
Prevalence of non-monotonicity in learning curves

Dinu Gafton1

Supervisors: Tom Viering1, Taylan Turan1

1EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
January 28, 2024

Name of the student: Dinu Gafton
Final project course: CSE3000 Research Project
Thesis committee: Tom Viering, Taylan Turan, Hayley Hung

An electronic version of this thesis is available at http://repository.tudelft.nl/.

Abstract
Learning curves are useful to determine the amount
of data needed for a certain performance. The
conventional belief is that increasing the amount
of data improves performance. However, recent
work challenges this assumption, and shows non-
monotonic behaviors of certain learners on certain
problems
This paper presents a new approach for detect-
ing non-monotonicity in empirical learning curves.
This method monitors the degree of monotonic-
ity violation on non-monotonic intervals, using the
performance difference. In addition, the accuracy
of the algorithm is being assessed through a series
of diverse experiments.
The proposed algorithm is applied to a subset of the
extensive Learning Curve Database (LCDB). The
results indicate an experimental accuracy of 95.5%
in identifying non-monotonicity within real learn-
ing curves. Importantly, the metric demonstrated
its ability to distinguish genuine non-monotonic
trends from minor fluctuations attributed to mea-
surement errors.

1 Introduction
Learning curves graphically depict the relationship between
a model’s performance and the amount of training data. They
have emerged as useful tools for assessing and improving ma-
chine learning systems, being used in comparing different al-
gorithms, choosing model parameters during design and de-
termining the amount of data used for training.

The study of learning curves in machine learning often re-
volves around the basic assumption that model performance
consistently improves with additional training data. How-
ever, the real-world behavior of learning curves is not always
strictly monotonic. In some cases, the relationship between
model performance and training data exhibits non-monotonic
patterns, introducing complexities that challenge initial ex-
pectations. Furthermore, there is limited research on the non-
monotonicity of learning curves and on fast, reliable methods
of identifying it. Thus, this research paper aims to answer the
following question:
How to identify non-monotonic learning curves, and what
might influence this?

Socol [1] uses the slopes (and their signs) of the discrete
learning curve points to identify non-monotonicity in learn-
ing curves, but he fails to answer some insightful questions,
for example: How many times is a curve non-monotone?, and
How significant is the non-monotonicity?.

This paper gives a different heuristic method of identifying
non-monotonicity, it’s significance and the number of occur-
rences in the learning curve, taking into account the noise
in data. Then, using this method, an analysis of the LCDB
[2] database will be provided, focusing on identifying the
non-monotone learning curves, the significance of each non-
monotonicity and how many times non-monotonicity is iden-
tified in a single curve.

The paper will follow this structure. Section 2 discusses re-
lated work from existing literature. Section 3 introduces the
methodology of the research, followed by Section 4 which
dives into the experimental setup. In section 6 the experi-
mental results and reflections on what has been concluded
from the experimental results are provided. Section 6 draws
the conclusions of this work and points to future possible
research directions. The final section provides a discussion
about the ethical aspects of the research.

2 Related work and literature
Viering et al. [3] highlighted the unresolved nature of the
monotonicity in learning curves and the need for exploration
and resolution. Despite its benefits, the property of mono-
tonicity may not consistently manifest in learning curves.
Learning curves can be defined as smooth, monotonically
non-decreasing functions [4], meaning that it is assumed the
model’s error rate won’t rise with additional training samples.

Moreover, Mazur et al. [5] mention that learning occurs
most rapidly early in training, with equal increments in per-
formance requiring more and more practice later in training.
Unfortunately, this not always the case as this research has
found learning curves that experience a decline in perfor-
mance for bigger training samples until the very end.

Mohr et al. [2] introduced a metric to assess non-
monotonicity by examining the maximum violation in an
overall descending learning curve. This metric provides im-
portant insights for some of the experiments conducted dur-
ing this research and will be discussed more in-depth further
down below.

Mohr et al. also discuss ”peaking” (sample-wise double
descent/ascent), a phenomenon often observed in neural net-
works, characterized by a small region of monotonicity vio-
lation within an otherwise monotonic curve. Peaking is con-
sidered a specific type of non-monotonic behavior in learning
curves, but the metric proposed in this research does not dis-
tinguish peakings from other types of non-monotonic behav-
ior, identifying them both if encountered on a learning curve.

Prior research conducted by Socol has provided a new met-
ric for identifying non-mononicity by approximating slopes
of the discrete learning curve points [1]. A performance com-
parison between the algorithm discussed in this paper and the
above-mentioned algorithm was conducted as an experiment
and the results are provided in the following chapters.

According to Viering et al.’s review [6], many scholars as-
sume learning curves to be monotonic, resulting in limited re-
search on the non-monotonic nature of learning curves. Un-
derstanding this behavior may facilitate better extrapolation
of training costs for a model and assist in the model selection
process [7].

3 Methodology
In this section, the new heuristic to identify non-monotonicity
in empirical learning curves is introduced and fully explained.

3.1 Identifying non-monotonicity
The first step in studying the non-monotonicity property
of learning curves is to define a metric that classifies them
as monotonic. Generally, a learning curve is represented
by a collection of discrete points. Moreover, the change of
performance on the learning curve can be easily observed
by looking at the distance between 2 points on the Y axis,
from now on called ”performance difference”. In case of
Accuracy learning curve, an increase in value is expected
(the performance difference is positive), thus once a negative
difference is found between 2 points, non-monotonicity
can be assumed (in case of Error Rate learning curves, the
opposite is expected). Hence, the performance differences
will be used as metric for this heuristic, specifically their
signs. For this purpose, we outline the following algorithm.
This metric is formally described in Listing 1.
The algorithm takes as input the list of learning curve points,
points, and the coefficient used for the threshold, limit
(by default it is set at 0.8, the tuning and optimisation of
this threshold will be discussed in Section 4.2. Firstly, the
performance differences (Y distances) for each jump between
points is being computed by subtracting the values of 2
sequential points. Then the threshold is computed from the
average jump (mean of the absolute values of Y distances)
and multiplied by the limit coefficient. The purpose of this
threshold is to make the algorithm less sensitive to data
noise and to prevent their misclassification as non-monotone
behavior. After that, the first performance difference of
the curve is checked and increasing is set at the correct
value. The purpose of increasing is to store the state of the
interval the algorithm iterates over (True - the values are
increasing on that interval, False - the values are decreasing).
The purpose of current interval is to store the absolute
distance of the interval the algorithm iterates over. Then the
algorithm iterates over each performance difference, one by
one, monitoring any changes in the sign of the performance
differences. If a change of sign is noticed, the algorithm
checks if the distance of the last interval (current interval) is
greater than the threshold and if it was a decreasing interval.
If both conditions are met, then that interval is labeled
as non-monotonic, thus classifying the learning curve as
non-monotone. The algorithm then starts to calculate current
interval from scratch for the next interval and continues until
the last point.

def e v a l u a t e l e a r n i n g c u r v e (l e a r n i n g c u r v e , l i m i t) :
t h r e s h o l d = 0

Y d i s t a n c e s = []
min = np . min (l e a r n i n g c u r v e)
max = np . max (l e a r n i n g c u r v e)
l e a r n i n g c u r v e = np . a r r a y (l e a r n i n g c u r v e)

f o r i in range (1 , l e n (l e a r n i n g c u r v e)) :
Y d i s t a n c e s . append (l e a r n i n g c u r v e [i] − l e a r n i n g c u r v e [i − 1])
t h r e s h o l d += np . abs (l e a r n i n g c u r v e [i] − l e a r n i n g c u r v e [i − 1])

t h r e s h o l d = l i m i t * t h r e s h o l d / l e n (l e a r n i n g c u r v e)
i n c r e a s i n g = True

c u r r e n t i n t e r v a l = 0
o c c u r r e n c e s = 0
s i g n i f i c a n c e s = []

i f Y d i s t a n c e s [0] < 0 :
i n c r e a s i n g = F a l s e
c u r r e n t i n t e r v a l += np . abs (Y d i s t a n c e s [0])

non monotone = F a l s e

f o r i in range (1 , l e n (Y d i s t a n c e s)) :
i f i n c r e a s i n g == (Y d i s t a n c e s [i] < 0) :

i n c r e a s i n g = not i n c r e a s i n g
i f c u r r e n t i n t e r v a l >= t h r e s h o l d

and i n c r e a s i n g and Y d i s t a n c e s [i −1] < 0 :
o c c u r r e n c e s += 1
s i g n i f i c a n c e s . append (c u r r e n t i n t e r v a l / (max − min))
non monotone = True

c u r r e n t i n t e r v a l = np . abs (Y d i s t a n c e s [i])
e l i f i == l e n (Y d i s t a n c e s) − 1

and c u r r e n t i n t e r v a l >= t h r e s h o l d
and Y d i s t a n c e s [i] < 0 :
o c c u r r e n c e s += 1
s i g n i f i c a n c e s . append (c u r r e n t i n t e r v a l / (max − min))
non monotone = True

e l s e :
c u r r e n t i n t e r v a l += np . abs (Y d i s t a n c e s [i])

s i g n i f i c a n c e = 0

i f l e n (s i g n i f i c a n c e s) > 0 :
s i g n i f i c a n c e = np . max (s i g n i f i c a n c e s)

re turn non monotone , o c c u r r e n c e s , s i g n i f i c a n c e

Code Listing 1: Identifying non-monotonicity using performance
differences

4 Experimental Setup
This section details the setup of the four experiments con-
ducted on the introduced heuristic and the general environ-
ment in which the studies are conducted.

4.1 Experimental Setup
The research outlined in this paper, along with the tool for
assessing non-monotonicity, is coded in Python and executed
using Jupyter Notebooks. All experiments are connected to
the LCDB API to fetch meta-data related to learning curves,
including details such as anchor points, training times, and
various plotting utility functions. Additionally, the LCDB uti-
lizes Scikit Learn for classifier implementation and OpenML
as source of datasets.

4.2 Experiment 1: Accuracy Analysis
The aim of this experiment is to evaluate the accuracy of the
proposed algorithm. For this experiment, real learning curves
from the LCDB database will be used. Since LCDB does
not include any meta-feature related to non-monotonicity, the
plots of the learning curves will be used as the ”ground truth”
labels. The proposed method will be applied on these learning
curves and then their plots will be manually checked to mea-
sure the amount of correctly identified non-monotone learn-
ing curves. In his work, Socol [1] states that Linear Dis-
criminant Analysis (LDA), Quadratic Discriminant Analysis
(QDA) and Stochastic Gradient Descent (SGD) are some of
the classifiers that display more non-monotone behavior than
the rest. Thus, learning curves of the above-mentioned classi-
fiers will be chosen for this experiment. Two equal sized sets
of learning curves were created: one was used as a training
set to tune the threshold parameter of the algorithm by run-
ning the algorithm on this set and then change the value of the
threshold based on the results and repeating the same process
until the best results were achieved, the second set was used
as a test set (the results of this experiment are computed using
the latter).

4.3 Experiment 2: Significance Test
Mohr et al. introduced a metric to assess non-monotonicity by
examining the maximum violation in an overall descending
learning curve (error rate learning curve) [2]:

ϵmono = max
si,i<T

{max(0, C(si+1)− C(si))}

, where s is the anchor point at index i, T is the highest avail-
able anchor index and C(s) being the model performance for
that certain anchor point.

In simpler terms, the degree of violation of monotonicity is
the greatest performance difference that violates monotonic-
ity (i.e greatest negative performance difference for Accuracy
learning curves and positive performance difference for Er-
ror Rate learning curves). Unfortunately, this metric is not
insightful enough to be used as a significance metric as the
following example will show.

Figure 1: LC with ϵmono ≈ 0.15

In the Figures shown above, both learning curves have a
drop of performance of around 15% (0.15). Since these are
the biggest drops of performance, they are also considered
the degrees of violation of monotonicity for their respective
curves. But it can easily be observed that even though the
learning curves experience the same drops in performance,
the drop of the curve in Figure 1 is more significant than the

Figure 2: LC with ϵmono ≈ 0.15

one of the curve in Figure 2. That is why the metric proposed
for the significance of non-monotonicity is the follow:

significance =
current interval

maxpoints −minpoints

Where maxpoints is the maximum value found on the curve
and minpoints being the minimum respectively. Thus, mak-
ing the significance relative to the range that covers all the
values of the learning curve.
For this experiment, the same set of learning curves from Ex-
periment 1 are being used to test the significance level and
number of occurrences.

4.4 Experiment 3: Comparison with other metrics
Codrin Socol’s method of identifying non-monotonicity
through approximating slopes of the discrete learning curve
points [1] is rather intriguing. Thus, the purpose of this Ex-
periment is to compare the performance of the proposed al-
gorithm to the performance of the algorithm proposed by So-
col. An important aspect to consider was the time complexity
of the slopes approximation algorithm, meaning only a small
subset of learning curves was chosen for this experiment, con-
sisting of curvess from the Linear Dis- criminant Analysis
(LDA), Passive Agressive Classifier (PAC), Stochastic Gra-
dient Descent (SGD) and Logistic Regression (LR) with a
small training time. The experiment will be conducted in the
following manner: the same set of learning curves will be run
on both algorithms (Socol’s algorithm can be found in their
public GitHub repository 1, using the same machine, and then
a manual check of the learning curves plots will be conducted
to measure the accuracy of both algorithms and look for pat-
terns of weaknesses.

4.5 Experiment 4: LCDB meta-analysis
The final Experiment of this research represents a big analy-
sis of the LCDB learning curves using the same methods and
metrics that were discussed for Experiment 1 and 2. The ex-
periment will be conducted on big set, consisting of 3000+
learning curves from 15 different learners, irrespective of
their training time and datasets.

5 Results and Discussion
In this section, the experimental results are shown and dis-
cussed. Then a brief discussion about the interpretation of
the results is brought at the end.

1https://github.com/CodrinSocol/cse3000-research-project

5.1 Experiment 1: Results
Actual non-
monotonic

Actual
monotonic

Classified non-
monotonic 526 (99.05%) 23 (24.21%)

Classified
monotonic 5 (0.95%) 72 (75.79%)

Table 1: Accuracy Test Results. The brackets describe the percent-
age of correctly classified curves from the total number of mono-
tonic or non-monotonic learning curves, respectively.

Table 1 describes the results from the accuracy test
experiment. The introduced method has correctly identified
non-monotonic learning curves with a high accuracy of
99.05% and monotonic curves with 75.79% accuracy.
The experiment outlines the performance of the metric
and represents a good indication that it has the potential
of correctly classifying real learning curves. Since there
are no studies on how to differentiate between data noise
and actual non-monotone intervals on the learning curve,
it was challenging to verify the plots and make decisions
on whether a learning curve was correctly identified as
non-monotone or should have actually been classified as
monotone. Thus, only the learning curves with negligible
drops in performance were counted as false negatives (curves
that were wrongly classified as non-monotone). Examples of
false negatives will be provided in Section 5.5.

Figure 3: Monotonicity evaluation of 626 learning curves, based
on 3 different classifiers. SGD classifier displays the most non-
monotone behavior.

Futhermore, Figure 3 shows the distribution of non-monotone
and monotone learning curves for each classifier used in
the experiment. It can be observed that the Stochastic
Gradient Descent (SGD) classifier has the biggest ratio of
non-monotone / total nr. of curves.

During the experiment, 172 learning curves had non-
monotone intervals identified at the very start, the curve

shown in Figure 4 being one example. Also, 83 had non-
monotone intervals identified right at the very end, the curve
shown in Figure 5 being one example (keep in mind that only
the first interval is highlighted, but the other ones on it are
also identified).

Figure 4: Plot of a non-monotone learning curve, the highlighted
orange interval is the first non-monotone interval indentified on the
curve

Figure 5: Plot of a non-monotone learning curve with a drop in per-
formance at the very end.

5.2 Experiment 2: Results

Figure 6: Occurrences of non-monotonicity in learning curves, di-
vided in intervals. The majority have at most 2 occurrences.

In Figure 6, the number of learning curves are displayed
based on the number of occurrences of non-monotone inter-
vals found on their respective curve, they are divided based
on that number (n in the Figure representing the nr. of oc-
currences). It can be easily seen that the majority of non-
monotone learning curves encounter only one or at most 2

drops in performance on the entire curve, the number of learn-
ing curves with more nr. of occurrences than 2 decreasing ex-
ponentially. Figure 6 also shows that the Stochastic Gradient
Descent (SGD) learner has the most volatile learning curves
(displays the behavior of peaking the most).

Figure 7: Significance levels of non-monotonicity in learning
curves, divided in intervals. Only curves identified as non-monotone
were taken under consideration.

Figure 7 displays the number of non-monotone learning
curves based on their significance level found on their
respective curve, the curves are divided based on 4 equally
spaced significance intervals (with S in the Figure repre-
senting the significance level). The significance levels are
more or less evenly distributed across all intervals. This
may indicate that there is little to no correlation between
the nr. of occurrences and significance for their respective
learning curve. One thing to note is that the number of SGD
learning curves increases with the level of significance and
there is a big number of SGD learning curves with a huge
drop in performance (S >0.75), supporting the idea that SGD
displays the most ”volatile” behavior.

5.3 Experiment 3: Results

Actual non-
monotonic

Actual
monotonic

Classified non-
monotonic 135 (100%) 8 (80%)

Classified
monotonic 0 (0%) 2 (20%)

Table 2: Accuracy Test Results of Socol’s algorithm. The brack-
ets describe the percentage of correctly classified curves from the
total number of monotonic or non-monotonic learning curves, re-
spectively.

Actual non-
monotonic

Actual
monotonic

Classified non-
monotonic 135 (100%) 3 (30%)

Classified
monotonic 0 (0%) 7 (70%)

Table 3: Accuracy Test Results of the proposed algorithm. The
brackets describe the percentage of correctly classified curves from
the total number of monotonic or non-monotonic learning curves,
respectively.

Table 2 and Table 3 show the accuracy results of Socol’s
algorithm and the proposed algorithm in this research respec-
tively. Based on these results, it can be concluded that both
algorithms performed well, both being able to correctly iden-
tify 100% of the non-monotone intervals. The main differ-
ence resides in the identification of monotone learning curves,
Socol’s algorithm having a 20% accuracy compared to 70%.
Socol’s algorithm had an average run-time of 20 minutes per
learning curve with the proposed algorithm having an average
run-time of 2.5 seconds.

5.4 Experiment 4: Results

Figure 8: Monotonicity evaluation of 3000+ learning curves, based
on 15 different classifiers

Figure 8 shows the distribution of non-monotone and mono-
tone learning curves for 15 different classifiers. It can be seen
that Stochastic Gradient Descent (SGD), the sigmoid Support
Vector Classification (SVCsigm) and neural network models
(such as Perceptron or MLP) show the biggest ratio of non-
monotone learning curves. Tree-like learners, such as the Ex-
tra Trees Classifier, the Random Forest Classifier and the De-
cision Tree, show significantly less non-monotonic behaviour
than the other learners studied in this experiment. These re-
sults may indicate that non-monotonicity can be a property of
learners.

5.5 Discussion
Section 3.1 introduced a new algorithm of identifying non-
monotonicity in learning curves by tracking the change of
signs in performance differences and measuring the distances
on the Y axis.
Experiment 1 showed the effectiveness of the proposed

algorithm, correctly identifying most of the non-monotone
learning curves. However, a big part of the monotone
learning curves were wrongly identified as non-monotone.
This might be caused by having a threshold set too low,
making the algorithm sensitive to data noise. The learning
curve in Figure 9 serves as an example of such case and
Figure 10 serves as an example of learning curve wrongly
identified as monotone.

Figure 9: Plot of learning curve wrongly identified as non-monotone
on the highlighted interval

Figure 10: Plot of learning curve wrongly identified as monotone

Experiment 2 showed how the number of occurrences
and the significances are distributed among the same set
of learning curves used in Experiment 1. The experiment
showed that SGD classifier encounters the most signifi-
cant drops in performance and also the biggest number of
occurrences, indicating that SGD might display the most
”volatile” behavior. This conclusion is also supported by
Socol’s results. To gain more insight in the results of the
experiment, significances and number of occurrences can
be plotted against each other so that their correlation can be
found.
Experiment 3 showed a comparison between Socol’s al-
gorithm of approximating point slopes and the proposed
algorithm. Both algorithms performed well, having high
accuracy. However, due to Socol’s algorithm being compu-
tationally expensive and not being able to evaluate learning
curves without enough training samples (initial set was
bigger than 145 curves), it was unfeasible to compare the
algorithms on a bigger set of learning curves. Thus, the
results might not indicate the real performances of the algo-
rithm. Figure 11 and Figure 12 show examples of wrongly
classified monotone learning curves by Socol’s algorithm
and the proposed one respectively. It can be seen that the

reason of misclassification is high sensitivity to data noise.

Figure 11: Plot of learning curve wrongly identified as non-
monotone by Socol’s algorithm

Figure 12: Plot of learning curve wrongly identified as non-
monotone by the proposed algorithm

Experiment 4 provided an analysis of a bigger learning
curve set of LCDB, showing that SGD, SVC and neural net-
work models display the most non-monotone behavior while
tree-like learners displaying the opposite. Both statements are
supported by Socol’s results. The algorithm also tracks the
number of occurrences and significances of learning curves,
this data should be analyzed in detail and would provide more
insights in the non-monotonic behavior of the learners in-
cluded in the experiment.

6 Conclusions and Future Work
In conclusion, this paper has addressed the necessity of iden-
tifying non-monotonicity in learning curves. To ascertain this
characteristic, an algorithm was introduced for assessing the
monotonicity of an LC by observing the performance differ-
ences and the signs of their values, outlined in Listing 1. Sub-
sequent evaluation in Experiment 1 demonstrated the algo-
rithm’s high accuracy, suggesting its suitability for discern-
ing non-monotonic curves. Experiment 2 brought for the first
time into discussion the significance and the number of oc-
currences of non-monotonicity in learning curves, highlight-
ing that there is little to no correlation between them two and
also that for the majority of learning curves non-monotonicity
is identified only once or twice at most per curve, the number
of highly volatile learning curves being very small.
Experiment 3 showed the performance of 2 different methods
of identifying non-monotonicity in learning curves. However,
due to constraints in time and processing power, only a small

fraction of the LCDB learning curves were used in Experi-
ment 3. It was also highlighted that a tradeoff between speed
and accuracy must be taken into consideration when choosing
an algorithm for this specific task.
Experiment 4 displayed that the introduced algorithm can in-
vestigate huge sets of learning curves in a relative fast time.
The results also showed the distribution on non-monotone
curves among the most used learners in Machine Learning
that can be found in LCDB and the significances of their
drops in performance (this results have to be yet added to the
paper).
A potential research direction is running the algorithm on the
entire LCDB to identify classifiers inherently displaying non-
monotonic behavior. Since the complexity of the algorithm
is O(N) (where N is the nr. of discrete points on the curve
and is memory efficient, the algorithm can be used on the en-
tire LCDB to create a new meta-feature of non-monotonicity
and be used in further studies. Optimizing the algorithm’s
performance is another consideration, possibly by tuning the
existing threshold even further or by using the standard devi-
ation instead of the average absolute performance difference
will yield better results.

7 Responsible Research
Ensuring the replicability of research findings is an important
consideration in the research process. Researchers bear the
responsibility of demonstrating the ethical conduct of their
studies and maintaining full transparency in their methodolo-
gies. In this study, measures were taken to guarantee the reli-
ability of our results through meticulous planning and execu-
tion of experiments.
Furthermore, a commitment to reproducibility is evident
throughout the research, with transparent reporting reflected
in this paper. To facilitate the reproducibility of the experi-
ments, both the experiments and associated data are publicly
shared , as well as the source code and plots. These resources
are accessible in a GitHub repository [8], where each exper-
iment is documented in a dedicated Jupyter Notebook. The
ReadME.md file within the repository provides instructions
on installing necessary dependencies and executing the exper-
iments. Following these steps outlined in the Methodology
and Experimental Setup sections or running the code in the
mentioned repository will yield results consistent with those
detailed in Section 5.

References
[1] Codrin Socol. Non-monotonicity in empirical learn-

ing curves: Identifying non-monotonicity through
slope approximations on discrete points, 2023.
http://resolver.tudelft.nl/uuid:3b7f24c8-08a9-4641-
be82-38b880ac6898.

[2] Felix Mohr, Tom J. Viering, Marco Loog, and Jan N. van
Rijn. Lcdb 1.0: An extensive learning curves database
for classification tasks. In Massih-Reza Amini, Stéphane
Canu, Asja Fischer, Tias Guns, Petra Kralj Novak, and
Grigorios Tsoumakas, editors, Machine Learning and
Knowledge Discovery in Databases, pages 3–19, Cham,
2023. Springer Nature Switzerland.

[3] Tom Viering, Alexander Mey, and Marco Loog. Open
problem: Monotonicity of learning. In Alina Beygelz-
imer and Daniel Hsu, editors, Proceedings of the Thirty-
Second Conference on Learning Theory, volume 99
of Proceedings of Machine Learning Research, pages
3198–3201. PMLR, 25–28 Jun 2019.

[4] Gary M Weiss and Alexander Battistin. Generating well-
behaved learning curves: An empirical study. In Proceed-
ings of the International Conference on Data Science
(ICDATA), page 1. The Steering Committee of The World
Congress in Computer Science, Computer . . . , 2014.

[5] James Mazur and Reid Hastie. Learning as accumula-
tion: A reexamination of the learning curve. Psychologi-
cal Bulletin, 85:1256–1274, 11 1978.

[6] Tom Julian Viering and Marco Loog. The shape of learn-
ing curves: A review. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 45:7799–7819, 2021.

[7] Pavel Brazdil, Jan N. van Rijn, Carlos Soares, and
Joaquin Vanschoren. Metalearning: Applications to auto-
mated machine learning and data mining. Metalearning,
2022.

[8] Dinu Gafton. Cse3000-research-project repository. https:
//github.com/dgafton/cse3000-research-project, 2024.

https://github.com/dgafton/cse3000-research-project
https://github.com/dgafton/cse3000-research-project

	Introduction
	Related work and literature
	Methodology
	Identifying non-monotonicity

	Experimental Setup
	Experimental Setup
	Experiment 1: Accuracy Analysis
	Experiment 2: Significance Test
	Experiment 3: Comparison with other metrics
	Experiment 4: LCDB meta-analysis

	Results and Discussion
	Experiment 1: Results
	Experiment 2: Results
	Experiment 3: Results
	Experiment 4: Results
	Discussion

	Conclusions and Future Work
	Responsible Research

