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Abstract
Traffic forecasting is a branch of spatiotemporal
forecasting that involves predicting future traffic
speed or volume based on real-world data. It has
a significant impact on urban mobility and quality
of life, as it directly contributes to improving traf-
fic management and trip planning. This study eval-
uates the performance of Graph Neural Networks
(GNNs) in handling long-term forecasting, defined
as predictions made up to 10 hours ahead. It ad-
dresses the evolution of performance and factors
that may impact accuracy, such as fluctuations in
traffic speed and road network configurations. The
experiments are done using subsets of a benchmark
dataset for traffic forecasting and a state-of-the-art
GNN model. The findings showcase a logarithmic
growth in prediction errors and the presence of two
types of traffic jams—sudden and regular—along
with their impact on prediction accuracy. Further-
more, the results highlight the complexity of quan-
tifying the influence a factor has on forecasting per-
formance, such as road network configuration or
missing values.

1 Introduction
Spatiotemporal forecasting is the process of predicting fu-
ture states or events across spatial and temporal dimensions.
There are multiple applications for this, but the paper will fo-
cus on traffic forecasting, which predicts traffic flow or speed
depending on how data is collected. The task is challeng-
ing due to complex spatial dependencies, non-linear temporal
dynamics, and the inherent difficulty of long-term forecasting
[1]. The structure of a road network can be easily interpreted
as a graph, with nodes as intersections and edges as roads.
Due to this situation, Graph Neural Networks(GNNs) seem
to be the best tool for capturing the complex spatial depen-
dencies found in road networks. A GNN is a type of neural
network that works on graph data [2].

Traffic management agencies can use long-term traffic
forecasting [3] to avoid potential traffic congestion, ensur-
ing a smooth traffic flow. Furthermore, infrastructure works
can be planned to interfere with traffic as little as possible
[4]. Individuals can also greatly benefit from the advance-
ment of such technologies, as apps such as Google Maps1

allow trip planning that accounts for future traffic conditions.
Therefore, the importance of long-term forecasting cannot be
understated, as it helps cities to adapt to current and future
demands, leading to a better quality of life for its residents.

The definition of long-term forecasting varies in the
literature, with some considering any multi-step predictions
to be long-term [5], meaning more than one horizon. A
horizon is an integer time frame for predictions. Others
mention predictions over half an hour to be long-term [6] and
some say that one day to several is long-term [7]. To settle
this the paper defines long-term forecasting as predictions
that are 10 hours ahead of the current time, which is roughly

1https://www.google.com/maps

the commute time [8] plus the average working hours of a
person in California [9].

The purpose of this paper is to evaluate the performance
of GNNs for long-term traffic forecasting and address the re-
search question: Can GNNs effectively handle long-term
predictions and how does their accuracy degrade over
time? Furthermore, the research question was divided into
three sub-questions to accommodate more specific areas of
study:

1. Does the performance of the GNN noticeably degrade at
specific points in time during long-term traffic forecast-
ing?

2. Do fluctuations in traffic volume/speed contribute to the
decline in the GNN’s performance for long-term traffic
forecasting?

3. Are there specific configurations of road networks (e.g.
straight roads, multiple intersections) that contribute to
the decline in the GNN’s performance for long-term traf-
fic forecasting?

The paper is structured as follows, Section 2 details the re-
lated work on this subject and gives a formal description of
traffic forecasting. In Section 3 the decision process of choos-
ing a model and datasets. Section 4 describes the hardware
used, how long-term forecasting is done on the chosen model,
and the subsets used for the experiments. Furthermore, the re-
sults of the experiments are presented and discussed. Section
5 describes the ethical implications found during the experi-
mentation part of the research. Lastly, in Section 6 conclu-
sions are drawn out and possible future work is discussed.

2 Background
Most research on traffic forecasting focuses on developing
models with better prediction performance. In contrast, the
study of behaviour in specific situations is mentioned and
sometimes looked into. However, it is not as thoroughly ex-
amined as the features added to improve results.

2.1 Related Work
One of the pioneering works in the field of GNNs for traf-
fic forecasting is the paper “Diffusion convolutional recurrent
neural network: Data-driven traffic forecasting” (DCRNN)
by Li et al. [1]. It proposes combining graph convolutional
networks with recurrent neural networks in order to capture
spatial and temporal dependencies from traffic data. Further-
more, the paper mentions that Deep Neural Network meth-
ods work better on long-term forecasting than linear base-
lines, such as the Auto-Regressive Integrated Moving Av-
erage model (ARIMA) [10] and the Vector Auto-regressive
model (VAR) [11]. As mentioned in the DCRRN paper, this
happens as the temporal dependencies become increasingly
non-linear as the number of horizons increases.

Later iterations of GNNs have focused more on short-term
forecasting rather than long-term, but there were efforts to
overcome the challenge of long-term prediction. The paper
entitled “GMAN: A Graph Multi-Attention Network for Traf-
fic Prediction” by Zheng et al. [12] tackles two challenges
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that hinder long-term predictions: complex spatiotemporal
correlations and sensitivity to error propagation. To solve
the mentioned challenges, they proposed two solutions for
each issue: a spatial and temporal attention mechanism and a
transform attention mechanism. The results presented in the
paper were done with 12 horizons(1 hour), showing that their
performance improved at later horizons. The solutions pre-
sented were later used by later models to tackle the challenge
of long-term forecasting efficiently.

One of the best-performing models for traffic prediction,
as reported by Papers with Code2 and in the literature [13], is
the D2STGNN model (Decoupled Dynamic Spatial-Temporal
Graph Neural Network) by Shao et al. [14]. The paper ac-
knowledges two types of dependencies: short- and long-term.
It proposes two separate solutions for each of them, respec-
tively Gated Recurrent Units (GRUs) for short-term depen-
dencies and a multi-head self-attention layer for long-term
dependencies, which is a variation of the attention layer that
GMAN uses. Similar to other papers, long-term forecasting
is highlighted only when it boosts the model’s overall perfor-
mance and is not prioritized.

Other challenges are observed in the literature, such as
external factors in “Road Traffic Forecasting: Recent Ad-
vances and New Challenges” by Laña et al. [15]. The factors
that challenge long-term and short-term traffic predictions are
road works, incidents, events, weather, proximity to traffic-
affecting facilities (parking lots, shopping areas, work/study
centres), and calendar matters (bank holidays, weekends).

2.2 Gaps in previous research
As mentioned in the introduction of this section, the work
done in the literature focuses more on coming up with newer,
more innovative models. It doesn’t concentrate on studying
the behaviour of more specific situations, such as long-term
predictions using GNNs. Therefore, there is a noticeable gap
in examining the behaviour of traffic forecasting models for
longer horizons. This includes understanding the points in
time where performance deteriorates, the effect of traffic jams
on long-term forecasting, and the effect of road network con-
figuration on long-term forecasting.

Furthermore, GNN models in literature often use only up
to 12 horizons and there are rarely experiments with more
horizons. This showcases the secondary nature of long-term
predictions to short-term predictions in this field of study.

2.3 Formal Problem Description
This subsection aims to give a formal definition of the traffic
forecasting task and its complementary elements, also the no-
tations used are present in Table 1. The definitions are taken
from the D2STGNN paper [14].

DEFINITION 1. Traffic Sensor. A traffic sensor is a sen-
sor deployed in a traffic system, such as a road network,
and it records traffic information such as the number of
passing vehicles or vehicle speeds.

DEFINITION 2. Traffic Network. A traffic network is a di-
rected graph G = (V,E), where V is the set of |V | = N

2https://paperswithcode.com/task/traffic-prediction

Table 1: Notations Used

Notation Definitions
G Graph representing the traffic net-

work, defined as G = (V,E) with
node set V and edge set E.

N Number of sensors (nodes) of the traf-
fic network, i.e., |V | = N.

A The adjacency matrix of traffic net-
work G.

C Number of feature channels in a traffic
signal.

Th The number of past traffic signals con-
sidered.

Tf Number of future time steps to predict
in traffic forecasting.

Xt Traffic signal at time step t.
X Traffic signals of the Th most recent

past time steps.
Y Traffic signals of the Tf nearest-

future time steps.

nodes and each node corresponds to a deployed sen-
sor, and E is the set of |E| = M edges. The reacha-
bility between nodes, expressed as an adjacent matrix
A ∈ RN×N , could be obtained based on the pairwise
road network distances between nodes.

DEFINITION 3. Traffic Signal. The traffic signal Xt ∈
RN×C denotes the observation of all sensors on the traf-
fic network G at time step t, where C is the number of
features collected by sensors.

DEFINITION 4. Traffic Forecasting. Given histori-
cal traffic signals X = [Xt−Th+1, . . . ,Xt−1,Xt] ∈
RTh×N×C from the passed Th time steps, traffic fore-
casting aims to predict the future traffic signals Y =
[Xt+1,Xt+2, . . . ,Xt+Tf

] ∈ RTh×N×C of the Tf near-
est future time steps.

3 Methodology
This section describes the selection procedure of elements
needed for the experiments done during this research, such
as the dataset, evaluation methods, and GNN model.

3.1 Dataset selection and description
Most of the datasets used in the papers about traffic forecast-
ing on Papers with Code3 are located in the United States,
more specifically around the two major metropolitan areas
in the state of California, the San Francisco Bay Area and
Greater Los Angeles. The 4 most popular—METR-LA,
PEMS-BAY, PEMS08, and PEMS04—were further analyzed
to decide which would be used. Furthermore, the chosen
datasets are split into 2 types of recorded data: traffic speed
and traffic flow. The characteristics of the datasets are sum-
marized in Table 2, showing the type, name, number of nodes,
and time steps.

3https://paperswithcode.com/task/traffic-prediction
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The coordinates of the sensors for two of the datasets,
METR-LA and PEMS-BAY, are publicly available. This
makes the selection of subsets with a specific road config-
uration possible. Furthermore, from the two, METR-LA is
smaller, as it has fewer nodes and time steps. This makes it
the obvious choice for a task such as long-term traffic fore-
casting, which has high computational costs. Therefore, the
selected dataset is METR-LA.

Type Dataset Number of Nodes Time Steps

Speed METR-LA 207 34272
PEMS-BAY 325 52116

Flow PEMS04 307 16992
PEMS08 170 17856

Table 2: Dataset types, number of nodes, and time steps that the 4
most popular datasets have.

METR-LA is a public traffic speed dataset with 207 loop
detector sensors over 4 months from March 1st 2012 to June
27th 2012. The data was collected on the highways of Los
Angeles County [16], and a map of the sensors can be seen in
Figure 1. The interval at which the traffic data is recorded is
5 minutes, with a total of 34272 time steps.

Figure 1: METR-LA sensors map.

3.2 Evaluation methods
To evaluate the performance of future experiments three com-
monly used metrics in traffic forecasting are utilized: Mean
Absolute Error (MAE), Root Mean Squared Error (RMSE),
and Mean Absolute Percentage Error (MAPE). The formulas
for each are given below:

MAE(x, x̂) =
1

|Ω|
∑
i∈Ω

|xi − x̂i|, (1)

RMSE(x, x̂) =

√
1

|Ω|
∑
i∈Ω

(xi − x̂i)2, (2)

MAPE(x, x̂) =
1

|Ω|
∑
i∈Ω

|xi − x̂i|
xi

. (3)

In the formulas x represents the ground truth and x̂ rep-
resents the predicted values with Ω being the indices of the
observed samples and |Ω| being equal to the number of fu-
ture time steps predicted. Furthermore, the time to train and
infer per epoch will be used to compare efficiency, this will
be primarily used when choosing which model to use.

3.3 Selection of the GNN model and its description
The models presented in the literature were selected by look-
ing at the section about traffic prediction on Papers with Code.
Then, the papers presented were read through and the most
relevant were selected for further analysis. DCRNN [1] was
chosen as it was one of the pioneering models for traffic fore-
casting using GNNs. GMAN [12] was selected as it was one
of the first GNN models to address the issue of long-term
traffic forecasting and made it one of its main contributions.
Lastly, D2STGNN [14] was chosen as it is one of the best-
performing models across multiple datasets and used meth-
ods to address long-term dependencies specifically.

The difficulty of setting up models varied. DCRNN has a
comprehensive paper reproduction4 that helped with setting
up the model and also configuring it to run on more horizons.
Even with this material, issues still prevailed, such as broken
dependencies. GMAN was the most tedious to get to run,
as the PyTorch [17] implementation that was given by the
paper5 has no instruction on how to run the model. The best
option was the D2STGNN model, which had a ReadMe file
with every necessary detail for running it and a configuration
file that was easily modifiable for every type of experiment
that needed to be done.

From a performance point of view, the D2STGNN model
is the most efficient and the best performing out of the 2
models. The results are extracted from “Unified Data Man-
agement and Comprehensive Performance Evaluation for Ur-
ban Spatial-Temporal Prediction [Experiment, Analysis &
Benchmark]” by Jiang et al. and they are summarized in
Tables 3 and 4.D2STGNN performs the best and is also the
most adaptable. Therefore, making it the best choice for the
experiments in this paper.

Performance Comparison

Datasets Methods MAE RMSE MAPE

METR-LA
DCRNN 3.16 6.44 8.66%
GMAN 3.16 6.43 8.65%
D2STGNN 2.91 5.84 7.93%

Table 3: Performance results for METR-LA.

3.4 Description of the GNN model
The architecture of the D2STGNN model can be found in Fig-
ure 2, which begins with taking as input the historical data of

4https://dcrnn-reproduced-paper.notion.site/Diffusion-Convolu
tional-Recurrent-Neural-Network-Data-Driven-Traffic-Forecasti
ng-A-Paper-Reproduc-85653c40503d4075a5be4c433c6f2f23#40
45804f686548d3899b39ceb0d696c1

5https://github.com/VincLee8188/GMAN-PyTorch
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Figure 2: The overall architecture of D2STGNN [14].

Efficiency Comparison

Datasets Methods Time Per Epoch

METR-LA
DCRNN 605.88s
GMAN 738.24s
D2STGNN 259.78s

Table 4: Efficiency results for METR-LA.

X as input. This data is passed to the dynamic graph learn-
ing module along with the adjacency matrix A, which com-
putes the dynamic transition matrices Pdy

t . The estimation
gate splits Xi into its diffusion components X dif and inher-
ent components X inh. The diffusion module processes X dif

using a graph neural network to capture diffusion dependen-
cies for both forecasting and backcasting. Backcasting is used
to trace back to derived historical patterns which help in fore-
casting. While the inherent module does the same for X inh,
it also incorporates a self-attention mechanism.

Figure 3: Traffic network system [14].

Figure 3 highlights the difference between inherent and dif-
fusion data. In sensor 2 there are two types of traffic detected,
the one from the residential area marked with the blue arrow
and the one from other areas marked with the red arrow. The
traffic from the residential area is independent and represents
an inherent signal. The traffic from the other areas is influ-
enced by regions, such as the Industrial District or the Agri-
cultural Area, representing a diffusion signal.

Finally, the regression layer transforms the combined fea-
tures from the diffusion and inherent model into the final pre-
diction of the model.

4 Experimental Setup and Results
This section gives a detailed description of the experimen-
tal environment, while also presenting some challenges faced
along the way. After this, the results of the experiments are
presented.

4.1 Setup
Hardware
The experiments were conducted on DelftBlue [18], TU
Delft’s supercomputer. The node used for this task had 8 In-
tel XEON E5-6448Y 32C 2.1GHz CPU cores running with
16GB of memory per node and an NVIDIA Tesla A100 80GB
graphics card.

Long Term Forecasting
D2STGNN preprocesses data by splitting it into 2-hour win-
dows, from which the first hour is used as input for forecast-
ing and the second hour is used as a ground-truth for testing
purposes. The window is composed of 24 time-segments of
5 minutes each, in this case, the model forecasts 12 horizons
into the future or 1 hour into the future. The straightforward
way of predicting long-term was to increase the number of
segments taken in by the input and the output. This method
can be seen in Figure 4 on the first row, where the boxes rep-
resent the input of 10 hours in the past used to predict 10
hours into the future, with the output as the ground truth. Un-
fortunately, this drastically increased the computational time.



Figure 4: D2STGNN inputs for long-term forecasting on the first row and parallelization trials on the second and third row

Exploratory experiments show the run-time of training the
model for a 10-hour prediction on a subset of 20 nodes of
METR-LA results in a run time of 13 hours for 100 epochs
while for a 1-hour prediction, it had a run time of 30 minutes
for 100 epochs.

To mitigate the issue of computation time two paralleliza-
tion methods were attempted. In the first method, the input
and output had the size of 12 time-segments, meaning one
hour. The input remained in place but the output was moved
further into the future, as seen in Figure 4 on the second row.
This method would work for predicting 2 hours into the future
but would give poor results at anything above that.

In the second attempt, the input and the output were moved
progressively. Therefore, if the prediction needed to be made
10 hours into the future, then the input was moved 10 hours
into the past and the output was moved 10 hours into the fu-
ture, as seen in Figure 4 on the third row. Unfortunately, this
method would give the same results as the previous one, ren-
dering it unusable. Therefore, the original method was used
going forward, even with its high computational cost.

Subsets
As the computational costs couldn’t be brought down by par-
allelizing the forecasting task, the next option was to divide
the original dataset into subsets. The sensor maps of each
subset can be found in Appendix A. Furthermore, the subsets
were created to show different types of road configurations
inside the original dataset, helping in answering the third sub-
question:

1. One intersection with 20 nodes
2. Two intersection with 40 nodes
3. Three intersections with 55 nodes
4. Straight road with 35 nodes

Run configuration
The configuration of running the model was almost the same
as the one presented by its paper [14]. The main changes
were made to the embedding size of nodes and time slots.
They were set to 120 from 12, to accommodate long-term
forecasting of 10 hours from 1 hour. Lastly, the number of
epochs to be trained on increased from 80 epochs to between
350 and 450, depending on the size of the subset.

4.2 Results
Error evolution over horizons.
The MAE, RMSE, and MAPE are normalized using min-max
normalization to make the errors comparable. Then they are
plotted over the horizons to highlight the model performance
as it predicts further into the future. A first example is Fig-
ure 5, which shows a logarithmic growth in the errors up to
horizon 80 in the one intersection subset. Afterwards, there is
quite a sharp increase until the last horizon. This could be due
to the need for more training epochs for the model to achieve
logarithmic growth over all horizons. To check this, a loga-
rithmic function a × log10(x) + b is defined to represent the
potential logarithmic growth pattern of the errors. Then curve
fitting techniques are used to find the best fitting parameters
for this function. To quantify how good the fit is the R2 value
is calculated, which as it gets closer to 1 the better the fit. It
uses the following formula:

R2 = 1−
∑

i(yactual,i − ypredicted,i)
2∑

i(yactual,i − ȳactual)2
(4)

Where yactual,i is the ith actual normalized error, ypredicted,i

is the ith predicted normalized error generated by the loga-
rithmic function defined earlier, and ȳactual is the mean of the
actual normalized error.

Figure 5: The one intersection subset with 20 nodes at epoch 450
over 120 horizons.

Starting from the 100th epoch and using an interval of 50
epochs the R2 value is calculated. This shows the conver-



Epoch MAE RMSE MAPE
100 0.24 0.20 0.23
150 0.37 0.47 0.40
200 0.59 0.41 0.62
250 0.57 0.43 0.60
300 0.53 0.49 0.56
350 0.58 0.68 0.57
400 0.55 0.62 0.56
450 0.63 0.74 0.62

Table 5: R2 over the epochs on the one intersection subset with 20
nodes and 120 horizons.

Epoch MAE RMSE MAPE
100 0.35 0.30 0.43
150 0.60 0.66 0.68
200 0.66 0.76 0.63
250 0.66 0.77 0.58
300 0.75 0.87 0.66
350 0.88 0.94 0.95
400 0.91 0.92 0.95
450 0.93 0.92 0.96

Table 6: R2 over the epochs on the one intersection subset with 20
nodes and 80 horizons.

gence of the R2 error towards 1, indicating that the errors over
the horizons settle to a logarithmic shape. The results can be
seen in Table 5. Due to the sharp rise in the values of the er-
rors at later horizons, the improvements over the epochs are
not noticeable. If the number of horizons is reduced from 120
to 80 in order to eliminate the outlying values at later hori-
zons, the improvements over the epochs are more noticeable,
as the curves of the errors converge faster to the logarithmic
one. The results for 80 horizons are summarized in Table 6.
The R2 values improve noticeably until epoch 350 after which
they plateau.

The logarithmic growth can also be seen in short-term pre-
dictions of 1 hour on the one intersection subset and it is not
specific for long-term forecasting. The R2 values after 100
epochs on the for the errors are almost perfect: MAE - 1.00,
RMSE - 1.00, and MAPE - 0.99. The lower number of epochs
is due to fewer horizons needing to be trained. The plots
showing the errors over 12 horizons for the subsets can be
found in Appendix B.

This behaviour was the same for most subsets except for
the straight road subsets. Which, had two peaks in R2 val-
ues, at epoch 250 and epoch 380. These results can be seen
in Table 7. The first decline could be attributed to how the
model trains over time, but the second one is due to overfit-
ting. Furthermore, even in short-term forecasting, this subset
was prone to overfitting compared to the others. The plots
showing the errors for this subset can be found in Appendix
C.

In the literature, the same logarithmic growth trend was
observed for the PEMS datasets [12]. However, the trend
is not observed for a dataset located in the city of Xiamen
in China, which records traffic volume instead of traffic

Epoch MAE RMSE MAPE
250 0.62 0.77 0.72
300 0.43 0.52 0.55
380 0.59 0.73 0.64
450 0.40 0.52 0.59

Table 7: R2 over the epochs on the straight road subset with 35 nodes
and 120 horizons.

speed. The nature of the datasets could have a bigger impact
on how errors evolve than the underlying characteristic of
GNNs. Therefore, the logarithmic growth trend observed in
the experiments could be due to the nature of the METR-LA
dataset.

Figure 6: The location of nodes 717499 and 767350 on the map,
with colours red and yellow respectively.

Predictions around traffic jams and anomalies.
Traffic jams and anomalies can cause disturbances in traffic
forecasting, but some types cause more disruptions than oth-
ers. To showcase this, two plots have been created depicting
the real values and the predicted values from two separate
nodes in the road network, highlighted in red and yellow in
Figure 6. For nodes that have traffic jams at regular intervals
the impact on the performance of the prediction is not signif-
icant until later horizons. This can be clearly seen in Figure
7, which shows that a recurrent traffic jam can be predicted
quite accurately until horizon 96, showing issues at horizon
120. The traffic jam still causes issues at later horizons, such
as 96 and 120, where predicted values deviate from the real
values. This is in contrast with periods when traffic values
don’t fluctuate, as even at the last horizon the predictions are
close to the real values.

Another type of traffic jam, which lacks the well-defined
pattern discussed in Figure 7, can have disruptive effects on
predictions. Therefore, various results can be seen when
forecasting such an event. The model can completely ignore
it and predict a continuation of traffic values or it can broadly
forecast a slowdown in speed. This can be seen in Figure
8, where, from horizon 24 to horizon 96, the model predicts
an overall slowdown in traffic speed. While in horizon 120,



Figure 7: Real speed values (blue) and predicted speed values (or-
ange) on the 6th of June 2012 for the one intersection subset on sen-
sor 717499.

it predicts no change in the traffic speed even when the
real data shows a reduction in it. This behaviour could be
explained by the inability of the model to adapt to unforeseen
traffic conditions that were not present in the training data.
Furthermore, traffic jams propagate non-linearly through
traffic systems [19], creating complex spatial and temporal
patterns that are challenging to tackle. The D2STGNN paper
mentions that the methods used still fail to exploit these com-
plex patterns fully [14]. Therefore, the presence of sudden
traffic jams poses a great challenge to traffic forecasting and
the inherent difficulty of long-term forecasting increases the
complexity of this challenge.

Effects of different road network configurations.
The test MAE of the subsets was recorded at epoch 320 over
120 horizons. The summary can be found in Table 8. The
results show that the best-performing subset was the two in-
tersections subset, while the worst-performing was the three
intersections subset. This matches with results from the liter-
ature [20], as more nodes don’t necessarily translate to better
performance.

Other factors might have an impact on forecasting perfor-
mance. Therefore, the mean, variance, standard deviation,

Figure 8: Real speed values (blue) and predicted speed values (or-
ange) on the 6th of June 2012 for the one intersection subset on sen-
sor 767350.

and the percentage of missing values of the subsets were cal-
culated to see if they have a role. The procedure was as fol-
lows: each metric was calculated for each node in the dataset
and then averaged for each node to arrive at a result for the
whole subset. The results can be seen in Table 9, where the
three intersections subset has the lowest variance and stan-
dard deviation, while it has the highest percentage of missing
values.

The results from Tables 8 and 9 seem to be correlated, as
the percentage of missing values goes up the performance
starts to decline. The literature confirms this as it states that
graph learning [21] and dynamic graph learning [22] are af-
fected by missing values. As D2STGNN uses a dynamic

Subset MAE
Straight Road - 35 nodes 7.53

One Intersection - 20 nodes 7.78
Two Intersections - 40 nodes 6.29

Three Intersections - 55 nodes 10.15

Table 8: Subsets and their MAE values at epoch 320 averaged over
120 horizons.



Subset Mean Var. Std. Dev. Missing
Values %

Straight Road 56.23 226.08 14.16 7.54
One Intersection 53.84 213.17 14.22 7.8
Two Intersections 55.55 190.75 13.21 7.44

Three Intersections 61.39 65.47 6.96 8.92

Table 9: Subsets and their mean, variance, standard deviation, and #
Zeros.

graph learning module [14], it is clear that the missing values
impact the performance. Therefore, the road network config-
uration might influence long-term traffic forecasting. How-
ever, due to other factors, such as data variation and missing
values, it is uncertain how much of an impact it has.

5 Responsible Research
In traffic forecasting, ethical concerns often centre on the
datasets used by the models. This paper uses METR-LA, a
public dataset that contains traffic data collected from loop
detectors on the highways of Greater Los Angeles. The tech-
nology used to collect this information does not infringe on
privacy, as it only records the speed of the vehicle passing
through it. Therefore, no identifiable information is recorded,
making it impossible to trace back to an individual.

Regarding the reproducibility of the experiments the model
used in the paper has a degree of randomness, as a random
seed is initialized each time. Therefore, every run would pro-
duce slightly different results, but not different enough to dis-
prove the findings in this paper. For example, the Mean Abso-
lute Error could differ from one run to another by a maximum
of 0.01, which is negligible. Therefore, following the paper,
the results can be reproduced within negligible margins.

6 Conclusions and Future Work
6.1 Conclusions
This paper discussed the performance of GNNs in long-term
traffic forecasting, focusing on how long-term predictions are
handled and how their accuracy degrades over time. Further-
more, several factors, such as traffic jams and road network
configurations, are looked into. Their influence on long-term
forecasting accuracy is measured and discussed.

First, as time increases, the errors of the predictions fol-
low a logarithmic growth and converge to it over the training
epochs. This was also partly observed in the literature for
short-term traffic forecasting [12], therefore the paper con-
firms the same evolution for long-term predictions.

Second, traffic jams have a big impact on the performance
of long-term forecasting, but not all types. Regular daily traf-
fic jams do not cause issues only until the last horizons. Sud-
den and unforeseen traffic jams heavily impact the results, as
they do not correspond with the training data and they also
introduce complex spatial and temporal patterns increasing
the complexity of the task. Compared to short-term forecast-
ing, long-term includes its complexity and therefore the is-
sues caused by traffic jams are amplified.

Third, road network configurations play a role in the per-
formance of long-term predictions, but other factors also in-

fluence this task. Missing values seem to be directly corre-
lated with how well a subset performs, also factors like vari-
ance and standard deviation impact the outcome. Therefore,
it is uncertain what impact different road network configura-
tions have, as they are tied to other factors.

6.2 Future Work
Looking ahead, the first area in which future work could be
done is to build subsets isolated from other factors to have a
proper comparison. This would provide a concrete answer to
the third sub-question.

Furthermore, the experiments could be done on datasets
that record traffic volume instead of traffic speed, to see if the
results are independent of the data recorded. This is impor-
tant because the results seen in the GMAN paper [12] sug-
gest there might be a difference between the two types of
data. However, other results in the literature for the PEMS
traffic volume datasets show a similar behaviour [22] to what
was found in this paper. Additionally, external factors, such
as those mentioned in Section 2.1 could be accounted for
through data fusion, as recommended in the literature [15].

Finally, datasets that are recorded on roads different from
highways could be used to see if there is a difference between
road types. Also, datasets from different regions would be
useful to see if geolocation impacts long-term traffic forecast-
ing.
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A Subsets METR-LA

Figure 9: Nodes selected for the one intersection subset.

Figure 10: Nodes selected for the two intersections subset.

Figure 11: Nodes selected for the three intersections subset.

Figure 12: Nodes selected for the straight road subset.

B Error plots over 12 horizons for all subsets

Figure 13: The one intersection subset with 20 nodes at epoch 100
over 12 horizons.

Figure 14: The two intersections subset with 40 nodes at epoch 100
over 12 horizons.

Figure 15: The three intersections subset with 55 nodes at epoch 100
over 12 horizons.



Figure 16: The straight road subset with 35 nodes at epoch 100 over
12 horizons.

C Error plots over 120 horizons for the
Straight Road subset

Figure 17: The straight road subset with 35 nodes at epoch 250 over
120 horizons.

Figure 18: The straight road subset with 35 nodes at epoch 300 over
120 horizons.

Figure 19: The straight road subset with 35 nodes at epoch 380 over
120 horizons.

Figure 20: The straight road subset with 35 nodes at epoch 450 over
120 horizons.

D Use of LLMs in the research paper
While writing the paper, LLMs were used to rephrase sen-
tences and give feedback on paragraph structure. The
prompts used were: ”Please give feedback on the following
paragraph: (...)” and ”Please rephrase the following sentence:
(...)”.
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