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Abstract

The use of Internet of Things (IoT) devices has experienced an increase since its
inception and is expected to continue to do so. However, this growth has also
attracted individuals with malicious intentions. Botnet attacks on IoT devices have
become more potent each year, exploiting new vulnerabilities and attacking more
devices. Therefore, it is imperative to improve countermeasures. N-BaIoT is a
frequently used dataset that covers botnet attacks in various stages of the botnet
life cycle. Nevertheless, when examining the state-of-the-art utilizing the dataset,
there are certain limitations that need to be addressed.

One limitation is the lack of detailed feature analysis in most studies. This
results in less comprehension of the behavior of the malicious and benign data
in the dataset, leading to a lack of feature optimization. Feature optimization is
crucial as it improves the computational time of the model and makes it efficient to
deploy in real-life applications. Another limitation is the uneven distribution of the
malicious and benign data, resulting in unreliable evaluation scores. This issue
has not been addressed in many studies.

The main contribution of this thesis is the development of a hybrid ensemble
model to detect IoT botnet attacks faster and accurately. Additionally, the aim of
this study is to provide a clear analysis of the behavior of the malicious and benign
data and optimize the number of selected features. In the hybrid ensemble model,
a minimal number of features will be utilized to evaluate performance. The com-
parison will be achieved by taking into account both the unbalanced and balanced
datasets used for training and testing. By considering both datasets, the limitation
of the distribution can be highlighted by examining the distinct performance of each
dataset, making the comparison extensive and reliable.

The results indicate that the selected features and detection models proposed
in this research outperform those of other studies. In both cases using the bal-
anced and unbalanced sets, the performance score and computational time are
improved. In addition, this is achieved by using fewer features compared to sev-
eral studies.
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1
Introduction

The use of Internet of Things(IoT) devices has experienced an increase in recent
years and is expected to continue to do so in the future [45]. This trend has at-
tracted the attention of malicious actors. Among the most notorious attacks on IoT
devices are botnet attacks. Due to the relative simple firmware of these devices,
it is not difficult to convert them into bots and use them to carry out attacks on
services, such as DDoS attacks.

It is imperative to develop effective countermeasures against these attacks. De-
tection schemes have proven to be effective means of identifying potential botnet
attacks and mitigating them before they cause significant harm. However, botnet
attacks have become more potent over time, with new attack types infecting addi-
tional devices before they can be detected. Therefore, it is crucial to ensure that
countermeasures continue to evolve and improve to combat these threats.

1
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1.1. Background
One of the most notorious botnet attacks on IoT devices occurred on September
19, 2016, when the Mirai botnet launched two concurrent DDoS attacks against
the French hosting firm OVH, generating a combined bandwidth of over 1 terabit
per second [17]. The attack was orchestrated by a botnet comprising 145,607
devices, primarily digital recorders and IP cameras. This attack was twice as big
as the largest attack ever recorded by Akamai and would have resulted in millions
of dollars in losses for the company if it had continued.

The threat did not end there, as a new variant of the Mirai malware was dis-
covered in December 2017, capable of exploiting ARC processors [8]. Given the
widespread use of these processors in IoT devices, an estimated 1.5 billion devices
worldwide could have been vulnerable. Furthermore, a similar variant known as
Satori conducted an attack that caused hundreds of thousands of Huawei routers
to go offline.

On August 19, 2021, Cloudflare was targeted by a botnet variant called Meris
[25]. This time the botnet sent 17.2 million false requests per second to the com-
pany’s servers, overwhelming their capacity to handle 25 million HTTP requests
per second. As a result, the company’s services were suspended for a period
of time. The same botnet also attacked the Russian internet company Yandex,
which received 21.8 million bogus requests per second from 250,000 IoT devices
worldwide. To put this in perspective, the Mirai attack in 2016 generated a total of
450,000 requests per second.

Finally, a new variant of the Mirai malware, known as V3G4, was discovered in
the second half of 2022 [29]. This variant exploits 13 additional vulnerabilities in
both Linux and IoT devices, including data centers, servers, routers, and air spots
among others.

1.2. Problem
It is evident that new variants of botnets will continue to emerge, affecting more
devices through novel forms of attacks. It is therefore imperative to ensure that
countermeasures advance in parallel. In the context of detection schemes, the
selection of the dataset for analysis and assessment is the most impactful step.
These datasets are generated by executing various botnet attack scenarios, ren-
dering earlier datasets outdated as they do not account for recent botnet exploita-
tions. Recent studies indicate that the N-BaIoT dataset [32] is frequently utilized
due to its inclusion of data from numerous attack scenarios that earlier datasets
fail to consider [34].

However, examining the literature employing the dataset reveals several limita-
tions that need to be addressed. First, the dataset contains far moremalicious data
than benign data, as highlighted in [33], leading to inflated assessment scores, a
concern that many studies fail to address. Furthermore, most research employs
auto-encoders or other algorithms to identify relevant features, followed by the
use of a random number of these features for model training. There is limited
discussion on the relevance of the chosen features or justification for the number
of features selected, which is essential for feature optimization [34][2][30][10]. Fi-
nally, the models employed for detection and evaluation are often basic ones from
a library [30][6]. Modified versions, such as hybrid methods, often utilize deep
learning methods. These models have a slow computational speed, which often
gets compensated by using fewer data for training and testing [35][21]. This can
be attributed to the lack of feature selection and the detection models chosen.
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1.3. Contributions
This research aims to address the problems discussed and the proposed work
is expected to resolve a significant number of them. The contributions of this re-
search are outlined as follows:

• A hybrid ensemble model will be designed and developed to detect botnets
utilizing machine learning techniques, namely Logistic Regression, Decision
Tree, and Histogram-based Gradient Boosting (chapter 3). The main ob-
jective is to improve accuracy, precision, recall, and f-1 score, while also
reducing the computational time in comparison to current methodologies.

• The features of the dataset will be analyzed in more detail than the current
literature (chapter 4). The correlations and the behavior exhibited by the mali-
cious and benign data will be identified and scrutinized through the utilization
of kernel density estimates, heatmaps, and the SelectKBest methods. The
optimization of feature selection will prioritize the selection of the minimum
number of features while maintaining optimal performance. This will result in
expedited training and testing computations.

• There will be a critical analysis of the literature (chapter 2). With an emphasis
on addressing the limitations of the state-of-the-art and highlighting how the
proposed work will improve it.

• The proposed model will be evaluated by comparing the accuracy, precision,
recall, f1-score, and computational time against the existing literature (chap-
ter 5). Furthermore, the model will be assessed on both uneven and even
distributed datasets to ensure reasonable and realistic scores.

1.4. Thesis structure
To realize the aforementioned contributions several steps need to be taken. The
subsequent chapters of the report are structured in the following manner. In chap-
ter 2 the existing literature will be examined pertaining to the contemporary IoT
botnet attacks, fundamental aspects of botnets, a critical evaluation of the current
detection schemes, and the details of the dataset. In chapter 3 and chapter 4 the
design and implementation of the feature selection and the hybrid model will be
discussed. In chapter 5 the results of the method will be compared against the
prior research. In chapter 6 and chapter 7 potential future improvements and the
conclusion of this research will be discussed.



2
Background and Related Work

Numerous variations of IoT botnets exist, yet they do exhibit a common structure
and the majority share numerous similarities. This chapter delves into the concept
of botnets and presents the latest research on botnet detection from published
work.

4



2.1. Botnets 5

2.1. Botnets
To comprehend the functioning of a botnet, several steps must be undertaken.
First, an examination of the life cycle of botnets, as it appears to be the most com-
mon trait shared amongmultiple botnet variants. Second, it is crucial to understand
the types of attacks executed by the botnets and the harm they can inflict.

2.1.1. Lifecycle
The software architecture of an IoT botnet can vary depending on several factors,
including the targeted vulnerabilities, devices, and attack types. As a result, iden-
tifying a common structure in their architecture can be challenging.

Nevertheless, some studies have attempted to generalize botnets. Although
the terminology used to describe the phases of the IoT botnets may differ, the
descriptions of these phases are similar.

In [11], a survey is conducted and the distinction between traditional botnets
and IoT botnets is discussed, along with various software architectures and de-
tection techniques for botnets. The life cycle is explained in four steps. First, an
initial infection of the device. Followed by a connection with the command and
control, attacks using the botnet, and finally a search for more vulnerable devices
to convert into bots.

In [1], the life cycle is broken down into five steps. Seeking out vulnerable
devices, followed by accessing the target device, infecting the device, establishing
communication with the command and control, and executing the command and
control’s orders to launch botnet attacks.

In [9], it is simplified further into three steps. Infecting devices into bots, com-
municating with the command and control, and executing malicious actions sent
from the control center.

In [48], the architecture and life cycle of the botnet are explained in the most
straightforward and comprehensive manner. In Figure 2.1 the life cycle of an IoT
botnet is broken down into three phases.

Figure 2.1: IoT Botnet life cycle phases

The phases consist of scanning, propagation, and attack:

• Scanning phase: In the initial stage, the adversary conducts a search for vul-
nerable devices. Upon discovering one, the adversary employs either brute
force or an exploit to gain access. Once the device has been compromised, it
transforms into a bot and begins to communicate with the botmaster through
the command and control.

• Propagation phase: The second stage entails installing and executing a
bot’s source code on the device. Once this procedure is completed, the
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device transforms into a bot and integrates into the botnet. Several measures
could be implemented during this phase to conceal the source code or other
indicators of the device’s compromise. The code also instructs the bot to
search the network for more vulnerable devices. However, the bot remains
inactive until directed by the botmaster to initiate a botnet attack.

• Attack phase: During this phase, the bots are instructed by the botmaster
to execute an attack. This can be a DDoS attack, cryptocurrency mining,
spamming, and other similar activities. The botmaster transmits the instruc-
tions through the command and control system, which guarantees that all
bots receiving the command will execute the same action.

The architecture required to execute the necessary operations is displayed in
Figure 2.2, which includes the attacker/botmaster, the malicious infrastructure, the
IoT devices, and the target for the attack. The components are listed and num-
bered in conjunction with the life cycle of the botnet.

During steps 1 and 2 the scanning phase is executed, where the bots in the
botnet search for vulnerable IoT devices, also known as victims. This is informed to
the malicious infrastructure consisting of the command and control and the servers
utilized for deploying the botnet source code.

The propagation phase is executed during steps 3 and 4, where the known
vulnerable devices are accessed, and the bot source code is installed. Once this
is accomplished, the device will be integrated into the botnet under the botmaster.

Finally, the attack phase will be executed during steps 5-7, wherein the botmas-
ter issues the command to attack the target. The command is transmitted to all
the bots in the botnet by the command and control, following which the attack on
the target is initiated.

Figure 2.2: IoT Botnet architecture
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2.1.2. Botnet attacks
Having conducted an analysis of the infrastructure and life cycle of the IoT botnet,
it is crucial to take into account the diverse forms of attacks executed on the target.
This will be accomplished by examining various botnet versions to comprehend
the modus operandi of these attacks.

In [42], a survey was conducted on IoT botnet attacks, including an analysis of
the various motivations behind such attacks. The study identifies two main incen-
tives for botnet attacks: targeting specific individuals or groups and improving one’s
financial status. The paper also examines different types of botnet attacks, such as
Distributed Denial-of-Service(DDoS) attacks, brute-forcing credentials, and phish-
ing data from the affected devices, among others. The IoT botnet variant utilized
often determines the precise attack.

Two infamous botnet variants will be discussed to provide a detailed analysis
of the attacks, the Mirai and Bashlite botnet [46]. The Mirai botnet, in particular,
gained notoriety following its attack in 2016, making it one of the most well-known
and researched botnet variants in the literature. Numerous research focus solely
on studying the botnet. In [19], 7,500 IoT honeypots were used to examine the
infrastructure and behavior. The paper also explores potential strategies to stop
the botnet. In [22], the Mirai infection process is modeled and simulated. The main
objective is to comprehend the Mirai botnet infection process and evaluate the effi-
cacy of rebooting the infected IoT device as a preventive measure. In general, the
Mirai botnet conducts scans on vulnerable TCP/UDP ports and brute forces with
a set of default credentials to gain access to the device. This process is repeated
across multiple devices to establish a substantial botnet, which subsequently exe-
cutes DDoS attacks on large organizations.

The Bashlite and Mirai botnets share several similarities, primarily due to the
fact that the source code of Mirai is based on that of Bashlite. As a result, Mirai
is often regarded as a successor to Bashlite [5]. However, there are still notable
differences, and therefore Bashlite variants are identified separately fromMirai vari-
ants. In [31], the continued development of both botnet variants is outlined, along
with the distinctions between them. The Bashlite has more set and hardcoded
configurations compared to Mirai when selecting vulnerable devices and issuing
commands to the botnet. The Bashlite also sends out more commands than a Mi-
rai botnet. These commands are in plain text, whereas Mirai has encrypted ones.
The naming of the commands differs per variant, making it challenging to differen-
tiate. In contrast, the Mirai supports ten separate attacks and employs a binary
protocol to initiate them, making it easier to distinguish. Furthermore, once an IoT
device is infected, it does not always search for new vulnerable devices, unlike the
Mirai variants. Apart from these differences, the process for creating bots and the
type of attacks are similar.
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There exist additional variants and botnets that have received less scrutiny in
the current state-of-the-art, in contrast to the aforementioned two. This may be
attributed to the limited availability of source code or the fact that these botnets
target specific operating systems. Two such botnet variants are the Tsunami and
Dofloo botnets, which are distinct from the Mirai and Bashlite variants, as stated in
[15][14]. There are no studies that profile these two botnets like the Mirai and Bash-
lite variants, resulting in limited comprehension of the infrastructure. The Tsunami
botnet is deployed on the SSH server. It infiltrates Linux operating systems by
brute-forcing the login credentials. Once the device is transformed into a bot the
communication is maintained through the IRC protocol. The botnet is primarily
utilized for DDoS attacks.

The Dofloo botnet mainly targets devices with misconfigured Docker services.
It scans to identify exposed Docker APIs on port 2375 and subsequently deploys
malicious payloads containing the Dofloo source code to gain access to these
devices. Once the device has been compromised, the botnet can be deployed to
launch DDoS attacks and load cryptocurrency miners onto the infected machines.

2.2. Detection schemes
Studies have been conducted with the aim of detecting IoT botnets. Therefore it
is imperative to obtain an overview of the recent studies, while also identifying lim-
itations.

An analysis of recent literature reviews, surveys, and works on IoT botnet de-
tection reveals key factors in this domain. [48][42][26][4]. The important factors
are listed as follows:

• Dataset: Maintaining an up-to-date dataset is of paramount significance, as
novel botnet variants will exploit new vulnerabilities or execute novel types of
attacks. These exploits and attacks should be incorporated into the dataset,
enabling the model to detect these new scenarios.

• Feature analysis and selection: The analysis of the extracted features from
the data is imperative for the training of the model. It is essential to identify
the features that can distinguish between malicious and benign data. While
utilizing all features may yield satisfactory outcomes in certain scenarios, se-
lecting a subset of features can enhance the model’s computational speed
and reduce resource consumption during real-time deployment.

• Detection model: The identification of malicious and benign data within the
datasets is determined upon the utilization of this model. The selection of
the classifier integrated into the model or the model’s design will serve as
the decisive factor, and therefore, the most critical aspect.
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Table 2.1: Overview of the detection schemes

Ref. Year Detection
model

Number
of fea-
tures
utilized

Strengths Limitations

[12] 2022 KNN,GNB,SVC All Multiple datasets and mod-
els. Uses a balanced
dataset to avoid overfitting.

No computational time men-
tioned. No comparison with
other studies.

[23] 2020 DT, ETC,
RFC, SVM

All Multiple models. Slow computational time for
best-performing models. No
comparison with other stud-
ies.

[2] 2021 LR 19 Good performance. Computational time not men-
tioned. Limited comparison.
Uses little data for training
and testing.

[33] 2018 SVM, Iso.
For.

3, 5, 10 Multiple models, feature se-
lection methods, and aims
for feature optimization.
Examines the performance
with unbalanced and bal-
anced sets.

No comparison with other
studies. Requires different
models for each device. The
performance with the bal-
anced set is okay.

[6] 2021 LR,KNN,SVM 10 Multiple models. Looks into
multi-classification. Perfor-
mance is good.

Slow computational time.
No comparison with other
studies.

[49] 2022 Deep Forest 6 Good performance. Limited comparison. No
computational time men-
tioned.

[28] 2022 Optimized
Deep AE

22, 28,
31, 35,
36

Optimized auto-encoder to
improve accuracy and re-
duce complexity compared
to other deep learning meth-
ods. Good performance.

Requires different features
per device. No computa-
tional time mentioned. No
comparison with other stud-
ies.

[20] 2022 CNN 23 Good performance No computation time men-
tioned. No comparison with
other studies.

[10] 2022 Deep AE All Good performance No computational time men-
tioned. No comparison with
other studies.

[39] 2022 SGAN 23 Multi-classification. Good
performance. Good compar-
ison with other studies.

Uses little data for testing
and training. Slow computa-
tional time.

[44] 2022 Stochastic
Game Models

All Uses game modeling to de-
tect malicious data and pre-
dict how many devices are
infected.

No computational time men-
tioned. No comparison with
other studies.

[3] 2022 Image Pro-
cessing

23 Uses image processing for
feature selection. Good per-
formance.

No computational time men-
tioned. No comparison with
other studies.

[21] 2022 DNN-LSTM All Multi-classification. Good
performance. Great compar-
ison with other studies.

No computational time men-
tioned. Uses little data for
testing and training.

[41] 2023 IHHO-NN 15 Multi-classification. No comparison with other
studies. Slow computational
time.

[47] 2022 CVAE-RE-
KLD

All Good performance No comparison with other
studies. Limited statements
on the computational time.
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The N-BaIoT dataset [32][26] has emerged as a frequently utilized resource in
recent studies. Its utility lies in the inclusion of a diverse range of attack scenarios,
some of which were unexplored in previous datasets [34].

Numerous studies have utilized this dataset, as observed in Table 2.1. Sev-
eral studies already covered baseline classifiers, such as Logistic regression and
Support Vector Machines, among others [12][23][2][33][6][49]. Other popular clas-
sifiers are neural networks, particularly autoencoders [28][20][10]. Some instances
also utilize game theory and image processing as detection techniques [39][44][3].
Finally, there are hybrid models, detection models that combine multiple classifiers,
although thesemodels appear to mostly consist of neural networks [35][21][41][47].
It can be observed that the models deploying neural networks tend to be slower
and less adaptable.

Another issue is the feature selection. Most of the aforementioned papers uti-
lize a feature selection approach that involves scoring and ranking the features,
with the highest-ranking features being chosen for model training and testing. How-
ever, there is a lack of analysis demonstrating the behavior of the malicious and
benign data in each feature. Furthermore, there is no argumentation for the rank-
ings or why the selected features would effectively identify malicious data. On top
of that, the studies do not aim to optimize the number of features, which involves
minimizing the number of features while maintaining good performance. Instead,
all studies employ an arbitrary number of features without attempting to minimize
this quantity.

2.3. N-BaIoT
The N-BaIoT dataset was computed in 2018 [32]. According to IEEE, the dataset
has been referenced in 570 papers during this period. This dataset has gained
recognition due to its collection of data pertaining to a multitude of attacks on di-
verse IoT devices that were deployed in a laboratory setting.

There are nine distinct devices in total, including doorbells, thermostats, and
cameras. These are commonplace devices from various companies, indicating
diverse firmware. The attacks on these devices utilize two public source codes
of the Mirai and Bashlite botnets. The attacks conducted in the laboratory are
specific and encompass multiple phases of the botnet life cycle. This includes
scanning attacks to identify vulnerable devices, as well as flooding, spamming,
and DDoS attacks of the later stages. Each botnet source executed a total of five
different attacks, resulting in a total of ten different attacks for each device. In
addition, some unique instances such as the zero-case scenario were also taken
into consideration [34].

The dataset contains numerous features. There are 23 metrics computed over
5 sliding windows, culminating in a total of 115 features. The sliding windows have
a time delay of 100 ms, 500 ms, 1,5 sec, 10 sec, and 1 min. The 23 metrics are
aggregates that encompass packet size, package count, and their means across
various connection sources, such as IP, MAC-IP, ports, among others.

Figure 2.3: Distribution of the malicious and benign data in the Danmini Doorbell device
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There are several issues related to the utilization of the dataset in research stud-
ies. First, each device comprises approximately one million data points. Owing to
the extensive range of attack scenarios considered, the number of malicious data
points significantly exceeds the benign data points, as evidenced in Figure 2.3.
The distribution of the remaining devices is outlined in section A.1. This results in
overfitting, as even if all data points are predicted as malicious, the accuracy score
remains high, despite the model’s inadequate performance, as remarked by some
studies [33]. For this reason, the dataset that employs devices with uneven distri-
bution will be referred to as the unbalanced dataset, while the balanced dataset
will utilize an equal number of malicious and benign data points.

The second issue is the features. The inclusion of all 115 features would result
in longer training and testing times for the detection techniques. Moreover, the
practical application of the model in real-world scenarios would pose a challenge,
as computing 115 features for each incoming package is not feasible for a network.
Therefore, it is crucial to optimize the feature selection for this dataset.



3
Methodology

Having identified the state-of-the-art and the associated issues, it is time to con-
sider the method that will be utilized to improve it. The feature selection and detec-
tion model are components that require design and discussion. In Figure 3.1, the
complete process is illustrated. The steps required are sequentially numbered.

There are a number of procedures that require discussion. Initially, in steps 1
and 2 the N-BaIoT dataset is read in and preprocessed. This is followed by steps
3 and 4, which involve the feature selection resulting in the final set that comprises
the data for the selected features. Finally, the hybrid ensemble model is generated,
serving as the detection model encompassing the processes from steps 5 to 10.
The final labels computed in step 10 will contain the predicted labels generated by
the hybrid ensemble model, which will be utilized for evaluation.

Figure 3.1: The diagram with steps of the methodology

12
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3.1. Feature selection
Upon completion of data reading and preprocessing for the N-BaIoT, the sub-
sequent step involves feature analysis and selection. This is executed through
three techniques: the SelectKBest function, kernel density estimate plots, and
heatmaps.

3.1.1. SelectKBest
The initial method will involve utilizing a univariate feature selection technique
known as SelectKBest. This method has been employed in various studies [43][7].
The SelectKBest method selects the best features based on the outcomes of uni-
variate statistical tests. It retains the K features with the highest scores and dis-
cards the rest. The scoring tests are conducted using a chosen function, such as
chi-squared or F-tests, to estimate the degree of linear dependency between two
random variables.

In this model, the SelectKBest function will be applied to each device individ-
ually to identify the features with the highest scores. This is due to the observed
behavior of the features, which was initially determined through kernel density es-
timates. This will be elaborated further in chapter 4. The fundamental problem
was that the densities of the benign and malicious data were comparable across
all features. The highest-ranking features were determined by the scoring function
utilizing F-tests. Finally, the frequency of each feature across all the devices will
be computed to determine the optimal features for training and testing the hybrid
ensemble model.

3.1.2. Kernel density estimates
The subsequent step involves the utilization of two methods, one of which is kernel
density estimates. It is common practice to employ kernel density estimates for fea-
ture analysis [36][40]. Kernel density estimates are graphical representations that
employ a kernel, such as Gaussian or linear, to determine the highest density for
a particular value in the data. In essence, it is comparable to a histogram but with
real values, no bins, and an emphasis on determining densities for the data points.

In this case, the kernel density estimates will be utilized on each feature to
estimate the density of the malicious and benign data separately. The objective
is to identify features that exhibit a distinct high density on malicious data and a
dispersed density on benign data, or vice versa. This enables the features that
distinguish the behavior between malicious and benign data to be highlighted. It
will be applied to the features outputted by the SelectKBest method to optimize the
number of features further for training and testing the hybrid model.

3.1.3. Heatmaps
Another method that will be employed during this process is heatmaps. Heatmaps
have a wide range of applications [16][27]. While kernel density estimates exam-
ine features individually, heatmaps examine features collectively. Heatmaps can
illustrate the relationship between two features based on the function utilized to
calculate the correlation coefficient.
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In this case, two heatmaps will be generated for each device to exhibit the Pear-
son correlation between the features. The first heatmap will display the malicious
data and the second heatmap will display the benign data. The correlation coeffi-
cient will range from 0 to 1. If the coefficient between the two features is close to
0, it indicates that the features are uncorrelated, implying that the features are too
dispersed and have no relationship with each other. If the coefficient is close to
1, it suggests that the two features have a high correlation, indicating the features
are almost identical. Therefore, the coefficients should not be close to either 0 or 1.
This approach will primarily be used on the features resulting from the kernel den-
sity estimates to encourage the selection of features by ensuring that the chosen
features are not entirely uncorrelated and duplicates of one another.

3.2. Hybrid ensemble model
Upon completion of the feature selection process, the final set will be generated
in step 4, encompassing all data of the selected features of the device. This set
will be partitioned into the training, testing, and weight sets, which will be utilized
for the purposes of model training, testing, and weight computation. Finally, the
weighted ensemble calculation will be executed, to determine the final labels.

3.2.1. Classification models
The hybrid ensemble model comprises multiple steps. The initial process involves
training the model using the training set, as outlined in steps 5 and 6. There are a
total of three classifiers operating independently. Each model’s training, test, and
weight can be computed concurrently in this manner. The selection of the models
was based on their individual performance on the test and weight sets, as well as
their computation time for training and testing.

The classification models utilized in this study include Logistic Regressions,
Random Forest classifier, and Histogram-based Gradient Boosting classification.
These classification models are commonly employed in detecting botnets. Nu-
merous studies have employed Logistic Regressions for botnet detection on the
dataset [2][6]. The same applies to the Random Forest classifiers [23]. Thesemod-
els have demonstrated favorable computational time and detection performance.
However, the third model proved to be more challenging. Most of the other classi-
fiers recommended by the literature were found to be slow or ineffective at detect-
ing with limited features. After investigation, Histogram-based Gradient boosting
was identified as an effective method. It offered detection performances superior
to Logistic Regression and comparable to the Random Forest classifier. However,
it was found to be slower than the other models. But still outperformed models
such as Support Vector Machines, K-nearest neighbors, and Stochastic gradient
models, among others.

There are numerous advantages to opting for a hybrid model. Ensemble mod-
els operate on the philosophy that utilizing a group of experts is more effective
than a single expert [18][50]. An example is the Random Forest classifier, which
employs multiple Decision trees for classification. Following this theory, combin-
ing multiple different classifiers should yield superior outcomes than utilizing them
individually. Furthermore, the models can be employed in parallel, allowing for
separate execution of the train, test, and weight calculations for each model, as
can be seen in Figure 3.1. Therefore, assuming three models M1, M2 and M3,
then the computational time for each model is:
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Mt1 = tr1 + ts1 (3.1)
Mt2 = tr3 + ts3 (3.2)
Mt3 = tr3 + ts3 (3.3)

Here,Mt is the computational time for the model, tr is the training time, and ts
is the test time. It is also feasible to calculate the weights in parallel with the test set
predictions. This is primarily due to the fact that the weight set is smaller than the
test set, and these two computations can be executed independently. Given these
considerations and the weighted ensemble calculation enst, the total computation
time for the hybrid ensemble model is:

T = max(Mt1,Mt2,Mt3) + enst (3.4)

In short, the maximum time for one of the three models to train and test along
with the time to compute the weight ensemble calculation leads to the final label.

3.2.2. Weights
Upon completion of the training process, steps 7 and 8 follow. These two steps can
be performed concurrently as aforementioned. In step 7, a weight set is generated,
which constitutes a minor portion of the final set in step 5, prior to its division into
the training and test sets. The weight has to be dynamic and calculated fast to
minimize computational time. Given that the model is intended to analyze the
devices individually, fixed values may not be optimal for all devices. The next
fastest option is to utilize the weight set for each model, and accuracy scores are
computed to serve as weights, namely w1, w2, and w3. In the event that a model
performs poorly on a specific device, its weight will be reduced, and its prediction
will have a lesser impact on the final score.

3.2.3. Predictions
During step 8, the test set will be utilized to compute the prediction labels for each
model. The predicted label will be computed for each data point in the test set,
as the accuracy score will be determined only after the final labels are computed
in step 10. Following this step, three vectors will be generated for each model,
containing the predicted labels. Given that the test set is larger than the weight
set, it is reasonable to expect that this step will take longer than step 7.

3.2.4. Weighted ensemble calculation
Upon computation of the weights and predicted labels for each model, the two
components will be utilized in the weighted ensemble calculation, as outlined in
step 9. This calculation involves combining the weights and predicted labels to
compute the final label for each data point. Assuming there are four sets, W for
the weights, L for the predicted labels of the Logistic Regression, R for the pre-
dicted label of the Random Forest classifier, and H for the predicted labels of the
Histogram Gradient boosting classifier then:

W = {w1, w2, w3} (3.5)
L = {l1, ..., ln} (3.6)
R = {r1, ..., rn} (3.7)
H = {h1, ..., hn} (3.8)
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In this context, w1 is the weight for the Logistic Regression, w2 is the weight
for the Random Forest classifier and w3 is the weight for the Histogram Gradient
Boosting classifier. The weighted average will be calculated for each data instance
of the test set with index i. If the weighted average is above 0.5 then the label is
set to 1 else to 0. As shown in:

f(i) =

{
1, if w1∗li+w2∗ri+w3∗hi∑3

j=1 wj
≥ 0.5

0, otherwise
(3.9)

The proposed approach is characterized by its expeditiousness, simplicity, and
adaptability, which ensures the dependability of the final predicted label. This un-
derscores the necessity of employing three models, as the third model serves as a
decisive factor in the event of opposite predictions and identical weights between
two models. Upon completion of this computation for all instances, the resultant
set of computed labels will serve as the final predicted labels. Subsequently, eval-
uation scores will be computed over this set and compared with existing literature.



4
Implementation

Having discussed the methodology, the subsequent phase involves its implemen-
tation. This will be executed via a Jupyter Notebook utilizing Python 3.7 as the
kernel. The main libraries employed in this process are pandas, scikit, matplotlib,
numpy, seaborn, and time. These components will facilitate the implementation of
the data preprocessing, feature analysis and selection, and the hybrid ensemble
model, which will be discussed.

17
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4.1. Preprocessing
The preprocessing stage commences subsequent to the loading of a device’s data
from theN-BaIoT dataset. This process comprises three steps. First, the datamust
undergo normalization to reduce the impact of outliers on the predictions. This nor-
malization enhances the stability of the training and prediction. Failure to normalize
the data may result in negative performance effects caused by outliers, which can
inadvertently inflate scores. The MinMaxScalar function, an in-built method, has
been employed for this purpose. This method is a standard scalar and has been
utilized previously in the literature, thereby ensuring reliability in future compar-
isons. The method scales feature values within a specific range, with the default
range (0, 1) utilized in this instance.

The second phase involves creating the balanced set. Utilizing the dataset in
its current state would yield the unbalanced set, characterized by the uneven ratio
between malicious and benign data. Prior to anything else, the ratio between the
malicious and benign data must be calculated. This ratio will then be applied in the
sampling method of the panda library, which requires a fraction to determine the
sample size. The balanced set will be generated by means of random sampling of
the malicious data, resulting in a 50/50 distribution.

Finally, the dataset will undergo the process of label addition. The labels as-
signed will be 1 for the malicious data and 0 for the benign data. The resulting
labels will be incorporated into a new column within the panda data frame, along-
side the existing features.

4.2. Implementation of the feature selection
After the data preprocessing, the subsequent stage involves the feature analysis
and selection. In section 3.1, the argumentation behind the selection methods
along with their application was discussed. The implementation and the features
that have been selected will be displayed in the following section. As before, it
consists of three processes SelectKBest, kernel density estimates, and heatmaps.

4.2.1. Implementation of the SelectKBest
The scikit library features an integrated function for the SelectKBest method. As
indicated in section 3.1, the method will be executed on each device to obtain the
top three features, as illustrated in Listing 4.1

Listing 4.1: Code for the SelectKBest method
1 Kbest = SelectKBest(k=3)
2 X_new = Kbest.fit_transform(X, y)
3 list(compress(train_columns, Kbest.get_support()))

Here, X corresponds with the device’s data encompassing both malicious and
benign data, y with the labels for malicious and benign data, and k with the number
of features to be selected based on their scores. A list of the top three features of
the device is generated, which will be applied to all nine devices. The frequencies
of the selected features across all nine devices are presented in Table 4.1
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Table 4.1: Best scoring features across all devices

Feature Frequency
MI_dir_l1_weight,
HH_l0.01_std

3

HH_l0.01_pcc,
MI_dir_l0.01_mean,
H_l0.01_mean,
MI_dir_l0.1_weight,
H_l0.1_weight,
HH_l0.1_std,
HH_l0.01_radius

2

H_l1_weight,
H_l0.1_mean,
H_l0.01_variance

1

Based on the table, two features should be incorporated into the selection, as
they have received consistently high scores across three distinct devices. The
subsequent features will be selected from the next highest frequency. However,
these are numerous and require further analysis through the use of kernel density
estimates and heatmaps.

4.2.2. Implementation of the kernel density estimates
The kernel density estimates will be applied to analyze the distinct behavior be-
tween the malicious and benign data per feature. At first, the kernel density esti-
mates were computed for all features and devices, and these plots can be found
in section A.2. It should be noted that several features exhibit a clear distinction
between malicious and benign data by demonstrating a variation in density. There-
fore, all these features might serve as suitable candidates for training and testing
the models. This explains why some studies utilize numerous or even all features
and still achieve good results [34][28][23]. So, the SelectKBest method was em-
ployed to reduce the number of features until only the best remained.

Figure 4.1: MI_dir_L1_weight feature of the
Danmini doorbell device

Figure 4.2: HH_L0.01_std feature of the
Danmini doorbell device

In Figure 4.1 and Figure 4.2, the kernel density of the top two aforementioned
features is depicted for the Danmini doorbell. This figure illustrates the reason for
selecting the features. TheMI_dir_L1_weight feature exhibits a distinct peak for
the benign data, indicating a high density for a particular value, while the malicious
data is more sparse. This demonstrates that the feature is useful for identifying
benign data. On the other hand, the HH_L0.01_std feature displays the opposite
pattern, with a peak for the malicious data and a much lower peak for the benign
data, which is also more spread out. This suggests that the feature is effective at
identifying malicious data. Having one feature that is adept at identifying malicious
data and another one at identifying benign data simplifies the task for the classifiers
to discriminate between the two.
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Figure 4.3: MI_dir_L0.01_mean feature of
the Danmini doorbell device

Figure 4.4: HH_L0.01_pcc feature of the
Danmini doorbell device

On top of the aforementioned features, two additional features have been se-
lected as illustrated in Figure 4.3 and Figure 4.4. The selection of these features
was based on their similarity to the top two features, with each feature sharing a
common characteristic with one of the top two features within each device. The
main distinction is the distribution of the density between malicious and benign
data. These four features will play a pivotal role in the performance of the model,
which will be further elaborated in chapter 5.

4.2.3. Implementation of the heatmaps
The heatmaps will be utilized to elaborate on the interdependence between the
features. The main objective is to ascertain that they are not entirely uncorrelated
and that there is no excessive duplication between the features.

Figure 4.5: Heatmap of the features on the
benign data of the Danmini doorbell device

Figure 4.6: Heatmap of the features on the
malicious data of the Danmini doorbell device

In Figure 4.5, the heatmap displays the Pearson correlation among the benign
data. In Figure 4.6, the same can be observed for the malicious data. The absolute
values were computed for the Pearson correlation, to enhance the readability of
the heatmaps. Features with values greater than 0 and less than 1 are deemed
suitable for selection. Although certain correlation coefficients may appear low
when comparing the malicious and benign data individually, an overall examination
reveals that the correlation coefficients fall within a reasonable range.
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4.3. Implementation of the hybrid ensemble model
The hybrid ensemble model consists of four steps, namely model training, weight
computation, test set predictions, and weighted ensemble calculation. The imple-
mentation shall be discussed through the utilization of the source code.

Listing 4.2: Code for initializing and training the classifiers
1 LR_model = LogisticRegression();
2 RF_model = RandomForestClassifier();
3 grad_model = GradientBoostingClassifier()
4

5 start_LR = time.process_time();
6 LR_model.fit(X_train,y_train);
7 end_LR = time.process_time()-start_LR
8

9 start_RF = time.process_time();
10 RF_model.fit(X_train,y_train);
11 end_RF = time.process_time()-start_RF
12

13 start_third = time.process_time();
14 grad_model.fit(X_train,y_train);
15 end_grad = time.process_time()-start_third

In Listing 4.2, the code for initializing the classifiers and conducting the training
process can be found. The code is designed in a clear and concise manner. First,
the three models are initialized with the default parameters. This is followed by
training each model using the training set X_train, and the corresponding labels
y_train. Simultaneously, the computational time is determined by calculating the
difference between the start and end times of the model.

Listing 4.3: Code for the weight calculation
1 weight_1 = LR_model.score(X_weight,y_weight);
2

3 weight_2 = RF_model.score(X_weight,y_weight);
4

5 weight_3 = grad_model.score(X_weight,y_weight);
6

7 weights = [weight_1, weight_2, weight_3]

The weight calculation for each model is displayed in Listing 4.3. The code is
straightforward, as the accuracy score is determined by comparing the predicted
labels of the X_weight set with the ground truth labels y_weight. The resulting
weights are then stored in the weights array.

Listing 4.4: Code for the predictions
1 start_LR = time.process_time();
2 LR_label = LR_model.predict(X_test);
3 end_LR = time.process_time()-start_LR
4

5 start_RF = time.process_time();
6 RF_label = RF_model.predict(X_test);
7 end_RF = time.process_time()-start_RF
8

9 start_third = time.process_time();
10 Grad_label = grad_model.predict(X_test);
11 end_grad = time.process_time()-start_third

In Listing 4.4 the predictions over the test set are computed. Each model pre-
dicts the test set X_test, and the predicted labels are stored. Again The compu-
tational time is determined by calculating the difference between the start time of
the model and the time at which the prediction is completed.



4.3. Implementation of the hybrid ensemble model 22

Listing 4.5: Code for the weighted ensemble calculation
1 start_hybrid = time.process_time();
2 final_labels = []
3 for i in range(len(LR_label)):
4 predicted_class = (weights[0]*LR_label[i]+weights[1]*RF_label[i]+

weights[2]*Grad_label[i])/(weights[0]+weights[1]+weights[2]);
5 final_labels.append(int(round(predicted_class)))
6

7 end_hybrid = time.process_time()-start_hybrid

Upon completion of the computation of the weights and predicted labels, the
weighted ensemble calculation commences, as depicted in Listing 4.5. The re-
sultant labels will be computed using the weights and predicted labels from each
model and are then stored in the array final_labels. These labels will be utilized for
evaluation. Furthermore, the computational time is calculated in a similar manner
as the training and test time.

It is evident that each of the models can operate concurrently. Each section of
the code where a component is computed uses the models independently. The
code is designed to be simple and straightforward, thereby minimizing computa-
tional time while still delivering commendable performance.



5
Evaluation

Having presented the implementation, the next step is to proceed with the eval-
uation of the method. This will entail an initial assessment of the model’s perfor-
mance, as well as an examination of the features selected. Ultimately, the model’s
performance will be compared to relevant studies.

23
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5.1. Performance
To assess the performance of the model, a number of actions must be taken. First,
the evaluation metrics will be established to measure the efficacy of the model.
This will be followed by an examination of the selected features and the rationale
behind their selection over other options. The data of these features will then be
incorporated into the hybrid model, from which the metrics will be computed. This
study will also examine the performance of the hybrid model as the number of
selected features increases or decreases to determine the advantages and disad-
vantages of such changes.

5.1.1. Evaluation metrics
The selected metrics have been utilized in related studies [35][28][33][12]. By
employing these same metrics, it becomes easier to assess the effectiveness
of the model and compare it to other studies. The metrics used are Accuracy,
Precision, Recall, and F1-score. These metrics are calculated using the vari-
ables True Positive(TP ), False Positive(FP ), True Negative(TN) and False
Negative(FN), according to the following formula:

Accuracy is the metric that assesses the classification model by examining the
number of correct predictions to the entire dataset:

Accuracy =
TP + TN

TP + FP + TN + FN
(5.1)

Precision is the metric that examines the correctly identified malicious data to
the entire data identified as malicious:

Precision =
TP

TP + FP
(5.2)

Recall is the metric that examines the correctly identified malicious data to the
entire malicious data:

Recall =
TP

TP + FN
(5.3)

F1-score is the measurement of accuracy using precision and recall:

F1-score = 2 ∗ Precision ∗Recall

Precision+Recall
(5.4)

In addition to the aforementioned four metrics, the computational time will be
computed throughout the training, testing, and weighted ensemble calculation pro-
cesses. The overall computational time has been previously addressed in Equa-
tion 3.4.

It is imperative to note that the five metrics will be assessed on both the bal-
anced and unbalanced datasets individually. This approach will generate a reli-
able comparison of the outcomes with previous studies that have acknowledged
this issue and incorporated it into their evaluation. Additionally, it will highlight the
variations in performance based on the distribution of the dataset.
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5.1.2. Selected features
The model has been trained and tested using a number of three features, which
is lower than the number of features utilized in other studies, including those refer-
enced in [21][28][23][39]. These studies employ three, five, or even ten times as
many features, resulting in a near-linear increase in computational time. The stud-
ies often compensate by reducing the amount of data used for training and testing.
This study circumvents this by utilizing the unbalanced set, which contains all data
of the device. Furthermore, the evaluation is performed separately for each device
to facilitate comparison with other studies.

The features that have been selected for themodel have been discussed in sec-
tion 4.2. There are a total of four features, namely MI_dir_l1_weight, HH_l0.01
_std, MI_dir_L0.01_mean, and HH_L0.01_pcc. However, since only three fea-
tures will be utilized in the model, two different sets of features will be created
for training and testing. Both sets will include the two highest scoring features:
MI_dir_l1_weight and HH_l0.01_std as shown in Table 4.1. The third feature in
each set will be one of the remaining two selected features, either MI_dir_L0.01
_mean or HH_L0.01_pcc. This approach has been adopted to examine whether
alternating between the features that have a high density for either the malicious
or benign data, as depicted in Figure 4.3 and Figure 4.4, will have an impact on
the model’s performance.

Furthermore, this setup will employ a 10-fold cross-validation, which has been
implemented in several studies[21][33]. Other studies also employed a cross-
validation but with fewer folds or a test/train split[12][23]. However, the utilization
of these alternative approaches resulted in higher scores. Therefore, the 10-fold
cross-validation technique was selected for this study.

5.1.2.1. Set with HH_L0.01_pcc feature
The first set to examine will be the one containing the HH_L0.01_pcc feature.
The main objective is to evaluate the performance of two features that exhibit a
higher density of malicious data than benign, HH_l0.01_std and HH_L0.01_pcc,
alongside one feature that displays a higher density of benign data than malicious,
MI_dir_l1_weight. The rationale behind this approach is to incorporate two fea-
tures capable of identifying malicious data and one capable of identifying benign
effectively.

Table 5.1: The performance scores for the set with HH_L0.01_pcc feature

Device model Unbalanced dataset Balanced dataset
Accuracy Precision Recall F1-score Accuracy Precision Recall F1-score

Danmini doorbell 99.39 99.38 99.98 99.68 96.84 94.17 99.96 96.98
Ecobee 99.80 99.80 99.99 99.90 96.16 92.97 99.92 96.32
Ennio 99.32 99.26 99.98 99.62 97.45 95.38 99.77 97.53
Philips 99.89 99.98 99.98 99.98 99.94 99.95 99.94 99.94

Provision PT 737E 99.73 99.73 99.98 99.86 98.59 97.38 99.89 98.62
Provision PT 838 99.53 99.52 99.95 99.74 98.61 97.53 99.83 98.67

Samsung 99.39 99.34 99.96 99.65 98.11 96.48 99.92 98.17
SimpleHome XCS7 1002 WHT 99.09 99.06 99.98 99.52 92.24 86.80 99.91 92.89
SimpleHome XCS7 1003 WHT 99.24 99.24 99.99 99.61 87.67 100.00 75.49 86.02

The results are presented in Table 5.1. In general, the performance evalua-
tion yields a positive outcome. However, a clear distinction is observed between
the unbalanced and balanced datasets. This outcome was anticipated, given the
challenging nature of predicting the balanced dataset due to the distribution of ma-
licious and benign data. The majority of the scores obtained from the balanced
set are lower than those of the unbalanced set. The overall score of the unbal-
anced set is approximately 99%, while the balanced dataset has an overall score
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of around 90%. The balanced dataset of the SimpleHome devices exhibits the
most impact, as both devices score lower than 90%.

Table 5.2: The computational time for the set with HH_L0.01_pcc feature

Device model Unbalanced dataset Balanced dataset
Training time Test time Calculation time Training time Test time Calculation time

Danmini doorbell 86.12 0.09 0.376 6.602 0.016 0.032
Ecobee 82.25 0.075 0.344 1.755 0.002 0.009
Ennio 19.86 0.04 0.13 5.18 0.009 0.026
Philips 119.85 0.125 0.391 37.813 0.05 0.13

Provision PT 737E 84.44 0.094 0.31 9.978 0.022 0.05
Provision PT 838 83.605 0.105 0.306 17.016 0.033 0.0734

Samsung 19.395 0.044 0.13 5.595 0.014 0.036
SimpleHome XCS7 1002 WHT 90.57 0.092 0.31 7.07 0.015 0.032
SimpleHome XCS7 1003 WHT 85.28 0.078 0.31 2.204 0.006 0.014

In Table 5.2 the computational times are displayed, compromising three com-
ponents, the training and testing time for the longest-running classifier, and the
weighted ensemble calculation time as discussed in Equation 3.4. It can be con-
cluded that the computational time is proportional to the size of the dataset em-
ployed. For instance, the Philips device has the largest dataset and therefore
the highest computational time. Likewise, for the balanced dataset, the computa-
tional time is linked to the dataset with the highest number of benign data, as this
dataset is computed by selecting an equal amount of malicious and benign data.
The ensemble calculation is proportional to the size of the test data because the
computational time is computed over the predicted labels.

5.1.2.2. Set with MI_dir_L0.01_mean feature
The subsequent set comprises the MI_dir_L0.01_mean feature. This set con-
tains two features exhibiting a higher density of benign data than malicious data,
namelyMI_dir_l1_weight, andMI_dir_L0.01_mean, and one feature exhibiting
a higher density of malicious data than benign data, namely HH_l0.01_std. An
analogical reasoning to the previous set, albeit reversed, with two features capa-
ble of identifying benign data and one feature capable of identifying malicious data
effectively.

Table 5.3: The performance scores for the set with MI_dir_L0.01_mean feature

Device model Unbalanced dataset Balanced dataset
Accuracy Precision Recall F1-score Accuracy Precision Recall F1-score

Danmini doorbell 99.99 99.99 99.99 99.99 99.98 99.98 99.99 99.98
Ecobee 99.99 99.99 99.99 99.99 99.96 99.95 99.96 99.96
Ennio 99.95 99.97 99.97 99.97 99.95 99.97 99.93 99.95
Philips 99.97 99.99 99.97 99.98 99.97 99.98 99.96 99.97

Provision PT 737E 99.97 99.98 99.98 99.98 99.97 99.98 99.96 99.97
Provision PT 838 99.97 99.98 99.98 99.98 99.97 99.96 99.96 99.96

Samsung 99.96 99.99 99.96 99.98 99.96 99.96 99.97 99.96
SimpleHome XCS7 1002 WHT 99.99 99.99 99.99 99.99 99.98 99.98 99.98 99.98
SimpleHome XCS7 1003 WHT 99.99 99.99 99.99 99.99 99.92 99.88 99.96 99.92

The results are displayed in Table 5.3. The findings are excellent, with both
unbalanced and balanced data achieving approximately 99, 9% on all metrics for
each device. Although there is a slight variance in performance, with the unbal-
anced data yielding better scores than the balanced data, the distinction is almost
negligible.
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Table 5.4: The computational time for the set with MI_dir_L0.01_mean feature

Device model Unbalanced dataset Balanced dataset
Training time Test time Calculation time Training time Test time Calculation time

Danmini doorbell 98.24 0.11 0.366 8.173 0.014 0.036
Ecobee 96.83 0.095 0.356 1.981 0.00625 0.0109
Ennio 22.92 0.047 0.134 5.605 0.014 0.03
Philips 124.87 0.125 0.389 37.813 0.05 0.13

Provision PT 737E 83.64 0.11 0.302 12.64 0.022 0.055
Provision PT 838 85.93 0.111 0.295 21.52 0.03125 0.0797

Samsung 24.567 0.038 0.129 7.57 0.016 0.036
SimpleHome XCS7 1002 WHT 92.73 0.109 0.303 8.153 0.014 0.033
SimpleHome XCS7 1003 WHT 84.228 0.078 0.303 2.95 0.009 0.016

In Table 5.4 the computational time is displayed for the set. The computational
times are comparable to the preceding set. However, a slight decrease in speed is
noted. This could be attributed to the presence of a program running in the back-
ground on the computer or the inherent complexity of the feature, which may pose
challenges in training or testing the classifiers. The rationale behind the distribution
and size of the dataset also appears applicable in this context.

5.1.3. Other features selections
In addition to the application of three specific features, other sizes were also ex-
amined to determine their relative performance.

First, an evaluation was conducted on the top two features, namelyMI_dir_l1_
weight and HH_l0.01_std, in conjunction with the aforementioned metrics to de-
termine their performance. The results indicated a notable improvement in compu-
tational time by approximately 10− 20%. However, this improvement was accom-
panied by a significant decrease in overall performance scores. The scores were
comparable to the three feature sets with the HH_L0.01_pcc in some instances.
Nevertheless, the majority of the scores for the unbalanced set were approximately
90% instead of 99, 9% and the balanced set experienced an even greater decline.

In the second case, additional features were incorporated for evaluation. A to-
tal of five features were selected, including the original four, MI_dir_l1 _weight,
HH_l0.01_std, MI_dir_L0.01_mean, and HH_L0.01_pcc. Then, a fifth feature
was added that exhibited a high density for benign data, MI_dir_L0.1_weight.
This feature was included to replicate the same rationale for the three features.
This feature was also ranked in the second row of Table 4.1. Overall the perfor-
mance did improve but by a small margin. The scores were approximately 99, 99%,
which is not a significant improvement compared to Table 5.3. Furthermore, the
computational time increased almost proportionally to the number of features used,
with an increase of approximately 30−40% for all instances in the unbalanced set.

Considering these trade-offs, it is apparent that utilizing three features repre-
sents the optimal choice. This particular set exhibits great performance scores
and fast computational time. Whereas increasing or decreasing the number of
features will result in a detrimental effect on one or both of these metrics.
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5.2. Comparison
The comparison between the performance of the proposed approach and other
studies will be examined through three factors, namely the unbalanced dataset, the
balanced dataset, and computational time. Each of these factors will be discussed
in separate sections. First, a list of studies that employ the N-BaIoT dataset, along
with an explanation for the selection of each study for comparison. Subsequently,
a table and several visuals will be employed to display the scores of the studies,
thereby facilitating a clear understanding of how the proposed method fares in
comparison to the existing studies.

5.2.1. Unbalanced set
In this section, a comparative analysis of the proposed approach utilizing the un-
balanced set will be conducted. To achieve this, multiple studies that also evaluate
performance with an unbalanced set must be selected, which is readily available
in the literature. As stated in chapter 2, it is a limitation of various studies. Further-
more, the average of each metric across all devices has been calculated, since
comparing each device will be impractical.

5.2.1.1. Studies for the unbalanced set
The average has been computed across all devices for the proposed approach.
This yields the following scores for the Accuracy, Precision, Recall, and F-1 score:
99.98%, 99.99%, 99.98%, and 99.98%. These scores will be compared to the
other studies that have utilized an unbalanced set.

In [21], a hybrid model is proposed that combines DNN and LSTM to classify
multiple samples obtained from various devices. The dataset used in this study
has an unbalanced ratio of 1:3 for benign to malicious samples, thus chosen for
comparison purposes. The evaluation metrics yield scores of 99.94%, 99.91%,
99.86%, and 99.86%. On top of this, the study includes comparisons with several
other papers that also utilize an unbalanced dataset and the same performance
criteria. Therefore three more studies referenced from this paper were included
for comparison [38], [24], and [13]. In [38], a MPL-AE model is proposed with
the scores of 99.25%, 98.84%, 98.00%, and 98.00%. A DBN model is proposed in
[24] with scores of 95.60%, 98.27%, 92.82%, and 92.82%. For the CNN and LSTM
models proposed in [13], the scores are 94.30%, 93.48%, 93.67%, and 93.58%.

In [39], an SGAN model is utilized. The paper puts more emphasis on multi-
classification, mainly the distinct attack types in the N-BaIoT dataset. But also
examines the binary classification by utilizing the complete Danmini Doorbell de-
vice. However, this approach solely evaluates the accuracy in comparison to other
studies, with the SGAN model achieving a score of 99.88%.

In [28], an optimized auto-encoder is proposed. There are many features that
have been utilized for each device in the dataset, ranging from 25 to 40. The di-
mensionality is reduced by an autoencoder, which reduces the number of features
to two. These features are utilized for training and testing the model. Furthermore,
the study computes the same metrics with scores of 99.68%, 99.73%, 99.43%,
and 99.48%.

In [34], a federated deep learning method is proposed. This study employs
and compares several deep-learning techniques. Regarding the distribution of
the test and training sets, there are five batches containing different attacks from
the dataset. Each batch is assessed individually. However, the distribution be-
tween the malicious and benign data is still uneven. For this reason, the average
was computed over all the batches for each metric which resulted in the following
scores: 98.98%, 98.26%, 97.88%, and 97.87%.
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In [33] several techniques along with various feature sets have been analyzed.
This study examines both unbalanced and balanced datasets and therefore will
be applied to both cases. The study evaluates each device individually and only
computes the accuracy and precision. The average of these two metrics was com-
puted across all devices: 96.65% and 98.71%.

5.2.1.2. Summary of the comparison for the unbalanced set

Table 5.5: Comparison with existing studies for the unbalanced set

Reference Year Model Accuracy(%) Precision(%) Recall(%) F1-score(%)
Proposed 2023 LR-RFC-Grad 99.98 99.99 99.98 99.98

[21] 2022 DNN-LSTM 99.94 99.91 99.86 99.86
[39] 2022 SGAN 99.88 - - -
[28] 2022 AE 99.68 99.73 99.43 99.48
[34] 2022 FDL 98.98 98.26 97.88 97.87
[38] 2021 MLP-AE 99.25 98.84 98.00 98.00
[24] 2020 DBN 95.60 98.27 92.82 92.82
[13] 2020 CNN,LSTM 94.30 93.48 93.67 93.58
[33] 2018 SVM,Iso,LR 96.65 98.71 - -

In Table 5.5 the results are presented. First, the study is mentioned along with
the published year. This is followed by the proposed technique. The reference
number of each study serves as the identifier in the histogram. Finally, the perfor-
mance metrics are incorporated.

Figure 5.1: Accuracy scores of studies with
the unbalanced dataset

Figure 5.2: Precision scores of studies with
the unbalanced dataset

Figure 5.3: Recall scores of studies with the
unbalanced dataset

Figure 5.4: F-1 scores of studies with the
unbalanced dataset
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In Figure 5.1, Figure 5.2, Figure 5.3, and Figure 5.4 the histograms are dis-
played for each performance metric. Based on the results, it can be concluded
that the proposed approach surpasses all the chosen studies for each metric. De-
spite the slight difference, the improvement is noteworthy considering the number
of features utilized and the scores achieved.

5.2.2. Balanced set
In this section, wewill conduct a comparative analysis of the performance of the bal-
anced dataset against various studies. This task has proven to be somewhat chal-
lenging due to the limited number of studies that have addressed and implemented
the data distribution issue in the N-BaIoT. However, some studies have been iden-
tified and will be evaluated in a similar manner as the unbalanced dataset.

5.2.2.1. Studies for the balanced set
Similar to the unbalanced set, the average has been computed across all devices
for the proposed approach utilizing the balanced set. The resultant scores are
99.97%, 99.96%, 99.96%, and 99.96%.

In [37], a hybrid deep learning method was proposed. The study has a distri-
bution of 1:2 between benign and malicious data, which is not entirely balanced
but still considerable. The results are 99.96%, 99.77%, 99.66%, and 99.66% for
the Accuracy, Precision, Recall, and F-1 score. It is likely that the scores would
decrease if the distribution ratio had been 1:1.

In [33], various methods are examined. As previously noted, this study ad-
dresses the distribution concern and distinguishes between balanced and unbal-
anced datasets. However, similar to the unbalanced set, the average must be
computed across all devices. Consequently, the resulting scores are 92.55% and
89.06%.

In [12], several methods have been employed. Only the Danmini doorbell de-
vice is utilized for training and testing. Subsequently, the benign data and 6000
instances of each attack type were extracted, resulting in a nearly balanced 1:1 dis-
tribution. To classify the data, a range of baseline and ensemble techniques were
employed. The highest-performing method was selected for comparison, yielding
scores of 90.87%, 85.67%, and 87.83%.

5.2.2.2. Summary of the comparison for the balanced set

Table 5.6: Comparison with existing studies for the balanced set

Reference Year Model Accuracy(%) Precision(%) Recall(%) F1-score(%)
Proposed 2023 LR-RFC-Grad 99.97 99.96 99.96 99.96

[12] 2022 KNN-GNB-SVC 90.87 85.67 - 87.83
[37] 2021 Hybrid DL 99.96 99.77 99.66 99.66
[33] 2018 SVM,Iso,LR 92.55 89.06 - -

In Table 5.6 an identical table is computed as was done for the unbalanced set,
but this time for the balanced set. While the selected studies differ, the columns
serve similar functions as in the preceding section.
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Figure 5.5: Accuracy scores of studies with
the balanced dataset

Figure 5.6: Precision scores of studies with
the balanced dataset

Figure 5.7: Recall scores of studies with the
unbalanced dataset

Figure 5.8: F-1 scores of studies with the
unbalanced dataset

In Figure 5.5, Figure 5.6, Figure 5.7, and Figure 5.8 the histograms are dis-
played. As observed, there is a significant improvement in the performance uti-
lizing the balanced dataset. It is worth noting that the margin of improvement is
slightly reduced in one study, which may be attributed to a ratio that is not precisely
1:1. Nevertheless, with the limited number of features and scores considered, the
improvement is satisfactory.

5.2.3. Computational time
This section will present a comparative analysis of the computational time of the
proposed approach. It has been observed that a significant number of studies
fail to provide adequate information on computational time, often utilizing limited
data for both training and testing purposes, leading to shorter computational time.
Consequently, the number of studies available for comparison is limited.

5.2.3.1. Studies for the computational time
For the proposed approach, the computational time of the Danmini doorbell device
utilizing the unbalanced set was used for comparison. The resulting time was 99
seconds. The unbalanced set of the Danmini doorbell consists of about 1 million
samples, which should be adequate for comparison with other studies.

In [34] the computational time of several deep learning methods is calculated.
As aforementioned, the study utilizes five batches of data from all the devices.
These batches contain about 200-300 thousand samples for training. It is im-
portant to note that this represents only a third of the Danmini doorbell device
and should be considered when making comparisons. In this paper, the best-
performing method was considered, which has a computation time of 180 seconds.

In [23] several baseline methods were employed. In this study, the training
and test time for the Danmini doorbell device was computed. The best-performing
model, which took 1550 seconds, was taken into account for comparison.
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Table 5.7: Comparison with existing studies for the computational time

Reference Year Model Computational time(s)
Proposed 2023 LR-RFC-Grad 99

[34] 2022 CDL 180
[23] 2020 RFC 1550

5.2.3.2. Summary of the comparison for the computational time
In Table 5.7 the comparison of computational time is displayed. Specifically, the
computational time of the Danmini doorbell was taken into account, given its rele-
vance to one of the studies and its proximity to the other.

Figure 5.9: Computational time between multiple studies

In Figure 5.9 the histogram is displayed. It is evident that the model outper-
forms the methods by a large margin even when approximately 30% of the data
is employed for the training and testing. This can be attributed to both the clas-
sifiers and the features selected for this approach. The main factor is likely the
number of features selected as previously discussed. Most of the studies employ
about three or even ten times as many features, resulting in a significant increase
in computational time.
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Discussion and Future work

This section presents a discussion of the evaluation results. The initial focus is on
the interpretation of the findings, followed by an examination of the limitations of
the study. Additionally, potential future research is explored.

6.1. Interpretation
It is evident from chapter 5 that the proposed model outperforms several studies
on both the unbalanced dataset and the balanced dataset, while also exhibiting
faster computational time. In fact, the proposed model’s performance on the bal-
anced dataset is impressive when compared to studies that utilize an unbalanced
set. This can be attributed to the extensive feature analysis, which has enabled
more effective optimization. It is worth noting that no prior studies have achieved
comparable performance using only three features. As noted in chapter 2, utilizing
fewer features reduces computation time and resource requirement for the detec-
tion model, which is reflected in the results obtained. The model is flexible and the
individual classifiers can be adjusted accordingly. No hyperparameter search was
conducted to avoid specifying the model to the dataset instances, which facilitates
easier deployment of the proposed model in real-time scenarios. However, the
performance of the model in real-time instances remains uncertain.

6.2. Limitations
In addition to the contributions of this study, it is important to acknowledge and
address some limitations. As with any research, there is always room for improve-
ment. The following limitations have been identified:

• Multi-classification. Given that the dataset encompasses ten distinct at-
tacks, it might be advantageous to consider multi-classification as opposed to
binary classification. Multi-classification offers superior identification of spe-
cific attacks, which can prove valuable in deploying the model within network
environments where these attacks are prevalent. However, it is important to
note that this approach might result in increased computation time, particu-
larly when dealing with botnets that execute a broad range of attacks. While
some studies have explored this approach [39]. The number of studies re-
mains limited compared to the binary research, thus the binary classification
was chosen for additional comparison.

33



6.3. Future work 34

• Real-time. Another issue addresses all studies that only rely on the dataset
to determine the performance of the proposed works. The deployment of
models in real-world scenarios introduces several factors that can affect their
performance. It is challenging to draw conclusions regarding the perfor-
mance of the models without specific case studies conducted.

6.3. Future work
As previously noted, there are two significant limitations that can be addressed in
future research. Multi-classification is rather trivial to achieve. The labels used in
the dataset must be modified to include a label for each attack type, rather than
solely malicious and benign labels. The challenge here is to develop a model that
is capable of detecting a specific attack. It may be advisable to employ a distinct
model for each attack type. This enables the models to detect the attacks with
greater specificity. This, in turn, would improve the real-time detection of botnet
attacks, as it would allow for the deployment of a specific model in the network
location where the attack type is most likely to occur.

A significant challenge is applying the model in real-time scenarios. This is
difficult to accomplish as it requires simulating the attack in a real-time institution.
Ideally, this can be achieved through case studies involving an institution such as a
university or company that is willing to participate. It will require an individual who
has expertise in doing these types of botnet attacks, such as ethical hackers, and a
sufficient number of IoT devices that can serve as vulnerable devices and botnets.
Subsequently, the model must be deployed in a location on the network where
it can monitor the packages. For each package, the required features must be
calculated and then detected by themodel. This again underscores the importance
of feature optimization. These are some limitations and future improvements to
mention and there may be others.



7
Conclusion

This thesis proposed a hybrid ensemble model for detecting botnet attacks along
with improved feature analysis and optimization to overcome the limitations iden-
tified in the literature. Given the increasing potency of botnet attacks and their
capability to exploit newer vulnerabilities and impact a greater number of devices
with each passing year, it is imperative to enhance the current state of research in
this area.

The literature review delved into the development and utilization of bots through
an analysis of the lifecycle and overall architecture of botnet attacks. Specific bot-
net attacks were also examined to shed light on the need for a dataset that is cur-
rent and encompasses the various stages of a botnet attack. The N-BaIoT dataset
met these requirements. However, the studies conducted using the dataset were
subject to limitations, such as uneven distribution, insufficient feature analysis, and
feature optimization.

All these limitations have been addressed and improved in this study. Through
feature analysis and optimization, it was determined that only three features were
necessary, which is a significant improvement in efficiency compared to existing
studies that utilize three to ten times more features. This was deployed in the
hybrid ensemble model, which yielded improved results for both the performance
scores and computational time compared to the literature.

The model was applied to both the unbalanced and balanced sets, yielding
excellent results. The distinct ratio in these datasets facilitates convenient com-
parison to the studies, as it is the only factor that influences the results that should
not be exclusive to a study. This is in contrast to the feature selection and de-
tection model employed in the studies, which is subjective. The findings revealed
that even the proposed model utilizing the balanced set outperformed studies that
employed an unbalanced set.

With this, the study has successfully achieved its contributions. Future works
may involve expanding the study to encompass multi-classification for each attack
type, rather than binary classification. On top of that, the model should be em-
ployed in several case studies utilizing a real-world scenario.
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A
Figures and plots

This appendix contains the remaining figures and plots that have been mentioned
but not shown in the thesis report to avoid overload.

A.1. Distribution of the data in the devices

Figure A.1: Distribution of the data in the
Ecobee device

Figure A.2: Distribution of the data in the
Ennio device

Figure A.3: Distribution of the data in the
Provision PT 737E Security Camera device

Figure A.4: Distribution of the data in the
Provision PT 838 Security Camera device
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Figure A.5: Distribution of the data in the
Philips device

Figure A.6: Distribution of the data in the
Samsung device

Figure A.7: Distribution of the data in the
SimpleHome XCS7 1002 WHT Security

Camera device

Figure A.8: Distribution of the data in the
SimpleHome XCS7 1003 WHT Security

Camera device
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A.2. All kernel density plots of the devices

Figure A.9: 1/4 of kernel density estimates of the Danmini doorbell
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Figure A.10: 2/4 of kernel density estimates of the Danmini doorbell
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Figure A.11: 3/4 of kernel density estimates of the Danmini doorbell
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Figure A.12: 4/4 of kernel density estimates of the Danmini doorbell

The plots for the remaining devices can be found in the corresponding Github
repository

https://github.com/kabilan97/A-hybrid-ML-based-model-for-better-detection-of-IoT-botnets
https://github.com/kabilan97/A-hybrid-ML-based-model-for-better-detection-of-IoT-botnets
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