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Propositions

belonging to the Ph.D. thesis of Chaitanya Krishna Ande

First-principles calculations on the stabilization of iron carbides (Fe3C, Fe5C2
and η-Fe2C) in steels

1. Computer simulation will totally replace experiment in the design of new
materials.

2. As a corollary, rapid development of steels cannot be achieved without in-
puts from computational modeling.

3. A universally valid exchange-correlation functional will never be found.

4. First-principles results will soon be benchmarks for experimental results.

5. Formation enthalpies cannot predict partitioning of alloying elements be-
tween iron and carbide phases (Chap. 6 and 7).

6. Developing countries may violate intellectual property rights.

7. Publicly funded institutions should only use “open source” software.

8. The ratio of the highest and the lowest pay in an organization should be
transparent and fixed.

9. Playing the stock market is a sure way to lose money and peace of mind.

10. Social life in the Netherlands is critically dependent on the availability of
Belgian beer.

These propositions are regarded as opposable and defendable, and have been ap-
proved as such by supervisors prof.dr. B.J. Thijsse and dr.ir. M.H.F. Sluiter.



Stellingen

behorende bij het proefschrift van Chaitanya Krishna Ande

First-principles calculations on the stabilization of iron carbides (Fe3C, Fe5C2
and η-Fe2C) in steels

1. Voor het ontwerpen van nieuwe materialen zullen experimenten geheel door
computer simulatie vervangen worden.

2. Een logisch gevolg is dan dat de snelle ontwikkeling van staalsoorten niet
bereikt kan worden zonder computer simulaties.

3. Een universeel geldige exchange-correlatie functionaal zal nooit gevonden
worden.

4. Ab initio resultaten zullen spoedig ijkpunten zijn voor experimentele resul-
taten.

5. Formatie-enthalpieën kunnen de partitionering van legeringselementen tus-
sen ijzer en carbide fasen niet voorspellen (hoofdstukken 6 en 7).

6. Ontwikkelingslanden mogen intellectuele eigendomsrechten schenden.

7. Overheidsinstellingen zouden uitsluitend “open source” programmatuur
moeten gebruiken.

8. De verhouding tussen de hoogste en de laagste salarissen in een organisatie
zouden openbaar moeten zijn en vast moeten liggen.

9. Gokken op de beurs zal zeker leiden tot het verlies van geld en gemoedsrust.

10. Het sociale leven in Nederland is totaal afhankelijk van de beschikbaarheid
van Belgisch bier.

Deze stellingen worden opponeerbaar en verdedigbaar geacht en zijn als zodanig
goedgekeurd door de promotoren prof.dr. B.J. Thijsse and dr.ir. M.H.F. Sluiter.
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Chapter 1

Introduction

In this chapter, a general introduction to steels, their design, and the role that first-
principles calculations can play in the design of steels is presented. The motiva-
tion of the present thesis in using first-principles calculations to aid in the design
of new TRIP steels is then given.

1.1 Steel1

Steel is one of the most important structural materials that is available to mankind
since its mass production started with the invention of the Bessemer process in
the mid-19th century. It is an alloy that consists mostly of iron and has a carbon
content between a few ppm and 2.1% by weight depending on the grade. While
carbon is the most common alloying element, various other alloying elements can
also be used, such as aluminium, silicon, phosphorus, sulfur, titanium, vanadium,
chromium, manganese, nickel, cobalt, copper, zinc, niobium, molybdenum and
tungsten. The choice of the alloying elements used in the steel depends on the
properties expected of the steel. Carbon and other alloying elements act as hard-
ening agents, preventing dislocations in the iron lattice from sliding past one an-
other. Varying the amount of alloying elements and the form of their presence in
the steel (solute elements, precipitated phase) controls qualities such as the hard-
ness, ductility, and tensile strength of the resulting steel. Before going further, it
would be instructive to look at the iron-carbon phase diagram first.

1.2 Iron-carbon phase diagram

The presence of C and other alloying elements alters the phase diagram of pure
iron. The phase diagram for iron and carbon should in principle be between

1Experts on steel and TRIP steel can directly go to Sec. 1.4
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2 Introduction

iron and graphite because graphite is thermodynamically the most stable form
of carbon. Nonetheless, the iron-graphite phase diagram is seldom used because
graphite seldom forms in the processing of steels. It is cementite, a metastable
carbide that exists infinitely at room temperature, that occurs in steels. An iron-
cementite phase diagram is therefore used instead of an iron-carbon phase dia-
gram.

The Fe-Fe3C phase diagram is shown in Fig. 1.1. Pure iron exists as bcc-Fe (ferrite,
α) at room temperature and transforms into fcc-Fe (austenite, γ) at 912 ◦C and
transforms into δ-Fe at an even higher temperature of 1394 ◦C. It finally melts at
1538 ◦C. The α phase is ferromagnetic, while the γ and the δ phases are paramag-
netic [1].

Carbon (C), the major alloying element in steels, dissolves interstitially in bcc-Fe
with a maximum solubility of about 0.022 wt%. The solubility of C in the γ phase
is much higher at about 2.14 wt%. The final form of a steel is usually obtained by
first heating it with all the alloying elements into the liquid phase, then cooling
it via different phases (γ, γ+α, etc.) (for example, follow the grid line at 1 % C
composition in Fig. 1.1) and finally tempering it. Roughly speaking, the rate at
which austenite is cooled and tempered determines the microstructure of steels
that we finally obtain. At a slow rate of cooling, we obtain pearlite; at a moderate
cooling rate, we obtain bainite; and with a rapid quench, we obtain martensite
which is then tempered to obtain tempered martensite (Fig. 1.2). Pearlite and
bainite are microstructures in steel and martensite is a body centered tetragonal
phase of bcc-Fe with a supersaturation of C in the crystal structure. The hardness
of the three in increasing order is: pearlite < bainite < martensite.

Since the solubility of C in the α phase is much less than its solubility in the γ
phase, a lot of carbon in the solid solution with iron precipitates out of the solu-
tion in the form of carbides (cementite, Hägg carbide, η-carbide, TiC, NbC, etc.)
during cooling from the high temperature austenite to the room temperature fer-
rite phase. These carbides, thus effectively act as ‘carbon sinks’.

Other alloying elements that are added in addition to C alter the phase diagram of
the Fe-Fe3C phase diagram further and lead to the necessity of studying ternary
phase diagrams of the Fe-C-X type. These additional alloying elements can lead to
the formation of new precipitate phases. Although cementite is the most common
carbide observed in steels, other alloying elements and thermo-mechanical pro-
cessing can lead to other precipitate phases to form during the steel making pro-
cess. In the case of cementite formation, other carbides appear to precipitate, with
increasing temperature, in the order: i) η-Fe2C (η-carbide), ii) Fe5C2(Hägg carbide)
and iii) Fe3C [3, 4]. The appearance of ǫ-Fe2C precedes η-Fe2C.

1.3 TRIP Steel

A large number of steels are presently available (Fig. 1.3) with a wide range of
properties. The choice of the steel obviously depends on the target application. Of
the numerous types of steels available at present, TRIP (TRansformation Induced
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Figure 1.1: Fe-Fe3C phase diagram

Figure 1.2: Continuous cooling transformation diagram for steel. Ac1 is the tem-
perature at which austenite begins to form on heating; and Ac3 is the temperature
at which ferrite in a hypoeutectoid steel completely transforms to austenite [2].
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Figure 1.3: Various steel grades presently available. HS (High Strength), IF (In-
terstitial Free), HSLA (High Strength Low Alloy), DP (Dual Phase), CP (Complex
Phase), TRIP (TRansformation Induced Plasticity)

Plasticity) steels are low-alloy steels that combine properties of enhanced strength
and ductility. This satisfies the requirements of the automotive industry for good
formable high-strength steels. TRIP steels consist of a triple-phase microstructure
consisting of ferrite, bainite and retained austenite [5]. Austenite is a soft and
ductile phase while martensite is hard and brittle. The TRIP effect exploits the
properties of these phases to achieve the required strength and ductility. The soft
phase, austenite, is stabilized to room temperature and transforms to the hard
phase, martensite, on application of external stress and/or plastic deformation.
Hence, it is important that austenite is stabilized to room temperature to achieve
a good TRIP effect. Carbon is one agent that aids the stabilization of austenite to
room temperature. Carbon is much more soluble in austenite than in ferrite and
when austenite transforms to ferrite, the ferrite expels the excess carbon. One way
for ferrite to expel carbon is by forming carbide precipitates, either of iron or of
other alloying elements available in the steel. For TRIP steels, where the C has to
be held in the iron solution to stabilize the austenite phase to room temperature,
this is detrimental and needs to be avoided.

1.4 Design of steels

The design of steels is a difficult process and requires a good understanding of
how the desired properties of the steel are related to its microstructure. The
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microstructure in turn depends on both the alloy composition and the thermo-
mechanical processing of the steel. The design of a majority of steels till recently
has been based on experience and intuition about the effect of alloying elements
and processing conditions (tempering, solution treatment, hot working, cold work-
ing, etc.) on the microstructure and thereby on the final properties of the steel. But,
developments that started roughly about forty years ago [6–9] have led to signif-
icant elimination of the trial and error processes from steel design. For example,
the Fe-S53 alloy has been designed solely based on ‘computational materials de-
sign’ [10]. The two most important developments that contributed to the com-
putational design of materials are the CALPHAD [9] and first-principles methods
(for an overview of the developments related to steel, see [11]). Both have their
respective advantages and disadvantages which are briefly discussed below.

In the CALPHAD (CALculation of PHase Diagrams) method, the free energies of
all the phases involved in the phase diagram of the alloy system are obtained by
fitting analytical expressions, based on the regular solution model and its modifi-
cations (Compound Energy Formalism), to available thermodynamic information
(mostly from experiments). These free energies are then used to calculate the equi-
librium phase diagram of the alloy system. The fitting parameters in the analytical
expressions are modified both to fit available experimental data and also to repro-
duce the experimentally known regions of the phase diagram faithfully. There-
fore, the choice of the fitting parameters requires significant amount of judgment
on the part of the investigator. In addition, thermodynamic information about
the phases involved is usually available only at high temperatures where equi-
librium can be obtained in relatively short times. Another added complication is
that it is very difficult to obtain information about metastable phases which do
not occur in the equilibrium phase diagram. Although the CALPHAD approach
eliminates significant amount of trial and error from the steel design process, it is
still based on parametrized fitting to available experimental thermodynamic data.
First-principles methods remove the dependence of the free-energies of the phases
on available experimental data and thereby remove a number of ‘adjustable’ pa-
rameters from the CALPHAD models.

A computational approach, known as first-principles methods or ab initio meth-
ods, can be applied to the steel design process and used in tailoring properties
of steels. One can obtain complete thermodynamic properties (in addition to a
number of other properties) of a phase using first-principles methods with noth-
ing more than the knowledge of its crystal structure and without recourse to any
experiments or fitting parameters. This information obtained from first-principles
methods can then be used in the CALPHAD method to obtain much more accu-
rate phase diagrams. In addition, since only a knowledge of the crystal structure
is required to obtain the thermodynamic data about the phase, even metastable
phases can be dealt with ease. Another advantage of first-principles calculations
is that although experimentally it is difficult to control, observe and isolate very
small precipitate phases to study them, it will be shown how it is rather straight-
forward to compute their properties from first-principle methods.

One shortcoming of the first-principles methods are that they are much more com-
putationally demanding than the CALPHAD approach. Another one is that they
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require the help of other statistical thermodynamic methods to transform first-
principles energies into thermodynamic quantities like free energies.

1.5 Motivation

As detailed in Sec. 1.3, it is of great importance in TRIP steels and also other low
alloy steels to suppress the loss of carbon from the austenite phase. Precipitation
of carbides in steel depletes the amount of C available for austenite stabilization
and hence it is desirable to suppress the formation of most carbide phases in these
steels. In this respect, the most commonly observed carbides in low alloy steels are
cementite (Fe3C), Hägg carbide (Fe5C2) and eta-carbide (η-Fe2C). A convenient
approach to curtail the loss of carbon would then be to add alloying elements that
suppress the formation of these carbide precipitates. Finding out which alloying
elements are most suitable for this suppression of carbide formation is the major
focus of this thesis.

1.6 Overview

Along the way to discuss the (de)stabilization of carbide phases that occur in
steels (Chap. 6, 7) we first discuss the pure phases of iron (bcc-Fe), cementite,
Hägg carbide and η-carbides (Chap. 3). Si is one of the important alloying ele-
ments, that is added to TRIP steels to suppress the formation of carbide phases in
steels [5]. In light of this, we discuss the effect of Si on the activity and diffusion of
C in bcc-Fe (Chap. 5). The dilute solutions of impurity alloying elements in bcc-Fe
are discussed in Chap. 4 and the results from this chapter are used later in the
calculation of the stability of carbides in Chap. 6 and 7. Theory behind the first-
principles methods which are used in the above calculations are explained along
with a few important practical considerations in Chap. 2 and can be skipped by
people well versed in using plane-wave first-principles codes.



Chapter 2

Density Functional Theory

2.1 Introduction

This chapter introduces the theory behind the most common first-principles meth-
ods. It first shows that capturing the exchange and correlation of the electrons to
be the most involved issue in all the methods. Then the two most common ap-
proaches used to deal with the issue: Hartree-Fock/Post-Hartree-Fock and Den-
sity Functional Theory (DFT) are discussed. Finally, DFT implemented using a
plane-wave basis along with some practical issues that need to be taken care of
when using plane-wave methods are considered.

2.1.1 Approaches to obtain ground state energy

Quantum mechanics states that all possible information about an atomistic sys-
tem (atom, molecule, solid, surface, etc.) can be obtained from its wavefunction.
Although the wavefunction can be obtained by solving the Schrödinger equation
(Sec. 2.2) of the system, it is difficult to solve it exactly for an atomistic system con-
taining more than one electron. One important quantity obtained from the wave-
function is the ground state energy E0 of the system. Two popular approaches to
obtain the ground state energy of the system are: the Hartree-Fock (HF)/post-HF,
and the Density Functional Theory (DFT) approaches.

The ground state energy E0 of the system using these two approaches can be writ-
ten as

E0(Ψ0) = EHF + E
post−HF
C

E0(ρ0) = EKS + EDFT
X + EDFT

C .

E0(Ψ0) and E0(ρ0) show the explicit dependence of the total energy on the ground
state wavefunction Ψ0 and the ground state charge density ρ0 respectively. EHF

7



8 Chapter 2. Density Functional Theory

and EKS are the Hartree-Fock and Kohn-Sham energies respectively. EX is called
the exchange energy (Sec. 2.1.2) and arises due to the quantum nature of the elec-
tron which gives rise to spin. EC is the correlation energy (Sec. 2.1.2) and is due to
the correlation between electrons in the system because of their charge. Different
approaches used to obtain the exchange and correlation energies are mentioned in
the superscripts. Exchange energy in the HF method is naturally included in EHF

while the correlation energy has to be computed separately. In the DFT approach,
both exchange and correlation energy have to be calculated separately. This chap-
ter deals with how Ψ0, ρ0 and thereby E0(Ψ0) and E0(ρ0) are obtained as a sum
of the different terms under the two approaches and the various approximations
involved. Although we use DFT in this thesis to obtain the ground state energies,
both the approaches share a number of concepts that it necessitates a simultane-
ous discussion of both the approaches. But first, we will briefly discuss each of the
energy terms and the computational complexity involved in determining each of
them.

EHF and EKS account for a major part of the total energy and are also easy to
compute. This leaves us with the other three terms: E

post−HF
C , EDFT

X and EDFT
C .

Approximations, called post HF methods, lead to an increasingly accurate ap-
proximation of E

post−HF
C . But, each of these approximations scales as (> O(n4)),

where n is the size of the system, and makes these methods computationally un-
feasible as of today except for very small systems with tens of atoms. On the other
hand, although it is easy (6 O(n3)) to compute EDFT

X and EDFT
C , and relatively

larger systems can be considered, the exact form of these two terms is not known.
Also, no apparent way exists to systematically obtain increasingly accurate EDFT

X

and EDFT
C .

2.1.2 Exchange and correlation

The fermionic nature of the electrons requires that two electrons cannot exist at
the same point in space with the same set of quantum numbers and is known as
the Pauli exclusion principle. Mathematically, the Pauli exclusion principle can
be accounted for by ensuring that the wavefunction of a set of electrons is anti-
symmetric under exchange of a pair of electrons. That is to say that the process of
swapping an electron for any of the other electron should leave the wavefunction
unaltered except for a change of sign (Sec. 2.7, 2.12). Any wavefunction possessing
that property will tend to zero (indicating zero probability) as any pair of electrons
with the same quantum numbers approach each other. This fermionic nature of
electrons leads to exchange.

“A visual impression of the effect of exchange can be obtained by considering the
region surrounding a given electron with a particular quantum mechanical spin.
If we look at an electron with spin-up, then the Pauli exclusion principle means
that other nearby spin-up electrons will be repelled. Spin-down electrons will not
be affected since they have a different spin quantum number. Thus our spin-up
electron is surrounded by a region which has been depleted of other spin-up elec-
trons. Thus a small positive charge develops in this region (the average electron
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distribution exactly balances the positive charge of the ion cores, and therefore,
this region is relatively depleted of electrons). Similarly, if we had considered a
spin-down electron from the start, then we would have found a region depleted of
other spin-down electrons. The edge of the electron depleted region is not clearly
defined, but nevertheless we call this region the exchange hole.

Ignoring the Pauli exclusion principle generated exchange hole for the moment,
we can also visualize a second type of hole in the electron distribution caused by
simple electrostatic processes. If we consider the region immediately surrounding
any electron (spin is now immaterial) then we should expect to see fewer electrons
than the average, simply because of their electrostatic repulsion. Consequently
each electron is surrounded by an electron-depleted region known either as the
Coulomb hole (because of its origin in the electrostatic interaction) or the corre-
lation hole (because of its origin in the correlated motion of the electrons). Just
as in the case of the exchange hole the electron depleted region is slightly posi-
tively charged. The effect of the correlation hole is twofold. The first is obviously
that the negatively charged electron and its positively charged hole experience a
binding force due to simple electrostatics. The second effect is more subtle and
arises because any entities which interact with the electron over a length scale
larger than the size of the correlation hole will not interact with the bare electron
but rather with the electron+correlation hole (which of course has a smaller mag-
nitude charge than the electron alone). Thus any other interaction effects, such
as exchange, will tend to be reduced (i.e. screened) by the correlation hole” [12].
The interaction between electrons is repulsive so they will tend to “avoid each
other”, that is, the probability to find two electrons at the same position or close
to each other will be reduced to avoid an energy penalty. These correlations are
not limited to short distances, weak correlations over the range of a few nanome-
ters are caused by the same effect and both of these effects turn out to be difficult
to describe.

Now that the essential issues of describing an all electronic atomic system have
been discussed, the different approaches to obtain accurate description of the
ground state are discussed.

2.1.3 Overview

The present chapter is organized as follows: first, the quantum mechanical de-
scription of an atomistic system is discussed (Sec. 2.2). The Born-Oppenheimer
approximation, common to both approaches and used to decouple the motion of
the nuclei and electrons is discussed in Sec. 2.4. The variational principle used in
determining optimal one-electron orbitals is discussed in Sec. 2.3. Subsequently,
the Hartree method, where the wavefunction is expressed as a product of one-
electron orbitals (Sec. 2.5), and the self-consistent field method used to obtain op-
timal one electron orbitals (Sec. 2.6) are discussed. Spin and indistinguishability
of the electrons which leads to ‘exchange’ is not included in the Hartree approxi-
mation. Including these properties of the electron into the one-electron functions
using a Slater determinant then leads to the Hartree-Fock equation which we dis-
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cuss in Sec. 2.8. Although Hartree-Fock equations describe exchange of the elec-
trons exactly they do not include any ‘correlation’ of the electrons. post-HF meth-
ods which are used to include correlation are then discussed in Sec. 2.9. Density
Functional Theory (DFT) (Sec. 2.10) is then discussed. Finally, representation of
wavefunctions using basis sets (Sec. 2.11) and DFT as implemented using plane
wave basis set and associated practical aspects relevant to this thesis are discussed
(Sec. 2.12).

As a final remark, for a more detailed discussion of all the concepts discussed in
this chapter please refer the following: [12] for an equation-less introduction to
many-body theory and DFT, [13] for a clear and accessible introduction to quan-
tum chemistry, [14] for an extensive introduction to computational chemistry and
finally to [15] and the classic [16] for an in depth discussion.

2.2 Schrödinger equation

The equations of interest in describing atomistic systems are the time-dependent
and time-independent Schrödinger equations which follow rules of quantum me-
chanics [13]. Specifically, to obtain the allowed energies of an atomistic system,
we use the Hamiltonian operator, Ĥ on Ψ. For a system with n electrons and N
nuclei, Ĥ is given as

Ĥ = −1
2

n

∑
i

∇2
i −

1
2

N

∑
α

1
Mα

∇2
α −

nN

∑
iα

Zα

|ri − Rα|
−

nn

∑
ij, i 6=j

1
∣

∣ri − rj

∣

∣

+
NN

∑
αβ, α 6=β

ZαZβ
∣

∣Rα − Rβ

∣

∣

.

(2.1)
in atomic units (we use atomic units in this chapter unless mentioned). Solving
the time-independent Schrödinger as an eigenvalue equation,

ĤΨ(r, R) = EΨ(r, R) (2.2)

gives us the allowed energies and wavefunctions of the system. The lowest pos-
sible energy and the corresponding wavefunction thus obtained are the ground
state energy E0 and the ground state wavefunction Ψ0 respectively of the system.
r and R represent all the electron and nuclear coordinates. Thus, the wavefunction
is a function in an 3(n+ N) dimensional space and hard to solve even numerically
except in the simplest of cases, like the hydrogen atom and the H2+ molecule
where there is only one electron.

2.3 Variational principle

Obviously, the ground-state wave function Ψ0 and energy E0 satisfy the Schrödinger
equation

ĤΨ0 = E0Ψ0 (2.3)
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Multiplying Eq. 2.3 from the left by Ψ∗
0 and integrating over all space one obtains,

E0 =

�

Ψ∗
0 ĤΨ0dr

�

Ψ∗
0Ψ0dr

(2.4)

The variational theorem states that if we substitute any other function Φ for Ψ0 in
Eq. 2.4 and calculate the corresponding energy according to

EΦ =

�

Φ∗ĤΦdr
�

Φ∗Φdr

then EΦ will be greater than the ground state energy E0. In other words,

EΦ ≥ E0 (2.5)

The variational principle states that we can calculate an upper bound to E0 by
using any trial function we wish. The closer Φ is to Ψ0 in some sense, the closer
EΦ will be to E0. We can choose a trial wave function such that it depends upon
some arbitrary parameters, α, β, γ, . . . , called variational parameters. The energy
also will depend upon those variational parameters, and Eq. 2.5 would be

EΦ(α, β, γ, . . . ) ≥ E0

Now we can minimize EΦ with respect to each of the variational parameters and
thereby determine the best possible ground-state energy that can be obtained from
our trial wave function [13].

The variational principle is used in both the HF/post-HF and DFT approaches to
solve the Schrödinger equation to obtain the optimal one-electron orbitals.

2.4 Born-Oppenheimer approximation

One approximation used to make the Schrödinger equation (Eq. 2.2), involving
both nuclei and electrons as dependent variables, tractable is the Born-Oppenheimer
approximation. It assumes that the motion of the nuclei can be decoupled from
the motion of the electrons. The approximation derives from the fact that the nu-
clei are much heavier than the electrons and that one can assume that electrons
instantaneously rearrange around the nuclei. The approximation leads to sepa-
rate equations for the nuclei and electrons. After the separation, the Schrödinger
equation for the electronic system reduces to

(

−1
2

n

∑
i

∇2
i −

nN

∑
iα

Zα

|ri − Rα|
−

nn

∑
ij, i 6=j

1
∣

∣ri − rj

∣

∣

)

Ψ(r; R) = Eel(R)Ψ(r; R). (2.6)

where Ψ(r; R) implies that the Schrödinger equation depends parametrically on
the position of the nuclei. In other words, the electrons are moving in a potential
provided by the nuclei. When the positions of the nuclei change, the electrons
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rearrange instantaneously. The electronic energy Eel in turn serves as a potential
for the nuclei to move in. For the nuclei, one obtains

(

−1
2

N

∑
A

1
Mα

∇2
α + Eel(R) +

NN

∑
αβ, α 6=β

ZαZβ
∣

∣Rα − Rβ

∣

∣

)

Φ(R) = EΦ(R).

The crucial approximation that allowed separation of the equation for the elec-
trons and nuclei was to assume that the action of the nuclear kinetic operator on
the electronic wavefunction is zero.

It is interesting to note that the Hamiltonian in Eq. 2.6 contains single particle op-
erators that give the kinetic energy and the interaction of the electrons with the
nuclei and the two particle electron-electron interaction term. If not for the pres-
ence of the electron-electron interaction term, the wavefunction of the system can
be expressed as a product of one-electron wavefunctions (orbitals) and the total
energy of the system obtained as a sum of the eigenvalues of each of the indi-
vidual one-electron Schrödinger equations. Obtaining the exact solution of Eq. 2.6
would be very expensive or rather impossible and it is only solved approximately.
The simplest approximate solutions of the electronic Schrödinger’s equation are
based on the idea that the electrons occupy orbitals. In the approach by Hartree,
each electron occupies its own orbital and the total wavefunction is then a product
of the single-particle orbitals [13, 17].

2.5 Hartree method

When the only terms in the Hamiltonian are the one-electron kinetic energy and
nuclear attraction terms, the operator is ‘separable’ and may be expressed as

Ĥ =
N

∑
i=1

ĥi (2.7)

where N is the total number of electrons and ĥi is the one-electron Hamiltonian
defined by

ĥi = −1
2
∇2

i −
M

∑
k=1

Zk

rik
(2.8)

where M is the total number of nuclei.

Eigenfunctions of the one-electron Hamiltonian defined by Eq. 2.8 must satisfy
the corresponding one-electron Schrödinger equation

ĥiψi = ǫiψi. (2.9)

Because the Hamiltonian operator defined by Eq. 2.7 is separable, its many-electron
eigenfunctions can be constructed as products of one-electron eigenfunctions. That
is

ΨHP = ψ1ψ2 . . . ψN . (2.10)
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A wave function of the form of Eq. 2.10 is called a ‘Hartree-product’ wave func-
tion.

The eigenvalue of Ψ is readily found from proving the validity of Eq. 2.10, viz.,

ĤΨHP = Ĥψ1ψ2 . . . ψN

=
N

∑
i=1

ĥiψ1ψ2 . . . ψN

= (ĥ1ψ1)ψ2 . . . ψN + ψ1(ĥ2ψ2) . . . ψN + . . . + ψ1ψ2 . . . (ĥNψN)

= (ǫ1ψ1)ψ2 . . . ψN + ψ1(ǫ2ψ2) . . . ψN + . . . + ψ1ψ2 . . . (ǫNψN)

=
N

∑
i=1

ǫiψ1ψ2 . . . ψN

=

(

N

∑
i=1

ǫi

)

ΨHP

where repeated application of Eq. 2.9 is used in proving that the energy eigenvalue
of the many-electron wave function is simply the sum of the one-electron energy
eigenvalues. If every ψ is normalized then ΨHPis also normalized, since |ΨHP|2 =

|ψ1|2 |ψ2|2 . . . |ψN |2.

However, the Hamiltonian defined in Eqs. 2.7, 2.8 does not include interelectronic
repulsion, computation of which is vexing because it depends not on one electron,
but instead on all possible (simultaneous) pairwise interactions. One can think,
however, how useful is the Hartree-product wave function in computing energies
from the correct Hamiltonian? That is, we wish to find orbitals ψ that minimize
〈

ΨHP

∣

∣Ĥ
∣

∣ΨHP

〉

. By applying the variational principle, one can show that each
such orbital ψi is an eigenfunction of its own operator ĥi defined by

ĥi = −1
2
∇2

i −
M

∑
k=1

Zk

rik
+ Vi{j} (2.11)

where the final term represents an interaction potential with all of the other elec-
trons occupying orbitals {j} and may be computed as

Vi{j} = ∑
j 6=i

�

ρj

rij
dr

where ρj is the charge (probability) density associated with electron j. The repul-
sive third term on the r.h.s of Eq. 2.11 is exactly analogous to the attractive second
term, except that the nuclei are treated as point charges, while electrons, being
treated as wave functions, have their charge spread out, so an integration over all
space is necessary.

The Hartree product wavefunction is symmetric (i.e. stays precisely the same after
interchange of two fermions) rather than antisymmetric, so the Hartree approach
effectively ignores the Pauli exclusion principle. The fermionic nature can be nat-
urally included into the wavefunction when a Slater determinant is used as an
approximation for the wavefunction (Sec. 2.12) [14].
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2.6 Self-consistent field (SCF) method

Since the point of undertaking the calculation is to determine the individual ψ,
one wonders how can they be used in the one-electron Hamiltonians before they
are known? This problem is solved using the iterative ‘self-consistent field’ (SCF)
method. In the first step of the SCF process, one guesses the wavefunctions ψ for
all of the occupied orbitals and uses these to construct the necessary one-electron
operators ĥ. Solution of each differential Eq. 2.9 provides a new set of ψ, pre-
sumably different from the initial guess. So, the one-electron Hamiltonians are
formed anew using these presumably more accurate ψ to determine each neces-
sary ρ, and the process is repeated to obtain a still better set of ψ. At some point,
the difference between a newly determined set and the immediately preceding
set falls below some threshold criterion, and we refer to the final set of ψ as the
‘converged’ SCF orbitals. The same SCF procedure is also used to obtain optimal
one-electron Hartree-Fock and Kohn-Sham orbitals (Sec. 2.5 and Sec. 2.12) [14].

2.7 Electron spin and antisymmetry

All electrons are characterized by a spin quantum number. The electron spin func-
tion is an eigenfunction of the operator Sz and has only two eigenvalues, ±h̄/2;
the eigen functions are orthonormal and are typically denoted as α and β. The spin
quantum number is a natural consequence of the application of relativistic quan-
tum mechanics to the electron (i.e., accounting for Einstein’s theory of relativity
in the equation of quantum mechanics), as first shown by Dirac. Another conse-
quence of relativistic quantum mechanics is the Pauli exclusion principle, which
is usually stated as the assertion that no two electrons can be characterized by the
same set of quantum numbers. Thus, in a given molecular orbital (MO) (which
defines all electronic quantum numbers except spin) there are only two possible
choices for the remaining quantum number, α or β, and thus only two electrons
may be placed in any MO. Also, the Pauli exclusion principle with a single-valued
many-particle wavefunction is equivalent to requiring the wavefunction to be an-
tisymmetric,

Ψ(1, 2, . . . , i, j . . . n) = −Ψ(1, 2, . . . , j, i, . . . n). (2.12)

Knowing these aspects of quantum mechanics, if we were to construct a ground-
state Hartree-product wave function for a system having two electrons of the same
spin, say α, we would write

3ΨHP(1, 2) = ψa(1)α(1)ψb(2)α(2) (2.13)

where the left superscript 3 indicates a triplet electronic state (two electrons spin
parallel) and ψa and ψb are different from one another (since otherwise electrons
1 and 2 would have all identical quantum numbers) and orthonormal. However,
the wave function defined by Eq. 2.13 is fundamentally flawed and does not obey
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the Pauli exclusion principle, that is,

3ΨHP(2, 1) = ψb(1)α(1)ψa(2)α(2)

6= −3ΨHP(1, 2).

But, a Slater determinant for the triplet ground state given by

3ΨSD =
1√
2

∣

∣

∣

∣

ψa(1)α(1) ψb(1)α(1)
ψa(2)α(2) ψb(2)α(2)

∣

∣

∣

∣

=
1√
2
[ψa(1)α(1)ψb(2)α(2)− ψa(2)α(2)ψb(1)α(1)] (2.14)

does obey the Pauli exclusion principle. The Slater determinant obeys the anti-
symmetry principle for the fact that the value of a determinant changes sign when
two rows (or columns) are interchanged and interchanging two rows is equivalent
to interchanging two electrons. The factor 1/

√
2 in front is a normalizing factor

for the wave function.

Now, let us see how the use of a Slater determinant with the fermionic nature of
the electron embedded in it leads to exchange. Consider the energy of the inter-
electronic repulsion for the wave function of Eq. 2.14. We evaluate this as

�

3ΨSD
1

r12

3ΨSDdr1dω1dr2dω2

=
1
2

[
�

|ψa(1)|2 |α(1)|2
1

r12
|ψb(2)|2 |α(2)|2 dr1dω1dr2dω2

−2
�

|ψa(1)| |ψb(1)| |α(1)|2
1

r12
|ψb(2)| |ψa(2)| |α(2)|2 dr1dω1dr2dω2

+

�

|ψa(2)|2 |α(2)|2
1

r12
|ψb(1)|2 |α(1)|2 dr1dω1dr2dω2

]

=
1
2

[
�

|ψa(1)|2
1

r12
|ψb(2)|2 dr1dr2

−2
�

|ψa(1)| |ψb(1)|
1

r12
|ψb(2)| |ψa(2)|dr1dr2

+

�

|ψa(2)|2
1

r12
|ψb(1)|2 dr1dr2

]

=
1
2

(

Jab − 2
�

ψa(1)ψb(1)
1

r12
ψa(2)ψb(2)dr1dr2 + Jab

)

= Jab − Kab (2.15)

where r and ω represent the spatial and spin coordinates respectively.

Eq. 2.15 indicates that for this wave function the classical Coulomb repulsion be-
tween the electron clouds in orbitals a and b is reduced by Kab. This consequence
of the Pauli principle reflects the reduced probability of finding two electrons of
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the same spin close to one another, a ‘Fermi hole’ is said to surround each electron
(also see Sec. 2.1.2).

If we consider the contrasting Slater determinantal wave function formed from
different spins

ΨSD =
1√
2
[ψa(1)α(1)ψb(2)β(2)− ψa(2)α(2)ψb(1)β(1)]

and carry out the same evaluation of interelectronic repulsion we would have
�

ΨSD
1

r12
ΨSDdr1dω1dr2dω2

=
1
2

[
�

|ψa(1)|2 |α(1)|2
1

r12
|ψb(2)|2 |α(2)|2 dr1dω1dr2dω2

−2
�

|ψa(1)| |ψb(1)| |α(1)| |β(1)|
1

r12
|ψb(2)| |ψa(2)| |α(2)| |β(2)|dr1dω1dr2dω2

+

�

|ψa(2)|2 |α(2)|2
1

r12
|ψb(1)|2 |β(1)|2 dr1dω1dr2dω2

]

=
1
2

[
�

|ψa(1)|2
1

r12
|ψb(2)|2 dr1dr2

−2 · 0

+

�

|ψa(2)|2
1

r12
|ψb(1)|2 dr1dr2

]

=
1
2
(Jab + Jab)

= Jab (2.16)

The exchange correlation disappears due to the orthogonality of the α and β spin
functions, which causes the second integral in the second equality to be zero when
integrated over either spin coordinate [14]. Eq. 2.15 and 2.15 show that only the
Coulomb correlation term survives when considering electrons of opposite spins,
while both the Coulomb and the exchange correlation terms survive when elec-
trons of the same spin are considered.

2.8 Hartree-Fock method

In the Hartree-Fock method a Slater determinant is used as the approximation
for the ground state wavefunction. The Slater determinant naturally includes the
fermionic nature of electrons. Again as in the Hartree method, using the varia-
tional principle, one can show that each HF orbitals can be individually an eigen-
function of its own operator f̂i defined by the one-electron Fock operator

f̂i = −1
2
∇2

i − ∑
α

Zα

riα
+ VHF

i {j} (2.17)
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where the final term, the HF potential, is 2 Ĵi − K̂i, and the Ĵi and K̂i operators are
defined so as to compute the Jij and Kij integrals previously defined in Eq. 2.15).
As can be seen from the presence of both the Coulomb and the exchange opera-
tors, the interaction of each electron with the static field of all of the other electrons
includes exchange effects on the Coulomb repulsion.

Once again the one-electron equations in Eq. 2.17, 2.18 can be solved self-consistently
to obtain the Hartree-Fock orbitals and the Hartree-Fock energy.

f̂iψi(1) = ǫiψi(1), (2.18)

Thus we have an eigenvalue equation for the single particle HF orbitals ψi. By ob-
serving Eq. 2.18 and the form of the operator one can see that in the Hartree term
the electrons interact with the potential formed by electron densities of the other
electrons. This means that the HF method is a mean field method and the corre-
lations of the electrons are accounted for only partially. Indeed, the electrons with
opposite spins have non-zero probability of occupy the same position in space.
Although this probability is zero for the electrons with parallel spins, these corre-
lations are still local and non-local correlations are missing from HF completely.
This can be understood from the fact that the long range two electron interaction
is described as an interaction of two charge densities. It is important to note that
we have obtained a set of coupled non-linear equations, i.e., the solution cannot
be obtained directly since the operators J and K depend on the solution. The equa-
tions need to be solved iteratively starting from some suitable guess for the set of
orbitals which is then refined in each step. Since when convergence is reached
the new interaction operators are identical to the previous ones, the procedure is
called the self-consistent-field (SCF) method.

To summarize, in the Hartree-Fock method, the energy eigenfunctions are as-
sumed to be products of one-electron wavefunctions and the total energy, called
the Hartree-Fock energy, EHF, is the sum of the eigenvalues of these one-electron
wavefunctions. The repulsion between the electrons is only considered in an aver-
age, mean field, manner, i.e., each electron interacts with an average charge den-
sity provided by all the other electrons. The effects of electron correlation, beyond
that of exchange energy resulting from the anti-symmetrization of the wavefunc-
tion, are completely neglected. EHF is the upper limit of the exact non-relativistic
ground state electronic energy E0 and the difference, E0 − EHF is called the corre-
lation energy [14].

2.9 Post Hartree-Fock methods

For the great majority of systems under study, in particular for excited states and
processes such as molecular dissociation reactions, electron correlation is by far
the most important. Post Hartree-Fock methods try to describe this electron cor-
relation in a more accurate manner than is possible in the Hartree-Fock method. In
the Hartree-Fock method, a single determinant is used to approximate the wave-
function and if we use a variational method to calculate the ground state energy,
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a restriction to a single determinant to describe the wavefunction is not necessary.
Post Hartree-Fock methods which use the variational method, therefore, use mul-
tiple determinants to describe the wavefunction. This leads to a much better de-
scription of electron correlation than what could be achieved in the Hartree-Fock
method.

A variety of post-HF methods exist, namely, Configuration interaction (CI), Cou-
pled cluster (CC), Moller-Plesset perturbation theory (MP2, MP3, MP4, etc.). Each
of the methods takes a slightly different approach to describe electron correlation.
In the CI method, in addition to the HF determinant, determinants where one or
more of the occupied orbitals are replaced by an orbital higher in energy than the
highest occupied HF orbital, an “excited” orbital are considered. When determi-
nants containing single and double excitations are added to approximate the total
wavefunction, the method is called CISD. If all possible determinants are added
(within the given basis set) the approach is called full-CI (FCI) and is exact within
the basis set. However, it is usually not possible to perform an FCI calculation
because the number of determinants rises quickly with the size of the basis. One
of the problems of the CISD approach is that it is not size extensive, that is, the
sum of the CISD energies of two species calculated separately differs from the
CISD energy of a dimer at infinite separation. The quadratic CISD(T) (QCISD(T))
method can be used to solve the size consistency issue.

Another method that does not suffer the size consistency issue of CI is the CC ap-
proach. Here the wavefunction is written ΨCC = exp(T)ΨHF, where T is an oper-
ator that includes single, double, triple, . . . excitations. Because the cost increases
quickly with the number of excitations included, single and double excitations are
most often used with the effect of triple excitations accounted for perturbatively.
The CCSD(T) method has become the ‘gold standard’ for quantum chemistry ref-
erence calculations.

Instead of using the variational approach, a perturbative approach can also be
taken starting with the HF Hamiltonian and wavefunction to improve the energy
further. The perturbation is chosen to replace the mean field HF electron interac-
tion term with the Coulomb operator. Most often second order energy corrections
are evaluated, referred to as second order Moller-Plesset theory (MP2). The MP2
method is used for many reference calculations since it is cheaper than CCSD(T).

The most serious problem of the post-HF methods is the scaling with the basis set
size. While MP2 scales as O(n5), CCSD(T) scales as O(n7) where n is the num-
ber of the basis set functions. Another method which take a completely different
approach to evaluation the wavefunction but has a more favorable scaling is the
quantum Monte Carlo (QMC) method. In this method, the wavefunction is cal-
culated using a stochastic procedure and as with other stochastic methods, the
error decreases only slowly with the length of the simulation. Because of the high
cost, these methods are limited to small systems and are often used only to obtain
reference data which are then used to assess more approximate approaches.
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2.10 Density Functional Theory

Yet another way of describing exchange and correlation effects is the Density
Functional Theory (DFT). While exchange is included exactly in HF methods and
correlation is added using post-HF methods, DFT has both exchange and correla-
tion included in a single functional1 and yields one electron orbitals similar to the
HF method called the Kohn-Sham orbitals. Unfortunately, the exact form of the
exchange-correlation functional is not known.

Since the electronic wavefunction of an n-electron system depends on the 3n spa-
tial and n spin coordinates the ground state energy also depends on them. But
in 1964, Pierre Hohenberg and Walter Kohn proved that for systems with a non-
degenerate ground state, the ground-state energy, wave function, and all other
electronic properties are uniquely determined by the ground state electron prob-
ability density ρ0(x, y, z) [18]. Thus E0 is a functional of ρ0 and is written E0[ρ0]
where the square brackets denote a functional relation.

2.10.1 Hohenberg-Kohn theorem

The ground-state electronic wave function of an n-electron system is an eigenfunc-
tion of the purely electronic Hamiltonian which, in atomic units, can be written
as

Ĥ = −1
2

n

∑
i=1

∇2
i +

n

∑
i=1

υ(ri) + ∑
i,j,i 6=j

1
rij

(2.19)

υ(ri) = −∑
α

Zα

riα
(2.20)

Using operators, Eq. 2.19 can be written as,

Ĥ = T̂ + V̂ne + V̂ee (2.21)

It is given as the sum of electronic kinetic-energy terms, electron-nuclear attrac-
tions, and electron-electron repulsions. The quantity υ(ri) is the potential energy
of interaction between electron i and the nuclei and depends on the coordinates
xi, yi, zi, of electron i and on the nuclear coordinates. υ(ri) is called the exter-
nal potential acting on electron i, since it is produced by charges external to the
system of electrons. Hohenberg and Kohn also proved that ρ0(r) determines the
external potential and the number of electrons in the system. We will not go into
the simple proofs here. To emphasize that ρ0(r) determines the external potential
and also the ground-state energy we write E0 as Eυ[ρ0]. Obviously, υ(ri) differs
for different systems.

Taking the average of Eq. 2.21 for the ground state, we have E = T + Vne +
Vee, where, for notational convenience, overbars instead of angular brackets have

1While a function f (x) associates a number with each value of the variable x for which the function
f is defined, a functional F[ f ] is a rule that associates a number with each function f .
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been used to denote averages. Each of the average values in this equation is the
property of the system determined by the ground-state electronic wave function,
which, in turn, is determined by ρ0(r). Therefore, each of these averages is a func-
tional of ρ0:

E0 = Eυ[ρ0] = T[ρ0] + Vne[ρ0] + Vee[ρ0].

Since V̂Ne = ∑
n
i υ(ri),

V̂Ne =

〈

Ψ0

∣

∣

∣

∣

∣

n

∑
i

υ(ri)

∣

∣

∣

∣

∣

Ψ0

〉

=

�

ρ0(r)υ(r)d(r).

Thus, V̂Ne[ρ0] is known, but the functionals T[ρ0] and Vee[ρ0] are unknown. We
have

E0 =

�

ρ0(r)υ(r)dr + T[ρ0] + Vee[ρ0] =

�

ρ0(r)υ(r)d(r) + F[ρ0] (2.22)

where the functional F[ρ0], is independent of the external potential. Eq. 2.22 does
not provide a practical way to calculate E0 from ρ0, because the functional F[ρ0] is
unknown [15].

2.10.2 Hohenberg-Kohn variational theorem

To turn Eq. 2.22 from a formal relation to a practical tool, we need a second the-
orem proven by Hohenberg and Kohn, and an approach developed by Kohn and
Sham [19]. Hohenberg and Kohn proved that for every trial density function ρtr(r)
that satisfies

�

ρtr(r) = n and ρtr(r) ≥ 0 for all r, the following inequality holds:
E0 ≤ Eυ[ρtr]. Since E0 = Eυ[ρ0], the true ground-state electron density mini-
mizes the energy functional Eυ[ρtr]. This is exactly similar to the way a normalized
ground-state wave function minimizes the variational integral [15].

2.10.3 Kohn-Sham method

The Hohenberg-Kohn theorem says that it is possible in principle to calculate all
the ground-state molecular properties from ρ0, without having to find the molec-
ular wave function. Using the HF and post-HF methods, one first find the wave-
function and then finds ρ by integration. The Hohenberg-Kohn theorem does
not tell us how to calculate E0 from ρ0 without first finding the wave function.
Kohn and Sham propose a practical method for finding ρ0 and for finding E0 from
ρ0 [19]. The method is capable, in principle, of yielding exact results, but because
the equations of the Kohn-Sham (KS) method contain an unknown functional that
must be approximated, the KS formulation of DFT yields approximate results.

A fictitious reference system (denoted by the subscript s and often called a non-
interacting system) of n noninteracting electrons that each experience the same ex-
ternal potential-energy function υs(ri), where υs(ri) is such as to make the ground-
state electron probability density ρ0(r) of the molecule we are interested in; ρs(r) =
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ρ0(r). Since Hohenberg and Kohn proved that the ground-state probability den-
sity function determines the external potential, once ρs(r) is defined for the ref-
erence system, the external potential υs(ri) in the reference system is uniquely
determined, although we might not know how to actually find it. The electrons
do not interact with one another in the reference system, so the Hamiltonian of
the reference system can be written as,

Ĥs =
n

∑
i

[

−1
2
∇2

i + υs(ri)

]

≡
n

∑
i

ĥKS
i

where ĥKS
i is the one-electron Kohn-Sham Hamiltonian which is exactly similar to

the one-electron HF Hamiltonian (Eq. 2.17).

Since the reference system s consists of noninteracting particles, the ground state
wavefunction Ψs,0 of the reference system is the Slater determinant of the lowest
energy Kohn-Sham spin-orbitals uKS

i of the reference system, where the spatial
part θKS

i (ri) of each spin-orbital is an eigenfunction of the one-electron operator
ĥKS

i , that is,
Ψs,0 = |u1u2 . . . un〉 , ui = θKS

i (ri)σi (2.23)

ĥKS
i θKS

i = ǫKS
i θKS

i

where σi is a spin function (either α or β) and the ǫKS
i ’s are Kohn-Sham orbital

energies.

For a closed-shell ground state, the electrons are paired in the Kohn-Sham orbitals,
with two electrons of opposite spin having the same Kohn-Sham orbital.

Eq. 2.22 can be written

Eυ[ρ] =

�

ρ(r)υ(r)dr + Ts[ρ] +
1
2

� �

ρ(r1)ρ(r2)

r12
dr1dr2

+∆T[ρ] + ∆Vee[ρ] (2.24)

Eυ[ρ] = E0[ρ] =

�

ρ(r)υ(r)dr + Ts[ρ] +
1
2

� �

ρ(r1)ρ(r2)

r12
dr1dr2

+Exc[ρ] (2.25)

where

∆T[ρ] = T[ρ]− Ts[ρ] (2.26)

∆Vee[ρ] = Vee[ρ]−
1
2

� �

ρ(r1)ρ(r2)

r12
dr1dr2 (2.27)

∆T is the difference in the average ground-state electronic kinetic energy between
the molecule and the reference system of noninteracting electrons with electron
density equal to that in the molecule. The second term on the right hand side
of Eq. 2.27 is the classical expression for the electrostatic interelectronic repulsion
energy if the electrons were smeared out into a continuous distribution of charge
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with electron density ρ. The functionals ∆T and ∆Vee are unknown and consti-
tute the exchange-correlation energy functional Exc[ρ]. The first three terms in
Eq. 2.25 are easy to evaluate from ρ and those include the main contributions to
the ground-state energy, but the fourth term although not easy to evaluate ac-
curately is a relatively small term. The key to accurate KS DFT calculation of
molecular properties is to get a good approximation to Exc.

E0 can be evaluated once ρ0 is known. But the fictitious system of noninteracting
electrons defined to have the same electron density as that in the ground state of
the molecule: ρs = ρ0. The electron probability density of the n-particle system
whose wavefunction is given by Eq. 2.23 is given as

ρ = ρs =
n

∑
i

∣

∣

∣θKS
i

∣

∣

∣

2
(2.28)

Using Eqs. 2.20, Ts[ρ] = − 1
2
〈

ψs

∣

∣∑i ∇2
i

∣

∣ψs

〉

and 2.28 in Eq. 2.25 the ground state
energy will be

E0 = −∑
α

Zα

�

ρ(r)

r1α
dr1 −

1
2

n

∑
i

〈

θKS
i (1)

∣

∣

∣

∣

∣

∑
i

∇2
i

∣

∣

∣

∣

∣

θKS
i (1)

〉

+
1
2

� �

ρ(r1)ρ(r2)

r12
dr1dr2 + Exc[ρ] (2.29)

We can therefore find E0from ρ if we can find the KS orbitals θKS
i and if we know

the functional Exc.

The Kohn-Sham orbitals are found as follows. The Hohenberg-Kohn variational
theorem tells us that we can find the ground-state energy by varying ρ (subject
to the constraint

�

ρdr = n) so as to minimize the functional Eυ[ρ]. Equiva-
lently, instead of varying ρ, we can vary the KS orbitals θKS

i , which determine
ρ from Eq. 2.28. Just as we showed that the orthonormal orbitals that minimize
the Hartree-Fock expression for the molecular energy satisfy the Fock equation
(Eq. 2.18), one can show that the Kohn-Sham orbitals that minimize the expres-
sion Eq. 2.29 for the molecular ground-state energy satisfy,

[

−1
2
∇2

1 − ∑
α

Zα

r1α
+

�

ρ(r2)

r12
dr2 + υxc(1)

]

θKS
i (1) = ǫKS

i θKS
i (1)

(2.30)
[

−1
2
∇2

1 + υs(1)
]

θKS
i (1) = ǫKS

i θKS
i (1)

(2.31)
ĥ(1)θKS

i (1) = ǫKS
i θKS

i (1)
(2.32)

where the exchange-correlation potential υxc is given as the function derivative of
the exchange-correlation energy Exc:

υxc(r) =
δExc[ρ(r)]

δρ(r)



2.10. Density Functional Theory 23

The one-electron Kohn-Sham operator ĥKS(1) in Eq. 2.32 is the same as the Fock
operator (Eq. 2.18) in the Hartree-Fock equations except that the exchange opera-
tors k̂ in the Fock operator are replaced by υxc, which handles the effects of both
exchange (antisymmetry) and electron correlation.

There is only one problem in using the Kohn-Sham method to find ρ and E0. No
one knows what the correct functional Exc[ρ] is. Therefore, both Exc in the energy
expression Eq. 2.29 and υxc in Eq. 2.30 are unknown. Various approximations are
used for both of them which we will discuss shortly.

The exchange-correlation energy Exc(Eq. 2.25) contains the following components:
the kinetic correlation energy (the term ∆T in Eq. 2.25, which is the difference in T
for the real molecule and the reference system of noninteracting electrons), the ex-
change energy (which arises from the antisymmetry requirement), the Coulombic
correlation energy (which is associated with interelectronic repulsions), and a self-
interaction correction (SIC). The SIC arises from the fact that the classical charge-
cloud electrostatic-repulsion expression − 1

2
� � ρ(r1)ρ(r2)

r12
dr1dr2 erroneously allows

the portion of ρ in dr1 that comes from the smeared-out part of a particular elec-
tron to interact with the charge contributions of that same electron to ρ through-
out space. In reality, an electron does not interact with itself. Note that for a
one-electron molecule, there is no interelectronic repulsion, but the expression
− 1

2
� � ρ(r1)ρ(r2)

r12
dr1dr2 erroneously gives an interelectronic repulsion [15].

2.10.4 Exchange-correlation functionals

The exchange-correlation energy can be written as sum of the exchange and the
correlation energies,

Exc[ρ] = Ex[ρ] + Ec[ρ].

A variety of approximations have been used to obtain the exchange-correlation
energy. These exchange-correlation functionals can be classified as LDA, GGA,
meta-GGA and hybrid functionals depending on their dependence on one or more
of the quantities: local density (ρ) , gradient of the local density (∇ρ), the Lapla-
cian of the density (∇2ρ) and the kinetic energy density τ = ∑i(∇φKS

i )2. In the
Local Density Approximation (LDA), Exc depends only on ρ. In the Generalized
Gradient Approximation (GGA), in addition to ρ, Exc also depends on the gradi-
ent of the electron density. Exc in meta-GGA’s depends on all the quantities: ρ,
∇ρ, ∇2ρ and τ. Hybrid functionals are GGA functionals with a fraction of the
exact HF-exchange. This dependence can be summarized as,

ELDA
xc (r) = ELDA

xc [ρ]

EGGA
xc (r) = EGGA

xc [ρ,∇ρ]

Emeta−GGA
xc (r) = EGGA

xc [ρ,∇ρ,∇2ρ, τ]

E
hybrid−GGA
xc (r) = axEexact

HF + EGGA
xc [ρ,∇ρ]
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No approximation of Exc is able to describe all chemical systems and all properties
accurately. For example, B3LYP, a popular hybrid functional, describes molecules
well [20, 21], but fails badly at the description of solids [22]. In contrast, PBE [23,
24], which describes periodic systems like solids and surfaces reasonably well, is
not able to describe molecular properties as well as B3LYP [20]. We will restrict
ourselves to the case of solids below.

Coming to properties, LDA tends to overestimate bond strengths in solids and
GGA underestimates them. In LDA, the calculated lattice constants are too small
and cohesive energies are overestimated by about 1 %. PBE, a GGA functional,
corrects the overbinding of LDA, and gives properties with similar errors but op-
posite to those from LDA. Other equilibrium properties that are sensitive to lattice
constants such as bulk moduli, phonon frequencies, and magnetic moments are
also sometimes over-corrected by GGA. Both LDA and GGA underestimate en-
ergy gaps in semiconductors and insulators [22].

Important for the present work, GGA produces the correct ground state for mag-
netic transition metals; the LDA fails quite badly in this regard [25]. LDA in-
correctly predicts the hexagonal close-packed nonmagnetic structure of Fe to be
the most stable [26, 27] ground state crystal structure, but GGA correctly predicts
the ferromagnetic body-centered structure as the ground state [28]. Furthermore,
LDA predicts body-centered cubic Cr to be non-magnetic, but GGA correctly pre-
dicts it to be antiferromagnetic [29].

The search for the perfect exchange-correlation functional is far from over, and
new functionals are still being developed [30]. Treating non-local dispersion in-
teractions, which are important in describing materials like hydrocarbons, noble
gases, proteins, DNA, etc., has been a problem till recently for all the exchange-
correlation functionals mentioned till now. Recently, a number of dispersion-
corrected exchange-correlation functionals have been introduced [31]. More infor-
mation about various exchange-correlation functionals and the accuracy of their
description of different material systems can be found in Ref. [20–22].

2.11 Basis sets

Basis sets are used to mathematically represent wavefunctions. The concept of
a basis sets can be understood with the help of a simple analogy. In Fourier se-
ries expansions we use a0/2 + ∑

∞
n=1 an sin nx + ∑

∞
n=1 bn cos nx to represent any

periodic functions; sin nx and cos nx terms being basis functions of the expan-
sion (Appendix A). The accuracy with which the expansion represents the original
function depends on the features of the original function and also on how many
terms are included in the expansion. Given a fixed number of terms in the ex-
pansion, more ‘smoother’ functions can be described more accurately compared
to functions with discontinuities and jumps. Here, the use of sin and cos terms is
motivated by the periodicity of the function that is being described.

Similarly, a wave function is represented by a basis set and different basis sets
can be used to represent the wavefunction. The choice is usually directed by the
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system under consideration. It is natural for the wave function of a molecular sys-
tem to be expressed in terms of molecular orbital basis functions each of which is
expressed in terms of atomic orbital basis functions. This is called the Linear Com-
bination of Atomic Orbitals-Molecular Orbitals (LCAO-MO) method. Similarly, it
is natural for solid state systems like solids and surfaces, with inherent periodicity,
to be expressed in terms of plane waves. The plane-wave method, which is mostly
used in solid-state calculations, utilizes the periodicity of the lattice and electronic
orbitals are expanded using a set of functions expiG · r, where G is a vector of the
reciprocal lattice. After a short discussion of both the basis sets (Sec. 2.11.1 and
2.11.2), the plane-wave basis is discussed in detail (Sec. 2.12).

2.11.1 Localized basis sets

The LCAO-MO method uses localized basis sets. For example, a single hydrogen
atom can be represented by a hydrogen atom-like (1s) function called a Slater-type
orbital (STO). Although, a single hydrogen atom can be adequately represented
by a single STO, a hydrogen molecule needs more than two 1s STO’s; to represent
the bonding and anti-bonding orbitals. Hence, more basis set functions are added
so that orbitals can be accurately represented. In the hydrogen molecule exam-
ple, adding 2p functions helps in describing the bonding more accurately because
of their directional nature. Thus it is important to choose a large enough basis
set to obtain reliable results. In modern quantum chemistry programs, STOs are
not used anymore because the integrals resulting in the secular determinants are
difficult to evaluate. This difficulty is overcome by the use of Gaussian type or-
bitals (GTO). One issue with localized basis sets is the basis set superposition error
(BSSE). Binding energy of a dimer is generally overestimated due to BSSE. BSSE
occurs since upon formation of the dimer (A+B) the basis functions on species B
represent an additional optimization space for orbitals of species A which low-
ers the total energy and results in overestimation. Also, it is difficult to represent
an electron, unless explicitly specified, detached for an atom as the localized basis
does not exist in vacuum. While it is advisable to use localized basis with slow de-
cay (diffuse) functions for molecular calculations, in condensed phase these cause
a poor conditionality of the overlap matrix and often lead to numerical instabili-
ties [17].

2.11.2 Plane waves

The issues above can be avoided by the use of a plane wave basis set. Plane waves
arise naturally in calculations involving solids as Bloch functions (expiG · r) are the
eigen functions of a system with a periodic potential. Thus we are basically using
the Fourier representation of the orbitals and storing the Fourier coefficients. The
size of the basis is therefore controlled by the highest momentum of the plane
wave included in the basis. The main advantages of using a plane wave basis are:
one, they are all orthogonal and thus several terms in the electronic Hamiltonian
are simple to evaluate. Two, BSSE is avoided and the complete cell is described
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in a similar manner. However, description of molecules is very inefficient as a lot
of effort is spent in describing vacuum. Another important problem that arises
due to the use of plane waves is the description of the rapid oscillations of the
electronic orbitals close to the atomic nuclei. Accurate description of these rapid
oscillations would require very high plane-wave cut-offs. Various approaches are
used to avoid the description of these fast oscillations while still retaining the
efficiency of plane-waves (Sec. 2.12.5). We will now discuss planewave DFT in
detail.

2.12 Planewave DFT

In this section we discuss the implementation of DFT in a plane-wave approach.
Most of the discussion below is based on Sec. II of Ref. [32].

2.12.1 Periodicity

Bloch’s theorem (Sec. 2.12.2) is applicable only to periodic systems. A bulk crystal
can obviously be represented by a periodic replication of the primitive cell in space
(Fig. 2.1). At the other extreme, a molecule which has no inherent periodicity
can be made to have ‘pseudo’ periodicity. This can be achieved by inserting the
molecule in a ‘box’ and replicating the box in three dimensional space. Since we
want to calculate the properties of the isolated molecule and not a ‘crystal’ of
molecules, we have to make sure that the box is big enough that the molecules in
neighboring cells do not interact with each other (Fig. 2.1). Defects and surface
can similarly be periodically represented.

A point defect (vacancy, substitutional impurity) can be modeled by inserting it
into big enough bulk crystal and replicating it in space. Again, similar to the case
of molecules, since we want to calculate the properties of an isolated defect, the
cell should be chosen big enough such that neighboring defects do not interact
with each other (Fig. 2.1). In this case the energy per unit cell of a crystal contain-
ing an array of defects is calculated, rather than the energy of a crystal containing
a single defect. The independence of defects in neighboring cells can be checked
by increasing the volume of the supercell until the computed defect energy has
converged. It can then be assumed that defects in neighboring unit cells no longer
interact.

Similarly, a surface may have periodicity in the plane of the surface, but it cannot
have periodicity perpendicular the the surface. The supercell contains a crystal
slab and a vacuum region (Fig. 2.1). The supercell is repeated over all space, so the
total energy of an array of crystal slabs is calculated. To ensure that the results of
the calculation accurately represent an isolated surface, the vacuum regions must
be wide enough so that faces of adjacent crystal slabs do not interact across the
vacuum region, and the crystal slab must be thick enough so that the two surfaces
of each crystal slab do not interact through the bulk crystal.
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(a) (b)

(c) (d)

Figure 2.1: Schematic illustrations of supercell geometries: bulk crystal (a), point
defect (vacancy) (b), surface (c), molecule (d). The supercell area is enclosed by
dashed lines.
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2.12.2 Bloch’s theorem

Bloch’s theorem states that the wave function of an electron in a periodic potential
(from a crystal) can be written as the product of a cell-periodic part and a wavelike
part [32–34],

ψi(r) = exp(ik · r) fi(r).

The cell-periodic part of the wave function can be expanded using a basis set con-
sisting of a discrete set of plane waves whose wave vectors are reciprocal lattice
vectors of the crystal,

fi(r) = ∑
G

ci,G exp(iG · r),

where the reciprocal lattice vectors G are defined by G · l = 2πm for all l where l
is a lattice vector of the crystal and m in an integer. Therefore each electronic wave
function can be written as a sum of plane waves,

ψi(r) = ∑
G

ci,k+G exp[i(k + G) · r].

2.12.3 Brillouin zone integration

Due to periodicity of the crystal structure, electronic states are allowed only at
a set of k points determined by the boundary conditions that apply to the bulk
solid. The density of allowed k points is proportional to the volume of the solid.
The infinite number of electrons in the solid are accounted for by an infinite num-
ber of k points, and only a finite number of electronic states are occupied at each
k point. Bloch’s theorem changes the problem of calculating an infinite number of
electronic wave functions to one of calculating a finite number of electronic wave
functions at an infinite number of k points. The occupied states at each k point
contribute to the electronic potential in the bulk solid so that, in principle, an in-
finite number of calculations are needed to compute this potential. However, the
electronic wave functions at k points that are very close together will be almost
identical. Hence it is possible to represent the electronic wave functions over a re-
gion of k space by the wave functions at a single k point. In this case the electronic
states at only a finite number of k points are required to calculate the electronic
potential and hence determine the total energy of the solid [32].

Using a plane-wave basis, the average property g of the system can be written as,

g =
Vcell

(2π)3

�

BZ
g(k)dk

where BZ is the Brillouin zone and k is a reciprocal lattice vector. The integral is
defined over all possible values of k in the Brillouin zone.

Computationally, the above integral is evaluated on a grid of k-points which are
chosen in such a way that an efficient convergence of the desired property is ob-
tained as a function of the k-point grid density. A special set of k-points called the
Monhkhort-Pack grid [35] is usually employed in a plane wave calculation 2.

2Properties such as the density of states (DOS) are non-analytical (spectral) functions and hence
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2.12.4 Energy cut-off

Bloch’s theorem states that the electronic wave function at each k point can be
expanded in terms of a discrete plane-wave basis set. In principle, an infinite
plane-wave basis set is required to expand the electronic wave functions. The
coefficients ci,k+G for the plane waves with small kinetic energy (h̄2/2m) |k + G|2
are typically more important (because of the PAW approximation, Sec. 2.12.5) than
those with large kinetic energy. Thus the plane-wave basis set can be truncated to
include only plane waves that have kinetic energies less than a particular cutoff
energy. If a continuum of plane-wave basis states were required to expand each
electronic wave function, the basis set would be infinitely large no matter how
small the cutoff energy. Application of the Bloch’s theorem allows the electronic
wave functions to be expanded the terms of discrete set of plane waves. Introduc-
tion of an energy cutoff to the discrete plane-wave basis set produces a finite basis
set [32].

2.12.5 Pseudopotentials

Most of the ordinary properties (bonding, reactivity) of a chemical system are dic-
tated by the valence electrons of the constituent atoms; the core electrons not play-
ing an important role. Also, closer to the nuclei, where core electrons are located,
the wave function varies rapidly. Accurate representation of these rapid oscilla-
tions requires a much larger set of plane waves with high energy cut-offs. This can
again be understood easily with reference to a Fourier series expansion. Relatively
larger basis sets are required to represent sharply peaked and/or rapidly varying
functions than to represent functions with no peaks and/or slowly varying. For
example, the number of nodes in hydrogen orbitals increase in the order: 1s < 2p
< 2s < 3d < 3p < 3s . . . and thus they would require progressively larger basis sets
to be represented accurately.

Since core electrons do not play a major role in the properties of the system and in
addition are much harder to describe accurately, it would be beneficial to mimic
their behavior while avoiding the associated complexities in their representation.
In other words, if we are able to devise a method that just keeps the properties
of the valence electron density while replacing the core density with a smoothly
varying nodeless function, we will able to calculate the properties of interest with
a much smaller basis. This is exactly what pseudopotentials have been designed
for.

The pseudopotential is an effective potential constructed to replace the atomic
all-electron potential (full-potential) such that the core states are eliminated and
the valence electrons are described by nodeless ‘pseudo’ wavefunctions. In this
approach only the chemically active valence electrons are dealt with explicitly,
while the core electrons are ‘frozen’, being considered together with the nuclei as

integration schemes employed to integrate smooth functions are not of much use when directly ap-
plied. To overcome this the property is smoothened using Gaussian or Lorentzian smoothening. This
smoothened function can then be easily integrated with 1st, 2nd or higher order integration methods.
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Figure 2.2: Illustration of a pseudopotential.Comparison of a wavefunction in the
Coulomb potential of the nucleus (blue) to the one in the pseudopotential (red).
The real and the pseudo wavefunction and potentials match above a certain cutoff
radius rc.

rigid non-polarizable ion cores. Norm-conserving pseudopotentials [36] are de-
rived from an atomic reference state, requiring that the pseudo- and all-electron
valence eigenstates have the same energies and amplitude (and thus density) out-
side a chosen core cutoff radius rc. Pseudopotentials with larger cutoff radius
are said to be softer, that is more rapidly convergent, but at the same time less
transferable, that is less accurate to reproduce realistic features in different envi-
ronments. Norm-conserving pseudopotentials enforce the condition that, outside
of a cutoff radius, the norm of each pseudo-wavefunction be identical to its cor-
responding all-electron wavefunction. Ultrasoft pseudopotentials [37] relax the
norm-conserving constraint to reduce the basis-set size further. Another related
technique is the projector augmented wave (PAW) method [38]. The PAW method
retains the nodal structure of the core while still retaining the computational effi-
ciency of a pseudopotential.

Since in this thesis we use a planewave basis along with a frozen core PAW ap-
proximation, we restrict ourselves to the calculation of properties under this ap-
proximation.

2.12.6 Smearing

One last thing of practical importance are the smearing methods. The numeri-
cal evaluation of integrals converges easily for continuous functions while it does
not for functions which are discontinuous. Especially for a metal, the Brillouin
zone can be divided into regions that are occupied and unoccupied by electrons.
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Figure 2.3: Fermi-Dirac function with k0 = 1 and several values of σ.

The surface in k space that separates these two regions is called the Fermi surface.
From the point of view of calculating integrals in k space, this is a significant com-
plication because the functions that are integrated change discontinuously from
nonzero values to zero at the Fermi surface. If no special efforts are made in cal-
culating these integrals, very large numbers of k points are needed to get well-
converged results.

Two methods are popular to overcome this difficulty: the tetrahedron method
and the smearing method. In the tetrahedron method, discrete set of k points are
used to define a set of tetrahedra that fill reciprocal space and the function being
integrated is defined at every point in the tetrahedron using interpolation. Once
the interpolation is complete, the function to be integrated has a simple form at all
positions in k space and the integral can now be evaluated using the entire space,
and not the original discrete points. Blöchl developed interpolation methods that
go beyond a simple linear interpolation and these are the methods that are most
widely used. In the smearing methods, the function being integrated is forced
to be continuous by ‘smearing’ out the discontinuity. An example of a smearing
function is the Fermi-Dirac function:

f

(

k − k0

σ

)

=

[

exp
(

k − k0

σ

)

+ 1
]−1

.

This changes a discontinuous step function into a function without a disconti-
nuity. As σ → 0, the above function approaches the step function. One of the
widely used smearing method was developed by Methfessel and Paxton [39].
Their method uses expressions for the smearing functions that are more compli-
cated than the simple Fermi-Dirac function above, but are still characterized by a
single parameter, σ.

2.12.7 Convergence

For a given exchange-correlation functional, the ground state energy obtained by
solving the Kohn-Sham equations should be numerically converged. When using
plane-wave DFT, numerical convergence should be achieved with respect to all
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the following: plane-wave energy, density of the k-point grid, self-consistency
cycle, and ionic relaxation.

The energy cutoff for the plane wave energy and the density of the k-point grid
can be increased gradually to check if convergence in total energy is achieved to
‘desired accuracy.’ The ‘desired accuracy’ depends on the property being stud-
ied. If one is interested in the phase stability of phases which differ by less than
10 meV in energies, we need to achieve a convergence of at least 1 meV or better.
One needs to use much denser k-point grids for metals compared to insulators
and semi-conductors. Usually a k-point density of about 0.25 Å−1 along each
of the reciprocal lattice vectors gives a good description of properties for metals
while a k-point density of 0.5 Å−1 gives a good description of the properties for
insulators and semi-conductors. Relatively high plane-wave energy cutoffs are
required when elements from the first and second row of the periodic are part of
the system under consideration. A cut-off of about 400 eV is generally sufficient
for calculation of most properties involving these elements.

Finally, only calculations employing the same energy cutoff, k-point density, smear-
ing methods can be compared. Differences in energies of calculations employing
different energy cutoffs, k-point densities, or smearing methods will lead to wrong
results.

2.13 Temperature dependence of properties

The calculation of a number of properties at 0 K is rather straightforward. But
calculating the same properties as a function of temperature is relatively more
involved. For example, calculation of structural parameters (crystal lattice pa-
rameters, molecular structure) is relatively easy while the calculation of thermal
expansion coefficients are slightly more difficult.

Structural, electronic, thermodynamic and mechanical properties of pure phases
can also vary as a function of temperature and pressure. For solid phases, such
as the ones that we are interested in, the change in properties as a function of
pressure is negligible and also irrelevant in the case of steels as most of the thermal
and mechanical processing is done at atmospheric pressure. Hence, we would be
interested in the change of these properties as a function of temperature.

Now that we have discussed all the essential details required to understand a first-
principles calculation, in the next chapter we will calculate a number of propertis
of the pure phases: bcc-Fe, Fe3C, Fe5C2 and η-Fe2C.
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Iron, Cementite (Fe3C), Hägg
carbide (Fe5C2) and η-Fe2C

3.1 Introduction

3.1.1 Overview

In this chapter the properties of the pure phases, bcc-iron and the iron carbides:
Fe3C, Fe5C2, and η-Fe2C, are studied. The focus will be on the structural (crystal,
magnetic), electronic (density of states), thermodynamic (formation energy, vibra-
tional free energy, heat capacity, Debye temperature) and mechanical properties
(elastic moduli, elastic tensors) of these phases. But first, we will discuss what is
already known about them experimentally and theoretically.

3.1.2 Experiments

3.1.2.1 Iron

Pure iron at ambient pressure and temperature is a body centered cubic ferromag-
netic (FM) solid usually know as ferrite or the α phase. It exists in this state from
0 K all the way up to 1043 K where it magnetically disorders into a paramagnetic
bcc state. At 1184 K the paramagnetic bcc state transforms into a paramagnetic
fcc state, referred to as austenite or the γ phase. At a still higher temperature of
1665 K the paramagnetic bcc state reappears, denoted as the δ phase before melt-
ing at 1811 K into a paramagnetic liquid. In steel processing we usually are never
over 1500 K and hence we consider the phases relevant below this temperature,
namely ferrite and austenite.

Most elemental solids are close packed, but Fe is one of the few exceptions which
occurs in a more open bcc structure. The stabilization of the bcc structure has been
attributed to its magnetism [1].

33
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3.1.2.2 Iron carbides

Cementite is the most common metastable carbide in steel. At room temperature
it is ferromagnetic (FM) with a Curie temperature, Tc, of about 483 K [40, 41].
Although cementite is the most common carbide observed in steels, a sequence of
precipitations precede the final formation of cementite. Roughly, with increasing
temperature the carbides appear to precipitate in the order: η-Fe2C, Fe5C2 and
Fe3C [3, 4]; the appearance of ǫ-Fe2C precedes η-Fe2C.

Experimentally, it was found that η-Fe2C forms first in quenched steels at temper-
atures between 370 and 470 K [42, 43]. But, it was also noticed that ǫ-Fe2C is the
only carbide forming up to 520 K and forms along with cementite till 600 K and
that it acts as a precursor for the formation of Fe5C2 [44, 45]. A long aging study
at 300 K followed by a brief 405 K anneal showed the presence of both η-Fe2C and
ǫ-Fe2C [46]. ǫ-Fe2C is a non-stoichiometric carbon deficient structure of η-Fe2C.
It was recently shown that ǫ-Fe2C is only slightly more unstable than η-Fe2C and
that it can relax to the latter structure [4]. Above 720 K it has been observed that
Fe3C forms exclusively [42, 43]. Both kinetic and thermodynamic factors could
be responsible for these observations. It is interesting that the precipitation se-
quence can be altered by the application of a magnetic field thereby showing that
the magnetic free energy plays an important role in the stabilization of the carbide
phases [4, 47, 48]. But, the predominance of each of the carbides in a definite tem-
perature range has been attributed to the lowering of its free energy (and hence
stabilization) with temperature [4].

Apart from playing an important role in steels, cementite also displays many in-
teresting properties, such as INVAR behavior [49], and is also suspected to be a
major component of the earth’s core [50]. Cementite, Hägg carbide and η-Fe2C
along with Fe7C3, ǫ-Fe2.2C also form during the Fischer-Tropsch process [51] (and
references therein).

3.1.3 Theory

The first attempt at describing the properties of iron was done way back in 1978
by Moruzzi et al. [52]. The local spin density approximation (LSDA) that they
used wrongly indicated fcc-Fe to be more stable than bcc-Fe. The description of
the properties of iron improved by a great measure by the use of the generalized
gradient approximation (GGA) in place of the LSDA. At present, the electronic,
magnetic and thermodynamic properties of bcc-Fe can be described very well us-
ing first principles calculations. But, the description of the paramagnetic state of
iron is still problematic. For instance, a proper theoretical understanding of the
fcc-Fe magnetic state is still lacking.

Electronic, structural and magnetic properties of pure cementite were described in
a number of previous communications [3, 53–55]. Furthermore, there are detailed
studies of thermodynamic properties of pure cementite [48, 56], elastic proper-
ties [57–60], point defects and possible C diffusion paths [55].
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Electronic, magnetic and structural properties of Fe3C, Fe5C2 and η-Fe2C have
been reported [3]. Formation enthalpies [3, 61], surface properties [62], thermo-
dynamic properties along with formation enthalpies [4] of Fe5C2 have also been
described. Comparable work, excluding the surface properties, has been done on
η-Fe2C [3, 4, 63].

3.2 Crystal and magnetic structure

While the C in Fe3C, Fe5C2 and Fe7C3 has a trigonal prismatic coordination of Fe
atoms (Fig. 3.1), the C in η-Fe2C (Fig. 3.1) along with ǫ-Fe2.2C, ferritic, martensitic
and austenitic Fe-C solid solutions has an octahedral coordination of Fe atoms.

Fe3C crystallizes in an orthorhombic unit cell with 16 atoms [64]. The structure
of cementite can be thought of as being derived from a hexagonal close-packed
array of Fe atoms. The close-packed sheets are, however, not flat but ‘pleated’.
The pleated close-packed sheets lie in the [100] direction [49]. The structure is re-
lated to the structures of ǫ-iron and the ǫ-carbide [64]. The C atoms occupy a four
fold Wyckoff 4c site and are coordinated by six Fe atoms in a fairly regular trigo-
nal prism. The Fe atoms occupy positions called ‘general and special positions’;
Wyckoff sites 8d and 4c respectively.

The crystal structure of Hägg carbide is still under debate; a monoclinic [65–70]
or a pseudo-monoclinic [71, 72] structure are suggested as alternatives. But first-
principles calculations suggest that both the structures are energetically equiva-
lent [71]. We consider the monoclinic variant of the crystal structure in this work
as it has slightly higher symmetry than the pseudo-monoclinic crystal structure.
The monoclinic crystal structure has 28 atoms in the unit cell. In the Hägg car-
bide, C atoms occupy an 8f position while Fe atoms occupy the Wyckoff positions
8f, 8f and 4e.

η-Fe2C also crystallizes in the orthorhombic unitcell [45, 73–75] with 6 atoms. In
η-Fe2C the C and Fe occupy the Wyckoff sites 2a and 4g respectively. The unit
cells of bcc-Fe and the carbides are shown in Fig. 3.1.

The lattice parameters, fractional coordinates of bcc-Fe along with those of the
carbides are given in Table 3.1. As can be seen, the lattice parameters agree well
with experimental results and previous first-principles results. Although GGA is
known to underbind most elemental solids, in the case of bcc-Fe it gives a slightly
smaller lattice parameter compared to experiments. This tendency is further con-
firmed by the slightly smaller lattice parameters obtained from GGA for the car-
bides compared to experiments.1

The total magnetization of the carbides decreases with increasing fraction of C
in the carbide and the magnetic moment on the Fe atoms also decreases with in-
creasing number of C nearest neighbors. The magnetic moment per Fe atom and

1The Birch Murnaghan equation of state was used to fit to the energy vs. volume curve to obtain the
equilibrium lattice parameter for bcc-Fe. For the carbides, first the ions were relaxed, then the shape
and volume and finally both the ions and shape were relaxed simultaneously.
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(a) bcc-Fe (b) Fe3C

(c) Fe5C2 (d) η-Fe2C

Figure 3.1: Crystal structures



Carbide Lattice Atom Fractional Magnetic Magnetic
(Sp. Gp. No., parameters (Site) coordinates moment / moments

Pearson Sym.) [Å] x, y, z Fe atom [µB]
[µB/Fe atom]

bcc-Fe a = 2.832 (2.866) 0.000, 0.000, 0.000 2.22 (2.22)
(229, cI2) (0.000), (0.000), (0.000)

Fe3C a = 5.032(5.090) C(4c) 0.876, 0.250, 0.438 1.87 -0.10
(62, oP16) b = 6.708(6.744) (0.877), (0.250), (0.444)

c = 4.477(4.525) Fe1(4c) 0.035, 0.250, 0.837 1.97
(0.037), (0.250), (0.840)

Fe2(8d) 0.176, 0.068, 0.332 1.89
(0.182), (0.067), (0.337)

Fe5C2 a = 11.579(11.563) C(8f) 0.113, 0.186, 0.579 1.69 -0.10
(15, mC28) b = 4.495(4.573) (0.106), (0.189), (0.577)

c = 4.975(5.058) Fe1(8f) 0.401, 0.084, 0.082 2.11
β = 97.6(97.7) (0.404), (0.095), (0.079)

Fe2(8f) 0.214, 0.082, 0.310 1.69
(0.213), (0.073), (0.314)

Fe3(4e) 0.000, 0.067, 0.250 1.04
(0.000), (0.073), (0.250)

η − Fe2C a = 4.708 C(2a) 0.000, 0.500, 0.000 1.61 -0.10
(58, oP6) b = 4.281 (0.000), (0.500), (0.000)

c = 2.824 Fe(4g) 0.346, 0.751, 0.000 1.68
(0.333), (0.750), (0.000)

Table 3.1: Crystal structures of Fe3C, Fe5C2 and η-Fe2C. The column labeled “Site” indicates both the multiplicity and the Wyckoff
symbol. The numbers in parenthesis are experimental results obtained from [64], [68] and [45] for Fe3C, Fe5C2 and η − Fe2C
respectively. Expt. results for bcc-Fe from [76].
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the magnetic moment on each of the Fe atoms are give in Table 3.1. The magnetic
moments of the Fe atoms in cementite agree well with the experimental results in
Ref. [77].

3.3 Thermodynamic properties

3.3.1 Theory

The Helmholtz (F) and Gibbs (G) free energies of a system are given as

F = E − TS

G = H − TS = E + pV − TS = F + pV

At constant temperature and pressure, the relevant thermodynamic quantity to
consider when comparing state changes is the Gibbs free energy G. The change in
Gibbs free energy can thus be written as

∆G = ∆H − T∆S

= ∆E + p∆V − T∆S (3.1)

At atmospheric pressures, condensed phases (liquids and solids) can be consid-
ered incompressible (∆V = 0). Hence, using ∆V = 0 in 3.1, we would have

∆G = ∆E − T∆S = ∆F

where F is the Helmholtz free energy. Therefore, we can consider the change
in Helmholtz free energy as the relevant quantity when investigating changes of
states for solids.

Now, consider the formation of the solid AB2 from its constituent elements A and
B at a temperature T

A + 2B → AB2 (3.2)

The Helmholts free energy of formation for the reaction can be written as 2

∆F = F[AB2]− (F[A] + 2F[B])

= (E[AB2]− (E[A] + 2E[B]))− T (S[AB2]− (S[A] + 2S[B]))

= ∆E − T∆S

where F[A] is the free energy of the element A at the temperature T and so on.
Thus, to obtain an accurate free energy of formation, one also needs to calculate
the change in entropy of the reaction. But, the total energy obtained from a rou-
tine first-principles calculation is usually at T=0 K and thus one can only calcu-
late ∆E for a reaction unless the change in entropy is taken into consideration by

2 When one considers the Gibbs free energy of the reaction, another term p∆V occurs. ∆V is the
difference in the molar volumes of the products and the reactants and is easily obtained from either
experiments or first-principles calculations.
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some other means. But, nonetheless, it is not unusual to find in scientific liter-
ature that one calculates the formation energy ∆E at 0 K and compares this 0 K
formation energy free energy changes obtained from experiments at finite tem-
peratures. Fortunately, although not many mention it, this is partly justified by
the Neumann-Kopp rule [78].

The Neumann-Kopp rule states that the heat capacity of a solid compound AB2
formed from solid elements A and B can be written as the sum of the weighted
heat capacities of the elements A and B [79],

Cp(AB2)(T) ≈ Cp(A)(T) + 2Cp(B)(T)

Cp(AB2)(T)− Cp(A)(T)− 2Cp(B)(T) ≈ 0 (3.3)

Using Eq. 3.3 and the relations,

∆H(T) =

� T

0
CpdT − T∆S(T) = −T

� T

0

Cp

T
dT

we can show that

∆G(AB2)(T)− ∆G(A)(T)− 2∆G(B)(T) = 0

∆(∆G(T)) ≈ 0
This implies that the change in free of the reaction ∆G as a function of tempera-
ture ∆(∆G(T)) is approximately zero. Equivalently, for Helmholtz free energy we
would have,

∆(∆F(T)) ≈ 0
and thus,

∆(∆E(T)) ≈ 0

3.3.1.1 Formation energy

Thus the formation energy for the reaction in Eq. 3.2 can be given as

∆E = E[AB2]− E[A]− 2E[B] (3.4)

where E[AB2] is the internal energy of the compound AB2 and E[A] and E[B] are
the internal energies of the elements from which AB2 forms.

The free energy of a solid can also be written as a sum of the energy at 0 K and
due to vibrational, magnetic and electronic excitations at higher temperatures, i.e.

F(T) = E(0) + Fvib(T) + Fmag(T) + Fel(T) (3.5)

where E(0) is the energy of the solid at 0 K, Fvib, Fmag, Fel are the temperature de-
pendent vibrational, magnetic and electronic free energies. E(0) is obtained from
a routine DFT calculation, Fvib can be obtained by calculating the phonons in the
solid, Fmag can be obtained by calculating the magnons, and Fel can approximated
from the electronic density of states at the Fermi level.
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3.3.1.2 Vibrational free energy

Vibrational free energy of a solid can be obtained from a number of approxi-
mations: the Debye model [80], the Einstein model [80], the small displacement
method and from linear response theory. The vibrational free energy in the Debye
model is given as [80]

Fvib(T) = 9kBT

(

T

TD

)3 � TD/T

0

x3

ex − 1
dx (3.6)

where TD is the Debye temperature given by

TD =
hcs

2kB

3

√

6
π

N

V
(3.7)

where cs is the speed of sound in the solid, N is the number of atoms in the solid,
and V is the volume of the solid. The Debye temperature can be interpreted as
the temperature at which the highest-frequency mode (and hence all modes) are
excited.

The Debye model treats the vibrations of the atomic lattice as phonons in a box,
in contrast to the Einstein model, which treats the solid as many individual, non-
interacting quantum harmonic oscillators. The Debye model correctly predicts
the low temperature dependence of the heat capacity, which is proportional to T3.
Similar to the Einstein model, it also recovers the Dulong-Petit law at high temper-
atures. But due to simplifying assumptions, its accuracy suffers at intermediate
temperatures [81].

Ignoring the anharmonic contributions, Fvib can also be approximated using the
small displacement method. We use the method as implemented in the PHON
program [82]. Fvib can be calculated as follows [82]. Consider a crystal at very low
temperature and expand the potential energy function around the equilibrium
positions of the nuclei. The first term of the expansion is simply the energy of the
system calculated with the ions in their equilibrium positions, E(0). If the crystal
is near its minimum energy configuration the linear term of the expansion is zero,
and the first term is a quadratic term in the atomic displacements:

Uharm = Eper f +
1
2 ∑

lsα,l′tβ

φlsα,ltβulsαul′tβ, (3.8)

where uls denotes the displacement of atom s in unit cell l, α and β are Cartesian
components, and φlsα,l′tβ is the force-constant matrix, given by the double deriva-
tive ∂2U/∂ulsα∂l′tβ evaluated with all atoms at their equilibrium positions. This
force constant matrix gives the relation between the forces Fls and the displace-
ments ul′t, as can be seen by differentiating Eq. 3.8 and ignoring the higher-order
anharmonic terms:

Flsα = −∂U/∂ulsα = − ∑
l′tβ

φlsα,l′tβul′tβ. (3.9)
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Within this quasi-harmonic approximation (the prefix “quasi” is there to indicate
that the force constant matrix may depend on volume), the potential energy func-
tion Uharm completely determines the physical properties of the system, and in
particular the Helmholtz free energy, which at constant volume takes the form:

F(T) = E(0) + Fharm(T),

with the quasi-harmonic component of the free energy given by:

Fvib = kBT ∑
n

ln (2 sinh(h̄ωn/2kBT)) ,

with ωn the frequency of the nth vibrational mode of the crystal, kB the Boltz-
mann constant, and T the temperature of the system. In a periodic crystal, the
vibrational modes can be characterized by a wave-vector q, and for each such
wave-vector there are three vibrational modes for every atom in the primitive
cell. If the frequency of the sth mode at wave-vector q is denoted by ωqs, then the
vibrational free energy is:

Fvib = kBT ∑
qs

ln
(

2 sinh(h̄ωqs/2kBT)
)

.

The vibrational frequencies ωqs are the square root of eigenvalues of the dynami-
cal matrix, Dsα,tβ(q), defined as:

Dsα,tβ(q) =
1√

Ms Mt
∑

l

φlsα,0tβ exp[iq · (R0 + øt − Rl − øs],

where Rl + øs represents the equilibrium position of atom s with mass Ms in prim-
itive cell l, and the sum runs over the infinite number of primitive cells in the
crystal. If the complete force-constant matrix is known, then Dsα,tβ and hence the
frequencies ωqs can be obtained at any q.

The force constant matrix expresses the proportionality between displacements
and forces, when the displacements are small enough for this relationship to be
linear (Eq. 3.9). All that has to be done, in principle is to displace a single atom t
in a cell l′ in Cartesian direction β, all other atoms being held fixed at their equi-
librium positions; the forces Flsα on all the atoms give directly the elements of the
force constant matrix φlsα,l′tβ for the give (l′tβ). If this procedure is repeated for all
other (l′tβ), all the elements of the force constant matrix can be obtained. Transla-
tional invariance implies that the number of separate calculations required to do
this is at most three times the number of atoms in the primitive cell, but for most
materials symmetry relations can be used to reduce this number substantially.

3.3.1.3 Magnetic free energy

Fmag(T) can be obtained in different ways. One way to calculate Fmag(T) is by
knowing how the magnetic contribution to the specific heat capacity C

mag
v varies
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with temperature. The magnetic free energy can be written as

Fmag(T) = Emag(T)− TSmag(T)

=

�

C
mag
v (T)dT − T

�

C
mag
v

T
dT (3.10)

where E, S, Cv are the internal energy, entropy and specific heat at constant vol-
ume respectively. In the case of iron the contribution above and below the Curie
temperature TC, can be obtained from [83]

Cm = k f (T/TC) exp[−4(1 − T/TC)] (T < TC)

= kp(T/TC) exp[8p(1 − T/TC)] (T > TC)

The parameters k f and kp are determined by the Curie temperature TC, the mag-
netic entropy Smag, and the fraction ( fs) of magnetic entropy above the Curie tem-
perature, with

k f = 4(1 − fs)Smag/(1 − exp(−4))
kp = 8p fsSmag

where
Smag = R ln(1 + Sa)

and fs = 0.105, and p = 2 are fitting parameters and Sa is the magnetic moment
per Fe atom. They are also used as parameters for the hcp structures cementite
and Hägg carbides, due to the strong similarity between the local structure of the
Fe sublattices to that of the fcc lattice.

3.3.1.4 Electronic free energy

The free energy contribution from electronic excitations Fel is also obtained first
by an approximation of the electronic contribution Cel

v to the specific heat capacity
and then using an equation similar to Eq. 3.10. In the simplest approximation, Cel

v
is given as

Cel
v = γT =

2π2

3
N(EF)k

2
BT

where N(EF) is the electronic density of states the Fermi level EF. But, usually
Cel

v has appreciable contributions only at very high temperatures and is usually
neglected. For a more detailed discussion see Chap. 10 of Ref. [84].

3.3.2 Results and discussion

3.3.2.1 Formation energies

The formation energies3 of the carbides calculated from Eq. 3.4 are listed in Ta-
ble 3.2. The formation energies of all the three carbides are positive, indicating that

3100 meV/atom ≅ 9.65 kJ/mole
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Property bcc-Fe Fe3C Fe5C2 η-Fe2C
Formation energy 0 16 13 5

[meV/atom] at 0 K (49±11)
Debye temperature [K] 429 538 541 647

Expt. 453 604±44 [49]
501±27 [60]
475/468 [93]

Table 3.2: Thermodynamic properties. Experimental values are listed in parenthe-
sis.

they are all metastable with respect to the elements from which they form. Our
results are in good agreement with previous first-principle results [4,56,61,85–90].
The formation energies increase in the order: Fe3C > Fe5C2 > η-Fe2C and is con-
sistent with earlier calculations [4, 85]. It is interesting to note that these carbides
also occur in the same sequence during precipitation in steels [86].

3.3.2.2 Vibrational free energy

The phonon dispersions4 of the three carbides along with bcc-Fe is shown in
Fig. 3.2. The phonon dispersion of bcc-Fe agrees very well with previously re-
ported calculations [57] and experiments [91, 92]. The phonon dispersion of ce-
mentite is similar to the one obtained by Jiang et al. [57]. The phonon dispersions
of Fe5C2 and η-Fe2C have not been reported yet. All the carbides have phonon fre-
quencies between 0 and 10 THz. Cementite and Hägg carbides have three blocks
of phonon frequencies between 10 and 20 THz. η-Fe2C only has two blocks with
the second one between 15 and 22 THz. Only η-Fe2C has phonon frequencies
above 20 THz.

The vibrational free energy calculated using the small displacement method (Sec. 3.3.1.2)
for the carbides along with the vibrational free energy of bcc-Fe is shown in Fig. 3.3.
Debye temperatures were obtained by fitting the vibrational free energy obtained
using the Debye model to the one obtained from the small displacement method
(Fig. 3.3).

As expected the ‘harder’ carbides have a higher Debye temperature compared to
bcc-Fe. The Debye temperature shows a strong dependence on the structure of
the carbide. Both Fe3C and Fe5C2 which have similar crystal structures have very
similar Debye temperatures while η-Fe2C which has a different crystal structure
also has a much higher Debye temperature.

3.3.2.3 Predominance of cementite in steels

Although a number of iron carbide phases are known experimentally only one
metastable carbide phase occurs predominantly in steels and the reasons for this

4Primitive k-points as listed at the Bilbao Crystallography server have been used.
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Figure 3.2: Phonon dispersion.
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were unclear. It is conventionally understood that the predominance of cementite
Fe3C is due to lattice matching of the carbide with the iron matrix. The vibra-
tional free energy Fvib(T) obtained in this study (Sec. 3.3.2.2) along with E(0) and
Fmag(T) (Eq. 3.5) obtained by Fang et al. was used to show that contributions from
the vibrational free energy and the magnetic free energy rather than from con-
ventional lattice mismatch with the matrix, are the origin of the predominance of
cementite during steel fabrication processes [86].

3.4 Mechanical properties

3.4.1 Theory

When small stresses are applied to a material, the deformation of the material
(strain) is linearly proportional to the applied stress. When the stress is removed
the ‘elasticity’ of the material returns the material to its original shape. This is
elasticity theory at its most basic. From an atomistic point of view, this can be
understood in the following way.

Imagine a crystalline solid in which all the atoms are connected by springs (bonds)
which are harmonic for small displacements (the restoring force is proportional to
the displacement). Given a certain direction in which the springs are connected,
the spring constants are all equal. But, springs in different directions have dif-
ferent spring constants. Now, if we apply a small stress in a certain direction, the
material will deform harmonically and the deformation would be directly propor-
tional to the magnitude of the spring constant in that direction. If the magnitude
of the applied stress is too large and we go beyond the harmonic regime of the
spring, we might actually destroy the spring (break a bond) and there will be no
restoring force to restore the crystal to its original shape. The regime below which
the crystal completely regains its original shape after the removal of the stress is
the regime of elasticity.

Stress describes the surface forces acting on a volume element in a continuum
and can be represented by a symmetric second order tensor σij thus with only
six independent components. Strain describes the state of deformation of a solid
body and can similarly be represented by a symmetric second order tensor ǫij with
six independent components.

The relation between the applied stress and the resultant strain in the material are
related to each other via the fourth rank compliance tensor:

ǫij = Sijklσkl (3.11)

which in matrix notation would be ǫ = Sσ.

Or equivalently, the applied strain is related to the resultant stress via the stiffness
tensor:

σij = Cijklǫkl (3.12)



46 Chapter 3. Pure Phases

Tensor notation 11 22 33 23,32 13,31 12,21
Voigt notation 1 2 3 4 5 6

Table 3.3: Relation between tensor notation and Voigt notation.

and as before in matrix notation σ = Cǫ. As can be seen, the stiffness tensor is
just an inverse of the compliance tensor, C = S−1.

Depending on the translational and rotational symmetries present in a crystalline
system, the number of independent components of the fourth rank reduces to 21,
for the least symmetric crystal system, from 81 in the full tensor. Depending on to
which crystal system a crystal belongs to, the number of independent components
are: triclinic (21), monoclinic (15), orthorhombic (9), trigonal (7), tetragonal (5),
hexagonal (5) and cubic (3).

Since six independent components are enough to describe stress and strain, Voigt [94]
used this fact to replace the cumbersome second and fourth order tensors in a
three-dimension vector space by vectors and matrices in a six-dimension vector
space. The different components in the tensor notation and Voigt notation trans-
form as shown in Table 3.3.

In matrix notation Eq. 3.12 can now be written as

















σxx

σyy

σzz

σyz

σxz

σxy

















=

















C11 C12 C13 C14 C15 C16
C12 C22 C23 C24 C25 C26
C13 C23 C33 C34 C35 C36
C14 C24 C34 C44 C45 C46
C15 C25 C35 C45 C55 C56
C16 C26 C36 C46 C56 C66

































ǫxx

ǫyy

ǫzz

2ǫyz

2ǫxz

2ǫxy

















where the Voigt notation has been used only for the stiffness tensor.

Usually, the elastic properties of a material, consisting of anisotropic grains are
replaced by those of an “equivalent” material; a material with grains at random
orientations behaves isotropically. These processes of averaging are especially im-
portant to treat materials consisting of crystalline grains of random orientation.
There are three main schemes: Voigt [94], Reuss [95] and Hill [96].

The Voigt averaging scheme is based on the stiffness matrix (assuming a given
uniform strain) and the bulk modulus K and the shear modulus G are given by

KV =
A + 2B

3
, GV =

A − B + 3C

5
,

where

A =
C11 + C22 + C33

3
, B =

C23 + C13 + C12

3
, C =

C44 + C55 + C66

3
.

On the other hand, the Reuss averaging scheme is based on the compliance matrix
(assuming a given uniform stress) and:

KR =
1

3a + 6b
, GR =

5
4a − 4b + 3c

,
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where

a =
S11 + S22 + S33

3
, b =

S23 + S13 + S12

3
, c =

S44 + S55 + S66

3
.

In both cases, the Young’s modulus E and the Poisson’s ratio ν are given by

E =

(

1
3G

+
1

9K

)−1
, ν =

1
2

(

1 − 3G

3K + G

)

.

The Hill average is the arithmetic average of the Voigt and Reuss values, KH =
0.5(KV + KR), GH = 0.5(GV + GR), and so on.

The elastic tensor is determined by performing six finite distortions of the lattice
and deriving the elastic constants from the strain-stress relationship [97] as imple-
mented in VASP. The averages were calculated using the ElAM code [98]. The PBE
exchange-correlational functional with a plane wave cutoff of 500 eV was used in
calculating the mechanical properties listed below.

3.4.2 Results and discussion

The stiffness matrices of bcc-Fe, Fe3C, Fe5C2, and η-Fe2C are given in Table 3.5.
The bulk modulus, Young’s modulus, shear modulus, and the Poisson’s ratio
along with various averages are given in Table 3.4. When comparing to experi-
ments, we consider the Hill average unless otherwise mentioned.

In line with the underestimation of the lattice parameter for bcc-Fe, we obtain a
10% larger bulk modulus compared to experiments (188 vs. 170 GPa). But usually,
an error of about 10% in bulk moduli obtained from first-principles calculations
is expected compared to experiments. The Young’s modulus, shear modulus and
the Poisson’s ratio agree well with experiments (Table 3.4) though. While C11 is
overestimated by 20% compared to experiments (276 vs. 226 GPa), C44 is under-
estimated by about 20% (94 vs. 116 GPa) (experimental information form [76]). A
bulk modulus of 179 GPa is obtained when the energy-volume method is used
and a Birch-Murnaghan equation of state is used.5

Direct experimental determination of single-crystal elastic constants of cementite
are still not feasible due to difficulties in growing large enough single-crystals [55].
Elastic constants have been determined indirectly through various ways (see Ref. [99]
for a compilation). The spread in the experimental values is large. For example,
the bulk moduli vary from 105 GPa to 244 GPa, the Young’s moduli vary from
140 to 298 GPa, the shear moduli vary from 46 to 95 GPa. But, a bulk modulus
of around 175 GPa is obtained consistently by most measurements on bulk, poly-
crystalline samples using diamond anvil cell measurements. Our results fall in
between the ranges observed experimentally (Table 3.4). The bulk modulus, Pois-
son’s ratio and the stiffness matrix, (except for C44) that we obtain are within 5%

5The PW91 exchange correlation functional was used in this calculation with a 400 eV plane wave
cutoff energy.
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percent from the values obtained in Ref. [55]. The strong departure of the experi-
mental values of the elastic-stiffness tensor from experiments was suggested to be
due to the existence of Fe3C in more than one crystal structure [60].

No experimental or theoretical determination of elastic moduli and stiffness con-
stants has been done for the Hägg or η-Fe2C carbides. The values we compute are
listed in Table 3.4 and 3.5. Although there are a couple of negative components
in the stiffness tensor for Fe5C2, the lowest eigen values of the stiffness tensor for
all the carbides are positive and hence are mechanically stable [100]. Fe3C, Fe5C2
and η-Fe2C are all carbides with increasing amounts of C. In general, metal car-
bides show higher elastic stiffness than the metal itself and well known examples
include TiB2, TiC, VC, ZrC and TaC [101]. Thus, for the present carbides under
consideration we can expect a larger elastic moduli and smaller Poisson’s ratios
compared to bcc-Fe. In line with the argument, the bulk modulus of all the car-
bides are higher than that of bcc-Fe. Although, the Young’s modulus and shear
modulus of cementite is lower than that of bcc-Fe, they increase with the fraction
of C going from cementite to η-Fe2C.

While bcc-Fe and η-Fe2C behave similarly similarly both under uniform stress and
strain, the behavior of Fe3C and Fe5C2 are very different under uniform stress and
strain as can be seen from the differences in Young’s and shear moduli. Both Fe3C
and Fe5C2 have one anomalously small shear constants; for Fe3C, C44 is about
15 GPa and for Fe5C2 C66 is 35 GPa.

3.5 Electronic properties

The total spin resolved electronic density of states for bcc-Fe and the carbides
display no band gap indicating that they are metallic. The Fermi energy, similar
to that of bcc-Fe also falls in a minimum of the density of states of the minority
spin band. The majority spin band is nearly filled while the minority spin band
is nearly half filled clearly showing that they are magnetic (Fig. 3.5). The aver-
aged angular momentum projected density of states on Fe in bcc-Fe is shown in
Fig. 3.4. The total and partial density of state of all the carbides display similar
characteristics. The projected density of states for C and the different metal sites
are shown in Fig. 3.6, 3.7, and 3.8. From Fig. 3.4 it can clearly be seen that 3d states
contribute almost entirely to the total density of states of Fe. Majority of the 3d
states occur between -5 eV to 4 eV with a few around 9 eV. In the carbides, the
C-2s states occur between -14 eV and -12 eV and the C-2p states occur from -8 eV
to -5 eV and again above the Fermi level. In contrast to bcc-Fe, the Fe-3d states
are present already from -8 eV all the way to 10 eV approximately with a distinct
block between -8 eV and -5 eV, where C-2p states also occur. This clearly shows the
hybridization between the C-2p and the Fe-3d states indicating covalent bonding.
While the bonding states appear between -8 eV to -5 eV, the anti-bonding states
are spread above the Fermi level.
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Bulk Young’s Shear Poisson’s
modulus modulus modulus ratio

[GPa] [GPa] [GPa]
bcc-Fe

Reuss 187 211 81 0.31
Voigt 188 217 83 0.31
Hill 188 214 82 0.31
BM 179 - - -

[102] 170 211 82 0.29
Fe3C

Reuss 220 109 93 0.42
Voigt 222 246 38 0.32
Hill 221 177 66 0.37
BM 215 - - -

Expt. [55] 175 196 74 0.36
and Ref. therein 174 177

174 200
200

Fe5C2
Reuss 226 203 75 0.35
Voigt 226 262 100 0.31
Hill 226 233 88 0.33
BM 233 - - -

η-Fe2C
Reuss 223 255 98 0.31
Voigt 226 271 104 0.30
Hill 225 263 101 0.30
BM 223 - - -

Table 3.4: Mechanical properties. Reuss, Voigt and Hill averages. PBE at 500 eV
cutoff.
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Figure 3.4: Partial electronic density of states, bcc-Fe.
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















276 144 144 0 0 0
144 276 144 0 0 0
144 144 276 0 0 0

0 0 0 94 0 0
0 0 0 0 94 0
0 0 0 0 0 94

































388 155 162 0 0 0
155 342 159 0 0 0
162 159 317 0 0 0

0 0 0 11 0 0
0 0 0 0 133 0
0 0 0 0 0 133

































347 183 147 0 −9 0
183 333 151 0 25 0
147 151 389 0 2 0

0 0 0 139 0 −11
−9 25 2 0 132 0

0 0 0 −11 0 35

































293 190 142 0 0 0
190 345 167 0 0 0
142 167 404 0 0 0

0 0 0 107 0 0
0 0 0 0 97 0
0 0 0 0 0 136

















Table 3.5: Stiffness matrices (GPa) as obtained from first-principles calculations.
From top-left to bottom-right: bcc-Fe, Fe3C, Fe5C2, and η-Fe2C .
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Chapter 4

bcc-Fe with impurity atoms

4.1 Introduction

In this chapter, we calculate the solution energy of various alloying elements in
bcc-Fe. These solution energies are used in the calculation of the partitioning en-
ergies of the alloying elements in Chap. 6 and 7. They can also be used in the
calculation of solubility products of precipitate phases forming in bcc-Fe [103].
In addition, changes in magnetism and volume of impurity substituted bcc-Fe
are studied. Results similar to the ones in this Chapter have been published in
Ref. [104].

4.2 Methodology

bcc-Fe is modeled by a 3×3×3 supercell of bcc-Fe unit cells (Fe54). Metal impuri-
ties in bcc-Fe substitutional solid solution are modeled by substituting one of the
Fe atoms in the supercell with the impurity atom, represented as Fe53M. A 4×4×4
supercell of bcc-Fe unit cells was also used to check the effect of supercell size on
the solution enthalpy (Sec. 4.3.2).

We used the spin polarized generalized gradient approximation (GGA) to density
functional theory (DFT) [18, 19] and a plane wave basis with an kinetic energy
cut-off of 400 eV. The Kohn-Sham equations were solved using the Vienna ab ini-
tio simulation package (VASP, version 4.6.34) [105–109]. The valence and core
electron interactions were described using the projector augmented wave method
(PAW) [38]. All the projection operators were evaluated in real space as deter-
mined automatically by VASP. First order Methfessel-Paxton method was used
with a smearing width of 0.1 eV. The PW91 exchange correlation functional [110,
111] with the Vosko-Wilk-Nusair interpolation [112] for the correlation part was
used. The relaxations were assumed to have converged when the energy in two
consecutive ionic relaxation steps differed by less than 10−5 eV. For accurate bulk
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energies, a final calculation was done without any relaxation using the linear tetra-
hedron method with Blöchl corrections for smearing. k-space sampling was done
using the Monkhorst-Pack method [35] using 6×6×6 and 4×4×4 Gamma cen-
tered grids for the 54 and 128 atom supercells of bcc-Fe respectively. Both the
k-point density and energy cutoff were checked for sufficient convergence of the
total energies. Charges on the impurity ions were calculated using a Bader analy-
sis of the charges using the VTST tool set [113–116].

We use the terms locally and fully relaxed structures in our discussion of the re-
sults and it merits a brief on note on their usage. In a ‘fully relaxed’ impurity
substituted supercell, the volume, shape and atoms around the impurity atom are
allowed to relax to equilibrium. In a ‘locally relaxed’ supercell, only the atoms
in the supercell are allowed to relax at the fixed volume of the original bcc-Fe
supercell.

4.3 Results and Discussion

4.3.1 Pure bcc-Fe

The results for pure bcc-Fe are very similar to the results discussed in Chap. 3. The
lattice parameter that we obtain, 2.836 Å, agrees well with the lattice parameter
obtained from experiments, 2.866 Å. Similarly, the magnetic moment per Fe atom,
2.21 µB also agrees quite well with the experimental value of 2.12 µB.

4.3.2 Solution energies and size dependence

The total enthalpies with the impurity elements in bcc-Fe are given in Table 4.1. As
mentioned before, we use these total energies in the calculation of the partitioning
energies in Chap. 6 and 7. Another use of these total enthalpies is to compute the
mixing enthalpy for the solution of the impurity atoms in bcc-Fe.

The solution energies of the 54 and 128 atom supercells is given in Table 4.2. The
solution energy is calculated as,

Hn
sol = HFen−1M − HFen−1

where n is the number of atoms in the supercell and M is the metal atom. As
can be seen the difference H54

sol − H128
sol is not very significant; the maximum being

about 60 meV/atom for Mn and about 20 meV/atom for Al, P, S, Nb, Mo and W.
It is seen that the total energy for Mn is very sensitive to the parameters of the
calculation. The large discrepancy for Mn could be a consequence of this sensi-
tivity. For Nb, Mo and W the difference might be arising due to relaxation effects
due to the bigger size of Nb, Mo and W compared to Fe. Thus, no significant size
dependence is observed for the solution energies in bcc-Fe as a function of the size
of the supercell.
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Element HFe53 M VFe53 M VFe53M µFe53 M µFe53 M(VFe54)
[eV] [Å3] [Å3] [µB] [µB]

(spin) (spin) (non spin) (full) (local)
Al -439.544 612.40 573.91 115.36 115.30
Si -441.634 610.27 570.26 115.77 116.01
P -441.453 609.76 569.65 116.42 116.63
S -438.981 611.88 569.43 117.38 117.41
Ti -443.689 615.87 575.72 116.06 115.55
V -444.748 614.41 573.51 116.52 116.33
Cr -444.707 614.37 567.88 117.07 116.79
Mn -443.817 613.98 567.50 117.32 117.04
Fe -443.295 611.96 563.90 119.70 119.70
Co -442.226 613.51 570.88 120.53 120.38
Ni -440.451 614.84 570.88 121.02 120.65
Cu -438.078 614.32 571.35 118.45 118.22
Nb -445.287 619.27 577.64 117.18 116.23
Mo -445.870 618.27 575.07 117.41 116.82
W -448.091 617.93 575.26 117.37 116.84

Table 4.1: Total enthalpy of the spin polarized super cells, volumes of spin po-
larized and non spin polarized supercells, magnetization of the fully and locally
relaxed Fe53M supercells.

Element HFe53 M HFe127 M H54
sol H128

sol H54
sol − H128

sol

Al -439.544 -1047.077 -4.459 -4.477 0.018
Si -441.634 -1049.143 -6.548 -6.542 -0.006
P -441.453 -1048.933 -6.367 -6.332 -0.035
S -438.981 -1046.461 -3.895 -3.861 -0.035
Ti -443.689 -1051.206 -8.604 -8.605 0.002
V -444.748 -1052.262 -9.662 -9.661 -0.001
Cr -444.707 -1052.220 -9.621 -9.619 -0.002
Mn -443.817 -1051.276 -8.731 -8.675 -0.056
Fe -443.295 -1050.810 -8.209 -8.209 0.000
Co -442.226 -1049.743 -7.140 -7.142 0.002
Ni -440.451 -1047.973 -5.365 -5.372 0.007
Cu -438.078 -1045.598 -2.993 -2.997 0.005
Nb -445.287 -1052.776 -10.201 -10.175 -0.026
Mo -445.870 -1053.371 -10.784 -10.770 -0.014
W -448.091 -1055.592 -13.005 -12.991 -0.014

Table 4.2: Solution energies for the 54 atom and 128 atom supercells. All values in
eV/atom
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Figure 4.1: Site projected density of states of the impurity atoms in bcc-Fe. p-states
are shown for Si and P. d-states are shown for the rest. Plots for Al, S and Mo are
not shown as they are similar to those of Si, P and W respectively.

4.3.3 Partial density of states

The partial density of states of the impurity atoms in bcc-Fe (4.1) qualitatively
agree quite well with the ones calculated by Drittler et al. [117]. The Fermi level
falls in the minimum of the spin down density of states and forms a pseudo gap
[118]. The higher electronegativity of Fe atoms compared to Al leads to a complete
loss of valence electrons (Fig. 4.2) and hence almost no p-states are seen. The
p-states for P and S are seen in the -4 to -8 eV range. For all the 3d transition
metal atoms till Ni, the Fermi level is pinned in the minimum of the spin down
partial density of states. The movement of the spin up band going from Cr to Ti is
understood in terms of filling up of a an empty virtual bound state that appears
close to the Fermi level [119]. The spin up band is gradually filled and the virtual
bound state moves closer to the Fermi level. At Co, the spin up states are more
or less filled and the spin down states start to fill up at Ni. For Cu, both the spin
up and the spin down states are completely filled [104, 119]. The minimum in the
density of states is not very well defined in the case of Nb, Mo and W. The spin
polarization of the d-band is also relatively smaller compared to the 3d transition
elements.

4.3.4 Bader charge analysis

Partial charges on the impurity elements in general follow the trend in the Pauling
electronegativity of the respective elements. Exceptions are Al, Mo and W. Al loses



4.3. Results and Discussion 59

Al Si P S Ti V Cr Mn Fe Co Ni Cu Nb Mo W

-1

0

1

2

3

C
h
a
rg

e
 [

e
]

Figure 4.2: Partial charges on the impurity atoms computed using a Bader analysis
of the charge distribution.

all of it’s valence electrons and has a charge of about +3 e−. Mo and W although
more electronegative than Fe still lose charge instead of gaining it.

4.3.5 Impurity magnetic moments

The case of transition metal impurities in bcc-Fe has been studied in detail in [104,
117, 120]. Al, Si, P and S show negligible spin polarization and have negligible
local moments. The early and late transition metals, Sc, Ti, V, Cu and Zn, do not
satisfy the local Stoner criterion and therefore the magnetic moments induced on
these atoms is not intrinsic but is induced by the host atoms [104]. Cr, Mn, Co and
Ni satisfy the Stoner criterion and therefore have an intrinsic magnetic moment.
In the case of Cu and Zn, the d-band is completely full and thus no magnetic
interaction with the host is expected. The moments on the impurity atoms are
shown in Figure 4.3. The local moments of the early 3d transition elements have a
slightly higher magnitude than the moments seen either in Dritter, et al.’s results
or in experiments.

The qualitative agreement with the previous results [117] is good except for the
case of Mn. The moment on Mn seems to be very sensitive to the parameters
of the calculation. A range of ferro and anti-ferromagnetic moments have been
reported for Mn in the past. Experiments seem to suggest a slightly positive mo-
ment on Mn. But it should be noted that the magnetic moments are also sensitive
to temperature and concentration variations. It is seen (also in Ref. [104]) that
the magnetic moment of Mn is extremely sensitive to the volume of the supercell;
switching from anti-ferromagnetic at slightly lower volumes to ferromagnetic at
slightly larger volumes. This, along with the sensitivity of the moment to temper-
ature and concentration and the fact that first-principles calculations are carried
out at 0 K could be a possible reason for the discrepancies between the theoretical
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Figure 4.3: Impurity local moments for the locally relaxed, µM(VFe54) and fully
relaxed, µM(VFe53 M) configurations. They are compared with the local moments
reported by Drittler, et~al. [117] and the experimental local moments reported
therein.

and experimental values. Also, the high value of density of states for Mn suggests
that a slightly different structure is more stable (possibly a slightly larger lattice
parameter, or a ferromagnetic coupling with the host bcc-Fe lattice, or both).

4.3.6 Total magnetization

The magnetization of the locally and fully relaxed Fe53M supercells are given in
Table 4.1. The change in magnetization for the locally and fully relaxed impurity
substituted supercells is shown in Figure 4.4. Though the magnetization of the
fully relaxed supercell is always higher than that of the locally relaxed supercell
(except for Si, P and S), both curves show a similar qualitative behavior. The
change in total magnetization of the supercell can be accounted by a substitution
effect and a volume effect.

The change in the electronic band structure brought about by the introduction of
the impurity atoms into pure bcc-Fe accounts for the major change in magnetiza-
tion (Figure 4.1). Even though the impurity moment decreases going from Ti to
Mn, the total magnetization increases. This is similar to the finding of Drittler et
al. [117] and has been discussed in more detail therein.

In a truly local moment picture, a loss of a single Fe atom from the supercell should
lead to a loss of about 2.1 µB if the impurity is non-magnetic. While this is not
the case for Al, Si and P, S and Cu show the expected loss. Hybridization of the
metalloid p-orbitals with the neighboring Fe d-orbitals renders the d-electrons in-
effective to contribute to the magnetic moment. This explains the loss of about
4 µB in the case of Al.

The change in magnetization of the fully relaxed supercell with respect to the
locally relaxed supercell can be explained by the change in magnetization of a



4.3. Results and Discussion 61

Al Si P S Ti V Cr Mn Fe Co Ni Cu Nb Mo W
-5

-4

-3

-2

-1

0

1

2

�

F
e 5

3
M

�
�

F
e 5

4
[�

B
]

��
Fe

53
M
(V

Fe
54

)

��
Fe

53
M
(V

Fe
53
M
)

Figure 4.4: Change in total magnetization of locally and fully relaxed impurity
substituted Fe53M supercells with respect to pure bcc-Fe, Fe54 supercell.

pure bcc-Fe supercell with volume. The change in magnetization of a pure bcc-Fe
supercell with volume is shown by the broken line in Figure 4.5. Assuming the
band structure of the impurity substituted supercell does not change on volume
relaxation, the difference in magnetization between the locally relaxed impurity
substituted supercell and the fully relaxed impurity substituted supercell should
arise due to the change in volume of the supercell. Figure 4.5 shows the plot of
the difference in magnetization between impurity substituted locally relaxed and
the corresponding fully relaxed supercells against the change in volume. It can be
clearly deduced from the plot that the difference in magnetization closely follows
the change in magnetization of the iron matrix due to the change in volume of the
supercell.

4.3.7 Change in volume

The volumes of the Fe53M supercells for spin polarized and spin non polarized
calculations are given in Table 4.1. The change in volume of the supercells rela-
tive to the bcc-Fe supercell, Fe54 are plotted in Figure 4.6. It can be clearly seen
that the changes in volumes of the spin polarized Si and P lead to a decrease in
the volume of the supercell, while Al and S do not have an effect on the volume.
Going from Ti to Cu in the 3d series all the elements tend to increase the volume
of the supercell relative to Fe. Nb, Mo and W from the 4d series are significantly
bigger than the 3d elements and hence increase the volume of the Fe53M supercell
to a greater extent than the 3d transition elements. Co and Ni also tend to increase
the volume of the supercells which is not what one would expect based on size
arguments. Hence, this increase in volume should be coming either from mag-
netic effects or from electronic effects. Magnetic effects can be ruled out as even
for the non spin polarized calculations, the volumes of the Co and Ni supercells
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Figure 4.5: Plot of change in magnetization of the fully relaxed Fe53M supercell
with respect to the locally relaxed Fe53M supercell. The broken line is a linear fit
to the change in the total magnetization with volume of a pure Fe54 supercell.

increases with respect to the pure supercell. In fact, the changes in volumes for
all the non spin polarized calculations are considerably higher than those for the
spin polarized case. This is due to the effect of spin polarization on Fe. Spin po-
larization causes the volume per Fe atom to increase by about 0.89 Å3. Hence, the
spin polarized supercell which is already bigger due to spin polarization is able to
accommodate the volume changes due to the impurities better than the non spin
polarized supercell.

4.4 Conclusion

We calculated the solution enthalpies of alloying elements in bcc-Fe to be used in
Chap. 6 and 7. In addition to the solution enthalpies, we also studied the changes
in volume and magnetism brought about by the inclusion of impurity atoms in
bcc-Fe. Negative moments are induced by the surrounding Fe atoms in the case
of Ti, V, Sc, Cu and Zn. In the case of Cr, Mn, Ni and Co an intrinsic magnetic mo-
ment exists. The total magnetism of the impurity substituted supercells changes
as if the change in magnetism is brought about completely due to the change in
the volume of the supercell.
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Chapter 5

Diffusion of carbon in bcc-Fe
in the presence of Si

5.1 Introduction

Knowledge about the diffusion of carbon, both in the metallic matrix [121–123]
and within precipitated carbide phases [124] is important for understanding the
steel making process. It is known that diffusion of carbon, and other interstitial
species, is strongly affected by the presence of other alloying elements [125–130]
one of the most important alloying elements widely used in TRIP steels is Si.
Most of our current understanding on the effect of alloying elements on inter-
stitial diffusion is derived from sophisticated mechanical spectroscopic measure-
ments, especially those based on Snoek damping, augmented with atomistic mod-
eling using fitted solute-interaction parameters [131–136]. These intuitively de-
veloped atomic models of diffusion and solute interactions can be verified against
solute interaction energies, diffusion activation energies and attempt frequencies
derived from ab-initio calculations [121, 137–140]. In addition, they also provide
an opportunity for deeper understanding of the diffusion processes at the atomic
level. Apart from this practical significance, atomic diffusion is the rate limiting
step in many processes. Experimentally, Si is known to affect the Snoek damping
peak associated with C in bcc Fe [128, 133, 141] and it is also known to influence
the precipitation of carbides [142, 143]. Hence, this work derives its significance
both from the practical point of view and also from a much more fundamental
point of view.

First, individual solute atoms, C and Si in bcc-Fe are examined. This reveals the
most stable configurations of C and Si atoms in bcc-Fe. Then, we compute the en-
ergetics of bringing the solute atoms C and Si into close proximity in bcc-Fe. This
tells us the effect of Si on the arrangement of C around it. Third, the most stable
configurations obtained in the first and the second steps are used to determine the
energy barriers of the transition states for carbon diffusion in iron rich Fe-C and
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Fe-Si-C respectively through climbing-image nudged elastic band (CI-NEB) cal-
culations. Only the energetics of C, Si and both in bcc-Fe and the diffusion energy
barriers for C in the presence of Si will be discussed in this thesis.1

The interaction energies of C around Si in bcc-Fe are used to derive the chemical
potential of C far away from it in the bcc-Fe matrix. The energy barriers for C dif-
fusion in the presence of Si are used further in KMC simulations. Only a summary
of these results is given in this thesis; details can be obtained from Ref. [144].

5.1.1 Computational Details

The electronic calculations used the projector augmented wave (PAW) method
[38] as implemented in the Vienna ab initio simulation package [108, 109, 145]
(VASP). The exchange correlation potential was of the generalized gradient ap-
proximation (GGA) type as formulated by Perdew and Wang [110]. Integrations
in reciprocal space were performed by sampling with Monkhorst-Pack grids; for
the 54 atom 3×3×3 bcc cell we used a grid where 6 divisions were made along the
reciprocals of the a, b, and c axes. Precision was set to “medium”. For the 128 atom
4×4×4 bcc cell a k-point grid was used with 4 divisions along the reciprocals. In
all calculations the electronic wave functions were expanded in terms of plane
waves up to a cutoff kinetic energy of 400 eV. The convergence criteria for energy
and force were 0.1 meV and 100 meV/nm, respectively. Structural optimizations
were re-initiated at least 2 times.

The minimum energy path of carbon atoms between neighboring interstitial sites
was computed with the climbing-image nudged elastic band (CI-NEB) method
using the transition state package developed by Henkelman and Jónsson [146,
147]. Images were kept separate using a spring force constant of 500 eV/nm2.

5.2 Results and Discussion

5.2.1 C and Si in bcc-Fe

For pure ferromagnetic bcc Fe results concerning lattice parameter (abcc=0.283 nm)
and magnetization per Fe atom (mFe=2.21 µB) are almost identical to those re-
ported in the careful study of Jiang and Carter [137] who used the same software
and the same Fe and C PAW potentials as in this study.

For the C atom in the octahedral ( 1
2 00) and tetrahedral ( 1

2
1
4 0) positions we also

obtained similar energy differences, with the octahedral site in this work being
favored by about 0.83 eV. As mentioned by Jiang and Carter [137], the tetrahedral
position is the saddle point along the minimum energy path (MEP) connecting
neighboring octahedral positions. Therefore, the energy difference between the
octahedral and tetrahedral positions corresponds to the activation energy for dif-
fusion on the octahedral sublattice. The activation energy calculated here, 0.83 eV,

1The rest was carried out by my collaborators.
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compares well with other DFT results 0.90 - 0.92 eV [138, 139], and 0.86 eV [137].
Our number agrees fortuitously well with the experimentally measured activation
energies reported in the literature of 0.87 eV [148], 0.88 eV [149], 0.82 eV [150], 0.83
eV [151]. More recent Snoek type measurements have given a similar activation
energy of 0.84 eV [125, 143]. For completeness, the energy of substitutional C was
computed as well. It is found to be about 2.22 eV above that of octahedral C, so
that under near equilibrium conditions the occurrence of substitutional C can be
ruled out. Another theoretical study [139] reported a similar high energy of 1.97
to 2.37 eV for substitutional C.

The magnetization of supercells Fe54 and Fe54C, with C in the octahedral inter-
stice, were found to be the same. This indicates that C in low concentrations in
the octahedral interstices has little effect of the magnetic properties. Nevertheless,
when we define the local moments as the spin density integrated over the Voronoi
atomic volumes, we find that the local moments of Fe are clearly affected near the
interstitial C atom. The two Fe atoms at the nearest neighbor positions ([ 1

2 0 0] in
unrelaxed configuration) from the octahedral C atom have local moments that are
reduced by about 0.5 µB, the four Fe atoms at the 2nd neighbor ([ 1

2
1
2 0] unrelaxed)

are unaffected, while the eight Fe atoms at the 3rd neighbor ([1 1
2 0] unrelaxed) have

local moments that are enhanced by about 0.14 µB.

When C is in the tetrahedral interstice (the transition state), the magentic moment
of the four nearest neighbor Fe atoms ([ 1

2
1
4 0] unrelaxed) are reduced by 0.6 µB

while it increases on the four Fe atoms at the 2nd nearest neighbor positions ([ 3
4

1
2 0] unrelaxed) by about 0.2 µB. The net effect of carbon on the magnetization m is
nil while it is in the octahedral interstice, while the magnetization m is reduced by
about 1.5 µB per carbon atom in the tetrahedral interstitial transition state. This
means that the activation energy for carbon diffusion is affected by an applied
magnetic field. When the local moments and the applied field are aligned, the acti-
vation energy for diffusion is increased by ∆mB, where ∆m = 1.5 µB = 87 µeVT−1,
and where B is the magnetic field. In order to have a 0.1 eV change in the activa-
tion energy a field of 1150 T would be required, which is about one order of mag-
nitude greater than the 2006 world record in a non-destructive experiment [152].

The single Si impurity calculations clearly indicate that Si dissolves substitution-
ally because it is energetically much more favorable than the octahedral and tetra-
hedral interstitial positions (see Table 5.1). The Fe-Si nearest neighbor pairs around
the substitutional Si atom are slightly elongated (about 0.4 %), indicating that Si
in the metallic environment of Fe is just slightly larger than Fe itself. This imme-
diately indicates that Si is too large to fit in the interstitial positions. Si is indeed
experimentally known to be a substitutional alloying element. The bcc lattice pa-
rameter of Fe-Si solid solutions is observed to be only weakly dependent on the Si
concentration over a large range of compositions [153,154], confirming our finding
that Si has a size very close to that of the Fe in which it dissolves.

Based on the above findings, we have considered the interaction between Si and
C in terms of Si-C pairs where the Si atom is always substitutional and the C atom
is always in the octahedral interstice.
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5.3 C-Si interactions in bcc-Fe

As apparent from the Table 5.1 and Fig. 5.1, the effective interactions between Si
and C are strongly dependent on the distance, they are repulsive at distance less
than about a bcc lattice parameter, weakly attractive between 1 and 1.5 times the
lattice parameter, and tend to become weak at greater distances. The repulsion
at short distances is no surprise; Si is slightly larger than Fe, so in its vicinity
there is less room in the interstitial positions. The attractive effective interactions
at slightly larger distance might appear surprising, but they too can be reasoned.
While the first nearest neighbor Fe-Si pairs are a little elongated, the second neigh-
bor Fe-Si pairs are a little shortened because the squares formed by first nearest
neighbors are a little expanded. Therefore just beyond a distance of about one bcc
lattice parameter the octahedral interstices are a little less flattened than those in
the unperturbed pure Fe crystal structure. Naturally, the C atoms fit a little bet-
ter here. This attraction is thus an elastic effect. In any case, the attraction is not
very strong, at most about 0.10 eV when Si and C are separated by a vector [ 3

2 00].
Fig. 5.1 and Table 5.1 indicate that the effective interaction is not only a function of
distance, but also of the particular vector R: the interaction for [ 3

2 00] differs from
that for [11 1

2 ] while they are equidistant.

The interaction between Si and C causes variation in the fraction of octahedral
interstitial sites that are occupied by carbon, depending on the distance to a Si
atom. Beyond the 6th nearest neighbor Si-C interactions are negligible so that we
may safely assume that the fraction carbon in those shells is the same as at infinite
distance from a Si atom. We first discuss the thermodynamic equations governing
the distribution and chemical potential of C around Si and then discuss our results
with reference to these relations.

We define a solute excess energy2 ,

∆E(X) = E(FenX)−nE(Fe), (5.1)

The effective interaction energy J between two solute atoms X and “Y” at a certain
distance Rs from each other may be defined as

JXY
Rs

=
1
m

[E(FenXY, Rs)−nE(Fe)−∆E(X)−∆E(Y)] , (5.2)

where s indicates a particular neighbor shell and where the multiplicity m takes
care of the fact that the finite size and the periodicity of the cell causes the inter-
action to occur multiple times in a cell for certain Rs. An example for the 333 cell
is the interaction between a substitutional Si at [000] and an octahedral C at [ 3

2 00],
where the C atom has another Si neighbor at [300] so that m = 2.

2where, for reasons of optimal error cancellation, all energies, including the energy per Fe atom,
E(Fe), are obtained from supercells with the same dimensions. Here, supercells consisting of 3×3×3
and 4×4×4 bcc cubes were used.
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Position C Position Si ∆E JSiC

Composition [abcc] [abcc] [eV/cell] [eV]
Fe54

Fe53C [0 0 0] -6.134
Fe54C [ 1

2 0 0] -8.356
Fe54C [ 1

2
1
4 0] -7.524

Fe53Si [0 0 0] -6.528
Fe54Si [ 1

2 0 0] -1.507
Fe54Si [ 1

2
1
4 0] -1.729

Fe53SiC [ 1
2 0 0] [0 0 0] 0.478

Fe53SiC [ 1
2

1
2 0] [0 0 0] 0.750

Fe53SiC [1 1
2 0] [0 0 0] -0.021

Fe53SiC [1 1
2

1
2 ] [0 0 0] -0.057

Fe53SiC [1 1 1
2 ] [0 0 0] -0.044

Fe53SiC [ 3
2 0 0] [0 0 0] -0.101

Fe53SiC [ 3
2

1
2 0] [0 0 0] 0.016

Fe53SiC [ 3
2 1 0] [0 0 0] -0.021

Fe53SiC [ 3
2 1 1

2 ] [0 0 0] -0.021
Fe53SiC [ 3

2 1 1] [0 0 0] -0.035
Fe53SiC [ 3

2
3
2 0] [0 0 0] -0.013

Fe53SiC [ 3
2

3
2 1] [0 0 0] -0.016

Fe53SiC [ 1
2 0 0] [∞ ∞ ∞] 0.000

Table 5.1: Excess solute energies ∆E (Eq. 5.1) and effective Si-C interactions JSiC

(Eq. 5.2). Composition indicates which atoms are present in the supercell, posi-
tions are given in units of the bcc-Fe lattice parameter.

Interaction between Si and C atoms can cause correlations. Given the rather high
solubility of Si in bcc Fe, at low concentrations Si must form a random solid solu-
tion in bcc Fe where the individual Si atoms are far apart from each other. Carbon
atoms, which diffuse much more easily than Si atoms, see below, will arrange
themselves around the Si atoms. Fig. 3 of Ref. [144] shows that carbon fractions
are drawn to the 4th, 5th, and 6th neighbor shells, and are strongly repelled from
the 1st and 2nd shells around Si atoms. Although the attraction is much weaker
than the repulsion, on the whole Si atoms attract C, so that the fraction of C at
infinite distance from Si is below what it would have been if no Si were present.
Therefore, Si effectively decreases the C concentration far away from the Si atoms,
and lowers the C chemical potential. This means that C segregation towards Si
increases the solubility of C in bcc Fe and suppresses the formation of carbides in
bcc Fe.
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Figure 5.1: Interaction energy between substitutional Si and octahedral C in bcc-Fe
as a function of distance in units of the bcc lattice parameter.

5.4 Activation energy barriers for diffusion

Fig. 5.2 shows the minimum energy path for octahedral carbon diffusion in bcc Fe
in the absence of Si. In Fig. 5.2a the carbon atom moves between nearest neighbor
octahedral positions such as [ 1

2 0 0] and [ 1
2

1
2 0]. The saddle point then occurs at

a tetrahedral position ([ 1
2

1
4 0]) with an activation energy of 0.83 eV. We have also

considered C jumps between non-nearest neighbor octahedral interstices in bcc Fe
without Si. The MEP between the second neighbor octahedral sites [ 1

2 0 0] and [0
1
2 0] always converged to a path with the octahedral [ 1

2
1
2 0] site as intermediary. In

other words, the jump between second nearest neighbor sites is really two times
a nearest neighbor jump, from [ 1

2 0 0] to [ 1
2

1
2 0] and from [ 1

2
1
2 0] to [0 1

2 0]. The MEP
between third neighbor octahedral sites [ 1

2 0 0] and [0 1
2

1
2 ] could be found however,

and it is displayed in Fig. 5.2b. It has a very high activation energy of 1.61 eV,
so that the three nearest neighbor jumps that connect these sites, e.g. from [ 1

2 0
0] to [ 1

2
1
2 0] next to [0 1

2 0], and next to [0 1
2

1
2 ], have a much greater likelihood of

occurring.

In the presence of Si, the nearest neighbor activation energies are dependent on the
proximity of Si. The jumps between second and third nearest neighbors, as shown
in Fig. 5.3b and 5.3c always reverted to a sequence of nearest neighbor jumps.
The minimum energy pathway (MEP) for the nearest neighbor jump immediately
next to a substitutional Si atom, as shown in Fig. 5.3a, is displayed in Fig. 5.4.
For the C jumping from [ 1

2 0 0] to [ 1
2

1
2 0], the barrier does not connect points at

equal energy because the [ 1
2 0 0] site for C is energetically favored over the [ 1

2
1
2 0]

site by about 0.3 eV, as is apparent from Table 5.1 also. The activation energy for
diffusion is affected also, it is now direction dependent: it is about 0.65 eV from
right to left (i.e. from [ 1

2
1
2 0] to [ 1

2 0 0]), and about 0.95 eV in the opposite direction.
Fig. 5.4 shows all the distinct jumps between octahedral interstices around a single
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Figure 5.2: Minimum energy paths for C diffusion in bcc-Fe: (a) C from [ 1
2 0 0] to

[ 1
2

1
2 0]; (b) C from [ 1

2 0 0] to [0 1
2

1
2 ].

Figure 5.3: Minimum energy paths for C diffusion in the presence of a single sub-
stitutional Si atom in bcc-Fe: the Si atoms located at the origin [0 0 0], (a) C from
[ 1

2 0 0] to [ 1
2

1
2 0]; (b) C from [ 1

2 0 0] to [0 1
2 0]; (c) C from [ 1

2 0 0] to [0 1
2

1
2 ].

substitutional Si atom in a 3×3×3 bcc cell.

5.5 Kinetic Monte Carlo simulations

Kinetic Monte Carlo (KMC) simulations employing kinetically resolved activation
barrier (KRA) and attempt frequencies determined using transition state theory
(TST) lead to the following observations [144].

First, Si reduces carbon diffusivity remarkably, especially at low temperature. Just
2 at. % Si substitutionally dissolved in bcc Fe reduces the C diffusivity by almost
39 % at 500 K and by 14 % at 1000 K.

Second, there are two mechanisms by which Si reduces the diffusivity of C: a) the
first and second neighbor shells around Si are so high in energy that C is blocked
from these sites, this reduces the number of positions through which C can diffuse
(labyrinth mechanism); and b) at slightly greater distances C gets weakly trapped
around Si so that it remains immobilized for some time, depending on the tem-
perature (trapping mechanism [134]). Since KMC simulations allow us to switch
different interaction parameters on or off we can precisely pinpoint the contri-
bution of each mechanism and their influence on diffusivity can be determined.
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Figure 5.4: Carbon diffusion paths in the presence of a single substitutional Si
atom in bcc-Fe: Si at [0 0 0], C jumping between various nearest-neighbor octahe-
dral interstices.

When the attractive Si-C interactions in the third through sixth shells are set to
zero, the C diffusion in Fe with 2 at. % Si is reduced by 10% both at 500 K and
at 1000 K. This indicates that at 1000 K the labyrinth mechanism is the most im-
portant one. When instead simulations are repeated whereby the repulsive Si-C
interactions in the first and second shells are set to zero, diffusivity in Fe with 2
at. % Si reduced by 35% at 500 K and by 8 % at 1000 K. This indicates that at 500
K the trapping mechanism is dominant, but that at 1000 K labyrinth and trapping
mechanisms contribute about equally.

5.6 Conclusion

It has been shown that the interstitial site preference and the diffusion of C in fer-
romagnetic bcc-Fe can be accurately computed through density functional elec-
tronic structure calculations. The activation energy for diffusion agrees well with
consensus experimental assessments. The interaction between Si and C strongly
depends on distance, it is strongly repulsive for the first and second shell around
the Si atom, weakly attractive in the third up to and including the sixth shell, and
essentially vanishing beyond the sixth shell. The weak attraction causes a C en-
riched “cloud” around Si atoms at ambient and intermediate temperatures. This
reduces the C concentration away from the Si atoms, so that in the presence of
low Si concentrations the chemical potential of C is reduced. Therefore, at low
concentrations Si diminishes the thermodynamic driving force for carbide forma-
tion. The Si-C interaction is reflected also in the influence of Si on the C diffusivity:
(I) at high temperatures of about 1000 K, the strong repulsion between C and Si
in the first and second neighbor shells plays an important role. This causes a
mild reduction in the C diffusivity because there are fewer diffusion paths as C is
blocked from sites very close to Si. (II) at lower temperatures of about 500 K, the
energetically weaker attraction plays a dominant role in reducing the diffusivity
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of C through entrapment of C at a large number of interstitial sites in the vicinity
of Si. At 500 K, 1 at. % of Si in solution may reduce the diffusivity by as much as
22% relative to Si-free bcc Fe.

The experience that Si suppresses or retards carbide formation [142, 143] now can
be understood to have two aspects: a) by attracting and trapping the C chemical
potential is reduced, reducing the driving force for carbide precipitation and b) by
reducing the diffusivity of C the precipitation of carbides is slowed down. Both
effects are sensitive to temperature because Si traps C only weakly.





Chapter 6

First-principles prediction of
partitioning of alloying
elements between cementite
and ferrite

6.1 Introduction

Cementite is the most common metastable carbide in steel. At room temperature
it is ferromagnetic (FM) with a Curie temperature, Tc, of about 483 K [40, 41].
Cementite has an orthorhombic crystal structure represented by Pearson sym-
bol oP16 and space group number 62. It has 12 Fe and 4 C atoms per unit cell
[41, 64]. There are two inequivalent Fe positions, viz. the general and the special
positions, with the Wyckoff notation 8d and 4c respectively. Carbon atoms also
occupy a 4c Wyckoff site. Cementite displays many interesting properties, such
as INVAR behavior [49], and is suspected to be a major component of the earth
core as well [50]. Cementite can be present in various forms in steel and strongly
affects its properties. The (de)stabilization of cementite plays an important role
in the secondary hardening of steel [155, 156] and the suppression of cementite
by alloying elements is of utmost interest for transformation induced plasticity
(TRIP) steels [157,158] and for steels based on the quenching and partitioning pro-
cess [159]. In low-alloyed steels, the cementite phase usually co-exists with bcc-Fe
solid solution phase commonly referred to as ferrite. Therefore, partitioning of
alloying elements and cementite (de)stabilization by alloying elements have to be
regarded as a balance involving both the cementite and the ferrite phases.

Alloying element partitioning has been investigated in the past by various exper-
imental methods. It has been consistently found that Cr [40,160–170] and Mn [40,
160–164, 167, 168, 171–176] partition to the cementite phase while Si [40, 160, 161,
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164, 167, 171–175, 177, 178] has a higher concentration in the bcc-Fe phase. There
also have been, although less extensive, investigations that indicate that Al [179],
Co [164] and Cu [176] partition to the bcc-Fe phase while V [40, 162, 164, 173, 180],
Mo [40, 163, 164, 167, 173, 181] and W [164, 181] preferably dissolve in the cemen-
tite phase. It is not necessary for all the alloying elements to partition either to
the bcc-Fe or the cementite phase: depending on the concentration of alloying
elements used and the processing conditions, alloying elements like Ti, Nb and
V [40, 162, 164, 173, 180] form very stable NaCl type carbide phases; P segregates
to grain boundaries [182, 183], and Al might combine with oxygen and nitrogen
to form aluminium oxide and aluminium nitride respectively. S is usually bound
by Mn in the form of MnS and is not present in appreciable amounts to actually
partition to either of the phases. Hence, from the experimental data, partitioning
of Ti, P, and S in particular remain rather unclear.

Partitioning has been studied theoretically also by computing enthalpy changes
upon substitution of Fe atoms by alloying elements on the Fe sublattices in ce-
mentite. The (de)stabilization of cementite by 3d and 4d transition elements was
investigated by Shein et al. [184]. They report that Sc, Ti, V, Cr, Zr and Nb stabi-
lize cementite while Ni, Cu, Pd and Ag destabilize it. Jang et al. [87, 185] report
that cementite is stabilized by Mn and destabilized by Si. Both Shein et al. [184]
and Jang et al. [87,185] attribute the (de)stabilization of cementite to the formation
enthalpy of the alloying element substituted cementite. Zhou et al. [186] find a
positive formation enthalpy for Cr substituted cementite and they conclude that
Cr substitution destabilizes cementite. Medvedeva et al. [187], however, report
that Cr substitution increases the cohesive energy, which they interpret as a stabi-
lization of cementite.

In this communication we calculate both formation enthalpies and partitioning
enthalpies, as defined below, considering both FM and non-magnetic (NM) ce-
mentite with alloying element substitutions. We show that partitioning enthalpies
generally describe the partitioning of alloying elements between bcc-Fe and ce-
mentite in agreement with experiments while the formation enthalpies do not.
Finally, we point to some remaining disparities in the calculated partitioning be-
havior.

6.2 Methodology

The balance for the formation of alloying element substituted cementite from the
elements,

(3q − 1)Fe + M + qC ⇋ Fe3q−1MCq, (6.1)

gives the formation enthalpy as,

H f = H[Fe3q−1MCq]− (3q − 1)H[Fe]− H[M]− qH[C], (6.2)

where M is an alloying element substituting one Fe atom in cementite (Fe3qCq)
to give the alloying element substituted cementite (Fe3q−1MCq). H[Fe3q−1MCq],
etc. are the total enthalpies at 0 K. The pure elements are in their standard states,
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i.e., Fe is FM with the bcc crystal structure, C in the form of graphite and M in the
appropriate crystal structure at ambient temperature and pressure (see Table 6.1).

Previously, Jang et al. [87, 185] and Shein et al. [184] have interpreted the change
in the formation enthalpies of alloying element substituted FM cementite with
respect to FM cementite,

∆HFM
f = H f [Fe3q−1MCqFM]− H f [Fe3qCqFM], (6.3)

as a gauge whether M partitions to, and stabilizes cementite. As cementite is only
a weak ferromagnet with a low Curie temperature it is worthwhile to consider it
in NM state also (see below),

∆HNM
f = H f [Fe3q−1MCqNM]− H f [Fe3qCqNM]. (6.4)

In a steel the alloying elements, at sufficiently low concentrations, are generally
not in their elemental states, but are dissolved either in bcc-Fe or in cementite.
Hence, it is obviously not appropriate to take M in its standard state as a reference
state. A more appropriate balance to study the alloying element partitioning and
the (de)stabilization of cementite can be given as,

Fen−1M + Fe3qCq ⇋ Fe3q−1MCq + Fen, (6.5)

where Fen−1M and Fen represent the alloying element dissolved in bcc-Fe and
pure bcc-Fe respectively. This gives the partitioning enthalpy per M atom as,

Hp = H[Fen] + H[Fe3q−1MCq]− H[Fen−1M]− H[Fe3qCq]. (6.6)

Stabilization entails a transfer of M from the solid solution of M in bcc-Fe to the
cementite phase while destabilization implies that the alloying element remains
in the bcc-Fe solid solution. Therefore, the (de)stabilization of cementite has to be
regarded as a competition between cementite and bcc-Fe, and the latter contribu-
tion is missing from the cementite formation enthalpies defined above. It follows
that a (positive) negative Hp, rather than a (positive) negative H f , implies that the
alloying element (de)stabilizes and partitions to (bcc-Fe) cementite.

First-principles density functional calculations yield enthalpies at 0 K. In the case
of cementite and bcc-Fe these enthalpies are for the FM state. At the typical tem-
pering temperatures of 600-950 K used in experiments, cementite is no longer
in the FM state, while bcc-Fe is still well below its Curie temperature (bcc-Fe,
TC=1043 K). So, it might be more appropriate to use the enthalpy of the disor-
dered magnetic state for cementite. Here, we consider that the enthalpy of mag-
netically disordered cementite slightly shifts in the direction of that of the NM
state. Of course, without actually reaching the NM enthalpy because typically lo-
cal magnetic moments on Fe atoms persist to well above the Curie temperature.
Khmelevskyi et al. [188] have argued that the disordered magnetic state and the
NM state in cementite are almost degenerate in energy although they base their
argument on the local density approximation. Nevertheless, the FM and the NM
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enthalpies may be regarded as upper and lower limits for the cementite enthalpy
in the vicinity of, and above TC.

Of course, at finite temperatures the partitioning free energy, rather than the par-
titioning enthalpy, should be used. One approach to obtain the free energy of par-
titioning is to use the experimental heat capacity data of cementite with alloying
elements. Unfortunately, there is little experimental data on the heat capacity of
cementite. Reliable heat capacity data on alloyed cementite is almost non-existent.
The second approach is to compute the free energy from first-principles calcula-
tions itself. Recently, progress has been made in this area for bcc-Fe [189] and even
for pure cementite [56]. It is presently still out of reach for alloying element sub-
stituted cementite. However, considering that we expect entropy changes per M
atom for the balance in Eq. 6.1 to be a few kB at most, as is typical of vibrational,
configurational and magnetic transitions, and given that the contributions on ei-
ther side of the balance largely cancel each other, it follows that below 1000 K
the entropy contribution (TS) is about 100 meV/atom at most. We will show
that for most of the alloying elements the partitioning enthalpy is larger than 100
meV/atom so that definite conclusions can be drawn without specifically consid-
ering the entropic contributions.

6.2.1 Computational Details

We used the spin-polarized generalized gradient approximation (GGA) to den-
sity functional theory (DFT) [18, 19] and a plane wave basis with a kinetic energy
cut-off of 400 eV. The Kohn-Sham equations were solved using the Vienna ab initio
simulation package (VASP, version 4.6.34) [105,106,108,109]. The valence electron
and core interactions were described using the projector augmented wave method
(PAW) [38]. The first-order Methfessel-Paxton method was used with a smearing
width of 0.1 eV. The PW91 exchange correlation functional [110] with the Vosko-
Wilk-Nusair interpolation [112] for the correlation part was used. The relaxations
were assumed to have converged when the energy in two consecutive ionic re-
laxation steps differed by less than 10 µeV. For accurate bulk energies, a final cal-
culation was done without any relaxation using the linear tetrahedron method
with Blöchl corrections for smearing. Integrations in reciprocal-space employed
Monkhorst-Pack sampling [35] such that the product of the number of k-points in
the first Brillouin zone and the number of atoms in the supercell equalled about
10000. Both the k-point density and energy cut-off were verified to give total en-
ergy convergence of 1 meV or better.

Pure elements were modeled using the unit cells (or primitive cells when possi-
ble) of their respective crystal structures (Table 6.1). Co and Ni were considered
FM and Cr was considered anti-ferromagnetic (AFM). It is well-known that cur-
rent DFT exchange-correlation functionals do not model graphite accurately. To
overcome this shortcoming, the total enthalpy of diamond was computed and a
correction of -17 meV was added to account for the diamond to graphite transfor-
mation [190].

bcc-Fe was modeled with a 54 atom supercell, Fe54, consisting of 3×3×3 bcc-Fe
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Table 6.1: Enthalpies at 0 K of the elements in their standard states, H[M].

M Pearson H[M] M Pearson H[M]
Symbol [eV/atom] Symbol [eV/atom]

Al cF4 −3.697 Fe cI2 −8.208
Si cF8 −5.432 Co hP2 −7.015
P oC8 −5.369 Ni cF4 −5.464
S oF128 −4.110 Cu cF4 −3.728
Ti hP2 −7.775 Nb cI2 −10.063
V cI2 −8.926 Mo cI2 −10.807
Cr cI2 −9.470 W cI2 −12.923
Mn cI58 −8.982 C hP4 −9.118

unit cells with a total enthalpy of -443.295 eV at 0 K. The dilute impurity solid
solution was modeled by substituting an Fe atom by the alloying element, M, giv-
ing a composition Fe53M (see Table 6.2). Reciprocal space integrations employed
a 6×6×6 k-point grid.

Cementite was modeled as a unit cell with 16 atoms, Fe12C4, and an 8×6×10 k-
point grid was used for integrations. Alloying element substituted cementite was
modeled by replacing one of the Fe atoms in the unit cell with the alloying ele-
ment, Fe11MC4. We considered the alloying element substituting the Fe atom at
both the general and the special positions. Both the FM and AFM configurations
of the Fe atoms on the two sites were considered.

The magnetic moments on the atoms were calculated by integrating the spin den-
sities inside the PAW spheres of the respective atoms. Finally, enthalpies for NM
cementite were calculated by switching off spin-polarization of the atoms.

6.3 Results and Discussion

As dilute substitutional impurities in bcc Fe, Al, Si, P and S have negligible mo-
ments, see Table 6.2. Both 3rd and 4th row transition elements having less than 5 d-
electrons (Ti, V, Cr, Nb, Mo, W) align AFM with increasing magnitude of moments
to the surrounding Fe atoms. Alloying elements with more than 6 d-electrons (Co,
Ni) align FM with decreasing magnitude of moments. With the exception of Mn
(5 d-electrons), the magnetic moments on all the impurity atoms in bcc-Fe agree
well with those reported by Drittler et al. [117]. The magnetic state of Mn in bcc-Fe
is sensitive to supercell size. We find that Mn aligns AFM in the 54 atom supercell
while it aligns FM in a bigger supercell with 128 atoms.

The magnetic alignment of the alloying elements in cementite, except for Mn, is
comparable to that of bcc-Fe. Al, Si, P and S have negligible magnetic moments
(Table 6.3). Early transition elements like Ti, V, Cr, Nb, Mo and W align AFM to
the surrounding Fe atoms while the late transition elements Co and Ni align FM.
While Mn in bcc-Fe aligns AFM (supercell with 54 atoms), it aligns FM with the
surrounding Fe atoms in cementite. The magnitude of the magnetic moments on
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Table 6.2: Enthalpies at 0 K of bcc-Fe supercells with respect to the Fe54 supercell,
∆H[Fe53M] = H[Fe53M]− H[Fe54] and the magnetic moment on M, µM.

M ∆H[Fe53M] µM M ∆H[Fe53M] µM

[eV] [µB] [eV] [µB]
Al 3.751 −0.07 Fe 0.000 2.21
Si 1.661 −0.08 Co 1.069 1.69
P 1.842 −0.05 Ni 2.844 0.89
S 4.314 0.02 Cu 5.217 0.11
Ti −0.394 −0.76 Nb −1.992 −0.73
V −1.453 −1.21 Mo −2.575 −0.76
Cr −1.412 −1.69 W −4.796 −0.76
Mn −0.522 −1.82

the alloying elements is larger when substituted at the special positions than when
substituted at the general position. The higher number of C atoms surrounding
the alloying elements in the general position (3 in the general position vs. 2 in
special position) quench the magnetic moments of the alloying elements.

The formation enthalpy of FM cementite (H f [Fe3qCFM
q ]) is in good agreement with

previous first-principles calculations. While we report a formation enthalpy of
16 meV/atom (Table 6.3), Fang et al. [191] and Hallstedt et al. [56], both using sim-
ilar methods as in the present communication, reported values of 20.6 meV/atom
and 20.7 meV/atom at 0 K respectively. This implies that formation of cemen-
tite is unstable with respect to the pure elements. Jang et al. [87, 185], using
the FLAPW method and taking the total enthalpy of graphite as obtained from
FLAPW as C reference, reported a formation enthalpy of 56 meV/atom. How-
ever, as the interplanar interaction in graphite is poorly described in current first-
principles methods, like Fang et al. [191] and Hallstedt et al. [56] we prefer using
the first-principles computed enthalpy of diamond and making a correction for
graphite. Experimentally, Meschel et al. [192] obtained a formation enthalpy of
48.7±11.4 meV/atom at 298.15 K for cementite.

Although H f [Fe3qCFM
q ] determined by us is lower than the experimental value of

Meschel et al. [192], the difference between the formation enthalpy of the Si sub-
stituted FM cementite with respect to FM cementite (Table 6.3, Figure 6.1) agrees
well with the results of Jang et al. [87, 185]. For Si substituted at the special and
general sites, we obtain values of 34 and 18 meV/atom respectively, while Jang
et al. [87] obtained 34 and 24 meV/atom respectively. The enthalpies of the refer-
ence states, H[M], used in calculating the formation enthalpy, H f , along with the
Pearson symbols of their crystal structures are listed in Table 6.1.

The formation enthalpy change, ∆HFM
f , of FM cementite (Figure 6.1), is positive

for Si, P, S, Mn, Co, Ni, Cu, Mo and W and negative for Al, Ti, V, Cr and Nb.
Previously, Jang et al. [87, 185] and Shein et al. [184] have interpreted this as an
indication that Si, P, S, Mn, Co, Ni, Cu, Mo and W stabilize and partition to bcc-Fe
while Al, Ti, V, Cr and Nb stabilize and partition to cementite. This is in disagree-
ment with experiments for Al [179], Mo [40,163,164,167,173,181], and W [164,181].
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Figure 6.1: Formation enthalpy change of alloying element substituted cementite,
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Table 6.3: Formation enthalpies H f of the supercells Fe11MC4 at 0 K. Magnetic
moments, µM, on the alloying elements in cementite are also listed.

M H f [eV] µM [µB]
FM NM

4c 8d 4c 8d 4c 8d
Al 0.09 0.02 1.01 1.02 −0.04 −0.04
Si 0.80 0.55 1.72 1.48 −0.04 −0.06
P 1.86 0.65 2.90 1.99 0.01 −0.07
S 3.03 1.26 4.32 2.59 0.00 −0.03
Ti −0.77 −0.78 0.14 0.15 −0.39 −0.40
V −0.37 −0.46 0.57 0.43 −0.54 −0.57
Cr 0.26 0.16 1.22 1.04 −0.83 −0.84
Mn 0.34 0.31 1.36 1.25 1.87 1.30
Fe 0.26 0.26 1.55 1.55 1.92 1.83
Co 0.35 0.30 1.60 1.68 1.08 1.00
Ni 0.48 0.40 1.66 1.80 0.30 0.38
Cu 1.24 1.14 2.34 2.52 0.02 0.07
Nb 0.16 0.11 1.21 1.15 −0.36 −0.38
Mo 0.50 0.44 1.56 1.44 −0.30 −0.34
W 0.54 0.46 1.57 1.42 −0.31 −0.33

For Mn the enthalpy changes are so small as to make interpretation ambiguous.
While Jang et al. [185] find a slightly negative ∆HFM

f for Mn, we find a slightly
positive value. Also, Si is used as an essential alloying element in TRIP steels for
its ability to strongly suppress the formation of cementite [193]. Hence, it is sur-
prising that the formation enthalpy of Si, Mo and W substituted FM cementite are
comparable. The disagreements with experiments in the case of Al, Mo, W and
the comparable formation enthalpy of Si substituted cementite with that of Mo
and W substituted cementite clearly show the shortcomings of using formation
enthalpies (HFM

f ) to determine alloying element partitioning between bcc-Fe and
cementite.

To evaluate how stabilization and partitioning might be affected by magnetic dis-
ordering in cementite, we consider the extreme case of NM cementite. The forma-
tion enthalpy change, ∆HNM

f , (Figure 6.1) gives increased cementite stabilization
for all elements. As mentioned above, particularly for Al and Si a movement
towards stronger cementite stabilization strongly disagrees with experimental ev-
idence as both Si and Al are used to suppress the formation of cementite in TRIP
steels [193].

All the alloying elements prefer the general position over the special position in
agreement with previous results [87, 184]. The preference for the general position
might be slightly weakened by magnetic disordering because in NM cementite
Al, Ti, Co, Ni and Cu prefer to occupy the special position. However, as energy
differences between the general and special positions remain small even in the
extreme case of completely vanishing magnetic moments we expect the effect to
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Table 6.4: Partitioning enthalpies Hp at 0 K.

M Hp [eV/M atom]
FM NM

4c 8d 4c 8d
Al 0.59 0.52 0.22 0.23
Si 1.65 1.40 1.29 1.05
P 2.59 1.39 2.35 1.44
S 2.56 0.79 2.56 0.83
Ti −0.21 −0.22 −0.57 −0.57
V 0.10 0.01 −0.24 −0.38
Cr 0.14 0.04 −0.19 −0.36
Mn −0.18 −0.21 −0.44 −0.54
Fe 0.00 0.00 −0.00 −0.00
Co 0.21 0.16 0.18 0.26
Ni 0.12 0.04 0.01 0.16
Cu 0.24 0.14 0.06 0.24
Nb 0.04 −0.01 −0.20 −0.26
Mo 0.22 0.16 −0.01 −0.13
W 0.36 0.28 0.10 −0.04

be minor.

Table 6.3 and Figure 6.1 show that results derived from formation enthalpies do
not indicate partitioning of alloying elements in agreement with experiments. On
the other hand, as evident from Table 6.4 and Figure 6.2, the partitioning enthalpy
Hp (Eq. 6.6) calculated from total enthalpies of FM cementite correctly indicate
that Si, Al, P, S, Co, Ni and Cu partition to bcc-Fe and Ti, Mn and Nb partition to
cementite. Although V, Cr, Mo and W are probably incorrectly indicated to parti-
tion weakly to bcc-Fe. Magnetic disordering of cementite, as considered through
the extreme case of the NM state, is seen to favor stabilization and partitioning
toward cementite. It moves the problematic elements V, Cr, Mo and W all in the
correct direction of being cementite stabilizers, although W would remain on the
bcc-Fe side. In contrast to the formation enthalpy evaluation, Al and Si remain
strongly on the bcc-Fe side, as they should. A factor that can influence the exper-
imental findings is whether cementite exists in the presence of austenite. Strong
ferrite formers such as V, Mo, and W would segregate more strongly to cementite
from austenite than from ferrite.

Consideration of entropy effects, as mentioned earlier, for most elements cannot
affect our conclusions. For Ni, Cu and W only is the partitioning enthalpy less
than 100 meV/atom so that entropy effects might affect our conclusions at finite
temperature. However, even for these elements our results are in agreement with
experiments.

Although partitioning of the alloying elements between the bcc-Fe and cementite
phases appears correctly described, it fails quantitatively. Experimentally, Cr has a
much higher partitioning coefficient towards cementite than Mn [164]. In contrast,
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we find that Mn partitions stronger. Possibly, the experimental finding here too,
are affected by the much stronger austenite forming tendencies of Mn than of
Cr. Second, in steel where other phases can be present, alloying elements might
partition to either bcc-Fe, cementite or any of the other phases and not necessarily
just between bcc-Fe and cementite.

6.4 Conclusions

Experimental findings on the partitioning of alloying elements between bcc-Fe
and cementite were compared with enthalpies of FM and NM alloying element
substituted cementite. Formation enthalpies were shown to not correctly describe
the (de)stabilization of cementite by, or the partitioning of alloying elements. The
partitioning enthalpy which describes the competition between the cementite and
the bcc-Fe phases on the other hand gave results that generally agreed with ex-
perimental observations, particularly when the trends as result of magnetic disor-
dering in cementite were considered.





Chapter 7

First-principles calculations on
stabilization of iron carbides
(Fe3C, Fe5C2 and η-Fe2C) in
steels by common alloying
elements

7.1 Introduction

In advanced low alloy steels it is important to retain austenite to ambient tem-
perature and in this regard C acts as an efficient austenite stabilizer. Precipitation
of carbides in steel depletes the amount of C available for austenite stabilization
and hence it is desirable to suppress the formation of most carbide phases in ad-
vanced steels. The most commonly observed carbides in low alloy steels are ce-
mentite (Fe3C), Hägg carbide (Fe5C2) and eta-carbide (η-Fe2C). The easiest way
to suppress carbide phases is by adding alloying elements that destabilize them.
Therefore, it is of interest to know quantitatively to what degree various alloy-
ing elements affect carbide stability. While experimentally it maybe difficult to
control and observe the occurrence of very small precipitates of the three carbide
structures in steels, it will be shown that it is rather straightforward to compute
the main enthalpic contribution of alloying elements to carbide stability by first-
principles methods.

Experimentally, it was found that η-Fe2C forms first in quenched steels at temper-
atures between 370 and 470 K [42, 43]. But, it was also noticed that ǫ-Fe2C is the
only carbide forming up to 520 K and forms along with cementite till 600 K and
that it acts as a precursor for the formation of Fe5C2 [44, 45]. A long aging study
at 300 K followed by a brief 405 K anneal showed the presence of both η-Fe2C and

87
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ǫ-Fe2C [46]. ǫ-Fe2C is a non-stoichiometric carbon deficient structure of η-Fe2C.
It was recently shown that ǫ-Fe2C is only slightly more unstable than η-Fe2C and
that it can relax to the latter structure [86]. Above 720 K it has been observed that
Fe3C forms exclusively [42, 43]. Roughly, the carbides appear to precipitate in the
order η-Fe2C, Fe5C2 and Fe3C with increasing temperature [3, 86] with appear-
ance of ǫ-Fe2C preceding η-Fe2C. Both kinetic and thermodynamic factors could
be responsible for this observation. But, the predominance of each of the carbide
in a definite temperature range has been attributed to the lowering of its free en-
ergy (and hence stabilization) with temperature [86]. The precipitation sequence
can be altered by the application of a magnetic field thereby showing that the
magnetic free energy plays an important role in the stabilization of the carbide
phases [47, 48, 86].

A number of ab initio studies on pure and impurity substituted cementite have
been already performed. Electronic, structural and magnetic properties of pure
cementite were described in a number of previous communications [3,53–55]. Fur-
thermore, there are detailed studies of thermodynamic properties of pure cemen-
tite [48,56], elastic properties [57,59,60,63], point defects and possible C diffusion
paths [55]. The energetics and electronic structure of impurity substituted cemen-
tite have also been the focus of a considerable number of previous studies [54, 58,
87–90, 184, 187, 194–199]. The partitioning behavior of alloying elements between
cementite and ferrite has been described [200] and stabilization of cementite by
various alloying elements has been studied [58, 87, 89, 184, 186, 194, 195, 197, 198].
In most previous computational work on the stabilization of carbide phases by al-
loying elements, conclusions were based on enthalpies of formation with respect
to the pure carbide phase. Recently, the present authors have argued that carbide
stabilization must be evaluated on the basis of partitioning enthalpies instead of
formation enthalpies [200].

Relatively less attention has been paid to the carbides Fe5C2 and Fe2C, for both
pure and impurity substituted phases. Electronic, magnetic and structural prop-
erties of Fe3C, Fe5C2 and η-Fe2C have been reported [3]. Formation enthalpies
[3, 61], surface properties [62], thermodynamic properties along with formation
enthalpies [86] of Fe5C2 have also been described. Comparable work, excluding
the surface properties, has been done on η-Fe2C [3, 4, 63]. Calculations have been
interpreted to show that while Mn and Al stabilize ǫ-Fe2C, Si destabilizes it [89]
To the best of our knowledge no work has been done on the stabilization of either
η-Fe2C or Fe5C2 by alloying elements.

In the present communication, adding to our previous work on alloying-element-
substituted FeC3 [200], we calculate the stabilization of Fe5C2 and η-Fe2C by var-
ious alloying elements. Therefore, we can now comment on relative stabilization
and address the question whether alloying species (dis)favor one carbide in rela-
tion to another. Moreover, while we have not considered substitution of the alloy-
ing elements on the C site in our previous communication [200], here we consider
Al, Si, P and S on the C site of the carbides. To investigate supercell effects on sta-
bilization we consider two supercells, 1×1×1 and 2×2×2, in the case of impurity
substituted cementite. We first describe the crystal structures of the carbides, then
elucidate the calculation methodology of carbide (de)stabilization , and finally we
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describe our results on the role of alloying elements on (de)stabilization of the
carbides with respect to ferrite and the competition between carbides.

7.2 Methodology

Representing FekmCkn as the pure carbide supercell, where k is the number of
formula units used to model the pure FemCn carbide, and Fekm−1MCkn as the
alloying-element-substituted carbide supercell, the balance for the formation of
alloying-element-substituted carbide from the elements is given as

(km − 1)Fe + M + knC ⇋ Fekm−1MCkn. (7.1)

The formation enthalpy of the impurity substituted carbide is given as

H f [Fekm−1MCkn] = H[Fekm−1MCkn]− (km − 1)H[Fe]− H[M]− knH[C] (7.2)

where H [Fekm−1MCkn] is the enthalpy of the alloying-element-substituted cemen-
tite. H[Fe], H[M] and H[C] are the enthalpies of the elements (used as reference
phases) at their respective room temperature and pressure crystal structures. A
similar balance and formation enthalpy applies to the pure carbide, FekmCkn and
the C site substituted carbide, FekmCkn−1M.

The stabilization of a carbide by an alloying element is usually given [89, 184] by
the change in formation enthalpy of the alloying-element-substituted carbide with
respect to the pure carbide as

∆H f [Fekm−1MCkn] = H f [Fekm−1MCkn]− H f [FekmCkn] (7.3)

or, in terms of compound enthalpies as,

∆H f [Fekm−1MCkn] = H[Fe] + H[Fekm−1MCkn]− H[M]− H[FekmCkn]. (7.4)

Similar equations apply for the C site substituted carbide.

To overcome the shortcoming of using the alloying element in its ambient temper-
ature and pressure crystal structure as the reference state we use another quantity
defined as the partitioning enthalpy [200]. The partitioning enthalpy looks at sta-
bilization of the carbide phase by the alloying element as a competition for the
alloying element between the carbide phase and the ferrite phase. In the carbide
phase the alloying element can either occupy the Fe site or the C site. Depending
on which site the alloying element occupies, we have two balances that determine
the partitioning enthalpy. To compute the partitioning enthalpy for Fe substitu-
tion, the balance is given as,

Fep−1M + FekmCkn ⇌ Fep + Fekm−1MCkn. (7.5)

The partitioning enthalpy for Fe substitution is given as,

H
(Fe)
p = H[Fep] + H[Fekm−1MCkn]− H[Fep−1M]− H[FekmCkn]) (7.6)
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where Fep, Fep−1M, H[Fep] and H[Fep−1M] represent pure bcc-Fe, the dilute solid
solution of M in bcc-Fe and their enthalpies respectively.

Similar equations for C substitution are given as,

Fep−1M +
nk − 1

nk
FekmCkn ⇌

np − (n + m)

np
Fep + FekmCkn−1M. (7.7)

H
(C)
p =

np − (n + m)

np
H[Fep] + H[FekmCkn−1M]− H[Fep−1M]− nk − 1

nk
H[FekmCkn].

(7.8)

A negative value for the partitioning enthalpy implies a stabilization of the car-
bide while a positive value indicates stabilization of bcc-Fe. The partitioning en-
thalpy has been recognized as the main driving force for partitioning elsewhere
also, e.g. in Eqns. 11 and 14 in the work by Benedek et al. [201]. We will show
below that the stabilization of an alloying element substituted carbide with re-
spect to ferrite can be wrongly predicted when using ∆H f instead of Hp. For the
first-principles calculations we consider the (alloying-element-substituted) car-
bides and (alloying-element-substituted) bcc-Fe in their 0 K ferromagnetic (FM)
state.

7.3 Computational Details

We used the spin-polarized generalized gradient approximation (GGA) to den-
sity functional theory (DFT) [18, 19] and a plane wave basis with a kinetic energy
cut-off of 400 eV. The Kohn-Sham equations were solved using the Vienna ab initio
simulation package (VASP, version 4.6.36) [105,106,108,109]. The valence electron
and core interactions were described using the projector augmented wave method
(PAW) [38]. The first-order Methfessel-Paxton method was used with a smearing
width of 0.1 eV. The PW91 exchange correlation functional [110] with the Vosko-
Wilk-Nusair interpolation [112] for the correlation part was used. Structural re-
laxations were considered converged when the energy in two consecutive ionic
relaxation steps differed by less than 10 µeV and the maximum force (worst case)
on any atom in the supercell was less than 40 meV/Å. Both volume and ionic posi-
tions were relaxed in all supercells considered. For accurate bulk energies, a final
calculation was done without any relaxation using the linear tetrahedron method
including the Blöchl corrections [202]. Integrations in reciprocal-space employed
evenly spaced Monkhorst-Pack sampling [35] such that the product of the num-
ber of k-points in the first Brillouin zone and the number of atoms in the supercell
equaled about 10000. Both the k-point density and energy cutoff were verified to
give total energy convergence of 1 meV/supercell or better. Pure elements, except
Fe see below, were modeled using the unit cells (or primitive cells when possi-
ble) of their respective crystal structures. Co and Ni were considered FM and
Cr was considered anti-ferromagnetic (AFM). It is well-known that current DFT
exchange-correlation functionals do not model graphite accurately. To overcome
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this shortcoming, the enthalpy of diamond was computed and a correction of -
17 meV was added to account for the diamond to graphite transformation [190].
Pure bcc-Fe was modeled with a 128 atom supercell, Fe128, consisting of 4×4×4
bcc-Fe unit cells. We used a 3×3×3 bcc-Fe supercell with 54 atoms in our previous
work [200]. The 1×1×1 Fe3C supercell is the same as its unit cell with 16 atoms
and hence modeled as Fe12C4 while its 2×2×2 supercell with 8 unitcells was mod-
eled as Fe96C32. Fe5C2 was modeled using its unit cell with 28 atoms, Fe20C8.
η-Fe2C was modeled with 2×2×3 unit cells with 72 atoms, Fe48C24. Alloying-
atom-substituted supercells were modeled by replacing one of the Fe (or C) atoms
in the unit cell with the alloying element. We considered the alloying atom substi-
tuting the Fe atom on all possible Fe-occupied Wyckoff sites. Al, Si, P and S were
also considered on the C site of all the carbides. Alloying-element-substituted
iron (ferrite solid solution) was modeled with Fe127M. Similarly, alloying-element-
substituted Fe3C, Fe5C2 and η-Fe2C were modeled with Fe11MC4 (or Fe12C3M or
for the 2×2×2 supercell as Fe95MC4 or Fe96C31M), Fe19MC8 (or Fe20C7M) and
Fe47MC24 (or Fe48C23M) respectively.

7.4 Results and Discussion

7.4.1 Crystal structure and formation enthalpy of pure carbides

The results are very similar to the ones already reported in Chap. 3 and are there-
fore skipped here.

7.4.2 Supercell size effects

To investigate the effect of increasing supercell size on partitioning enthalpies and
other properties we use supercells of different sizes for both bcc-Fe and cementite.
In the case of bcc-Fe we use 3×3×3 and 4×4×4 supercells while for cementite we
use 1×1×1 and 2×2×2 supercells. In computing the partitioning enthalpies, the
use of either a 3×3×3 or a 4×4×4 supercell of bcc-Fe does not change the par-
titioning enthalpies except for a few meV in the worst cases indicating that the
relaxation effects in a larger bcc-Fe supercell do not differ significantly from that
of the smaller bcc-Fe supercell (see Fig. 7.1). But when a larger 2×2×2 cemen-
tite supercell is used the partitioning enthalpies changed significantly. While the
formation enthalpy and the crystal structure of pure cementite do not show any
perceivable changes, the increase in supercell size leads to considerable changes
in the partitioning enthalpies of the impurity substituted carbides. This change
is clearly noticeable in the case of alloying elements which lead to large changes
in volume of the alloying element substituted supercells namely P, S, Nb, Mo and
W along with Al and Si when substituted on the C site (see Fig. 7.2). The super-
cell effect is less pronounced in the case of Ti, V, Cr, Mn, Co, Ni and Cu where
the volume change is much less compared to the former group of elements. The
increase in carbide supercell size thus generally leads to a less stable carbide and
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Figure 7.1: Plot illustrating the supercell size effects for cementite. Enthalpies
of preference using the 4×4×4 bcc-Fe supercell along with 1×1×1 and 2×2×2
cementite supercells are shown.

hence a stronger preference of the bcc-Fe phase. This is easily rationalized: in the
small supercell oversized atoms are accommodated mostly by expanding the vol-
ume while in larger supercells the distortion of the carbide lattice predominates.
The expansion of the small supercell does not take into account that this volume
expansion will lead to elastic strains at larger lengths scales and therefore small
supercell calculations energetically might be biased towards the carbide phase
unless the actual alloying element concentrations in the carbide are representative
for the supercell compositions. In the discussion below we refer to the results cal-
culated using the larger 4×4×4 and the 2×2×2 bcc-Fe and cementite supercells.

7.4.3 Site preference of alloying elements in the carbides

In Fe3C, when substitution of the alloying elements is considered only on the
metal site, all alloying elements prefer to occupy the 8d site [184, 200]. When P
and S are substituted on the metal sites it is observed that there is a major reorga-
nization of the nearest neighbor atoms. Fe atoms are seen to move closer to the
P and S atoms, both of which have p valence electrons. No such reorganization
was observed when the transition alloying elements with only d valence electrons
occupied the Fe site. These observations along with the fact that the C site has
the maximum number of Fe neighbors in the carbide structures prompted us to
consider P and S along with Al and Si on the C site also. As might be expected,
P and S on the basis of the strong bonding with the Fe atoms, preferred the C site
over the Fe sites, see Fig. 7.4 and Table 7.2. The case of Si is somewhat ambiguous:
in the 1×1×1 cementite supercell there is a clear preference for the C site whereas
in the larger 2×2×2 supercell the Fe2(8d) and C sites are almost degenerate, see
Fig. 7.1. It should be remarked however, that Si strongly favors dissolution in the
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Figure 7.2: Changes in volume of alloying element substituted carbide supercells
with respect to the pure carbide supercell.
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Figure 7.3: Formation enthalpies of alloying element substituted carbides as de-
fined in Eq. 7.3.



Fe3C Fe5C2 Fe2C
Element Fe1(4c) Fe2(8d) C(4c) Fe1(8f) Fe2(8f) Fe3(4e) C(8f) Fe(4g) C(2a)

Al -0.12 -0.21 1.84 -0.18 -0.13 0.23 0.93 0.24 2.80
Si 0.56 0.34 0.38 0.67 0.46 1.16 0.10 1.37 1.62
P 1.58 0.93 -0.59 1.19 0.44 1.73 -0.69 2.35 0.50
S 2.38 1.81 0.10 1.93 1.04 2.09 0.06 3.56 0.82

Ti -0.91 -1.01 - -1.28 -0.91 -0.84 - -1.00 -
V -0.54 -0.66 - -0.70 -0.62 -0.59 - -0.54 -

Cr 0.04 -0.05 - 0.02 -0.08 -0.10 - -0.03 -
Mn 0.06 0.05 - 0.01 0.03 -0.12 - -0.17 -
Fe 0.00 0.00 - 0.00 0.00 0.00 - 0.00 -
Co 0.09 0.05 - 0.12 0.05 0.16 - 0.19 -
Ni 0.21 0.15 - 0.21 0.20 0.44 - 0.33 -
Cu 0.97 0.89 - 0.91 1.03 1.40 - 1.20 -
Nb 0.11 0.03 - -0.22 0.03 0.27 - 0.04 -
Mo 0.38 0.33 - 0.26 0.34 0.47 - 0.40 -
W 0.43 0.37 - 0.35 0.35 0.54 - 0.57 -

Table 7.1: Formation enthalpies of alloying-element-substituted carbides with respect to the pure carbide, ∆H f (eV/atom). The
alloying element has been considered on all possible Fe Wyckoff sites of the carbide. Formation enthalpies are calculated as
defined in Eq. 7.3 with k=32, 4, 24 for Fe3C, Fe5C2 and η-Fe2C respectively and with p=128 for bcc-Fe.
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Figure 7.4: Partitioning enthalpies of alloying element substituted carbides as de-
fined in Eq. 7.6 and 7.8.

ferrite phase rather than in cementite. Al is most stable of the Fe2(8d) site. The
preference of Al, Si for the Fe site and P, S for the C site from our 2×2×2 super-
cell calculations agree well with previous results [194] which were carried out at
a lower kinetic energy cutoff (350 eV).

In Fe5C2, alloying elements prefer various sites (see Fig. 7.4 and Table 7.2). The
symmetry of the crystal structure is completely lost only on substitution of the al-
loying element on the Fe1(8f) or the Fe2(8f) sites. This loss in symmetry leads
the atoms constituting the structure to have more degrees of freedom to relax
and hence most of the alloying elements prefer to occupy either the Fe1(8f) or the
Fe2(8f) site. All carbide formers like Ti, V, Nb and Mo seem to prefer the Fe1(8f)
site which has four close C neighbors, two at about 2 Å, third at 2.4 Å and a fourth
one at 2.8 Å. Although Al and Cu are not considered good carbide formers they
also prefer to occupy this site. Co occupies the Fe2(8f) site with the least number
of C neighbors, two at about 2 Å and the third at about 2.4 Å. Ni and W do not
show any preference between the Fe1(8f) or the Fe2(8f) sites. The Fe3(4e) site is
preferred by Cr and Mn only. Cr and Mn have a stronger affinity for carbon than
Fe and tend to be soluble in most carbide phases. The somewhat unique site pref-
erence of Cr and Mn may be due to the rather small atomic size difference with Fe,
which makes relaxation effects less important, while simultaneously the Fe3 site
provides 4 close C nearest neighbors at about 2 Å. As in Fe3C, Si, P and S prefer to
occupy the C site.

In Fe2C, P and S prefer to occupy the C site whereas Al prefers the Fe site. Al-
though Si prefers the C site in Fe3C and Fe5C2, it prefers the Fe site Fe2C.



Fe3C Fe5C2 Fe2C
Element Fe1(4c) Fe2(8d) C(4c) Fe1(8f) Fe2(8f) Fe3(4e) C(8f) Fe(4g) C(2a)

Al 0.66 0.57 2.69 0.59 0.65 1.01 1.76 1.02 3.59
Si 1.67 1.45 1.56 1.77 1.57 2.27 1.25 2.48 2.75
P 2.54 1.89 0.44 2.15 1.40 2.69 0.31 3.31 1.49
S 2.13 1.56 -0.08 1.68 0.79 1.84 -0.14 3.31 0.58

Ti -0.08 -0.18 - -0.45 -0.09 -0.01 - -0.17 -
V 0.20 0.07 - 0.03 0.11 0.14 - 0.20 -

Cr 0.19 0.10 - 0.17 0.07 0.05 - 0.12 -
Mn -0.25 -0.26 - -0.31 -0.28 -0.43 - -0.48 -
Fe 0.00 0.00 - 0.00 0.00 0.00 - 0.00 -
Co 0.22 0.17 - 0.24 0.17 0.28 - 0.32 -
Ni 0.12 0.06 - 0.12 0.10 0.34 - 0.24 -
Cu 0.24 0.16 - 0.18 0.30 0.66 - 0.47 -
Nb 0.22 0.14 - -0.12 0.14 0.38 - 0.15 -
Mo 0.34 0.29 - 0.22 0.30 0.43 - 0.37 -
W 0.49 0.43 - 0.42 0.42 0.61 - 0.63 -

Table 7.2: Partitioning enthalpies of alloying-element-substituted carbides, H
(Fe)
p (eV/atom). The alloying element has been con-

sidered on all possible Fe Wyckoff sites of the carbide. Partitioning enthalpies are calculated as defined in Eq. 7.6 and 7.8 with
k=32, 4, 24 for Fe3C, Fe5C2 and η-Fe2C respectively and with p=128 for bcc-Fe.



7.4. Results and Discussion 97

7.4.4 Volume changes

When fully relaxing the impurity substituted supercell we make the implicit as-
sumption that the supercell under investigation experiences no external stress.
While this assumption is valid for massive bulk materials, the assumption must
be considered carefully when dealing with precipitate phases such as the ones be-
ing considered in the present paper. The precipitates are embedded in a ferrite
matrix with which at least partial coherency exists which leads to a strained im-
purity substituted precipitate phase. Changes in volume of the precipitate phase
can increase or decrease the strain. In light of this, it is worthwhile to look at the
volume changes brought about by the substitution of the alloying elements on var-
ious sites. Situations can be envisaged where although it might be energetically
favorable to occupy a certain site the strain effects might not actually allow such
preference. Such a situation seems to clearly manifest in the case of Si. Although
the preference in energy between the Fe sites and the C site is little, the volume
change brought about by its substitution on the C site is much higher than its sub-
stitution on the Fe sites (10-15 Å3 vs. -2.5-2.5 Å3) (see Fig. 7.2). It is harder to make
such an argument in the case of P and S because although the volume changes on
the C site are higher compared to the changes on the Fe site, the preference to the
C site is much larger compared to Si.

7.4.5 Stabilization of carbides with respect to ferrite

In our previous work [200] we have shown how using ∆H f to determine stabiliza-
tion of cementite gives results which do not agree with experiments in the case of
Al, Mo and W. The case of Al is striking as it is predicted to stabilize cementite al-
most twice as much as Mn. Al, of course, does not stabilize cementite while Mn is
experimentally known to partition to, and hence stabilize, cementite [163,167,203]
(for more references see [200]). In spite of using a 4×4×4 bcc-Fe and a 2×2×2 ce-
mentite supercell in the present work instead of the 3×3×3 and 1×1×1 supercells
respectively as used in [200], our conclusions about the partitioning and stabiliza-
tion of the alloying elements between cementite and ferrite remain qualitatively
the same when considering partitioning on the Fe site. 1

In the case of Fe5C2, looking at ∆H f might suggest that Al, Ti, V, Cr, Mn and Nb
stabilize the carbide phase while the rest of the alloying elements destabilize it
(Table 7.1 and Fig. 7.3). As in the case of cementite, this is a misinterpretation of
the data.

However, when we consider the reference states of the alloying elements correctly
via the partitioning enthalpies instead of formation enthalpies both Al [179, 204]
and Si [163, 164, 167, 173, 205] destabilize the formation of not only cementite but
all the carbide phases (see Fig. 7.4 and Table 7.2) regardless of whether Fe or C
site substitution is considered. This shows that the conclusions about stabiliza-
tion of carbides with respect to ferrite based on partitioning enthalpies are more

1Please note that we list H f in Table 3 of [200], while in Table 7.1 of the present communication we
list ∆H f .
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reliable than the ones based on formation enthalpies. Not only do both Al and
Si destabilize all three carbide phases but Si destabilizes them more than Al (see
Fig. 7.4).

P, Co, Ni, Cu, Mo and W also destabilize the three carbides considered here,
though not nearly as strongly as Si and Al. Surprisingly, S on the C site stabilizes
Fe3C and Fe5C2 while destabilizing Fe2C. Ti and Mn stabilize the three carbide
phases while Nb stabilizes cementite and Hägg carbides but not η-Fe2C. V and Cr
destabilize Fe3C and Fe5C2 by a negligible amount while V destabilizes η-Fe2C.

However, the ab initio computed partitioning enthalpies do not agree with all
experimental observations. Cr is know to partition, and hence stabilize, Fe3C
[163, 164, 167]. In fact, more so than Mn. Alas, Cr is computed to slightly desta-
bilize and hence partition away from cementite, contrary to experimental evi-
dence [163, 164, 167]. Possibly, Cr-rich carbides form prior to Fe-based carbides,
and act as nucleation sites for the cementite and other Fe-based carbides. If those
initial Cr-rich carbides are small enough they might not be recognized as distinct
phases. We do compute that Mn stabilizes Fe3C in agreement with experimental
observations [163,164,167,203]. Mn is computed to stabilize Fe5C2 and Fe2C even
a little more. Our computed partitioning enthalpies do not reflect correctly the
fact that Mo [163, 164, 167] and W [164] also partition to cementite, although the
enthalpies involved are rather small. It should be noted that all our calculations
are based on enthalpies obtained at 0 K. The neglect of entropy (S) changes at fi-
nite temperature is less likely to be tenable when enthalpy changes are of order
TS, where S could be mainly due to alloy element induced magnetic (dis)ordering
which could be of order kB. Given that experimental measurements are typically
in the neighborhood of the ferrite-austenite transition temperature, it follows that
partitioning enthalpies less than 0.1 eV are rather inconclusive.

7.4.6 Relative stabilization of carbides

Si, P, S, and Al, destabilize η-Fe2C much more than cementite and Hägg carbide.
All alloying elements except Mn destabilize η-Fe2C relative to Fe3C and Fe5C2. At
this juncture, it is interesting to note that Mn also stabilizes ǫ − Fe2C, a carbide
closely related to η-Fe2C, over cementite [89]. The competition between cementite
and Hägg carbide is not nearly as strongly affected by alloying additions as the
competitions involving η-Fe2C. Si, Mo and W are found to disfavor cementite less
than Hägg carbide, while Ti, Mn, and Nb promote Hägg carbide at the expense
of cementite. This is in line with the complete intermixing between Fe5C2 and
Mn5C2 [203], whereas such thermodynamically favorable dissolution does not ex-
ist for cementite [88]. It should be remarked though that our results indicate that
Mn stabilizes η-Fe2C and Fe5C2 about equally.

It is to be borne in mind that experimental observations pertain to carbides in
the paramagnetic state while the first-principles calculations pertain to the ferro-
magnetic state at zero temperature. While configurational entropy effects can be
shown to play a minor role at the temperatures of interest in relation to the com-
puted enthalpy changes, the same cannot be said of magnetic entropies. Possibly,
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by considering the carbides in a disordered local moment state, and by explicitly
considering magnetic entropy contributions to the free energy a better agreement
with experiment might be found. Experimentally, there is a possibility for mis-
interpretations if Cr, V, Mo or W-rich carbides form prior to Fe-based carbides,
and then subsequently act as nucleation sites for cementite or other Fe-based car-
bides. If those initial alloy element-rich carbides are small enough they might not
be recognized as distinct phases.

7.5 Conclusion

First-principles calculations on alloying element substituted carbides, Fe3C, Fe5C2
and η-Fe2C show that Si and Al destabilize the formation of carbides with Si being
the most effective. P and S prefer to occupy the C site in all the carbides while Si
weakly prefers to occupy the C site in two of them, Fe3C and Fe5C2. On a per
atomic fraction basis, Si is about twice as effective as Al for carbide suppression.
All alloying elements considered, except Mn, destabilize η-Fe2C relative to Fe3C
and Fe5C2. The competition between Fe3C and Fe5C2 is not so strongly affected
by alloying elements. Si, Mo and W disfavor Fe5C2 more than Fe3C, while Ti, Mn,
and Nb stabilize Fe5C2 over Fe3C. Mn stabilizes both Fe5C2 and η-Fe2C to a com-
parable degree over Fe3C. At finite temperature observed partitioning behavior
of Cr, V, Mo and W are not explained satisfactorily on the basis of first-principles
zero temperature partitioning enthalpies.





Appendix A

Fourier Series

A Fourier series can be used to represent any periodic function. Given any func-
tion f (x) with a periodicity of 2π ( f (x + 2π) = f (x)) (Fig. A.1), its Fourier series
representation can be written as

f (x) =
a0

2
+

n

∑
1

an sin nx +
n

∑
1

bn cos nx

The Fourier series representation of a square and triangle wave forms are given as
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(A.4)

A comparison of the original square wave and the Fourier approximation with in-
creasing number of terms in the expansion is show in Figure A.2. It clearly shows
that the Fourier series expansion represents the original function more accurately
as the number of terms included in the Fourier series expansion increase and tend
to infinity.

The coefficients an and bn decrease as 1/nm+1 if dm f /dxm is the lowest order
derivative which exhibits discontinuities. So, for a given accuracy (least squares
difference) of fitting, ‘smoother’ functions without discontinuities and jumps have
lower number of terms in the expansion compared to functions with discontinu-
ities. Thus, the coefficients in a square wave with jumps and discontinuities decay
as 1/n (Eq. A.1, Fig. A.1) whereas the coefficients in a triangular waveform with
no jumps but only discontinuities decay as 1/n2 (Eq. A.3, Fig. A.1).
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Figure A.1: Triangular (a) and square (b) wave forms. The triangular waveform
has discontinuities at -3π/2, −π/2, . . . while the square wave has discontinuities
and jumps at −2π, −π, . . .

-2 Π -Π Π 2 Π -2 Π -Π Π 2 Π
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Figure A.2: The first four partial sums of the Fourier series for a square wave.
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A Fourier series with a finite number of terms gives the best least squares approxi-
mation possible to f (x); it does not mean that a better least squares approximation
of a type different from a Fourier series cannot be found.

The idea of a Fourier series expansion can be taken as an analogy for the repre-
sentation of wavefunctions using a basis set. In a Fourier series expansion, sin nx
and cos nx terms act as the basis sets for the representation of periodic functions
whereas atomic and molecular orbitals act as basis sets in the representation of
wavefunctions.
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Summary

We used Density Functional Theory based first principles plane-wave calcula-
tions to determine which alloying elements can be used to suppress the formation
of iron carbides in transformation induced plasticity (TRIP) steels. TRIP steels
are low-alloy steels that combine properties of enhanced strength and ductility
that satisfy the requirements of the automotive industry for good formable high-
strength steels. To obtain a good TRIP effect, it is essential to retain the austenite
phase to room temperature. Carbon is the most effective alloying element for the
stabilization of austenite to room temperature. However, it is usually lost to pre-
cipitating carbides during the cooling of steel from the austenite phase to room
temperature. The loss of C can be avoided by adding appropriate alloying ele-
ments that destabilize the formation of the carbide phases (Chap. 1). We used
Density Functional Theory (DFT) based first-principles calculations (Chap. 2) to
quantitatively determine the degree of (de)stabilization by various alloying ele-
ments to the formation of iron carbides (Chap. 6 and 7).

First, it was made sure that DFT accurately describes the ground state structural,
mechanical and vibrational properties of the pure phases and we see good agree-
ment in this regard with experimental data. Structural (crystal structure), me-
chanical (bulk modulus, Young’s modulus, shear modulus, Poisson ratio), elec-
tronic (total and partial electronic density of states) and magnetic properties (total
and atomic magnetic moments) of iron and iron carbides in their ground state are
well described by DFT (Chap. 3). While in the quasi-harmonic approximation it is
also relatively straightforward to obtain the high temperature vibrational proper-
ties (vibrational free energy, Debye temperature) of the phases considered in this
thesis, it is relatively difficult to obtain the high temperature magnetic properties
(magnetic free energy) (Chap. 3).

Although the exact formation energies of different alloy phases cannot be deter-
mined to chemical accuracy, the relative difference in formation energies can be
obtained accurately using DFT. We find that the stability of the carbides increases
in the order: Fe3C < Fe5C2 < η-Fe2C. It should be noted though that the stabil-
ities were calculated at a temperature of 0 K. At finite temperatures, vibrational,
magnetic and electronic free energies will have to be included to compare their
stabilities (Chap. 3). The inclusion of vibrational and magnetic free energies leads
to a change in the stability of the carbides at higher temperatures and make ce-
mentite (Fe3C) stable at higher temperatures. This explains the predominance of
cementite in steels (Chap. 3).
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In dilute solutions of Ti, V, Sc, Cu and Zn in bcc-Fe a negative magnetic moment is
induced on the alloying element atoms by the positive moments of the surround-
ing Fe atoms. Cr, Mn, Ni and Co have intrinsic moments. The total magnetic
moment of an impurity substituted bcc-Fe supercell changes as if the change in
magnetism is brought about completely due to the change in the volume of the
supercell of pure bcc-Fe without the impurity atom (Chap. 4).

Si in bcc-Fe reduces the chemical potential and diffusivitiy of C in bcc-Fe. Dis-
solved at low concentrations in bcc-Fe Si diminishes the thermodynamic driving
force for carbide formation. The suppression of carbide formation by Si has two
aspects: a) it reduces the driving force for carbide precipitation by reducing the
chemical potential of C by attracting and trapping it in ferrite and b) by reducing
the C diffusivity in ferrite (Chap. 5).

Formation enthalpies were shown not to correctly describe the (de)stabilization
of carbides, nor do they describe correctly the partitioning of alloying elements
between carbides and bcc-Fe phases accurately (Chap. 6 and 7). It is seen that
the partitioning energy, defined in this work thesis, describes the (de)stabilization
of carbides by alloying elements better than formation energies (Chap. 6 and 7).
In agreement with experimental measurements, our calculations show that Si, Al
and P are the alloying elements that destabilize carbides the most when replacing
Fe in the carbide (Chap. 6 and 7). On a per atomic fraction basis, Si is more ef-
fective than Al in the destabilization of the carbides. Our calculations show that
magnetism can play an important role in determining the stability of iron carbides
accurately.

All the alloying elements, except Mn, destabilize η-Fe2C relative to Fe3C and
Fe5C2. The competition between Fe3C and Fe5C2 is strongly affected by alloy-
ing elements. While Si, Mo and W stabilize Fe5C2 relative to Fe3C, Ti, Mn and
Nb do the opposite. Mn stabilizes both Fe5C2 and η-Fe2C to a comparable degree
over Fe3C (Chap. 7).

At finite temperature, observed partitioning behavior of Cr, V, Mo and W are not
explained satisfactorily by the present first-principles, 0 K partitioning enthalpies.
For a good first principles description of the partitioning behavior, the paramag-
netic nature of the carbides at higher temperatures should be taken into account
(Chap. 6 and 7).

First-principles calculations complemented by a straightforward formalism for
calculating the magnetic free energies can prove be invaluable in the design of
new steels.



Samenvatting

Ab initio vlakke-golf berekeningen gebaseerd op “density functional” theorie zijn
gebruikt om te bepalen welke legeringselementen toegepast kunnen worden om
de vorming van ijzercarbides in “transformation induced plasticity” (TRIP) staal-
soorten te onderdrukken. TRIP staalsoorten zijn laag-gelegeerd met een combi-
natie van eigenschappen zoals verbeterde sterkte en taaiheid die voldoen aan de
toepassingseisen van de auto industrie voor goed vervormbare hoge-sterkte staal.
Om een goed TRIP effect te verkrijgen is het essentieel om de austeniet fase the be-
houden tot kamertemperatuur. Koolstof is het meest effectieve legeringselement
voor de stabilisatie van austeniet. Het gaat echter vaak verloren door de vorming
van carbide precipitaten uit de austeniet fase tijdens het afkoelen van staal naar
kamertemperatuur. Het verlies van koolstof kan voorkomen worden door toe-
voeging van bepaalde legeringselementen die de vorming van carbides tegengaan
(hoofdstuk 1). Density functional theorie (DFT) gebaseerde ab initio berekeningen
(hoofdstuk 2) zijn toegepast om kwantitatief te bepalen hoe sterk verschillende le-
geringselementen de ijzercarbides (de)stabilizeren (hoofdstukken 6 en 7).

Eerst is gecontroleerd dat DFT nauwkeurig de structurele, mechanische en vibra-
tionele eigenschappen van de pure fasen in hun grondtoestand beschreef. Dat
bleek het geval: goede overeenkomst werd gevonden met experimentele gege-
vens. Kristalstructuur, mechanische (compressiemodulus, elasticiteitsmodulus,
schuifmodulus, en dwarscontractiecoëfficiënt van Poisson), elektronische (totale
en partiële toestandsdichtheden) en magnetische eigenschappen (totale en atoom-
gebonden magnetische momenten) van ijzer en ijzercarbides in de grondtoestand
blijken goed beschreven te worden door DFT (hoofdstuk 3). Terwijl in de quasi-
harmonische benadering de hoge-temperatuur vibrationele eigenschappen (vi-
brationele vrije energie, Debye temperatuur) relatief eenvoudig berekend kun-
nen worden voor de fasen die in dit proefschrift voorkomen, is dat niet het geval
voor de hoge temperatuur magnetische eigenschappen zoals de magnetische vrije
energie (hoofdstuk 3).

Hoewel de exacte formatie-energieën van verschillende legeringsfasen niet tot
chemische nauwkeurigheid bepaald kunnen worden, is het toch mogelijk formatie-
energie verschillen nauwkeurig te bepalen met DFT. Wij hebben vastgesteld dat
de stabiliteit van de carbide fasen toeneemt in de volgorde: Fe3C < Fe5C2 < η-
Fe2C. Waarbij opgemerkt moet worden dat deze stabiliteiten berekend zijn bij
een temperatuur van 0 K. Om de stabiliteit bij niet-nul temperatuur te vergelijken
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moeten de vrije energiebijdragen van vibrationele, magnetische, en elektronische
excitaties meegenomen worden (hoofdstuk 3). Het meenemen van vibrationele
en magnetische vrije energieën verandert de relatieve stabiliteit van de carbides
bij hogere temperaturen en leidt tot het stabiel worden van cementiet (Fe3C). Dit
verklaart de overheersende aanwezigheid van cementiet in staal (hoofdstuk 3).

In vaste oplossingen van Ti, V, Sc, Cu en Zn in kubisch ruimtelijk gecentreerd (krg)
ijzer wordt een negatief magnetisch moment geïnduceerd op de legeringsatomen
ten opzichte van de positieve momenten van de omringende ijzer atomen. De
legeringselementen Cr, Mn, Ni, en Co hebben een intrinsiek magnetisch moment
Het totale magnetische moment van een krg-Fe supercel waarin een Fe atoom ver-
vangen wordt door een legeringselementatoom verandert alsof uitsluitend de bij-
komende volumeverandering van een Fe supercel zonder legeringselementatoom
verantwoordelijk is (hoofdstuk 4).

Si in krg-Fe vermindert de chemische potentiaal en de diffusiviteit van C in krg-
Fe. Opgelost in lage concentraties in krg-Fe vermindert Si de thermodynamische
drijvende kracht voor carbide formatie. Het onderdrukken van carbidevorming
door Si heeft twee aspecten: a) Si vermindert de drijvende kracht voor carbide
precipitatie door het verminderen van de chemische potentiaal van C via de aan-
trekking en binding van C in ferriet, en ook omdat b) Si de C diffusiviteit in ferriet
vermindert (hoofdstuk 5).

Het is aangetoond dat formatie-enthalpieën de (de)stabilizatie van carbides niet
correct weergeven. Ook geven de formatie-enthalpieën geen correcte weergave
van de partitioneering van legeringselementen tussen de carbide en krg-Fe fa-
sen (hoofdstukken 6 en 7). De partitioneeringsenergie, zoals gedefinieerd in dit
proefschrift, beschrijft de (de)stabilizatie van carbides door legeringselementen
veel beter dan de formatie energieën. Overeenkomstig experimentele metingen,
geven onze berekeningen aan dat Si, Al, en P de legeringselementen zijn die car-
bides het meest destabilizeren wanneer deze elementen Fe vervangen in de carbi-
des (hoofdstukken 6 en 7). Beoordeeld per atoom is Si effectiever dan Al voor het
destabilizeren van carbides. Onze berekeningen tonen aan dat magnetisme een
belangrijke rol kan spelen in het bepalen van de carbide stabiliteit.

Alle legeringselementen, met uitzondering van Mn, destabilizeren η-Fe2C in ver-
houding tot Fe3C en Fe5C2. De competitie tussen Fe3C en Fe5C2 wordt sterk be-
ïnvloed door legeringselementen. Hoewel Si, Mo en W Fe5C2 stabilizeren ten op-
zichte van Fe3C, doen Ti, Mn en Nb het tegenovergestelde. Mn stabilizeert zowel
Fe5C2 als η-Fe2C over Fe3C in een vergelijkbare mate (hoofdstuk 7).

Het bij niet-nul temperatuur waargenomen partitioneeringsgedrag van Cr, V, Mo,
en W is niet bevredigend verklaard door de huidige ab initio 0 K partitioneerings
enthalpieën. Voor een goede ab initio beschrijving van het partitioneeringsgedrag
zal het paramagnetisme van de carbides bij hogere temperatuur in aanmerking
moeten worden genomen (hoofdstukken 6 en 7).

Ab initio berekeningen gecomplimenteerd met een eenvoudig formalisme voor
magnetische vrije energieën zouden van onschatbare waarde zijn voor het ont-
wikkelen van nieuwe staalsoorten.



Acknowledgements

The present thesis would not have been possible without the help and support of
a number of people. I take this opportunity to thank all the people who made this
possible.

First and foremost, I have to thank Marcel Sluiter, my supervisor, adviser and
mentor during my Ph.D., for his boundless optimism, patience and support. Thanks
for always being positive, curious and enthusiastic about things; this has shown
me a new way of looking at the world. Also, thanks for giving me the time and
space to find myself.

Although Prof. Barend Thijsse has not been my daily supervisor, his genuine hu-
mility, lack of ego, enthusiasm towards Science and his skill to explain involved
concepts in simple terms have always been an inspiration. Thanks a lot for your
patience and support during the completion of this thesis.

I would have never made it to the Netherlands if not for Prof. Yashonath Subra-
manian, my Master thesis supervisor at the Indian Institute of Science, Bengaluru,
India. Thanks a lot for getting me in contact with Marcel and starting off this
whole endeavor. In this regard, I also wish to thank Jayashree Nagesh for encour-
aging me to look for more challenging opportunities.

A special thanks should go to Anke Kerklaan-Koene for taking good care of all
my travel bills. Also, all the staff at M2i, Oscar Ruigrok and Monica Reulink in
particular, have been very helpful.

Another person, whom I have never even met in person, without whose expertise
this work would never have been possible is Peter Bloom. Kudos for having al-
most no downtime on the computing cluster, hpc06, and for installing everything
that I ever asked for.

Jeroen Colijn, whose untimely demise has been a shock, was extremely warm
and kind during all my visits and internship at Tata Steel Europe. It was a great
learning experience when he took me around the steel plant in IJmuiden - my
first contact with steel in real life. Winfried Kranendonk, thanks a lot for the very
careful reading of my thesis and all the detailed comments; I really appreciate
them. In this aspect, thanks are also due to Prof. Dirk Lamoen and Prof. Rob de
Groot for a careful reading of the thesis and the valuable comments.

Next, come all my colleagues and friends on the 8D Fourth Floor of 3mE: Andrew
(Andy) Duff, Darko Simonovic, Diana Nanu, Emre Sururi Taşci, Fidel Valega,
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