purely real-valued or purely imaginary. In the Fourier domain, a
purely real-valued scattering model is obtained by setting m (k) =
m*(—«) for positive k, whereas the choice m(x) = —m*(k) leads
to a purely imaginary scattering model.

4 2-D NUMERICAL EXAMPLE

So far, we have considered a simple 1-D model problem with hor-
izontally layered scatterers in a 3-D homogeneous background and
found that two different models provide nearly the same data. We
wondered to what extent this conclusion holds in a more complex
background model with dipped reflectors. We therefore generated
synthetic data with a 2-D frequency-domain finite-difference code
(Dstmo et al. 2002; Mulder & Plessix 2004), using the Born ap-
proximation, and compared data for a given and for a transformed
reflectivity model.

The transformation had to be slightly modified to account for the
fact that the 2-D data represent the response of a line-source. The
asymptotic result for a homogeneous model with layered scatterers
is

(i—D? [® (1 + (h/2)"]"*
827k Jo Jz ’

instead of eq. (4). For small 4, this suggest depth-weighting by ./z
instead of z; so, we define

PP (. h) ~

dz fi(z)u(2)

M;[gl(z) = &2(2) + &2(—2),
with

() = —i[1H. [¢() signz)/ V|-

Fig. 10 shows the velocity and inverse quality factor for a simple
salt-dome model. We smoothed the complex-valued squared slow-
ness and obtained the perturbation v; as the difference between the
original and smoothed model. Fig. 11 displays the real and imagi-
nary part of the perturbation. Fig. 12 depicts M;[v,], the result of
applying a weighted Hilbert transform in depth and multiplication
by —i. A vertical cross-section is displayed in Fig. 13.

We computed synthetic data in both models for a shot at x; =
1000 m and a depth z; of Sm. The receiver line had positions x,
between 1100 and 5000 m at an interval of 25m and z, at 5m
depth. We solved the pair of equations that represents the Born
approximation of the wave equation with absorbing boundaries on
all sides and transformed the frequency-domain data to the time
domain with a suitable zero-phase wavelet having most of its energy
between 6 and 27 Hz. Fig. 14 shows the reflection data and the
difference between data for the transformed and for the original
model, using the same scale. The data are clipped, and the colour
scale emphasizes small amplitudes. Weak reflections generated by
the absorbing boundaries and aliased in time are visible. The data
agree remarkably well, as can also be seen in Fig. 15. Only the
first strong sea-bottom reflection and refractions at large offsets for
reflectors at shallower depths show a large difference, as do the
reflections from the more strongly dipped interfaces.

We carried out a true-amplitude two-way wave-equation migra-
tion (Plessix & Mulder 2004) of a synthetic marine data set gener-
ated for the same 2-D model as before. Fig. 16 shows the real and
imaginary part of the result. Fig. 17 displays a vertical cross-section
of the 2-D ‘true-amplitude’ image at a distance of 2 km from the
origin. We observe that the real and imaginary parts of the complex-
valued migration result m(x, z) are related by m >~ M[m], as in
the simple constant-velocity layered case. Discrepancies occur in
the shallowest part and at depths around 1.5 km. The first is related
to the strong reflections off the sea bottom, where the depth-offset
ratio z/h is small. Fig. 2 shows that the approximate equality no
longer holds in that case. The second discrepancy around a depth
of 1.5km is caused by the presence of the nearby steeply dipping
salt flank. Apart from these two differences, the figures agree with
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Figure 10. Original model with velocity c (left-hand panel) and inverse quality factor 1/Q (right-hand panel).
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Figure 11. Real (left-hand panel) and imaginary (right-hand panel) part of the squared slowness perturbation v.
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Figure 12. Real (left-hand panel) and imaginary (right-hand panel) part of of the transformed perturbations.
the fact that the migration selects the minimum-norm scattering As mentioned before, the result can be made unique by imposing
model of the kind that was explained in Section 3.5 for horizon- constraints. If the result is assumed to be free of attenuation scat-
tal reflectors. This result appears to also hold for slightly dipping tering, we can simply select the real part. If we assume that only
reflectors. attenuation scattering is present, we have to select the imaginary
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Figure 13. Cross-sections at 2 km distance from the origin. The left-hand panel shows the real (blue) and imaginary (green) part of the scatterers, the right-hand

panel shows the scatterers after the depth-weighted Hilbert transform.
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Figure 14. The data (left-hand panel) and the difference (right-hand panel) between data generated in the transformed and in the original model, both with the
same scale. We applied a clip at 5 per cent of the maximum absolute value of the data in the left-hand panel.
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Figure 15. Single trace at 100 m offset. The blue line represents the data
for original model, the red dashed line for the transformed one.

part. Without such constraints, inverting for both at the same time
in a linearized sense will be problematic.

5 DISCUSSION

We have shown that two different scattering models provide almost
identical data. This implies that it, in practice, it will be impossible to
uniquely determine both the velocity and attenuation perturbations
from the data, unless with additional constraints. The transformed
model, for instance, when added to the background model, corre-
sponds to unphysical values of the perturbed attenuation, both in
size and sign. Suitable constraints on the admissible solution will
reduce, but possibly not remove, the ambiguity. Requiring the result
to be without attenuation will remove the ambiguity, as will the
constraint that the scattering is caused by attenuation perturbations
only.

Our result seems to contradict conclusions on visco-acoustic in-
version by several authors, including ourselves; so, some comments
are in place.

The existence of non-radiating sources (Bohm & Weinstein 1948;
Goedecke 1964; Bleistein & Cohen 1977; Devaney 1978; Devaney
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Figure 16. Real (left-hand panel) and imaginary part (right-hand panel) of the migration result.
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Figure 17. Cross-sections of the migration image at 2 km distance from the origin. The blue line represents the result for the original model, the red line for
the transformed one. The real part is shown in the left-hand panel, the imaginary part in the right-hand panel.

& Marengo 1998) can be related the non-uniqueness in scattering
by noting that the product of the incoming wavefield with the the
scatterer potential acts as a secondary source (Devaney & Sherman
1982; Hoenders 1997; Devaney 2004). According to Devaney &
Sherman (1982), the non-uniqueness in scattering should disappear
if multiple experiments are performed, for instance, at more than a
single offset.

Ribodetti et al. (1995) and Hak & Mulder (2008) consider delta-
function type perturbations or point scatterers. Its Fourier transform
in depth contains long-wavelength components, including the zero
wavelength. As demonstrated in Section 3.4, the ambiguity disap-
pears for small wavenumbers that correspond to long wavelengths
and linearized inversion should therefore be feasible. For scatterers
that resemble the first or higher derivative in z of a delta-function
or Gaussian with small width, the long-wavelength components are
small and the ambiguity should appear. This happens in the 2-D ex-
ample presented here. The sea bottom is an exception, as are shallow
refractions at large offsets and reflections off dipping interfaces.

Ribodetti et al. (1995) demonstrated that density, velocity, and
attenuation perturbations can be recovered by inversion, but they
only consider perturbations in one of these parameters at a time.
With the constraint that the inverted parameter is either real or
imaginary, the ambiguity is removed. Similarly, Blanch & Symes

(1994) only consider a perturbation of the bulk modulus or bulk
modulus and density (Blanch & Symes 1995) in a visco-acoustic
background model.

Ribodetti & Virieux (1998) presented linearized inversion results
for scattering by blocky models. The Hilbert transform of a square
wave has logarithmic singularities at positions corresponding to the
ramps of the square wave. Such singularities should be visible as
large peaks. Indeed, the reconstructed attenuation profiles in the
paper by Ribodetti & Virieux (1998) sometimes show peaks at the
jumps, rather than the under- and overshoots next to these jumps,
which are typical for least-squares inversion of blocky models in the
real-valued case. Also, Innanen & Weglein (2007) consider blocky
models that contain long spatial wavelengths, and can invert for the
scattering model parameters.

We should emphasize that our observations do not relate to atten-
uation estimates from diving waves or direct arrivals in crosswell
or VSP transmission data. These provide a characterization of the
background model.

6 CONCLUSION

We have demonstrated that different scattering models provide
almost the same data if attenuation scattering is included. The
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ambiguity occurs for scatterers with small dip that are located
sufficiently deep and that have an oscillatory character. The last
condition is typically met when migrating seismic data. Because
the data are band-limited, the migration algorithm will only be able
to reconstruct the difference between a rough earth model and its
smoothed version. This difference is oscillatory by definition. As a
consequence, attenuation scattering imaging will be nearly impos-
sible without imposing additional constraints. The ambiguity can
be removed by requiring the scatterer to have no attenuation at all
or to be purely attenuative.
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