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SUMMARY

Multimedia systems are typically optimized in a way that maximizes users’ satisfaction

of using the systems/services. This user satisfaction is what is commonly referred to as

Quality of Experience (QoE). For visual media, such as images and videos, the optimiza-

tion of QoE has meant reducing the visibility of artifacts (e.g. noise or other disturbing

factors) in the visual media. This is based on the assumption that the sole appearance of

artifacts would disrupt the whole visual experience, in a world where media were mostly

consumed passively, and in well defined contexts (e.g., TV broadcasts). Nowadays, the

way users experience visual media has changed, thanks to the diffusion of mobile, in-

teractive, immersive, and on-demand technology. Media are now consumed in many

different contexts, for example, in the interactive and customizable contexts of social

media, or in the immersive contexts of virtual and augmented reality. As consequence

of these developments, a user’s visual QoE is no longer determined solely on the appear-

ance of artifacts, but also by factors relevant to the viewing context.

This thesis brings in new insights in modeling and automatically assessing users’ vi-

sual QoE in view of the developments above. The thesis starts with looking into subjec-

tive methodologies for QoE assessments, and continues with developing objective qual-

ity metrics that incorporate QoE influencing factors to improve state-of-the-art metrics.

Developing reliable and accurate objective metrics to automatically assess users’ vi-

sual QoE requires subjective data that are reliable as well. This thesis argues that ex-

isting methodologies for collecting subjective data might not be reliable when used to

evaluate QoE factors that are highly subjective, or that are new to the research commu-

nity. Highly subjective quantities may yield different conclusions across experiments.

As for new types of media, they often bring the uncertainty on how to evaluate them.

Two studies are then presented in this regard. The first study considers the assessment

of image aesthetic appeal, as one example of a highly subjective quantity. A large scale

study was conducted to compare the use of different subjective methodologies to collect

aesthetic appeal data, and some ways to measure the data reliably were proposed. The

second study considers the assessment of point cloud quality, as one example of a new

type of media (i.e. immersive media). The study explores quantitative and qualitative

approaches to understand the way users judge point cloud images.

Following the studies on subjective QoE assessments, two studies on objective QoE

xi
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metrics are presented in this thesis. Despite existing efforts to model the influence of

different factors on visual QoE, limited work have proposed to incorporate these factors

into existing objective quality metrics to improve state-of-the-art. The first study on ob-

jective QoE metrics in this thesis investigates the influence of image content/semantic

categories (i.e. scene and object categories) on visual QoE, and proposes to include se-

mantic category features in objective image quality metrics. The proposed approach

shows improvement from state-of-the-art in predicting image quality. The next study on

objective quality metrics investigates new QoE influencing factors for point cloud im-

ages, and proposes to incorporate these into an objective quality metric for point cloud

images.

The results of the studies presented in this thesis show how existing subjective me-

thodologies could yield reliable aesthetic appeal data, and explore point cloud QoE in-

fluencing factors. Moreover, the results show that incorporating new QoE influencing

factors into objective image quality metrics could improve state-of-the-art performance

in predicting users’ QoE. At the end of this thesis, some recommendations are given for

future research following up the findings in this thesis.
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Multimediasystemen zijn normaal gezien in een manier geoptimaliseerd wat voor een

gemaximaliseerde gebruikerstevredenheid zorgt wanneer de systemen/diensten gebruikt

worden. Deze gebruikerstevredenheid wordt meestal aangeduid als een Quality of Ex-

perience (QoE). Voor visuele media, zoals beelden en video’s, betekent de optimalisatie

van QoE het verminderen van de zichtbaarheid van artefacten (e.g. lawaai of andere

storende factoren) in visuele media. Dit is gebaseerd op de aanname dat alleen het

verschijnen van artefacten de hele visuele ervaring zou verstoren, in een wereld waar

media vooral passief wordt geconsumeerd, en in goed gedefinieerde contexten (e.g. tv-

uitzendingen). Tegenwoordig is de manier waarop gebruikers visuele media ervaren ver-

anderd, dankzij de verspreiding van de mobiele telefoon, interactieve, immersieve en

on-demand technologie. Media wordt nu verbruikt in vele verschillende contexten, bij-

voorbeeld in interactieve en aanpasbare contexten van social media, of in de immersieve

contexten van Virtual en Augmented Reality. Als een gevolg van deze ontwikkelingen, is

de visuele QoE van een gebruiker niet meer enkel gebaseerd op de verschijning van ar-

tefacten, maar ook door factoren die relevant zijn tot de kijkcontext.

Dit proefschrift leveert nieuwe inzichten in het modeleren en het automatisch be-

oordelen van de visuele QoE van gebruikers gezien de ontwikkelingen hierboven. Het

proefschrift begint met het onderzoeken van subjectieve methodologieën voor het be-

oordelen van QoE, en gaat verder met het ontwikkelen van objectieve kwaliteitsmetrie-

ken die QoE-beïnvloedende factoren bevatten om de state-of-the-art (meest geavan-

ceerde meetgegevens) te verbeteren.

Het ontwikkelen van betrouwbare en nauwkeurige objectieve metrics om automa-

tisch visuele QoE van gebruikers te beoordelen vereist subjectieve data dat ook betrouw-

baar moet zijn. Dit proefschrift beweert dat de bestaande methodologieën voor het ver-

zamelen van subjectieve data wellicht niet betrouwbaar is wanneer het gebruikt wordt

om zeer subjectieve QoE factoren te evalueren, of die nieuw zijn voor de onderzoeksge-

meenschap. Zeer subjectieve kwantiteiten kunnen verschillende conclusies opbrengen

over verschillende experimenten. Wat betreft de nieuwe types van media, vaak brengen

die een onzekerheid over hoe ze geëvalueerd moeten worden. In dit verband worden

er twee studies gepresenteerd. De eerste studie beschouwt de beoordeling van image

xiii
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aesthetic appeal als een voorbeeld van een zeer subjectieve kwantiteit. Een grootschalige

studie was uitgevoerd om het gebruik van verschillende subjectieve methodologieën die

image aesthetic appeal (esthetische aantrekkingskracht) verzamelen te vergelijken. Naar

aanleiding daarvan werden er een aantal manieren om de data betrouwbaar te meten

voorgesteld. De tweede studie beschouwt de beoordeling van point cloud QoE als een

voorbeeld van een nieuw type media (i.e. immersieve media). De studie onderzoekt

kwantitatieve en kwalitatieve benaderingen om te begrijpen hoe gebruikers point cloud

images beoordelen.

Na het presenteren van de studies over subjectieve QoE beoordelingen, worden er

twee studies over objectieve QoE metrics (metriek) voorgesteld in dit proefschrift. On-

danks bestaande inspanningen om een model te maken van de invloed van verschil-

lende factoren op visuele QoE, is er gelimiteerd werk die voorgesteld heeft om deze fac-

toren te incorporeren in een bestaan objectieve kwaliteitsmetrics om de state-of-the-

art metrics te verbeteren. De eerste studie over objectieve QoE metrics in deze studie

kijkt naar de invloed van beeldcontent/semantische categorieën (i.e. scène en object

categorieën) op visuele QoE, en stelt voor om de semantische categorie kenmerken te

incorporeren in objectieve beeldkwaliteitsmetrics. The voorgestelde benadering toont

een verbetering van de state-of-the-art in het voorspellen van beeldkwaliteit. De vol-

gende studie over objectieve kwaliteitsmetrics onderzoekt nieuwe QoE factoren die in-

vloed hebben op point cloud beelden en stelt voor deze te incorporeren in een objectieve

kwaliteitsmetric voor point cloud beelden.

De resultaten van de studies gepresenteerd in dit proefschrift tonen hoe bestaande

subjectieve methodologieën betrouwbare image aesthetic appeal data kunnen opbren-

gen, en onderzoeken point cloud QoE beïnvloedende factoren. Bovendien tonen de

resultaten dat het incorporeren van nieuwe QoE beïnvloedende factoren in objectieve

beeldkwaliteitsmetrics, de uitvoering van state-of-the-art kunnen verbeteren in het voor-

spelen van de QoE van gebruikers. Tot slot geeft dit proefschrift een aantal aanbevelin-

gen voor toekomstig onderzoek naar aanleiding van de resultaten uit dit onderzoek.
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PRELUDE
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1
INTRODUCTION

Tak kenal maka tak sayang.

(English transl.: Ignorance leads to indifference.)

Indonesian Proverb

3
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Multimedia systems have become an integral part of human life. Nowadays, most

of our waking hours are spent using different multimedia systems, ranging from web

applications to streaming services. Even when asleep, we sometimes rely on multimedia

systems to perform tasks for us, such as surveillance cameras to control our home, or

smart watches to monitor our sleeping conditions.

As more companies compete to deliver multimedia services to users, market research

has shown that users have become more demanding of what they get in return for their

money [1, 2, 3]. A consumer review from Deloitte in 2014 suggests that businesses in

general are struggling to keep up with users’/ consumers’ ever growing expectations [1].

For digital services, specifically, users’ high expectations have led to less loyalty to service

providers. Conviva, in its 2015 Consumer Report, shows that one in three over-the-top

(OTT) users abandons its current provider when experiencing a lower quality in the ser-

vice [2]. According to Ofcom, the percentage of UK consumers switching TV or mobile

services in the year 2015 almost doubled that of 2014 [3].

To keep up with users’ expectations, it is therefore essential that multimedia systems

are developed such that their optimization is targeted towards maximizing users’ satis-

faction of using the service. This user satisfaction is what is commonly referred to as

Quality of Experience (QoE). Formally, QoE is defined as "the degree of delight or an-

noyance of the user of an application or service" [4]. Further, this delight or annoyance

comes from the fulfillment of users’ expectations of the utility and enjoyment provided

by the application or service, as influenced by users’ personality and current state.

In this thesis, we focus on multimedia systems and services built around visual media

(i.e., images and video) consumption. This is a critical range of systems, as visual media

consumption is responsible for more than 70% of internet traffic in the world, according

to the Cisco Visual Networking Index 2017 [5], and it will continue to take more traffic

in the future. These systems include video services, such as virtual and augmented real-

ity, video-on-demand, visual surveillance, or mobile video services, but also still images

(photos): around 3.9 trillion images were taken in 2016 [6], and at least 1.8 billion are

uploaded to various online platforms every day [7]. This thesis focuses on the optimiza-

tion of these systems by targeting the assessment of Visual Quality of Experience (Visual

QoE) as a measure of user satisfaction.

For a long time, optimizing Visual QoE meant reducing the visibility of artifacts (e.g.

noise or other disturbing factors) that occur due to technology limitations [8] in the vi-

sual media. This view was based on the assumption that the sole appearance of artifacts

would disrupt the whole visual experience, in a world where media were mostly con-

sumed passively, and in well defined contexts (e.g., TV broadcasts).
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Nowadays, the diffusion of mobile, interactive, immersive, on demand media tech-

nology has changed the way users experience media. Media are now consumed in many

different contexts, for example social, interactive and customizable contexts (e.g. social

media, mobile), or immersive contexts (e.g. virtual and augmented reality). Different

contexts bring in additional factors that influence the QoE elicited by a visual medium.

Some studies have shown, for example, that visual QoE is also influenced by the type of

device through which they access multimedia [9, 10], or the content type of the media

[9, 11]. In other studies, the aesthetic appeal of a visual medium was shown to influence

user perception of its overall quality [12]. In other words, the visibility of an artifact alone

is not the sole factor determining the user satisfaction with media experiences anymore

[13].

This thesis brings in new insights in modeling and assessing Visual QoE in view of the

developments sketched above. Due to the complexity of the QoE problem in the broad

domain of visual media, we will focus on multimedia systems and services handling still

images only. It is worthwhile noting that, although addressing image quality, the results

contributed in this thesis can be extended to video quality as well. Image quality estima-

tion is a stepping stone in the development of reliable video quality metrics, where the

temporal dimension is also taken into account [14, 15]. As the contribution in this thesis

touches upon fundamental issues of visual QoE, the results may also be applied to video

QoE assessment.

In the remainder of this chapter, we first describe the general problem of visual qual-

ity assessment in Section 1.1. In Section 1.2, we then continue with reviewing the tra-

ditional approach to tackle the problem (i.e. visual quality estimation based on artifact

visibility). Afterwards, we move on to an overview of Visual QoE estimation beyond arti-

fact visibility, and provide a glimpse of existing research on the topic (Section 1.3), which

will guide us to formulating the research questions addressed in this thesis (Section 1.4).

The chapter concludes with an overview of the thesis contributions in Section 1.5. In the

remaining parts of this thesis, we will use the term QoE and visual QoE interchangeably.

1.1. THE PROBLEM OF VISUAL QOE ASSESSMENT

Visual media (images and videos) go through various steps in their life cycle (see Figure

1.1), that can tamper with their quality [8]. It is important to review the most common

steps, along with the type of artifacts they generate, in order to better contextualize the

role of visual quality assessment systems in the process of visual QoE optimization.

Acquisition. During acquisition or capture of visual media, problems may occur due
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Figure 1.1: Visual media life cycle, from acquisition to display. In each step, quality degradation may occur, and
a quality estimator (Q in the figure) may be used to decide on an appropriate enhancement or optimization.

to movement of camera, or movement of the object that is being captured. One example

of artifacts that may occur in this case is blur [8].Another acquisition problem is the lim-

itation of sensing technology in the camera. For example, a camera’s A/D converter may

have an improper sampling rate during capture, in which case aliasing artifacts would

occur. As another example, inaccurate camera parameters when using multiple cam-

eras to capture a 3D object may create noise in the captured image.

Processing. Captured images and videos are often processed before being stored and

delivered to the final user. Among the processing algorithms, the most typical ones are

compression (encoding and decoding), enhancement, or combining multiple images

(to create a pano- ramic image, or construct a 3D image). Artifacts introduced at this

stage are typically caused by the approach used in the processing algorithms in trans-

forming the images. For example, compression using block-based codecs typically re-

sults in block artifacts, while wavelet-based codecs result in ringing or aliasing artifacts

[16, 17, 18]. Meanwhile, automatic image stitching to create panoramic images may in-

troduce parallax errors [19], while depth triangulation in constructing 3D images may

create geometry noise [20].

Storage and transmission. When storing or transmitting (e.g., streaming) visual me-

dia, loss of information often occurs due to constraints in the network, or fault in device.

Example of artifacts that occur at this stage include packet loss or delay in videos [21, 22].

Display. Artifacts during display usually occur due to the need to adapt an image

or video to a particular device setup. Examples of this process include re-sampling,

transcoding or tone-mapping [23, 24, 25]. Artifacts may also occur due to the display

technology itself. For example, liquid crystal display (LCD)’s slow temporal response

and hold-type LCD rendering method creates motion blur artifacts [26].

As indicated above, in each step of the image lifecycle, one or multiple systems or

algorithms need to be optimized in order to minimize the losses in visual QoE. This is

where a quality estimator or quality metric (denoted as Q in Figure 1.1) comes into play:
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measuring the quality of the media and feeding it back to the system for quality control,

adaptation or enhancement. The goal of visual QoE studies is to build better quality

estimators or metrics for either stage of the image life cycle. Traditionally, the approach

taken to devise these quality estimators has been to model the visibility of artifacts in the

media. However, as explained in the beginning of this chapter, this approach no longer

fully represents users’ perception of visual QoE. In the next two sections, we will look

into these different approaches to building visual QoE metrics, focusing especially on

image QoE, being the focus of this thesis.

1.2. VISUAL QUALITY BASED ON ARTIFACT VISIBILITY

Traditionally, visual QoE has been estimated in terms of artifact visibility, i.e. by de-

signing quality metrics that could estimate the extent to which artifacts in the image

would be visible to the human eye [8]. A large body of extremely valuable work has been

produced in the past two decades [14, 15, 27, 28], which we will be briefly review as it

represents the basis for modern QoE assessment.

Visual Quality metrics are usually categorized based on the availability of a reference,

pristine signal (image or video) to compare the processed signal with. When there is no

reference signal needed in the metric, the metric is referred to as a no-reference (NR)

quality metric. A reduced-reference (RR) metric uses extracted features from the refer-

ence signal, and compares it with the corresponding features of the processed signal.

Lastly, a full-reference (FR) metric needs the complete reference signal to assess the pro-

cessed signal’s quality.

A quality metric typically follows three steps in estimating image quality [8]. The

first step is measuring properties or features of the image that could be used to estimate

its quality. These features could be the direct value of the image pixels, some image

statistics (e.g. distribution of the image luminance values), or a model of distortions

or artifacts in the image (e.g. a measure of texture masking or luminance masking to

estimate blockiness). Afterwards, a pooling step is performed to combine the features

into an appropriate scale. For example, if the image features have been calculated locally

(on partitions of the image), the pooling step would aggregate the local features into a

global feature value. Finally, features are mapped into quality scores. One way to do this

is to train a machine learning algorithm to map pooled features into quality scores based

on ground truth data.

Over the years, various image quality metrics have been proposed. Traditional met-

rics are typically full-reference, and measure signal fidelity, i.e. pixel-by-pixel differences
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between the processed image and its reference. These metrics include mean square er-

ror (MSE), peak signal-to-noise ratio (PSNR), and other similar metrics [29]. Another

type of metrics attempts to model quality based on the properties of the human visual

system (HVS), for example by modeling the contrast sensitivity function (CSF), or the lu-

minance adaptation [30, 31]. Using these properties, the metrics aim at estimating the

HVS response to different artifacts in an image, and subsequently the image quality. Fi-

nally, some metrics estimates quality by analyzing properties of the processed image’s

signal. We will refer to this category of metrics as signal-driven metrics [27]. The Struc-

tural Similarity (SSIM) Index [32] is a well-known full-reference metric that belongs in

this category. The metric performs a comparison of local luminance, contrast and struc-

ture measurements of the degraded and reference images. Another well-known example

of signal-driven metrics are natural scene statistics (NSS)-based metrics [33, 34, 35]. The

idea behind NSS-based metrics is that the signal (e.g. luminance values) of a pristine,

high-quality image, follows a certain distribution. The presence of artifacts typically al-

ters the shape of this distribution, and so the image quality can be estimated based on

this principle. Artifact-specific metrics usually also belong to the signal-driven metrics

category [16, 17, 36], and so are the more recently proposed deep learning-based metrics

[37, 38].

1.3. VISUAL QUALITY OF EXPERIENCE (QOE)

In this section, we will provide a brief overview of the past research on Visual QoE be-

yond artifact visibility (referred simply as Visual QoE or QoE from here on). We will start

in Section 1.3.1. with work related to objectively modeling visual QoE, and afterwards,

section 1.3.2 will focus on the challenge of subjectivity in assessing visual QoE. At the

end of both subsections, we describe the challenges and open problems related to im-

age QoE research that we address in this thesis.

1.3.1. VISUAL QOE: OBJECTIVE QUALITY BEYOND ARTIFACT VISIBILITY

The way visual media are produced and consumed have changed and diversified consid-

erably in the past years, thanks to various technology developments. Acquisition devices

have become more ubiquitous and complex: high resolution cameras are widely avail-

able even to naive users, and more immersive images could be captured using plenoptic

cameras and 3D scanners. Images and videos are not only consumed passively on TV

or through prints, but in more interactive and social contexts such as through social me-

dia or on demand applications. More advanced display technologies, such as 3D screens



1.3. VISUAL QUALITY OF EXPERIENCE (QOE)

1

9

F
ig

u
re

1.
2:

Sc
h

em
at

ic
re

p
re

se
n

ta
ti

o
n

o
ft

h
e

Q
u

al
it

y
o

fE
xp

er
ie

n
ce

(Q
o

E
)

as
p

re
se

n
te

d
in

[1
2]

.



1

10 1. INTRODUCTION

and head mounted displays (HMDs), have also allowed for more immersive viewing con-

texts. Consequently, visual QoE assessment can no longer rely on visual signal alone, but

needs to take into account additional factors that may arise due to the different viewing

contexts. Studies on visual QoE have looked into uncovering these factors and under-

standing how these factors interact in forming user QoE. We describe the factors that

have been studied in previous research below.

Physical environment or viewing environment. Some studies have looked into the

effect of viewing context on users’ perception of quality. For example, Xue et al. showed

that mobile viewing affects user QoE due to contextual noise masking the signal noise

[39]. Another example comes from the work of Zhu et al. [40, 41], showing that having

other people viewing content together has an effect on user’s enjoyment, which in turn

positively influences their overall perception of QoE.

Media content. Different studies have also proposed image and video content as an

influencing factor of QoE, i.e. users’ ability to apprehend an image or video’s content af-

fects their overall perception of the image/video quality. Pereira [42] included knowledge

or information acquired in his proposed model for evaluating QoE of videos. Similarly,

the term usefulness of an image is used in the image quality model by De Ridder and

Endrikhovski [43], suggesting the importance of users being able to extract information

from images. Results of experiments by Alers et al. [44] showed the importance of having

clear image region of interest (ROI), further presenting the influence of content on user

QoE.

Affective attributes. Image aesthetics, interestingness, or likability are often consid-

ered important attributes in viewing contexts such as social media or image recommen-

dation applications [45, 46, 47]. Some studies in image QoE have looked into how these

attributes influence overall image quality perception. In her user experiment, Redi [12]

found that users are highly critical of the technical quality (i.e., annoyance brought about

by artifacts) of images with high aesthetic appeal, but less so for images with low aes-

thetic appeal. Halonen et al. [48] suggested the importance of balancing the naturalness

and interestingness attributes of images used in subjective quality evaluations, and per-

formed a study to understand how users rate these attributes in images.

Immersive properties. With new acquisition and display technology in recent years,

various types of new media have emerged that offer more immersive viewing experi-

ences, such as stereoscopic images/videos, light fields, omnidirectional content, or point

clouds. Immersive viewing experiences refer to viewing experiences that create a sense

of presence (immersion) for users, thanks to features such as depth, or multiple degrees

of freedom. Various studies have looked into factors influencing user QoE when viewing
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this type of media. For example, image depth perception was found to be an influencing

factor to users’ overall viewing experience when watching content on 3D displays [49].

Another study showed the effect of different head-mounted displays (HDM) and motion

sickness on the QoE of watching omnidirectional videos [50]. They compared two popu-

lar HMDs in the market, and found that one offers higher integral quality than the other.

Garau et al. studied the effect of avatar realism and eye-gaze control on users’ QoE in

shared virtual environments, and showed that inferred eye animations have significant

positive effect on users’ overall QoE. [51].

Most work related to influencing factors of visual QoE, as described above, have

pointed out the effect of previously neglected factors on QoE, but have not proposed

an actual way of incorporating this effect in the existing quality metrics to build better

quality predictors. Zhu et al. [41], after showing the influence of user demographics

on video QoE, have proposed a demographics-based metric to automatically assess the

perceived quality of individual users. This approach is useful especially for personalized

systems which have user background information to use as features. However, there are

a lot of application contexts that cannot rely on such information. Moreover, in some

cases, it is still desirable to have an automatic assessment or estimation of an average

quality value across users, instead of individual scores for each user.

To illustrate this research gap, we build upon the schematic representation of QoE

as proposed by Redi [12] and shown in Figure 1.2. The figure shows how the eventual

quality of experience depends on technical factors/features that refer to the media or

system that the user is viewing or interacting with (orange and yellow-colored boxes in

the figure), and contextual influencing factors which are the conditions of the user, envi-

ronment or system that pre-exist the viewing experience (light blue-colored boxes in the

figure). Referring to image, the technical factors include, but are not limited to, the level

of perceived artifacts, the aesthetic appeal of the image, or the viewpoint of the (immer-

sive) media. The contextual influencing factors include, for example, users’ emotional

state, demographic background and device limitations.

Current work on QoE mostly look into the modeling of the relationship of these fac-

tors with each other (for example, image aesthetics and image artifacts [12], or user mo-

bility and video bit rate [39]). However, only few [39] have proposed a computational

integration of these factors to predict image quality (i.e. the circles inside the fusion

mechanism box in Figure 1.2). Our contribution in this thesis is represented by the red

circle in Figure 1.2. Not only do we uncover how different perceptual factors and system

influencing factors influence image QoE, but we also incorporate these factors into an

objective quality metric (Chapters 4 and 5 of this thesis).
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To address the design of these more accurate metrics, not only do we need to de-

sign better algorithm that incorporate novel information types (e.g. about immersion or

content), but we also, first and foremost, need to fully clarify which role these new fac-

tors play in QoE perception. To do so, the most reliable approach is based on empirical

research in the so-called Subjective Quality Assessment sphere.

1.3.2. SUBJECTIVE QUALITY ASSESSMENTS IN VISUAL QOE MODELING

Subjective assessments are essential to understand users’ perception of QoE changes

along with change of different factors, as they directly involve humans in the assess-

ment process. A branch of empirical research and psychometrics in particular, subjec-

tive quality assessment is typically based on experiments where visual experiences are

manipulated by controlling for one or more factors of interest, and users are asked to

evaluate the QoE of visual stimuli without being aware of the different factors that are

being tested. Subjetive quality assessments are also the sole source of ground truth for

the validation of quality metrics (see Section 1.2) [52, 53].

Typically, subjective assessments in QoE studies adopt standard/recommended ex-

periment setups in controlled lab settings [52, 53]. However, more studies have begun to

look into conducting subjective assessments in uncontrolled environments [54, 55], as

this allows for reaching out to a wider, more diverse and therefore more representative

user group. These studies usually compare the results with controlled lab-based studies,

and some would recommend best-practices for conducting experiments in uncontrolled

settings, like, for example, a crowdsourcing environment [56].

QoE studies often involve factors that, unlike image artifacts, are not always straight-

forward to measure. These factors include image aesthetics, immersive properties, inter-

estingness, among others, and are often viewed as highly subjective factors. It is gener-

ally unknown whether or not standard methods for assessing perceptual (visual) quality

could be directly adopted in experiments that measure these highly subjective factors.

Some papers raise the concern of the reliability of the assessments collected, or whether

or not current practices of subjective assessments are the correct approach to evaluate

these factors [57, 58, 59]. It is important to address these concerns, as the quality of data

collected through subjective assessments will affect the quality of metrics built with it. In

this thesis, we contribute to resolving the above concerns for the subjective assessments

(Chapters 2 and 3 of this thesis).
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Figure 1.3: Scope and contribution of this thesis. The two orange boxes indicate the two main research scopes
of this thesis. Each blue box represents one research questions addressed in this thesis. The main contribution
of this thesis is indicated with black-bordered boxes.



1

14 1. INTRODUCTION

1.4. RESEARCH PROBLEMS

Based on our survey of the state of the art for visual QoE in Section 1.3., we identify open

research problems related to both the objective quality metrics and subjective quality

assessments of visual QoE.

• Research Scope 1: Subjective Quality Assessments.

Understanding the reliability of existing subjective methodologies in assessing highly

subjective QoE factors and new types of media.

Developing objective quality metrics requires subjective data. To build reliable

and accurate quality metrics, we need to be certain that the subjective data we are

using is also reliable. For this reason, standards and recommendations on how to

perform subjective quality assessment exist. However, in certain cases, it is not

always clear whether or not these standard methods for assessing perceptual (vi-

sual) quality could be directly adopted to other cases.

One of such cases is the assessment of quantities that are considered highly sub-

jective (e.g. affective factors: aesthetic appeal, interestingness). For example, some

studies have shown concern on the reliability of scores collected for aesthetic ap-

peal evaluations [57, 58], even showing that in some cases, different experiments

on the same image set yield different conclusions. For this reason, we look into

comparing the use of different subjective methodologies to collect aesthetic ap-

peal data, and propose some ways to measure the data reliably.

Another case is when the visual media being assessed is of a new type, for example,

immersive media. Dealing with new types of media often brings the uncertainty

on how to evaluate their quality. As we do not yet understand what users perceive

in these types of media and how they form their judgment of these media, existing

subjective methodologies may not be appropriate to evaluate these media.

In this thesis, we address this problem for point cloud quality assessment. Point

clouds have sparked interest as a promising technology for 3D representations in

immersive systems. Studies on its objective quality assessment show that state-

of-the-art metrics do not correlate well with human assessments [60, 20]. In re-

sponse to these findings, none have looked into different subjective methodolo-

gies to fully explore how users perceive point cloud quality. We explore quantita-

tive and qualitative approaches to understand the way users judge point cloud im-

ages, and present insights on performing subjective quality assessments of point

cloud images.
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Figure 1.3 shows the specific research questions under the Subjective Quality As-

sessments research scope. We also list the questions below:

RQ-1A. Do existing subjective methodologies yield reliable aesthetic appeal mea-

surements?

RQ-1B. Which subjective methodologies can be used to explore point cloud QoE

influencing factors?

• Research Scope 2: Objective Quality Metrics.

Incorporating new influencing factors into an objective quality metric.

Existing studies have looked into quantifying, using statistical models, how dif-

ferent factors influence user QoE of images and videos. However, very few have

shown how to incorporate these factors to improve existing objective quality met-

rics.

In this thesis, we aim to incorporate media content into image quality metrics to

improve quality prediction. As explained in Section 1.3.1, various studies have sug-

gested the influence of media content (e.g. acquired information, clarity of Region

of Interest/ROI) on visual QoE. One aspect of media content that has not received

attention in relation to visual QoE is semantics. Semantics refers to the meaning

of words, phrases, or systems 1. For images, semantics can refer to scene or object

categories of an image, which are meaningful entities that people recognize to ap-

pear in them. Image semantics is also the first visual element fully disambiguated

by a viewer [61, 62], hence playing a major role in visual experiences. This aspect is

also hinted by the existing work on visual attention and image quality [44], show-

ing how artifacts in visually important (and semantically rich) regions of the image

provoke higher annoyance. In addition, from a computational point of view, work

on automatic recognition of image semantics is well established, allowing us to

easily incorporate image semantic information into quality metrics. For these rea-

sons, we look into modeling of the influence of content (semantic) categories on

user QoE, and using content category information to improve image quality pre-

diction.

Another aspect that is gaining a lot of attention in relation to media experiences

is immersiveness, which relates to features, such as depth or multiple degrees of

freedom. Many companies and researchers are looking into immersive media to

develop virtual and augmented reality experiences. Still, many factors remain to

1Oxford dictionary, http://www.oxforddictionaries.com/
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be understood on how immersive properties of visual media may influence user

QoE. In this thesis, we focus on the QoE of point cloud images. Point cloud is an

up-and-coming media type for 3D representations in immersive media, as it does

not require expensive computational resources to manipulate it. Until now, not

much work has looked into understanding the QoE of point clouds, and even less

has looked into improving state-of-the-art quality metrics for point clouds. For

this reason, we look into uncovering new influencing factors to consider in point

cloud QoE, and incorporate them into an objective metric for point cloud images.

To summarize, the following are the two main problems related with our second

research scope (objective quality metrics): investigating new influence factors and

their relationship to QoE for images, and incorporating the above factors into new

metrics that improve state-of-the-art objective quality metrics. We break these two

main problems into four more specific research questions below (as also shown in

Figure 1.3).

RQ-2A. How do semantic categories influence user QoE?

RQ-2B. Can semantic category information improve existing image quality met-

rics?

RQ-2C. What are the influencing factors for point cloud image QoE?

RQ-2D. Can we improve existing point cloud quality metrics with the factors from

RQ-2C?

1.5. CONTRIBUTIONS OF THIS THESIS

We now describe the thesis contribution per chapter, including our experimental method-

ology, and provide the list of publications that served as the basis of this PhD thesis.

1.5.1. THESIS OUTLINE

This thesis consists of four main parts, Prelude, Methods, Metrics and Outlook.

PART I: PRELUDE

In this part, we include the necessary background information for readers to understand

the scope of this thesis and its motivation. We introduce the topic of Visual Quality of

Experience (QoE), and position the thesis with respect to the research area. We also give

a review of the related work to give readers an idea of research that has been done, and

what still needs to be done in the field.
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PART II: METHODS

This part presents our contribution related to subjective assessment methodologies. We

first look into the reliability of existing subjective methodologies in collecting user judg-

ment of image aesthetic appeal. We also explore whether or not user judgment of aes-

thetic appeal could be repeated in different environments in which subjective assess-

ments are setup. Our findings show that existing subjective methodologies could be used

to reliably measure image aesthetic appeal, and that image aesthetic appeal assessments

could be repeatable across different experimental environments. Another contribution

presented in this part is on exploring the use of mixed methods to understand users’

judgment of point cloud quality. Using a mixed method approach, we show that user

perception of color fidelity plays an important role in their perception of point cloud

QoE. This part includes chapters 2 and 3, which are based on the following publications:

1. E. Siahaan, A. Hanjalic, J.A. Redi, A Reliable Methodology to Collect Ground Truth

Data of Image Aesthetic Appeal, IEEE Transactions on Multimedia 18(7), 1338 - 1350

(2016). [Chapter 2]

2. E. Siahaan, J.A. Redi, A. Hanjalic, P. Cesar, Full-reference quality metrics for point

cloud compression based on color distribution, Under Review, (2018) [Chapter 3]

PART III: METRICS

This part presents our contribution related to building objective metrics for image qual-

ity prediction. Our first contribution in this part looks into using image semantic infor-

mation (scene and object category information) as features to predict image quality. Af-

ter showing the influence of semantic categories on user QoE, we incorporate semantic

category features into no-reference image quality metrics and show that this approach

outperforms the state-of-the-art. In the next chapter of this part, we propose a qual-

ity metric based on point cloud color distribution, and improve the state-of-the-art in

point cloud quality assessment. This part includes Chapters 4 and 5, and is based on the

following publications:

1. E. Siahaan, A. Hanjalic, J.A. Redi, Semantic-aware blind image quality assessment,

Signal Processing: Image Communication 60, 237-252 (2018). [Chapter 4]

2. E. Siahaan, J.A. Redi, A. Hanjalic, P. Cesar, Full-reference quality metrics for point

cloud compression based on color distribution, Under Review, (2018) [Chapter 5]

PART IV: OUTLOOK

After presenting all our studies and findings in the previous parts, we present a discus-

sion of their implications and provide recommendations for future research. We also

conclude our thesis in this part. This part includes chapter 6.

http://dx.doi.org/10.1002/andp.19053220806
http://dx.doi.org/10.1002/andp.19053220806
https://doi.org/10.1016/j.image.2017.10.009
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Table 1.1: Overview of user studies/subjective assessments performed in each chapter of this thesis

Chapter
Number

Research Question Methodology Environment
Number of
Subjects

2 RQ-1A Quantitative
Laboratory and
Crowdsourcing (CS)

24 (lab)
>360 (CS)

3 RQ-1B
Quantitative and
Qualitative

Laboratory 22

4 RQ-2A and RQ2-B Quantitative
Laboratory and
Crowdsourcing

20 (lab)
337 (CS)

5 RQ-2C and RQ2-D Quantitative Laboratory 22

1.5.2. METHODOLOGY

To answer our research questions, we first perform subjective quality assessments to

understand how the influencing factors influence user QoE. The scope of our subjective

assessments is given in Table1.1. As shown in the table, we perform quantitative and

qualitative studies, in controlled laboratory setups as well as crowdsourcing setups. Ex-

cept for the assessments performed in Chapter 2 (RQ-1A), our subjective assessments

are conducted to understand how certain factors influence user QoE. The collected data

are then used to build new QoE metrics. In Chapter 2 (RQ-1A), our subjective assess-

ments are conducted to compare the reliability of data collected using different subjec-

tive methodologies.

After conducting subjective assessments, we perform statistical analysis to obtain a

statistical model of our subjective assessment results. Different types of analysis are per-

formed in this thesis. In Chapter 2 (RQ-1A), we conduct a reliability analysis of different

subjective methodologies. In the other chapters, we use Generalized Linear Mixed Mod-

els and Hierarchical Multiple Factor Analysis to model the relationship between the in-

fluence factors and user QoE. Our statistical analysis is performed using statistical tools

available in Matlab, SPSS, and R.

Based on the subjective assessment and statistical analysis, we then propose new

quality metrics. We do this in chapters 4 and 5. In Chapter 4, we propose no-reference

image quality metrics, based on a machine learning approach. In Chapter 5, we propose

a full-reference metric for point cloud images, where we estimate a point cloud image’s

quality based on the distance between selected features of the point cloud and its refer-

ence. To evaluate our quality metrics, we use the Pearson Linear Correlation Coefficient

(PLCC) and Spearman Rank Order Correlation Coefficient (SROCC) to evaluate the cor-

relations of our predicted quality scores and the corresponding subjective assessments.
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1.5.3. FULL LIST OF PUBLICATIONS

The following articles have been published in the process of completing this PhD thesis.

Articles directly serving as chapters of this thesis are indicated accordingly.

8. E. Siahaan, J.A. Redi, A. Hanjalic, P. Cesar, Full-reference quality metrics for point cloud com-

pression based on color distribution, Under Review, (2018) [Chapters 3 and 5]

7. E. Siahaan, A. Hanjalic, J.A. Redi, Semantic-aware blind image quality assessment, Signal

Processing: Image Communication 60, 237-252 (2018). [Chapter 4]

6. D. Martin, S. Carpendale, N. Gupta, T. Hoßfeld, B. Naderi, J. Redi, E. Siahaan, Ina Wechsung,

Understanding the Crowd: Ethical and Practical Matters in the Academic Use of Crowdsourc-

ing, Evaluation in the Crowd. Crowdsourcing and Human-Centered Experiments, 27-691

(2017).

5. E. Siahaan, A. Hanjalic, J.A. Redi, Augmenting Blind Image Quality Assessment Using Im-

age Semantics, 2016 IEEE International Symposium on Multimedia (ISM), San Jose, USA,

December 2016.

4. E. Siahaan, A. Hanjalic, J.A. Redi, A Reliable Methodology to Collect Ground Truth Data of

Image Aesthetic Appeal, IEEE Transactions on Multimedia 18(7), 1338 - 1350 (2016). [Chap-

ter 2]

3. E. Siahaan, A. Hanjalic, J.A. Redi, Does visual quality depend on semantics? A study on the

relationship between impairment annoyance and image semantics at early attentive stages,

Human Vision and Electronic Imaging 2016, San Fransisco, USA, February 2016.

2. J. Redi, E. Siahaan, P. Korshunov, J. Habigt, T. Hoßfeld, When the Crowd Challenges the Lab:

Lessons Learnt from Subjective Studies on Image Aesthetic Appeal, Proceedings of the Fourth

International Workshop on Crowdsourcing for Multimedia, Brisbane, Australia, October

2015.

1. E. Siahaan, J.A. Redi, A. Hanjalic, Beauty is in the scale of the beholder: Comparison of

methodologies for the subjective assessment of image aesthetic appeal, 2014 Sixth Interna-

tional Workshop on Quality of Multimedia Experience (QoMEX), Singapore, Singapore, Septem-

ber 2014.

https://doi.org/10.1016/j.image.2017.10.009
https://doi.org/10.1016/j.image.2017.10.009
https://doi.org/10.1007/978-3-319-66435-4_3 
https://doi.org/10.1007/978-3-319-66435-4_3 
http://dx.doi.org/10.1002/andp.19053220806
http://dx.doi.org/10.1002/andp.19053220806
http://dx.doi.org/10.1002/andp.19053220806
https://doi.org/10.2352/issn.2470-1173.2016.16.hvei-109
https://doi.org/10.1145/2810188.2810194
https://doi.org/10.1145/2810188.2810194
https://doi.org/10.1145/2810188.2810194
https://doi.org/10.1109/qomex.2014.6982326
https://doi.org/10.1109/qomex.2014.6982326
https://doi.org/10.1109/qomex.2014.6982326
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2
RELIABLE & REPEATABLE

METHODS FOR IMAGE AESTHETIC

APPEAL ASSESSMENTS

This chapter addresses the problem of reliably conducting subjective assessments for quan-

tities that are considered "highly subjective". We also look into the repeatability of such

studies across different experiment environments. Our subjective assessments in this chap-

ter focus on image aesthetic appeal, and we show that existing subjective methodologies

could yield reliable aesthetic appeal assessments. Moreover, we show that we could obtain

comparable results between lab and crowdsourcing experiment environment.

This chapter is published as: E. Siahaan, A. Hanjalic, J.A. Redi, A Reliable Methodology to Collect Ground Truth
Data of Image Aesthetic Appeal, IEEE Transactions on Multimedia 18(7), 1338 - 1350 (2016) [63]
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2.1. INTRODUCTION

The importance of multimedia systems that comply to specific user states and needs has

been widely acknowledged, as more studies appear that attempt to optimize multime-

dia systems according to, e.g., the user affective state, cultural background, and social

context [64, 65, 66]. Facilitating user preferences and affective state to guarantee high

Quality of Experience (QoE) [4] is therefore of major interest when developing multime-

dia systems. A hot topic within this trend is computational aesthetics [67, 68, 69, 70].

Computational aesthetics aims to build models that can automatically quantify the

aesthetic appeal of media. According to the Oxford Dictionary, an aesthetic object is

“Giving or designed to give pleasure through beauty.” 1 Therefore, understanding the

mechanisms that regulate the aesthetic preferences of users with respect to media (e.g.

images) is essential to improve users’ overall satisfaction with a system. In the past few

years, aesthetic appeal has been shown to be critical in determining the perceptual qual-

ity of images [12], preferences in visual summarization of large image collections [71],

and in steering image retrieval and photo-editing recommendation systems [67, 47].

To design models that predict the aesthetic appeal of an image as perceived by a

user, based on image and/or user properties, the availability of ground truth for model

training and/or validation is vital. Such ground truth consists of a set of images, each

provided with a numerical aesthetic appeal rating (often referred to as mean opinion

score, or MOS) that represents the target of the prediction model. These MOSs are the

mean of individual ratings given by a pool of users evaluating the images. As these indi-

vidual ratings act as random variables (i.e. there is no determinate outcome that can be

associated with every single individual rating), it is important that the ground truth, as

expressed in MOSs, is both reliable and repeatable.

Reliability is verified when high agreement exists in the ratings that the different

users gave to the same image. High variability in users’ individual ratings results in low

confidence in MOS estimation: the value obtained from the participants sample may

vary within a large confidence interval (CI). Feeding a model with poorly reliable MOSs

as target labels will lead to learning values that have high uncertainty, and therefore may

be inexact. In addition, wide CI lead to statistical indistinguishability of a large num-

ber of MOSs (and therefore images), making discrimination between beautiful and less

beautiful images more difficult.

Repeatability implies that the aesthetic appeal ratings are as independent as possible

of the specific experiment in which the images were evaluated. Various factors in an ex-

1[Online]. Available: http://www.oxforddictionaries.com/definition/english/ aesthetic
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periment session (environmental conditions, user sampling, scaling methodology, etc.

[72]) can bias the individual ratings as well as the MOSs. It is possible that very different

MOSs are obtained when the same set of images is re-evaluated in a different experiment

session (even simply with a different set of users). This can happen (and is yet more wor-

risome) even when MOS are highly reliable (have small CI). Thus, both repeatability and

reliability need to be verified when choosing ground truth for training computational

aesthetics models.

Literature on psychometrics (study of users’ quantification of their perception of a

certain attribute of a stimulus) has often pointed out that many factors may influence

the reliability and repeatability of collected data, such as the test instructions, range of

stimuli, rating scale, etc. [73, 72, 56, 74, 54, 75]. In fact, recommendations or best prac-

tices exist for conducting experiments to collect subjective image ratings; yet they mostly

target perceptual quality assessment [52, 56], and it is unclear whether they can be ex-

tended directly to the domain of aesthetic appeal. As shown in [58] and [76], aesthetic

appeal assessment is impacted by individual differences much more than perceptual

quality assessment. Moreover, aesthetic appeal assessments have been found to be less

repeatable than image quality ones [57]. Therefore, there is a great need to establish best

practices on how to perform aesthetic appeal evaluations that ensure repeatable and re-

liable ratings.

Among experimental design factors, two seem to have a prominent role in repeata-

bility and reliability: the scale used to rate images, and the experimental environment.

Studies in computational aesthetics have used a wide variety of rating scales (i.e. the

tool used to quantify human perception of a certain attribute of a stimulus, such as the

aesthetic appeal of an image) for collecting data (see Table 2.1), from binary scales to

star-based rating systems. It is known, though, from literature in e.g., image quality as-

sessment [72], that the rating scale needs to be chosen carefully to minimize individual

differences and maximize user agreement in the ratings. This may be the case for aes-

thetic appeal evaluations too.

In addition, we look into the influence of the experimental environment on reliability

and repeatability of the ratings. Specifically, we compare aesthetic appeal assessments

taken in controlled (lab) and uncontrolled (e.g., crowdsourcing) environments. Crowd-

sourcing (CS) has become a very appealing alternative to lab-based evaluations, given

its ability to reach a large number of users with very diverse demographics, in a relatively

short amount of time and for a fraction of the cost that lab-based evaluations would usu-

ally entail [56]. However, the lack of control on task understanding and execution makes

the reliability and repeatability of CS-based ratings questionable, as shown in [57].
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Figure 2.1: Overview of the study: we investigate the effect of experiment environments (laboratory and CS)
and four rating scales (further detailed in Section III) on reliability and repeatability of aesthetic appeal ratings.

As a result, the research questions below call for an answer.

1. Which rating scale maximizes the reliability and repeatability of aesthetic appeal

subjective evaluations?

2. To what extent are subjective aesthetic appeal measurements reliable and repeat-

able, when performed in different experiment environments?

To answer these questions, we perform an empirical study in which we carefully

setup experiments for aesthetic appeal data collection. In performing this study, we fo-

cus on images consumed in web application contexts, such as those found in social me-

dia or blog posts, for which management and retrieval systems are more needed. There-

fore, we cover content and resolutions typical of consumer images retrievable on the web

(detailed in Section 2.3.1). We compare four different rating scales (see Figure 2.1, details

in Section 2.3.2), and check which of these yields the most reliable aesthetic appeal rat-

ings.We repeat aesthetic appeal measurements in a lab (highly controlled) environment

first, and later on in a CS (less controlled) environment. We then check if there are dis-

crepancies between the resulting measurements, and when applicable, we investigate
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their causes, eventually defining clear recommendations on how to perform subjective

evaluations of image aesthetic appeal in the different environments to promote more

reliability and repeatability.

The rest of this chapter is organized as follows. Factors potentially influencing relia-

bility and repeatability of aesthetic appeal ratings are reviewed in Section 2.2. Section 2.3

gives an explanation of our experimental setup. Section 2.4 presents the measurements

we use to analyze reliability and repeatability of aesthetic appeal ratings. In Section 2.5,

we discuss our observation on reliability of aesthetic appeal evaluations, and in Section

2.6 our observation on their repeatability. We conclude this chapter in Section 2.7.

2.2. RATING SCALES AND EXPERIMENT ENVIRONMENT FOR IM-

AGE AESTHETIC APPEAL ASSESSMENTS

Different rating scales and experimental environments affect the reliability and repeata-

bility of image and video evaluations in general, and image aesthetic appeal in particular.

As rating scales are related with scaling methodologies, we firstly present a brief discus-

sion of scaling methodologies.

2.2.1. SCALING METHODOLOGIES

Sorting visual media, such as images or videos according to their perceived attributes,

has long been investigated, and resulted in the development of various scaling method-

ologies for quantifying users’ perception and/or preference of visual media [72, 83]. On

top of the large body of work done in psychophysics to scale and quantify users’ sen-

sations and perceptions (e.g. visibility thresholds) [83, 84], the multimedia community

has dedicated efforts to scale and quantify multimedia preferences, related to audiovi-

sual characteristics, as well as user expectations and affective state [72, 85, 86]. Besides

the rating scales, an important element in the scaling methodology is the way in which

stimuli are presented to users, which we will discuss first.

Aesthetic appeal evaluations are typically based on Single Stimulus (SS) methodol-

ogy [77, 67, 80, 70, 57]. Users are presented with one image at a time and evaluate it on a

given rating scale before being presented with another image. The way users rate images

in photo-sharing websites also follows this methodology [68, 81]. The SS methodology

allows fast evaluations of large sets of images, but can promote unreliability in ratings,

since it is not always straightforward for users to quantify their experience of an image

without having references [72, 85]. In the field of perceptual quality assessment, where

the evaluation task consists of quantifying annoyance induced by visual distortions in
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images and videos, the limitation of SS has been addressed by the use of Double Stimu-

lus (DS) methodologies. Here, a reference (undistorted, pristine) image or video is shown

along with the (distorted) images or videos to be rated, to function as visual anchor. This

reduces the rating task to the task of image comparison [72]. Examples of DS method-

ologies that have been used in image quality assessment studies are the DS continuous

quality scale (DSCQS) [52], DS impairment scale [52], paired comparison [53, 83], and

the quality ruler (QR) [85]. The QR method [85], in particular, has been proven to provide

more reliable measurements than SS [75]. It is based on the comparison of each image

with a set of images (visual anchors) equally spaced in perceptual quality, spanning a

predefined quality scale. The users’ task is then reduced to comparing the current im-

age with the visual anchors and scoring the image with respect to the anchor’s position

on the scale. This has been shown to lead to higher inter-rater reliability for perceptual

image quality; so far, no adaptation has been proposed for aesthetic appeal. In fact, DS

methodologies are not easy to apply for image aesthetic appeal evaluations: it is very

difficult, if not impossible, to determine a ‘reference’ image with maximum aesthetic ap-

peal.

In our study, we resort to using SS methodology, as is commonly adopted in compu-

tational aesthetics studies. However, we also adapt the QR method through one of our

rating scales (see Section 2.3), to check the reliability of the scores when users have the

ease to assess images through comparison with visual anchors.

2.2.2. RATING SCALES

Studies in perceptual quality assessments looked into the effect of rating scales on the re-

liability of image and video evaluations [74, 87]. Although the evaluations using different

rating scales could correlate well with each other in [74], analysis on data collected from

different experiments in [87] points to rating scales having an effect on the MOS reliabil-

ity. The study compared the standard deviations (SDs) of mid-range MOS obtained from

different experiments using 5-point discrete and 11-point discrete absolute category rat-

ing (ACR) scales, and 100-point discrete and continuous scales (DSCQS methodology).

The continuous rating scales gave a lower SD around MOS compared to the other rating

scales.

In the field of computational aesthetics, different studies have collected aesthetic ap-

peal ratings based on different types of rating scales: either discrete or continuous, with

numerical or categorical labels, even binary (see Table 2.1). However, very few have paid

attention to the reliability and repeatability of the ratings produced by these scales. In

[77], a comparison of image aesthetic appeal MOS using a 10-point scale and binary
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scale (like/dislike) was presented, showing an acceptable, albeit relatively low, corre-

lation between the two (Pearson correlation coefficient of 0.59), posing a question on

repeatability of aesthetic appeal evaluation with different rating scales. However, the

evaluations with each rating scale were performed in different experimental settings, so

it is difficult to pinpoint the factor that generated this lack of repeatability. Moreover, the

comparison does not include an in-depth analysis on how reliable the image aesthetic

appeal evaluations were per rating scale. In fact, a proper reliability analysis is almost

never reported along with the outcomes of image aesthetic appeal evaluations.

2.2.3. EXPERIMENT ENVIRONMENTS

For a long time, subjective tests for the assessment of perceptual quality have been per-

formed in controlled lab settings. In this type of setting, users are asked to perform their

evaluation of some image or video stimuli in a controlled room/laboratory, with fixed

size monitor, lighting level, viewing distance, and display calibration, for which the In-

ternational Telecommunication Union (ITU) has published recommendations [52]. In

real life, though, users are less likely to see an image or watch a video in a setting such as

that recommended for lab experiments. Consequently, researchers have started looking

into the assessment of (perceptual) quality in less controlled environments [54, 55]. A

large body of work has started exploring the feasibility of CS [56]. Nevertheless, some

initial concerns have been raised about reliability and repeatability of e.g. video QoE

assessment in CS [88, 56].

In work related to computational aesthetics, as shown in Table 2.1, studies in con-

trolled lab environment [67, 80, 70, 79] have also been complemented by evaluations in

uncontrolled environments such as CS platforms (e.g., MechanicalTurk2 or Microwork-

ers3) [77, 57], or photo-sharing websites [81]. CS-based evaluations differ from photo-

sharing website-based evaluations for two fundamental factors: 1) the presence of a

monetary compensation for the evaluators, and 2) the existence of a specific evaluation

protocol. In this study, we choose to use CS platforms instead of photo-sharing websites,

to represent uncontrolled experiment environments. This is to keep the subjective test

setup (i.e. instructions, experimental protocol, presentation methodology) as close as

possible to the lab experiment, for easier comparison.

Although allowing a higher level of control with respect to ratings in photo-sharing

websites (CS tasks can be designed in a very rigorous way), the remote nature of the ex-

perimental task distribution in CS still poses some serious concerns about reliability and

2[Online]. Available: https://www.mturk.com/
3[Online]. Available: https://microworkers.com/
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Figure 2.2: Examples of (a) consumer photographs, and (b) abstract images used as stimuli in our experiment

repeatability of the collected ratings. In fact, previous work related to aesthetic appeal

evaluation has shown conflicting results. In [77], the aesthetic appeal ratings obtained

in CS and lab for the same set of images presented a rather low correlation. Neverthe-

less, the CS and lab experiments used different scale types, and the number of users in

the lab experiment was very small (8 people). Also in [57], aesthetic appeal ratings col-

lected in lab and CS were found to have a low correlation. The lab and CS experiments

used a similar type of scale, a 5-point ACR scale, however, the graphical user interface

where the scale was presented was different, which the authors argue may have affected

the results. Further reasons for the discrepancy could be a lack of comprehension of the

test instructions in CS, and/or a tendency of the crowd-workers to perform the task in

a less-than rigorous way. These problems are known in the community [16], and it is

so far unclear whether it is possible to overcome them towards reliable and repeatable

evaluation of aesthetic appeal in CS.

2.3. EXPERIMENTAL SETUP

To investigate the effect of rating scales on the reliability of aesthetic appeal ratings,

we compared in a controlled lab setting the reliability of the aesthetic appeal ratings
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collected using four different types of scales (described in Section 2.3.2). Then, to ad-

dress the effect of experiment environment on rating repeatability and reliability, we

compared ratings collected in the controlled lab setting with those collected through

CS (which setup is described in Section 2.3.3).

2.3.1. STIMULI

Fifty four images were selected to be used in this experiment, following the design choices

of previous literature devoted to the comparison of reliability and repeatability of sub-

jective ratings [74, 89, 75, 90, 91]. Although this number of images may be lower than that

of images used in studies aimed at collecting ground truth for model training, it has been

shown to be sufficient to estimate with good confidence reliability and repeatability of

evaluations [74, 89, 75, 90, 91].

Of the 54 images, forty were consumer photographs, in line with our application sce-

nario. As literature suggests that “the bigger-the better” does not apply for image aes-

thetic appeal [92], we focused on the type and size of images typically used in social

media and blog posts. We selected a subset of the 200 images used in [57]. The pho-

tographs were JPEG and BMP images with sizes ranging between 600 × 600 and 720 ×

478 pixels, in line with image sizes adopted in previous studies targeting similar applica-

tions [77, 67, 81]. The subset uniformly covered a wide range of aesthetic appeal, as well

as a wide range of content categories. All JPEG images were compressed at a high qual-

ity to avoid the appearance of blocky or blurry artifacts. The remaining fourteen images

were abstract images generated using Jene evolutionary art program [93], based on [94].

These were included to challenge the scale usage, as it is known that users disagree the

most on assessing the beauty of abstract images [95]. The abstract images were 256 × 256

PNG images. Examples of the images used in our experiments can be seen in Figure 2.2.

2.3.2. RATING SCALES

Four types of scales were compared in our experiment, as shown in Figure 2.3. First, we

included a scale commonly used in image/video quality testing, being advised by the

ITU [52], and adopted in [72]: the discrete 5-point ACR scale [hereafter referred to as

ACR, see Figure 2.3(a)]. The scale has five category levels “Bad—Poor—Fair—Good—

Excellent” attached to it that are equally spaced along a linear scale. Users evaluate the

aesthetic appeal of images by choosing one of the category levels.

To check whether continuous scales would provide more reliable MOS than the dis-

crete ACR (as found in [87]), we also included in our experiment a continuous scale

with 5-point category labels corresponding to those in the discrete 5-point ACR scale.
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A continuous scale might also provide more flexibility for users, as they would not have

to round up or down the rating of an image when they think it is positioned more in-

between two aesthetic appeal levels. This scale (referred to as CONT) is shown in Figure

2.3(c).

The next scale used in our study is one that we implemented based on the QR [85].We

were interested in observing whether or not the presence of visual anchors would be

beneficial for the reliability of the aesthetic appeal scores. Thus, we presented a scale

with semantic labels [“Ugly” and “Beautiful” were placed at the extreme ends of the scale,

see Figure 2.3(b)], as well as three visual anchors attached to it, equally spaced across the

length of the scale. We will refer to this scale as VA. The function of the visual anchors was

to indicate visually the level of image beauty a certain part of the scale corresponded to.

Three anchors were selected: one to characterize the top (right) part of the scale (beauti-

ful images), one for the middle part of the scale, and one for the bottom (left) end of the

scale (ugly images).We chose the visual anchors based on an existing dataset of images

rated in terms of aesthetic appeal [57]. The beautiful image [right-hand side of Figure

2.3(b)] was selected among those from [57] rated in the range between the third quartile

and the maximum of the aesthetic appeal ratings distribution. The image characterizing

the middle part of the scale was selected as the one with the aesthetic appeal score clos-

est to the median of the aesthetic appeal distribution. Finally, the image representing

ugly images was chosen from those that had aesthetic appeal values in the range be-

tween the minimum and the first quartile of the aesthetic appeal ratings distribution of

the image set [57]. The images characterizing the top and bottom parts of the scale were

not positioned at the scale ends but slightly towards the center, so that room was left to

rate images deemed more beautiful or uglier than the above-mentioned anchors.

Finally, we included a binary scale (BIN), with which users solely needed to tick a

box when they thought the image was beautiful. This scale was chosen as it implements

a straightforward evaluation method that demands low cognitive load, and has shown

to yield comparable judgment with a 10-point discrete scale in a previous study [77].

Moreover, it might be an easy scale for users to interpret and use, especially in an uncon-

trolled setting such as the CS platform. The interface that we used for this scale is shown

in Figure 2.3(d).

2.3.3. CONTROLLED LAB EXPERIMENT SETUP

24 users took part in the lab experiment. Each user had to perform four subtasks in one

session. In each subtask, users were asked to rate all the images using a particular rating

scale. To avoid learning effects in the ratings, users were presented with each scale in
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a different order. At the beginning of the experiment, users were given a brief explana-

tion of the experiment setup and their tasks. They were not aware of the experiment’s

purpose (i.e., to compare the effect of using different rating scales on aesthetic appeal

evaluation). Before each subtask, an explanation was given on how to rate images using

the scale for that subtask. Two training images were then shown so that the user could

get used to the scale interface. The user could then proceed with the task. After the sec-

ond session, there was a short break to prevent fatigue and minimize memory effects on

the image ratings. After the four subtasks, a questionnaire was filled in, asking the user

to rank the four scales based on the preference of usage. One session of the experiment

took 30 minutes on average. Figure 2.4 shows the interface presented to users for rating

an image.

As recommended for subjective evaluations related to image and video perceptual

quality [52], our lab experiment was performed in a fixed environmental setup for every

user. The viewing conditions in the lab experiment were set with constant illumination

at approximately 70 lux, using a 23” LED backlight monitor at 1920 × 1080 resolution.

Users were sitting approximately 70 cm away from the display. There was no time con-

straint on image observation and scoring.

2.3.4. CS EXPERIMENT SETUP

The CS experiment aimed at establishing whether aesthetic appeal evaluations perform-

ed in a lab setting were repeatable (and as much reliable) in a less controlled environ-

ment, and whether this repeatability would depend on the specific scale used. Thus,

we set up a series of campaigns on Microworkers to evaluate the image set with all four

scales. After accessing the campaign page, workers4 followed a link to a webpage from

where the evaluations would be performed. Images and scales were presented through

the same interface as in our lab experiment (Figure 2.4). The webpage used for our ex-

periment was built using Ruby on Rails 55 version 2.2.2.

Since CS tasks need to be kept short to maximize workers engagement (and serious-

ness in carrying out the task) [96], we divided the 54 images into 3 sets for 3 campaigns.

To make sure every set of images in a campaign would span a similar range of aesthetic

appeal, five fixed images with significantly different levels of aesthetic appeal were in-

cluded in every set. Based on aesthetic appeal scores from the lab experiment, we chose

images with the minimum MOS, MOS closest to the 25th, 50th, and 75th percentile of

the aesthetic appeal MOS distribution, and the maximum MOS. This practice has been

4For the crowdsourcing experiment, we will refer to participants/users as “workers.”
5[Online]. Available: http://rubyonrails.org/
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shown to be effective in limiting context effects in the aesthetic appeal ratings [96]. A

Kruskal–Wallis test was performed to ascertain that the five images’ scores were statis-

tically different (χ2 = 56.54, df = 4, p = 0.000). Further check with pairwise comparison

showed that except for the pair of images corresponding to the 25th and 50th percentile

of the MOS distribution, all other pairs were indeed statistically different. In the end, two

campaigns included 21 images and one campaign included 22 images.

The task of each worker was to rate all images in one set, in a single campaign. For

each campaign, workers were given instructions on how to use the scale in that cam-

paign to evaluate images, and two training images were first shown to familiarize them

with the scale interface. To control for workers’ trustworthiness and commitment to the

task, two content questions were added to each campaign, in the form of multiple choice

questions after certain images, asking the workers what the main object was on the last

image they saw.

For each scale type, 3 campaigns were set up, giving a total of 12 campaigns. 30 to

44 workers participated in each campaign, and every worker could only take part in one

campaign. This was to maintain the workers naive about the presence of content ques-

tions (avoiding therefore learning effects on task completion). Workers’ origin was re-

stricted to countries with recognized proficiency in English (English-speaking countries

and Western Europe), to avoid language barrier in understanding the instructions of the

task. Each worker received $0.50 for the completion of one campaign.

2.4. DATA AND ANALYSIS PREPARATION

2.4.1. MOS CALCULATION AND OUTLIER ANALYSIS

The individual aesthetic appeal ratings for each image i and observer n (Opinion Scores

OSs (i ,n))were obtained from each rating scale s as follows. For ACR, each category label

was converted to a rating score of 1, 2, 3, 4, and 5, respectively, with 1 corresponding to

‘bad’ and 5 corresponding to ‘excellent’. For CONT, ratings were translated into scores

between 0–100, with the 5 category labels having the scores 0, 25, 50, 75, and 100, re-

spectively. Ratings on the VA scale were similarly translated into scores between 0–100,

with 0 being the extreme closest to the ‘ugliest’ visual anchor. For BIN, when a user rated

an image as ‘beautiful’, the image was assigned a 1, and 0 otherwise.

Before conducting any analysis of the data collected from our experiments, a pre-

processing step was necessary. For data collected in the lab, we calculated the mean

opinion scores (MOSs) of every image i as rated on scale s, by averaging the individual

opinion scores of the N users rating i on scale s
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Figure 2.4: Interface presented to user for rating an image’s aesthetic appeal

MOSs (i ) = 1

N

N∑
n=1

OSs (i ,n) (2.1)

with OSs (i ,n) being the individual rating for image i on scale s by user n. For all scales,

we performed outlier detection.

Outlier users were removed if their scoring behavior was considered random (i.e.,

significantly uncorrelated to the rest of the user population), according to the procedure

recommended in [52]. A random scoring behavior was detected if, within the set of im-

ages, multiple ratings of a user were higher than the MOS plus twice its SD and multiple

ratings were lower than the MOS minus twice its SD (so, the scoring behavior was not

systematically higher and lower of that of the population, but randomly either higher or

lower) [52]. One user in our lab experiment resulted to be an outlier and was discarded

from the data analysis.

For the CS experiment results, we considered best practices for analyzing data gath-

ered through CS [56], and conducted several steps to filter out possibly unreliable work-

ers. We firstly filtered workers that did not show sufficient commitment to the task, i.e.

did not give the right answers to the content questions, or did not rate all 21 or 22 images

in the campaign they participated in. We then performed outlier analysis based on time

statistics and scoring behavior [57]. We check the time statistics by adapting the outlier
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Table 2.2: Overview of the number of workers considered unreliable according to the criteria defined in Section
2.4.1

Campaign

#

Total

Workers

No. workers

giving correct

answers to

content questions

No. workers

completing

the test

Time

statistics

Outlier

detection

Final

number of

subjects

1 30 28 28 No outlier No outlier 28

2 30 23 22 No outlier 1 outlier 21

3 31 29 29 No outlier 2 outliers 27

4 39 33 32 No outlier No outlier 32

5 44 24 22 No outlier No outlier 22

6 32 31 31 No outlier No outlier 31

7 31 30 29 No outlier No outlier 29

8 44 31 30 No outlier 1 outlier 29

9 33 32 32 No outlier No outlier 32

10 32 31 31 No outlier n/a 31

11 34 29 28 No outlier n/a 28

12 33 31 30 No outlier n/a 30

detection in [52], where for each image in a campaign, the mean and SD of time taken

to rate the image was calculated. For every worker, then, we computed the number of

images whose rating took a time outside the interquartile range of the worker’s rating

time for that image. Workers who rate more than half of the images in a time outside this

interquartile range were considered as outliers. Outliers were also removed if a random

scoring behavior was detected [52], as already done for the lab experiment participants.

However, the outlier detection was not applicable on binary data. Details of the filtering

performed on our CS data are given in Table 2.2. The table shows that from the 12 cam-

paigns, more than 75% of the data could be retained in 9 campaigns. Most of the data

was discarded due to incorrect answers to the content questions.

After the data filtering, we also aligned the ratings from the different scales to be

expressed within the same numerical range. We chose as a common range that of the

ACR scale, i.e. [53, 4]. We used linear normalization to rescale our data collected with

VA, CONT, and BIN scale types.

2.4.2. RELIABILITY MEASUREMENTS

To evaluate reliability of subjective ratings, some well established statistical indicators

exist that are widely used across different domains of study. These indicators serve as

diagnostic tools for reliability, and their accuracy is independent of the quantity evalu-

ated. Two of these indicators, which we adopt in this chapter, are Cronbach’s alpha and

the inter-rater correlation coefficient (ICC). Literature on interrater reliability stresses
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the importance of interpreting reliability values in comparison with those from studies

using similar subjective assessment methodologies [97]. Therefore, in addition to Cron-

bach’s alpha and ICC, we look into reliability indicators used in studies of perceptual

quality assessment, namely the SD of opinion scores (SOS) hypothesis [98], the subject

bias [99], and the scale discriminative power [74]. Below, we describe in more detail

each of the reliability measurements that we use. Each measure is computed per scale

and experimental environment (lab and CS) separately.

Cronbach’s Alpha: Cronbach’s alpha is a widely established statistical measure for

internal consistency, often used to check if different test items in a questionnaire con-

sistently measure the same construct. Alpha is obtained by computing the average of

correlations between scores for each pair of items in a questionnaire. In our study, we

consider users as questionnaire items and the images the different subjects. Our goal

is to verify that users are measuring the same underlying construct, i.e. aesthetic ap-

peal of images. Thus to measure the reliability of the different scale types, we calculate

Cronbach’s alpha on the individual ratings of every user for each image in the set. A high

Cronbach’s alpha would indicate that on average, the ratings of every user for the image

sets are positively correlated, hence denoting high agreement (at least in the ordering of

the images).

2) Intra-Class Correlation Coefficient: ICC is the most widely adopted indicator to

measure interrater reliability, and measures the extent to which the variance in the data

is due to the fact that different images are being rated with respect to the variance of rat-

ings between users. A high ICC indicates that most of the variance can be explained by

differences in the images, and not by individual differences in their evaluations by the

users, thus indicating a high degree of agreement among users. Low ICC indicates poor

interrater reliability. For the lab data, we used a two-way random model with absolute

agreement to calculate the ICC of each scale type. To check reliability in CS settings,

because not all images were rated by the same users due to the fact that they were sub-

divided in campaigns, we used a one-way random model [96].

3) SOS Hypothesis: The SOS hypothesis was proposed in [98] to measure consistency

in subjective QoE measurements. The hypothesis models a square relationship between

the SOS and the MOS. Per each scale s, the SOS of image i is given by the following equa-

tion:

SOSs (i ) =
√√√√ 1

N

N∑
n=1

(OSs (i ,n)−MOSs (i ))2 (2.2)

and the SOS hypothesis for a 5-point scale (i.e., the range within which we normalized
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all MOS from all scales) is given by [98]:

SOSs (i )2 =α(−MOSs (i )2 +6MOSs (i )−5). (2.3)

The parameter α represents the extent to which the SOS changes depending on the

MOS values. A bigger value of α gives a steeper quadratic curve indicating that the SOS

towards the middle scale value (e.g. 3 in a 5-point scale) is considerably larger than the

SOS of the values toward the ends of the scale range. This translates to a wider (95%) CI

especially in the middle of the scale, as shown by Equation 2.4, indicating lower agree-

ment among users.

C Is (i ) = MOSs (i )± (
1.96∗ SOSs (i )p

N

)
. (2.4)

To obtain reliable evaluations of image aesthetic appeal, we would favour rating scales

that show lower SOS hypothesis α value compared with the other scales.

4) Scale Subject Bias: The notion of subject bias was proposed in [99], as part of a

model for user rating behaviour. In the model, the rating expressed by user n for image i

on scale s is expressed as

OSs (i ,n) = MOSs (i )+∆n,s +εi ,n,s (2.5)

with∆n,s being the subject bias characterizing the rating behavior of user n, and εi ,n,s an

error term for scale s and image i. Subject bias is computed per user: the smaller it is,

the closer the user rating is to the image true value, estimated as the MOS. It may be the

case that different types of scales intrinsically lead users to express different opinions: in

such case, we would expect subject bias values to be high for all users. In the following,

we use the mean subject bias across all users using a given scale in a lab experiment or

CS campaign to characterize the reliability of such scale.

5) Scale Discriminative Power: The scale discriminative power [74] indicates to what

extent a scale delivers MOSs that are clearly discriminable (i.e., significantly different)

for a given pair of images. In [74], the scale discriminative power is calculated as the

percentage of pairs of stimuli that had significant differences through ANOVA tests fol-

lowed by post-hoc multiple comparisons using the Bonferroni method. Ideally, if a scale

had full discriminative power, all MOSs had negligible SD, indicating high agreement

across users and hence high reliability. In this chapter, we measure each scale’s discrim-

inative power as the percentage of pairs of images that are statistically different using a

Kruskal–Wallis tests followed by multiple pairwise comparisons.
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2.4.3. REPEATABILITY MEASUREMENTS

For repeatability measurements, we evaluate whether the MOS produced by different

scales in different environment are compatible, in terms of (linear) ranking and distri-

bution. Also in this case, we resort to indicators that are independent on the quantity for

which repeatability is being assessed. Specifically, we use the following measures:

1) Pearson Correlation: We use Pearson correlation to verify MOS(i) (per each scale s)

collected in our lab and CS experiments are linearly related, i.e. if their values grow in a

linear monotonic way across different rating scales and environments.

2) Rating Distribution Shape: Since correlation is independent on the absolute value

of the MOS, we further check if ratings collected on different scales and in different en-

vironments cover similar aesthetic appeal range and have similar distribution. We com-

pute the skewness of the individual scores distributions, and we calculate pairwise the

Kullback–Leibler divergence between the rating distribution per environmental condi-

tion. The lower the distance, the more similar the distribution. In addition, similar skew-

ness values point to distributions with similar shape.

2.5. RELIABILITY OF AESTHETIC APPEAL EVALUATIONS

We performed three analysis related with reliability of aesthetic appeal scores across rat-

ing scales. The first targets the ratings obtained in the lab environment. The second

targets the lab ratings of the subset of abstract images. As it has been observed that peo-

ple disagree most when assessing the beauty of abstract images [95], it is interesting to

check the extent to which the four scales would still deliver reliable ratings. The third

analysis concerns the ratings obtained in the CS environment.

2.5.1. RELIABILITY OF RATING SCALES IN LAB ENVIRONMENT

In our lab experiment, every user went through four subtasks in which they rated all

images using the four different scales. We firstly observed whether or not this procedure

had an effect on the users’ ratings, in the form of learning or memory effects due to

rating the same images four times, albeit on different rating scales. As reported in our

previous analysis [100], each scale yielded highly correlated MOSs across subtasks (p >

0.93 in all cases). This correlation remained stable throughout the experiment, as shown

in Figure 2.5. Each column represents the correlation between the MOSs obtained for

each possible pair of scales, when MOSs are computed based only on the users who used

those scales in a specific subtask. The high correlation then was not due to learning or

memory effects. If a learning or memory effect was in place (e.g., users attempted to
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Figure 2.5: Correlation between MOS of the four scale types through the four subtasks in lab experiment.

give always the same score to the same image across the scales), we would expect the

correlation to grow over subtasks, but that is not the case.

We proceed with our reliability analysis by computing the measures outlined in Sec-

tion 2.4.2. We first look at the SOS hypothesis α values of the four scales, as shown in

Table 2.3. The α values for ACR, CONT, and VA are comparable to each other, and are

similar to those obtained for evaluations of QoE in other domains such as web surfing

and cloud gaming [98], for which α values usually range between 0.2342 and 0.3497 (al-

beit higher than those typical of perceptual image quality assessment tasks). The α for

BIN, instead, is three times bigger. This implies that the SD of the MOSs obtained with

BIN is higher, on average, than obtained with ACR, CONT, or VA. On the other hand, the

Cronbach’s alpha and ICC value of the four scales are similar, and close to 1, which indi-

cates high correlation of image ratings among different users, and low variability of rat-

ings for the same image, respectively. It is important to note that an ICC > 0.9 is typically

considered to indicate excellent inter-rater reliability. Nevertheless, it is well known that

the sensitivity of Chronbach’s alpha decreases as the number of raters increases, thus

this result may not be very representative.

The average subject bias values for ratings on the four scales are comparable with

those of subjective data mentioned in literature, having absolute value mostly between

0 and 1 [99]. With the average subject bias measure, we see again that the BIN scale

performs differently than the other three scale types. This could be an indication of users
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Table 2.3: Comparison of reliability measures for ACR, VA, CONT, and BIN based on lab experiment

SOS hypothesis
alpha

Cronbach’s
alpha

ICC
Average

subject bias
Scale discriminative

power

ACR 0.24 0.94 0.942 0.281 26.48%
VA 0.24 0.94 0.944 0.231 24.95%

CONT 0.25 0.94 0.939 0.290 25.58%
BIN 1.04 0.93 0.890 0.441 22.43%

having difficulty interpreting the binary scale; in fact, several users in the lab experiment

indicated after their session that they had doubts deciding their “internal boundary”

above which an image would be judged as beautiful. This might also explain the scale

VA having the lowest subject bias among the scales. The design of the VA scale reduced

the rating task to a comparison one, making it easier for users to interpret where they

should locate the position of the scale for a particular image.

For the calculation of scale discriminative power, in all cases, the Kruskal–Wallis test

found a significant effect of the image content on individual ratings (for ACR: df = 53,

chi 2 = 549.38, p = 0.0; for VA: df = 53, chi 2 = 543.76, p = 0.0; for CONT: df = 53, chi 2

= 534.89, p = 0.0; for BIN: df = 53, chi 2 = 453.94, p = 0.0). Here, we see that the ACR,

VA, and CONT scales perform slightly better than the BIN scale. However, compared

with scale discriminative power measured for n-point discrete scales in the assessment

of video quality [18] (around 50%), the discriminative power of the scales in assessing

image aesthetic appeal seems to be generally lower. This result shows less agreement in

general across subjects on image aesthetic appeal compared with image or video per-

ceptual quality, as already pointed out by the SOS values.

In summary, from the measures shown in Table 2.3, we see that ACR, CONT, and VA

are more reliable than the BIN scale, as they yield ratings with higher inter-user agree-

ment. This suggests that for building image aesthetic appeal models, it is more reliable

to use scores collected with ACR, CONT, or VA scales instead of BIN as the model’s target

scores.

2.5.2. RELIABILITY OF RATING SCALES IN ASSESSING ABSTRACT IMAGES

Abstract images are most challenging to be reliably evaluated by users: the lack of a

clear semantic meaning leads users to perform a more affective evaluation of the image,

thereby resulting in lower inter-user reliability [95]. It is therefore interesting to check

whether the different scales can help compensate for the intrinsic unreliability of these

measurements. The results for reliability of abstract image evaluations are presented
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Table 2.4: Comparison of reliability measures for ACR, VA, CONT, and BIN based on abstract images assess-
ment

SOS hypothesis
alpha

Cronbach’s
alpha

ICC
Average

subject bias
Scale discriminative

power

ACR 0.304 0.477 0.403 0.422 0
VA 0.280 0.487 0.381 0.426 0

CONT 0.260 0.615 0.557 0.488 0
BIN 1.045 0.233 0.218 0.699 0

in Table 2.4. The SOS hypothesis α values are comparable (although slightly higher) to

those obtained for the whole image set (Table 2.3). Again, ACR, VA, and CONT show

more reliability than BIN. Looking at the Cronbach’s alpha and ICC values, we see that

the three scale types, ACR, VA, and CONT, also indicate higher reliability than BIN. How-

ever, the Cronbach’s alpha and ICC for the abstract images are considerably lower com-

pared to the values obtained for the whole image set. This could be due to both low

interrater reliability and low variability in the aesthetic appeal of the stimuli. To check

this case further, we observe the average subject bias and scale discriminative power.

The former is almost twice as the average subject bias for the whole image set. In ad-

dition, the scale discriminative power indicates that, on all four scales, no images have

significantly different MOS from others. Details of the Kruskal–Wallis tests performed to

calculate the scale discriminative power are as follows: ACR: df = 13, chi 2 = 17.05, p =

0.197; VA: df = 13, chi 2 = 16.89, p = 0.204; CONT: df = 13, chi 2 = 22.78, p = 0.04; BIN: df =

13, chi 2 = 14.32, p = 0.352. In fact, all of the abstract images had MOS values between 1.5

and 2.7 (in a [1, 5] range). This low variability in the aesthetic appeal of the stimuli par-

tially explains the low scale discriminative power and ICC. We can therefore conclude

that users generally disagreed more in rating abstract rather than real-life images [46],

leading to lower reliability of all scales, with the CONT being seemingly able to provide

more reliable scores than the other three scales.

2.5.3. RELIABILITY OF RATING SCALES IN CS ENVIRONMENT

We verified whether the reliability findings reported for lab experiments would hold in

an uncontrolled environment by repeating the previous analysis (in Section 2.5.1) on

the aesthetic appeal scores collected in CS. For some measures, such as SOS hypothesis

alpha, ICC and scale discriminative power, we calculated the measures for all image rat-

ings given with the same scale type. For the other measures, we calculated the measures

per campaign, as they are specific to the pool of users and stimuli scored. Since each

campaign had different sets of images, we could not average out Cronbach’s alpha and
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subject bias across campaigns.

Our results in Table 2.5 show that in general, the SOS hypothesis α values for the

scales are higher in CS than in the lab experiment. However, the alpha value of ACR

shows to be the most comparable with the alpha values of ACR, CONT, and VA in lab

experiment. The values also confirm that ACR, CONT, and VA yield more reliability than

BIN. When we look at the Cronbach’s alpha values, we see that the values remain similar

to those measured from the lab experiment. This indicates a strong correlation of im-

age scores among different groups of users for every scale type; nevertheless, these high

values may be due to the high number of raters involved (see [101]). The ICC indicator

also shows excellent reliability for the four scales, indicating that users were able to agree

on the ratings of the images, with BIN performing comparable to the other scales in this

case.

The average subject bias values for the four scales in the CS environment are, in gen-

eral, higher than those in the lab. This could be caused by users interpreting the scales

differently in CS, as they had to rely solely on written instructions to carry out the evalu-

ation task. However, in some of the campaigns, the average subject bias for some scales

is smaller or comparable to that of the corresponding scale in the lab experiment. This

happened for one campaign of VA and BIN. The scale that has the lowest average sub-

ject bias in all three campaigns (and most comparable to its average subject bias in lab

experiment) is ACR. Finally, for the calculation of scale discriminative power, details of

the Kruskal–Wallis test performed for each scale type are as follows: ACR: df = 53, chi 2 =

830.66, p = 0.0; VA: df = 53, chi 2 = 656.29, p = 0.0; CONT: df = 53, chi 2 = 737.25, p = 0.0;

BIN: df = 53, chi 2 = 629.23, p = 0.0. From our CS experiment, the four scales show higher

discriminative power compared to that of the lab experiment. An explanation for this

is the smaller number of images being rated in each CS campaign, giving a bigger ratio

of significantly different pairs of images per campaign, and thus a higher discriminative

power on average across campaigns. Similarly to the lab experiment, though, ACR shows

higher scale discriminative power compared to the other three scales.

From the data shown in Table 2.5, then, we could conclude that, among the four

scales, ACR conveys the most reliable judgments in CS, yielding similar (and highest)

user agreement in both CS and lab environments.

2.6. REPEATABILITY OF AESTHETIC APPEAL EVALUATIONS

Having shown that most of the scales above yield reliable MOSs in the lab, and (albeit

to a lesser extent) in CS, we are now interested in looking into the repeatability of image
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Table 2.5: Comparison of Reliability Measures for ACR, VA, CONT, and BIN based on crowdsourcing experiment

Scale
Campaign

Set #
SOS Hypothesis

alpha
Cronbach’s

alpha
ICC

Average
subject bias

Scale
discriminative power

ACR
1

0.268
0.961

0.957
0.300

34.41%2 0.967 0.250
3 0.98 0.255

VA
1

0.353
0.973

0.953
0.503

30.12%2 0.964 0.223
3 0.955 0.591

CONT
1

0.390
0.963

0.951
0.411

31.66%2 0.96 0.441
3 0.968 0.402

BIN
1

1.034
0.943

0.931
0.520

28.30%2 0.946 0.353
3 0.954 0.749

Table 2.6: Pearson Correlation Coefficient of All Image Scores Per Scale Between Lab Experiment and Crowd-
sourcing Experiment

ACR VA CONT BIN

0.872 0.868 0.886 0.899

aesthetic appeal ratings, i.e. whether or not the ratings obtained are consistent across

different experiment environments.

Table 2.6 shows that BIN yields the highest MOS correlation between lab and CS

scores. Nevertheless, we find that the correlation between lab and CS MOS is relatively

high for all types of scale. Given the BIN ratings are considerably less reliable than those

of the other scales (see Section 2.5), the correlation value of BIN may be misleading, and

the MOS values highly uncertain (i.e. varying within wide CIs; depending on the good-

ness of the estimation of the true value of the MOS, correlation values may change).

The individual rating distribution for the four scales in lab environment is shown in

Figure 2.6, while Figure 2.7 shows the rating distribution of the four scales in CS. The

skewness value of each distribution can be found on top of each distribution plot in the

same figures. We see that ACR and BIN maintain their distribution shape more than VA

and CONT between lab and CS experiments. The tendency of ratings to be skewed to-

wards the right or left part of the scale is maintained between lab and CS experiments.

For ACR and CONT, for example, the distributions are skewed to the right in both lab

and CS, while for VA and BIN, the distributions are skewed to the left. These tendencies

possibly hint at scale types creating a positive or negative bias in users when giving their

evaluations (in the case of VA, it may be due to the selection of the anchors). To further

check which scale gives the most repeatability, we computed the Kullback–Leibler diver-

gence between the rating distributions of lab and CS for each scale type. The outcome

is presented in Table 2.7. Among the four scales, BIN shows the smallest divergence be-
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tween lab and CS rating distributions, with ACR following close by after.

Figure 2.6: Rating distribution for ACR, VA, CONT, and BIN in lab experiment environment

Figure 2.7: Rating distribution for ACR, VA, CONT, and BIN in CS experiment environment

As our findings show better repeatability of image aesthetic appeal evaluations from

that presented in previous work on comparing lab and CS experimental results [57], it
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Table 2.7: KL-Divergence Between Distributions of All Image Scores Per Scale Type Between Lab Experiment
and Crowdsourcing Experiment

ACR VA CONT BIN

0.0197 0.0337 0.096 0.0072

is interesting to analyze what might have influenced the repeatability of evaluations in

our case of study. It should be noted that in [57], users were asked to rate images on

other aspects besides their aesthetic appeal, such as the image’s familiarity, colorfulness,

and recognizability. In our experiment, we asked users to only rate image aesthetic ap-

peal. Moreover, we used identical scoring interface between lab and CS, which was not

the case in [57]. This result suggests that aesthetic appeal measurements may be re-

peatable across different environments, given that extra care is put in maintaining the

instructions, and that the scoring interface is identical in the different experiments. An-

other factor that might have influenced repeatability of evaluations between lab and CS

experiments is the simplicity of task given to users. In the previous study, users were

instructed to rate the “aesthetic appeal” of the image presented to them, whereas in our

study, we asked users to rate the “beauty” of the image presented. Although both terms

are synonymous, it could be argued that the term “beauty” is more familiar and easier to

interpret by users, making their task easier to understand. Further work is necessary to

verify whether this is the case.

2.7. CONCLUSION

In this chapter, we looked into the problem of reliability and repeatability of the sub-

jective evaluations of image aesthetic appeal. We performed subjective tests to compare

four different commonly used scoring scales, and also two different experiment environ-

ments (laboratory and CS) to check which would yield the most repeatable and reliable

results. Our study showed that among the four scale types that we used, the 5- point ACR

and the scale with visual anchors yielded the most reliable ratings in lab environment.

Although in CS the rating reliability decreased for all scales, ACR was the one provid-

ing the highest user agreement in this case. We also noted that the continuous scale

with 5-point ACR labels (CONT scale) promoted good reliability compared to the other

three scales when used to assess abstract images, which intrinsically challenge agree-

ment among users. This may indicate CONT to be more suitable for judging artificial im-

ages (e.g. computer graphics), or images spanning a small aesthetic appeal range (in our

case, the abstract images spanned a very limited portion of the aesthetic appeal scale).
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Our analysis also showed that image aesthetic appeal evaluations are repeatable across

different experiment environments, particularly between lab and CS environments, with

ACR and BIN scales giving more repeatability than VA and CONT scales. We note that

the repeatability of image aesthetic appeal evaluations between lab and CS experiments

may be influenced by the presentation of scales or rating methodologies in both envi-

ronments, and the simplicity of the task that users are asked to perform. Although the

BIN scale shows good repeatability across experiment environments, considering the re-

liability measures of ratings obtained with that scale, we do not recommend its usage, as

the aesthetic appeal MOS produced appears to be very imprecise. Summarizing, a con-

tinuous scale with visual anchors or an ACR scale seem to be most appropriate to rate

aesthetic appeal in controlled lab conditions. When using CS, it is necessary to keep in

mind that the reliability of the ratings will decrease, so a larger number of workers (par-

ticipants) may need to be involved. Maximum reliability in CS will be achieved when

adopting an ACR scale, which will also guarantee ratings to be as close as possible to

those that would be obtained by performing the experiment in a controlled lab environ-

ment (repeatability).

In all cases, it is important to keep in mind that reliability of aesthetic appeal ratings

is bounded to be measured with relatively low reliability, when compared e.g., to percep-

tual quality assessment. This is due to individual preferences and background impact on

image appreciation, sometimes even more than that of physical, objectively measurable

properties of the image. Researchers aiming at predicting aesthetic appeal of images

should take this into account: besides selecting a methodology which maximizes relia-

bility (for which we give indication), researchers may want to involve more subjects in

the ratings, so as to increase the confidence with which the MOS is estimated, or even

abandon the prediction of MOS in favor of e.g., individual scores, or distribution of rat-

ings over the rating scale for the same image. In general, finally, when publishing results

of subjective evaluations of aesthetic appeal, researchers should report a reliability anal-

ysis to enable the community to make appropriate choices for the usage of the data as

ground truth.

Of course, the recommendations above are made based on experiments having cer-

tain limitations.We chose to compare four rating scales, and only considered CS to rep-

resent uncontrolled experiment environments. As a result, whether these results can be

fully extended to e.g., evaluations collected through photo-sharing websites needs fur-

ther investigation. Moreover, we did not consider other factors that might influence the

outcome of aesthetic appeal ratings, such as task instructions or range and context ef-

fects (we used the same instructions and range of image across our experiments). An
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interesting direction for future work would be to observe how far image aesthetic appeal

evaluations would be repeatable when the same images are evaluated within different

ranges and contexts. This could provide insights into how to realign image aesthetic

appeal scores from different datasets to provide larger image aesthetic appeal ground

truth.



3
A MIXED METHODOLOGY

APPROACH TO POINT CLOUD

QUALITY ASSESSMENT

In the previous chapter, we addressed the problem of reliably conducting subjective assess-

ments for "highly subjective" quantities. In this chapter, we investigate subjective qual-

ity assessments for point clouds. Dealing with new types of media, for example point

clouds, often brings the uncertainty on how to evaluate their quality, i.e. existing subjec-

tive methodologies may not be appropriate to evaluate these media. This chapter explores

quantitative and qualitative approaches to understand the way users judge point cloud

images, and presents insights on performing subjective quality assessments of point cloud

images.

This chapter is based on: E. Siahaan, J.A. Redi, A. Hanjalic, P. Cesar, Full-reference quality metrics for point
cloud compression based on color distribution, Under Review, (2018)
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3.1. INTRODUCTION

Recent years have seen growing interest in the development of immersive systems, i.e.

systems that create a sense of presence (immersion) by providing highly realistic rep-

resentation of objects or places [102]. Immersive systems have become more accessible

thanks to advanced and cheaper acquisition, display and network technologies, together

with the availability of more computing power. Figure 5.1 illustrates examples of immer-

sive systems, such as a virtual museum exhibition, a multi-party tele-presence system,

and an augmented reality system.

Figure 3.1: Examples of immersive systems (top to bottom, counter-clockwise): virtual museum1, tele-
presence system2, and augmented reality systems2.

Point cloud is one of the technologies used for representing 3D scenes and objects

in virtual immersive systems. A point cloud is a set of points in a three-dimensional

space, that together make up the surface of an object. Point clouds are typically acquired

through depth sensors or multiple cameras, and a point cloud may consist of up to mil-

lions of points. Besides its coordinates in the 3D space, each point may also include

additional attributes, such as its color value, transparency, normal, etc. A point cloud

does not require triangulation computations (as is required for meshes), or heavy pre-

processing, and it is more resilient to noise. All these characteristics make it compelling

to use point clouds as media type for real time immersive systems.

Nevertheless, point clouds may still demand high resources. For example, a high

1Screenshot taken from virtual tour of the Oriental Institute Museum (https://oi.uchicago.edu/virtualtour)
2Images taken from Wikimedia Commons.
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quality point cloud of a human object can contain up to 9∗ 105 points, taking 18 MB

of space. Consequently, much interest is given to point cloud compression technology.

Compression technology is typically evaluated using quality metrics, to observe whether

or not the compressed image or video satisfies consumers’ or users’ expectations for

viewing quality. Various point cloud compression technology have been proposed until

now ([103, 104, 105, 106, 107]), however, not many have looked into its quality assess-

ment ([60, 108, 107]).

Existing studies on the quality assessment of point cloud compression have mainly

shown that state-of-the-art objective quality metrics do not yield scores that correlate

well with human judgment for point cloud compression [20, 108, 60]. Not much insight

has been presented on fully exploring users’ perception of point cloud quality through

different subjective methodologies. One study by Alexiou and Ebrahimi [109] looked into

comparing the use of Absolute Category Rating (ACR) and Double Stimulus Impairment

Scale (DSIS) methodologies to assess point cloud geometry. Their study shows that al-

though the two methodologies are statistically equivalent, the DSIS methodology yields

higher confidence interval for assessing point clouds with compression-like artifacts.

While it is important to understand how different standard methodologies affect

point cloud quality assessment, it is also necessary to investigate what users perceive

when evaluating point cloud quality. As point cloud is a relatively new type of visual me-

dia, we may not be aware of all quality dimensions that users consider in evaluating it,

and consequently be ignoring these dimensions in designing our metrics. This concern

occurred in the past, when other types of new visual technology emerged, for example

3D displays. Research showed that users considered perceived depth as an additional

factor to image fidelity (which traditionally indicates quality), thus bringing forth the im-

portance of evaluating viewing experience and naturalness [49]. To explore the factors

that affect user perception of point cloud quality, we propose to use a mixed methodol-

ogy in our subjective experiments.

This chapter aims to fill in the above research gaps related with the subjective qual-

ity assessment of point cloud compression (PCC). Our contribution in this chapter is as

follows.

1. We perform a user study on a realistic point cloud dataset, using a mixed method-

ology (quantitative and qualitative) to collect ground truth subjective scores, and

investigate more deeply how users perceive degraded point clouds due to com-

pression.

2. We conduct a reliability analysis on the subjective methodology for point cloud

quality assessment, to give insights on how to design subjective assessment tests
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for point cloud quality compression

This chapter is organized as follows. In the next section, we discuss some background

work related to our study. In Section 3.3, we describe the experiments we performed, and

in Section 3.4, we present some analysis on the subjective quality assessment of point

cloud, and observe how users perceive and evaluate point cloud quality. In Section 3.5,

we discuss the main findings of our chapter and their implications. We conclude this

chapter in Section 3.6.

3.2. BACKGROUND

In this section, we describe the type of point clouds and their applications that we con-

sider in our study, and give a short overview of related work to point cloud subjective

quality assessment.

3.2.1. APPLICATION AND DATASETS

There are many application context in which point clouds are utilized, such as 3D im-

mersive tele-presence systems [107], VR content viewing [110], free viewpoint sports

replay [111], indoor/outdoor spatial reconstruction ([112, 113]), and cultural heritage

archiving [114]. In most applications, the point clouds used are complex, i.e. contain-

ing not only 3D-coordinates of the points, but also additional attributes such as color,

normals, reflectance, etc.

Up until now, point cloud quality assessment has mainly focused on point cloud ge-

ometry in their studies [108, 20, 60, 109]. Recently, several point cloud datasets were

made publicly available that provide more complex sequences such as human close-ups

[115], full human body [116], architecture facades [117], and more. These datasets would

allow for quality assessment studies, especially those on QoE, to focus on the types of ap-

plications users would use. We therefore consider these datasets in this chapter.

3.2.2. IMMERSIVE QUALITY ASSESSMENT

In recent years, various types of new media have emerged that offer upgraded viewing

experiences from the conventional 2D images or videos. These include stereoscopic im-

ages/videos, light fields, point clouds, among others. Research has shown that these new

types of media often involve additional factors that influence their quality assessment

other than signal fidelity alone (which is the typical indicator of quality). For example,

when evaluating 3D display technologies, it was shown that image depth perception is

an additional factor to image fidelity, and contributes to users’ overall viewing experi-
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ence and perception of image naturalness [49]. Understanding these factors would help

design better metrics for immersive media.

Not much research has been done on the the subjective assessment of point cloud

quality, and the factors that users consider in their assessments. A study by Zhang et al.

presented a subjective experiment to compare user judgment on point clouds degraded

with coordinate noise and those degraded with color noise, and show that people seem

to be less sensitive to color noise than to coordinate noise[118]. Another study by Alexiou

and Ebrahimi [109] took on comparing the use of two different subjective methodologies

(ACR and DSIS) to assess point cloud geometry. Their study shows that the DSIS method-

ology yields higher confidence interval for assessing point clouds with compression-like

artifacts.

In general, there is still a lack of in-depth analysis on users’ perception of point cloud

quality, for example, what factors users consider when asked to judge point cloud quality.

To answer this question, we propose to perform a subjective experiment using mixed

methodology, i.e. a combination of quantitative and qualitative studies. A qualitative

study would allow users to freely explain and describe their evaluation process, i.e. the

characteristics in a point cloud that influenced their judgment of quality. This could help

discover point cloud features that need to be considered in designing better objective

metrics.

3.3. EXPERIMENT SETUP

We perform a subjective experiment using mixed methodology to evaluate point cloud

compression quality. Our quantitative study aims to collect ground truth subjective

scores, and observe user reliability when assessing point cloud quality. Our qualitative

study aims to explore in more detail users perception of point cloud quality, and un-

cover some quality dimensions that we may consider when building objective metrics

for point clouds. We first explain the dataset that we use to conduct our experiments,

and continue with the setup of our quantitative and qualitative study.

3.3.1. DATASET

Figure 5.2 shows the point cloud sequences that we use in our study. We use 6 frames

from 6 different sequences of full-body humans from [116]. We limit our experiments to

these sequences, and do not include other types of sequences (for example, non-human

objects, or close-up human objects) available through other datasets for the following

reasons. Firstly, we wish to avoid content categories becoming a confounding factor in
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Figure 3.2: Point cloud sequences used in the experiment, from the publicly available 8i Voxelized Full Bodies
(8iVFB v2) dataset [116].

our analysis. Secondly, sequences taken from different datasets often vary in perceptual

quality due to different acquisition techniques.

Each frame of point clouds from the dataset is compressed into 4 different levels of

compression using the compression algorithm in [107]. The compression parameters

used are Level of Detail (LoD) 10, LoD 9, LoD 8, and LoD 7. LoD 10 means that the

compression uses a 10-b octree setting, i.e., 10 quantization bits per direction. In the

rest of this chapter, we refer to compression with LoD 10 as compression level 1, and so

on, compression with the lowest LoD (LoD 7) as compression level 4. We obtain a total

of 24 point cloud sequences to be rated by our participants. During the rendering of the

point clouds, we assign different point sizes for each compression level, such that each

object can be seen in full (i.e., no hollow parts due to missing points can be seen).

We then created video sequences for each point cloud (reference and compressed),

which show the point cloud rotated along the vertical axis. This allows users to have a

360 degree view of the point clouds. The resolution of the video sequences is 1280x720,

and were 40 seconds long each, with 30 frames per second. Figure 3.3 illustrates some of

the viewpoints taken from one of the resulting test videos.

3.3.2. QUANTITATIVE SUBJECTIVE STUDY

We perform a quantitative subjective experiment to obtain ground truth subjective scores

of our point cloud sequences. 23 people participated in the experiment, 6 of which are
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Figure 3.3: In the test video sequences, each point cloud was rotated along the vertical axis such that users had
a 360 degree viewpoint of it.

female and 17 are male. The participants’ age ranges from 22 to 33 years old, and most

of them are naive to point clouds.

A training session was given before the test, so that participants could familiarize

themselves with the task and rating interface. We used different point clouds from our

test set for the training session. Users had full control of the time taken to evaluate a test

point cloud, as they had to press a button on the test screen to display the next pair of

test sequences. A 32 inch DELL UHD 4K monitor was used in the experiment, and users

were seated at a distance of twice the height of the monitor, in compliance with the rec-

ommendation in [53]. The experiment room had controlled lighting as recommended in

[52].

Participants were asked to evaluate the quality of point clouds using a Simultaneous

Double Stimulus presentation, in which the reference point cloud is shown alongside the

test point cloud. Participants were then asked to rate the level of degradation for the test

point cloud using a 5-point Degradation Category Rating (DCR) scale [53]. Following the

current standard in subjective assessments [53], the point cloud sequences were shown

in a non-interactive manner, meaning that participants could not interact with the stim-

ulus and change its viewpoint or its scale. We created two different viewpoint sequences

for our point clouds, to prevent the collected scores biasing one particular viewpoint.

The viewpoints rotate the point clouds along the vertical axis, and slowly zooms in or

out on the point clouds at certain moments. A reference point cloud would always be

shown with the same viewpoint as the test point cloud.

3.3.3. QUALITATIVE SUBJECTIVE STUDY

A qualitative subjective study is performed to allow users to express more freely what

they perceive when asked to judge point cloud quality, and give us a better understand-

ing of how they perceive point cloud quality. In this chapter, we use the Descriptive

Sorted Napping method ([119, 120]). This method presents users or participants with a
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number of test items, and asks them to sort and group the items on a Nappe, or a blank

space, based on how similar or dissimilar users find them. The closer two items are

placed on the Nappe, the more similar they are perceived by a user, and vice versa. After

all items are placed on the Nappe, users are asked to draw a circle around the different

groups of items they have decided on, and write down or explain the similar character-

istics attributed to items in the same group.

This method was originally developed in the food sciences field [119], and recently

has been used in the quality assessment field to explore the way users construct their

judgment of Quality of Experience (QoE) ([121, 122]). We use this method to learn what

attributes users would associate with degraded point clouds when asked to group point

clouds based on their similarity in quality. Participants were given an interface through

a tablet device in which they are presented with a set of numbered blocks and a blank

space that represent the Nappe. On a big computer screen, participants could watch the

point cloud sequences, each corresponding to a numbered block on the tablet. Partic-

ipants could then place the numbered blocks on the Nappe based on how similar they

perceive the quality of point clouds corresponding to each block. Users were allowed

to watch the point cloud sequences multiple times, and were not restricted in time to

complete the task.

Once users were done placing the numbered blocks on the Nappe, they could draw

circles around numbered blocks that they consider to belong in the same group, and

type in the attributes or characteristics related to the perceived quality of that group.

This is done until all numbered blocks have been included in at least one group. This

whole process was explained to participants before they started the task, and they were

instructed specifically to sort and group the point clouds based on the perceived quality.

Figure 3.4 shows the interface used for the study.

3.4. SUBJECTIVE QUALITY ASSESSMENT OF POINT CLOUD COM-

PRESSION

3.4.1. QUANTITATIVE STUDY ANALYSIS

We conducted an outlier analysis on the scores obtained from our quantitative study,

according to the recommendation in [52]. No outlier was found in the analysis. We then

calculated the mean opinion score (MOS) and standard deviation of opinion score (SOS)

of each image.

To compare the level of user agreement in this task with user agreement in other

quality assessment tasks, we calculated the SOS hypothesis alpha [98] of our collected
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Figure 3.4: The interface used to perform the sorted napping experiment. Users could watch the videos corre-
sponding with each number on a computer screen in front of them.

data. The SOS hypothesis alpha represents how the standard deviation of opinion scores

(SOS) changes with the mean opinion scores (MOS) values using a parameterα. A higher

value of α would indicate higher disagreement among user scores. The hypothesis for a

point cloud p is expressed as in Eq. 4.1 below.

SOS2(p) =α(−MOS2(p)+ (V1 +VK )MOS(p)−V1VK ), (3.1)

where V1 and VK indicate the lowest and highest end of a rating scale, respectively.

Table 3.1 shows the SOS Hypothesis Alpha values taken for different image or video

quality assessment tasks, as presented in [98], and the SOS Hypothesis Alpha value for

our study. The table shows that the level of user agreement obtained in our study lies

within the range of alpha values for visual quality assessment tasks. This indicates that

the use of Simultaneous Double Stimulus presentation with Degradation Category Rat-

ing (DCR) scale yields reliable scores for assessing point cloud compression quality in

our study.

Figure 3.5 plots the MOS distribution across impairment levels and content. At the

higher levels of quality (low compression rate), we observe that the content "Soldier" is

significantly rated higher than other contents for the same compression level. We con-

firm this through an ANOVA test on the sequences with compression levels 1 and 2 sepa-

rately; opinion scores being the dependent variable and content being the independent

variable. For both compression levels, the MOS for content "Soldier" has a statistically

significant difference with the MOS for other contents (p<0.05). This may indicate at
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Figure 3.5: Mean Opinion Scores (y-axis) over the different compression levels (x-axis), and content (colored).
Compression level 1 indicates the lowest compression level, and 4 indicates the highest compression level.
Error bar indicates 95% confidence interval.

Table 3.1: Comparison of SOS Hypothesis α Values for Different Quality Assessment Tasks (as reported in [98])

Application and Subjective Study SOS α

Point cloud compression quality assessment (our study) 0.146

Image quality assessment, JPEG images of LIVE dataset [123] 0.0400

Image quality assessment, IRCCyN/IVC Scores on Toyama [124] 0.1715

Video streaming quality assessment, H.264 codec [125] 0.1078

Video streaming quality assessment, MPEG2 codec [125] 0.1137

the higher range of quality, certain characteristics of the content "Solider" could mask

artifacts that users otherwise perceive in other content.

3.4.2. QUALITATIVE STUDY ANALYSIS

Next, we perform a hierarchical multiple factor analysis (HMFA) on our collected data

from the qualitative study, to find shared structures among the individual sortings. Fig-

ure 3.6 shows Confidence Ellipses of the sorted napping configurations obtained through

the study on 24 and 12 point cloud sequences, respectively. The study on 24 point cloud

sequences includes the whole quality range in our dataset, while the study on 12 se-

quences only includes the upper-half of the quality range in our dataset. Each colored

ellipse in the figures represents the spread of each item along the two dimensions that

explain most of the variance of the data. The two dimensions of the plot for the 24 items
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Figure 3.6: Confidence ellipses of the sorted napping configuration for the study on the whole quality range/24
items (top figure) and the upper-half of the quality range/12 items (bottom figure) in our dataset. The suffix
"CLn" indicates the compression level with n=1 indicating the lowest compression level.
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explains 57.51% of variance in the data together, while the two dimensions of the plot for

the 12 items explains 35.59% of variance of the data together. When possible, we place

the name of a point cloud sequence at the center of its corresponding ellipse. The suffix

"CLn" at the end of a sequence name indicates the compression level of the point cloud,

with n=1 being the lowest compression level (and thus, highest quality).

From the plot for the 24 items, participants seem to agree on three clear separate

clusters of items. The two clusters on the negative side of the Dim 1 axis show clusters of

point clouds with highest level of compression (most left-side cluster), and point clouds

of the second highest level of compression. We look into the attributes that participants

associated with these three different clusters, and find that for the high levels of com-

pression (the two lowest quality ranges), participants noted that the point clouds appear

blurry or blocky (due to the large point sizes assigned to the point clouds during render-

ing). Meanwhile, the higher quality point clouds were described as being clear. Some

participants specifically mentioned facial features and patterns in clothing as cues to

judge the clarity of the point cloud videos.

As shown in the Confidence Ellipses plot for the 24 items (Figure 3.6, top figure),

the sequences belonging to the higher levels of quality fall into the same cluster at the

positive side of the Dim 1 axis. To look more closely at how users perceive the quality

of these sequences, we conducted the Sorted Napping study only on these 12 sequences

with different participants, as described in Section 3.3.3. The Confidence Ellipse plot

for the 12 items shows that there are still no clear separate clusters formed from the 12

items.

Looking at the attributes that participants associated with the sequences that fall

into the negative side of the Dim 1 axis for the 12 point clouds, we find that half of the

participants mentioned color distortion to describe these sequences. When asked to

explain what they meant by color distortion, participants commented that some of the

sequences had colors from their clothes projected onto their skin. For example, they

could see some red dots in the skin of the woman in the "Red and Black" sequence, or

some blueish tones on the skin of the man in the "Loot" sequence.

3.5. DISCUSSION

Our subjective experiment aimed to understand better what artifacts users observe when

asked to judge the quality of compressed point clouds. Using mixed methods (combin-

ing quantitative and qualitative studies), we observe that while users looked into the

clarity of faces and overall structure to judge low quality point clouds, they noticed color
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alterations in higher quality point clouds. Having a qualitative study in our experiment

allowed us to have a deeper probe into users’ perception of point cloud quality, and thus

shows what a valuable tool mixed methods can be in quality assessment studies.

We also looked into the level of agreement that users had in evaluating point cloud

quality, compared with user level of agreement in other quality assessment studies. This

user agreement measure is useful to compare different subjective methodologies for the

same task, or different tasks using the same subjective methodology. Future studies

on point cloud quality assessment using the same setup as ours (Simultaneous Double

Stimulus with DCR scale) or a different setup could refer to this study to compare their

obtained level of user agreement.

In this study, we use point cloud sequences that would be closer to users’ application

context compared to point cloud geometry. However, we realize that our experiment

setup may be argued as not being fully ecologically valid. One participant asked in our

studies whether or not we wanted her to evaluate the point clouds as if she was consum-

ing them in a gaming context, or normal viewing context. This brings up an essential

issue: evaluating the quality of experience (QoE) of point clouds depending on its appli-

cation context may need a more elaborate setting that mimics the context as closely as

possible.

Furthermore, we note here that in our experiment, we created our dataset using 24

point cloud stimuli. This means that this study is more of a first step towards more stud-

ies on point cloud quality assessments.

3.6. CONCLUSION

In this chapter, we present a study on the subjective assessment of point cloud image

compression. In our subjective assessment, we perform a mixed method experiment on

24 compressed point cloud stimuli of full human body representations. Our quantita-

tive and qualitative studies were done using the Double Stimulus Impairment Scale, and

Sorted Napping, respectively. Our experiment shows us that users take notice of the clar-

ity of the face and overall structure of the body while evaluating point cloud quality, as

well as color alterations or distortions.

This study is limited to the 24 stimuli that we use in our experiments. No other

dataset of point cloud quality scores is available up until now, which limits our ability

to evaluate our metrics on different point cloud stimuli. We hope that future work on

point cloud quality assessment would result in more datasets available for the research

community. Another future direction would be to look into the effect of user interac-
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tion with the stimuli on quality evaluation. Research on light field images have looked

into this problem, comparing whether or not interactivity (letting users freely change a

stimulus’ viewpoint and focal point poses) would influence the subjective quality assess-

ment of light field images [126]. As point cloud also allows for interactivity, and could be

used in applications that encourage interactivity (such as in VR displays), this research

problem would be worthwhile to look into.
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4
SEMANTIC-AWARE BLIND IMAGE

QUALITY ASSESSMENT

After looking at different aspects of QoE subjective assessments in the previous part, this

chapter marks the start of our research related with objective QoE metrics. We begin by

looking into how semantic categories, as a representation of image content, influence user

perception of image QoE. Afterwards, we propose to incorporate semantic category fea-

tures into no-reference image quality metrics (NR-IQMs), and show that our approach

improves state-of-the-art NR-IQMs.

This chapter is published as: E. Siahaan, A. Hanjalic, J.A. Redi, Semantic-aware blind image quality assessment,
Signal Processing: Image Communication 60, 237-252 (2018).
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4.1. INTRODUCTION

A recent report on viewer experience by Conviva shows that users are becoming more

and more demanding of the quality of media (images, videos) delivered to them: 75%

of users will give a sub-par media experience less than 5 minutes before abandoning it

[127]. In this scenario, mechanisms are needed that can control and adaptively opti-

mize the quality of the delivered media, depending on the current user perception. Such

optimization is only possible if guided by an unobtrusive, automatic measure of the per-

ceived Quality of Experience (QoE) [4] of users.

Algorithms that predict perceived quality from an analysis of the encoded or decoded

bitstream of the media content are often referred to as Image Quality Metrics (IQM), and

are typically categorized into full-reference (FR) or no-reference (NR) methods [8]. FR

methods predict quality by comparing (features of) an impaired image with its original,

pristine version. NR methods, on the other hand, do not rely on the availability of such

reference images, and are therefore preferred for real time and adaptive control of visual

quality.

NR methods often approach the problem of predicting quality by modeling how the

human visual system (HVS) responds to impairments in images or videos [8, 27]. This

approach implies that users’ QoE depends mostly on the visibility of impairments, and

that a measure of visual sensitivity alone is enough to predict visual quality. In this chap-

ter, we challenge this view, and we prove empirically that semantic content, besides

impairment visibility, plays an important role in determining the perceived quality of

images. Based on this result, we propose a new paradigm for IQM which considers se-

mantic content information, on top of impairment visibility, to more accurately estimate

perceived image quality.

The potential to exploit image semantics in QoE assessment has already been rec-

ognized in previous research that investigated the influence of various factors, besides

impairment visibility, on the formation of QoE judgments. Context and user influenc-

ing factors [4, 39, 41, 128, 129], such as physical environment, task, affective state of

the user and demographics, have been shown to be strong predictors for QoE, to the

point that they could be used to automatically assess the perceived quality of individual

(rather than average) users [41]. A main drawback of this approach is that information

about context of media consumption or preferences and personality of the user may

prove difficult to collect unobtrusively, or may require specific physical infrastructure

(e.g., cameras) or data structure (e.g., preference records). As a result, albeit promising,

this approach has limited applicability to date.
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A separate but related trend has instead looked into incorporating in image quality

metrics higher level features of the HVS that enable cognition, such as visual attention

[130]. This has been shown to bring significant accuracy improvements without an ex-

cessive computational and infrastructural overhead, as all information can be worked

out from the (decoded) bitstream. The first steps in this direction have investigated the

role of visual attention in quality assessment [130]. In [44], it was shown that impair-

ments located in salient or visually important areas of images are perceived as more

annoying by users. Because those areas are more likely to attract visual attention, the

impairments they present will be more visible and therefore more annoying. Based on

this rationale, a number of studies have confirmed that, by adding saliency and/or visual

importance information to quality metrics, their accuracy can be significantly improved

[131, 132, 133].

The study in [134] brought this concept further by identifying visually important re-

gions with those having richer semantics, and incorporating a measure of semantic ob-

viousness into image quality metrics. The study reasoned that regions presenting clear

semantic information would be more sensitive to the presence of impairments, which

may be judged more annoying by users as they hinder the content recognition. The au-

thors therefore proposed to extract the object-like regions, and weight them based on

how likely the region is actually containing an object. They would then extract local de-

scriptors for evaluating quality from the top-N regions.

In this work, we look deeper at the role that semantics plays in image quality as-

sessment. Our rationale relies on the widely accepted definition of vision by Marr [135]:

vision is the process that allows “to know what is where by looking”. As such, vision in-

volves two mechanisms: the filtering and organizing of visual stimuli (perception), and

the understanding and interpreting of these stimuli through recognition of their content

[136]. The earliest form of interpretation of visual content is semantic categorization,

which consists of recognizing (associating a semantic category to) every element in the

field of view (e.g., "creek" or "forest" in the top-left picture in Figure 4.1). In vision stud-

ies, semantics refers to meaningful entities that people recognize as content of an im-

age. These entities are usually categorized based on scenes (e.g., landscape, cityscape,

indoor, outdoor), or objects (e.g., chair, table, person, face).

It is known that early categorization involves basic and at most superordinate se-

mantic categories [137, 138], which are resolved within the first 500 ms of vision [139].

Most of the information is actually already processed within the first fixation (∼100 ms,

[62]). Such a rapid response is motivated by evolutionary mechanisms, and is at the ba-

sis of every other cognitive process related to vision. When observing impaired images,
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however, semantic categories are more difficult to be resolved [140]. The HVS needs to

rely on context (i.e. other elements in the visual field) to determine the semantic cate-

gory of, e.g., blurred objects. This extra step (1) slows down the recognition process, and

(2) reduces the confidence on the estimated semantic category. In turn, this may com-

promise later cognitive processes, such as task performance or decision making. Hence,

visual annoyance may be a reaction to this hindrance, and may depend on the entity of

the hindrance as well as on the semantic category of the content to be recognized. Some

categories may be more urgent to be recognized, e.g. because of evolutionary reasons

(it is known, for example, that human faces and outdoor scenes are recognized faster

[62]). Images representing these categories may tolerate a different amount of impair-

ment than others, thereby influencing the final quality assessment of the user.

It is important to remark here that the influence of semantic categories on visual

quality should not be confused with the perception of utility or usefulness of an image

[141, 43]. Image utility is defined as the image usefulness as a surrogate for its reference,

and so relates with the amount of information that a user can still draw from an image

despite any impairment present. The idea that image usefulness can influence image

quality perception has been exploited in some work on no-reference image quality as-

sessment such as in [134], although there are studies that argue the relationship between

utility and quality perception is not straightforward [141]. Instead of looking at the use-

fulness of an image content, we look at users’ internal bias toward the content category,

and show in this chapter the difference between the two and their respective relationship

with quality perception.

In our previous research, we conducted a psychophysical experiment to verify whe-

ther the semantic content of an image (i.e., its scene and/or object content category)

influences users’ perception of quality [61]. Our findings suggest that this is the case.

Using JPEG impaired images, we found that users are more critical of image quality for

certain semantic categories than others. The semantic categories we used in our study

are indoor, outdoor natural and outdoor manmade for scene categories, and inanimate

and animate for object categories. In [142], we then showed initial results that adding

object category features to perceptual quality features significantly improves the per-

formance of existing no-reference image quality metrics (NR-IQMs) on two well-known

image quality datasets. Based on these studies, in this work we look into improving NR-

IQMs by injecting semantic content information in their computation.

In this chapter, we extend our previous work to include (1) different types of impair-

ments and (2) scene category information in NR-IQM. As a first step, we collect subjec-

tive data of image quality for a set of images showing high variance in semantic content.
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Having verified the validity of the collected data, we then use it as ground truth to train

our semantic-aware blind image quality metric. The latter is based on the joint usage of

perceptual quality features (either from Natural Scene statistics [33], or directly learned

from images [143]), and semantic category features. We then show the added value of

semantic information in image quality assessment, and finally propose an analysis of

the interplay between semantics, visual quality and visual utility.

Our contribution through this chapter can be summarized as follows.

1. We introduce a new image quality dataset comprising a wide range of semantic cat-

egories. In the field of image quality research, several publicly available datasets

exist. However, most (if not all) of these datasets do not cover the different seman-

tic categories extensively or uniformly. To open more possibilities of research on

visual quality and semantics, we set up an image quality dataset which spans a

wider and more uniform range of semantic categories than the existing datasets.

2. We show how using scene and object information in NR-IQMs improves their per-

formance across impairments and image quality datasets. We perform experiments

to analyze how different types of semantic category features would be beneficial

to use in improving NR-IQM. We also compare the performance of adding se-

mantic features to improve NR-IQMs on different impairments and image quality

datasets.

This chapter is organized as follows. In the following section, we review existing work

on blind image quality assessment, creation of subjective image quality datasets, and au-

tomatic methods for categorizing images semantically. In Section 4.3, we introduce our

new dataset, SA-IQ, detailing the data collection, reliability and analysis to prove that

semantic categories do influence image quality perception. In Section 4.4, we describe

the experiments proposing our semantic-aware objective metrics, based on the addition

of semantic features to the perceptual quality ones. In addition, in Section 4.5, we com-

pare the relationship of semantic categories with image utility and image quality. We

conclude our chapter in Section 4.6.

4.2. RELATED WORK

4.2.1. NO-REFERENCE IMAGE QUALITY ASSESSMENT

Blind or No-reference image quality metrics aim at predicting perceived image quality

without the use of a reference image. Many algorithms have been developed to per-

form this task, and usually fall into one of two categories: impairment-specific or gen-
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eral purpose NR-IQMs. As the name suggests, impairment-specific NR-IQMs rely on

prior knowledge of the type of impairment present in the test image. Targeting one type

of impairment at a time, these metrics can exploit the characteristics of the particular

impairment and how the HVS perceives it to design features that convey information on

the strength and annoyance of such impairments. Examples of these metrics include

those for assessing blockiness in images [16, 144], blur [36, 128], and ringing [17].

General purpose NR-IQMs deal with multiple impairment types, and do not rely on

prior information on the type of impairment present in a test image. This of course al-

lows for a wider applicability of the metrics, but also requires a more complex design of

the quality assessment problem. To develop these metrics, usually a set of features is se-

lected that can discriminate between different impairment types and strengths, followed

by a mapping (pooling) of those features into a range of quality scores that matches hu-

man perception as closely as possible [145].

Handcrafted features are often used to develop general purpose NR-IQMs, one of the

most common being natural scene statistics (NSS), although other types of features have

also been proposed, such as the recent free-energy based features [146, 147]. NSS as-

sume that pristine natural images have regular statistical properties which are disrupted

when the image is impaired. Capturing this disruption can reveal the extent to which

impairments are visible (and thus annoying) in the image. To do so, typically the image

is transformed to a domain (e.g. DCT or wavelet), that better captures frequency or spa-

tial changes due to impairments. The transform coefficients are then fit to a predefined

distribution, and the fitting coefficients are taken as the NSS features.

Different NSS-based NR-IQMs have used various image representations to extract

image statistical properties. In [33], for example, the NSS features were computed from

the subband coefficients of an image’s wavelet transform. Beside fitting a generalized

Gaussian distribution to the subband coefficients, some correlation measures on the

coefficients were also used in extracting the features. The study aimed at predicting the

quality of images impaired by either JPEG or JPEG 2000 compression, white noise, Gaus-

sian blur, or a Rayleigh fading channel. Saad et al. [34] computed NSS features with a

similar procedure, but in the DCT domain. Mittal et al. [35] worked out NSS features

in the spatial domain instead. They fitted a generalized Gaussian distribution on the

image’s normalized luminance values and their pairwise products along different orien-

tations. In this case, the parameters of the fit were used directly as features. Another

study in [148] took the Gradient Map (GM) of an image, and filtered it using Laplacian

of Gaussian (LOG) filters. The GM and LOG channels of the image were then used to

compute statistical features for the quality prediction task.
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Lately, the IQM community has also picked up on the tendency of using learned,

rather than handcrafted (e.g., NSS and free energy-based) features. A popular approach

is to first learn (in an unsupervised way) a dictionary or codebook of image descriptors

from a set of images. Using another set of images, the codebook will then be used as

the basis for extracting features to learn a prediction model. To extract these features, an

encoding step is performed on the image descriptors, followed by a pooling step. The

study in [149] used this approach. The codebook was built based on normalized image

patches and K-means clustering. To extract features for training and testing the model, a

soft-assignment encoding was then performed, followed by max-pooling on the training

and testing images. In [150], image patches underwent Gabor filtering before being used

as descriptors to build the codebook. Hard assignment encoding was then performed,

after which average pooling was used to extract the image features. To limit the compu-

tational burden yield by the large size of codebooks, a more recent study [143] proposed

using a small sized codebook, built using K-means clustering based on normalized im-

age patches. Smaller sized codebook usually decreases the prediction performance, and

so to compensate for that, the study proposes to calculate the differences of high order

statistics (mean, covariance and co-skewness) between the image patches and corre-

sponding clusters as additional features.

Finally, the research on NR-IQMs has also recently started looking at features learned

through convolutional neural networks (CNNs). CNNs [151] are multilayer neural net-

works which contain at least one convolutional layer. The network structure already

includes parts that extract features from input images and a regression part to output

a prediction for the corresponding input. The training process of this network not only

optimizes the prediction model, but also the layers responsible for extracting represen-

tative features for the problem at hand. The study in [38] is an example of NR-IQMs using

this approach, which brings promising results. However, one should be aware that, when

learning features especially through CNNs, their interpretability is mostly lost. The high

dimensionality of learnable CNN parameters also makes those features to be prone to

overfitting of the training data, which is especially a risk when the size of data is small, as

in the case of Image Quality Assessment databases (see more details in sec. 4.2.2).

The NR-IQMs described earlier, which are based on features representing perceptual

changes in an image due to the presence of impairments, have higher interpretability

and can still obtain acceptable accuracy. In this chapter, we aim at improving accuracy

while maintaining interpretability. Therefore, we focus on this category of metrics and

on enabling them to incorporate features that account for semantic content understand-

ing.
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Table 4.1: Properties of Several Publicly Available Image Quality Datasets

Dataset
Number

of Images

Number of

Reference

Images

Impairment

Types *

Levels

Semantic Categories

(of Reference Images)

Scene Object

TID2013 [152] 3000 25 24 * 5

21 Outdoors

3 Indoors

1 N/A

7 Animate

14 Inanimate

1 N/A

CSIQ [153] 900 30 6 * 5
30 Outdoors

0 Indoors

13 Animate

17 Inanimate

LIVE [123] 982 29 5 * 6-8
28 Outdoors

1 Indoor

8 Animate

20 Inanimate

MMSPG HDR

with JPEG XT

[154]

240 20 3 * 4

12 Outdoors

6 Indoors

2 N/A

4 Animate

14 Inanimate

2 N/A

IRCCyN-IVC

on Toyama [124]
224 14 2 * 7

14 Outdoors

0 Indoors

3 Animate

11 Inanimate

UFRJ Blurred

Image DS [155]
585 N/A N/A

412 Outdoor

173 Indoors

198 Animate

387 Inanimate

ChallengeDB

[156]
1163 N/A N/A

759 Outdoor

403 Indoors

321 Animate

842 Inanimate

SA-IQ 474 79 2 * 3
39 Outdoors

40 Indoors

25 Animate

54 Inanimate

4.2.2. SUBJECTIVE IMAGE QUALITY DATASETS

Over the years, the IQM community has developed a number of datasets for metric train-

ing and benchmarking. Such datasets usually consist of a set of reference (pristine) im-

ages, and a larger set of impaired images derived from the pristine ones. Impaired im-

ages are typically obtained by injecting different types of impairments (e.g., JPEG com-

pression or blur) at different levels of strength. Each image is then associated with a sub-

jective quality score, usually obtained from a subjective study conducted with a number

of users. Individual user judgments of Quality are averaged per image across users into

Mean Opinion Scores, which represent the quantity to be predicted by Image Quality

Metrics.

Most Subjective Image Quality datasets are structured to have a large variance in

terms of types and level of impairments, as well as perceptual characteristics of the refer-

ence images, such as Spatial Information or Colorfulness [157]. On the other hand, rich-

ness in semantic content of the reference images is often disregarded, nor information

is provided on categories of objects and scenes represented there. This limits the under-

standing and assessment of image quality as it excludes users’ higher-level interpretation

of image content in their evaluation of quality. Table 4.1 gives an overview of the seman-

tic diversity covered by several well-known and publicly available image datasets. The
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semantic categorization follows that proposed by Li et al. in their work related to pre-

attentional image content recognition [62] (note that these categories were not provided

with the datasets and were manually annotated by the authors of this chapter).

From the table, we can see that most datasets do not have a balanced number of

scene or object categories to allow for further investigation of the relationship between

semantic categories and image quality. Two datasets are quite diverse in their semantic

content: the UFRJ Blurred Image dataset [155], and the Wild Image Quality Challenge

dataset [156]. On the other hand, these datasets lack structured information on the im-

pairment types and levels of impairments present in the images. The images were col-

lected "in the wild", meaning that they were collected in typical real-world settings with

a complex mixture of multiple impairments, instead of being constructed in the lab by

creating well-modeled impairments on pristine reference images.

These datasets were created to simulate the way impairments typically appear in

consumer images. An impaired image in these datasets thus does not correspond to

any reference image, and there is no clear framework to refer to in order to obtain in-

formation about how the impairments were added to the images. This makes it difficult

to systematically look into the interplay between image semantics, impairments, and

perceived quality.

In this work we propose a new dataset rich in semantic content diversity. We look at

79 reference images with contents covering different object and scene categories. These

images are further impaired to obtain blur and JPEG compression artifacts at different

levels. The proposed dataset SA-IQ can be seen as the last entry in Table 4.1, and we

explain details of how the dataset was constructed in Section 4.3.

4.2.3. IMAGE SEMANTICS RECOGNITION

One of the most challenging problem in the field of computer vision has long been

that of recognizing the semantic content of an image. A lot of effort has been put by

the research community to improve image scene and object recognition performances:

creating larger datasets [158], designing better features, and training more robust ma-

chines [159]. In the past five years, wider availability of high-performance computation

machines and labelled data has allowed for the rise of Convolutional Neural Networks

(CNNs) [151], and resulted in vast progress in the field of image semantic recognition.

One of the pioneering attempts of deploying CNNs for object recognition was AlexNet

by Krizhevsky et al. [160]. Based on five convolutional and three fully connected layers,

the AlexNet processes 224x224 images to map them into a 1000-dimensional vector, the

elements of which represent the probability values that the input image belongs to any
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of a thousand predefined object categories. Since AlexNet, current state-of-the-art sys-

tems include VGG [161], and GoogleNet [162]. For a more comprehensive overview of

state-of-the-art systems, readers are referred to [159].

Along with object recognition, scene recognition has also had its share of rapid devel-

opment with the advent of CNNs. One recently proposed trained CNN for scene recog-

nition is the Places-CNN [163, 164]. This CNN is trained on the Places image dataset,

which contains 2.5 millions images with a scene category label. 205 scene categories are

defined in this dataset. The original Places-CNN was trained using similar architecture

as the Alexnet mentioned above. Further improvements of the original Places-CNN were

obtained by training on the VGG and GoogleNet architectures [164].

The implementation we use in this chapter is the PlacesVGG. The architecture has

13 convolutional layers, with four pooling layers among them, and a fifth pooling layer

after the last convolutional layer. Three fully connected layers follow afterwards. The

network outputs a 205-dimensional vector with elements representing the probability

that the input image belongs to any of the 205 scene categories.

4.3. SEMANTIC-AWARE IMAGE QUALITY (SA-IQ) DATASET

As mentioned in Section 4.2, most publicly available image quality datasets do not cover

a wide range of semantic categories. This limitation does not allow us to look deeper into

how users evaluate image quality in relation with their interpretation of the semantic

content category. For this reason, we created a new image quality dataset with not only

a wider range of semantic categories included in it, but also a more even distribution of

these categories. We describe our proposed dataset in the following subsections.

4.3.1. STIMULI

We selected 79 images that were 1024x768 in size from the LabelMe image annotation

dataset [165]. The images were selected such that there was a balanced number of im-

ages belonging to each of the scene categories indoor, outdoor natural, and outdoor

manmade, and within each scene category, enough number of animate and inanimate

objects. Animate objects include humans and animals, whereas inanimate objects in-

clude objects in nature (e.g., body of water, trees, hill, sky) and objects that are manmade

(e.g., buildings, cars, roads).

To have an unbiased annotation of the image categories, we asked five users to cat-

egorize the image scenes and objects. They were shown the pristine or unimpaired ver-

sion of the images, and asked to assign the image to either of the three scene categories
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Figure 4.1: Examples of images in the SA-IQ dataset; the dataset contains images with indoor, outdoor natural,
and outdoor manmade scenes, as well as animate and inanimate objects.

and either of the two object categories. The images were presented one at a time, and

we did not restrict the time for users to view each image. Each image was then assigned

the scene and object category which had the majority vote from the five users. In the

end, we have 39 indoor images, 19 outdoor natural images, and 21 outdoor man-made

images. In terms of object categories, we have 25 images with animate objects and 54

with inanimate objects. Figure 4.1 shows examples of the images in the dataset.

Image texture and luminance analysis. A possible concern in structuring a subjec-

tive quality dataset based on semantic, rather than perceptual, properties of the refer-

ence images is that certain semantic categories could include a majority of images with

specific perceptual characteristics, and be more or less prone to visual alterations caused

by the presence of impairments. For example, outdoor images may have higher lumi-

nance than indoor ones, and risk incurring luminance masking of artifacts. If that were

the case, outdoor images would mask impairments better, thereby resulting in higher

quality than indoor ones; this difference, though, would not be due to semantics.

Texture and luminance are two perceptual properties that are known to influence

and possibly mask impairment visibility [166, 167]. We therefore verified that the im-

ages included in the dataset had similar texture and luminance levels across semantic
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categories. Although this does not make our image set bias-free with respect to other

possible perceptual characteristics, as luminance and texture play a major role in the

visibility of artifact (and, consequently, on perceptual quality) [166, 167], this ensures

that we rule out possible major effects of potential biases on our results so that we can

ascribe differences in perceptual quality (in our study) to differences in semantics.

We used a modified version of Law’s texture energy filter based on [16] to measure

texture in horizontal and vertical directions. For each image, we computed the average

mean and standard deviation of texture measures in both horizontal and vertical direc-

tions. Similarly, we used a weighted low-pass filter based on [16] to measure luminance

in horizontal and vertical directions. We then calculated the average mean and standard

deviation in both directions as our image luminance measure.

We compared the luminance and texture values of the images in the different scene

categories using a one-way ANOVA. To compare the values across the different object

categories, we used a T-Test. Our analysis showed that there is no significant difference in

luminance or texture among the indoor, outdoor natural, and outdoor manmade images

(p>0.05). Similarly, no significant difference was found for the two perceptual character-

istics among the images belonging to animate or inanimate object categories (p>0.05).

Hence, we can conclude that perceptual properties of the images are uniform across se-

mantic categories.

Impairments. We impaired the 79 reference images with two different types of im-

pairments, namely JPEG compression and Gaussian blur. We chose these two impair-

ment types, as they are typically found in practical applications [168]. Moreover, most

image quality assessment studies typically include these two impairment types, giving us

the possibility to easily compare our results with previous studies. Of course, other types

of impairments may be added in further studies. The impairments were introduced as

follows.

1. JPEG compression. We impaired the original images through Matlab’s implemen-

tation of JPEG compression. We set the image quality parameter Q to 30 and 15, to

obtain images with visible artifacts of medium and high strength, respectively.

2. Gaussian blur. We applied Gaussian blur to the original images using Matlab’s

function imgaussfilt. To obtain images with visible artifacts of medium and high

strength, the standard deviation parameter was set to 1.5 and 6, respectively. As

for the choice of parameters for our JPEG compression, we also considered the

parameters for our Gaussian blur to represent medium and low quality images.

Eventually, we obtained 316 impaired images. JPEG and blur images were then evaluated
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in two separate subjective experiments.

4.3.2. SUBJECTIVE QUALITY ASSESSMENT OF JPEG IMAGES

To collect subjective quality scores for the JPEG compressed images, we conducted an

experiment in a laboratory setting. 80 naive participants (28 of them were females) eval-

uated each 60 images. The 60 images were selected randomly from the whole set of 237

images (79 reference + 158 impaired), such that no image content would be seen twice

by a participant, and at the end of the test rounds, we would obtain 20 ratings for each

image.

The environmental conditions (e.g., lighting and viewing distance) followed those

recommended by the ITU in [52]. Images were shown in full resolution on a 23" Samsung

display. At the beginning of each experiment session, participants went through a short

training to familiarize themselves with the task and experiment interface. Participants

were then shown the test images one at a time, in a randomized order, to avoid fatigue

or learning effects in the responses. There was no viewing time restriction. Participants

could indicate that they were ready to score the image by clicking on a button; this would

make a discrete 5-point Absolute Category Rating (ACR) quality scale appear, on which

they could express their judgment of perceived quality.

4.3.3. SUBJECTIVE QUALITY ASSESSMENT OF BLUR IMAGES

For the images impaired with Gaussian blur, we decided to conduct the experiments in

a crowdsourcing environment. Crowdsourcing platforms such as AMTurk1, Micorwork-

ers 2 and Crowdflower 3 have become an interesting alternative environment to perform

subjective tests as it is more cost and time-friendly compared with its lab counterpart. A

consistent body of research has shown that crowdsourcing-based subjective testing can

yield reliable results, as long as a number of precautions are taken to ensure that the

scoring task is properly understood and carried out properly [56]. For example, evalua-

tion sessions should be short (no longer than 5 minutes) and control questions (honey

pots) should be included in the task to monitor the reliability of the execution.

We used Microworkers as the platform to recruit participants for our test. We ran-

domly divided our 237 images into 5 groups consisting of 45-57 images each, such that

we could set up 5 tasks/campaigns on Microworkers. Each campaign would take 10-15

minutes to complete. A user on Microworkers could only participate in one campaign

1http://mturk.com
2http://microworkers.com
3http://crowdflower.com
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out of the five, and would be paid $0.40 for completing the campaign. To avoid mis-

understanding of the task, and since our experiment was presented in English, we con-

strained our participants to those coming from countries with fluency in English. The

aim here was to prevent users from misinterpreting the task instructions, which is known

to impact task performance ([43, 169, 56]). Users were directed to our test page through

a link in Microworkers. We obtained 337 participations over all of the campaigns.

Protocol. When a Microworkers user chose our task, s/he was directed to our test

page, and shown instructions explaining the aim of the test (to rate image quality), and

how to perform evaluations. To minimize the risk of users misunderstanding their task,

we were careful to provide detailed instructions and training for our users. In the first

part of our training session (as recommended by [56]), we gave a definition of what we

intended as impaired images in the experiment (i.e., images with blur impairments). Ex-

ample images of the worst and best quality that could be expected in the experiment

were provided. Afterwards, participants were asked to rate an example image to get ac-

quainted with the rating interface. The test started afterwards. Images were shown at

random order, along with the rating scale at the bottom of the screen.

We used a continuous rating scale with 5-point ACR labels in this experiment. In

[63], it was shown that both discrete 5-point ACR and continuous scale with 5-point ACR

labels in crowdsourcing experiments would yield results with comparable reliability. We

decided to use the continuous scale in this experiment, to give users more flexibility to

move the rating scale. The continuous scale range was [0..100]. In our analysis, we will

normalize the resulting mean opinion scores (MOS) into the range [1..5] using a linear

normalization, so that we can easily compare the results on blurred images with those

on JPEG images.

To help filter out unreliable participants, we included two control questions in the

middle of the experiment. For these control questions, we would show a high quality

image with a rating scale below it. After the user rates that image, a control question

would appear, asking the users to indicate what they saw in the last image. A set of four

options were given from which the users could select an answer.

4.3.4. DATA OVERVIEW AND RELIABILITY ANALYSIS

For the lab experiment on the JPEG images, we ended up with a total of 4618 ratings for

the whole 237 images in the dataset after performing an outlier detection. One user was

indicated as an outlier, and was thus removed for subsequent analysis. After this step,

as customary, individual scores were pooled into Mean Opinion Scores (MOS) across

participants per image, resulting in 237 MOS now provided along with the images.
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Figure 4.2: Overview of MOS across impairments for the two impairment types: Blur and JPEG compression

For the crowdsourcing experiments on blurred images, we first filtered out unreli-

able users based on incorrect answers to the content questions in the experiment, and

incomplete task executions. We also performed outlier detection on the filtered data.

From the 337 total responses that we received across all campaigns, we removed almost

half of them due to incorrect answers to content questions, and failure to complete the

whole task in one campaign. We did not find any outliers from the filtered data. In the

end, we had 179 users whose responses were considered in our data analysis, with on

average 37 individual scores per image. These were further pooled in MOS as described

above. Figure 4.2 shows the collected MOS values across all impairment levels for the

two impairment types: JPEG compression and Blur.

Given the diversity in the data collection method, and the concerns in terms of faith-

fulness of the evaluations obtained in crowdsourcing, we performed a reliability analysis.

Our aim was to establish whether the obtained MOS were estimated with sufficient con-

fidence, i.e., whether different participants expressed sufficiently similar evaluations for

the same image. To do so, based on our and other previous work [142, 74], we chose the

following measures to compare data reliability:

1. SOS hypothesis alpha. The SOS hypothesis was proposed in [98], and models the

extent to which the standard deviation of opinion scores (SOS) changes with the

mean opinion scores (MOS) values. This change is represented through a parame-

ter α. A higher value of α would indicate higher disagreement among user scores.

The hypothesis for an image i is expressed as in Eq. 4.1 below.

SOS2(i ) =α(−MOS2(i )+ (V1 +VK )MOS(i )−V1VK ), (4.1)
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Table 4.2: SOS hypothesis alpha and average confidence interval (CI) across datasets

Dataset
Rating

Methodology
Number of Ratings

per Image
Experiment

Environment
SOS Hypothesis

Alpha
Average CI

SA-IQ (JPEG
images)

discrete 5-point
ACR scale

19-20 Lab 0.200 0.316

SA-IQ (Blur images)
continuous with

5-point ACR labels
37 on average Crowdsourcing 0.2473 0.3182

CSIQ

multistimulus
comparison by

positioning a set of
images on a scale

n/a Lab 0.065 n/a

IRCCyN-IVC on
Toyama

discrete 5-point
ACR scale

27 Lab 0.1715 0.1680

UFRJ Blurred Image
DS

continuous 5-point
ACR scale

10-20 Lab 0.1680 0.5011

MMSPG HDR with
JPEG XT

DSIS 1 [52], 5-grade
impairment scale

24 Lab 0.201 0.273

ChallengeDB
continuous with

5-point ACR labels
175 on average Crowdsourcing 0.1878

2.85 (100-point
scale)

TID2013
tristimulus

comparison
>30

Lab and
Crowdsourcing

0.001 n/a

where V1 and VK indicate, respectively, the lowest and highest end of a rating scale.

2. Average 95% confidence interval. We calculate the average confidence interval over

all images in a dataset to indicate user’s average agreement on their ratings across

the images. The confidence interval of an image i, rated by N users, is given as

follows.

C I (i ) = 1.96∗ SOS(i )p
N

(4.2)

Table 4.2 gives a comparison of SOS hypothesis alpha and average CI values across

different image quality studies and datasets. We also note in the table the different ex-

periment setups used in the studies to construct the datasets. From the table, we see

that the highest user agreement is obtained in studies that use comparison methods (i.e.

double stimulus [52]) as their rating methodology. This was not a feasible option for us,

as comparison methods on quite a large number of images as we have would be very

costly. Nevertheless, our laboratory and crowdsourcing studies obtained highly compa-

rable reliability measures. Moreover, our studies showed comparable reliability to that

of other studies that also employ single stimulus rating methodology, and have the num-

ber of ratings per image proportionate to ours (i.e. the datasets IRCCyN-IVC on Toyama,

UFRJ Blurred Image DS, and MMSPG HDR with JPEG XT as shown in Table 4.2).

4.3.5. EFFECT OF SEMANTICS ON VISUAL QUALITY

Having established that our collected data is reliable, we proceeded to check how se-

mantic categories influence visual quality ratings at different levels and types of impair-
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Table 4.3: Comparison of p-values for semantic category variables obtained through GLMM fitting

Impairment Type Independent Variables to Predict Visual Quality Ratings p-value

JPEG

Scene category p=0.00

Object category p=0.00

Scene category and object category (interaction of the two) p=0.00

Blur

Scene category p=0.015

Object category p=0.086

Scene category and object category (interaction of the two) p=0.00

ments. Perception studies have looked into the relation of scene versus objects with

respect to human interpretation of image content. Questions such as whether users rec-

ognize scenes or objects first when looking at images have been asked and explained.

In [62], it was found that even in pre-attentive stages, users do not have the tendency to

recognize scenes or objects one faster than the other. Both are processed simultaneously

to form an interpretation of the image content. Here, we attempt to check if one holds

more significance than the other in influencing the user assessment of image quality.

Figures 4.3 and 4.4 show bar plots of the mean opinion scores (MOS) across impair-

ment levels and semantic categories for JPEG and blurred images, respectively. From

the plots, we see that images with no perceptible impairments are rated similarly in both

cases: indoor images are rated more critically than outdoor images, and images with

animate objects are rated more critically than those with inanimate objects. From the

figures, we see that in the case of JPEG compressed images, this tendency of being more

critical towards indoor images and images with animate objects continues for images

with lower quality. However, the reverse seems to happen in the case of blurred images.

It seems that with the presence of blur impairments, indoor images and images with

animate objects are rated higher than other scene and object categories.

To check how semantic categories influence visual quality ratings, we fit a General-

ized Linear Mixed Model (GLMM) to Visual Quality ratings, where semantic categories

(scene and object) and impairment levels act as fixed factors, and users are considered

as a random factor. Due to the different rating scale used to evaluate the two different

impairment types, the model for JPEG images uses a multinomial distribution with logit

link function, while that for blurred images uses a linear distribution with an identity link

function. We use the following notation to describe the output of our statistical analy-

sis. Next to each independent variable that we looked into, we indicate the degrees of

freedom (df1, df2), the F-statistic evaluating the goodness of the model’s fit (F), and the

p-value representing the probability that the variable is not relevant to the model (p). A
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Figure 4.3: Bar plots of mean visual quality rating of JPEG compressed images across impairment levels and
scene categories (right), and object categories (left)

Figure 4.4: Bar plots of mean visual quality rating of blurred images across impairment levels and scene cate-
gories (left), and object categories (right)

p-value that is less than or equal to 0.05 indicates a statistically significant influence of a

variable to predicting visual quality ratings.

For images with JPEG impairments, we find that all three independent variables, as

well as the interaction of the three of them significantly influence user rating of visual

quality (impairment level: df1=2, df2=4.657, F=1193.54, p=0.00; scene category: df1=2,

df2=4.657, F=28.35, p=0.00; object category: df1=1, df2=4.657, F=13.35, p=0.00; impair-

ment level*scene category*object category: df1=6, df2=4.657, F=18.28, p=0.00). This

shows us that in judging images with JPEG compression impairments, users are signifi-

cantly influenced by both scene and object category content.

Interestingly, for blurred images, a different conclusion is found. When we consider

both scene and object categories, our model shows that scene category and impairment

level has a significant effect on visual quality ratings, while object category only signif-
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icantly influences visual quality rating in interaction with scene category and impair-

ment level (impairment level: df1=2, df2=8.717, F=1880.8, p=0.00; scene category: df1=2,

df2=8,717, F=4.18, p=0.01; scene category*impairment level: df1=4, df2=8.717, F=9.74,

p=0.00; impairment level*scene category*object category: df1=6, df2=4.657, F=6.722,

p=0.00). Unlike images with JPEG compression impairments, the visual quality rating

of images with blur impairments are more significantly influenced by their scene cate-

gory content than their object category content. For a clear overview of the p-values for

the different (semantic category) independent variables, a summary is given in Table 4.3.

4.4. IMPROVING NR-IQMS USING SEMANTIC CATEGORY FEA-

TURES

In this section, we show how the performance of no-reference image quality metrics

can significantly improve when taking semantic category information into considera-

tion. We do this by concatenating features that represent image semantic category (as

extracted, for example, by large convolutional networks trained to detect objects and

scenes in images) to perceptual quality features. Figure 4.5 illustrates this idea. A no-

reference image quality metric (NR-IQM) typically consists of two building blocks [145].

The first is a feature extraction module, which produces a set of features that represent

the image, as well as any artifacts present in it. The next block is the prediction or pooling

module, which translates the set of features from the previous block into a quality score

Q. In the following subsections, we compare the performance of image quality predic-

tion when using only well-known perceptual quality features (condition 1 in Figure 4.5),

with that of using a combination of perceptual quality features and semantic category

features (condition 2 in the figure).

4.4.1. PERCEPTUAL AND SEMANTIC FEATURES FOR PREDICTION

We used the following perceptual quality features in our experiment:

1. NSS features.

As mentioned in Section 4.2, NSS features are hand-crafted, and designed based

on the assumption that the presence of impairments in images disrupts the regu-

larity of an image’s statistical properties. We used three different kinds of NSS fea-

tures in our experiment, BLIINDS [34], BRISQUE [35], and GM-LOG [148]. These

three metrics were chosen such that we would have NSS features extracted in dif-

ferent domains (DCT, spatial, and GM-LOG channels, respectively).



4

86 4. SEMANTIC-AWARE BLIND IMAGE QUALITY ASSESSMENT

2. Learned features.

We also chose to perform our experiment using learned features (codebook-based

features). As these features are learned directly from image patches, it is possible

that the features themselves already have semantic information embedded. It is

therefore interesting to check how our approach would add to this type of metrics.

We used HOSA features [143] to represent learned features in this chapter.

Figure 4.5: Block diagram of no-reference image quality metrics (NR-IQM): (1) using only perceptual quality
features, and (2) using both perceptual quality features and semantic category features

To extract semantic category features, we fed the test images to the AlexNet [160] to

obtain object category features, and to PlacesVGG [164] to obtain scene category fea-

tures. We used the output of the last softmax layer of each CNN as our semantic cat-

egory features. This led to a 1000-dimensional vector resulting from AlexNet, and a

205-dimensional vector resulting from PlacesVGG. Each element k in these vectors rep-

resents the probability that the corresponding image content depicts the k-th seman-

tic category (scene or object). Each of these semantic category feature vectors would

then be appended to the one containing the perceptual quality features. Adding object

category features would result in an additional 1000-dimensional feature vector to the

perceptual quality feature vector, while adding scene category features would result in

an additional 205-dimensional feature vector to the perceptual quality features. Con-

sequently, adding both to evaluate the benefit of considering jointly scene and object

information in the IQM, would increase the feature count of 1205.

In Figure 4.6, we show heatmaps of the 1000-object category probability values that

were output by AlexNet for two images with different levels of JPEG compression impair-

ment. From the image, we can observe that most of the probability values of the 1000

object categories are very small. Given that quality prediction is a regression problem,

we decided to use a sparse representation of these semantic feature vectors to improve

on computational complexity. With a sparse representation, the number of non-zero

multiplications to be performed by our regression model is significantly smaller, thereby
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Figure 4.6: Heat map of probability values for the 1000 semantic classes output by AlexNet for two impaired
images (with JPEG compression) taken from the TID2013 dataset, and the corresponding reference image on
the right.

reducing the computation time. To make the semantic feature vector sparse, we set to

zero the values of all but the top-N semantic categories in each vector.

In our previous study [142], we compared the performance of using only the top-

10, 20, and 50 probability values in the object feature vector in addition to perceptual

quality features. Our results showed no significant difference in performance among the

three choices of N for top-N object category features. Given this result, we proceeded

with using the top-20 object category features in subsequent experiments. In the next

subsection, we investigate whether these results also hold for scene category features.

4.4.2. AUGMENTING NR-IQM WITH SEMANTICS

To investigate the added value of using semantic category information in NR-IQM, we

first compared metrics with and without using semantic information in a simplified set-

ting. We first concatenated the sparsified semantic feature vectors with 10, 20 and 50

top-N scene semantic features to the NSS and HOSA features described in the previous

section. Then, we fed the perceptual + semantic feature vector to a prediction module

as depicted in Figure 4.5. For the sake of comparison, we also added a condition with

N=0, corresponding to not adding semantic features. This condition represents, for this

specific test, our baseline.

With reference to Figure 4.5, we used the same prediction module: a Support Vector

Regression (SVR) with a linear kernel. This means that here we discarded the prediction

modules used in the original studies proposing the perceptual quality features (i.e. BLI-

INDS uses a bayesian probabilistic inference module [34], BRISQUE and GM-LOG use

linear SVR with RBF kernel [35, 148], white HOSA uses a linear kernel SVR [143]). This

step is necessary to isolate the benefit that adding semantic information brings in terms

of prediction accuracy: using different learning methods to implement the prediction
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Figure 4.7: Impact of the number of top-N semantic categories condsidered in the IQM, in terms of Pearson and
Spearman Correlation Coefficients (PLCC and SROCC respectively), between teh IQM prediction and the sub-
jetive quality scores of different datasets. When the number of semantic features is 0, no semantic information
is attached to the perceptual features, and the metric is calculated purely on perceptual feature information.

module would be a confounding factor for our result here.

We performed our experiments on four datasets, TID2013, CSIQ, our own SA-IQ, and

ChallengeDB. The subjective scores of these datasets were collected in different experi-

ment setups, e.g. display resolution, impairment types and viewing distance, such that

our experiment results are not limited to images viewed in one particular setting. The

TID2013 dataset [152] and CSIQ dataset [153] originally contains images with 5 to 24 dif-

ferent types of image impairments. As most perceptual quality metrics (including those

used in this chapter) are constructed to evaluate images impaired with JPEG, JPEG2000

compression, additive white noise, and Gaussian blur, we limited our experiments to

images with these impairments only.

The ChallengeDB dataset contains images with impairments present “in the wild”

(typical real world consumption of images), and we included this dataset in our experi-

ments to see how our approach would perform on said impairment condition. We used

all the images in the ChallengeDB dataset in our experiment. We ran 1000-fold cross val-

idation to train the SVR, with data partitioned into an 80%:20% training and testing set.

The resulting median Pearson Linear Correlation Coefficient (PLCC) and Spearman Rank

Order Correlation Coeffient (SROCC) values between subjective and predicted quality
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scores are reported in Figure 4.7 for performance evaluation.

In our previous work [142], we observed that the addition of object category features

in combination with NSS perceptual quality features (BLIINDS, BRISQUE, and GM-LOG)

improved the performance of quality prediction. These improvements in both PLCC and

SROCC were statistically significant (T-test, p < 0.05). However, using object category

features in combination with learned features (in this case, HOSA), did not bring signifi-

cant added value. A similar result can be seen for the case of combining scene category

features with perceptual quality features. In Figure 4.7, we see that for the NSS percep-

tual quality features, prediction performance increased with the addition of scene se-

mantic categories. Conducting T-tests on the resulting PLCC and SROCC values showed

that the improvements were statistically significant (p < 0.05). On the other hand, com-

bining scene category features with HOSA features did not contribute to significant per-

formance improvement. The average PLCC and SROCC values for the TID2013 dataset

without scene features, for example, were 0.962 and 0.959, respectively, while the values

when using scene features were 0.963 and 0.959, respectively.

A possible reason for the lack of improvement of the HOSA-based metric is that, un-

like the handcrafted NSS features that specifically capture impairment visibility, HOSA

features are learned directly from image patches. The features learned in this way may

also capture semantic information, beside the impairment characteristics. Thus, the ad-

dition of semantic category features to these features may be redundant. Despite this

observation, it is worth noting that the addition of semantic categories (either object or

scene) could bring NSS-based models’ performances close to that of HOSA while keep-

ing the input dimensionality and thus model complexity lower (HOSA uses 14700 fea-

tures, whereas NSS models use less than 100).

From the figure, we also notice that prediction performance did not change signif-

icantly among the N=10, 20 and 50 for top-N scene features (further confirmed using

one-way ANOVA, giving p=0.05). This applies for all four datasets and four perceptual

quality metrics used in the experiment, and is aligned with our previous study on object

category features [142].

4.4.3. FULL-STACK COMPARISON

In the previous section, we used a uniform prediction module (i.e. linear kernel SVR)

across combinations of perceptual and semantic features to isolate the effect of adding

semantic information on the performance of IQM. Referring once again to Figure 4.5,

most image quality metrics in literature are optimized using a specific prediction mod-

ule. For example, BLIINDS uses a Bayesian inference model, while BRISQUE and GM-
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Figure 4.8: Features and prediction module combinations for blackbox comparison

LOG use SVR with an RBF kernel, and HOSA uses a linear kernel. In this subsection, we

compare our approach of combining semantic category features with perceptual quality

features within the metrics original implementations (i.e. using their proposed percep-

tual quality features along with their prediction module).

Figure 4.8 shows the semantic category feature combinations that we used in our

experiments, along with the prediction module that we use for each perceptual quality

feature. There are three types of semantic category features that we looked into: ob-

ject category features, scene category features, and the combination of both. Each of

these were combined with each of the four perceptual quality metrics, and trained us-

ing the corresponding learning method as shown in the table. We used RBF kernel SVR

as learning method for the combination of semantic features with BLIINDS, BRISQUE

and GM-LOG features. For the combination of semantic features with HOSA features,

we used linear kernel SVR as our learning method.

As we used optimized prediction modules for each combination of features, we re-

port here the performance of each original NR-IQM also when optimized for each dataset

separately. The performance of the NSS metrics optimized for TID2013 and CSIQ that we

report here are as per [148], while the HOSA metric performance optimized for the two

datasets corresponds to that in [143]. For SA-IQ and ChallengeDB, we used grid search to

optimize the SVR parameters of the four metrics. For performance evaluation, again we

took the median PLCC and SROCC between the subjective and predicted quality scores

across a 1000 folds cross-validation. Figure 4.9 gives an overview of the prediction per-

formance for each feature combination on the four datasets TID2013, CSIQ, SA-IQ and

ChallengeDB.

A look into the results on the TID2013 dataset reveals that the addition of semantic



4.4. IMPROVING NR-IQMS USING SEMANTIC CATEGORY FEATURES

4

91

Figure 4.9: Full-stack comparison of the different NR-IQMs and semantic category feature combination on
datasets TID2013, CSIQ, SA-IQ, and ChallengeDB

category features generally improved the performance of no-reference image quality as-
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sessment. As expected, based on our observation in section 4.4.2, the NSS-based metrics

showed larger improvement in predicting quality when combined with semantic cate-

gory features. Nevertheless, the combination of semantic category features with learned

features (HOSA) also improved prediction performance in this case.

Results on the CSIQ dataset showed improvement particularly when the perceptual

quality features were combined with object category features. If we refer back to Table

4.1, which gives an overview of semantic categories spanned by the different datasets

used in this work, we see that the CSIQ dataset does not have any variance in scene cate-

gory (all images are outdoor images), whereas there seems to be more diversity in terms

of objects. We argue that this could make object category features more discriminative

than scene category features.

The figure further shows results on the SA-IQ dataset. We can see that adding se-

mantic features results in a prediction improvement compared with only using NSS fea-

tures. However, as also observed in Section 4.4, adding semantic features did not im-

prove prediction performance for codebook-based features (i.e. HOSA). Furthermore,

we also note that adding scene and object category features together did not result in

higher prediction performance than when using only scene or only object category fea-

tures.

Similarly for the ChallengeDB dataset, we observe improvement of quality predic-

tion with the addition of semantic category features across the three NSS-based IQMs.

On the other hand, the addition of semantic category features did not improve the per-

formance of learning-based metric, HOSA, similar to our results for the TID2013, and

SA-IQ datasets.

As mentioned briefly in Section 4.2, the four datasets that we use in our experiments

were constructed through subjective experiments with different experiment setups, in-

cluding viewing condition and type of impairments. For example, the TID2013 study

suggested users to use a viewing distance from the monitor that is comfortable to them

[152], while the CSIQ study maintained a fixed viewing distance from the monitor for all

its participants [153]. All the datasets use different monitors and display resolutions in

their studies. And while the datasets TID2013, CSIQ, and SA-IQ have images with one

impairment type per image, the ChallengeDB dataset images contain multiple impair-

ments per image. Considering these differences across the datasets, our results here and

in Section 4.2 indicate that our proposed approach to improve NR-IQMs could be ap-

plied across multiple impairments and viewing conditions.

Performance with other type of perceptual quality features. So far, our experiment

results show that the addition of semantic category features alongside perceptual quality
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Figure 4.10: Full-stack comparison of the NFERM IQM and semantic category feature combination on datasets
TID2013, CSIQ, SA-IQ, and ChallengeDB

features can improve the performance of quality prediction, especially for NR-IQMs with

handcrafted (i.e. NSS-based) features. We would like to show here that these results still

hold for NR-IQMs based on different types of handcrafted features, such as free energy-

based features ([146, 147]).

We performed a full-stack comparison using the NFERM metric on the datasets TID,

CSIQ, SA-IQ and ChallengeDB. We used grid search to optimize the prediction modules

for each combination of features, including when no semantic feature is used. We show

our results in figure 4.10, which plots the median PLCC and SROCC between the sub-

jective and predicted quality scores across 1000 folds cross-validation. The figure shows

that our previous results for NSS-based NR-IQMs still hold for non NSS-based NR-IQMs

such as NFERM, that is, the addition of either scene or object category features, or both,

helps improve the performance of blind image quality prediction

4.4.4. PERFORMANCE ON SPECIFIC IMPAIRMENT TYPES

In the previous experiments, we performed our evaluation on datasets consisting of dif-

ferent impairment types: JPEG and JPEG2000 compression, blur, and white noise in the

TID2013 and CSIQ datasets, and JPEG and blur in the SA-IQ dataset. As shown through

our analysis in section 4.3.5, semantic categories influence the assessment of visual qual-

ity in both JPEG compressed and blurred images, but in a different way. It is therefore

interesting to look at the prediction performance on different impairment types indi-

vidually. Our setup for this experiment is similar to that of Section 4.4.3, i.e. the SVR

parameters of the NR-IQMs were optimized for evaluating each of the three datasets.

The datasets were split into subsets with specific impairment types, and the prediction
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models were re-trained for each impairment type. We again refer to [148] for the perfor-

mance of NSS metrics optimized for TID2013 and CSIQ, and [143] for the HOSA metric

performance.

Table 4.4: Comparison of the different NR-IQMs and semantic category features on different impairment types
in the SA-IQ dataset

BLIINDS BLIINDS+S BLIINDS+O BRISQUE BRISQUE+S BRISQUE+O

SA-IQ
JPEG 0.8717 0.8941 0.8938 0.885 0.9086 0.9084

BLUR 0.8925 0.9093 0.9068 0.9029 0.9219 0.9222

TID

JPEG 0.8853 0.9383 0.9391 0.9103 0.9478 0.9530

JP2K 0.9118 0.9591 0.9529 0.9044 0.9487 0.9504

BlUR 0.9176 0.9665 0.9696 0.9059 0.9635 0.9696

WN 0.7314 0.9417 0.9409 0.8603 0.9524 0.9509

CSIQ

JPEG 0.9115 0.9052 0.9300 0.9253 0.9342 0.9292

JP2K 0.8870 0.9147 0.9416 0.8934 0.9056 0.9262

BlUR 0.9152 0.9003 0.9148 0.9143 0.8781 0.9018

WN 0.8863 0.9248 0.9246 0.9310 0.9398 0.9416

GM-LOG GM-LOG+S GM-LOG+O HOSA HOSA+S HOSA+O

SA-IQ
JPEG 0.8843 0.9218 0.9099 0.9149 0.9140 0.9151

BLUR 0.9048 0.9262 0.9228 0.9029 0.9034 0.9030

TID

JPEG 0.9338 0.9478 0.9403 0.9283 0.9288 0.9271

JP2K 0.9263 0.9539 0.9548 0.9453 0.9283 0.9265

BlUR 0.8812 0.9635 0.9604 0.9538 0.9604 0.9562

WN 0.9068 0.9513 0.9524 0.9215 0.9273 0.9243

CSIQ

JPEG 0.9328 0.8927 0.9220 0.9254 0.9062 0.9071

JP2K 0.9172 0.9249 0.9316 0.9244 0.9032 0.9036

BlUR 0.9070 0.8752 0.8969 0.9266 0.8848 0.9037

WN 0.9406 0.9342 0.9237 0.9192 0.9232 0.9038

Table 4.4 shows the results of our experiments. We report only the SROCC values due

to limited space, however we note here that the resulting PLCC values yielded similar

conclusions. The bold numbers in the table indicate the conditions in which the pre-

diction performance improved with the addition of semantic category features. From

the table, we see that the addition of semantic category features, whether they are scene
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or object features, improved significantly the performance of NSS-based no-reference

metrics on all impairment types presented for the SA-IQ and TID datasets. However,

for the CSIQ dataset, only images with JP2K compression and white noise impairment

consistently showed similar improvement. It is interesting to note that the improvement

in performance was not significantly different between the addition of object and scene

categories. For the codebook-based metric, HOSA, as we have seen in the previous sec-

tions, we again observe that the addition of semantic category features did not bring

improvement, even for specific impairment types, on any of the three datasets.

4.5. IMAGE UTILITY AND SEMANTIC CATEGORIES

Image quality has often been associated with image usefulness or utility. Nevertheless,

studies have shown that perceived utility does not linearly relate to perceived quality

[141]. In this section, we show that bias on image content category can influence util-

ity and perceived quality differently, and thus further confirm that an image usefulness

cannot always explain perceived image quality. We do this by comparing the relationship

between image semantic categories and image utility with the relationship between im-

age semantic categories and image quality. We perform this comparison on our image

dataset, SA-IQ.

To perform the comparison, we calculated image utility scores for each image in the

dataset. We refer to [170] for image utility metric NICE. The metric calculates image util-

ity based on image contour. For every image, we used an edge detection algorithm (e.g.,

Canny) to obtain the binary of the test image and its reference, which we denote as BT

and BR , respectively. We then performed a morphological dilation on the two binary

images using a 3x3 plus-sign shaped structural element. We further assumed that the re-

sult of this morphological dilation is IR for the reference image and IT for the test image.

We then obtained the utility score NICE for the image by taking the Hamming distance

of IR and IT , and dividing it by the number of non-zero elements in BR , to account for

the variability of contours across the reference images. The utility metric NICE gives

an estimation of how degraded an image’s contours have become due to impairments

compared with its reference, and is thus inversely related with image utility.

In Figures 4.11 and 4.12 we show plots of perceived quality mean opinion scores

(MOS) against NICE utility scores for JPEG compressed and blurred images in our data-

sets. If we compare our plots with the perceived utility vs. perceived quality plot found in

[141], we can observe that our blurred images span the lower range of image quality and

higher range of image quality, in which utility doesn’t grow or change with the change
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Figure 4.11: Image utility vs. quality scores of JPEG images across semantic categories (left: scene categories,
right: object categories

Figure 4.12: Image utility vs. quality scores of blurred images across semantic categories (left: scene categories,
right: object categories

of perceived quality. However, our JPEG images seem to span a middle-range quality, in

which perceived quality has a linear relationship with perceived utility. In general, we

can see that our data represented the different relationships between perceived quality

and utility across the range of quality.

We ran K-means on the blurred and JPEG image data, to isolate the different clusters

as shown in the plots, and conducted statistical analysis to check how semantic cate-

gories influence utility and quality in these clusters. We set the number of clusters k to

two for both the blurred and JPEG data. We then performed several one-way ANOVA for

each cluster. Specifically, we first conducted one-way ANOVAs with semantic categories

(either scene or object categories) as independent variables, and utility as dependent

variables. Similarly, we then conducted one-way ANOVAS with quality MOS as depen-

dent variables instead of utility.
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Table 4.5: Significance level of semantic categories’ influence on image utility and quality across Blurred and
JPEG image clusters

Impairment

Type

Image

Cluster

Semantics

on Utility

Semantics

on Quality

Scene Object Scene Object

BLUR
HQ cluster p = 0.098 p = 0.971 p = 0.009 p = 0.324

LQ cluster p = 0.054 p = 0.469 p = 0.177 p = 0.228

JPEG
HQ cluster p = 0.03 p = 0.049 p = 0.851 p = 0.866

LQ cluster p = 0.003 p = 0.219 p = 0.307 p = 0.365

Table 4.5 shows the results of our analysis. We label the two clusters for each image

sets as HQ for clusters with images having higher quality range, and LQ for clusters with

images having lower quality range. The numbers in bold indicate cases in which seman-

tics has a significant influence on either utility or quality. From the table, we can see that

semantic categories influence image utility and quality differently. Moreover, the influ-

ence of semantics on utility seems to be more significant in JPEG images than in blurred

images.

4.6. CONCLUSION

In this chapter, we showed that an image’s semantic category information can be used

to improve its quality prediction to align better with human perception. Through sub-

jective experiments, we first observed that an image’s scene and object categories in-

fluence users’ judgment of visual quality for JPEG compressed and blurred images. We

then performed experiments on different types of no-reference image quality metrics

(NR-IQMs), and showed that blind/no-reference image quality predictions can be im-

proved by incorporating semantic category features into our prediction model. This

applied across different image quality datasets representing diverse viewing conditions

(e.g. display resolution, viewing distance), and image impairments, including multiple

impairments. We also provided a comparison of how semantics influences image utility

and image quality, and conclude that semantics has more significant influence on image

utility for JPEG images than for blurred images.

Another contribution of this chapter is a new image quality dataset, SA-IQ, consisting

of images spanning a wide range of scene and object categories, with subjective scores

on JPEG compressed and blurred images. The dataset can be accessed through http:

//ii.tudelft.nl/iqlab/SA-IQ.html. Future work on these findings would include

looking into better representations or methods to combine semantic information and

perceptual quality features in NR-IQMs.

http://ii.tudelft.nl/iqlab/SA-IQ.html
http://ii.tudelft.nl/iqlab/SA-IQ.html
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This chapter continues our efforts in incorporating new influencing factors into existing

metrics to improve QoE predictions. Current point cloud quality metrics still do not align

well with human judgment of point cloud compression quality. In this chapter, we pro-

pose a new objective metric for point clouds using the insights that we obtained through

subjective experiments in Chapter 3. We propose to use color-based features in our metric,

and show that our approach improves state-of-the art point cloud quality metrics.

This chapter is based on: E. Siahaan, J.A. Redi, A. Hanjalic, P. Cesar, Full-reference quality metrics for point
cloud compression based on color distribution, Under Review, (2018)
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5.1. INTRODUCTION

Point cloud has been gaining attention as one of the technologies used for representing

3D scenes and objects in virtual immersive systems (see Figure 5.1). Compared to 3D

meshes, which is another approach for representing 3D scenes and objects, point cloud

does not require heavy pre-processing (e.g. to compute triangulation), and is more re-

silient to noise. An indication of point cloud’s rise in popularity is the recent interna-

tional standardization efforts that are being made for its compression [171, 172].

Figure 5.1: Examples of immersive systems (top to bottom, counter-clockwise): virtual museum1, tele-
presence system2, and augmented reality systems2.

A point cloud consists of points in a three-dimensional space, that together make

up the surface of an object. These points are acquired using depth sensors or multiple

cameras. Typically, each point in a point cloud would contain its coordinate values in the

3D space, but it could also have additional attributes such as color value, transparency,

or normal. Despite its simplicity compared to 3D meshes, point clouds may still demand

high resources. For example, a high quality point cloud of a human object can contain

up to 9∗105 points, taking 18 MB of space.

Various point cloud compression technology have been proposed until now ([103,

104, 105, 106, 107]). As is common in visual QoE studies, one of the ways to evaluate

compression technology is using quality metrics, to observe whether or not the com-

pressed image or video satisfies consumers’ or users’ expectations for viewing quality.

1Screenshot taken from virtual tour of the Oriental Institute Museum (https://oi.uchicago.edu/virtualtour)
2Images taken from Wikimedia Commons.
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Not many studies have looked into the quality assessment of point cloud compression

([60, 108, 107]), and as we will describe below, there are still research gaps related to the

objective assessment of point cloud quality that aligns with human assessment.

In one study, Alexiou et al. ([60]) performed subjective experiments to compare

the quality evaluation of Gaussian noise and octree-pruning (compression-like) impair-

ments on point clouds. The same authors then performed a similar study using a head-

mounted display for viewing [108]. Other studies on point cloud quality assessment were

performed by Javaheri et al. ([20]) and Zhang et al. [118], though these were to evaluate

the quality of point clouds impaired with noise. Noise artifacts differ from compression

artifacts, and thus both may affect users’ perception of quality in a different way. Com-

pression artifacts create the appearance of fewer points in an object, while noise artifacts

result in some points being placed far from their correct position.

The studies above showed that state-of-the-art objective quality metrics do not yield

scores that correlate well with human judgment for point cloud compression. However,

no metric was proposed to improve the existing ones. Another limitation of the previ-

ous studies above is that their focus has mainly been on non-colored geometric point

cloud models ([60]-[20]). These point clouds do not represent realistic use cases or ap-

plication context, for example tele-immersive systems, gaming systems, virtual learning

environment, etc.

This chapter aims to fill in the research gaps indicated above by proposing a new

objective quality metric for point cloud compression based on a realistic point cloud

dataset. We use the insights obtained in Chapter 3 of this thesis to design our new quality

metric. In Chapter 3, we performed subjective experiments to explore users’ perception

of point cloud QoE using a realistic point cloud dataset. Our experiments showed us that

users take notice of the clarity of the face and overall structure of the body while evalu-

ating point cloud quality, as well as color alterations or distortions. As state-of-the-art

point cloud quality metrics still rely on quantifying geometry/structure distortions only

[173, 174], we propose to incorporate color features into our metric. Our results show

that our proposed metric is better-aligned with human judgment compared to state-of-

the-art metrics.

This chapter is organized as follows. In the next section, we discuss some background

work related to our study. In Section 5.3, we describe our proposed objective quality met-

ric, and present experiments on the objective quality metric. In Section 5.4, we discuss

the main findings of this chapter and their implications. Finally, section 5.5 presents the

conclusion of this chapter.
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5.2. BACKGROUND

In this section, we will first present some background on point cloud compression tech-

nology. Afterwards, we give an overview of related work on the objective quality assess-

ment of point clouds.

5.2.1. POINT CLOUD COMPRESSION

The use of point clouds to represent 3D models is a good alternative to polygonal meshes

as they do not store any geometry or topology specifics. This makes point cloud espe-

cially appealing for real-time application scenarios. Nevertheless, millions or billions of

points are needed to create a realistic point cloud 3D model. Thus, efficient point cloud

compression strategies have been proposed in literature.

Point cloud compression can be categorized as either fixed-rate or progressive, with

the latter being useful in adapting to available bandwidth and rendering capabilities.

In [104], a framework for progressive point cloud coding was proposed based on octree

structure. Their strategy boasts a more efficient bit rearrangement in the octree subdi-

vision, to encode the position, normal and color attributes of points in 3D objects with

arbitrary topology. Another study proposed a method to compress time-varying point

clouds by exploiting temporal redundancies in point cloud streams [105]. The study

used a modified octree data structure, which allows the method to detect and perform

differential encoding of spatial changes between temporarily adjacent point clouds. In

[106], the authors proposed a motion estimation and compensation algorithm for time-

varying point cloud compression, based on a graph representation of the 3D models’

geometry and color.

In this chapter, we use the solution proposed by Mekuria et al. [107] to perform the

point cloud compression used and evaluated in our study. This work was selected as

the anchor for the recent call for proposals for point cloud compression under MPEG

(JTC1/SC29/WG11). The study combines octree-based compression schemes with com-

mon video coding schemes. To compress a point cloud image or frame, at the first stage,

outlier filtering is performed and bounding box is computed for the point cloud. With

the resulting bounding box as root, the encoder recursively subdivides the point cloud

into eight children, represented as an occupancy code. This results in an octree data

structure. Following the approach taken in [105], the occupancy codes are coded using

an entropy coder. Finally, the point cloud color attributes are coded by mapping the

color attribute from the octree traversal graph to a JPEG image grid.
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5.2.2. POINT CLOUD OBJECTIVE QUALITY ASSESSMENT

Quality assessment is essential in the production and delivery of multimedia. Media

may go through different processing algorithms that can alter their quality at any point

between their acquisition until they are displayed to users. A quality assessment would

allow for appropriate decision making or correction for the media at its current stage of

production or delivery. Ideally, a quality assessment would rely fully on human feed-

back (subjective assessment), as humans are ultimately the final consumer of the me-

dia. However, human feedback is time consuming and costly. Therefore, a large part

of research on quality assessment has looked into finding objective metrics that closely

mimic the way humans evaluate quality. This is done by asking a sample of the popula-

tion (users) to view some media and rate their quality. The scores collected from these

users are then utilized to evaluate an objective metric.

So far, existing quality metrics for point clouds measure the similarity of the structure

(geometry) between a reference point cloud and a test point cloud. The metrics could be

categorized into either point-to-point, or point-to-plane comparison approaches [173,

174]. Point-to-point metrics measure the (symmetric) distance between each point in

the degraded point cloud and the corresponding point in the reference point cloud.

Point-to-plane measures the distance between a decoded point and the correspond-

ing (estimated) object surface in the reference point cloud. In either point-to-point or

point-to-plance approaches, the distances can be measured using the root mean square

distance (referred to as di stRMS in this chapter, and Haussdorf distance (referred to as

di stH auss. in this chapter) [173].

Studies on point cloud quality assessment have mostly focused on comparing the

performance of state-of-the-art quality metrics with human/subjective assessments. Ja-

vaheri et al. looked into evaluating point cloud denoising algorithms on point cloud

geometry, and concluded that the point-to-plane metric and the di stRMS seem to cor-

relate better with human judgment than the point-to-point metric or di stH auss. in eval-

uating noisy point clouds [20]. Another study performed an interactive subjective study

on point cloud geometry impaired with Gaussian noise and octree-pruning to create

compression-like impairments [60]. The study showed that state-of-the-art objective

metrics correlate well with perceptual quality of noise-impaired point clouds, but fail to

predict the perceptual quality of compression-like impairments. The authors then per-

formed another subjective evaluation of point clouds, but in an augmented reality (AR)

setup, and came to similar conclusions as before [108]. They also showed that users’

judgment for compression-like impairments seems to be influenced by the underlying

surface and shape of the point cloud content.
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Table 5.1: Comparison of using bin-to-bin distance measure (Euclidean distance) and cross-bin distance mea-
sure (QF distance) for the proposed color histogram-based metric. Subscripts h and l indicate hue and lumi-
nance, respectively.

Distance measure
Dhi st (h) Dhi st (l )

PLCC SROCC PLCC SROCC

Euclidian distance 0.4264 0.3853 0.9133 0.8764

QF distance 0.9055 0.8915 0.9130 0.8841

Based on the above studies, it is shown that current metrics still correlate poorly with

subjective assessment of compressed point clouds. However, no metric has been pro-

posed to improve the state-of-the-art. Moreover, these studies have focused mainly on

point cloud geometry, which users may perceive differently from more complex point

clouds.

5.3. OBJECTIVE QUALITY ASSESSMENT FOR POINT CLOUD COM-

PRESSION

In Chapter 3, we performed subjective experiments to explore users’ perception of point

cloud quality. Our findings in Chapter 3 suggested that users take notice of the clarity of

the face and overall structure of the body while evaluating point cloud quality, as well as

color alterations or distortions. Considering the use of color point clouds in real-world

applications, and given the above observations in our subjective experiments, it is im-

portant to also evaluate perceived point cloud quality based on colors. In addition, dif-

ferent point cloud compression algorithms may use different color coding schemes, and

thus create different color artifacts. Point cloud quality evaluation based on color has

not been explored in previous studies as most of the stimuli used were not colored. For

this reason, we look into objectively quantifying the quality of compressed point clouds

based on their color properties, and later on show how it improves overall quality pre-

diction together with geometry-based metrics. We consider only point-to-point metrics

in our evaluations, as it reduces the need to estimate the object surface.

5.3.1. POINT CLOUD QUALITY METRIC BASED ON COLOR HISTOGRAM AND

AUTOCORRELOGRAM

To evaluate the quality of a point cloud, we propose to compare its color distribution

information with that of its reference. Luminance, or the perceived brightness of color,
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has often been used in image quality metrics to estimate users’ perception of color [123].

However, some studies have also suggested the use of hue or chrominance as relevant

to quality perception [175]. We perform our experiments using both luminance and hue

values of point clouds, and compare the performance of both in predicting point cloud

quality. The luminance value is represented by the Y-channel values of the YUV space,

while hue is represented by the H-channel values of the HSV space.

Consider a reference point cloud PCr and its degraded version PCd . Let Hr (l ,h) and

Hd(l ,h) be the histogram of either the luminance or hue values of the reference and de-

graded point clouds, respectively. We measure the quality of the degraded point cloud as

the distance between the two histograms Hr (l ,h) and Hd(l ,h). Different approaches can

be used to compute the difference or distance between two histograms, such as bin-to-

bin measurements (e.g. Euclidean distance), or cross-bin measurements (e.g. Quadratic

Form/QF distance).

An Euclidean distance between two color histograms is calculated as follows.

(Eucl i dean)Dhi st (l ,h) =
√

n∑
(Hr (l ,h) −Hd(l ,h))2. (5.1)

Meanwhile, the Quadratic Form (QF) distance between two color histograms is calcu-

lated as follows.

(QF )Dhi st (l ,h) =
√

(Hr (l ,h) −Hd(l ,h))T ∗ A∗ (Hd(l ,h) −Hr (l ,h)), (5.2)

where A represents the similarity matrix which elements are defined as:

A(i , j ) = 1−exp(−α∗ mi n(|i − j |,n −|i − j |)
max(|i − j |,n −|i − j |))

, (5.3)

where i , j are the indices of matrix A, n is the number of bins in Hr (l ,h) and Hd(l ,h), and

i , j ∈ n. As suggested in a study on perceptual color difference [176], we define α = 32.

Table 5.1 shows a comparison of using the two different distance metrics for our color

histogram-based metric.

Measuring the distance of color histograms provides an indication of global alter-

ations in colors due to color coding mechanisms in compression. However, this does

not give an indication of the spatial correlation among colors within smaller distances

or regions in the point cloud. To check whether or not the use of local spatial correlations

would improve the quality estimation, we adopt the concept of color correlogram [177].

A correlogram is represented by a matrix of nxn elements, where n is the number of

bins used to represent the luminance or hue values. n is usually 256, when color chan-

nels are represented by 8 bits. In our experiments, we use n=256 for both cases. Given a
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Table 5.2: Performance comparison using different k-nearest neighbors as distance constraint in autocorrel-
ograms (using Euclidean distance to compare the autocorrelograms of degraded and reference point clouds).
Subscripts h and l indicate hue and luminance, respectively.

k
DC (h) DC (l )

PLCC SROCC PLCC SROCC

4 0.1614 0.2445 0.817 0.7915

6 0.1156 0.2205 0.7722 0.7522

8 0.0913 0.2214 0.7411 0.7379

10 0.0782 0.2027 0.7162 0.7379

point p in a point cloud, and its neighboring point pk , an element of the correlogram for

point p at index i , j is defined as follows.

Cp (i , j ) = Pr [(cp ∈ i ,cpk ∈ j ) | (|pk −p| <= d)], (5.4)

where Pr [x] denotes probability of x, cpk is the color bin value of point pk , and point

pk is within distance d to point p. Therefore, the correlogram of a point p with color

bin value cp ∈ i depicts the probability that a point with color bin value cpk ∈ j would be

within distance d . We set the distance d to be within the k nearest neighbors of the point

p. By its definition, a correlogram is a symmetric matrix.

To obtain the correlogram of a point cloud image PC with N number of points, we

sum over the correlograms of every point as follows.

Cr lPC =
N∑

n=1
C pn (5.5)

To compare the quality between two point clouds, we take the autocorrelograms of

the point clouds, and calculate their distances. The autocorrelogram of a point cloud PC

is the diagonal elements of its correlogram, as follows.

ACPC = di ag (Cr lPC ) (5.6)

As with the color histogram-based metric, we perform a comparison of using Eu-

clidean distance and QF distance for our autocorrelogram-based metric. We first com-

pare the performance of using different values of k nearest neighbors as shown in Table

5.2 (with the Euclidean distance). Based on this table, we decide to use k=4 in our met-

rics. Table 5.3 shows the comparison of performance using Euclidean distance and QF

distance on our autocorrelogram-based metric.
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Table 5.3: Comparison of using Euclidean distance measure and QF-distance measure for the
autocorrelogram-based metric (k=4). Subscripts h and l indicate hue and luminance, respectively.

Distance measure
DC (h) DC (l )

PLCC SROCC PLCC SROCC

Euclidian distance 0.1614 0.2445 0.817 0.7915

QF distance 0.8981 0.8688 0.8654 0.8281

Figure 5.2: Point cloud sequences used in the experiment, from the publicly available 8i Voxelized Full Bodies
(8iVFB v2) dataset [116].

5.3.2. METRIC VALIDATION

To evaluate the performance of our metrics, we calculate the objective quality scores for

24 point cloud stimuli that we generated for our subjective experiments in Chapter 3.

We use 6 frames from 6 different sequences of full-body humans from [116], and com-

press each of these frames into 4 different levels of compression using the compression

algorithm in [107]. The compression parameters used are Level of Detail (LoD) 10, LoD

9, LoD 8, and LoD 7. LoD 10 means that the compression uses a 10-b octree setting,

i.e., 10 quantization bits per direction. Figure 5.2 shows the 6 reference frames of our

dataset. After calculating the objective scores of our stimuli, we compare them with the

mean opinion scores (MOS) collected from our subjective study in Chapter 3 using the

Pearson Linear Correlation Coefficient (PLCC) and Spearman Rank Order Correlation
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Coefficient (SROCC).

Tables 5.1 and 5.3 show the performance of our metrics using Euclidean distance

and QF distance. Table 5.1 shows that using cross-bin distance (i.e. QF distance) on

hue histograms yields a better estimation of quality than using bin-to-bin distance. On

the other hand, there is no significant difference between the two distance measures

for luminance histograms. Thus, we use the QF distance when comparing our color

histogram-based metric with state-of-the-art metrics later on. Table 5.3 also shows that

the QF distance gives a better estimation of quality than Euclidean distance for autocor-

relograms.

We compare the results of our proposed approaches with currently used point-to-

point objective metrics for point clouds. Besides comparing our approach with the met-

rics for geometric distortion, we decide to use the peak-signal-to-noise ratio (PSNR) of

the color channels in YUV-space as a baseline for color distortion metrics. We also cal-

culate the PSNR of the H-channel in HSV space to once again compare the use of hue

against luminance in estimating point cloud quality. Table 5.4 shows the PLCC and

SROCC values computed for every quality metric against the MOS collected for the 24

stimuli in our dataset.

The table shows that the geometric distance metrics, di stRMS and di stH auss corre-

late well with human judgment for our stimuli and setup. The table also shows that the

color metrics that we propose correlate better with the subjective scores compared to

the state-of-the-art color metrics PSN R(Y ,U ,V ). Hue seems to give lower performance

than luminance in estimating point cloud quality, as shown by the PSNR and Dhi st val-

ues. It is worth noting that the di stRMS and our proposed color metrics Dhi st (l ,h) provide

higher SROCC values, meaning that they predict monotonicity better (the rank order of

the MOS is better preserved in the objective scores, which is a desirable property of a

quality metric).

5.3.3. COMBINING GEOMETRY AND COLOR METRIC

In this section, we look into combining geometry-based metric and our best-performing

proposed metric to improve point cloud quality estimation. We define a linear combi-

nation of the RMS distance metric and luminance histogram metric (using QF distance)

as follows.

QPCd
=α∗Di stRMS + (1−α)∗Dhi st (l ) (5.7)

Since the Dhi st (l ) values are very small compared to the Di stRMS values, we first nor-

malized the Dhi st (l ) values to [-1,1]. Figure 5.3 shows the resulting Pearson Linear Cor-
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Figure 5.3: Pearson Linear Correlation Coefficient (PLCC) obtained with different values of alpha for the com-
bination of geometry-based metric and luminance histogram-based metric

relation Coefficient (PLCC) values for different values of alpha (α). Based on the figure,

we see that combining the geometry-based and luminance histogram based metrics im-

prove the PLCC to up to 0.9596, at α = 0.2102. This gives a near 0.4 improvement from

0.9188 and 0.9130 obtained using only Di stRMS and Dhi st (l ), respectively.

5.4. DISCUSSION

Up until now, point cloud quality evaluation has adopted some metrics that have been

traditionally used in the 3D graphics domain, such as root mean square distance or the

Haussdorf distance metric. These metrics mainly aim at measuring quality based on the

geometric surface of an object.

We propose objective metrics based on color, for several reasons. Firstly, in point

cloud compression, colors may be coded using different approaches than octree-struc-

ture coding, and yield different color artifacts. Adopting geometry-based metric (such as

PSNR for the different color channels) may not accurately quantify these color artifacts.

Secondly, our subjective study shows that color distortions are an important factor for

users’ judgment of point cloud quality. We propose to use different color distribution

representations to predict the quality of compressed point clouds, and our results cor-

relate well with human judgment. The use of luminance values, especially, consistently

yields good correlations with human judgment compared with hue.

In calculating the objective quality scores for the stimuli of our dataset, we find that

state-of-the-art geometry-based metrics work quite well in predicting subjective quality
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scores. For Di stRMS metric, the PLCC and SROCC values are 0.9188 and 0.8878, respec-

tively. Meanwhile, Di stH auss gives a PLCC and SROCC of 0.8480 and 0.7945, respec-

tively. These results are contrary to previous studies that show low PLCC and SROCC

values between 0.5 and 0.6 for point clouds with compression-like artifacts. One of the

main difference between our study and previous studies is our use of complex colored

point clouds as stimuli. Moreover, during rendering of our test videos, we assigned big-

ger point sizes for point clouds with higher levels of compression, to avoid having hollow

parts in our objects due to missing points. This could have helped masking the appear-

ance of geometric distortions in our study.

We note here that in our experiment, we created our dataset using 24 point cloud

stimuli. This means that this study is more of a first step towards more studies on point

cloud quality assessments. We need more point cloud datasets with subjective quality

scores, in order to be able to evaluate our metrics on different stimuli.

5.5. CONCLUSION

In this chapter, we propose objective metrics for point cloud images using color distri-

bution information, i.e. color histograms and autocorrelograms. Our proposed metric is

based on the insights obtained through our subjective experiments in Chapter 3, which

suggest that users consider color alterations or distortions beside the clarity of the face

and overall structure of the body when evaluating point cloud quality. We show in this

chapter that luminance histograms yield good point cloud quality estimation. Moreover,

combining our color-based metric with existing geometry-based metric gives significant

improvement in point cloud quality estimation.

Our experiments were conducted using a limited set of stimuli, as there are no pub-

licly available point cloud quality datasets yet. Future studies should perform exper-

iments across different datasets (e.g. different content, as well as compression algo-

rithms) to evaluate the generalizability of our results.
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6
CONCLUSIONS

In the preceding chapters up to this point, we have addressed various problems related to

the subjective assessments and objective metrics for image QoE: from evaluating the reli-

ability and repeatability of aesthetic appeal assessments, via exploring the use of mixed

methodology to investigate users’ perception of point cloud quality, to incorporating new

influencing factors into state-of-the-art image and point cloud quality metrics to improve

quality predictions. In this final chapter, we look back on the work presented in the previ-

ous chapters and reflect on how they answer our research questions (Section 6.1). We also

reflect on the limitations and practical implications of our findings (Section 6.2), and fi-

nally discuss potential research directions following up the findings in this thesis (Section

6.3).
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6.1. CLOSING THE LOOP

The objective of this thesis was two-fold. First, it aimed to improve state-of-the-art im-

age quality metrics by leveraging QoE influencing factors. Despite various existing work

that model the influence of different factors on user QoE, very few have actually pro-

posed to incorporate these factors into existing quality metrics, to improve overall QoE

prediction or optimization. Second, this thesis looked into the reliability of subjective

methodologies for observing affective QoE variables, or QoE factors of new media, to

make sure that the data collected is reliable enough to use in modeling objective qual-

ity metrics. This second objective is related to concerns about the reliability of existing

subjective methodologies in collecting data related to QoE factors that are highly subjec-

tive or new to the research community. Figure 6.1 reiterates the research questions that

we presented in Chapter 1, and we summarize our findings for each research question

below.

We first addressed the problems related to subjective experiments in Part II of this

thesis. Conducting reliable subjective experiments is an important step in building reli-

able QoE metrics, and it is important to understand in which cases existing methodolo-

gies may not be sufficient to collect reliable subjective data. In Chapter 2, we conducted

extensive subjective experiments using four different scaling methods, on two different

experimental environments, and compared the reliability and repeatability of these dif-

ferent experiment setups in collecting aesthetic appeal evaluations. Our studies revealed

that existing rating methods could yield reliable aesthetic appeal assessments, and that

aesthetic appeal assessments could be repeatable across experiment environments. This

answers our research question RQ-1A (see Figure 6.1).

In Chapter 3, we conducted subjective assessments of point cloud images using a

mixed methodology approach. The qualitative approach in our study allowed elicita-

tion of factors users consider when evaluating the quality of point clouds. These factors

would not have been discovered if relying on the quantitative approach alone. Our study

shows the advantage of using qualitative methods to explore point cloud QoE influenc-

ing factors, and answers our research question RQ-1B.

Moving on to Part III of this thesis, we address problems related to objective met-

rics of visual QoE, looking into incorporating key influencing factors into state-of-the-

art quality metrics to obtain better overall visual QoE prediction. In Chapter 4, we per-

formed a subjective assessment to observe whether or not the semantic category of an

image would influence its QoE. Our results showed that image scene and object cate-

gories influence users’ judgment of visual quality for JPEG compressed and blurred im-
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Figure 6.1: Scope and contribution of this thesis. The two orange boxes indicate the two main research scopes
of this thesis. Each blue box represents one research question addressed in this thesis. The main contribution
of this thesis is indicated with black-bordered boxes.
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ages, which answers our research question RQ-2A. Based on these results, we then pro-

pose to incorporate semantic category features into existing state-of-the-art no-reference

image quality metrics (NR-IQMs). Our experiments show an improvement in quality

prediction compared to the state-of-the-art. This answers our research question RQ-2B.

In Chapter 5, we propose a full-reference quality metric for point cloud images based

on color distribution features. These color distribution features were proposed based on

the insight we obtained in earlier studies: color fidelity is an important factor for users

when evaluating point cloud image quality. This answers our research question RQ-2C.

Our experiments on the full-reference metrics show that the combination of color distri-

bution features with state-of-the-art geometry features outperforms state-of-the-art in

predicting point cloud quality. This answers our research question RQ-2D.

In the following section, we will discuss the limitations and practical implications of

our findings.

6.2. DISCUSSION

Visual QoE studies aim at building reliable predictors of image/video quality. To ac-

complish this, reliable subjective data is needed, as well as additional features/factors

beside visual artifact features. This has been supported by previous work in the field

[12, 41, 39, 44]. Our work in this thesis is one step further in the effort of performing

reliable subjective QoE studies, and building QoE metrics.

Our extensive studies in Chapter 2 show that image aesthetic appeal assessments

can be conducted reliably and repeatedly with existing subjective methods. Although

the chapter focuses on aesthetic appeal evaluations, the reliability measures used in

the chapter can be applied to verify the reliability of subjective data of other affective

variables, such as interestingness or enjoyment. Granted, the findings are still limited

to the rating methods and environment setup that we used, i.e. discrete 5-point ACR

scale, continuous scale with 5-point ACR labels, continuous scale with visual anchors,

and binary scales in controlled lab and crowdsourcing environments. However, we be-

lieve that these are representative of the methods typically used within the community

[52, 56, 57, 80, 77]. Part of the rating scales used in our studies have been recommended

for traditional visual quality assessments in international standards [52, 53]. Our study

shows how these scales are used by users in assessing affective variables. The interna-

tional standards for subjective assessments of visual stimuli are established for lab en-

vironments. Recently, however, efforts have been initiated to append to existing recom-

mendations some notes on performing experiments in a crowdsourcing environment
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[178]. We believe that our study could contribute insights on this as well, especially in

evaluating the reliability of results and comparisons with lab experiments.

Our work in Chapter 2 suggests that reliability measures can be used to compare data

from different subjective assessments/datasets. Nevertheless, there are more discus-

sions related to the reliability of subjective assessments that could be of interest within

the QoE field, especially on how reliability measures would affect decisions in build-

ing objective QoE metrics. So far, most literature in QoE uses average scores (MOS) to

build objective QoE metrics. However, these scores do not show us the bigger picture of

whether or not users highly agreed with each other. Optimizing for a system with high

user agreement should be different from optimizing for a system with low user agree-

ment, even though both cases might have the same ground truth MOS. Reliability mea-

sures can and should be used to create smarter objective metrics in this regard. One way

of using reliability measures in this case could be through deciding on a threshold of re-

liability when using different datasets to train objective metrics. Another example could

be to also train objective metrics such that they learn and predict the reliability of a score

instead of the average score only.

In chapters 3, 4 and 5, we conducted subjective experiments to understand whether

or not certain factors influence user QoE. We performed these with different method-

ologies and setup (i.e. crowdsourcing, mixed methods, controlled lab setup). We then

used the insights from these subjective assessments to propose additional features to

extend and improve on existing QoE metrics. It is frequent to find in literature stud-

ies where additional features for QoE metrics are designed without involving users or

humans in the design process. As a consequence, the role of subjective quality assess-

ments is sometimes overlooked, and they often appear solely as a final task to evaluate

the performance of a quality metric. This practice limits our understanding of human

perception on visual QoE to mere correlation values with different metrics. If our sys-

tems are designed to give better predictions for humans, we should be able to trace back

the success or failures of our systems to humans themselves. This can be done by care-

fully considering subjective quality assessments even in the steps leading to building a

quality metric, especially when there is little to no prior work on the factors related to

user QoE for a particular media type or application context.

In Chapter 4, we chose to use scene and object categories to represent media content

as an influencing factor to image QoE. Our semantic features were extracted from exist-

ing convolutional neural networks (CNNs). A natural next step would be to also learn

the perceptual quality features using CNNs. Another interesting direction would be to

look into the relation of semantic category (i.e. media content) with other factors, such
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as aesthetics or immersiveness, and incorporating these factors in an overall QoE metric.

Our semantic-aware quality metric in chapter 4 can be implemented for any image col-

lection application, for example to optimize how an image collection is ordered based

on quality. As we mentioned in the beginning of this thesis, the idea behind our findings

could be extended for videos as well. However, in this case of semantic-aware quality

metric, it may be more useful to incorporate semantic category features that are more

relevant for videos, e.g. genre-related instead of scene/object-related.

Finally, in chapters 3 and 5, we dealt with one example of new visual media, i.e. point

clouds. As mentioned at the end of these chapters, our findings are still limited to the

particular dataset that was available for us to use, which is, to date, one of the few pub-

licly available. This is not a surprising problem with new types of media. To be more

confident in generalizing research findings on these media, we will need to perform ex-

periments on more datasets. We have taken some initial steps in this direction, as we

participated in the formal subjective evaluations of the submissions for the call for pro-

posals for point cloud compression within MPEG [179]. Nevertheless, one important

step forward in visual QoE research for immersive media would be to create and share

more QoE datasets of these media. Additionally, there should be awareness of the dif-

ferent contexts in which these media could be consumed and evaluated. For example,

some media can be consumed interactively and future applications may have two or

more types of media combined. This calls for variety in the type of subjective assess-

ments conducted and datasets shared. Our metric for point clouds in Chapter 5 aims to

evaluate compression technologies. However, since it is a full-reference metric, it may

be used to evaluate other algorithms that alter the structure or color appearance of point

clouds.

6.3. OUTLOOK AND RECOMMENDATIONS

Finally, we would like to discuss some potential research directions following up the find-

ings in this thesis.

One fundamental direction that could be looked into is the potential of incorporat-

ing reliability measures in QoE predictions. The QoE field has used average user scores

as ground truth to build metrics, but this discards the information of how user’s dis-

agree/agree in the scores. Further work could look into the merit of training a QoE pre-

dictor with reliability measures as well as the quality score, such that the predictors can

provide a level of confidence along with their predicted quality score. Additionally, fu-

ture work could look into leveraging reliability measures to indicate cases in which a
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personalized QoE prediction would be more advantageous. In chapters 3 and 4, we gave

examples of reliability measures of subjective assessments across different application

contexts. This gives a rough idea of potentially providing personalized QoE optimization

in applications such as gaming or web streaming, in contrast with cases/applications

that have higher user agreement such as video or image compression.

Another fruitful direction in the field is the QoE of immersive media. In this thesis,

we chose to work on point cloud QoE. However, future applications seem to move to-

ward implementing mixed media (e.g. point clouds on top of omni-directional videos1).

Future work should look into exploring how users perceive the QoE of mixed media: do

users perceive the different media as one, or would users be more sensitive to the vi-

sual quality of one media compared to the other? One initial step would be to perform

a study in which we control for the quality of two different media types (e.g. one as

foreground and the other as background), and ask users to evaluate the quality of both

media individually, as well as the overall quality of the viewing experience. The answer to

these questions would be useful to design the optimization of applications with mixed

media. Moreover, many applications of immersive media aspire to provide users with

a sense of immersion or presence, besides high visual QoE. Looking into the relation-

ship of these variables would be a fundamental research direction related to immersive

media. A natural first step would be to determine a sensible application context, and

explore the tangible aspects of the experience that users associate with immersion, pres-

ence, and quality. This could then be followed up with experiments that control for the

different aspects, and ask users to evaluate immersion, presence and quality.

1http://vrtogether.eu/
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Propositions

accompanying the dissertation

VISUAL QUALITY OF EXPERIENCE

A METRIC-DRIVEN PERSPECTIVE

by

Ernestasia SIAHAAN

1. Objective metrics are only as objective as the subjective ground truth. (this thesis)

2. A human-centric system needs to involve humans since its inception, instead of

only during its evaluation. (this thesis)

3. To move forward the research on the QoE of immersive media is to move away

from traditional, standard methodologies of subjective visual QoE assessments.

(this thesis)

4. Devising reliable QoE metrics requires interpretability of the QoE influencing fac-

tors these metrics take into account.

5. The common practice of averaging people out should be discouraged in research

as much as it is discouraged in society.

6. Political correctness is the placebo to society’s problems with diversity.

7. Equality cannot be reached without positive discrimination.

8. It is better for PhD students to not do multi-disciplinary research.

9. For democracy to work, we first need to banish ignorance.

10. We need more karaoke booths in the Netherlands.

These propositions are regarded as opposable and defendable, and have been approved

as such by the promotor prof. dr. A. Hanjalic.
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