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PREFACE

The investigation reported herein was conducted for and sponsored
by the U.S. Army Engineer Waterways Experiment Station (WES, Contract
No. DACW39-80-C-0129). The numerical aspects of the investigation
served as the basis for the Ph.D. thesis of Mr. John Vadnal. The
companion, experimental investigation has been reported by Odgaard and

Kennedy3. The numerical model developed in this phase of the
investigation analyzes and predicts flow and sediment-transport
distributions in alluvial-channel bends. The authors wish to

acknowledge their gratitude to Mr. Steve Maynord of WES for his
continuing encouragement and assistance during the course of this study.
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CONVERSION FACTORS, U.S. CUSTOMARY TO METRIC(SI)
UNITS OF MEASUREMENT

U.S. customary units of measurement used in this report can be
converted to metric (SI) units as follows:

Multiply By To Obtain

inches 0.0254 meters

feet 0.3048 meters

feet per second 0.3048 meters per second
cubic feet per second 0.02831685 cubic meters per second
miles (U.S. statute) 1.6093 kilometers

pounds (mass) 0.4535924 kilograms

pounds (force) per square

inch 6894,757 pascals

tons (short) per foot

per day 2.9763 tons per meter per day



A NUMERICAL MODEL FOR FLOW AND SEDIMENT TRANSPORT IN
ALLUVIAL-RIVER BENDS

PART I: INTRODUCTION

Background

1. Two of the most striking and intriguing features of natural
alluvial streams are their tendency to meander, and the downstream
migration of the meanders. In addition to being a fascinating natural
phenomenon and posing some of the most nettling problems in the whole of
river mechanics, river meandering, and in particular the bank erosion
attendant to the growth and migration of the meander loops, has become a
major international problem. According to the final report on work
conducted under the Streambank Erosion Control Evaluation and
Demonstration Act of 1974l (Section 32, Public Law 32-251, submitted in
December 1981), approximately 142,000 bank-miles of streams and
waterways are in need of erosion protection. The cost to arrest or
control this erosion by means of conventional bank-protection methods
currently available is estimated to be in excess of $1 billion
annually. For the Upper-Mississippi River basin alone, the cost was
estimated to be in excess of $21 million annually. These figures exceed
the benefits derived by a large margin, thereby rendering many of the
bank-erosion-control projects uneconomical on a cost/benefit basis. As
a result, most bank-erosion losses continue unabated. Attempts to halt
the erosion are often limited to piecemeal protection along isolated
bank reaches, at public or private facilities on streambanks, or at
highway crossings. However, as such facilities increase in value and as
the consequences of failure become greater, the threshold level of
acceptable risk becomes smaller. At the same time, traditional channel-
stabilization measures have become extremely expensive and are not
acceptable to environmentalists in many instances.

2. Nowhere has the problem come to sharper focus than along the
Sacramento River, California. The Sacramento River Valley contains the



Nation's finest (and most rapidly disappearing) agricultural land.
According to Bricez, river-bank erosion along the unprotected stretches
of the approximately 200-mile-long reach of the Middle and Lower
Sacramento River is producing an average annual loss of nearly two acres
of farmland per mile. Even when evaluated against current inflated land
values, traditional means of bank protection (for example rock riprap)
are so expensive that they cannot be justified economically, The
problem is compounded by some of the material eroded from the banks
being transported to the dredged navigation channels of the Lower
Sacramento River system and San Francisco Bay. Bank protection along
the upper reaches by traditional means can be justified economically
only if it can be demonstrated that the reduced erosion will result in
less dredging for navigation-channel maintenance. Thus, the problem
poses two general questions: (1) Will it be possible to develop
alternative bank-protection measures that are effective, environmentally
acceptable, and economically justifiable when evaluated against Tland
values alone?; and (2) Will reduced bank erosion upstream be reflected
in reduced downstream dredging (and how much, and when), or is the
material eroded from the banks being deposited at other locations (ege,
on point bars) along the river?

3. It is against this backdrop that the Institute of Hydraulic
Research at The University of lowa entered into a contract with the Army
Corps of Engineers, Sacramento District, in 1980 to conduct an
investigation directed at developing improved, "unconventional" bank-
protection methods for application along the Sacramento River. It was
realized that the investigation should also include laboratory testing
of the techniques or the devices proposed, and development of an
analytical model, likely a computer-based one, for routing of flow and
sediment through channel bends. Funds for conduct of the laboratory
investigation and development of the routing model were not available
from the Sacramento District, but were provided by the Waterways
Experiment Station.



4. A report describing the new bank-protection method developed
under the contract with the Sacramento District (Contract No. DACWO05-80-
C-0083) and the laboratory testing supported Jointly by the Sacramento
District and the Waterways Experiment Station (Contract No. DACW39-80-C-
0129) was submitted in May 19823, The present report is concerned
solely with the second phase of the WES-sponsored project: development
of a numerical model for analysis and prediction of flow and sediment-
transport characteristics in the bends of meandering alluvial channels.

Analytical Strategy

5. The point of departure for development of the numerical model
is the analytical work reported by Falcon and Kennedy4. The manuscript
of this paper 1is included herewith as Appendix A, and is to be
considered an integral part of this report. An understanding of the
analysis presented in PART II requires considerable familiarity with the
Falcon-Kennedy analysis described in Appendix A.

6. The principal stumbling blocks encountered in the analysis of
river-bend flow are the interdependency of the bed topography, flow
distribution, and sediment-discharge distribution. The interaction of
the vertically nonuniform distribution of streamwise velocity and
channel curvature produces a secondary flow which spirals about the
channel -section axis and moves the higher velocity, near-surface fluid
toward the outside of the bend and the near-bed fluid toward the
inside. The radially inward bed shear-stress transports bed sediment
radially inward until the bed becomes inclined such that the radial-
plane shear stress is balanced by the component of the moving bed
layer's weight radially outward along the bed. The resulting warping of
the channel bed, which produces larger depths near the outer bank, as
shown in figure 1, leads to a redistribution of the streamwise flow, and
produces much Tlarger velocities, boundary shear stress, and unit
discharge near the outer bank. This, in turn, affects the lateral
distribution of unit sediment discharge. It is emphasized that the



secondary flow itself has a relatively minor impact on the distribution
of flow and sediment transport in a channel bend. It is the bed warping
produced by the secondary flow that is primarily responsible for the
redistributions outlined above.

e In the case of fully developed flow in a uniform curved
channel (i.e., one of whose channel axis is circular in plan view), the
torque generated about the channel axis by the interaction of the
velocity profile and channel curvature is balanced almost exclusively by
boundary shear stress. In the case of channels with nonuniform plan-
form curvature, as occurs in meandering streams, it is necessary in the
calculation of the secondary-flow strength to include the nonuniformity
of the flux of moment-of-momentum (or, more simply, the torsional
inertia of the flowing fluid) in the torque balance. The inclusion of
the inertial effects in this case leads to a phase shift between local
channel curvature and local secondary-current strength and transverse
bed slope.

8. A hallmark of the numerical flow and sediment routing model
developed in PART II is a partial uncoupling of the secondary flow from
the distributions of primary flow and sediment transport. The principal
steps in the development of the analytical framework for the numerical
model are summarized with annotation as follows:

L The strength of the secondary flow is computed for any
section along a channel of nonuniform curvature. The
integral-form analysis of conservation of moment-of -momentum
(or torsion) is performed for a channel of rectangular cross
section with depth equal to that of the same flow in a
straight rectangular channel of equal slope.

iie It is assumed that the bed topography can be adequately
represented by an inclined straight line passing through the
mid-width point of the equivalent rectangular channel



utilized in step i, above. It is further argued that the
transverse slope of the channel bed varies linearly with the
strength of the secondary current. The force equilibrium of
the bed layer is analyzed to relate the mean bed slope to
the secondary-flow strength,

iii. The depth-integrated differential equations of continuity
and of conservation of streamwise momentum then are employed
to calculate the velocity field. It is assumed that the
secondary-flow velocity has linear vertical distribution at
any point across the channel, and the magnitude of the
secondary-flow velocity 1is obtained from the analysis
presented in Appendix A. A radial, mass-shift velocity is
also included to account for the movement of fluid across
the channel as the channel curvature and transverse bed
slope change and even reverse. The mass-shift velocity is
assumed to be uniformly distributed over the depth.

ive The lateral distribution of unit sediment discharge across
the channel at any section is computed on the basis of a
power Tlaw using the local flow properties computed in step
115,

9. The analysis is limited to steady flow in channels with
constant width and centerline streamwise slope. Utilization of the
model requires an estimate of the stream's friction factor using some
other method, such as that of Alam and Lovera®., The model does not
allow for transverse variations of local friction factor, due to the
lateral variations of Tlocal depth and velocity, nor does it compute
sediment discharge by size fraction. However, the computer program is
structured to accommodate these features.



PART II: ANALYTICAL MODEL

Secondary Flow in Rectangular Channels with Nonuniform Curvature

10. As indicated above, the secondary-flow calculation will be
made for a rectangular channel that is "equivalent" to the warped
sections. Because the analysis is of the integral form, and considers
only the streamwise and lateral fluxes, over the whole channel section,
of the quantities of interest, neglect of the lateral variations of the
primary and secondary currents that occur in a warped channel is not
Judged to be a major Timitation. Support for this conclusion is
provided by the generally good agreement between measured transverse bed
slopes and those calculated on the basis of the radial bed shear stress
in the "equivalent" rectangular channel (see figure 4A).

11, The control volume to be utilized in the moment-of -momentum
analysis is depicted in figure 2, and the coordinate system is defined
in figure 3. The control volume can be envisioned as the central region
(see figure 1) of the flow as it existed before the bed became warped by
the secondary current. The primary-flow velocity profile will be
described by the power law,

-k g 0

where, in addition to the quantities defined® in figures 1 and 2, V =
depth-averaged flow velocity and n = reciprocal of the power-law
exponent. The secondary-flow velocity distribution will be approximated
by a linear profile,

7=2G-3 (2)

*For convenience, symbols and unusual abbreviations are listed and
defined in the Notation (Appendix C).



In general, n is greater than about 4, and figure 2A indicates that (2)
is an adequate representation of the profiles for an integral analysis,
in which small deviations between the actual and formulated profiles
have relatively small effects. The equation expressing conservation of
moment -of -momentum (torque) about the centroid of the control volume
shown in figure 2 is

r. .2 d

{:y;-(y-%) dr dy rd¢-“p%;[£uv (y-%) dy d¢

©
ow—.

d 2 2, d
- Tor 2 (Tg = T )'7$ = (3)

in which o ™ radial component of the bed shear stress. The radial
shear force exerted on the bed results principally from the velocity
profile just above the bed being skewed by the secondary-flow
velocity. The secondary velocity itself is relatively small compared to
the primary velocity, and alone produces a minor increase in the total
shear stress. It appears reasonable to assume, therefore, that it is
the skewing of the primary-flow bed shear stress that produces the
radial component of the bed shear, and that the latter is proportional
to the skewing of the velocity profile. This will be expressed as

e, » g 3 (4)
v

where g = proportionality factor to be determined from measured rates of
streamwise development of secondary flow in curved channels, and V =

mean streamwise flow velocity. The quantity e (hereinafter denoted

simply as ro) will be related to the local mean velocity by means of the
Darcy-Weisbach equation,

f
% =3 pV (5)

10



where f = Darcy-Weisbach friction factor. Substitution of (1)s (2}
(4), and (5) into (3) and carrying out the indicated integrations yields

d d
c dU C
— —+g,U = =g,V (6)
re de 1 Rc 2
in which
Bo=a (7
c =7 (rj+ry) )
_ (3n+1)(2n+1) gf
91 = 7 % (8)
2n"+n+1
and
_ (3n+1)(2n+1) (n+1) (9)
n(n+2)(2n%+n+1)
Equation 6 is a linear, ordinary differential equation which has for its
solution
= e T dC S-S,
U(s) = U(sy) + g,V exp [-g,(—5)] [ 3 (s) exP [9; (=) 1d¢10)
s ¢
0

where the change of variable ds = R. d¢ has been made. Note that the
subscript ¢ is used hereinafter to refer to centerline values. The
quantity U(s,) is the secondary-current strength at s = sq. In a field
application, the centerline curvature, 1/R.(s), would be determined from
a map or survey and, in the case of complex channel lineament, the
quadrature appearing in (10) 1likely would have to be evaluated
numerically. This poses no problem inasmuch as the governing equation
themselves must be treated numerically.

Bed Topography

12, To determine the bed topography, and therefrom the streamwise
and transverse distributions of flow depth for utilization in the

11



numerical solution of the equations of continuity and motion of the

fluid, two assumptions will be made, as follows:

ie

iis

The transverse bed profile is a straight line at every channel
section. Figures 4A and 6A, and also the results presented by
Zimmermann and Kennedy®, demonstrate that the deviations of
both measured and more accurately computed transverse profiles
from a straight line are relatively small.

The transverse bed slope varies linearly with U. This is
consistent with (4) and the bed-layer equilibrium analysis
presented in Appendix A, where it is shown that the local bed
slope varies linearly with the local stress (14, App. A). In
terms of the mean transverse bed slope, St(= sin g in (14,
App. A)), this equation reads

Top = Yp(1-P) 80 9 Sp (11)
where p = bed-layer porosity; Ap = Pg P> in which
Py = particle density and p = fluid density; and

g = gravitational constant.  Substitution of (4), (5), and
(10), (15, App. A), (16, App. A), and (17, App. A), into (11)
yields

_ f vV C
Sty s T v
Yg AL o
p 50

where ec = Shields parameter defined by (16, App. A) and a =

proportionality constant between the bed-layer thickness, yp
(see figure 1), and shear velocity, ux, used by Karim7-
Equation (12) can be simplified to the following expression:

12



U

St = 93 2 (12A)
where
r_'%
9 = 11T 75 ———7 (128)
/g-;ﬂ Dcy

Note that n and f are related by Nunner's relation (17, App.
A), which is

n=1//f (13)

13, It will be assumed further that the depth changes across any
section due to curvature-induced inclination of the water surface are
very small compared to those due to bed warping. (Note, however, that
the effect of radial water-surface inclination is retained initially in
the equations of motion developed in the next section, but is then shown
to be negligible in the streamwise momentum equation for most meandering
river situations.) The depth at any point across the channel is then
given by

d(r,s) =d, & S;r (14)
where the sign, +, is adopted according as Rc (see figure 3) is positive
or negative. The bed elevation at any point in the channel then is
given by

h(r,s) = hC(O,so) - Sc(s-so) + STr (15)

in which, again, the sign is chosen to be the same as that of Ree

13



Equations for Fluid Motion

14, The steady-flow, depth-integrated conservation equations for
mass and for radial and streamwise momenta, expressed in radial
coordinates, will be used for calculation of the velocity field. The
continuity equation is

2 [V(H-h)] + 3 3o [r T(H-n)1 = 0 (16)

in which T = shift velocity (see figure 1) which accounts for the
transverse mass shift that occurs in channels with nonuniform curvature
(e.g., along meandering channels as the thalweg moves from the vicinity

of one bank to the other).
15. The radial-momentum equation is

2

[f o dr dy] rdg + 2 % og(H-h)Zrdglar

S— =

+ %-pg(H-h)zdr d¢ - pg(H-h) dr rd¢-—— + 1,0 Md¢ dr =

H
a¢ [g p(u+U)v dr dyld¢ + == [g o (u+D) rd¢ dyJdr (17)

Substitution of (1) and (2) into (17) yields for the depth-integrated
radial -momentum equation

2
Dl sl of T (T) - g(H-n) 2 -

n(n+2 r
2 DV(H-h) (T + o)1 + + 2 [r(H- h)(g- + 791 (18)

16. The corresponding equation expressing conservation of
streamwise momentum is

; pg(H=h) dr]d¢ - pg(H-h) rd¢ dr--l--—n + 1 rdy dr =

3
36 rag ‘o

14



aHdeda[H T)rde dyTd 19
gg[govry]¢+ygovw Jrde dyIdr (19)

which, after introduction of the velocity distributions adopted for this
~analysis, (1), (2), and the uniformly distributed transverse shift
velocity, yields the following depth-integrated streamwise-momentum
equation:

oH f 2
- 9(H-h) 5 - g V" =

2
L2 [rv(H-n) (T + )]+ ﬁ-’f—}%%s- [Vé(H-n)]  (20)

The numerical treatment of these equations is described in PART III.

Sediment -Discharge Relation

17. The local sediment discharge will be calcualted on the basis
of the Tocal streamwise velocity using a power-law relation,

qy = a Vb (21)

in which q = total sediment discharge per wunit width; and the
coefficient a and exponent b are to be determined on the basis of a

sediment-discharge predictor or data on the channel under consideration
for its particular flow regime, bed-material size, etc., etc. The
numerical program is structured such that other sediment-discharge
relations can be incorporated into it. In particular, it is envisioned
that the future development might utilize a formulation such as that
recently developed by Karim/, which uses an iterative procedure to
calculate sediment discharge and friction factor as interdependent
variables, This would permit incorporation of laterally nonuniform
friction factor into the program, and calculation of the sediment
discharge of each bed-material size fraction. However, time and funds

15



did not permit undertaking of this rather major effort in the present
study.

18. It is recognized that the nonlinearity of (21) can lead to
calculated streamwise variations in the sediment discharge along a
nonuniformly curved channel with warped bed. A correction procedure is
incorporated into the numerical model which compensates for this
artifact in the following way:

i. The sediment discharges computed from (21) for radial
computational increments across each computation section are
summed to obtain the computed total sediment discharge for the
section.

ii. The sediment discharge in each radial computational increment
is corrected by a factor equal to the ratio of the sediment
discharge into the bend divided by the computed total sediment
discharge across the section,

This insures that sediment continuity is preserved along the channel
bend.

16



PART III: NUMERICAL MODEL

Numerical Strategy

19. The three governing equations, (16), (18), and (20), contain
three unknowns: the depth-integrated streamwise velocity, V(r,s); the
shift velocity, U(r,s); and water-surface elevation, H(r,s). The
secondary-flow velocity U(s), was calculated from the torsion-balance
analysis and 1is given by (10), and the bed elevation, h(r,s), was
obtained from the computed average radial bed slope and expressed by
(15). Numerical solution of these three strongly coupled equations
proved to be quite difficult, but was greatly simplified by introducing
the following restriction. Note that in (16) and (20), H appears only
in the combination (H-h), which is the Tocal depth given by (14), except
in the first term of (20). The streamwise water-surface slope comprises
two parts: one due to the friction slope, which is of order

2
aH v
(3s)¢ = O(f gTdc-) (22)

and a second resulting from the centrifugally-induced superelevation of
the water surface and of order

=2
H Vv W
(3s)s = Olgr— - 177 (23)
in which L = characteristic Tength of the curve (say, the half-

wavelength of a meander). The second of these can be neglected compared
to the first if
wdC
16 RT K F (24)
o

which is satisfied by most natural, sand-bed, meandering streams flowing
in the ripple- or dune-bed regimes. If (24) is satisfied, %g in (20)
may be replaced by

17



R

oH C
E.—.—SC-RF; (25)

which states that the water-surface elevation is constant across all
sections. Substitution of (25) into (20) yields an equation which,
together with (16) forms a pair of simultaneous equations for the two
velocities of interest, U and V.

20, It is convenient for numerical analysis to simplify (16) and
(20) as much as possible. The radial coordinate, r, is first replaced

by R + r in (16) and the expressions for d(r,s) and St(s), (14) and
(12), are introduced, which yields

= U, aV, _
F1U + F2V + ch4 (ar + as) = () (26)
where dc % ST(s)r
r r
Fo = 993 7~ = 91 @ S1(8) (26)
c c
and
r
F4 =1+ EZ ST(s) (29)

The flow-continuity equation (26) is normalized using the following
variables:

wr R d
O I S S S TR
v —v’v_v’RC—W’dé—W’
, r S
r' =1 and 5" =0 (30)

The normalized expression of (26) becomes, after dropping the prime
superscripts,

<l

V+dF, &+ By . (26A)

F,U + F - :

1 2

Similarly, substitution of (14) into (20) and nondimensionalization of
the equation yields



= 3 m U aV
FAUV + dcFy 57 (OV) + oogp [FQV + d Fy 57

2 2 2
n+l T 2 n+l V™ _
thmey B +'§] Vot Tz dcFy 3s
R
1 C
2 ScFa mr (31)
r
where
2 ¥ (32)

21, It is also advantageous in the numerical treatment of the
equations to avoid computing small derivatives of the dependent
variables., Because the shift velocity is much smaller than the depth-
averaged streamwise velocity, the term, 3U/ar in (31) will be eliminated
by the use of (26A), with the result

F
= U aV 1
ch4[U * 2n+1:I or T e Y

2 F
1 14 v 2 fq
+dcFy [n(n¥§7’+ 2] s T [n(n+2T+ 8]
L s p, oC (31A)
7 SR
r

22, The numerical strategy employed to solve for U and V
proceeded as follows:

i. The Tlocal depth-averaged velocity was approximated by the
Darcy-Weisbach equation,

v = ¢ 83dS (33)

in which d is given by (14) and S by



S =S, po (34)

which expresses continuity of energy slope across the channel.
ii. The velocity V given by (33) was substituted into (16) which
was then integrated numerically to obtain the first estimate

for T,

iii. The value of U was substituted into (31A) which was integrated
to obtain the next estimate for V.

ive The V computed in step iii was substituted into (16) and a new
estimate of U obtained.

ve The iteration procedure between (16) and (31A) was continued
until satisfactory convergence, as measured by the differences

between successive values of U and V, was obtained.

Further details are presented below,

Numerical Solutions for U

23. In order to solve (26A) and (31A) numerically for the two
unknown variables, U and V, a backward finite-difference scheme was
employed. Figure 4 shows the coordinate-grid layout that was utilized.
The indicies i and j represent the streamwise and radial positions,
respectively. Note that the origin of the transverse coordinate was
taken at the channel centerline. In discretizing both radial and
streamwise derivatives of an arbitrary variable F, the following
backward finite-difference scheme was utilized:

Fo « = Fy &
oF 1, i,j-1 (35)

r PJ- - Pj_l

20



and

- =

S S. . - 8S. .
1,J i-1,]

F. . = F. . .
aF ™ i-1,j (36)

24, An approximate solution for T can be obtained from the flow-
continuity equation, (16), by introducing the Darcy-Weisbach
relationship and (34):

V2 i SgdSC RC (37)

Substitution of (37) into (16), use of (14) and (12A), and subsequent
discretization yields the following explicit expression for U&:

S.-S

i Ti-1
AR 295, ©XPL-9; —q_ ]
U, = U, - 39,9, ¥ T (38)
J j-1 d(R.+r) 3 273 f d(RC+r)[j
where
R_St-d )T
. ( c’T "c’'1
T = RC(R.Sp - d )L
8RCST
T, = L (40)
L (t2p s,)213-1
cT
__t J
2= 7 i o
1 t- RcST o
n | {: RcST >0
T3 = 2 cET Ly ET (42)
1 tan™1 C . j RSy <0
/-RCST v-R ST
and

21



Rc(dc + STr)

R *r (43)

t =V

Note that the boundary condition U = 0 was imposed at the inside
(convex) bank. Equation 38 gives the approximate solution for T which
can be substituted into the streamwise-momentum equation, (31A),
solve for V.

25. Once V is computed at Section I = i, the flow-continuity
equation can be again utilized to solve for tﬁ,j in the iterative
process without utilizing the Darcy-Weisbach relationship. The final
discretized form of (16) in terms of V is

oo SRttt Dt - Bl ag)
A j-1 d(R +r)|J 2(si’j - Si-l,j7
2 2
[(R+)" |5 - (Rexd)];.)] (44)
d(RC+r‘)|j

Numerical Solution for V

26. Discretization of the streamwise-momentum equation, (31A),
yields the following quadratic equation for V;

i,j°
2 -
Avi,j + Bvi,j +C=0 (45)
where
F d_F
T2 f c 4 1 1
A= nn+2) "8 7 Si,j = Si-1,] [n(n+2) ¥ 2] (46)
d.F, _ Vg Fy
B=r-r. 1 Ui, * 2n+1] * 72ne1 Y4, 3 ()
and . i-
-d F L
_ c 4 T 1,]
¢ T Wi et Vi

22



deFy 1. .2 1 R

1 C
TS5.7 - siony ey F 2 Viigg - o7 ScFy Ro+rs (48)
’ r

1,5

It should be noted that the total water discharge calculated with the
computed transverse distribution of V did not equal the imposed total
discharge due to discretization errors. Therefore, an adjustment was
made to V at each cross section by multiplying Vi,j by the ratio of the
imposed water discharge to the computed water discharge. This ratio was
typically of the order of 1.0005.

Boundary Conditions

274 The streamwise velocity, V, was specified at the inlet

section (s = So) and along the inside bank of the computational reach by
the Darcy-Weisbach relationship, (37). Along the inside bank, the shift
velocity, U, was set equal to zero.

Computer Program

28. The program PR-SEG6 consists of a main program, four
subroutines, and seven sub-subroutines. Listings of the main program,
the subroutines, a sample input file, and a sample output file are
included in Appendix B. Note that the sample input and output shown in
Appendix B are for the idealized two-bend model which is discussed in
PART 1V,

29. The main program first reads the common input variables from
the input file called SEGDAT: V, dc, W, Sc» Ps pg» and NSEG (number of
channel segments in the reach that requires new input parameters). The
program, then reads the following parameters at each new channel
segment: a, b, M (number of radial positions), N (number of streamwise

positions), Rc, sy, s] (centerline streamwise coordinate of the
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downstream end of the segment), a, B, ec, 050, and NSTEPS (number of
cross sections into which the channel segment is divided). The program
computes the boundary values of U and V across the inlet section using
(10) and (37), and the transverse distribution of T is subsequently
computed from (38). The program then advances to the next downstream
section, and computes U and V according to the iterative scheme
described in paragraphs 22, 24, 25, and 26.

30. Subroutine PQN was used to determine the total water
discharge for a given cross section with computed transverse
distributions of streamwise velocity and depth. Subroutine PG
determines the g-parameters defined by (8), (9), and (12B). Subroutine
EVAL evaluates the shift velocity, U, given by (38).

31. The main program writes the following outputs in the output
file, called OUTT, for each cross section: ST, Ucs number of iterations
required to compute satisfactory convergence of U and V, and transverse
distributions of U, V, d, U + U, and Gy e

Sensitivity Analysis

32. The effects of the specified error tolerance for U, the grid
size, the transverse derivative of U, and parameters o and g on U and V
were tested using the basic hydraulic and sediment parameters that were
utilized in the Oakdale flume experiments conducted at the Iowa
Institute of Hydraulic Research, The University of Iowa, by Odgaard and
Kennedy3. The basic parameters were: V = 1.56 ft/s, d. = 0,505 ft, W
8.0 ft, R. = 43 ft (see figure 5), Sc = 0.00104, p = 0.4, oo /p =
2.65, v = 1.21 x 1075 ft%/s, pgo = 0.3 mm, and 8. = 0.032.

33. The relative errors for U and V computed at each cross
section were defined by

b = e and Ey = ——gp——
U |U| v

(49)
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where AU and AV are changes in T and V between adjacent radial
positions, respectively. Because U was typically at least two orders of
magntiude smaller than V, the error tolerance for U was selected to be
an order of magnitude larger than that for V. In the sensitivity tests,
parameters « and g8 were set equal to 1.0 and 3.35, respectively, and a
grid size of 6 in. was used. For EV of 0.1%, two tests were run
for EU values of 2% and 0.4%. There were no discernible differences
between two sets of values computed. An additional run with Eg equal to
0.2% demonstrated that this criterion was not able to be satisfied with
single-precision computations. Note that EV was of the order of 10'5
between successive iterations for V. It was concluded that satisfactory
results could be obtained with the error tolerances of EU and Ey equal
to approximately 2% and 0.1%, respectively.

34, Sensitivity tests were run for different square-grid sizes.
The grid size was reduced step by step until no significant changes in
estimates of U and V resulted. As shown in figures 6 and 7, grid sizes
of 4 in. and 6 in. yielded quite similar transverse distributions
of Uand V; in fact, the two sets were almost identical at the
downstream end of the channel bend. From the sensitivity analysis, it
was concluded that the grid size should be approximately equal to the
mean flow depth. Note that the mean flow depth of the Oakdale flume was
about 6 in. (see figure 5).

35. In obtaining the simplified streamwise momentum equation,
(31), the secondary-flow velocity, U, was treated as a function of only
s because of the assumption of constant transverse bed slope, as given
by (12). However, in computing V by means of (45), the computer program
utilized a radially-varied secondary-flow velocity distribution derived
by Falcon and Kennedy4

R

U V. ,,d
T ) (@(Rcir) (50)

25



was utilized. When (50) is substituted into (20), the discretized
streamwise-momentum equation, (45), yields coefficients A, B, and C that
are slightly different from those given by (46), (47), and (48). In
order to ascertain the validity of the computational scheme, a special
test run was made with the term, 3U/ar, retained in the streamwise
momentum equation. The computed distributions of T and V are compared
in figures 8 and 9 with those obtained using (45), which was developed
without the term, aU/ar. As can be seen in these figures, the effects
of the term, 3U/ar, on overall estimates of T and V are minor.

36. The parameters o and g control the transverse bed slope, ST»
and the development rate of the secondary-flow velocity, respectively,

as can be seen from (12), and (8) and (10). Figures 10 and 11 show the
effects of o on the transverse distributions of U and V. As can be seen
in these figures, the smaller o resulted in larger Sy, and consequently
in much larger shift velocities along the initial entrance reach of the
bend. The smaller « also resulted in much smaller streamwise velocities
along the inside bank, because the larger Sy decreased the flow depth
there. Similar effects of g on U and V are seen in figures 12 and 13.
The smaller g resulted in a slower development rate of the secondary-
flow velocity, and reduced the rate of the development of the transverse

nonuniformity in V.
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PART IV: RESULTS OF NUMERICAL SIMULATIONS

Oakdale Flume

37. The Oakdale flume shown in figure 5 is a 1:48-scale, highly
idealized, undistorted model of the Sacramento River bend lying between
R.M. 188 and 189, approximately. Experimental data on the streamwise
distribution of the equilibrium transverse bed slope and transverse
distributions of the depth-averaged streamwise velocity reported by
Odgaard and Kennedy3 were compared with the computer-simulated
results. The basic hydraulic and sediment parameters described in
paragraph 32 were utilized in the simulation. Additional parameters
specified were: o = 1.00, B = 3.35, grid size = 6 in., n = 4,24, EU =
2%, and Ey = 0.1%.

38. Figures 14 and 15 demonstrate generally good agreements
between the measured and computed transverse distributions of the flow
depth and the depth-averaged streamwise velocity, respectively, at ¢ =
20°.  The results for ¢ = 114° are shown in figures 16 and 17, in which
the observed streamwise velocities are seen to be somewhat larger than
the computed values in the outside portion of the channel. The larger
measured velocities near the outside bank are believed to be
attributable to the very low roughness of the exposed plywood bank of
the trapezoidal flume section. Note that the friction factor was kept
constant in the whole flow field in the numerical model. Figure 18
depicts extremely good agreement between the measured and computed
transverse bed profiles for ¢ = 146°,

Sacramento River

39. The Sacramento River bend between R.M. 188 and 189 shown in
figure 19 was simulated for two water discharges (Q = 9,000 cfs and
25,800 cfs). Basic field data were collected in the reach in 1979 and
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1980 by the U.S. Geological Survey (USGS) (Odgaard and Kennedy3). As
can be seen in table 1, both the hydraulic and sediment parameters
varied widely along the bend. Therefore, average values of the various
quantities listed in table 1 were wutilized for the numerical

simulations.

40, The transverse distributions of the measured and computed
flow depth and streamwise velocity for Q = 9,000 cfs are shown for ¢ =
80° and 126° in figures 20 and 21, and figures 22 and 23,
respectively. Note that at ¢ = 80°, velocities and depths were measured
at only four verticals across the channel, while they were measured at
ten verticals at ¢ = 126°. Despite the fact that averaged input data
were adopted for the simulation, the numerical model reproduced the
field distributions surprisingly well for the low river discharge of
9,000 cfs. The distributions obtained for the higher discharge of
25,800 cfs are shown in figures 24 through 27. The agreements between
the measured and predicted values are seen to be not as good as those
for Q = 9,000 cfs; however, it is believed that during high flows the
channel bed had not attained an equilibrium configuration. For example,
the measured transverse bed slopes shown in figures 22 for Q = 9,000 cfs
and fiqure 26 for Q = 25,800 cfs are entirely different. The field
transverse bed slope was, paradoxically, much smaller during the high
flow, resulting in the decreasing streamwise velocity toward the outside
bank, as seen in figure 27. This type of abnormal transient phenomenon
likely is a consequence of the rapidly changing flow conditions, and
cannot be simulated by a steady-state numerical model. It should be
noted that each Sacramento River simulation required approximately 0.7
second CPU time per 100-grid points using the PRIME-750 computer at The

University of lowa.
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Idealized Single-Bend Model with Gradually

Varying Radius of Curvature

41. The numerical results presented in paragraphs 37 through 40
for the Oakdale flume and the Sacramento River were obtained using
constant centerline curvature. In order to demonstrate the ability of
the computer program to handle nonuniform curvature, two simulations
were made for single bends with gradually varying centerline
curvature. These numerical simulations were made also to illustrate the

behavior of flow in idealized, nonuniform river bends.

42, The first simulation was for a four-segment channel bend with
stepped decreases in curvature in the downstream direction, as depicted
in figure 28. The centerline radius of the first segment was 2,000 ft,
and this value was increased by 2.5% for each of the subsequent three
segments, resulting in a total channel length of 7,400 ft. It was found
that a 5% increase in R. produced such large transverse-bed-slope
changes, which appear as sloped steps in the bed elevation, that the
program would not run. Therefore, in cases in which Rc increases along
a bend, the curve should be subdivided into sufficiently short
subreaches that the increments in Rc are less than about 2.5%, although,
as discussed in the next example, the model can accommodate larger
changes in the case of decreasing R., The basic hydraulic and sediment
parameters used were identical to those for the Sacramento River at high
flow, listed in table 1. A grid size of 14.5 ft was used, and the
parameters o and g were set at 0.86 and 7.13, respectively. The
computed Tlongitudinal and transverse distributions of the normalized
shift velocity are shown in figures 29 and 30, respectively. In figure
29, the shift velocities computed for sections 65, 193, 321, and 449 are
connected by straight lines. The shift velocity developed rapidly in
the first segment, with its maximum values occurring near r/W equal to
-0.25, and diminished gradually after section 193. At section 385, the
shift velocity along r/W equal to -0.25 became negative, and remained so
until section 469. This flow redistribution directed radially inward
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was a consequence of the increased R., Figures 31 and 32 depict the
longitudinal and transverse distributions of the depth-averaged
streamwise velocity, respectively. Along the inside bank, the
streamwise velocity decreased initially; however, it increased farther
downstream as the Tlarger radii of curvature produced less steep
transverse bed slopes. The values of Sy at sections 1, 65, 193, 321,
449, and 513 were 0, 0,058, 0.063, 0.062, and 0.060, respectively.

43, The second idealized case simulated was a single bend with
radius of curvature that decreased 10% between curve subreaches. The
numerical results are not presented herein, because the qualitative
characteristics are very similar to those for the two-bend curve with
decreasing radius of curvature presented in the following section.

Idealized Two-Bend Model with Gradually
Decreasing Radius of Curvature

44, An idealized two-bend model, shown in figure 33, was
tested. The two-bend reach consisted of four segments with equal
centerline length of 67.5 ft. The centerline radius of curvature of the
first segment was 43.0 ft, and was reduced by 10% for each subsequent
subreach. The sign of R. was reversed after the second subreach. The
simulation was made on the basis of the principal parameters used in the
Oakdale flume simulation. These parameters are described in paragraph
37, except that o« = 1.42 and g = 3.28 were used in the present
simulation. Figures 34 and 35 show the longitudinal and transverse
distributions of the normalized shift velocity, U/V, respectively. The
shift velocity increased rapidly in the first segment and decreased
gradually toward the end of the first bend. Once the flow entered the
second bend, a mass shift took place toward the right bank due to the
change in sign of the channel curvature. Note that in figure 34, the
computed data points at sections 69, 205, 341, 477, and 545 are
connected by straight lines. As shown in figure 35, the maximum value
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of the shift velocity across the cross section was closer to the convex
side of the bend. Figures 36 show the transverse distributions of the
depth-averaged streamwise velocity computed at sections 1, 205, 341, and
545, The transverse Jlocation of the maximum V gradually shifted
radially outward in the first segment, and reached the outside bank at
section 71. The maximum V remained along the left bank until section
273, after which the flow became concentrated near the right bank. The
maximum V reached the right bank at section 417 in the second bend.
Because the streamwise velocity at the left bank at section 273 was much
larger than that at section 1, a larger streamwise distance was required
. to attain redistribution of the flow in the second bend.

45, Figure 37 shows the transverse distributions of the unit
total-load discharge, q¢, computed at various cross sections. The
sediment -transport coefficients a and b in (21) were taken to be 0,108
and 4.0, respectively. Note that the units of V and q{ are ft/s and
tons/ft/day, respectively. These coefficients yielded a mean total-load
concentration of 300 mg/1 (or about 5 tons/day) for the Oakdale flume.
The distribution curves shown in this figure are seen to be generally
congruent with those transverse distributions of the streamwise velocity
shown in figure 36, because of the sediment-transport relation adopted
being a power function of V.
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46.

PART V: SUMMARY AND CONCLUSIONS

Conclusions

The principal features of the numerical model developed

herein for calculation of flow and sediment-transport distributions in

alluvial-river bends may be summarized as follows:

ie

ii.

47.

The secondary-flow strength and the bed topography are
uncoupled from the calculation of distributions of lateral
shift velocity and streamwise velocity. This is accomplished
by, first, calculating the secondary-flow strength on the
basis of conservation of flux of moment-of-momentum, and,
second, determining the bed topography on the basis of radial
force equilibrium of the moving bed layer.

The distributions of lateral shift velocity and depth-averaged
streamwise velocity are calculated, for the warped channel
determined as described in step i above, from the depth-
integrated equations expressing conservation of mass and
momentum. It was concluded that for flows which satisfy (24),
it is not necessary to include the third conservation
equation, that for radial-direction momentum, or to iterate
among three equations to obtain a solution. The numerical
scheme utilizes the backward finite-difference method, and
evaluates transverse and streanwise distributions of the
radial mass-shift velocity and the depth-averaged streamwise

velocity.

Numerical simulations utilizing the model developed were made

for one laboratory flow, two Sacramento River flows, and three different

idealized channel bends. The principal conclusions obtained from the

simulations are as follows:
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iis

iii.

48.

Generally satisfactory agreement between computed and measured
results was obtained by utilizing error tolerances
of Eg and EV of 2% and 0.2%, respectively. In the absence of
better information, it is recommended that o = 1.00 and g =
3.50 be utilized. In instances where actual field data are
available on the rate of development and equilibrium values of
ST> a and g should be adjusted on the basis of the data.

The most cost-effective square-grid size is approximately
equal to the mean flow depth.

The computer program is capable of simulating flow in
multiple-bend channels with stepwise-varying radius of
curvature. On the basis of the numerical simulations, it was
found that the maximum permissible stepwise change of
centerline curvature for which the program will run is about
2.5% in the case of increasing Re» and about 10% for
decreasing Ree

Further development and improvement of the model should

include the following:

More complete and modern sediment-discharge and friction-
factor models should be incorporated into the model. In
particular, it is recommended that Karim's/ model be
incorporated into the program to permit calculation of lateral
and streamwise variations of friction factor based on local
flow depth, velocity, and sediment discharge. Karim's model
is unique in that it formally takes into account the
interdependence between sediment discharge and friction
factor, an interdependency which appears to be very important
in channel-bend flows.
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ii.

iii.

Ve

Ve

A further refinement of the flow calculation would involve
incorporation of the radial-momentum equation, (18). This
would permit application of the model to bends with relatively
short radius of curvature. However, the numerical model would
become much more complex, and would require significantly more
computer time. The model developed herein is believed to be
adequate 1in its flow-calculation aspects for most natural
alluvial-channel bends.

An effort should be made to incorporate features into the
model to permit prediction of the occurrence and
characteristics of point bars and their effects on the flow
field. It is believed that this 1likely will require
incorporation of the radial-momentum equation and a more
refined sediment-discharge predictor, as described above.

As is generally the case in river-flow analysis, there is a
pressing need for detailed, diagnostic-quality data on the
distributions of velocity and sediment discharge from both
natural and laboratory streams.

After some experience is gained with the model, the computer
program should be reviewed, made more compact and concise
where possible, and a user's manual for the program should be
prepared.
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Table 1

Hydraulic and Sediment Parameters Used in Simulating the Sacramento River

Parameter Low Flow High Flow
Measured Average Measured Average
Range Value Range Value
Used Used
Q (cfs) 7,800-9,900 9,000 24,000-28,400 25,800
A (ftz) 3,190-4,340 3,960 6,370-7,600 6,950
V (ft/s) 2,12-2,60 2,28 3.15-4.00 3:72
dc (ft) 5.6-15.2 10.28 8.6-23.1 15.0
Rc (ft) 1,800-3,920 2,540 1,800-3,920 2,430
W (ft) 263-570 385 275-778 463
n 6.3-10.5 8.2 5.8-12.5 8.6
Dso(mm) 0.7-6.3 1.0 0.7-10.8 1.3
ST* 0.01-0.15 0.053 0.018-0.145 0.065
o 0.374 0.711
B 2.39 3.82
@c 0.045 0.050
Grid Size (ft) 9.6 9.6
Eﬁ (%) 0.1 0.1
EV (%) 1.0 1.0

* Maximum equilibrium transverse bed slope
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River at low flow (¢ = 126°)
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increasing radius of centerline curvature :



0.06 -

0.05

0.02

0.01

'TT'I'I'I T‘l'll"'llll'lT"l]"IUIT17I"1'IlUI"

COMPUTED USING SACRAMENT RIVER DATA FOR Q = 25,800 cfs

llLlllllllAlJlllllllllllllljllllllllljllljllll‘L

-0.4 -0.2 0 0.2 0.4

r/W

Figure 30 Transverse distributions of computed U/V for idealized single bend with

gradually increasing radius of centerline curvature




1.2 L L e l' L LA L L | l L L L L L L ] L L L L I T vV V7TV Trr
— P ._—"_—.-—— — or S SR $S D D 0 SERER SR AR —
\ - ‘o-"‘.- I
1.0 = —-..__-..-— —
’-*..—— -
:— T am e o= r/w = —0.5 et
0.8 - \ ]
v/V o — /W= 0 —
B \ —emceme= r/W = 0.5 g
— \ —
0.6 \\ 1
B \
- \ -
0.4 \\\‘ ]
e \\ —_— f
0.2 = ‘\ _/—- pe—
— COMPUTED USING SACRAMENTO RIVER DATA FOR Q = 25,800 cfs -:
0 I-.l e e S (IS | l LA i 1 i 1 1 1.1 l A 4 L L 1 1 1.1 l A A L1 4 1 1 1 1 l O S . -
1 65 193 321 449 513

SECTION I.D. NUMBER (I)

Figure 31 Longitudinal variations of computed V/V for idealized single bend with
gradually increasing radius of centerline curvature
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Figure 34 Longitudinal variations of computed U/V for idealized two-bend channel
with gradually decreasing radius of centerline curvature
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FLOW IN ALLUVIAL-RIVER CURVES

by
Marco Falcon Ascanio1
and

John F. Kennedy?

I. INTRODUCTION

Even casual observers of Earth's geological features soon notice that
natural alluvial streams are seldom straight along reaches of more than a few
channel widths. Hydraulic engineers and other students of fluvial processes
long have recognized meandering to be not only an intriguing geometrical and
kinematical feature of rivers, but also one that has major effects on their
sediment-transport and roughness characteristics. Fluid mechanicians
appreciate further that the internal structure of flow in meandering rivers is
as fascinating as their migrating, serpentine channel lineament. Especially
engaging is the interaction between the vertical profile of the primary flow
and the centrifugal forces resulting from the flow's curvature. The principal
result is the well known spiraling or secondary flow in planes normal to the
channel axis. Because the bed-surface sediment of a stream actively
transporting its bed material is in a quasi-fluidized state, even the

relatively small radial component of the bed shear stress and small near-bed

lprofessor and Director, Instituto de Mecanica de Fluidos, Facultad de
Ingeniereia, Universidad Central, Caracas, Venezuela. Formerly, Benedict
Fellow, The University of Iowa, Iowa City, USA.

2Carver Professor and Director, Institute of Hydraulic Research, The
University of Iowa, Iowa City, USA.
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velocities produced by the secondary flow transport sediment toward the inner
(convex) banks until the bed becomes inclined such that the gravity and shear
forces exerted radially along the bed on the moving bed-1oad particles are in
balance. The resulting greater depth near the outer banks increases the
primary-flow velocities there, which in turn intensifies the erosive attack on
the banks and also undermines them. Both of these effects aggravate bank
erosion and thereby promote further growth of the meanders.

Although the seemingly disproportionate effects of channel meandering on
river flow have been appreciated for several decades, attempts to develop a
mathematical model for the secondary flow and its interactions with the
primary flow and sediment motion have met with only limited success. The
principal stumbling block encountered arises from the radial shear-stress
force exerted on an elemental control volume at any elevation (the vertical
distribution of which is the principal determinant of the radial-plane
velocity profile) being the small difference between two much larger
quantities: the centrifugal body force and the radial pressure force
resulting from superelevation of the water surface. It is important to bear
in mind that even though the integrals of these two forces over the depth are
very nearly equal, locally they are grossly out of balance. The radial
gradient of pressure resulting from the transverse inclination of the free
surface is very nearly constant over the depth, while the centrifugal force
varies from zero at bed level to a maximum near the free surface. In fact, it
is precisely the difference between the distributions of these two nearly
equal forces that is responsible for the secondary flow. Moreover, the
secondary flow (or, viewed differently, the vertical gradient of the primary

velocity) causes the radial water-surface slope to be greater than it would be
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for a flow with vertically uniform primary velocity (which would not produce a
secondary current). This is because the secondary flow produces an inward
radial shear force on the bed; the corresponding radially outward force on the
flow must be balanced by part of the radial pressure-gradient force. Thus,
just in determining the distributions of the three principal radial forces--
pressure, shear, and centrifugal--exerted on the flow, one is faced with the
problem of having two of them--shear and pressure--unknown, even if the
velocity distribution of the primary flow and hence also the centrifugal-force
distribution are known. Clearly to proceed with the calculation of these
forces, another relation, in addition to the equation expressing the balance
of radial forces, is needed. Further physical considerations or assumptions
must be introduced to calculate the distribution of the radial velocity.

In the analytical model developed herein for vertical distributions of
radial shear stress and velocity, and radial distributions of depth and
streamwise velocity, an expression for the conservation of moment-of-momentum
is the additional relation utilized to close the formulation of the radial
forces. This aspect of the analysis is similar, for example, to use of
equations expressing balances of forces and moments to calculate the
supporting forces on a loaded, simply supported beam. One of the two unknown
forces does not appear in the formulation of moments about one of the
supports, and therefore the other can be calculated directly. A roughly
parallel approach is followed in the present analysis. Formulation of the
flux of moment-of-momentum about the Tongitudinal axis at the bed surface
yields an expression for the radial pressure gradient. The radial momentum
equation then is used to obtain the vertical distribution of radial shear

stress. The transverse bed profile is determined from consideration of the
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force balance for the moving bed-load particles. The radial-velocity profile
is calculated by introducing into the radial momentum equation a linear
primary-shear-stress distribution and the eddy-viscosity distribution obtained
from the power-law distribution utilized for the primary velocity. Finally,
the radial distribution of local depth corresponding to the bed profile is
used in the calculation of the transverse distribution of depth-averaged
streamwise velocity. The analysis is limited to a channel of constant
centerline radius, which is a good approximation to extended reaches of bows
of many strongly meandering natural channels. Extension of the analytical
model to weakly meandering channels is developed in Falcon's thesis (1979).
Ssome of the background literature on this problem is cited in connection
with development of the present model. For a more complete review, reference
is made to the surveys by Callander (1968, 1978), to Falcon's (1979) thesis,

and to Odgaard's (1981) paper on river-bend topography.

I1. ANALYSIS

General. The idealized channel treated here has infinite length,
constant width, an erodible sediment bed, and banks with a common center of
curvature. The central, longitudinal channel axis at the level of the bed has
constant mean slope Sc, and describes a helix in space which traces a circle
of radius r. when projected onto a horizontal plane. The flow is conveniently
described in cylindrical coordinates: the vertical z axis passes through the
curvature center of the channel and is positive in the direction opposite to
gravity; in planes perpendicular to the z axis, locations are specified by
radial distance from the z axis, r, and polar angle, 8, as shown in figure 1.
In order for the radial slopes of the bed and water surface to be constant

along the channel, the local streanwise slope, S(r), of both must be
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5w g =, (1)

The flow is treated as uniform in the sense that its properties are
invariant along any helix with constant radius r and slope S. The analysis
will be restricted further to a central region of the channel, delineated in
figure 1, throughout which the vertical velocity is much smaller than the
characteristic velocities in the r and ¢ directions. The channel slope S,
will be limited to small values, so that forces and velocities parallel to the
underlying bed-surface helices may be taken to be equal to those along the ¢
coordinate. Finally, the restriction d/r <<'1 will be imposed, for reasons
that become apparent in the next section.

Vertical distribution of radial shear stress. Calculation of the radial

shear:stress at any elevation requires, first, that the radial water-surface
slope and associated pressure gradient be determined, for use in calculation
of the vertical distribution of radial shear stress from the radial momentum
equation. The radial water-surface slope will be calculated from a
simplified, by means of an ordering analysis, formulation of the conservation
of flux of moment-of-momentum for the control volume shown in figure 1, which
extends over the whole flow depth and has base dimensions Ar and As = r Ag.

For this control volume equation of moment-of-momentum about an axis r =

constant at the bed surface is

13 ! v2 ! 13 21
df5pnd-dlprnd+sr dn+ o (67 pum ]
0?°r o T 0 Iz 3s " (2)
1 1
+ la %‘ [rdz / pu2 ndn] - s puw dn = 0
0 0

A5



where, in addition to the quantities defined in figure 1, p = pressure;
n = Eﬁhq p = fluid density; u(r,n), v(r,n), and w(r,n) = velocities in r,
0, and z directions, respectively; and rrz(r,n) = rzr(r,n) = shear stress
acting on surfaces normal to r and z axes, respectively. The fourth term in

(2) is zero for uniform flow. The remaining terms will be ordered by taking v

= 0(V), where V(r) depth-averaged flow velocity; u = O(u(r,l) = Um); and

the z-direction velocity w = 0(wmax B wm). Relative to the second term, the
2
m _m

U
fifth and sixth terms are of order 0(—%—) and OCE-V—-V—), respectively. Yen
'

=
=

(1965) concluded from his measurements of flow in curved channels that

B 5
v

Kennedy (1978, Eq. 7), which shows the ratio of radial to streamwise

0(%). This result is suggested also by the analysis of Zimmermann and

components of bed shear stress to be 0(%). If z = O(d), the continuity

equation,
U, du , 3V , oW _
Trtartastaz= 0 (3)
in which %% is zero for the uniform flow being considered, requires
U W 2
m_ o4 m_ oy, m_od -
that 7= = O(r)' Because y~ = O(r)’ it follows that O(r) . It s

concluded then that the fifth and sixth terms of (2) are both 0(%) relative to
the centrifugal-force (second) term, and can be dropped.

The shear-stress (third) term of (2) may be ordered by utilizing the
equality of shear stresses and the Boussinesq shear-stress relation for
turbulent flow, and treating the eddy viscosity, €4 as constant over the

depth:

A6



6 Tpg On = 6 Tzr O =0 ag i gﬁ'd“ =P Eﬁlln (4)

The eddy viscosity may be expressed as a product of the shear velocity, us,

and depth; therefore,

Trs dn = O(apu,l) (5)

o —

where o = eo/u*d (@ = 0.079, according to Hinze (1975)). From (5) it follows

that
1
6 Tpz @ ~ Uy
I 5 = 0(a Ev_‘v) = 0(a/f/8) (6)
d s 0'%" n dn
0

in which f = Darcy-Weisbach friction factor. Both o and /¥/8 are 0(10‘1), and
therefore the third term of (2) is two orders of magnitude smaller than the
second and may be disregarded. Because p = O(pvz), the first and second
terms are of the same order. Incorporation of the simplifications resulting
from the foregoing ordering analysis reduces (2) to

1 V2
Fndn o= p{)"r—ndn (7)

O =
wl‘g:

U W

Vm <1 and Vm <1, it is reasonable to

assume that the vertical distribution of p is hydrostatic:

In the central region, where

2 3H ,
5%'= P9 3= = pgH (8)
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where g = gravitational acceleration and H is defined in figure 1. It has
been demonstrated by Yen (1965) that the deviation of the pressure from the
hydrostatic distribution is 0(%) or smaller in even moderately curved open-

channel flow. The primary-flow velocity, v(r,n), will be expressed by the

power law,
1
oL g

where 1/n = exponent, which is related to the Darcy-Weisbach friction factor

by

= |-

- L /8 (10)

where « = Karman's constant. The background of this relation is reviewed by
Zimmermann and Kennedy (1978). Karim (1981) examined (10) critically, veri-
fied it with laboratory data, and formulated the dependence of « on sediment
concentration; this refinement will not be included in the present analysis.
Substitution of (8) and (9) into (7) yields

2
W) = L L (11)

n rg
By means of an ordering analysis similar to the one developed above and
guided in some measure by his experimental results, Yen (1965) simplified the
radial momentum equation for curved open-channel flow to
2 9T

' l____]'_. Zr:o 12
gH" - r pd 3n (12)
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It is noteworthy that Top makes a first-order contribution to the radial-
momentum relation, but the corresponding vertical shear stress, Ty makes
only a higher-order contribution to the moment-of-momentum equation if the
moment axis 1is taken at bed level to avoid inclusion of the bed shear
stress. This is, in fact, the motivation for utilizing the moment relation:
it avoids specification of Ty at the bed in the determination of H'.
Substitution of (9) into (12), integration of the resulting expression from
arbitrary n ton =1, and application of the boundary
condition Trz(l) = 0 yields

; , 2
' Vv +1
Te(ron) = pgd [H'(n-1) - =7y (0 " - 1)] (13)

Traverse bed profile and depth distribution. Equilibrium of the trans-

verse bed profile, h(r,e) in figure 1, and of the depth, d(r), are attained
when the radial-plane forces acting on the moving, bed-load particles sum to
zero. Bed-load movement will be treated as occurring in a layer of thickness
Ybs as shown in figure 1. The shear forces exerted on this agitated, somewhat
dilated, moving layer are in reality diffuse, "seepage" forces caused by the
flow within the layer's intersticies, and any net force, however small, in the
radial direction will produce transverse motion of the bed-1oad particles.
Therefore, radial equilibrium will be reached when the local bed inclination,

g(r), is such that

Tor = T,r(0) = ¥ (1-p) 8o g sin g (14)
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where p = porosity of the bed-layer; Ap = P Ps and pe = density of bed parti-
cles. In the development of his detailed, computer-simulation model of sedi-

ment transport in streams, Karim (1981) concluded from inferential evidence

that
u*
Yp = Dsp u (15)
c
where Dgy =  median bed-material size, ux(r) = Tocal shear

velocity = WF/8; and us. = critical shear velocity for incipient particle

motion. In terms of the Shields parameter, 6, ux. may be expressed
= /q e
Uy, =79 [)50 6 (16)

which defines & . Substitution of (13), (11), (15) and (16) into (14), and
incorporation of the simplification of (10) to Nunner's (1956) relation (Hinze

1975),
n= 1T (17)

which corresponds to x = 0.354, yields

i o dr /88 1+ /f
S-r = sin B - FD -(]—_3) - (18)

where F, = V/g 8 ..,
D o 50
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The traverse bed profile may be calculated by neglecting the effect of H'

on d(r); then

sin g = %% (19)

The velocity V to be used in (18) is obtained by incorporating (1) into the

Tocal expression of the Darcy-Weisbach friction factor,

V(r) = /8%9—= /8‘*—3%991—"1= /8 e wd(r) (20)

r

where L lTongitudinal shear stress acting on the bed; and 6 (r) = bed-shear-

stress reduction factor defined by

roe(r) = §Spgd(r) (21)

which takes into account the transport of primary-flow momentum out of the
central region to the vicinity of the outer bank, where it is balanced by bank
shear. An analysis of § is developed below. Substitution of (19), (20), and

(1) into (18) and integration of the resulting expression for-%% yields

Ty = /8 S r 96
/d /'d: /r /‘; 1+ 2F  f g 050

where the subscript c denotes the centerline values used in setting the inte-

gration constant. Elimination of GSC from (22) by means of (20) and replacing

V. by its section averaged value for the whole flow, V,to facilitate

verification, leads to

All
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d _ T /8 1+/f ¢
Boar.q-d ) e L (23)

C

where F = V/y 9 -ﬁﬁ Dgp

Utilization of the mean velocity for the whole cross section in the
calculation of d(r) from (23), or in calculating an average value of St from
(18), by replacing Fp with'Fb neglects the effects of the variation of Vv
across the channel, but nevertheless yields satisfactory results, as is
demonstrated in Section III.

Equations 20 and 23 give the radial distribution of mean velocity for
uniform flow. In practical applications, it generally suffices to take
§ = 1.

Vertical distribution of transverse velocity. Calculation of the radial-

plane velocity will incorporate the following assumptions:

The primary-flow shear stress, T, is linearly distributed

9T
™ makes a negligible contribution to the streamwise force balance:

or

and
T,5(rsn) =1 0o (1-0) = §pgdS(1-n) (24)

2. The eddy viscosity is isotropic and is given by

-
D

I4
v

n

(25)

oo

E(f‘m) =

-5

(-5

3. Because of the isotropy of ¢, the radial velocity and shear stress

are related by

Al2
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T,p(rn) = %E-%% (26)

Substitution of (9) and (24) into (25) yields

2 n-1
§gd 'S r 2 areme
¢ =S gur (Fn)m " (27)

which, when substituted along with (13) into (26), leads to

1 1" L g2 12% 5
VeE g B -ty T @ (28
For steady, uniform flow, u must satisfy
1
(f) u(n) dn =0 (29)

There is no assurance that (28) will satisfy this requirement if H' given by
(11) is utilized, because of errors inherent in the Boussinesq eddy-viscosity
model and other assumptions that have been made in the derivation of the
relation for u. Therefore, the integral of (29) will be evaluated for arbi-

trary H', denoted by H', and expressed as
H'r) e TR L (30)
where T = H&/H' and H' is given by (11). Substituion of (28) and (30) into

(29), utilization of the expansion

Al3
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(-4

o 1 ndin <1 (31)
J:

and term-by-term integration of the resulting series yields

1 §-+1+j l-+j
u_1 ¥ (n+1)3 R W o R (32)
v GSC gr, °n n+2 j=0 %-+1+j %-+j
Equation 29 is satisfied if T is given by
+1) o 1 1
T(n) = - 4L 1 [ =3 =% o
nf(ne2) §=0 G+ 2+ )G+ 1+0) (Gl )
Incorporation of (17), (20), and (33) into (32) gives
1
= (1) 1 1 n

i ) ]
2m2)  CrzrpBei+en Griraden’

§-+1+j 1 +J
ntl 3 o "
- &13:%7[ 3 R ;o I} = G(n,n) (34)
(5 +1+3) (5 +)

Equation 34 is portrayed in figure 2 for four values of n which span the range
from very rough (n = 2.5; f = 0.16) to relatively smooth (n = 10, f = 0,01)
channels. It is noteworthy that for all but very low values of n, the
velocity profiles are nearly linear except near the bed, with u = 0 at about
mid-depth.

A remark on H' and;ﬁiu. In the foregoing analysis, two expressions were

derived for the transverse slope of the water surface: (11), and (30) and
(33). Corresponding to each of these is a different value of Tzr(O), the

radial component of the bed shear stress. Their ratio T = H'u/H' given by

Al4



(33) has a nearly constant value of 0.9 for 2 < n < 8. In view of the near
equality of H'y and H', why was it necessary to utilize different values in
the formulations of Ton and of u(n) ? The problem is one of sensitivity, as

will now be demonstrated. Equation 13 gives

2 2
Tor(r) = Tzr(r,O) = pgd E%ﬁ'é%%%%T - H'] (35)

which together with (11) for H' shows that Tor is the difference between two
small quantities multiplied by a large one, (pgd). Therefore, small errors in
the expression for the transverse water slope produce large errors in Tore For
example, the ratio of Tor given by (35) with H' replaced by H'u obtained from
(30) and (33), to ¥ yielded by (35) and (11) varies widely with n, from
about 0.6 for n = 2 to nearly 0.2 for n = 8. Because the radial bed slope and

thus also the bed profile depend directly on , as is shown by (14), it is

or
important in their derivation to have an accurate estimate of L. --one whose
calculation avoids use of such artifices as the Boussinesq relation, and
instead directly utilizes a mechanics principle such as conservation of moment
of momentum. The effect of the radial water-surface slope on u(n) calculated

from the Boussinesq relation may be examined by substituting (26) into (12)

and treating € as constant, say €y which results in

2 2 2
a—g—=-9d—(-"—-H') . (36)
an €o gr

2
Equation 36 shows that 2_% » and hence y(n) , also is very sensitive to the
an

small difference between two nearly equal quantities multiplied by a large

one. Accordingly, only a very small adjustment in the radial water-surface

AlS
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slope is required to compensate for the effects on u of the assumptions made
in its calculation, and thereby to permit u to satisfy the continuity
requirement, (29). But this small adjustment in H'--amounting to only about

10 percent, as just noted--has a major effect on t , as (35) demonstrates.

or
Secondary-flow effects on t__ and v. In a laterally nonuniform curved

&0

flow, the secondary current produces a net radial transport of streamwise

(6-direction) momentum out of the central region, which in turn
reduces T, and in so doing modifies v(r,n)(or n). It was anticipation of this
effect which prompted incorporation of the factor 6§ (r) into the shear-stress
expressions, (20) and (21). Calculation of & and the secondary-flow effect

on v(n) proceeds from the 8 -direction momentum equation with T neglected,

9T
AV dV av. , uv _ 9H , 1 26
r -~ 9%s +p 3z °* (37)

Multiplication of (3) by v, addition of the result to (37), integration of the
new relation fromn to 1, and imposition of the boundary condition

rze(r,l,e) = 0 gives

1 1 1.2
" 3 (uv) 2 AV 4 -
i n n n
abw) ) - wv] + g S(1-n)}.
where S = - %%; The z velocity, w, is evaluated from the continuity equation,

(3), the relation for u, (32), and the identities,

-d-—h--(z-h)gg —da-(‘H—ﬂ)'-nd'a—d (1_n)g_d._ﬁ
_ ar ar _ ar ar _ dr__ar (39)
i & d ’

(=%
=t
i

w
-
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and, similarly,
an _

- (40)

The result is

n
w(r,n)=-t%+§—%+d(%d—‘£-§9%)16udn (41)
3H dd
+ B8 - S8 (1n)T u - sv.

Substitution of (9), (34), and (41) for v, u, and w along with

9s d an
into (38) yields

" X 1

0 _ d dd, ,d, ,ddv _dd& n
5gsd = (1) - 648 Ton(nmtl){[qo+ 2 T+ 4540 -3 dr]ff\ G(n,n) n' dn

2 n
dd ,d, ,ddV _ddsq n
MR TR i i 6 G(nyn) dn} (43)

where G is defined by (34).

The first terms on the right-hand side of (43) is the linear shear-stress
distribution, and the second term expresses the shear-stress reduction due to

the transverse gradient of lateral flux of streamwise momentum. In the calcu-

lation of t it is assumed that the 38
Z8 or

the other derivative terms in brackets. Substitution of (18) for %% and of

Al7

term is negligible in comparison to
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(20) for V then permits calculation of the shear stress at any location. The
bed-shear-stress reduction factor, &, introduced in (20) and (21), is obtained
by letting n =0 in (43). To gain some idea of its magnitude, a representa-
tive constant value of § for the whole central region, say 6, will be deter-
mined. For this calculation it is appropriate to replace V and d by their
section-averaged values, V and d, after carrying out the substitutions and

taking the derivatives in (43); and to take r = rc. The result is

- 1
_ T d T 1 -1
§ = —ogg =[1 + 192 Ch (r1) 5 4 6(nnn' /™ anl (44)

wheregT is obtained from (18) by replacing d and V by'a and V. The integral

of (44) was evaluated numerically, with the result shown in figure 3. Values

of § for some field and laboratory flows are presented in the next section.
The effect of the secondary flow on the primary-flow velocity

distribution may be estimated by substituting (17) into (20) and replacing

§ by 5. If V is considered to be constant, n is increased, as 1§ , which

corresponds to the velocity becoming blunter. This is the observed effect of

secondary flow on v(n) (Falcon 1978).

I1I. VERIFICATION

Data utilized in the verifications reported here are summarized in table
1. Falcon (1978) presents additional comparisons of measured and computed
quantities,

Bed topography. Zimmermann (1974) and Zimmermann and Kennedy (1978)

reported the results of experiments conducted in three, concentric, 60-cm

wide, circular-plan-form flumes with a central angle that approached 2r. Two

Al8
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different sediments, with median diameters of 0.21 mm and 0.55 mm, were
used. Longitudinal bed profiles were measured at 11 different radii, and the
transverse bed profiles obtained from them for numerous cross-sections in the
reaches of fully developed flow were plotted and averaged. The transverse
profiles were found to be slightly convex upward, as illustrated in figure
4. Mean transverse bed slopes, averaged across numerous sections for each
run, were then computed. Figure 5 shows the transverse slopes, §f , S0 deter-
mined plotted in the format of (18) based on cross-section-averaged
properties. Excellent agreement between measured and computed values is
obtained if {?@;7 = 1.3. If the Tlimiting value (for fully turbulent boundary
layers) of the Shields parameter, 6 = 0.06, is adopted, the resulting porosity
is p = 0.47, a not unreasonable value for the agitated, dilated, moving bed-
load particles. The computed profile for Zimmermann's (1974) Run No. RII-13
shown in figure 4 was obtained from (23), using these values of & and p. The
centerline depth, d. = 9.66 cm utilized in computing the profile was obtained

by equating the reported mean depth, 10.1 cm, to the mean depth d calculated

by integration of d given by (23) across the channel width:

2 3/2 3/2
d 2 4 (6-0 )(ro / - Ty / )
'a—=1-2¢+2¢ +§ (45)
c /r_(r_-r.)
c'o i
where ¢ = F V8 1+ /f , and r; and r, = radii of the inner and outer
AT * °

banks, respectively. Calculation of the relation between d and dC in this way
is consistent with the measurement procedure that was used. Falcon (1978)
describes calculation of § in a way that is consistent with conservation of
bed-material volume in a curved channel. The friction factor utilized, f =

0.165 for this flow, is the value for the bed section obtained from the side-

Al9
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wall-correction procedure (vanoni 1976, p. 152). The measured and computed
profiles are in excellent agreement. The bed-shear-stress reduction factor
obtained from (44) for this flow s 3 = 0.43, which shows that in this
relatively narrow channel the secondary current produced a major reduction in
the bed shear.

Figure 6 compares measured and computed transverse bed profiles for a
Missouri River section (Falcon 1978). In computing the profi]e,'a was taken
to be equal to d., because of the difficulty of determining r. for a wide
natural stream, and of the insensitivity of d. to r¢ (see (45)). Included in
figure 6 is the mean bed profile given by (18), which also is seen to give
quite good results. Equation 44 gives'g = 0,97 for this relatively wide,
shallow flow, demonstrating the bed shear stress at any r in the central
region of this natural channel is nearly equal the Tlocal value of pgdS. Other
comparisons of measured and computed bed profiles yielded conformities as good
as those demonstrated in figures 4 and 6. In evaluating data from natural
streams, in which the flow is seldom steady for appreciable periods, there is
always uncertainty about the equilibrium of the bed topography. Moreover, the
bed-material size often varies widely across a section, often by a factor of
five or more. In view of these difficulties, it is suggested that in the
calculation of bed topography by means of (18) and (23), averaged (across
channel sections, and along subreaches that are sufficiently short that r¢ is
practically constant) values of d and V be used, and that the median diameter
of the material that can be moved by the flow be utilized for Dgge
Furthermore, for most natural-stream situations, the refinement given by (23)
is probably not justified; a straight-line profile with slope Sy given by (18)

and passing through d = datr = re is generally as accurate as the field

A20



data warrant, and perhaps within the reproducibility of bed topography of
natural streams with their vagaries of discharge and bed-sediment
characteristics.

Velocity distributions. It is very difficult to obtain reliable data on

u(n,r) in erodible-bed channels, because of the small values of the
secondary-flow velocities, and of the problems posed by the moving sediment
and the continuous bed changes attendant to migration of bed forms.
Therefore, the two measured profiles obtained by Kikkawa, Ikeda, and Kitagawa
(1976) from uniform flow in a circular-plan-form, rigid channel were utilized
in the verification of (34), with the results shown in figure 7. Kikkawa et
al (1976) developed an analytic model for wu(n) , which can be seen in their
paper also to yield generally satisfactory results except near the bed, where
it does not satisfy the no-slip condition. Comparisons presented by Falcon
(1979) of (34) with the rigid, sinuous-channel data on transverse-velocities
reported by Yen (1965) also demonstrate very satisfactory agreement.

The transverse distributions of V, the depth-averaged streamwise
velocity, in erodible-bed channels are somewhat easier to measure than the
radial-velocity distributions. Velocity data obtained by Onishi (1972) at the
apex cross sections in two of his rigid-bank, erodible-bed, meandering-channel
flows were used to validate the distribution of V obtained from (20) and
(23). The average friction factors, f, used in the computations were obtained
from the reported mean values of velocity, depth and slope for the flows, and

the Darcy-Weisbach relation in the form

T - 89dS (46)
v

A21
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Note that computation of f from (46), which assumes § =1, and of the
corresponding n from (17), computation of § from (44) for this n, and use of

§ and T in (20) to determine V(r) is slightly inconsistent. Falcon recommends
iteration between (20) with V =V , (44), and (17) to obtain consistent values
of n, f, and § . However, the convergence is quite rapid and the effect on
the computed V(r) or u(n) is not great. The computed and measured distribu-

tions of V(r) shown in figure 8 agree quite well except near the banks, where

V must tend to zero.

IV. CONCLUDING REMARKS

It must be borne in mind that the model developed here is strictly valid
only for uniform, curved-channel flows. However, the available experimental
data on flows in strongly curved channels (Zimmermann 1974, Zimmermann and
Kennedy 1978, Odgaard and Kennedy 1982) indicate that they are characterized
by relatively small phase shifts or lag distances between local secondary-flow
properties or bed topography and local channel curvature. Therefore,
application of the present model utilizing local channel and flow
characteristics in nonuniform flows, as was done in the foregoing comparison
with Onishi's (1972) data, will generally yield satisfactory results.
However, in the case of flow in weakly meandering sinuous channels, as
investigated by Gottlieb (1976) and Falcon (1979), the phase shift between
local channel curvature and secondary-flow strength approaches m/2.

The analytical model developed here is valid only for the central regions
of curved-channel flows, which generally extend to about one local depth from
the bank. In the near-bank regions, the flow becomes strongly three-

dimensional and heavily influenced by local bank characteristics (erodibility,
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slope, roughness, etc). Analysis of the flow and sediment transport in these
regions is correspondingly more difficult than for the central region, and

Tikely must await availability of better experimental data for its guidance.
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FIGURE CAPTIONS

' 5 Definition sketch for flow in an alluvial-channel bend.
2. Distribution of radial-plane, secondary-flow velocity given by (34).
1 1
3. Result of the numerical evaluation of [ G(n,n)nn dn , where G is
given by (34). 0
4, Transverse bed profiles measured in Zimmermann's (1974) Run RII-13,

and computed from (23).

5. Comparison of (18) and Zimmermann and Kennedy's (1978) measured
transverse bed slopes.

6. Transverse bed profile measured in Missouri River (Falcon 1978) and,
those computed from (18) (----) and (23) (—) .

7. Secondary-flow velocity profiles measured by Kikkawa et al (1976) and
computed from (34).

8. Comparison of Onishi's (1972) measured transverse distributions of
depth-averaged velocity and those computed from (20) and (23).

A24



A

Table 1

Summary of Data Used in Verification Calculations

|
o

Ref Run v d Dgp S

No. cm/sec  cm mm m m

Zimmermann  RII-13 36.7 10.5 0.21 0.0028 0.165 2.55 0.60 0.43
(1974)

Falcon Missouri 156 354 0.23 0.00015 0.0171 2,975 ~ 150 0.97
(1978) River

Kikkawa F-1 40 5.0 - 0.002 0.049 4,50 0.90 -
et al (1976) F-3 48 6.3 - 0.002 0.043 4,50 0.90 -
Onishi C-13 54, 13.1 0.25 0.0024 0.083 8.53 2.08 0.68

2 1
(1972) CH-13 53.6 13.3 0.25 0.018 0.62 9.09 0.90 0.65
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Figure 1. Definition sketch for flow in an alluvial-channel bend.
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APPENDIX B: LISTING OF COMPUTER PROGRAM PR-SEG6

AND INPUT-QUTPUT SAMPLES
MAIN PROGRAM PR-SEG6

kekakwr w bk rnrxre MATN PROGRAM PR=SEGEH #hnskhkhwhdhdhdrdhhdhhd

»>

-

»

»

THIS IS A GENERAL PROGRAM FOR A RIVER REACH COMPOSED =

NF SEVERAL SFEGMENTED BENDS WITH POSITIVE OR NEGATIVE »
RADII OF CURVATURE. THIS PROGRAM SIMULTANEOUSLY *
SOLVES THE CONTINUITY AND MOMENTUM EGUATIONS BY *
ITERATING BETWEEN THEM, EACH NEW SEGMENT INPUT DATA =
MUST BE READ AT THE FIRST SECTION OF EACH SEGMENTe *
B S N T S T B B 2 TR 2 T S Y
SUBROQUTINES? *
FALL : DETERMINES THE F=-PARAMETERSsy WHICH DEPEND ON THE+
FOLLOWING? *

F1 = ( STe RCe Ry H ) v *

F2 = ¢ STy RCe Ry Gl9 G249 G39 H ) *

F3 = ( STe RCe Vs Ry Gly G29¢ G3¢ He Fe VBAR ) *

F4 = ( STe Re H ) *

GALL ® DETERMINES THE G-PARAMETERSs WHICH DEPEND ONZ *
G = ( RHOSe BETAe ALPHA ) »

Gl = ( Fe BETA ) *

G2 = ( F ) *

63 = ( VBARe RHOSy NS0y Fe BETAe ALPHAe THETAC, =

PORes G ) »*

INTGRL ¢ EVALUATES THE INTEGRAL?: *
SUM = INTC R * SQRT( (A « R + B) /7 (R + D) ) )

FROM R(J=1) TO R(J) *

CALG : DETFRMINES THE DISCHARGE OVER THE CROSS *
SECTION GIVENZ *

( My Vo HLy R === GETS VAse VQe ATse QT ) -

* k h ok ok kR ok ok k k k Kk k ok Kk k ko Kk ok k ok ok ok * k&
VARIABLES: *
UBT = TRANSVFRSE SHIFT VELOCITY (FT/SEC) *
UBIM1 = VALUES FOR UBAR AT THE PREVIOUS SECTION. USED *
WHEN CHANGING ORIENTATION OR WHEN USED AS AN *
APPROXIMATION TO THE CURRENT SECTION®S VALUES *
(KOPT1=1) *

TUR = TEMPORARY STORAGFE 0OF UBAR WHEN CHANGING *
DRIENTATION *

UBNI = UPDATED TRANSVERSE SHIFT VELOCITY (FT/SEC) *
VI = STRCAMWISE VELOCITY (FT/SEC) *
VIM1l = PREVIOUS VALUE OF VI AT (I - 1)) *
TEMY = TEMPORARY STORAGE OF V WHEN CHANGING ORIENTATICN=
OR VALUES OF ETA-MODIFIED V *

VNI = UPDATED STREAMWISE VELOCITY (FT/SEC) *
Ul = LOCAL SECONDARY FLOW VELOCITY=--MODIFIED (FT/SEC)w
HLIV = LOCAL FLOW DEPTH AT SECTION I (FT) *
NONDIMENSIONALIZED BY THE VERTICAL LENGTH==-<-H *

HLIH = LOCAL FLOW DEPTH AT SECTION I (FT) "
NONDIMENSIONALIZED BY THE HORIZONTAL LENGTH==<k *

FLIM1V = LOCAL FLOW DEPTH AT PREVIOUS SECTION (I=-1) FT *
FLIM1IK = " " W n n n " *
THLV = TEMPORARY STORAGE OF HLV WHEN CHANGING *
ORIENTATION *

THLH - " " " HLH 1 1] L *

Bl
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ST = LOCAL STREAMWISE POSITION AT SECTION I (FT) «
SIM1 = LOCAL STREAMWISE POSITION AT PREVIOUS SECTION *
(I = 1) (FT) *

TEMPS = TEMPORARY S STORAGE FOR REVERSING ORIENTATION *
UC = CENTERLINE SECONDARY FLOW VELOCITY (FT/SEC) *
UD = INITIAL CONDITION FOR THE SECONDARY FLOW *
INTEGRATION *

STI = CUMULATIVE TRANSVERSE BED SLOPE *
R = RADIAL COORDINATE FROM THE CENTERLINE (FT) *
TEMPR = TEMPORARY R STORAGE FOR REVERSING ORIENTATION *
VA = LOCAL FLOW AREA (SG FT) *
V@ = LOCAL FLOW DISCHARGE (CFS) *

V = STORAGE ARRAY FOR OQUTPUT *
VB [ L " " n “*

U > n " " LU -

HL st " n L " 'Y
ILOC = ARRAY DENOTING THE SECTION NUMBER WHERE EACH NFWw
SEGMENT BEGINS *

[ST = ARRAY DENOTING THE SECTION NUMBER WHERE THF *
VELOCITIES AND DEPTHS ARE KEPT UNTIL FINAL *
TABULATION MAXIMUM OF 6 VALUES STORED=TNLET, *

4 OTHERSe OUTLET *

ISEG = VARTABLLE FOR THE 1ILOC ARRAY *
NIST = VARIABLE FOR THE IST ARRAY *
ISTD = LAST VALUE OF NIST IN IST-ARRAY : DIMENSION *
OF IST *

IKEEP = PARAMETER TO TELL WHETHER TO STORE FOR TABULATION
(IKEEP=1) OR PASS ON TO NEXT SECTION (IKEEF=0) =«

LA S S TR R R TR TR S S L A I A T A S LI B B R T
H = MEAN FLOW DEPTH (FT) *

HV = H NONDIMENSIONALIZED BY H===THUS UNITY *
HH = H " "W *
RC = RADIUS OF CURVATURE (FT) *
RC IS POSITIVE IF THE ORIGIN IS LOCATED ON THF »

RIGHT BANK SIDE -

RC IS NEGATIVE IF THE ORIGIN IS LOCATEL ON THE =«

LEFT BANK SIDE *

RO = PREVIOUS SECTION®*S RC TO CHECK ORIENTATION *
Sly S2 = STARTINGs ENDING CENTERLINE COORDINATES OF EACK »
BEND SEGMENT *

SC = CUMULATIVE CENTERLINE STREAMWISE COORDINATE *
SC3 = PREVIOUS SECTION®S CENTER LINE COORDINATE *
0S = CENTER LINE DISTANCE BETWEECN SECTIONS »

F = DARCY-WEISBACH FRICTION FACTOR »
NOTE THAT F IS USUALLY DETERMINED BY *

F = 8e0 *» G * R # S / ( Vax2 ) *

THUSs SPECIFYING 3 OF ( Fy Ry Se OR V ) >
DETERMINES THE FOURTH PARAMETER *

VBAR = MEAN STREAMWISF FLOW VELOCITY (FT/SEC) *
REMAINS IN ORIGINAL UNITS BY THE NAME VACT *

SCL = CENTERLINE WATER-SURFACE SLOPE *
W = RIVER WIDTH (FT) *
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*

T

*

REMAINS IN THE ORIGINAL UNITS BY THE NAME WACT
N = NUMBER OF STREAMWISE POSITIONS
M = NUMBER OF RADIAL POSITIONS=-=--TAKEN 0ODD FOR
CENTERLINE
NSEG = NUMBER OF CONSECUTIVE SEGMENTED BENDS
STEFPS = NUMBER OF SECTIONS THAT INTERVAL ( Sly S2 ) IS
TO BE DIVIDED
* Ok Xk w kR ok R ok kK Kk k kK K Kk ok K ok ok Kk kR k « & *
ALPHA = CONSTANT USED IN BED=-LAYER RELATIONSHIF
BETA = CONSTANT USED IN SHEAR-STRESS RELATIONSHIP
POR = BREO-LAYER POROSITY
SG = SPECIFIC GRAVITY OF SEDIMENT
D50 = MEDIAN BED-MATERIAL PARTICLE SIZE (MM)
RMU = DYNAMIC VISCOSITY
HETAC = SHIELDS PARAMETER
*E Xk ok k ok ok Kk ok k k Kk ok & * Kk * k kX K &k ok & k * * %
DIMENSTON VIC(17)y VIM1(17)e VNIC1T7)
DIMENSION UBIC17)e UBIMI(17)e UBNIC17)y UIC17)
DIMENSION STI(17)e SIMIC(17)e HLIV(17)y HLIMIV(17)
DIMENSION HLIH(17)y HLIMIH(17)
DIMENSION R(€17)e VAC1IT7)e VQ(17)
DIMENSION TUB(17)s TEMV(17)s THLV(17)e THLH(1T7)
DIMENSION TEMPR(17)y TEMPS(17)
DIMENSION ILCC(5)y IST(6)
DIMENSION V(6917)e UB(6917)y U(E917)9 HL(6417)
DIMENSION UBPU(6917)9 UTRAN(CGE917)9 ANGLE(E917)
DIMENSION GGASS(64+17)

PRIMOS I/0 COMMENT

OPEN(SeFILE=*SEGDAT?®)

OPEN(GeFILE="0UTT")

READ(5910) VBAR9HoW9SCLsPORsSGeRMU9NSEC

WRITE(G95)

* % % % % % % % % % ¥ ¥ % ¥ ¥ »

5 FORMAT(//920Xe *MATHEMATICAL MODEL FOR THE PREDICTION OF ¢
9/ 924Xy *THE VELOCITY FIELD IN RIVER FLOW®9//)

1

6

10

12

14
$

WRITE(6496)
FORMAT(1Xy

78(vx*))

FORMAT(6F10e59E15e5914)

NSEGP1 =
READ(5412)
FORMAT(7I1
WRITE(6914

FORMAT(//915Xe*VALUES FOR VBARs Hy

NSEG 2%)
WRITE(A415

NSEG

* 1

¢ TLOC(TI)eI=14NSEGP1 )

0)
)

) VBARs Hy

Wy

SCL+

PORe SGe RMU»

We SCLo

PCR s

NSEG

15 FORMAT(SX93F10e39E13e592FTe39E11e39144/)
WRITE(6416)
16 FORMAT(14Xe*SECTION NUMBERS WHERE NEW SEGMENTS BEGIN

: 1

ARE ¢%)
WRITE(6912
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WRITE(E46)

o
*
»
*
»
*
*
»
*
*
»
E ]
*
*
»
*
*
*
»
»
»
*
»
*
*
-
*
»
*»
*
*
*
*
»
»
»
*
*
»
»
»
*
»
*
*
*
*
»
»
*
*
-
»
»
*
»
»
»
*
»
»
*
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R
MCL
M1
IM2
IM3
IM4

MP
NP

ToUT
NQUT
EPSV
EPSU
KOUNT
KMAX
KTIM

KD
KCPT1

KCPT2

KOPT3

A X * »

PI
G
AAA
BBR

CEFINITIONS OF VARIOUS TERMS USED

*

*

MORE DEFINITIONS

T A B S T G
RAOIAL CENTERLINE POSITION
DESIGNATED RADIAL POSITION TO BE PRINTED

" " " " "

"
" " n “ L LU

NOTE: 5 POSITIONS PRINTED IN ALL:

1 = NEGATIVE RIGHT S5ANK
2 = QUARTER POINT

3 = CENTER LINE

4 = 3-QUARTER POINT

5 = POSITIVE LEFT BANK

INCREMENT FOR RADIAL LOCATION QUTPUT
INCRCMENT FOR DOWNSTREAM SECTION ouUTPUT
DOWNSTREAM SECTION INDEX
D/S PRINTING CPTION PARAMETER FOR RESULTS
EVERY IOUT=-TH SECTION IS PRINTED
TEST PARAMETER/VARIABLE FOR IOUT=TH SECTION
EPSILON FOR CRROR IN V BETWEEN ITERATIONS

» " " " UBAR BETWEEN ITERATIONS
ITERATION COUNTER OF UBAR
MAXIMUM NUMBER OF ITERATIONS DESIRED FCR UBAR
CALCULATION
FREQUENCY OF OUTPUT DURING ITERATION FROCEDURF FCR»
UBAR *
PRINTING PARAMETER FOR KTIM=-TH ITERATION OUTPRUT *
OPTION PARAMETER FOR INITTAL APPROXTIMATICN FOR UBAR

tl**v”’#t’t.l##t‘#ill’l

1 FOR USING PREVIOUS SECTION®S VALUES *
2 FOR USING DISCRETIZED CONTINUITY EQUATION *
35 FOR ANALYTIC SOLUTION OF THE CONTINUITY EQUATICN=
OPTION PARAMETER FOR SOLVING QUADRATIC FORMULA *
FOR V *
1 FOR ORIGINAL DISCRETIZED MOMENTUM EQUATION *
2 FOR MODIFIED DISCRETIZED MOMENTUM EQUATION WHICH=

INCLUDES THE CONTINUITY EQUATION *

OPTION PARAMETER FOR RADIAL INTEGRATION DIRECTION
1 FOR OIRECTION FROM THE POSITIVE LEFT BANK ACROSS
TO THE NEGATIVE RIGHT BANK *
2 FOR DIRECTION FROM THE NEGATIVE RIGHT RANK ACROSS
TO THE POSITIVE LEFT BANK

*i*t*ﬁ.t*ttittﬁ*.iﬁﬁittiﬁ

PI 1Y BOSTON CREMEs APPLEy PUMPKINs ETC.

GRAVITATIONAL CONSTANT

COEFFICIENT IN SEDIMENT RELATION

EXPONENT IN SEDIMENT RELATION

SEDIMENT RELATION === POWER LAW OF THE FCRM
@S = AAA * VBAR wx BBR

* % % % F o * % %
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FTMM = CONVERSION NUMBER OF MM IN ONE FOOT *
KUVM = MAX NUMBER OF ITERATIONS FOR U=V COMPATIZILITY *
ISTD = SIZE OF IST=ARRAY === PRINT 14 ISTD === LAST VALUE~®
I R L 2 R R A R s A R R e e R
3 = WATER DISCHARGE *

RS = SEDIMENT DISCHARGE *
ASACT = SEDIMENT DISCHARGE==--ACTUAL *
VSTAR = SHEAR VELOCITY *
FRCUDE = FROUDE NUMBER *
RN = POWER LAW EXPONENT *
FTELR = RADIAL STEP SIZE *
BLe BR = POSITIVE LEFT AND NEGATIVE RIGHT BANKSs *
RESPECTIVELY *

P L 2 R 22 R R s 2222222223323 222222 2222222 2R 2R R R Rt s B &4

GP1¢GP?2 = DIMENSIONLESS GRAVITATIONAL TERMS BY DEPTH H AND =
WIDTH W *

RESTAR = BOUNDARY REYNOLDS NUMBER *

VSTARC = CRITICAL SHEAR VELOCITY *

FRD = DENSIMETRIC FROUDE NUMBER *

Ak R Ak kR AR AR AR AN AN IR AR A AR AR AR A A A AR h kA TRk kAR Ak Ahdk ok kokd
VARIABLFES T0O DEFINE EVERY RUN

PI = 3.141592654
G = 32174
FTMM = 30448
AAA Nel08
BBB 44,0
N = 545
M = 7
MCL
IM1
IM2
IM3
IM4
I0UT
MP =
NP =
EPSV
EPSU
KMAX
KTIM
KOPT1
KOPT2
KOPT3

9
5
MCL

13

o= onn

LI L O I i 1]

wnon
n

69
205
341
477
IST(ISTD) = N

B5
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WRITE(6920) Ny Mg MCLy IM1y IM2y IM3Z, IM4y IOUTy MFPe NP
20 FORMAT(S5Xe*DOWNSTREAM STEPS = *+I54°% RADIAL STEPS = 9,15,
’ CENTER AT M = *4154/45Xe*RADIAL POSITIONS STORED AT
J T 1 *94159/95Xe*RESULTS OUTPUT EVERY Tel5,
Y SECTIONS®y/45XeD/S AND RADIAL OUTPUT FREQUENCY 1S *,
2154 STEPS*4/)
WRITE(6922) EPSVe EPSUs KMAXyey KTIM, KOPTley KOPT24 KOPTZ
22 FORMAT(5Xe*RELATIVE ERROR CRITERIA FOR V AND UBAR ARE *,4
$ 2F10e59/95Xe *MAXIMUM ITERATIONS *9I159*% PRINTED EACH "9¢15,
$ *ITERATIONS®y /45Xe*PROGRAM OPTIONS FOR U3ARe MOMENTUN
$ FORM oDIRECTION ARE *y 3IS54/)
WRITE(6924) NNy KUVMy ISTDy (ISTC(K)eK=1+ISTD)
24 FORMAT(SXe*INITIAL NUMBER OF SUBINTERVALS FOR SIMPSON
$ RULE + %9159 /95Xe*™AX NUMBER OF U=V ITCRATIONS I8 = »,
$ ISe/95Xs *DIMENSION OR NUMBER OF SECTIONS TO FE TARULATED
$ IS = *9I54/95Xe *AND ARE AT SCCTIONS: *e(/95X%XeT7110))
WRITE(6925) AAAs BRB
25 FORMAT(/ 45X ¢ *SEDIMENT POWER LAW QOF THE FORM QS = A =
$ 0V )**B®y /95Xe® WITH Ay B = Y92F12e44/)
WRITE(6e6)
ARERE RN AR AN I IR R IR KRR I A AR AR A AR R R RAR KA AR P AR R A kAN A R RN A SRR AN
COMPUTE QUANTITIES TO BE USED IN THE PROGRAM
Q@ = VBAR * H *»
QSACT = AAA * VBAR+*#*EBR
VSTAR = SORT( G * H * SCL )
FROUDE = VBAR / SGRT(C G * H )
F = 80 * G * H » SCL / ( VBAR#*#*2)
RN = 140 / SGRTC F )
RN2 = ( RN + 1.0 )*%2 / ( RN * ( RN + 2.0 ) )
JELR = W /Z (M - 1)
BL=H/2-0
BR = =W / 240
WRITE(E¢65) QeF ¢RN9yDELR¢EL9BReVSTARGFROUDE4RN24GQSACT
65 FORMAT(SX9*DISCHARGE = *gF13e4y? DARCY-WEISBACHKH F = *4
¥ E14469/ 95Xy 'POWER=LAW N = *4F16e8¢°® RADIAL STEP = K
$ E12e49/95Xe *LFEFT & RIGHT BANK AT R = *92E12e49/ 95Xy
$ *SHEAR VELOCITY *4E14.64* FROUDE NO = *9FE 14069/ 95Xy
$ "N-TERM GIVEN BY *4F14.69745X9%0S = *4F15.64°
FPENG TONS/DAYY47/)
WRITE(ARe6)

LR B Q***i*i*tf*t*t*ﬁi**ﬁﬁ*i*ﬁ‘*'k'ﬁi*t*ttti*ttﬁt***i'iilti'tiiit

DETERMINE THE NONDIMENSIONAL TERMS

§
$
$
$

VACT = VBAR

WACT = W

GP1 = G = H / VBAR=*+2
GP2 = G * W / VBAR##*2
HH = H / W

BL = BL 7 W

BR = HR / W

DELR = DELR 7/

VBAR = 1.0
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Q= 1a0
HV = 1le0
W = lef
WRITE(64970)
70 FORMAT(//92TXe*NONDIMENSIONAL QUANTITIES ¢ *)
WRITE(6472) GP1y GP2y HHe BLe BRe DELR
72 FORMAT(S5Xe*TWO GRAVITY TERMS FOR =VERT=¢ =HOR= ARE %

$ 2€14e59/95Xe *DEPTH = ®9El4e69* LEFT AND RIGHT BANKS AT *,

$2E14eR9/ 95Xe *RADIAL STEP '9El4.6)
WRITE(6e6)

ARk AR AR I AR AR AN AR AR R AR AR AN AR AR A A AR AR R R A A ok

PEFINE THE INITIAL ORIENTATION OF THE RADIAL POSITIONS

IF( KOPT3 «EGe 2 ) GO TO 75

RADTAL POSITIONS DEFINED FROM THE POSITIVE LEFT BANK

TO THE NEGATIVE RIGHT BANK

AkR Ak kod hdkeok ok ok Wk KOPT3 = 1 OPTION 222222222222 s

DO 74 J = 1e¢ M
R¢JY = 8L - ¢ J - 1) *» DELR
74 CONTINUE
GO TC 79
75 CONTINUE
RADIAL POSITIONS ARF DEFINED FROM THE NEGATIVE
RIGHT BANK TO THE POSITIVE LEFT BANK

dk Rk ke hokoh ok Rk KOPTX = 2 OPTION A Ak h bbbkt hkh hodok dokok

DO 78 J = 14 M

R(JY = BR +# (J - 1 ) « DELR
78 CONTINUE
79 CONTINUE

IR R R R R R R R R R R R R e 2 A R SRS R AR AR RS R SRS RS REE

ISEG = 1
I =0
NIST =1
IEELE TR NEW SECTION I P E 2222222222222 2R R RS R 2]

82 CONTINUE
I =1+ 1
IFC IST(NIST) «EQe I ) GO TO 95

PO NOT WANT TO STORE THIS SECTION®S DEPTHS AND VELOCITIES

IKEEP = 0
GO TO 100
S5 CONTINUE

WANT TO STORE THIS SECTION®S DEPTHS AND VELOCITIES FOR LATER

TABULATION
IKEEP = 1
IK = NIST
NIST = NIST + 1
100 CONTINUE
IF(C I «EGe 2 ) GO TO 220
IJK = ILOCCISEG) + 1
IF(C I -£Qe TJK ) GO TO 120
IFC I «NEe 1 ) GO TO 220
120 CONTINUE
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*xaxwexxx  EITHER ONE SECTION DEEP INTO A NEW SEGMENT *ok ok ok ok
OR AT THE INLET SECTION
ISFG = ISEG + 1
READ(54125) RCy Sl S2, ALPHAs BETAy THETACy DS0e NSTEFS
125 FORMAT(7F11le54I2)
WRITE(6E46)
WRITE(Gy127) IvRC’SloSQ'ALPHAQBETAQTHETACQDSOQNSTEPS
127 FORMAT(//91TXe*NEW SEGMENT=-IMPORTANT PARAMETERS GIVEN AS ¢
$ 9o/9 5X9*FOR SECTION I = *eI54" RC = *9E14e69/ 95X e *SEGMENT
¢ LOCATION BETWEEN 9201569/ 95X e *ALPHAy BETA = *92FBela
g 0 THETACs D50 = ¢, 2FB8e49/ 95X e *NUMBER OF SECTIONS BETWEEN
$S1 R S2 IS %,154//)
COMPUTE OTHER VARIARLES
RESTAR = VSTAR = D50 / ( RMU » FTMM )
VSTARC = SART( (SG = 140) * G #* D50 = THETAC / FTMM )
RATIC = VSTAR / VSTARC
FRD = VACT / SGRT( (SG = 1.0) = G * D50 / FIMM )

DS = € S2 = S1 ) / NSTEPS
COMPUTE NONDIMENSIONAL QUANTITIFS
RC = RC / WACT
S1 = S1 /7 WACT
S2 = S2 / WACT
DS = DS /7 WACT

D50 = D50 /7 ¢ FTMM * H )
CALL PG(FyVBARqDSOqTHETACoPOR'ALPHAQBETAySGvcpllevG2905)

NOTEZ G1 = G1( Ne Fe BETA )
G2 = G2C N )
G3 = G3( BETAy ALPHAy PORy Fy THETACs VBAR,

Gs D50s DRHOS )

WRITE(69130)
130 FORMAT(//95X9 *COMPUTED VARIABLES FOR THE NEW SEGMENT

T GIVEN BY®4/)

WRITE(69132) RESTARy VSTARCy RATIOs FRDy Gle GZ4 G3
132 FORMAT(S5X9*RESTARy VSTARCe RATIO = *93E15e69/95X9* DENST=

IMETIC FROUDE = *9E14¢69/95X9%Gly G249 G35 = "e35E15e74/)

WRITE(6496)

WRTITE(64135)
135 FORMAT(5Xs*NONDIMENSIONALIZED QUANTITIES GIVEN RY *s//)

WRITE(64137) RCy Sly S24 D504 DS
137 FORMAT(5X9*RCe Sl S2 = *43F14464" D50 Y9E14e69/ 95X,

$ *INTERVAL BETWEEN SECTIONS DS = *4F15e74/)

WRITE(646)

TEST FOR INLET
TEST FOR REQUIRED NEW RADIAL ORIENTATION

IFC I «EQe 1 ) GO TO 145

ORIEN = RC 7/ RO

RO = RC

IFf ORTEN «GEe Ne0 ) GO TO 220
138 CONTINUE

IFC KOPT3 «EQe 1 ) GO TO 139

KOPTI = 1
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GO TO 140

139 CONTINUE
KOPT3 = 2
140 CONTINUE
D0 142 J = 1¢ M
TEMPR(J)Y = R(J)
TEMPS(J) = SIMIC(J)
TUB(J) = UBIM1(J)
TEMV(J) = VIMIC(J)
THLV(J) = HLIM1VWY)
THLHC¢J) = HLIM1H(GJ)
142 CONTINUE
DO 144 J = 14 M
JJ = (M + 1) - J
R(J)I) = TEMPR(JJ)
SIM1(J) = TEMPS(JJ)
VIM1(J) = TEMVIJJ)
UBIM1ICGJ) = TUBC(JI)
HLIMIV(J) = THLV(JJ)
HLIM1IH(J) = THLH(JJ)
144 CONTINUE
GO TO 229
145 CONTINUE
Ak k Rr A A RA AR Ak A kA ® e hh bk INLET SECTION Ak dhkhhkh bk rhhk ARk
SET ARBITRARY CONDITIONS===CAN IMPOSE ANYTHING
RO = RC '
SC = 00
UDO = D60
160 CONTINUE
CSTIMATE INITIAL DOWNSTREAM V-VELOCITIES AT INLET
SECTION USING DARCY-WEISBACH APPROXIMATION=-=-=NOTE TFAT
VALUES AT BANKS ARE NONZERO
DO 170 J = 14 M
HLIV(J) = HV
HLIH(J) = HH
SI(J) = 060
UICJ) = 0e0
VNICJ) = SQRT(8.0*GP1*HLIV(J)*SCL*RC/(F*(RC + R(J))))
170 CONTINUE
WRITE(64174)
174 FORMAT(/ 95X *INLET SECTION V = %4/)
WRITE(64176) (VNIC(J)eJ=1e¢M¢MP)
176 FORMAT(/¢(3Xs5FE157))
WRITE(E4177)
177 FORMAT(//)

CALCULATE THE FLOW DISCHARGE AND THEN ADJUST TFKE V=~
VELODCITIES TO SATISFY THE MEAN FLOW CONTINUITY

CALL PON(MgRoVNIgHLIVeVASVOsAT4AQT)

ETA = 1.0

ETA = @ / QT

WRTITE(E9178) Q¢ QTe ETA

B9
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178

180

182

185

130

191

193

194

* *®

FORMAT(//45Xe%Qy QT4 ETA = *92F16eB89//)

DO 180 U = 1¢ M

VNICJ) = YNIC(J) * ETA

CONTINUE

CALL PON(MoR¢VNIGHLIVeVAGVAsATHAT)

WRITE(6s182)

FORMAT(5X¢*ETA=MODIFIED V=VELOCITIFS WITH UNIT

$ DISCHARGES®*)

DO 160 U = 14 M, MP

WRITE(69185) JeaVNICU)IeVA(U) 4VG(U)

FORMAT(SXe®J =*4I34% V = *,T16.84% VA =Y9E16e8s" VO =,

T E1648)

CONTINUE

WRITE(69191) QT

FORMAT(SX9*NEW VALUE OF QT WITH MODIFIED V = *4fE16.8)
CCMPUTE SEDIMENT DISCHARGE

QS = De0

DO 193 J = 14 M

VVV = VNICJ) * VACT

RATA = VA(J) / VA(MCL)

QS = QS + RATA « VVV#*«BBB

CONTINUE

QS = GS * AAA / (M = 1 )

QSN2 = QS / QSACT

WRITE(69194) QSs QSND

FORMAT(/95X9*QS = *9E144649* ENG TONS/DAY GS/QSACT = »

§ C15e647)

* ok ok kK ok kK A k K * Kk Ak A * Kk ok A Ak * K Kk * A A K * * A
FIND INITIAL VALUES FOR UBAR AT INLET SECTICN
FROM THE ANALYTICAL SOLUTION OF THE SIMPLIFIED
CONTINUITY EQUATION USING A ZERO=VALUE 30UNDARY
CONTINUITY AT THE OUTSIDF HBANK
USE CONTINUITY EQUATION WITH DARCY-WEISBACH FOR
DCV*HL)/DS AT INLET TO APPROXIMATE UBAR

TEMP = 0,0

UBNI(1) = 0.0

IFCKOPT3 oEQe 1) TUM1 = (=2.04BL/RC) #* SQRT(1.C+RL/RC)
IF(KOPT3 «EQe 2) TUM1 = (=2,0+BR/RC) = SQRT(1.0+4BR/RC)
Cl = 8e0 » GP2 * SCL / ( F % HH )

Cl = =140 * ETA # 62 % G3 % SQRT( C1 ) # RC##2

DO 200 U = 24 M

RADR = RC + R(U)

UAL = ( =240 + R(J) / RC ) » SQRTC 140 + RC(J) 7/ RC )
UBNI(J) = ¢ TEMP + C1 * ( UAL = TJM1 ) ) / RADR

TEMP = UBNI(J) # RADR

TJM1 = UAL

CONTINUE

WRITEC69210) Is (UBNICU) gJ=19MeMP)

FORMAT(/+* 1 =*3134% VALUES FOR UBAR = Yo/ 9 (4X95E15.7))
WRITE(69212)

FORMAT(//4SX9*END OF INLFT SECTION®4/7)
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220

221

(]

225

(]

226

230
C
c

C & =*
Cx =
C

{op o

WRITE(G96)
GO TO 763
CONTINUE

I E L2 ER RSN E AN NEU

SECTION HE R T AR TR AN ANR A RN R NR

SAME OR NEW
FOR THE NEW SECTIONe DEFINE THE ANGULAR COORDINATE
AND THE STREAMWISE POSITIONS ACROSS THE TRANSVERSEs
SIle THENy DETERMINE THE CENTERLINE SECONDARY FLOW
VELOCITY UCLIys AND THE TRANSVERSE BED SLOPEs STl1,
USING THE CENTERLINE STREAMWISE DISTANCE.
FINALLYs CALCULATE THE LOCAL FLOW DEPTH AT EACH OF

THE RADIAL POSITIONS
CONTINUE
SCo = SC
SC = SC + DS
uul uo
uu2 G2
uu3 HH
uc = uUul
STI = UC
uo = ucC
DO 225 J

uuz2 * UU3
63 / VBAR

* + * %\

1o M

HLIH(J) = HH + R(J) = STI

HLIV(JY = HLIHC(J) / HH

SEGMENT

EXPC 61 » ¢ SC = SCO0 ) / HH )
VEAR / EXP( G1 * SC / HH )
( EXP(G1*SC/HH)

- EXP(G1*SCO/HH) )/(C G1 » RC )

TEST FOR NON=-POSITIVE DEPTHe IF SOe MUST MCDIFY

PROGR AMe
EXIT IF ENCOUNTERED.

IFCHLIV(J) oLEe De0) WRITE(69224) Te Je HLIVC(U)

224 FORMAT(//+5X9*NON-POSITIVE FLOW DEPTH OCCURS AT SECTION
$ I = %9159 /9¢5Xe"RADIAL POSITION J = ®¢I5e5Xe*FLOW

¥ DEPTH= *9E2444/95Xy *EXIT FROM PROGRAM TO MODIFY?®)
IF(HLIV(J) oLEe. 0,0) GO TO 950

CONTINUE

NETERMINFE INITIAL VALUES FOR SECONDARY FLOW USING
FALCON®S RELATION AND THE PREVIOUS SECTION®S V=-VALUES

00 226 J = 19 M

FAC = HLIV(J)*VIMIC(JI*RC / ( HH*VIMI(MCL)*(RC + R(J)) )

UrdtJd) = UC * FAC
CONTINUE

DANGLE = ¢ SC - SCC ) / RC

DO 233 J = 1+ ™

SICJ) = ( RC + R(J) ) * DANGLE + SIMI(J)

CONTINUE

NOTES FOR RC < 0y THE TWO NEGATIVE QUANTITIES WILL
STILL YIELD A POSITIVE STREAMWISE COORDINATEs Se

IF(KOPT1 oNEe 1) GO TO

235

* ® & & * k& * X * * * * & * K K * w* % * * W A * K * & % &

* x % * * % % « » KOPT1

= 1

OPTION * % * % x % % % &% ® % *

FOR A ROUGH APPROXIMATIONs ASSUME THAT THE CURRENT
VALUES OF URAR ARE THE SAME AS THE VALUES CALCULATED

AT THE PREVIOQUS SECTION.

Bl1
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MO DTOO

D D OO

232

235

241
L I
LIS

246
2570

* x
255

DO 232 U = 24 M

UBI(J) = UBIMI(U)

CONTINUE

GO TO 250

CONTINUE

IFCKOPT1 oNEe 2) GO TO 241

* ok k x k * x k ¥ *x KOPT1 = 2 OPTION * * % % * * % % * % #
AS A ANOTHER ROUGH APPROXIMATIONs DISCRETIZE THE
CONTINUITY FQUATION TO APPROXIMATE THE VALUFS FCR U®PAR
IN THE FIRST ITERATION

TEMP = 0.0

Bl = 240 % GP2 + SCL / F

B2 = =140 « G1 * SI(MCL) / HH

Bl = =340 * G2 * G3 * SQRT( Bl ) = EXP( B2 )

N0 240 J = 24 ™

DELR = R(J) = R(J=1)

TJ = HLIH(J)Y * ¢ RC + ®R(J) )

FACJ = R€J) /7 € ( RC + R(J) ) * SQRT(TJ / RC)H )

UAL = R1 *» DELR * FACJ

UBT(J) = UAL + TEMP / TJ

TEMP = UBI(J) * TJ

CONTINUE

GO TO 250

CONTINUE

LA S S S S TR D T T N T T S T S T T SR S S UV U

* ok x ox ok x ko ox ox KOPT]1 = 3 OPTION %2 * % % % % % » % 4%
ANALYTICAL SOLUTION OF THE CONTINUITY FEQUATION TO EF
USED TO SOLVE FOR URAR AS AN INITIAL APPROXIMATION WHEN
STARTING A NEW SECTION.

Z1 = =30 * G2 +* G3 * SQRT( 240 « GP2 + SCL / F )
21 = 21 *» EXP( =G1 * SI(MCL) 7/ HH )
TENT = 0e0

DO 246 J = 24 M

CALL EVAL(STIeHHeRCeR(J) ¢R(J=1)4RIA)

BOTJY = HLIH(J) * ( RC + R(J) )

UBTIC(J) = ( Z1 « RIA + TENT) / BOTJ

TENT = UBI(J) * BOTUY

CONTINUE

CONTINUE

* K A Ak ok ok k& kR ok Ak ok ok ok ok x Kk ok ok * ok * kxR Ok A

CONTINUE
FIND STREAMWISE VELOCITY V 8Y SOLVING MOMENTUM FQUATION
THAT HAS BEEN DISCRETIZED INTO A QUADRATIC FORM USING A
SIMPLE BACKWARD DIFFERENCING
READY TO BECIN SOLUTION OF DISCRFTIZEND MOMENTUM FQUATIOM
ROF Ve BUT FIRSTe NEED A ROUNDARY CONDITION FOR Ve USFE
DARCY=WETSBACH FQUATION AT BANK.

IF(KOPT3 «f£&e 1) RJ = BL

IF(KOPT3 oE0e 2) RJ = HR

VIC1) = SQRT(8+0*GP1#HLIV(1)*SCL*RC / (F*(RC + RJ)))

VNI (1) = VI(1)

B12



316

220

TEMV(1) =
KOUNT = 0
ETA = 1.0
KUVT = 0

KQT = 0
KTT = 0
CONTINU
KQ = 0

CONTINUE
Kyv = ¢

CONTINUE

VI(1)

E

Corhx ahhkhkhihhk DISCRETIZED MOMENTUM EQUATION FOR V LE R

a0 OO

O

863 O3 D

* &

------ GFNTER HERE FOK NEW ITERATION AT SAME SECTION =====-
ERRV = 0.0
DO H00 J = 29 M
DETERMINF F-FUNCTIONS AT SPECIFIC POSITION (SeR)
CALL PF(FeHHeRC oVRBAR$G19G29C39R(U) 9STIUI(J)eF19F29F39F4)
DELS = SI(J) = SIMI(J)
STEPR = R(J) - RGJ-1)
CALCULATE COEFFICIENTS FOR GUADRATIC FUNCTION IN UZ
AA * Ux#*2 + BB = V + CC = 0a0
TR = HH * F4 / STEPR
TS = HH ~ F4 / DELS
* *x % %k * k *k Kk * *k Kk *k * * Kk *k & K* * * * * & * X * *k * &
IF(KOPT2 «NEe 1) GO TO 340
* % Kk k *h * * % % * * * KOPT2 = 1 * * * % * & & * * &k * *
COEFFICIENTS FOR REGULAR DISCRETIZED STREAMWISE MOMENTUM EQe
DEPEAND ON: V(I=19J)sVNEW(I9J=1)eU(IeJ)sUBARCIoJ)sUBAR(I9J~1)

AA = RN2 « ( F2 + TS ) + F / B8e0

BB = (F1 4 TR) » (UBI(J) + UICJ) / (2.0 * EN + 1) )
CC = GP1 * HV = SCL ~ F4 * RC / (RC + R(J))

CC = CC + RN2 *» TS * VIM1(J)*#*2

Ca = TR + ( UBI(J=1) + UTI(J) / ( 2.0 * RN + 10 ) )
CC = =1,0 = (CC + C4 = VNIC(J=1))

GO T0O 360

* A * * Kk k Kk & * Kk K * Kk * Kk * Kk x K ¥ * & * x * ¥ k * K

CONTINUE

* * k k * Kk ok ok K * * x * KOPT2 = 2 % % * % * % * * * * *
COFFFICIENTS FOR MODIFIED DISCRETIZED STREAMWISE MOMENTUM
FQUATION WHICH INCLUDES THE CONTINUITY EQUATION
NOTE: NO RADIAL DIFFERENTIATION IN UBAR !'!?
DEPEND ON: V(I=1eJ)e VNFW(Iged=1)y UCIed)y UBAR(IgJ)

AA = F2 * ( RN2 = 10 ) + TS * ( RN2 = 05 ) + F/840

BB = TR * ( UBI(J) + UI(J) / ( 20 * RN + 1.0 ) )

BB = BF + UI(J) * F1 / ( 2.0 * RN + 140 )

CC1 = GP1 » HV +« SCL = F4 = RC / ( RC + R(J) )

CC2 = TR*( UBI(J) + UI(J) / ( 2.0%RN + 1e0 ) D)*VNI(J=1)
CC3 = TS * ( RN2 = 05 ) » VIMI(J)*»%2

CC = =160 = ( CC1 + CC2 + CC3 )
A+ Ak ok ok ¥ Kk Kk A Kk *k Kk Kk k Kk k *x k Kk % x Kk K ¥ * * * K

CONTINUE
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(@)

C

CHECK = BB*=%2 = 44,0 » AA * CC
IF(CHECK oLTe 940) GO TO 400
VNICGJ) = ( =3B + SORT(CHECK) ) 7/ ( 240 * AA )
SUM THE DIFFERENCES BETWEEN THE OLD AND NEW VALUFES=---
NOTE THAT THE BOUNDARY VALUE IS NOT INCLUDED IN
THE ERROR SINCE IT IS FIXED
ERRY = ERRV + ABS( VNI(J) =~ VItJd) )
IFC UNICJ) «GEe 0e0 ) 60 TO 500
hk ok odk hohk ok ok ok NEGATIVF STREAMWISFE VELOCITY LA R R R T
WRITE(69390) Ie Jg VNIC(J)
290 FORMAT(/45Xe *NEGATIVE STREAMWISE VELOCITY®4/ 45X,
$ 'SECTION I =%y IS5¢* RADIAL STEP J = Y154 'V = %4715,74/)
GO TO 415
400 CONTINUE
WRITE(64410) CHFECK
410 FORMAT(// 45X 9 *NEGATIVE RADICAL IN U=QUADRATIC=--=CHECK = *
$ E10e24/7)
415 CONTINUE
EXIT FROM PROGRAM FOR A NEGATIVE RADICAL
GO TO 950
500 COMTINUE
whsxaraw FIND NEW U=-VALUES BASED ON V JUST CALCULATED ##xax
DO 505 J = 14 M
FAC = HLIV(J)*VNICJ)*RC / (HV*VNI(MCL)*(RC + R(J)) )
UICJ) = UC *» FAC
505 COMTINUE
ERRV2 = ( FRRV / (M = 1) ) / VBAR
KUVT = KUVT + 1
IFC ERRV2 «LEe EPSV ) GO TO 510
Qitit.*ittiﬁ*t*i*ttttttttiiﬁittik**iﬁ**.t*tﬂtttﬂttth'to*tt'tt
RESULT OF V CHANGING TOO MUCH ==- TRY NEW U=VALUES Iy
CALCULATICN OF NFW V=VALUES UNTIL CHANGES ARF MINOR
KUV = KUV + 1
REPLACE OLD VALUES WITH NEW VALUES AND SOLVE FOR V
AGAIN BUT NOW WITH THE NCWLY UPDATED V=VALUFS . NOTF
THAT U-BOUNDARY REMAINS UNCHANGED
DO 508 U = 24 M
VICGJ) = VNI(J)
VNI(J) = 0.0
€08 CONTINUE
IF(KUV «LTe KUVM) GO TO 320
WRITE(69509) Te KUVe ERRV
€09 FORMAT(/45Xe *MAXIMUM NUMBER OF ITERATIONS FOR L=V EXCFFDED®
£ 95X /oOXe*SECTION I = 0415, KUV = %415, FRRV = ¢
FE15e84/7)
GO TG 950
£10 CONTINUE
AR R R R R vV - U COMPATIBILITY HAA AR A AR SRR R AR R
CALL PON(MgRyVNISHLIVeVASVO9ATsQT)
RATE = ABSC Q@ - 0T ) /7 0
KQT = KQT + 1
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C.tﬁt 2R 2R AR SR SRR RS R RS R R R SRR RS R R R R R R R R S R R R R RS RSS2

ETAD =

FTA = a0 / QT

DO 535 J = 2¢ M

TEMV(J) = VNICWJ)

CONTINUE

CALL PON(MoR¢gTEMVeHLIVeVAGVNGAT4QT)

C ARk hd A
ERRU = Do
TEMP = 0o
UBNT (1) =
KOUNT =
IF(KOPT3
IF(KOPT3

£TA

* ETA
535

0
0

0e0

KOUNT + 1
eEQe 1) T1
oLQe 2) T1 =

O

VALUES FOR
TO GET THE
AGAIN WITH
DO A00 J = 24 M
CAPX -0e5 * (
CAP Y CAPX / (
T2 2 RC + R(J)
BOT J HLIH(J) »*
UBNT(J)Y = ( CAPX
T1 = T2
TEMP = UBNI(J) « BOTJ
CRRU = ERRU + ARS( UBNI(J) =~
€00 CONTINUE
* ok * & k k& ok kX Ak * ok k R ok ¥ R
CONVERGENCE CRITERPIA FOR EKRQORS:
CIFFERENCE BETWEEN 2 CONSECUTIVE

iz NgEe]

TEMV (J)
SI(J) -
) xw2
( RC + R(J)Y )
*~ (T2 = T1)

SIM1CJ) )

"ot n

UrI1Cd)

SMALL VALUE.
k A * X * Kk % Kk * * * K * * &k &
EPRU2 = ERRU /Z ¢ ( M = 1))
KTT = KTT + 1
IF(CRRUZ oLE
IFC(KCUNT oGEe

L

OO0 00N

* ok

* ABS(

EPSU)Y GO TC 750
KMAX) GO TC 770

NG CONVERGENCE YETe SO
ITERATE THE

YOI NV Y

KP = KOUNT /7 KTIM
KP = KP *x KTIM
IF(KP <NEes KOUNT) GO TO 748

WRITE(69700) Ie KOUNTe ETAy
700 FORMAT(/ 45X 9 *FOR SECTION I = ®*9I5¢*
$ * CURRENT AND PREVIOUS ETA ARE
T *RELATIVE ERRORS IN V AND

ETAO

UBAR ARE

B15

FIND NEW UBAR FROM ACTUAL

* HLIHC(J) =

+ TFMP )

RADTAL STEPS ACROSS THE TRANSVERSEs '
DOWNSTREAM FLOW VELOCITYs IS SMALLER THAN SOME PRESCRIBED

(V=H) VALUES

AWk AR

( RC + BL )*x2
( RC + BR )#x2
USE CONTINUITY EQUATION WITH ACTUALLY CALCULATED
DCV*HL) /DS AT THIS SAME SECTION
SECOND APPROXIMATION OF UBARy

UBAR EQUALS ZERO AT THE

CANK e

VIM1(J) » HLIMI1HC(J) )

/ ROTJ

)

LA S S I I I T A
ITERATE UNTIL THE AVERAGE
ITERATIGCNS FOR ALL THE
DIVIDED BY THE MEAN

* F ok ok ok A ok Kk & &

UBNICMCL)Y ) )

FR R AR IR AR R A kT KRR A R AR A AR RA AR AN AR AR A IRk ARk RNk Ak Ak A hdk ke k&
REACHED AS A RESULT OF LARGE ERROR WITHOUT EXCEEDING
THE MAXIMUN ALLOWABLE NUMBER OF ITERATIONS.

WHOLE PROCESS AGAIN FOR A NEW V AND UBAR.

ERRV2e ERRU2

KOUNT = *9154¢/ s5Xs

*e2E15e69/ 95X

'92E15.697)



C WRITE(69705)
705 FORMAT(S5X+*PREVIOUS VALUES FOR V GIVEN BY *4/)
c WRITECG9710) (VIC(J)gd=14¢M)
710 FORMAT(SXe6E1244)
WRITE(Re712)
712 FORMAT(SX9*UN-ETA-MODIFIED MOMENTUM VALUES FOR
£ V GIVEN BY %4/)
WRITEC69T710) (VNICJ)gJ=14M)

C WRITE(69714)
‘714 FORMAT(5Xe*0LD VALUES FOR URAR GIVEN BY *4/)
c WRITE(E9710) (UBICJ)ed=1eM)

WRITE(E9716)
716 FORMAT(5X9*NEW VALUES FOR UBAR GIVEN BY *4/)
WRITE(6e710) (UBNICJ)9ed=1eM)

C WRTTE(69718)
718 FORMAT(S5X9*LATEST VALUES FOR U ARE *4/)
C WRITEC69710) (UICJ)od=14M)
748 CONTINUE
C RESET NEW VALUES BEFORE REPEATING THE ITERATION

DO 749 J = 24 M
VI(tJ) = VNItJ)
UBI (J) = UBNICJ)
VNICJ) = 0.0
UBNI(J) = 0.0
749 CONTINUE
GO T0 312
750 CONTINUE

cilﬁt RAK A A A A AR AR KRR A AR I AR AR RN A AR A A AR AR AR AR R A A RTARA TR AR A K A AR

C REACHED AS A RESULT OF A SATISFACTORY SMALL FRRGR
C IN UBAR OR V THIS IS WANT WE WANT.
c DETERMINE FINAL ETA-MODIFIED V=-VALUE

DO 752 J = 24 M
VNI C(J) = TEMV(J)

752 CONTINUE

C #xeanwscrnwwrwnwnx DETERMINE SEDIMENT DISCHARGE wawswssw

QS = 0.0
DO 7533 J = 1+ M
VVV = VNI(J) » VACT
RATA = VACGJ)Y / VA(MCL)
QS = BS + RATA * VVV**ERR

753 CONTINUE
QS = AAA *» @S / (M = 1)
GSND = @S / GSACT

C Axxhkhx FRAFEX AT A AR A AR AT AR AT AN AR R A AFT R AR AAR A A AN, AR

ITT =1 -1
NOUT = III /7 I0UT
NOUT = NOUT » TI0UT
IFCNOUT oNEe ITI) GO TO 763
WRITE(E9755) Te STIe UCe ERRV2e ERRUZ2y KOUNT, RATA

755 FORMAT(/ ¢5X9*FOR SECTION I = "el4e® ST = *9F14e60
$ 'UCL = *9E14e69 /95Xe*SATISFACTORY ITERATION®,
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¥ SXe'ERRVZ2 = "4E14.6¢% ERRUZ2 Y9E14469/7 95Xy
$ *NUMBER OF ITERATIONS KOUNT Yel49/ 95Xy
¢ *ROLATIVE DIFFERENCE OF QT TC G IS *"9E15e797)
WRITE(ReT757) SCe RCe QTe ETAe QGSe QSND
757 FORMAT(S5XeYCENTERLINE POSITION S = *9E14e6e¢" WITH RC = *4E1
$4e6 9 /oS Xe " NEWEST G = *9E16e84" WITH ETA = ®*9E15¢ 797 95Xy
4 *SEDIMENT DISCHARGE = ®*9E1445¢" QS/QSACT = '4F14e547)
WRITE(G9T6ED) KTTey KOGTe KUVT
760 FORMAT(5X " NUMBER OF ITERATIONS FOR UBs Q¢ UV ARE %4316)
WRITE(GeT716)
WRITE(6¢710) (UBNICJ)edJ=1e¢MeMP)
WRITE(69T761)
761 FORMATI(S5X¢*ETA-MODIFIED MOMENTUM VALUES FOR V CIVEN BY®)
WRITE(69710) (VNI(GJ)ed=1¢MeMP)
WRITL(69718)
WRITE(E9T710) (VI(J)eJ=14MeMP)
WRITE(69762)
762 FORMAT(/)
763 CONTINUE
STORE VALUES FOR Ve UBARe AND U FOR LATEFR TAEULATION
IFC TKFEEP «NEe 1 ) GO TO 767
IF(C KOPT3 «EQe 1) GO TO 765
DO 764 J = 1¢ M
V(IKgJY = VNICJ)
UBCTKed) = UBNT(J)
UCTKed) = UTJ)
HLCTKedJ) = HLIV(J)
DOSSCIK9yJ)=AAAX(VNI(J)*VACT)**BBB
UBPU(C(IKeJ)I=UI(J)I+URPNI(J)
USART=UBPU(IKgJ) **2+VYNI(J) **>?2
UTRAN(TIK¢J)Y=SQRT(USGQRT)
UCRII=VNICJ)
IF(UCRII«ENeCe) GO TO 1
ANGUU=UBPU(IKeJ)I/VNI(J)
ANGLE(IK ¢J)=5T729578*ATANCANGUU)
GO TO 764
1 ANGLE(IKeJ)=90.0
764 CONTINUE

"o

GO0 T0 767
765 CONTINUE
DO 766 J = 1e¢ M
Ju = (M + 1) - J
VIIKeJJ) = VNICJ)

UR(TIKeJdJ) = UEBNIC(J)

UlTKedJ) = UICY)

HLCTIKeJJ) = HLIV(J)
QRSS(IKeJJ)=AAAX(VNI(J)*VACT) ++*BBB
UBPUCIKeJJ)=UT(JI+UBNI(J)
USQRT=UBPU(IKeJU) *#*2+VNT (J) *#2
UTRANCIK ¢JJ) =SART(USQRT)
UCRTI=VNIC(J)
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c
C
C

c*diiﬁ*tt*ti*i*t***ﬁ*ii**i*tti**ﬁi*i**ﬁ

C
r

-

C

C
C
C

IF(UCRITI.EG.0a0) GO TO 3
ANGUU=UBPUCTKyJJ)I/VNT (J)
ANGLE(TK sJJ)=57429578%ATANCANGUU)

GO TO 756

3 ANGLEC(IKeJJ)=90,0

166
167

CONTINUE
CONTINUE
DO 768 U =
HLIM1V(J)
HLIM1H(J)
SIM1(J) =
VIMI(J) =
UBIM1(U)
CONTINUE
DO 769 J =
VI(J) = 0.
VNIC(J) = 0
TEMV(J) =
UBNI(J) =
UIcJy) = ¢

168

UBI(J) = 0

HLIV(J) =
HLIH(J) =
SICJ). = Q.
CONTINUE

ETA = 1.0
IFC I «GEe

769

RAREARI T AR AR A r Rk

IFC 1 .GE.

tii'*t*ti*tii**i*ﬁ**iﬁ**i***ﬁﬁfitt*i*ki**ﬁt**w*iﬁii*itt*ii**

GO TO 8¢
770 CONTINUE

le M

= HLIV(J)

HLTH (J)

ST )

VNICJ)

= UBNI«U)

N) GO TO 800
TRIAL
3 ) GO TO 950

STOPS

!ti’*ﬁtitit*'iit*tit'ﬁ'.Qﬁt

t**i***i*ﬁ**ii*ittﬁ*ﬂii*

REACHED AS A RESULT OF EXCEEDING THE ALLOWAELF NUMBER

OF ITER

WRITE(64780) 1,
780 FORMAT(/ 45Xy *FOR

$9E15e69 /95X 9 "CENTERLINE POSITION =

$ El4469/95X 9 "RELATIVE ERRORS 1IN V AND UBAR ARE

ATIONS

WRITE(64716)
WRITE(69710)
WRITE(69712)
WRITE(A9710)
WRITE(64718)
WRITE(64710)
GO TO 950

800 CONTINUE

ﬂiiiiﬁ*i****'*ﬁ**t'**t*i*ﬁiiﬁﬁttt*it*ﬁiﬁtfﬁit*it*'lﬁ*iiit"t*

PRINT FINAL RESULTS OBTAINED

(UBNIC(J)9d=14M
(VNICJ)gJ=14M)

(UT(J) 9d=14M)

)

9IS,

KOUNT

AR

KOUNTs STIs SCy ERRV2y ERRU2
SECTION I

Y9154* STI =

*92F154€)

RESULTS ARE TABULATED FROM THE NEGATIVE RIGHT RANK TO
THC POSITIVE RIGHT DBANK===KQPT3 = 2

B18



802

804
808

IFC KOPT3 «FEQe 2 ) GO TO 808

DO BO2 J = 1e¢ M
TEMPR(J) = R(J)
CONTINUE

DO 804 J 19 M

Jd = (M + 1) - J
RCJ) = TEMPR(JJ)
CONTINUE

CONTINUE

IR TR R A e R R R SR SRS RS2 2R RS2 R R R BT 2

C

10

82¢

%

RESULTS FOR TRANSVERSE SHIFT VELOCITY UBAR
WRITE(A9810)
FORMAT(//432Xe*VALUES FOR UBAR®*4//)
WRITE(6+820)
FORMAT(3Xs*R*943Xe? I %4/)
WRITE(6£9830) (IST(I)eI=19ISTD)
FORMAT(4Xe6112)
DO 850 J = 14 M
WRITE(E9840) R(J)9 (UB(IoJ)eI=14ISTD)
FORMAT(F7e396E1244)
CONTINUE
WRITE(69852)
FORMAT(//93Xe® I *932Xe*R")
WRITE(69854) RC1)eRCEIML) gRCIM2) gRCIMI)9R(IMS)
FORMAT(EXs5F12.4)
DO 858 I = 14 ISTD
WRTITE(698) IsUB(Ie1)eUBCIoeIM1)oUB(I9IM2)9UB(IZIMI)
2 UB(1yIM4)

8 FORMAT(IS5¢5X+5E1244)
€S8 CONTINUE

860

gac

€50

ans

RESULTS FOR SECONDARY FLOW VELOCITY U
WRITE(6¢860)
FORMAT(//¢32Xe *VALUES FCOR U%9//)
WRITE(6+4820)
WRITE(A¢830) (IST(I)eI=14ISTD)
DO 8B J = 19 M
WRITE(69840) R(J)y (UCIoed)eI=14ISTD)
CONTINUE

RESULTS FOR STREAMWISE VELOCITY V
WRTTE(64890)
FORMAT(//¢32Xe*VALUES FOR V*4//)
WRITE(69820)
WRITE(69830) (IST(I)eI=14ISTD)
DO 900 J = 1¢ M
WRITE(69840) R(J)Ye (V(IgJ)eI=1eISTD)
CONTINUE
WRITF(64852)
WRITE(6¢854) R(1)e RCIM1)e RCIM2)e R(IM3)e R(IM4)
DO Q908 I = 14 ISTD
WRITE(GE9B) ToeV(Iel)eVI(IoIMI)eV(IgIM2)eV(IeIMI)eV(IgIM4)
CONTINUE
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OMNMTITO N

RESULTS FOR LOCAL FLOW DFPTH
WRITE(69910)
10 FORMAT(//932Xe*VALUES FOR HL®s/7)
WRITE(E9820)
WRITE(69830) (IST(I)eI=141ISTD)
DO 920 J = 14 M
WRITE(69840) R(J) (HL(TeJ)9I=14ISTD)
920 CONTINUE
WRITE(64921)
€21 FORMAT(//925X9*VALUES FOR URAR + Ute2/)
WRITE(64820)
WRITE(69830) (IST(I)eI=14ISTD)
D0 930 J=1, M
WRITE(69840) R(U), (UBPU(I9J)y I=14ISTD)
€30 CONTINUE
WRITE(64931)
931 FORMAT(//425Xy*VALUES FOR SORTCCUBAR+U) *224VaaD) v, //)
WRITE(64820)
WRITECE9830N (IST(I)eI=14ISTD)
D0 940 J=14 M
WRITE(69840) RCJ)e (UTRAN(CIgJ), I=141STD)
€40 CONTINUE
WRITE(64941)
941 FORMAT(//425Xe*VALUES FOR VELOCITY VECTOR ANGLES®47/)
WRITE(64820)
WRITE(E9830) (IST(I)eI=14ISTD)
DO 945 J=14 M
WRITE(694840) R(J)y (ANGLE(Igd), I=15ISTD)
545 CONTINUF
WRITE(E9346)
46 FORMAT(//420X9*VALUES FOR UNIT SEDIMENT DISCHARGES *4//)
WRITE(64820)
WRITE(64830) (IST(I)eI=1,ISTD)
DO 947 J=1e ™
WRITE(69840) R(J)y (QASS(Ted)s I=1,1ISTD)
947 CONTINUE
S50 CONTINUE

PRIMOS I/C COMMENT

CLOSE(5)
CLOSE(6)
STOP
END
I B R T T *
SURROUTINE PAN(MeRoVeHL o VA4 VQA4ATHQT)
THIS SURROUTINE DETERMINES THE FLOW DISCHARGE FNR A
GIVEN RECTANGULAR CROSS SECTION OF CONSTANT
BOTTOM SLOPE WITH KNOWN VELOCITIES AND NEPTHS
hiﬁ‘-i*i'*ﬁ***ﬂ***kﬁ*tﬁ***‘*Qﬁi

VARTABLES:

B20

* * ®» * »



M
R
v

HL

VA

Vi

AT

QT

* ¥ Kk *

10

50

1C0

110

120

NUMRER OF INCREMENTS OR VERTICALS IN THE CROSS SECTION
LOCAL RADIAL POSITION ARRAY (FT)
LOCAL FLOW VELOCITY ARRAY (FT/SEC)
LOCAL FLOW DEPTH ARRAY (FT)

UNIT FLOW AREA ARRAY (SQ FT)

UNIT FLOW DISCHARGE (CFS)

TOTAL FLOW AREA (CUBIC FT)

TOTAL FLOW DISCHARGE (CFS)

* *k Kk * & k & Kk ® & * & * ® * *k *k * * * *k * * * &k *

* % % % O+ % % #

DIMENSION RC17)y VC1IT7)s HL(17)y VAC17)s VQC17)

AT = 0.0

QT = 0.0

DO 10 I = 1¢M

VA(T) = 0.0

VRCT) = 0.0

CONTINUE

DO 200 J = 1leM

IF(J «EQe M) GO TO 100
IF(HL(J+1) oLTe 040) GO TO 120
IF(J «GTe 1) GO TO 50

W2 = 065 * ABS( R(J+1) = R(J) )
H2 = ( HL(J) + HL(J+1) ) / 240

VA(J) = W2 » ¢ HL(J) + H2 ) 7 2.0
Va(J) = VAGJ) = V(J)

GO TO 110

CONTINUE

Wl = W2

H1 = H2

W2 = 0e5 * ABS( R(J+1) = R(J) )
H2 = ( HL(J) + HL(J+1) ) / 2.0
Al = W1 » ( H1 + HLC(J) ) / 2.0
A2 = W2 * ( HL(J) + H2 ) /7 2.0
VA(J) = Al + A2

VR(J) = VA(J) + VIJ)

GO 70 110

CONTINUE

Wl = W2

H1 = H?

VA(CJ)Y = W1 * ( H1 + HL(J)Y ) / 2.0
VR(J) = VACJ) + VJ)

CONTINUE

AT = AT + VA(J)

QT = QT + VQ(J)

GO TC 200

CONTINUE

Wl = w2

H1 = H?2

W2 = D5 *« ABS( R(J+1) - R(€J) )
H2 = ( HL(J) + HL(J+1) ) / 2.0
FAC = H1 /7 ( H1 = HL(J+1) )

WO = FAC % ABS(C R(J+1) = ( R(J) + R(J=1) ) / 2.0 )
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(w]

1

é
2

*

*

50

0o
20

VB AR
D50
THETAC
P CR

*

*

IFC H2

DELW =

VA(J+1)
VACJ+1)
Al = W1
A2 = W2
VA(JY) =
va(Jd) =
AT = AT
QT = QT
G0 TC 22
CONTINUE
VA(J) =

Va(y) =

AT =
0T

.LTO
ABS (

* 1 n

»

VACJ)

W0 -

0e0 ) GO TO 150
(W1 + W2 ) )

0e5 * H2 » DELW

VA(J+1)

* V(J)

€ H1I + HL(J) )
¢ HL(J) + H2 )
Al + A2

* V(J)

/ 2.0
/ 2.0

+ VAGJ)Y + VA(JU+1)

+ VadJd)

0

Oe
VA(J)
AT + VAC(JD)
= QT + Vo)

GO TO 22¢

CONTINUE
CONTINUE
RETURN
END

L

* * * *

S * WO * H1

* * &

* V(J)

* kW

+ VR(J+1)

* o ok &

*

*

* Kk ok *

*

*

*

LA *

SUBROUTINE PG(FqVBAR’DBOQTHETACoPORvoBqRHOSoG»GloG2vGJ)
THIS SUBROUTINE DETERMINES DIMENSIONLESS PARAME TERS
Gley G29 AND G3 FOR THE DEFINED AND INPUT QUANTITIES

* xRk

* &

* A %

OEFINED:

@
o n

LI S

INPUT VARIABLES:

G

* &

* &

CALL PG1(Fe¢BeG1)
CALL PG2(Fy62)
CALL PG3(VBARWRHOSsD504F yBeA9s THETAC 9POR¢G¢G3)

RETURN
END

* ok

* k * k * &

* ok

LI

SUBROUTINE PG1(F4BeG1)

RN =
T =

61 =
RETURN

END

* & * w

1«0 / SQRT(F)

(3e0%RN + 140)%(2,0#RN + 1.0)/(2+0*RN#*2 + RN
T » B

'F/BQO

®* *F ok & N

* A

* k k *

*

DARCY-WEISBACH FRICTION FACTOR
MEAN STREAMWISE FLOW VELOCITY
MEDIAN BED MATERIAL PARTICLE SIZE (MM)
SHIELDS CRITICAL SHEAR PARAMETER

BED LAYER POROSITY
GRAVITATIONAL CONSTANT

* ok ok &

*

LA S

(FT/SEC)

LAEE DS SR I S R T S S

¥ ok o ok kA kA

* A & %
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*

*

* k Kk * W

* N * &

*

SPECIFIC GRAVITY OF THE SEDIMENT PARTICLES
PARAMETER IN THE VELOCITY-SHEAR RATIO RELATION
PARAMETFR IN THE SHEAR-BED LAYER RATIO RELATION

*

*

*

*

*

*

*

* * "

+ 1.M)

*

oA X F % % % 3 X ¥ % * % 3 %



o

OO0 OO NO0

*

SURRCUTINE

RN = 1.0 /
Tl = (360 =
T2 = (240 »
G2 = TY £ 7T
RETURN

END

* & * & * ¥ w

SUBRCUTINE

T1 = F « TH
T2 = 8.0 =

T3 = SERTA(T
T4 = 9 » VB
G3 = T4 + T
RETURN

END

* k Kk * *x R Kk
SUBROUTINE
THIS SUR
GIMENSIO
INPUT QU
* kK Kk * ok k
INPUT VA
F
H
RC
VBAR
GleG24¢G3
R
ST
U
F1eF29F3¢F4
* k Kk * Kk *
CALL PF1(ST
CALL PF2(ST
CALL PF3X(ST
CALL PF4 (ST
RETURN
END
* *k K K Kk K Kk
SUBROUTINE
F1 = ST + (
RETURN
END
I
SUBROUTINE
Tl = 62 » G
T2 = R ~ 61
F2 = RC = (
RETURN
END

PG2(F ¢G2)

SQRT(F)

RN + 1e0) * (240 * RN + 1e0) = (RN + 1.0)
RN*##2 + RN + 140) * (RN + 24,0) * RN

2

* & ® * & K & * K * * * & K * &« & % ¥ * * % *

PG3(VBARgRHOS ¢D50¢F 93 9Ag THETACsPOR9G9G3)

ETAC

G * D50 * (RHOS = 1.10)
17 72)

AR / (A * (1.0 = PCR))
3

* k Rk x kK Kk ok x * Kk x X K k kK K Kk k * R
PF(F ¢H9RCoVBAR G 19G29639ReSTeUsF19F24F34F4)
ROUTINE DETERMINES ALL FOUR OF THE
NLESS FUNCTIONS Fle F2¢ F39 AND F4 FOR THE
ANTITIES GIVEN

I R I R
RIABLES:
NARCY=-WE ISBACH FRICTION FACTOR
MEAN DEPTH OF FLOW OVER CROSS SECTICN (FT)
RADIUS OF CURVATURE OF CHANNEL CENTERLINE (FT
MEAN STREAMKISE FLOW VELOCITY (FT/SEC)
DIMENSIORNLESS PARAMETERS

RADIAL POSITION FROM CHANNEL CENTERLINE (FT)
TRANSVERSE BED SLOPE
MAXIMUM SECONDARY FLOW VELOCITY (FT/SEC)
DIMENSIONLESS FUNCTIONS TO BE EVALUATED

X k Kk * k * k * ok ok ok A Kk ok ok ok kAR A K K
sRCeRsHeF1)
sRCeR9G19G29G3eHeF2)
¢RCyUeR9G1952¢G34HeF o VBARGF3)

tReHeF4)

*

* % % % % % % W % * % ¥ ¥ *

* Kk Kk * Kk *x Kk *x * Kk Kk * Kk Kk * * *x % * * * * #*
PF1(STeRCeReHeF1)
H + R » ST ) / ( RC + R )

I E R R E T
PF2(STeRC9R9sG1l9G29G3I9HeF2)
3 » R / RC

* ST / H

T1 - T2 ) / ( RC + R )
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C % % % % % * % * % 4 % * X ok ok Ak kK X kX X x x A Ak A A

SUBROUTINE PF3(STeRCoeUsR 961962963 9HeFoVBAR,F3)

Tl = F » U / (840 * VBAR)

T2 = € G2 * H) / ( RC + R )

T22 = 61 * RC * ST / ( 63 * ( RC + R ) )

RN = 1«0 / SQRT(F)

T3 = CR = ST + H) / H

T33 = 62 » R * U/ ( H » VBAR )

T4 = T2 = T22 ) % ( T2 = T33 ) / ( 2.0 = RN + 140G )

Cﬁi********t**t***ii*ii*ttﬁt'h'k*
SUBROUTINE PF4(STeR gHeF4)
T =R * ST / H
F& = 1.0 + T
RETURN
END
t*'*ﬁi*i***********ii*t'*!i\ﬁ
SUBROUTINE EVAL(A9P9sCoeRUSRUIMI 4SUM)

THIS SUBROUTINE EVALUATES THF ANALYTICAL SOLUTION OF

CONTINUITY EQUATION AS THE PROGRAM REGINS A NEW
SECTION. THE GENERAL FORM OF THE INTEGRAL IS
GIVEN BY:
I = INTEGRALC X *SQRT( C*(A*X + R)/(X + cC)y )y

(g}
»
»

XX
™m
(]

WHERE
RADIAL COORDINATE, RCJ)
TRANSVERSE BED SLOPFs ST
MEAN FLOW DEPTHe H
RADIUS OF CURVATUREs RC
TRANSFORMED COORDINATEs DEFINED AS:
SOQRTC C * (A * X + R) / (X + C) )
SQRT(C RC * ¢ R(J) * ST + H ) / ( R(J) + RC ) )
RJsRUM 1 UPPER AND LOWER INTEGRATION LIMITSe RESPECTIVELY
SUM FINAL EVALUATION OF THE INTEGRAL
O S * x w
T2 SGRT( C =~ ¢( * RJ + B )Y/ (RJ+ C )
T1 SQRT(C C = ( * RJM1 + B ) / ( RJUM]1 + C ) )
SUM = 0.0
TT = A = C
IFCTT oNEe 040) GO TO 70
WRITE(6960) A
60 FORMAT(/¢5X9 *ZFRO TRANSVERSE BED SLOPE ST = *9F20eH4/)
STOP
70 CONTINUE
IFCTT «GTe 0e0) GO TO 100
RIA = ATANC T2 / SQRT(=TT) ) = ATANC T1 / SQRT(-TT) )
RIA = RIA / SQRT( =TT )
GO TC 15¢
100 CONTINUE
RIA2 = ARS( ( T2 = SQRT( TT Y ) /7 € T2 + SQRTC TT ) ) )

~ O @B X

DO -0

A
A

B24
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RIAY = ABS(C ( T1 = SQRTC TT ) ) / ( T1 + SQRTA TT ) ) )
RIA = ¢ ALOG(RIA2) = ALOGC(RIA1) ) / ( 2,0 * SQRTC TT ) )
CONTINUE

FAC2 = ( T2##*2 = TT )

FAC1 = ( T1*#+2 = TT7 )

S1 = ( T2 /7 FAC2#+*2 ) = ( T1 / FAC1*»2 )

S1 = S1 « € T7T =B ) / 4.0

S2 = € T2 / FAC2 ) = ( T1 /7 FAC1 )

S2 = S2 % ( 540 * TJT =B ) / ( 840 * TT )

S3 = =1e0 * ( 3,0 * TT # B ) * RIA / ( BeO » TT )
SUM = 240 * € TT = B ) » ( S1 # S2 + S3 ) « Cax2
RETURN

END
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INPUT FILE: SEGDAT

1.5 0.505 8.0 00104 (.40 2.65 1. 4E-05 4
i 137 273 409 545

43.0 0.0 67.5 1416 3.276 0.032 .30 136

J8.7 7.5 135.0 1.446 3.276 0.022 0.30 136

-34.83 135.0 202.5 1.416 3.276 0.032 0.30 136

-31.347  202.5 270.0 1.4 3.276 0.032 0.30 136
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OUTPUT FILE: OUTT

NATHEMATICAL MODEL FOR THE PREDICTION OF
THE VELOCITY FIELD IN RIVER FLOW

RT3 4R TE ISR TARARTIITRSRRINAA STALAAASILASHALTITIAS2S SARSTLS IR 2L LS

VALUES FOR VEAR, ¥, W, SCL, POR, 56, RMU, NSEG -
{560 0505  0.000 0.10400E-02 0.400 2.650 0.110E-04 4

STCTION NUMBERS WHERE NEW SEGMENTS BEGIN ARE :
i 137 273 409 545
Tt EEaITeTa 43I I AIITIILIITLLLITLISTRELTEI (134344 4R E SRS LRSS ERE CEL)
DOWNSTREAN STEPS = 545 RADIAL STEPS = {7 CENTER AT M = 9
RADIAL POSITIONS STORED AT J = § S 9§ &3 17
RESULTS DUTPUT EVERY 2 SECTIONS
D/S AND RADIAL OUTPUT FREQUENCY IS f 1 GSTEPS

RELATIVE CRROR CRITERIA FOR ¥ AND UBAR ARE  0.00400 0.01000
MAXIMUM ITERATIONS 20 PRINTED EACH 10 ITERATIONS
PROGRAM OPTICNS FOR UBAR, MOMENTUM FORM, DIRECTION ARE 3 2 2

INITIAL NUMBER OF SUBINTERVALS FOR SIMPSON RULE = 0
MAX NUMBER OF U-Y' ITERATIONS IS = 20
DIMCNSION CR NUMBER OF SECTIONS TO BE TABULATED IS = b
AND ARC AT SECTIONS:
i 49 205 34 477 545

SEDIMENT POWER LAW OF THE FORX Q5 = A X ( UV JHHB
WITH A, B = fi.1080 40000

EREEI RIS ERRRSAITITAHATIISATAI4RSIIARRRISILELLERASR LSS LRSS 8808
DISCHARGE = &.3024 DARCY-UEISBACH F =  0.555483E-01
POMER-LAM N = 0.42429190E+01 RADIAL STEP =  0.5000E+00
LEFT & RIGKT ZANK AT R = 0.4000E+04 -0.4000E+01
SHEAR VELOCITY  0.429994E+00 FROUDE NO =  0.387014C+00
N-TERM GIVIN DY  0.103775C+04
85 = 0.6I7620E+00 ENG TONS/DAY

A3 3T HIISTEETEA IR ST EIEATIRISHERLELITIIIALTITIATLELR RS TAASSSLEALATISI LA

NONDIMENSIONAL QUANTITIES :
TWO GRAVITY TERMS FOR -VERT-, ~HOR- ARE  0.66764BE+01 0 105766E+03
DEPTH =  0.6312S0E-04 LEFT AND RIGHT BANKS AT  0.500000E+00 -0.500000E+08
RADIAL STEP  0.625000E-01
333433304443 4133 43334433 SRTRSTLATTEAHSSRARSIELATSLARZSLRRRSLLS AR LLLL L EES
324308843 SEEEREEERASORERALELAELITISRITALEAITSIILLLLILSSIALIAAARALAL LS ES

NI'W SEGMENT --- IMPORTANT PARAMETERS GIVEN AS
FOR SECTION I = i RC = §.430000E+02
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GEGMENT LOCATION  BETWEEN 0 000000E+00  .575000E+02

ALPHA, BETA = {4160 3.2760 THETAC, DS0 =  0.0320 0.3000
NUMBER OF SECTIONS BETWMEEN 54 & 82 15 136

COMPUTED VARIABLES FOR THE NEW SEGMENT GIVEN BY

RESTAR, VSTARC, RATIC = 0. {1634JE+02  0.408905E-01 0 .347901E+04
DENSIMETRIC FROUDE =  0.682440E+04
61, 62, 63 = 0.7481779E-01 0.6249260E400 0.3922577E+00

ELEREERERS R AR RS R SRR TR 83434348 4RRR LR3I ITETIT I ICEEEETEE 8¢
NONDIMENGICNALIZED QUANTITICS GIVEN BY

RC, St, 52 =

0.537500E+01 0.000000E+00 0.842750E+04 D50 0. 194904E-02
INTERUAL BETWEEN SE

o
SECTIONS DS = 0.6204044E-04
QR R ERE EEER2RALAEERASHLILEIIIL4 LTI 4TI EEIEIIITIIERIITIITIIIIEITH]

INLET SECTION V =

0020C+01 0.10433640+01 0.4030822E+01 0.1020402E+04 0.1024400E+01

794ZE401 0. 4044B35E+04 0 .{00S86SE+01 0. {000000E+04 0.9942364E+00

STA2E400  0.9820046E+00 0. 9775252E+00 0. 9724394E+00 0 9668416E+09
2955400 095650085400

0.105
0104
0.%08
8. 9644

§ 8T, ETA = 0.10000000E+01 0. 10040936E+04 0 998907S7E+00

ETA-MODIFIED V-VELOCITIES WITH UNIT DISCHARGES

J= 1 V=" 0.40488832E+04 VA = 0.31250000C-04 Vg = 0.32777600E-04
T= 2V = 0.10422237E+04 VA = 0.625000000-01 V9 = 0.65438984E-04
T= 3 V= (0 {03568%4E404 VA = 0.62500000C-04 VG = 0.64730585E-01
T= 4V = 0 10292764E+04 VA = 0.62500000E-01 V@ = 0.54329773E-04
I'= 5V=" 0.10229809E+0% VA = 0.62500000E-04 V9 = 0.63936308E-01
T= 6V=" 0101679976404 VA = 0.62500000E-04 VG = 0.63549984E-04
T= 7V="0.40107294E+0% VA = 0.62500000E-01 V@ = 0.63170567E-04
T= 8V = 0100476626401 VA = 0.62500000E-01 VR = 0.62797889E-04
= 90="0.99890757E+00 VA = 0.62500000E-01 V@ = 0 62431723E-04
T=10V = 0 9974S042E+00 VA = 0.62500000E-01 ¥Q = 0.52071882E-01
T=141 V= 0.98749443E+00 VA = 0.625000006-01 VQ = 0.6474B196E-01
J =42V = 0.98192763E+00 VA = 0.62500000C-04 V@ = 0.61370477E-04
T =13V = 0.97645724E400 VA = 0.562500000E-04 V@ = 0.64028577E-04
I'=14 V= 0.97007732E+00 VA = 0.62500000C-01 VQ = 0.60692333E-01
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T -
L=

60361579E-01

J =450V = [.95578526E400 VA = 0.62500000£-04 V@ = 0.

T=146V = 0.95057892E+00 VA = 0.62500000C-04 V@ = 0.60036182E-04
]= 17 Y= 0.95545578E+00 VA = 0.31250000E-01 V@ = 0.29857992E-04
NEW VALUC OF QT WITH HODIFIED Y= 0.10000000E+01

Q5 = 0.642472E+00 ENG TONS/DAY  QS/QSACT = 0 100440E+01

{ VALLCS FOR UBAR =

0.0000000C+00 0.3643874E-04 0.6644453E-01 0.9414969E-01 0.1105051E+00
0.4240357E+00 0.1343290E+00 0.139226BE+00 0.439720SE+00 ©.1360422E+00
0.4263435E+00 0.1168247E+00 0.1016744E+00 9 8202444E-01 0.6104374E-01
0.3588057C-01 0.7674790E-02

END OF INLET SECTION

F3TEEEE0333 0133 EITEARITAL LI ELITISIASTATIL LS4 TIA SIS ELLARARSILEAIZSSLISSZ AL

FOR SECTION I = 3 5T = 0.527754E-02 UCL =
SATISFACTCRY ITERATION ERRVE =
NUMBER OF ITCRATIONS KOUNT = 2
RELATIVE DIFFERENCE OF QT T0 @ IS

CENTZRLINE POSITION S 0.524084€+00 WITH RC =
NEWEST 8 = 0. ?9998546E+00 WITH ETA =

SCDIMENT DICCHARGE =  0.0427:E+00 Q5/QSACT =

0.4644045E-03

0.434543E-04
0.226433E-03 ERRUZ =

0.447332E-02

0.537500E+04

0.4000461E+04

0.10042E401

FOR SECTION I =
SATISFACTORY ITERATION
NUMBER OF ITERATIONS XOUNT = 2
RCLATIVE DIFFERENCE OF QT TO G IS

CENTERLINC POSITION S =
NEWEST @ =
SEDIMENT DISCHARGE =

NUMBER OF ITCRATIONS FOR UE, 9, UV ARE 2 2 3

NEW VALUES TOR UBAR GIVEN BY

0.0000E+00 0.2017E-01 0 Z647E-01 0.48HJE-01 0.5784E-01
0.6716E-01 0.6774C-01 0. 6576E-01 0.6447E-01 0.5500E-01
0.3606E-04 0.2386E-04 C.1004E-04 -0.5390E-02 -0.2222E-04

§.6392E-014
§.4548E-01

ETA-MODIFICD MOMENTUM VALUES FOR V GIVON BY

0.4028E404 0. 4044E+01 0.4928E+01 0.4034E+01 0.4025E+0%
0.1013C+04 0.4007E+01 0 1004E+0f 0.9946E+00 0.9BEBE40Y
0.9773E+00 8. 9746E+00 0.9661E+00 0.9606E+00 0 9SS2E+00

§.4049E404
0.9830E+00

S 5T = 0.9846028E-02 UCL =

ERRVE =

0.254373E-04
0.194607C-07 ERRUZ =  0.489446E-02

0.4328025E-02

0.248462E+00 WITH RC =
0.99798736E+00 WITH ETA =

§.537500E+04
0.1000434E+04
0.64227E+00 QS/RSACT = 0.10044E+04

NUMBER OF ITERATIONS FOR UR, R, UV ARE 2 2 3
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NE¥ VALUES FOR UBAR GIVEM BY

0.0000C+00 0.4082E-01 0.3224E-04 0.4443E-01 0.S249E-04 0.5772E-04

0.6035E-04 0.6057E-04 0.5857E-04 0.5453E-01 0.4862E-01 0. 4097E-04

0.3474E-04 0.2106E-04 -0.9033E-02 -0.4243C-02 -0.4BSBE-0
ETA-MODIFIED MOMCNTUM VALUES FOR V GIVEN BY

0.10082+01 0.1044E+04 0. 40792404 0.4027E+01 0.1027E401 0. 4020E+04

0.1014E+01 0 00BE+01 0.1002E+01 0.9960E+00 0.9900E+00 0. 9844E+00
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APPENDIX C: NOTATION

NOTATION
Constant used in sediment-transport formula
Constant in quadratic equation
Constant used in sediment-transport formula
Constant in quadratic equation
Constant in quadritic equation
Local flow depth
Centerline flow depth
Median bed-material size
Darcy-Weisbach friction factor
Arbitrary variable
Dimensionless functions
Froude number
Gravitational constant
Dimensionless functions
Local bed elevation
Centerline bed elevation
Local water-surface elevation
Streamwise grid locations
Streamwise index for section numbers
Transverse grid locations
Transverse index for section numbers
Number of transverse grid points

Exponential parameter used in power-law velocity distribution

Cl



qt
Q¢

Number of streamwise grid points

Bed-material porosity

Total-load discharge per unit width

Total-load discharge

Total water discharge

Transverse coordinate

Radius of curvature at inside bank

Radius of curvature at outside bank

Radial grid locations

Centerline radius of curvature

Streamwise coordinate

Origin of streamwise coordinate

Streamwise grid locations along channel centerline
Streamwise water-surface slope along channel centerline
Transverse bed slope

Integral function

Integral functions

Local secondary-flow velocity

Local shear velocity

Local secondary-flow velocity at water surface
Secondary-flow velocity at channel centerline
Mass-shift velocity

Local streamwise velocity

Depth-averaged streamwise velocity

Depth-averaged velocity at channel centerline

c2



Area-averaged streamwise velocity

Channel width

Vertical coordinate

Bed-layer thickness

Proportionality constant for bed-layer thickness
Proportionality constant for bed-shear stresses
Critical shear-stress parameter

Fluid mass density

Sediment mass density

Streanwise bed-shear stress = Tos

Transverse bed-shear stress

Streamwise angular coordinate

C3
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