A Complete Solution for Peer-to-Peer Widgets

Alain M. van den Berg

]
TUDelft

Delft University of Technology

A Complete Solution for Peer-to-Peer Widgets

Master’s Thesis in Computer Science

Parallel and Distributed Systems group
Faculty of Electrical Engineering, Mathematics, and Computer Science
Delft University of Technology

Alain M. van den Berg

11th September 2009

Author
Alain M. van den Berg

Title
A Complete Solution for Peer-to-Peer Widgets

MSc presentation
31st August 2009

Graduation Committee
prof. dr. ir. H. J. Sips (chair) Delft University of Technology

dr. ir. J. A. Pouwelse Delft University of Technology
dr. K. V. Hindriks Delft University of Technology

Abstract

Nowadays, the World Wide Web is becoming more and more an interactive and
social platform than just a means to find information. This is called the Web 2.0.
Quite new in the World Wide Web are widgets; small applications that use a little
area of a website and displays something specific, often making use of 2.W/eb
application to get its information. The widgets can be combined to create aypérso
page.

Compared to the client-server architecture traditionally used in the Intereet, th
Peer-to-Peer technology can be used to design and create much maf#esca
and robust systems. Unfortunately, while they are so promising, P2Rrsy/ate
mostly used for file transfers.

We present a complete P2P Widget System, that introduces social andtimgera
elements to the P2P paradigm. Using P2P technology, the widget repositane(w
the widgets are downloaded from) are more scalable and robust thamthaised
repositories currently used for widgets. Not only do we present a coengdsign
for this system, we also present a working implementation of this system, which
can be deployed in real-life. Furthermore, we show that the system vasrks
should, by presenting the results of several experiments. From aultsiese
can conclude that our P2P Widget System is scalable, robust, fastadaiolth
efficient.

Preface

This is the report of my MSc thesis project in Computer Science on combining
widgets with P2P technology, using the Tribler P2P client. This researcheams
carried out in the Section Parallel and Distributed Systems of the FacultyafiEle
cal Engineering, Mathematics, and Computer Science of Delft Universitgah-
nology in the context of the I-Share research project.

I would like to thank my supervisor, Johan Pouwelse, for his guidandaglory
thesis project. The brainstorm sessions were always fun and inspirungher,

| would like to thank the Tribler team. Many of you had good comments and
suggestions and were always in for a discussion.

Alain M. van den Berg

Delft, The Netherlands
11th September 2009

Vi

Contents

Preface v
1 Introduction 1
1.1 Widgets 3
1.1.1 Definition 3
1.1.2 Properties of Current Widget Systems 5
1.1.3 Related Technologies 6
1.2 P2PTechnology 7
1.2.1 Overviewof P2P Systems 8
1.2.2 Propertiesof P2P Systems 8
123 BitTorrent. 9
124 Tribler. 10
1.3 Contributions 11
1.4 RelatedWork 11
141 WidgetSystems. 11
1.4.2 Distributed Repositories 12
15 ThesisOutline., 13
2 Problem Description 15
2.1 Propertiesof P2ZPWidgets 15
2.2 Requirements e 16
2.3 Focusand Scope of ThisThesis 17
3 Design 19
3.1 General Design Directions and Motivations 19
3.1.1 Runtime Environment 19
3.1.2 DiscoveryandDownload 20
3.1.3 Widget Communication and Storage 21
3.1.4 WidgetMarket, 22
3.2 TechnicalDesign 23
3.2.1 Runtime Environment 23
3.2.2 DiscoveryandDownload 26
3.2.3 Widget Communication and Storage 28

Vii

3.24 WidgetMarket L 29

3.3 Review of the Widget Discovery Method 30
3.3.1 A Widget Discovery Extension 32

Implementation 35

4.1 Widget System Implementation. 35
4.1.1 Widget Statistics Gathering 35

42 ExampleWidgets e 37
4.2.1 Implementation of the Example Widgets 37
4.2.2 Statistical Information onthe Widgets 40

4.3 Widget DevelopingCenter 41

Experiments and Results 43

5.1 ExperimentsandSetup, 43

5.2 Results. 44
5.2.1 Widget Dissemination 44
5.2.2 NormalBandwidthUsage 45
5.2.3 Finding Intra-Widget Communication Partners 46
5.2.4 Intra-Widget Communication 47
5.2.5 DiscussionoftheResults. 48

Conclusions and Future Work 51

6.1 SummaryandConclusions 51

6.2 FutureWork 52

viii

Chapter 1

Introduction

Nowadays, the World Wide Web (WWW) is becoming increasingly more interac-
tive, social and collaborative than before. Instead of the traditional ofigyro-
viding users with information, the WWW is becoming a platform of web services
where users can create, share and distribute content. This trend iseaitiied

as Web 2.0, emphasising the metamorphosis from Web 1.0, the traditional web.
Examples of Web 2.0 applications are weblogs (blogs), photo sharing sites s

as Flickr, video sharing sites such as Youtube, and social network sitbsas
Facebook or MySpace.

Mostly because the rise of Web 2.0 applications, widgets (synonyms: fgadge
badge, module, etc.) were able to be invented and popularised. Widgets on th
web are small portable chunks of code that can be added to any webbiég. T
use a small area on the website to provide a single service to the user or. visitor
Most widgets use a Web 2.0 service to retrieve their information. Example tgidge
are widgets that show a random word of the day (serviced from a dic§icite),
the latest news (serviced from a news site), your picture of the day @photo
sharing site). More interactive widgets are also available such as gaaredating
text widgets, to-do list widgets and more. A very popular widget is the Yautub
Gadget, which shows a user selected Youtube video. Widgets enableethi® us
create their own personalised pages where they can collect all seth@esre
interested in. Widgets can also be added to their blogs or social netwdile pro
The iGoogle start page is such a personalised page where users niifferet
iGoogle Gadgets which they can select from a repository. An example 1600g
startpage with widgets is shown in Figure 1.1. Another example is the Facebook
Apps. Facebook is a social network, where everybody can createfitle padd
friends and stay in touch. Facebook Apps can be selected and addedusetis
profile, such that the user (and visitors) can view the widget and possblit.

Widgets for other platforms are also quite popular, such as desktop wioigets
mobile widgets. Mobile and desktop widgets are small portable pieces of code
that can be added to a widget engine. The widget engine is a programiwhe
the widgets run; it maintains their state, provides an API for the functionaliy an

provides the widgets the necessary screen space. Examples of degldefs are
Windows Vista Gadgets and Google Desktop Gadgets. Because evest witdg
gine specifies a different runtime environment and API, the widgets feogine
are typically not compatible with other engines. By providing AJAX functionality
(i.e., asynchronously send an HTTP request to a Web 2.0 servick)odegdgets
are also able to use Web 2.0 services.

Most Web 2.0 services are built using the client-server architecturerevihe
services are hosted by a single server or a cluster of servers. diemtly, when
the number of clients rises, the servers may not be able to serve all tegBites
such as Youtube, with a very big company behind it (Google Inc.) solve this b
simply adding more servers and tweaking the software, hardware andrketw
[16]. Other companies might not have this extensive amount of requésedirces.
Eventually, even Youtube will have to resort to other, more scalable nesasTine
scalability drawback becomes even more dramatic because of widgets. t8Vidge
from a certain host are distributed over multiple (possibly thousands) sitieallan
these widgets generate requests for this host.

The peer-to-peer (P2P) paradigm tries to improve on the formerly stated-clie
server architecture, especially by providing incremental scalability. B, B2-
erybody is equal (they are peers) and contributes to the system. Thisviespro
scalability, because added peers do not only use services, but alsdepservices
to other peers. According to several Internet studies [17, 18], BBErgtes a vast
amount of traffic, a big percentage of the total Internet traffic. Thisatsmbe seen
in Figure 1.2. From these statistics, we can conclude that P2P is alregdyoger
ular and probably will stay so for a long time. P2P is used mostly for file sharing

Web |mages Videos Maps MNews Shopping Gmail more v Classic Home | Sign in

N

fGOUSle \ pimocsdseuch

Lanquage Tools

Google Search || I'm Feeling Lucky

New! Add social gadgets to post updates and play games with friends. Change theme from Classic | Add stuff »
= Home
Sudoku Puzzles YouTube L Places to See
YouTube
Date & Time SUDOKU [|| search |
Weather Current Board -
Places 1o See 2 Last played: 8.16.09 Today's Spotlight Videos |~

Sudoku Puzzles Level: Simple
5 (1 | 30% completed

= Chat |6 8 | .PLAY.NOW!
LAEF=IES.coM i -
Date & Time S FE
11 1 b Click Image For More Info << || ==
10 2 Sun i
AUG Search Travel ,—
9 3 (.
16
= 4 Woodstock 1969 - Lookin
F B 3:02 Kkl P | Weather

Get weather forecasts for
More Videos » your hometown and favorite
Share this gadget with your friends. places around the globe.

Figure 1.1: Personalised iGoogle startpage with multiple widgets.

but other possible applications are instant messaging, telephony, mediaisge
and grid computing.

The aim of this thesis is to combine the concept of widgets with the P2P con-
cept. In this way, the widgets are distributed via the P2P network and us@khe P
network for communication. When the architecture is powerful enougimtarac-
tive, social and collaborative P2P experience is possible. Ultimately, itsisiiple
to create a self-managing and evolving environment, where users maibaantr
by writing new or extending older widgets.

In the rest of the chapter, we will introduce the concepts for this thesis more
broadly. Section 1.1 gives an introduction to widgets, Section 1.2 explamesale
P2P technology and specifically the BitTorrent protocol and the Triblé¥ B1®-
gram. Further, Section 1.3 lists our contributions and Section 1.4 discdater
work. Finally, Section 1.5 provides the outline of this thesis.

1.1 Widgets

Although widgets are found all over the Internet, many do not know exadibt
they are and why they are called widgets. Therefore, we will start witmidefi
the widget as exact as possible in Section 1.1.1. Then we will state the feesper
of current widget systems in Section 1.1.2. Finally, we will explore technadogie
related to widgets in Section 1.1.3.

1.1.1 Definition

The word widget has two different definitions shown below:

24,000

| mm Internet Video to TV
M Internet Video to PC
= VoiP
B Video Communications
M Gaming
W P2P
[I Web/Data

12.000

i I

2005 2006 2007 2008 2009 2010 2011 2012

PB/Month

Figure 1.2: Global Consumer Internet Traffic Forecast. Source oC2I08 [18]

1. an element of a graphical user interface (GUI) such as a button@pk s
bar.

2. a portable chunk of code that runs in a specialised environment (edge
gine)

Although the first definition is not the definition we are looking for, the sdcon
kind of widget (the one this thesis is about) is probably emerged from the GUI
widget in the first definition. The second widget definition is very broatirarans
that a widget can almost be anything, but it mostly implies that the widget has a
small area on the GUI of the widget engine and that they are rather lighipased
to large software packages.

Widgets are also categorised, reflecting the platform they run on. Thenphatf
affects the way the widgets are created and what can be done with them.

Wikipedia distinguishes three types of widgets [9]:

1. Desktop Widgets are interactive virtual tools that provide single-purpose ser-
vices such as showing the user the latest news, the current weathéndhe
a calendar, a dictionary, etc.

2. Mobile Widgets are like desktop widgets, but for a mobile phone.

3. Web Widgets are portable chunks of code that can be installed and executed
within any separate HTML-based web page by an end user without iregjuir
additional compilation.

While these definitions might seem all right, they are not totally satisfying. For
example, the definition of Desktop Widgets also applies to both the other defini-
tions. This is because it lacks the sentence where it says the desktopsnigige
on a desktop program, the widget engine, which first has to be installed.

Further, we argue that there is already another type of widget, whiclalvine
Social Widget:

4. Social Widgets are portable chunks of code that run within social networking
sites, having access to social information such as friends and activities.

And lastly, this thesis introduces a new class of widgets, called P2P Widgets:

5. P2P Widgets are portable chunks of code that run within P2P networks, hav-
ing access to functions the P2P network provides.

This definition again is rather broad, because P2P networks might héeedtf
functions. At the time of writing, they are mostly used for file sharing. Howeve
Tribler [21] is a P2P program which tries to implement social features, asitdste
buddies and friends. Within Tribler, P2P Widgets may also become social.

4

1.1.2 Properties of Current Widget Systems

Here we examine the properties of current widget systems. As explairibé in
previous subsection, there are multiple types of widget systems, depemdthg
platform they run on. The most common are Web Widgets, Desktop Widgets and
Mobile Widgets. Although they run on different platforms, their propertgzsain

the same to a large extend. We will focus primarily on the network properties of
widget systems, both of the runtime and their distribution method (i.e., how the
widgets are distributed).

Centralised distribution. Currently, most widgets are distributed by central
repositories, usually operating as a website where visitors can find, conament
rate widgets. Only Web Widgets are the exception, because they are primarily
distributed by copying a small piece of code and pasting it on your own site.

Use of Web 2.0 servicesThis is not a prerequisite for a widget, but most wid-
gets use Web 2.0 services to provide the user with information. A Facebpok A
can actually be seen as a Web 2.0 service, because it is an interacticatapp
which has to be hosted on your own website (which can use the Faceli®ipk A
Most Web 2.0 services are also centralised.

Interactive. Again, this is not a prerequisite for a widget, since most widgets
can just display some information. However, the power of most widgets itat
are interactive. Think of looking up a word, a game (sudoku for examgtejal
interaction. In social networks, even the little widgets which just allow you k&po
a friend or say 'hi’ are a huge success, just because it allows you tadénteith
others.

Widgets are rather small. Web Widgets are, most of the time, just small chunks
of code to be copied. Other widgets, such as Desktop Widgets are jpackag
small archive to be able to contain other resources such as images. [én1Thb
the average size of various widget types are presented to suppatatement.

Widget platform estimated estimated estimated
number of average size | total size (MB)
widgets per widget (KB

Eclipse Plugins 1,200 900 1,054

Facebook Apps 40,000 - -

Firefox extensions 3,100 500 1,500

Google Desktop Gadgets 1,250 80 100

Windows Vista Gadgets 5,800 140 780

Yahoo Widgets 5,000 600 2,930

Table 1.1: Estimated repository size of various widget platforms.

The following properties are derived from the properties above:

5

Finding a widget is easy and deterministic Because all widgets are stored
in a central repository, the repository knows all widgets and a searclaiwilys
find the widget when it is available (i.e., the search is deterministic). All widget
repositories support the browsing of the repository by providing a listhvban
be sorted on name, rating, popularity, et cetera.

Not cost-effective scalableBecause of the first two properties (centralised dis-
tribution and use of Web 2.0 services), widgets are not cost-effectalalde. The
problem of distribution is however alleviated because of the small widget aize
repository of 100,000 widgets is a lot more scalable than a website with 100,000
small video’s. Estimated repository sizes of various widget or extensisiersyg
are shown in Table 1.1.

The second property however, use of Web 2.0 services, might be erlggap-
lem. Because of the nature of widgets, they are rapidly distributed among thou
sands of people. This is best illustrated by an example: the YouTube vatko g
get. This is a Web Widget, and everyone can just copy a small chunk ofLHTM
code to their website to show a video on their site. Now imagine thousands of
users putting YouTube Video Gadgets on their site. All these video’s avede
by YouTube itself, generating bandwidth which can be compared to a Disdbu
Denial of Service attack. This is of course a bit exaggerated, beozastavidgets
do not use video’s (yet), but they do send requests to Web 2.0 serfAaesxam-
ple, RSS feed widgets poll every now and then to see if there are new itadhs (a
imagine thousands of users polling the same server because they haaenthe s
widget installed).

Not very robust. Again because of the centralised distribution and use of Web
2.0 services, widgets are not very robust. Whenever the distribution dibsvis, it
is not possible to get any widget. When a Web 2.0 service is down, the widlfjet
not work either.

Central authority . Distribution is done centralised, which means that when you
have created a widget, the authority may either reject or accept the widget. T
rules for rejection are defined by the authority itself. Although a trustecbatith
might only use this power to reject malicious widgets, it might also reject widgets
with a certain (political) statement or because it is coerced by governmeuttsesr
higher authorities (e.g., they may want to reject a widget that is a free dlterna
to a business solution). Another problem with a central authority is the power
they have because of privacy sensitive data. Social widgets for deamight use
privacy sensitive information which is stored on the server.

1.1.3 Related Technologies

Widgets belong to a group of technologies that extend a particular systdaw,Be
we discuss other related technologies and their similarities and differences.

Plugins are not the same as widgets, but are close related. Widgets typically
use a small area of the applications screen and displays specific inforroation

6

provides specific features. Plugins, on the other hand, are not kousmdmall

area of the screen, but may hook into the system more freely. Plugins atly mo
more focused on extending the features of the system, while widgets are more
focused on serving the user with information and services. Another elifteris

that widgets are stand-alone, in that they can not be extended by othgstsvid
Some plugins, such as Eclipse Plugins, do support these featuresghirera

very sophisticated Runtime Environment. The runtime should check for plugin
dependencies and provide an API to be able to extend the plugins. N&esgh

the boundary between the two is vague, especially from a technological view

Linux packages extend the Linux operating system. Almost all applications fo
Linux can be found as a package. The package management for lackages is
quite sophisticated, dealing with a lot of dependencies between applicatioiies,
also taking their versions into account. While widgets are very small applisation
and require no installation, Linux packages can get as large as possiblaay
take a while to be installed. Package management software is usually included in
the Linux distribution, which allows the user to find, install, upgrade and remov
packages. There are also package repository sites where the gackadoe found
and downloaded.

1.2 P2P Technology

The key differences of the P2P architecture with the client-server actinigeis
that every peer acts as a client and a server and that the peers ale Egery
peer that joins the network, does not only consume resources, butamigdutes
extra resources to the other peers in the network. This means that mosepee
be served when more peers join, which means that it is inherently scalabhkn W
resources are replicated on multiple peers, then it does not matter whdtver a
peers go offline, because the other peers also have these resdirisemakes a
P2P system more fault-tolerant than a client-server architecture. Hovieigea
challenge to design correctly working, fault-tolerant and robust P2sys. First,

it is a difficult task to let all peers cooperate seamlessly, especially in tleeofas
peers that are not altruistic or even malicious. The second is that the dgsign
distributed over all the peers.

We will start this section by presenting an overview of several P2P systems
Section 1.2.1 and define the most important properties of P2P systems in Sec-
tion 1.2.2. Then we will focus on the most popular P2P protocol today, Behibr
in Section 1.2.3. Finally, the P2P program Tribler is discussed in Section 1.2.4.
We discuss Tribler because we will use Tribler to implement a fully functioggl P
Widget System.

1.2.1 Overview of P2P Systems

Most people were introduced to P2P systems by the introduction of Najpkier.
file-sharing P2P system allowed users to share their music with others.vEigwe
Napster used a server to index the songs of each user. Queriesdo feanusic
were handled by the central server and Napster thus had a centriabpfaiture.

Other file sharing P2P systems emerged, which were fully decentraliseg. Th
can be classified as either structured or unstructured.

Structured networks control object placement in such way that the ruaies
find the appropriate objects easily. They use a mapping of objects and tuoithe
same address space, such that objects that are close to nodes in #%s agdce
typically reside on those nodes. The nodes maintain a distributed routing table to
efficiently forward the query to the right node. The structured netwarksnore
scalable than the unstructured ones, but they also have drawbadisexact-
match queries are supported and it is hard to maintain the structure in networks
with high churn (i.e., high rate of leaving and joining nodes). Structuredar&sy
are mostly called Distributed Hash Tables (DHT), as they are a mapping af obje
IDs (keys) to the object, just like hash tables. Examples include Chord 26yl
[23] and Pastry [25].

In unstructured networks, the placement of content is completely unrétetteel
topology. Unstructured networks differ in the way the index is distributesinés
networks do not keep any indexing information. These networks need#belo
objects by querying the network (e.g., by flooding or random walks).nias
are Freenet [13] and Gnutella [12]. While they are fully decentralisexy, tiave
some downsides. First, flooding is not scalable and second, both floadihg
random walks may fail to find objects because they are curtailed. Otheorhetw
spread the index using gossipping. Once in a while, every peer seekssip ¢
partner and gossips a bit of the index to the others. Depending on the d#isgils
may eventually result in a complete copy or a part of the global index ory ever
peer. Examples of gossipping P2P networks are PlanetP [15] and det4Q].

1.2.2 Properties of P2P Systems

In this section, we will explore the properties of current P2P systems.

Cost-effective scalability In contrast to the client-server architecture mostly
used in Web 2.0 applications, P2P systems are very scalable in a costreffec
way. Every peer consumes resources, but because of the contriltiwidotal
amount of resources also increases. The primary example is of coersalédo
sharing site YouTube, where Google is putting a lot of effort and moneyen th
maintainance of the site. This is logical, because video files are large; tpgyee
a lot of storage and quite some bandwidth to stream or download them. But also
sites such as Wikipedia, the online encyclopedia, require more and motgges
because of their popularity.

RobustnessIn an ideal P2P system, there is no central component. This makes
the system more robust, as it will be able to stay running when some components
fail. However, a big research question is how to create a P2P system wgtdtal
component in an effective way. Most P2P systems still use central caenjsfor
non-trivial tasks such as bootstrapping or indexing the resources.

Search is not always deterministic In fully distributed P2P systems, it is very
hard to find all items, because there is no central index. Random walksook fl
ing, which do not cover the whole network, are undeterministic. DistributeshH
Tables (DHTSs) are able to do a deterministic search, but there are still & lot o
problems in practice. Gossip based systems which use full replication avergo
scalable (such as PlanetP) and gossip based systems which do ndk regsifa-
tion are not deterministic.

Little (social) interactivity . Currently, the most widely used P2P application is
file sharing. People start the P2P client, download what they want and eittie
the program or stay idle. P2P programs are trying to create more interB@ie
by providing chat, streaming video, comments, but interactivity in P2P pmugjis
still in its infancy. The P2P program Tribler tries to create a social ovenich
might be the first step to P2P interactivity, but also this is still being reseduate
developed.

No central authority. In centralised applications, there is always one entity in
charge. Most of the time, they safeguard the quality of the servicesxéonge
by using moderation. However, the authority may misuse privacy senséiee d
of users and may also silence opinions it does not like. In P2P systems, dt is th
choice of the designers whether there is one authority or none at all. Yasn
is none, other possibilities for moderation should be used, such as ratirger
tation systems. In this way, P2P systems give control to the people, instead of
authority.

1.2.3 BitTorrent

The most common Internet P2P protocol today is BitTorrent, created by Bra
Cohen [14]. The Ipoque Internet study [17] shows that BitTorrentyigan the
most popular P2P protocol and is generating more than 30 percent oftéthe to
Internet traffic.

The protocol works as follows. Someone who wants to publish a file craates
static file called a torrent file. The torrent file contains information about thg fi
such as the name, its length and hashing information, and a tracker URIs Use
that want to download the file, must contact the tracker, found in the tdiiten
to find other peers that are leeching or seeding the file. The leecheseaddrs
together form a swarm for that file, which is tracked by the tracker. &seare
peers that have the file completed on disk and only upload to other peels, wh
leechers are peers that are still downloading the file. The peer joins #rensag a
leecher when it connects to the various peers in the list it received fretnabker.
The file that is being distributed has been split into various pieces of fixecsid

9

the peers exchange information on which pieces they have. They silees o

download using the rarest first policy. This policy tries to replicate thest@ieces

first, to increase availability. Peers to exchange pieces with are seleatgditis

for-tat. Tit-for-tat is a policy that uploads pieces to peers from whom axeh
received a lot of pieces. This makes sure free-riders have troublelolading the

file, because they contribute little to the swarm.

Of course, trackers are a central component in this protocol, which limits the
scalability and robustness. There have been numerous attempts to diseethtis
component. First, the torrent file has been changed to support multiplersacke
Second, a Distributed Hash Table, which provides a lookup service simikar to
hash table is used. File hashes are then mapped to a set of peers. Ebird, P
Exchange (PEX) [1, 20] assumes that every peer knows part ofres and thus
instead of contacting the tracker, they exchange sets of other peerssinaha.

Although the DHT and PEX solutions are scalable, they lack protection dgains
peers that try to misuse the protocol. Therefore, the epidemic protocol Little B
[24] that disseminates swarm information was developed, which usesyBadtl
(discussed below) instead of a tracker to bootstrap. Other researido israyo-
ing at the Technical University of Delft to create a better solution for thekéa
problem, as Little Bird is too resource intensive.

Another problem is the distribution of torrent files. Currently, there areva f
popular websites that have a lot of torrent files. This can also be seeneadral
component. Tribler, discussed below, is able to retrieve torrent files witheu
need for a website, using BuddyCast.

1.2.4 Tribler

After researching P2P networks and in particular BitTorrent for yets re-
searchers of the Parallel and Distributed Systems group of the Faculkyatfiéal
Engineering, Mathematics and Computer Science designed a new clientlcélled
bler [21]. While Tribler uses the BitTorrent protocol for file transfegdids social
features and context. They believe that social groups can be uselde¢acaarent
P2P research challenges, such as full decentralisation, availabilityriiptagd
providing incentives to cooperate. Normally, P2P systems see their ssamsmay-
mous, unrelated entities, but Tribler facilitates the formation and maintenance of
social groups and exploits their social phenomena for improved coritemvery,
recommendation and sharing.

By supporting permanent identifiers called PermIDs, which do not chahga
the IP address changes or the session is restarted, Tribler enabies$oubaild
relationships. The peers are authenticated using a public key challspmse,
where the PermlIDs are the public keys.

The core of Tribler is the BuddyCast epidemic protocol stack [22]. BGdct
creates a taste preference profile by looking at your current andbwldidads and
exchanges the SHA1 hashes of these downloads, a list of peers thasihdlar

10

taste (taste buddies) and a list of random peers with other Tribler pesirg this
information, a semantic overlay is created where peers are partly codne taste
buddies and partly to random peers. Other services are built on topdofyBast.

For example, TorrentCollecting collects the full metadata of various SHAldsas
Using BuddyCast, Tribler is able to discover new content and new pagrsuv

the use of websites to find torrent files. Research is still ongoing to implement
a fully functional, scalable, secure and fast distributed tracker algoriinch
would make Tribler a fully decentralised P2P client.

1.3 Contributions

In this thesis, we make the following contributions:

1. We designed and implemented a fully operational, security enabled P2P
Widget Runtime Environment.

2. We created a zero-server implementation for discovering and dovingpad
P2P Widgets within a P2P network.

3. We designed and implemented an operational zero-server markeh $gste
finding, rating and reviewing P2P Widgets.

4. We extended the widget paradigm with local storage and zero-gatkeer
widget communication, which collaboratively support global storage.

Together, these contributions are a giant leap towards an interactoial and
collaborative P2P experience.

1.4 Related Work

In this section we will discuss related technologies, while focusing on therdiff
ences from our work. Because our P2P Widget System is complete, imglad
widget runtime environment, a decentralized widget repository and a wialget
ket, we will address all these fields.

1.4.1 Widget Systems

First, there are a lot of widget systems, such as Google Gadgets [8hd@@CcApps
[2], Yahoo! Widgets [10], Microsoft Gadgets [4]. They are relatedhis work,
because they all provide a widget runtime environment, with their specificrésa
and a widget repository. Although these systems were an inspiration to ok wo
there are two major differences with our work. They all provide a widggbsitory
that is centralized and is managed by a central authority, and their widgeislgr
using centralized services such as Web 2.0 services. This is discusseatan
detail in Section 1.1.

11

Google Gadgets may use GoogleTalk to communicate with another gadget in-
stance on another pc, provided they are the same gadget. The GooghTalk
provides features to find the user's Google Talk friends, and to egehdata with
these friends. This concept is different from the Intra-Widget Comnatioic our
system provides, in that we do not distinguish friends and use a gosgipfn
tocol to synchronize data between peers. Further, communication gsairnaur
system are found using decentralised mechanisms, while Google Gadgethels
centralized Google services. It is not known whether the communicatiomis do
via Google or directly to the users widget.

Azureus Plugins are maybe the closest related to our work. While the-differ
ences between plugins and widgets are discussed in Section 1.1.3, thegrare
closely related to our work because the plugins run in a P2P environmante dsz
is a P2P file sharing application, also based on the BitTorrent technolagyeés
Plugins are able to extend the Azureus Extended Messaging Protocol with th
own messages. One plugin that uses this features is the Chat Plugin. Hecan
used to chat to other users in a BitTorrent swarm, because it creatas@etiper
BitTorrent swarm. However, this is not used frequently, because @@ the
swarm have no social connection, except that they all want to dowi@aslme
file. Further, the Chat Plugin is the only plugin that uses the communication fea-
tures Azureus supports. Maybe this is because the plugin developtr tiesign
its own protocol, which is far more difficult than our Intra-Widget Communica-
tion API. The last difference with our work is again the centralised distributio
of the plugins. Azureus Plugins are downloadable via a website, while @ us
decentralised Widget Market with ratings and comments.

1.4.2 Distributed Repositories

There has been done a lot of research to create scalable and ridtbudd
repositories using P2P technology. We already discussed these syst8@s-in
tion 1.2.1. The two systems that are mostly related to our decentralised widget
repository are PlanetP [15] and BuddyCast [22]. We will discuss thgstems
now. Because we already discussed BuddyCast and our work eesrBuddy-
Cast, we will only state the differences from BuddyCast and our wicdkgetsitory.
PlanetP [15] is a P2P content search and retrieval infrastructurditeygem-
munities wishing to share large sets of text documents. It uses gossipingj¢atep
a global directory that includes a list of peers and their Bloom filters [Bidom
filters are used to summarize the text files each peer has, in an efficienOuay
approach differs from PlanetP, because we use gossipping to dissetanant
files, which allow us to download the widgets. To download the files in PlanetP,
the list of peers is disseminated using gossipping. While our approach bnittie
scalable BitTorrent protocol for downloading. Apart from only disseatiing the
index (the torrent files), we also replicate the datafiles, by collecting the wgidge
This seems less scalable than PlanetP, but our datafiles and repositeoysanall
that neither bandwidth consumption nor disk space are a problem.

12

BuddyCast is primarily used to create a repository for torrents. Tofiteatare
disseminated, but only until a maximum of 5000 are collected. Thus, only a small
part of the global directory is disseminated. Files are found by lookingatgwn
part of the directory and sending queries to the neighbours. Thugstthe push-
pull model just as is described in NewsCast [19], on which BuddyCdsased.

The difference with our approach is that the whole directory (all widgeetas)
and all the datafiles are disseminated, while BuddyCast only disseminates par
the global directory. This is logical, because the torrent repository is naughr
than the widget directory. Also, our repository uses the push model (@es of
the directory are only pushed and no requests are sent to neighbours.

1.5 Thesis Outline

The remainder of this thesis is as follows. We start with describing the pratifiem
merging widgets with P2P technology in Chapter 2. Then we present thenddsig
our fully operational P2P Widget System in Chapter 3 and discuss the impi@men
tion of the system and example widgets in Chapter 4. We present the expisrimen
we conducted to evaluate our implementation, and their results in Chapter 5. Fi-
nally, in Chapter 6, we give our conclusions and propose furtheareise¢hat can

be conducted in extension of this thesis.

13

14

Chapter 2

Problem Description

In this chapter we describe in detail the problem of merging widgets with P2P
technology.

First, we will show our vision about P2P widgets and how they combine the
best of both worlds in Section 2.1. Then, we will focus the requirementseskth
P2P widget systems and in particular define the scope of this thesis, treslydn
Sections 2.2 and 2.3.

2.1 Properties of P2P Widgets

In Chapter 1, properties of current widget systems and P2P systerasbban
analysed. A summary of the properties is given in Table 2.1.

P2P systems are a good choice when scalability and robustness argipsape
system should have. Also, there will not be any central authority in chmasdhis
is inherent to a P2P system. However, current P2P systems do not hatvefa
interactivity among users. This is because current P2P systems areilyrimsad
for file transfers without any social interaction.

Creating a widget environment in a P2P system might increase social titerac
ity, but only when a social overlay is being provided (you have to be aki@do
your friends) and the widget runtime provides an API for communication gmon
widgets. Increasing social interactivity will have a good impact on ctuirP
problems such as the current high churn rates (high rate of peers wharjd
leave) and leechers (users who only download and then leave the sysiem)
rently, a lot of Internet users are putting time in social interactivity througi c
tralised social networks. When P2P also provides this functionality, theytmigh
stay longer to chat with a friend, play a game, et cetera. When they stay onlin
longer, they automatically provide more resources to other users.

However, the deterministic search or browsing through the repositonghwh
centralised widget repositories provide, is hard to accomplish in P2P Sysi¢ms
out losing scalability. Scalable deterministic search accomplished by using DHT
however their performance is currently still lacking in practise [24]. Biiog the

15

complete repository (which we will call deterministic browsing) can also bedon
by DHTSs or by replicating the index on every peer, which is done by PldaéiP

We argue that undeterministic search or browsing can be as successwn
more successful than their deterministic counterparts. For example, tmdete

istic file sharing P2P systems such as Gnutella and Tribler provide quite a good
search mechanism. Also, undeterministic browsing (where not every iterneca
seen) might work when at least a good percentage is browsable anérntenfage
contains the most popular items.

All in all, we conclude that there are quite a few good reasons why widgets
should also be available in a P2P system. Eventually, P2P might even become as
interactive as Web 2.0 or merge with the web. P2P widgets are the first stmlitow
a scalable and robust widget system and towards social interactive P2P

Current Widgets Current P2P systemsP2P Widgets
Scalability X X
Robustness X X
No central authority X X
Social interactivity X X
Deterministic search/browsing X

Table 2.1: Summary of properties of current widgets, current P2Pregsted P2P
systems with widgets.

2.2 Requirements

As can be seen in Table 2.1, merging of widgets with P2P technology adds fun
tionality of both paradigms. We should note that it is easy to create a P2P Widget
System that does not have those properties, and it remains a challengegto me
the two paradigms such that all the properties defined in Table 2.1 remaiax+or
ample, the P2P Widget System might note be scalable when it is designed poorly
Also, social interaction can easily be left out when the P2P Widget Systesm d
not provide a way to find other widgets to communicate with, or when the Com-
munication APl is poorly designed. We take the first step to a P2P Widgetr®yste
conform the properties of Table 2.1 by defining the following requirememtsur
system:

1. Discovery and download of widgets must be done in a scalable, dalissr
manner.

2. The widget repository must be browsable, i.e., provide a sorted listdsf w
gets.

The list does not have to be complete all the time, but should eventually
contain most of the widgets (undeterministic browsing)

16

3. The widget repository must support rating and reviewing of widgets in a
scalable, decentralised manner.

4. The widget system must support local storage per widget.

5. The widget system must support scalable intra-widget communication.

The widget system must provide a useful Communication API for intra-
widget communication.

The widget system must find and maintain a set of intra-widget commu-
nication partners.

In this thesis project, we conduct experimental research, which meansmie
to create a system to be deployed and obtain actual usage data. To becdibéerto
actual usage data, a key issue is to convince many users to use it. To tzerable
this research a success, the following non-functional requirementeeaessary:

1. It should be easy to use.

2. It should be secure.

3. It should appeal to many users.
4

. It should be easy to obtain performance data without much user interactio

2.3 Focus and Scope of This Thesis

Because the subject of creating a P2P widget system is rather broadl) define
several aspects on which we will focus. First of all, since we want toldbe a
to deploy the P2P widget system, at least every aspect should retteintos.
The runtime environment is an essential part of the P2P widget systempbut n
the focus of this thesis. Therefore, we will focus on the essential Eatifrthe
runtime environment. There should be enough security measures to mak&the P
widget system secure enough to deploy, but this should also not bectie fo

On the other hand, creating a decentralised widget repository using Ehad®2
work is one of the key focuses of this thesis. There has been donefadsiearch
on file sharing, but creating a decentralised widget repository whictheaorted
on popularity, for example, is still rather new. Another focus point is toteraa
communication API for widgets, to be able to use the P2P network to communicate.
Without this feature, social interactivity is not really introduced into P2P aktsy
because every widget would be an island. When intra-widget communidation
introduced, the widgets are really becoming a P2P widget.

17

18

Chapter 3

Design

In the previous chapter, we have defined what we want to have in duMR@get
System. In this chapter we will present the design of our system and whiose
this design. By now, four subsystems can already be distinguished, ndmeely
Runtime Environment, Discovery and Download, the Widget Market, and &Vidg
Communication and Storage.

In Section 3.1 we will show what each different subsystem encompasses
argue the general design direction we will take for them. In Section 3.2, ilve w
then dive into the technical design.

3.1 General Design Directions and Motivations

In this section, we explain per subsystem what each subsystem entadlsegéeral
alternative design directions and motivate our chosen design direction.

3.1.1 Runtime Environment

A Widget Runtime Environment or Widget Engine is the part of the system that
takes care of executing and managing the widgets. For a successful Rimtime
vironment, it is necessary to determine the widget language and file format, the
features that are available to the widget (API), and any security meafurex-
ecution of malicious widgets We have already said that our focus is not on the
Runtime Environment and thus we will focus only on the essential features.
Because we will implement our system into the Tribler P2P Program, which
is written in Python, the Runtime Environment will have to be written in either
Python or a language that is easily integrated with Python, such as C. WWhen w
choose a language and file format for the widget, it is important that the Runtime
is able to parse the files and execute the language. There are sevepakiets
and compilers written in Python, for example Spidermonkey [6] is able to éxecu
Javascript. None of them, however, are far enough developed toeblenithout
any problems. Therefore, we chose to use the Python interpreter itsef¢ate

19

the widgets. This means the widget must at least contain one or more Python
files. Other files could be metadata files (which contain for example the aathor,
Widget ID, version number) and resource files such as images. We thaomt
support metadata and resource files and only support widgets thastooinsne
Python file. This is more than sufficient to create great widgets and it cily ba
extended later on.

The widgets, which are essentially Python modules, have access to alttion Py
libraries and all the code of Tribler. This means the Widget API is alreadyadmt
and the developer can implement a lot of features, when he knows akoutbit
can also misuse a lot of features. Thus, on the one hand there shouldugghele-
velopers resources to be able to create interesting widgets, but we sthsutdke
care of security issues. RestrictedPython [7] or the Pythons Restricvelé (8]
could be used to restrict the API of the widgets, to make them more secune. Ho
ever, RestrictedPython is inactive for a few years already and Pgti@stricted
Mode has several security vulnerabilities. We decided to implement securdty me
sures in other ways, namely code signing, whitelisting and a rating system.

Code signing means that the author of the widget and the widget integrity can
be verified. Thus, when a widget is malicious, we know for sure that ttreoais
really the author and that he or she really intended this.

Whitelisting can be done by certificates. Certain peers are designated te be in
tially trusted and they may create whitelist certificates to whitelist a widget author.
We can then distinguish between trusted widget authors and untrusted widge
thors.

A rating system will be implemented in the Widget Market, where users can rate
and review widgets. These reviews and ratings can be used by othetaisbeck
if they really want a widget. However, a rating system alone would notsufiihe
reasons are as follows. First, there may be false ratings and commentsdsec
users have to try the widget to rate or review it, which means they must fitaliins
the malicious widget before they notice it is malicious. But then it may be already
too late. However, the three security measures combined should take cansto
of the abuse.

3.1.2 Discovery and Download

The Widget Discovery and Download subsystem is a key element of theetVidg
System and collaborates closely with the Widget Market, which is used to find,
browse, rate and review the widgets. It is only needed for widgets in eeR&P
ronment, because the discovery and download of widgets in a centrajsesitory
is trivial. The Discovery and Download subsystem should take care afisicev-
ery and download of widgets using the P2P System in a scalable and @disedtr
manner. With the design of the subsystem, the browsing requirement of tgetwid
repository should be taken into account.

The discovery and download strategies are the biggest design choites to
made. We will first discuss the discovery strategies. There are threnaditer

20

scalable and decentralised strategies. First, it is possible to use a DHT xdliede
repository. For example, it is possible to use the first letter of the widgekag a
to a list of widgets. This way, it is possible to browse the repository alphaiiigtic
by querying the network for widgets per letter. This strategy is quickly disgp
because a DHT is still lacking performance in practise [24]. Second, dssiple
to disseminate the whole widget index, replicating it on every peer. Thisean b
done quite scalable by gossipping the right data, as PlanetP [15] shansndy
that the widget repository will probably not be that large, thus this coulal \mid
strategy which also allows us to browse the repository easily. Third, it isiles
to use the existing features of Tribler's BuddyCast, which disseminatdsasiies
and torrents. When we create a torrent for each widget and starhge&diddy-
Cast automatically disseminates the torrent files in the network. We only need to
distinguish widget torrents from others and on receipt of a widget torreify
the Widget Market. However, BuddyCast only maintains 5000 torrents ilotad
database. But with a few modifications in BuddyCast and TorrentCollectiag,
could make a bias towards widget torrents, such that they are dissemiasted f
Because we now use torrents, the BitTorrent download protocol casdukeasily
for downloading. We chose to use the third discovery strategy, bedassems
the most beneficial. It reuses code, which is a good thing in softwardéogenent,
and BuddyCast and BitTorrent already proved their usefulness.

We distinguish two extremes in download strategies, namely the Download-On-
Install and the Download-On-Discovery strategies. The DownloadrSiad| strat-
egy takes the least space on disk, but might take a lot of patience frorsghe/kien
he wants to install a widget. The Download-On-Discovery strategy takendise
disk space and the most bandwidth, because it will eventually have most of th
widgets on disk, but instalment will take almost no time. We chose for a strategy
that is most similar to the Download-On-Discovery. However, we will only dow
load one widget at the time, to be able to control the bandwidth usage. We selec
the most popular widgets to collect first, as this will decrease download time on
installation in most of the cases. It does not make sense to collect unintgrestin
dead widgets.

3.1.3 Widget Communication and Storage

The Widget Communication and Storage subsystem takes care of the laeal sto
age per widget, finding intra-widget communication peers in the P2P netwdrk an
handling the intra-widget communication messages. The local storage and co
munication are combined in one subsystem, because they are so closely. relate
One can create a Communication API that has an abundance of featitrdede

will not be used when there is not a simple and effective way to store this info
mation. Both the local storage and Communication API can be designed stich tha
there is a lot of freedom for the widget or they can be very strict. Fomgia,

we might design the local storage to support 5 key-value pairs per widgég,
support a full database where tables can be created and queriee @swd like.

21

The Communication APl might support functions for retrieving communication
partners, direct communication and broadcast. This way, there is little tonéo

the messages and bandwidth to be communicated. It could also supp@upguss

in a way that the system controls the bandwidth. This can be done by letting the
widget implement functions for handling received messages and foreh&am of

a gossip message. The system then chooses the communication partreebénd

to control the bandwidth by checking the message size and choosing thegmess
interval.

We have chosen to support the gossip system, to have more control@védth
get communication. Also, in a P2P system without social overlay, direct cammu
cation does not really make sense and makes implementing widget communication
too difficult. The Widget Communication and Storage subsystem takes caee of
lecting the gossip partners and controls the bandwidth. The messagerstiactu
left to the widget itself. Because widgets are essentially small programs weth on
theme, we think it is enough to support one database table per widget. Tae tab
structure can be defined in the widget such that its data is completely customised
With an easy API for inserting, deleting, selecting and updating the storhlge ta
a widget that communicates should be easily created.

Finding communication partners for a widget can be supported in two obvious
ways. First, BuddyCast data contains information on who is seeding whigmnto
Since widgets also have a torrent which it seeds when the widget is instailed,
information is automatically propagated by BuddyCast. Another way is byihgok
into the swarm: retrieving peers from the tracker, DHT or PEX messagks. T
peers that are seeding are likely to have installed the widget. Of coursayana
seems the most active and up to date, thus this will be the primary source fmtwid
communication partners.

3.1.4 Widget Market

The Widget Market is the part of the system that allows users to browsg]ljn
rate and review widgets. It collaborates closely with the Discovery andnivaa
subsystem. After the widget to be installed is downloaded, the Widget Runtime
Environment is called to install the widget. Therefore, the Widget Markei’s p
mary focus is on the user interface and the dissemination of ratings and/sevie
For the design of the user interface of the Widget Market, we refer thdpe®. 2.4.

The dissemination of ratings and reviews can be done in numerous wagsa A f
possibilities are: using a DHT to look up comments per torrent infohash, égxten
PEX messages to exchange ratings and reviews per swarm, extendinggiihe B
Cast message with ratings and reviews. We did not choose any of thesedseth
because of the following reasons. First, we have been showing theldfadpance
of DHTs already throughout this chapter. Second, extending PEX weaqldire
the user to join the swarm of the torrent it wants the ratings and commentsdof, an
then wait until we got most of the ratings and comments. We would like to know
the comments and ratings fast, thus this solution does not seem valuable, Third

22

extending BuddyCast with ratings and reviews would work for everyetdarmot
only widget torrents. This is a good thing, but would probably not exghahe
ratings and reviews fast enough because there would be so mangn@yrto find
the torrent files you want, it is still necessary to query your neighbourgfor-
mation too. Such a remote query would probably also be necessary fgsratid
reviews.

We, however, chose a different direction: the Widget Market shoeld fvid-
get itself, and use the Widget Communication and Storage features to diseemina
and store ratings and reviews. The reasons are as follows. First, thyed@dm-
munication will only exchange information with peers that have the same widget.
This implies that the bandwidth of other peers is not wasted and everyreeioa
information is useful for the receiver. Communication is thus a lot more taféec
than for example using BuddyCast, which would exchange ratings aieusefor
millions of torrents, most of which the receivers of those ratings and comments
will not look at. The second reason is that using this setup we can easilytebo
effectiveness of the Widget Communication and Storage subsystem.

3.2 Technical Design

In this section, we give the details of our design. We start by presentirgythe
tecture of the system and then discuss each subsystem in detail. In Figyuttee3
class diagram of the major components are visualised with their connectiors to th
associated Tribler components. BuddyCast, MetadataHandler, Tootetig

and the OverlayBridge are original components of Tribler, which ard bgeor
modified for our system.

3.2.1 Runtime Environment

The WidgetPanel, WidgetCore and WidgetDBHandler together form the Widge
Runtime Environment. The WidgetPanel is the panel where the widgets ave sho
on. The WidgetCore is used for monitoring widget downloads for installation,
reading the widget files and installation of the widgets. The WidgetDBHandler
is the database handler for both the Widget and the Widgetinstance talpag. A
from the usual insert, update and delete functions, it has more advamegibns
such as calculating a suitable free position on the WidgetPanel for a widiget u
other widget locations and sizes, and selecting a popular widget forldading.
When a torrent is received from the MetadataHandler, various tomfarma-
tion is stored in the database. Widget torrents are enriched with specifietwidg
data and this is stored in the Widget database table. The fields it includegcan b
viewed in Figure 3.2. This information is primarily used by the Widget Market.
Upon installation of a widget, the widget filename is retrieved from the database
and the file is read. The widget Python module is imported and a widget class
instance is made. A suitable position on the WidgetPanel is calculated and when

23

MetadataHandler| 1 1 BuddyCast TorrentCollecting

T

SimpleWidgetTorrentCollecting

|
|
|
|
[
[
[
[
|

1
WidgetPanel WidgetCollecting WidgetGossipMsgHandler OverlayBridge

1 1 i

WidgetCore 1

1
1

WidgetDBEHandler

Figure 3.1: Class Diagram of the Widget System in relation to Tribler

WidgeiWhitelist Widget Widgetinstance
PK |signer PK |torrent id PK |instance id
PK |subject
name = width
signature author haight
description SCrean_pos_x
version SCreen_pos_y
ondisk frontpage
FK1 | torrent_id

Figure 3.2: Database design of the Widget System.

the widget instance, including size and position information, is inserted into the
database, it receives its unique instance ID. The widget is then ethatgusinside

a widget wrapper, adding a title bar with close button to the widget and fariggc
reasons: it is harder to get to the WidgetPanel from the widget wrabpeause

the WidgetPanel is not the parent of the widget. A screenshot of a witlgetice
including its title bar is shown in Figure 3.3.

Now that the widget is installed, the WidgetCore initialises the local storage
and gossip features of the widget, by creating a database table andttoegles
database handler, and notifying the WidgetGossipMsgHandler of this widdg
now possible to use the whole Tribler API and Python libraries, without iaterv
tion of the Runtime Environment. Also, the WidgetCore starts seeding the widget
file, for finding gossip communication partners and to allow fast downloads f
new users of the widget.

24

Top 10 Contributors

Mo Peer Up

1 unknown peer 2487696
2 unknown peer 456272
3 unknown peer 405776
4 unknown peer 377600
5 Gandalfg1lo 223542
6 roman-PC 194969
7 SFT4 154288
8

unknown peer 157632

Figure 3.3: Interface of a widget, including title bar.

Upon removal of the widget instance, its instance is removed from the Widget-
Panel and WidgetGossipMsgHandler, and removed from the Widgettestalble.
The seeding of the widget file is stopped and the user is removed fronwthaahs
but the Widget file itself is kept on disk. This enables fast re-installation witho
the need for downloading the widget again. Upon re-installation, the ltmalge
is lost because that table is dropped when the widget instance is removed.

After realising it would be useful to have widgets that do not necessaailg h
to be shown on the WidgetPanel (we will call them frontpage widgets), weemad
it possible to create widgets that have a menuitem in the Extras-menubar in Tri-
bler. For example, the Widget Market widget is not a frontpage widgeth&si an
"Add/Remove widget” menuitem, which displays the Widget Market is a separate
dialog. However, it is also possible to use both features (a frontpagetwidth a
menuitem), or none, which could be a silent addition to functionality of Tribler.

Widget Format

Widgets consist of one Python file, thus one module. However, the widgtterP
file should conform to a specific format. First, it is necessary put the follpw
metadata in the widget module: name, author, version, description. Sebend,
frontpage and menuitem options can be set. They default to a frontpagetwid
without menuitem. For frontpage widgets, the width and height must also be set.
Further, there must be w&idget class in the file, that extends thebler_widget
class, which is basically a panel with several function stubs, such a$o8xC
OnPostlnit, OnCreateGossipMessage, OnHandleGossipMessagensiahu. In
the init function, the user interface must be created. In this widget clasgpgsip
option can be enabled, and the local storage structure must be set. rFimthe
widget developer is left free to put whatever he wants in the Python file.

25

Security

As discussed, we choose to implement three security measures, name$jgrede
ing, whitelisting and a rating system. Code signing uses the facilities provided by
Tribler to sign a torrent with the users PermID. When the widget is inserted into
Tribler, a torrent is created and the torrent is automatically signed with tHispub
ers PermlID. Using this signature it is possible to verify the publisher of thgetid
Further, the infohash in the torrent is used to check the integrity of the Wwdgle.

Whitelisting is done much like public key infrastructures. At first, every widge
is untrusted. There are a few initially trusted peers, that can create edetfito
whitelist widget authors. In a whitelist certificate, the public key (PermIDhef
widget author is put and it is then signed by the initially trusted peer. Signing is
done by first adding the signers PermID and the date to the certificatéingraa
signature of this certificate and adding the signature to the certificate. Vajgatin
certificate can be done by first removing the signature from the certifindtéhan
verifying the certificate, signer PermID and signature. Initially, only whitediste
widgets are shown in the Widget Market, but there is an option to show every
widget, including the untrusted ones.

The rating system is one of the primary security measures for the widdetsys
because it makes use of the wisdom of the crowd. We will discuss the tathnic
details of the rating system in Section 3.2.4.

3.2.2 Discovery and Download

Widget discovery is done by first creating torrents for the widgets aediisg them
in Tribler. BuddyCast then automatically disseminates the widget torrents jast lik
the other torrents. A BuddyCast message includes infohashes of thetfoitris
seeding and the infohashes it has collected most recently. Each rdeeptddy-
Cast message triggers the TorrentCollecting module to select one randemt tor
to download from the other peer. By extending the lists of infohashes witllyplee
of the torrent (video, music, document, widget, et cetera), we can eliffiate the
widgets from other file types. Therefore, TorrentCollecting can be niteetive
and specialised. For example, when the user is primarily interested in movies, it
can create a bias by selecting more movie torrents to collect than other torrents
Thus, this BuddyCast extension is not only useful for this Widget Sysbeitrfor
Tribler as a whole. We, however, created the SimpleWidgetTorrentColleetimg,
extension of the TorrentCollecting module that selects either a widget tarent
another type of torrent. The widget torrent that will be selected is the nopstiar
widget locally known; the other types of torrents are still randomly selecitbd.
calculation of the popularity of torrents is discussed at the end of this stitrse

The MetadataHandler is the Tribler component that handles the downloading
of torrent files. When a torrent is downloaded, the extra widget informatiat
is stored in the widget torrent (name, author, version, description) iscatidthe
database and will be available to the Widget Market from then on. The Meta-

26

dataHandler then informs the WidgetCollecting module that there is a new widget
torrent available.

WidgetCollecting is the component that is dedicated to downloading the most
popular widgets on discovery, one at a time. Widgets can also be dowdloade
when the user selects a widget to be installed which is not yet collected. When
WidgetCollecting is initiated, it first checks whether there are any widgetggbein
downloaded. These downloads are checked whether they are beiumjpdded
for installation or not. When there is a widget that is not being downloaded fo
installation, WidgetCollecting continues to monitor that widget. If there is no wid-
get currently being collected, it queries the database for the most papidiget
locally known that is not yet collected, and starts to download and monitor that
widget. When there are no widgets locally known that are not yet colledted,
waits for the MetadataHandler to send a notification of a new widget torreht a
starts to download that widget.

When the widget is collected within the time limit, a value that can be adjusted
but is set at a 5 minutes default, the procedure to find a new widget to collect is
restarted. But when the widget download takes too long, it tries to find anoth
widget to collect. If another widget is found, the current widget is madete-
ing a slow download, and starts downloading the other widget instead.t,Iftho
will reset the time limit and proceed with the slow download. Bandwidth limita-
tions for widget collecting are currently not implemented, as widgets are sib sma
they can be downloaded without notice with current Internet connectieads.
However, because WidgetCollecting uses the standard BitTorrent Dad/aB|
of Tribler, WidgetCollecting could easily be extended with bandwidth limitations,
when necessary. The widget collecting process is illustrated by the stabénmac
in Figure 3.4

Widget Popularity

The Widget TorrentCollecting and WidgetCollecting both make use of the popu-
larity of widgets. A natural value for the popularity would be the swarm size o
the torrent, or a derivative of this. Since some trackers and peers li¢ #im
number of seeders and leechers, giving false popularity’s, it is saget verify

this information. This is the full-time job of another researcher in the Tribler team.
He extended BuddyCast such that peers exchange their latest inforrabtioit

the swarm. This swarm size information contains the number of seedens; leec
ers and the number of locally met Tribler peers who are seeding this tofreat.
swarmsize information from all encountered peers is stored with timestamps in the
Popularity table.

For ranking torrents by popularity, we average the latest number o$ pener
number of Tribler seeds seen by this peer, and the number of locally Khllar
seeds. The number of locally known Tribler seeds is added to reducdfeice e
of lying peers. The value for each torrent is saved per torrent in Tisblerrent
table, and updated when new popularity information is received.

27

No Widgets ilabls
Query Database for Popular Widget Wait for Widget Torrent

No Widget Download

Check Widget Downloads

Widget Download found

‘Widget Found .
Widget Torrent Received

Download and

Monitor Widget je

Time limit reached

Find Other Widget

oy, ey

7
Boy .

Figure 3.4: State machine of the WidgetCollecting module.

3.2.3 Widget Communication and Storage

The Widget Communication and Storage subsystem encompasses two tlisigs. F

it must take care of the initialisation of the communication and local storage. Sec-
ond, it must allow the widgets to communicate with each other by finding the
communication candidates and dispatching messages.

The first task is done by the WidgetCore upon installation of the widget. The
widget specifies the local storage structure within the Python file as a ligbleftu
The first entry of the tuple is the column name and the second entry the column
type. The primary key of the table can be specified by placing the keyvpdel”
behind the column type of the primary key columns. Valid column types are "in-
teger”, "text” and "numeric”. The WidgetCore validates the local storagetire
and dispatches the creation of the database table to the WidgetDBHandken. Wh
the local storage table is initialised, the widget gets a database handledejariab
which can be used to manipulate the table. The widget must also specify whethe
it would like to use the gossip features. When this is the case, the WidgetCore
notifies the WidgetGossipMsgHandler of this new widget.

The WidgetGossipMsgHandler takes care of all the intra-widget communica-
tion. It keeps a list of all the widget instances and a queue of their ctinonec
candidates. Every gossip round, it calls the function of the widgets teateeand
return their gossip message, validates the message, selects a gossiptegmelid
widget and tries to send the message. Before the message is sent, theemessag
is prepended with the WIDGEGOSSIP type and the widget infohash. Simi-
lar to BuddyCast, it keeps a Send Block List and Receive Block List peget.

28

When a message is sent to/received from a particular peer, the peet is kiee
Send/Receive Block List for the block interval, respectively. When #er 5 re-
moved from the list, it is added to the end of the connection candidate list. After
selecting a gossip communication partner from the connection candidate list, we
shuffle the list to randomise peer selection.

Upon receipt of a WIDGETGOSSIP message, the widget infohash is taken from
the message and it is checked whether the widget is installed. If not, a WID-
GET_NOT_INSTALLED message will be replied. If the widget is installed, the
appropriate widget message handler is called. After handling the medbage,
peer is added to the Receive Block List. When a WIDGEDT_INSTALLED
is received, the peer is removed from that widgets connection candidatadis
the Tribler Preferences table is updated. When a message could nattpthee
peers number of tries is increased and the peer is added to the end of thie list.
the number of tries is greater than three, the peer is removed from thectiomne
candidates.

Connection candidates are added from BuddyCast messages and Sovar
nections. Upon receipt of a BuddyCast message, it is checked whbéhether
peer has installed widgets we have installed too. If this is the case, we add the
peer as connection candidate for the widget. When a swarm connectiomlés ma
we also check whether this is a widget swarm or not. If it is, the connectan p
ner is added. Because the swarm connection is already establishea, nat d
have to create an additional connection and thus keep the number ofttionee
to a minimum. Further, we know from the peer that he is online because we just
communicated with him. When Tribler is started, initial connection candidates are
retrieved from the Preference table of Tribler. This table stores informatiavho
is seeding which torrents.

3.2.4 Widget Market

To accomplish the goals of creating a Widget Market, we created a managemen
widget. A widget is ideal for this, because it requires a lot of user intertade

and the Widget Communication and Storage features for the widgets are ideal to
disseminate reviews and ratings.

Dissemination of Widget Reviews and Ratings

We must define the local storage structure to store the reviews per widgkt, a
choose a gossip message format. We define a review as a comment and a ratin
on a widget. The local storage structure can be seen in Table 3.1. Bewaus
limit each user to rate and review each widget only one time, we must use the
PermIDs of the users and the infohashes of the widgets as primary kilyeFue
added a human readable name, because not every Tribler user kieomantle of

all PermIDs. The rating, comment and date fields are self-explanatoeycldbk
integer is used to create an order in the reviews, such that a review wittyaae

29

another user is shown beneath that user. When a rating is inserted, kvaloe
must be higher than the maximum clock value in the table for the corresponding
infohash.

The gossip message consists of the 5 most recent reviews and 5 raavdenwst
Each review has the same format as the local storage structure.

Field Description Type
infohash | infohash of the widget text
permid permid of rating/comment author text
name name of the rating/comment author text
comment| the comment text
rating the rating integer
date local date when this rating/comment was addetimeric

Table 3.1: Local Storage Table structure for storing the Widget Markatiget
reviews.

Graphical User Interface

The Widget Market widget is not shown on the frontpage of Tribler, limg a
menuitem called "Add/Remove widgets”. This saves space for the widgets the
user really wants to see on the frontpage. The widget has a dialog withtétuge
where the user can perform several actions.

On the first tab, the widget market can be browsed, by viewing a sorted list
of widgets. They can be sorted alphabetically or by average rating.eTifemn
option to show every widget, because initially only whitelisted (trusted) widgets
are shown in the list. Widgets can be selected to show more detailed information
about the widget and the individual reviews and ratings of other u3grs.user
can also add one review and rating per widget.

Onthe second tab, the installed widgets are listed and they can be remaled eas
by selecting a widget from the list and pressing the remove button.

The third tab enables widget developers to add their own widget to the Widget
Market. They can select a widget file, and this file is then validated. Thecase
then choose to either test the widget or add it to the Widget Market. A ovenfie
the graphical user interface is shown in Figure 3.5.

3.3 Review of the Widget Discovery Method

For a successful Widget Market browse function, most of the popuidgets
should be discovered within a reasonable time. This bootstrapping is of utmost
importance, because otherwise users will have to wait too long and loosesinte

in the widgets. After testing our software using multiple computers, we corttlude

30

] _ Add Widget

Add widget | My widgets Widget Development

Mame \ersion Rating
|Library vz 0.2
Managementwidget 0.3
|Top 10 Most Popular Torrents 0.1.5

Top 10 Contributors 05.4

ShoutBox Widget 0.2

Mewest discovered vz 0.1

W Also show untrusted widgets
ShoutBox Widget
Use this widget to shout messages to others

| Add Widgst |

Comments

[This is & fun widget because | can now communicate with other
peer-to-peer users.

Rated 7 by Alain

Add comment

7 <
[This is a fun widget because | |
can now communicate with
other peer-to-peer users,

Figure 3.5: Graphical User Interface of the Widget Market

that the widget discovery method did not meet our bootstrap requiremenakit to
way too long to discover one widget. We decided to perform a calculatiorettkch
whether this is right.

BuddyCast downloads the information on 600 torrents in the first hourilolet
start up and stores a maximum of 5,000 torrents on each peers disk [22]. N
we assume that there are about 2,000,000 torrents already being digsenbiyna
BuddyCast. The largest torrent tracker, The Pirate Bay, tracksdrthe same
amount of torrents [5]. As seen in Table 1.1, most widget repositoriesoto n
exceed 5,000 widgets, only the very popular Facebook does. Let @Hi@R0
for the amount of widgets in our repository. There is a difference in BGddt
exchange with a peer that uses an old Tribler version and a peer tisaihesep-
to-date version.

An exchange with a peer with an old Tribler version will result in randomly
selecting one of the torrents it has to download, because its BuddyCasagaes
does not have type information on the infohashes it sends. This resulthanae
of 0.0025 for a random torrent to be a widget torrent and this is the saaneelof
selecting a widget torrent to collect.

An exchange with a peer that does exchange type information, the cthetee
widget torrent will be collected is 0.5. At least, if there are widgets infobash
this BuddyCast message. In the message are the infohashes of thegeeks;avith

31

a maximum of 50, and 50 infohashes of most recently collected torrentsn Whe
the user has installed one or more widgets and is thus seeding them, the message
automatically contains widget torrent infohashes. When he has not, indejpa

the collected torrents. It is not possible to say how many users will havdl@asta

a widget, nor is it feasible to calculate the chance that there are widgett®ine

the collected torrents infohashes. This calculation will result in a recicdiance
calculation, because the chance of finding one or more widgets in the cdllecte
torrents infohashes depends on what the chance is to collect a widgeit {@esult

of this calculation). Therefore, we assume there always is a widgenhtarr¢he
BuddyCast message.

By running Tribler multiple times for an hour and logging the versions of the
Tribler peers encountered, we noticed that the average chance mfreéedng a
peer with the newest version is 0.4. Thus, in the first bootstrap hour addsh
receive:

600 * (0.4 % 0.5+ 0.6 * 0.0025) = 120.9

widget torrents on average. This calculation is telling us that there is notoeed
worry about the bootstrap. The problem with our test, however, is thanlyehad

a few computers running this version and only a few widgets: all encauwién
BuddyCast peers were peers with old versions.

With 5000 widgets, our assumption that each BuddyCast message oftan up-
date peer contains at least 1 widget torrent might be right, but with onlyi&@ats
this is probably not the case. We want to deploy the system with only 10 initial
widgets created by us. Further, as can be seen in Figure 3.6, thefgoate2800
active Tribler users with the newest version, when it is deployed. Maeysudo
not even consider creating widgets, thus 5000 widgets in the repositogyisoe
much. We decided to extend the Widget Discovery for fast bootstrappiren
when there are just a few users with the newest Tribler version andvewen
there are only a few widgets in the repository.

3.3.1 A Widget Discovery Extension

The problem with the original widget discovery method was that when ttrere a
not many widgets or not many peers that use widgets, most BuddyCastréarcs
are with peers that either do not send the type of the torrent in the messigeat
have any widget torrents. To solve this problem, we need an overlay vétis eat
use widgets. This is in fact accomplished by our own intra-widget communidatio

By extending the Widget Market's gossip message to include infohasHiee of
of the widgets it is seeding and thus either has the widget installed or it is pub-
lished by himself. When a gossip message is received, the TorrentCollécting
then triggered with these infohashes. The Widget Market widget is instajiedl
users with the widget version of Tribler, thus every gossip encounteicisessful
when the user has widgets installed. Further, because only infohastesded
widget torrents are sent, WidgetCollecting will almost certainly succeed tactolle
the widget.

32

Tribler daily usage
seperated by version

20000 T 1 I T 1 T 1 T 1 I I
5.7
50.0
18000 |- 450 :
41.0
— 4.0.0
o 16000 1 37.0 :
2 36.0
® 14000 | 334 i
[l
=)
3% 12000 .
D w
=0
BE
=, 10000 | Only SP2,35logs]
°g in between
o=
=38 a000 .
ES
J0
Z o
5 6000 |- .
E
5 No logdata
— 4000 F .
2000 ﬂ .
0 i 1 i 1 i i 1 " 1 i i 1 i i 1 L 1 1 2 1

07/08 10/08 01/09 04/09 0Q7/09

S
0

07/06 10/06 01/07 04/07 07/07 1007 01/08 04/08

S8 0. Date
~oo o — —_
oot <+ B <+
[}
@
@

Slashdot
Slashdot %gg

Figure 3.6: Tribler daily usage statistics

In the next chapter, we will discuss the implemenation of our complete P2P
Widget System, including example widgets and a Widget Developing Center.

33

34

Chapter 4

Implementation

In this Chapter, the implementation of the widget system is reviewed in Section 4.1
and the example widgets are discussed in Section 4.2. Further, we disouss o
Widget Developing Center, a resource for widget developers, in $eti®

4.1 Widget System Implementation

In Table 4.1, the different parts of the implementation are shown, including the
number of lines of code it has cost. As shown, most of the code is writtethdor
Widget Runtime Environment. Especially the methods for installation of widgets
cost quite some lines of code. However, most of the code has been woittdref
User Interface of the Widget Market. This is logical, because the usefaoteis
quite extensive, with all kind of hooks that make it interactive and userdhje

It is also very interesting to see that the Comments and Ratings Dissemination
only takes 22 lines of code, because it uses the Local Storage andNiagat
Communication subsystem. Apparently, the Intra-Widget Communication inter-
face is written in such a way, that it does not take a lot of effort to write sloimg
worthwhile. Also, the Widget Market Discovery Extension only takes 9 lioies
code! This extension, discussed in Section 3.3, also uses the Intrat\Zidge
munication and triggers the TorrentCollecting to collect the discovered widget
rents.

To test the implementation, we have written several unit tests that check whethe
the code does what it needs to. However, it is hard to test distributedrss/sied
user interfaces with unit tests. The user interface is therefore testedhltyasmd
the distributed aspects of our system are analysed in Chapter 5.

4.1.1 Widget Statistics Gathering

Making our system ready for actual deployment, means that code musittenw
to gather statistics about the usage of the Widget System. Using these statistics,

35

Subsystem | LOC

Wdget Runtime 1305
Database 276
WidgetPanel 310
Widget Installation 495
Widget Whitelist Certificates 141
Tribler User Interface Extensions 83

Widget Market 916
User Interface 894
Comments and Ratings Dissemination 22

Wdget Discovery and Download 481
WidgetCollecting 269
TorrentCollecting 77
BuddyCast-extensions 92
Popularity 34
Widget Market Discovery Extension 9

Local Storage and Intra-Wdget Communication | 487
Local Storage API 74
Intra-Widget Communication 413

Unit Tests 559

Satistics Gathering 130

Total 3878

Table 4.1: Implementation Statistics of the Widget System

we can evaluate several aspects of the system. Which aspects calfubéeeyare
determined by the statistics that are gathered.

For the gathering of statistics, we created a WidgetCrawler. It is basad upo
the Crawler framework that is already in Tribler, and is therefore quite siTiad.
WidgetCrawler is ran by every peer to respond to crawler query messapese
query messages are sent by the actual crawler, and the respantaggad into a
file. We chose to gather the information that is shown in Table 4.2

Using this information, we can already answer tons of questions abowgghe s
tem. A few among them are shown below. By gathering the information over
a long period of time, we can create a function of the answers against the time,
showing exactly how well the system is working.

How many widgets does each peer know about?

How many widgets are collected per peer?

How many users know about a particular widget?

How many users have collected a particular widget?

36

Field Description

infohash The unique identifier for the widget
installed A boolean telling whether the widget is installed or not
ondisk A boolean telling whether the peer has collected the widget

nrcomments| An integer counting the number of comments it has about the widget

Table 4.2: The fields with information that is gathered by the WidgetCrawler

- How many users have installed a particular widget?

- How many comments are there for a particular widget?
- What is the total amount of widgets in the system?

- What is the total amount of comments?

- What is the average amount of comments per widget?

- How many widgets are installed on average? How much percent of the total
amount of widgets is this?

- How many widgets are collected on average? How much percent of the total
amount of widgets is this?

4.2 Example Widgets

To demonstrate the systems capabilities, we have created several widdets. O
course, the Widget Market is also created as a widget, but this widge¢&iglex-
tensively discussed in Chapter 3. The other example widgets are didénthés
section. Furthermore, we will show some implementation statistics of the widgdes.

4.2.1 Implementation of the Example Widgets

For each widget, we will discuss what the widget does, the user intedadehe
implementation of the widget. In Figure 4.1, the user interfaces of severgetsid
are shown.

ShoutBox Widget

The ShoutBox Widget is a widget that uses both the local storage andniitigat
communication to provide social interaction between P2P users. Usersaparale
shout and the last ten shouts are displayed to everyone that uses tle¢ widg

The widgets user interface is quite simple, as most widgets interfaces are. It
consists of a listbox with two columns, one for the name and one for the shout.

37

Search Files Sharing Reputation: Average Settings My Fles Extras
' X ——

0B Down 27KB Up

Family Filter: ON

Name Shout No Torrent Popularity
stagel Very nice! Me too :-) 1 The Hangover (2009) DVDSCR-MAXSPE.., 17821
PCstefanie I'm fine, enjoying these new Tribler features! 2 Watchmen[2009]DvDrip[Eng]-FXG 16883
stagel How are you all doing? 3 Knowing[2009]1DVDrip[Engl-FXG 11335
stagel helle shoutbox users! 4 True.Blood.S02E07 HOTVXvID-NoTV.avi 9669
5 Valkyrie[2008]DvDrip[Eng]-FXG 7571
h 6 Push[2009]DvDrip[Eng]-FXG 6790
7 The Haunting in Connecticut[2008][Unr... 6113
& The International[2009]DvDrip[Eng]-FXG 3343 =
Mo Peer Up
1 unknown peer 3TB
2 unknown peer 445 GB
3 unknown peer 399 GB
4 Alka-PC 125GB |=
5 unknown peer 83 GB
6 unknown peer 82 GB
7 unknown peer 59 GB [|
8

firefly-PC 52 GB

Figure 4.1: A screenshot of Tribler, including the ShoutBox, Hot Tas@nd Best
Tribe Contributors widgets.

Beneath the listbox, there is a textfield to type the shout and a button to actually
send the message.

The local storage structure consists of three columns; the name, theastibut
a clock value. The name and shout are self-explanatory. The clocledstos
create a message order. When a new shout is inserted, the clock vailediglber
than the current maximum clock value in the database. This way, messages tha
are replies to other messages get a higher clock value and are positighed h
than the others. Messages with the same clock value may be orderedndijfere
on different computers. The gossip message consists of the ten magtsiecets.
When a gossip message from someone else is received, its shouts aliesdted
or ignored when they already exist.

The ShoutBox widget is one example of a simple, yet powerful widget. The
widget consists of 63 lines of code, including 14 lines of whitespace.

New Torrent Notifier Widget

The New Torrent Notifier widget shows the most recently locally discal/éve
rents by BuddyCast. It does not use any local storage or intra-widgemunica-
tion, but instead hooks into the notifying system of Tribler.
The user interface is again very simple. The listbox, where the torrents are
shown, is the most prominent GUI element and takes up most of the widgets spa

38

It has one column, which shows the torrent name. A download button iscblace
beneath the listbox.

By registering an observer to be notified on widget insertion, the widgetves
its torrents. The function that is called on insertion of a widget, receivemtbe
hash of the torrent. We can then retrieve the torrent name and filenamehfeom
Tribler Torrent database. The name is inserted in the list and a mappingdroem
rent name to filename is stored, to be able to download the torrent. The list is then
purged, such that at most 10 torrents are shown in the widget. When aisitem
selected to download, we retrieve the torrent filename and call the sessitantto
the download. This widget implements the OnClose event handler, which esmov
the observer before the widget is removed.

Since the widget is hooking into Tribler, this widget is somewhat more addance
than the ShoutBox Widget. It consists of 87 lines of code, with 13 lines whitespa

Hottest Torrents Widget

The Hottest Torrents Widget displays the hottest torrents known at that time.
uses the information known locally, collected by BuddyCast, and combines this
information with the information of other Hottest Torrents users using intraetid
communication for fast convergence.

Again, the widget displays the hottest torrents in a listbox, with three columns.
First column shows the place of the torrent, the second the name of thettorren
and the third the popularity. This is the same popularity value as is discussed in
Section 3.2.2.

Upon initialisation, the user interface is created. Upon OnPostlnit, which is
called by the runtime when the local storage is initialised, the top ten of most
popular torrents is retrieved from the Tribler database and stored in tiestocage
of the widget. Also, a timer is started to update the information of the widget with
the Tribler database every few minutes. Updating the database means tiogt the
ten of torrents from Tribler is merged with the top of the widget: new torrems ar
added, old torrents are updated and finally the list is purged.

The local storage structure consists of the torrent infohash, toreene npop-
ularity and checktime, which is the local time of the peer when it retrieved the
information from the Tribler database. The torrent infohash is the primayy k
Intra-widget communication is used to exchange the peers hot torrentsyand
chronise with with the other users. Upon creation of a gossip messagenthe te
hottest torrents are added to the message. Upon receipt of a messatpgy tars
from the other peer is merged, taking into account the checktime values.

The Hot Torrents Widget is built in such a way that the convergence is much
faster than when only BuddyCast is used. In just a few minutes, it is pegsib
show the top torrents of the whole Tribler overlay. The more users thereter
faster the convergence. By using the checktime value, torrents thateoening
less popular, will eventually disappear from the list, because the tormgatmsize
is occasionally checked by Tribler peers. The widget consists of 150 diheode,

39

of which 48 lines are either whitespace or comments.

Best Tribe Contributors Widget

This widget has basically the same architecture as the Hot Torrents witlgde$

a top ten, of BarterCast peers in this case, and synchronises it withpetber and
occasionally with the local Tribler database, converging to the global topften
BarterCast’'s most altruistic peers.

This time, the interface shows the place of the user, his name and how much he
has uploaded, according to Tribler. Because not every peers miekisgaknown,

a lot of names are filled with "unknown peers”, but by synchronising witieo
peers, these names will eventually be filled with their real nicknames.

The local storage also consists of three columns: a permid, name and up. Up
is the number of bytes uploaded according to Tribler. The primary keyistens
solely of the permid. Upon creation of a message, the current top ten isl adde
to the message. When a message is received, the information in the message is
merged with the currently known top. Either an entry is updated, meaningghat u
and name are taken from the message, or the entry is added. The highesbfv
up is always taken, since the value can only increase. A timer is used to therge
Tribler BarterCast information into the widgets top every minute. The widget is
implemented in 143 lines of code, with 39 lines of whitespace or comments.

4.2.2 Statistical Information on the Widgets

The widgets are all implemented in less than 150 lines of code, with a minimum of
63 for the ShoutBox Widget. Also, 6 lines are used to specify the metadataasu
author, description, et cetera. Creation of the user interface takas Hbbnes of
code and the intra-widget communication functions (OnCreateGossiplyteand
OnHandleGossipMessage) are all implemented within 8 lines of code! A summary
is shown in Table 4.3.

Most of the widgets use the local storage and intra-widget communicatien fea
tures, but only the ShoutBox creates direct social interaction betwess. uhe
Tribler API is used in all widgets but the ShoutBox Widget, but only the New
Torrents Notifier uses the Notification API.

Widget | LOC | Whitespace| LOC for Communication| Size (KB)
ShoutBox 63 13 5 2.3
New Torrents Notifier 87 13 - 3.8
Hot Torrents 150 49 8 6.3
Best Tribe Contributors 143 39 8 5.6

Table 4.3: Implementation statistics of the example widgets.

40

4.3 Widget Developing Center

Although creating a widget is quite easy, we have also created the Widget-De
oping Center with information on how to develop P2P Widgets. We have created
several tutorials which range from a HelloWorld widget to using the Lotaisge

and Intra-Widget Communication APIs. All tutorials follow a foolproof stgp-b
step explanation of what is happening, including example code. Furthal/ithe

get Format is explained in detail and it is explained how the widgets can lytsidse
and tested within Tribler. A screenshot is shown in Figure 4.2. The Widge¢b
oping Center consists of several online wiki pages and thus can easitycbssed

by anyone using a browser.

Search
L] What's Tribler? Download
» Start Page Index History Last Change
tribler
A 5 =5 Wisit ferum
;:Sgﬁ;tper; Wldget Developers Center = Forum search "WidgetDeveloping"
: 5D "WidgetDevel]
Ce"’te(;ettin Welcome to the Widget developers center. Here you ksl el

Stmeg? wi!\ find resources on how to create widgets for the
Widget Tribler architecture.
Format
Add widget to Tribler Widgets are python files, extending the wx.Panel. Teu will want to dive into
Tribler wxWidgets to be able to create a small user interface.

Tutorials
Hello world Also, read about the Tribler architecture and get the source code, to create powerful
Widget widgets,
Using Tribler
notiflers Current widget branch
Using Local
Storage " ; A)
Using Intra-Widget This links to the source with the current latest branch that supports widgets:
Gossip

Current widget branch

Figure 4.2: Screenshot of the Widget Developing Center.

41

42

Chapter 5

Experiments and Results

Because the widget system is a distributed system, testing it to see whether the
requirements in Section 2.2 are met, is a difficult task. Although we conduct ex
perimental research and thus want to deploy the system to obtain datadasage
and derive properties from these data, we first have to make suresteesyorks
well enough to be deployed. We already tested the runtime environment, but to
analyse the distributed properties of the system, we devised severeahsspis.

The experiments and their setup are explained in Section 5.1 and the results ar
shown in Section 5.2.

5.1 Experiments and Setup

We have devised five experiments, which will give us several propetbiest wid-

get discovery and download and intra-widget communication. They eetua to

three peers with the widget system installed in the Tribler overlay. Befaregdo

the experiments, bandwidth usage logging is added to the WidgetCollecting and
Intra-Widget Communication, such that bandwidth can be measured tlootugh

the tests. The experiments are to be executed multiple times to get an average,
because P2P systems can be unpredictable.

Experiment 1: How fast are widgets disseminated from one peer to ather?

This experiment tests both the widget discovery and download functionélitye o
widget system. The experiment can be used to find out how fast the drycand
download of widgets is and how efficient they both are. It requires tvasged
and B. Peer A adds three widgets to the repository. Time and bandwidtb asag
measured until B has all three widgets discovered and downloaded.

Experiment 2: How fast are widgets disseminated from two peers torsother?

This experiment tests the same aspects as Experiment 1, but uses thse®pee
A and B both have three widgets discovered and downloaded. Peer G ooiires

43

and the time and bandwidth usage are measured until he has downloadeeeall th
widgets.

Experiment 3: What is the normal bandwidth usage without extra widgets?

We want to know what the bandwidth usage is, when a peer does nothdrigun

has only the Widget Market widget installed. We use three peers whiclaad h
three widgets already disseminated. Further, several fake reviewwd@dee to one

of the peers local storage, making sure that the bandwidth is used to itd fulles
extend. The bandwidth usage is then measured for 30 minutes.

Experiment 4: How fast are intra-widget communication partners for a wid-
get found?

We would like to know how long it takes to provide a new peer with widget data.
Two peers are participating in this test. Peer A has the ShoutBox widget idstalle
and adds a shout. This information is to be disseminated to the other peer. Time
is measured from the moment that peer B installs the ShoutBox widget, until it has
the shout from peer A.

Experiment 5: How fast and efficient is the intra-gossip communicatia?

This experiment uses a modified version of the Hot Torrents widget. The Ho
Torrents widget retrieves from the Tribler database the top 10 most paprriants
locally known at that time. Each Hot Torrents widget instance exchangesik

top 10 with other instances, and merges them until it shows the global toprh0 fro
all users that use this widget. Normally, also updates from the local dataloasd
again be merged with its own top 10, but for this experiment we will not do this.
The Hot Torrents widget is further modified such that every change itofh#0 is
logged.

The experiment uses three peers, which all install the modified Hot Terren
widget at the same time. Thus, they all show their locally known top 10 to the
user. Time is started when they installed the widget and stopped when all three
peers have the same top 10, that is the result of the merge of their local .top 10
Bandwidth usage is also measured.

5.2 Results

The results of the performed experiments are discussed here per topic.

5.2.1 Widget Dissemination

To measure the widget dissemination speed and the bandwidth usage engehav
formed the first two experiments four times each. We will first discuss thdtses

44

of Experiment 1 and then the results of Experiment 2, since this is an extesfsio
the first experiment.

From the results of Experiment 1, we can derive multiple statistics. In Figlire 5
we can see the time it takes before the other peer has been found anddinédbia
the Widget Market widget uses until all three widgets are collected. Halief
time, the communication partner is found within the minute, but in the worst case
it took almost seven minutes. It is interesting to see that the maximum bandwidth
usage stays below 1 KB at all times. This has two reasons. First, the Widget
Market was not filled with any comments and ratings, thus the messageseavgre v
light. Second, the bandwidth for downloading the widgets is not added. sé&&: u
three widgets, namely the ShoutBox, Hot Torrents and Best Tribe Cotursbu
Together, these widgets are 14.3 KB in size, which is also downloaded.

To get more insight into the time it takes to collect the widgets, we created
Figure 5.2. This graph shows how much time it took to first find the communication
partner, and then collect the widget. Time to collect the widgets varied fram on
to two minutes, but the time to find the communication partners has a lot more
variation. Further, the average time to download a widget was 6 secdridke$
a minute to download them all, because the peer did not know about the other
torrents. This is because the TorrentCollecting module is only triggeredadtare
we receive a message. The gossip interval is set at one minute, thusveveoha
wait for the next message to know about the next widget.

The results of Experiment 2 seem remarkable. Using two peers, botlthalrea
having the widgets collected, seems to stabilise the collecting of widgets. We did
this experiment four times, and at all times it took about one minute to find com-
munication partners and the widgets were collected in about 100 secorelsy g
take 10 seconds.

5.2.2 Normal Bandwidth Usage

By performing Experiment 3, we measured the normal bandwidth usage when
peers do not use any features of the Widget System. This still means, ithat w
gets are collected and widget reviews are disseminated. We tried to measure th
bandwidth usage for the system when it is fully loaded, meaning that the fsize o
each message sent by the Widget Market is fully used. We simulated thedatly u
Widget Market by manually entering as much fake widget reviews as ddade
peer 1. Further, we disabled the Send/Receive Block Lists, such gt ewund,
a communication partner is chosen.

In Figure 5.3, the bandwidth is shown for 2200 seconds for all threespées
can be seen, Peer 1 has reached a maximum of about 60KB in thosee2200 s
onds. This is only 0.027 KB per second! Of course, collecting widgetritsrand
widgets also costs bandwidth. Suppose the average widget is 5KB. Thigas q
reasonable since all example widgets, we have created range from 2Bp& ks
shown in Table 4.3. If a widget is collected after every gossip communicdtios,
every minute, we use 5KB per minute, resulting in 0.083 KB per second., ©hus

45

1888

"First run
Second run
Third run
988 - Fourth run

aee -

7e8 -

6B

588

4688

Total banduidth used {Bytes)

3608

208

108 1 1 1 1 1 1 L L
58 188 158 288 258 388 358 488 458 bilcl:]

Seconds after Tribler startup

Figure 5.1: Total time and bandwidth usage for collecting three widgets

extensions to the system only use 0.11 KB per second, when the systefulis at
power and uses maximum bandwidth.

One anomaly can be detected from the graph in Figure 5.3, namely that Peer 2
does not communicate at all for about 15 minutes! This is probably becétise
connection candidate list shuffling, explained in Section 3.2.3. With only twespe
in the list, shuffling the list might not be such a good idea, especially withaog us
the block lists. However, with more communication partners it would make sense.

5.2.3 Finding Intra-Widget Communication Partners

To measure the speed of finding the Intra-Widget Communication partners, w
performed Experiment 4 four times. This resulted in an average of 6 hdsco
until the first message was sent/received. This means that it takes aleauirmute
to join the swarm after installing a widget, contacting the tracker to find peers an
to connect to them. Of course, it also depends on when the widget is installed
within the gossip interval.

The variation in the results was also not very high. This is differs fromehelts
of Experiment 1, where the variation was quite high and time it took was normally
longer. This might be because Tribler still needs to bootstrap when the Widge
Market widget is installed, while the ShoutBox widget is installed later.

46

filal:]

mmm Collect widgets
B Find communication partner|

458

488

358

3aa

258

Tine (s)

2008

158

188

bl

Run 1 Run 2 Run 3 Run 4

Figure 5.2: Total time to collect three widgets divided into different stages

5.2.4 Intra-Widget Communication

The question of the speed and efficiency of this section is answeredfoyming
Experiment 5, which we performed thrice. Let us first address an fesune by
performing the experiment, and then lay out and discuss the results. Ngrmally
when a Top 10 is being formed by merging the results of 3 independent eritities
would take at least 3 exchanges. First, merging user A and user B'$0lophen
merging the result of A and B with C, and then sending the result to the otker pe
However, the experiment was not set up to be sure that all users Haumation
that would be merged into the final Top 10. Therefore, two of the three tinees w
tested it, 2 exchanges were enough. First, merging user A and B’s Tapdlihen
sending the result to user C, which did not have any information thatvaathe
merging. However, this can also be the case in a real deployment and iaronly
advantage, because less communication is necessary. Thereforid, wat iy to
modify the experiment setup later on.

In Figure 5.5, the results are shown. The average time it took to get theanerge
top 10 is 53.9 seconds. The average number of exchanges necesgatythe
final result was 1.2. The size of all messages were around 1 KB. Wegdte
bandwidth, we came to an average of 0.047 KB per second.

47

78

Peer 1
Peer 2 ———
Peer 3

68

48

38 -

Total banduwidth used (KB}

28

1 1 1 L
a 588 1688 1588 26088 2568

Seconds after Tribler startup

Figure 5.3: Normal bandwidth usage for three peers

5.2.5 Discussion of the Results

When analysing the results of the experiments, we think our system beduates
well. It is fast and uses just a little bit bandwidth, compared to the Intermetidsp
nowadays. Of course, the more widgets are installed, the more bandwidtds u
But when one of the heaviest widgets (the Hot Torrents widget froneEx@nt 5)
only uses 0.047 KB per second. This is certainly not a big deal. Also, #rethust
does not want to use any widgets is only affected by losing 0.11 KB pendec

As for the undeterministic browsing requirement: most of the times, it takes
just a few minutes before the first widgets start to appear in the list. When the
widget discovery is initialised, the widget discovery works very fast. Ehisostly
because of the Widget Discovery Extension. This is shown in the logs Hiec
WidgetCollecting is triggered just a few seconds after a new incoming message
was found. The widgets are so light that they are easily downloadedticeable
for the user.

One anomaly seems to have been discovered when using three peegsaftise
show that sometimes a peer is hot communicating with the others, probably be-
cause of the shuffling of the connection candidate list and the disablingeof th
block lists in Experiment 3. This problem is alleviated when there are more con-
nection candidates, but can be solved by not selecting the last conpesxd),
as implemented by the block lists.

48

Tine (s}

28

Lili]

Run 1 Run 2 Run 3 Run 4

Figure 5.4: Time to find intra-widget communication partners.

49

143 T T T
Feer 1 EEmmm

Peer 2
Feer 3 =

128

188

e

68

48

28

Run 1 Run 2 Run 3

Figure 5.5: Time taken to merge the three different top 10’s

50

Chapter 6

Conclusions and Future Work

6.1 Summary and Conclusions

In this thesis, we presented our complete solution for P2P widgets. Our solutio
closes the gap between the World Wide Web and P2P. On the one handcR2P te
nology can be used to create scalable and robust Internet applicatitmsytvany
central authority. On the other hand, the World Wide Web is becoming more and
more social and interactive. Our Widget System combines all these feahae
cause it is designed for scalability and robustness.

We have shown a few of the millions possible widgets that can be made in Chap-
ter 4, which create interaction between the users of the system. By usingltes T
API, the Local Storage API, and the Intra-Widget Communication API, iDis-p
sible to create even more interesting widgets than was possible with other fypes o
widgets!

Our P2P Widget System is designed to be deployed and to gather statistits abo
the system. The implementation is also ready to be deployed and even has an onlin
Widget Developers Center to aid widget developers in creating widgetauBe
of time constraints however, the system is not actually deployed in a large use
environment. Though this is very unfortunate, the system can be depgbyyi
Tribler team to perform further research on this subject.

While we did not deploy the system, we can still conclude properties from our
system, because of the experiments that were performed in Chapter B.dhap-
ter, we have shown that our system is fast and bandwidth efficient. dMergethe
user controls how much features it wants and thus also controls how muodh ba
width the system uses. Browsing the Widget Market is easily done and wilN sh
a multitude of widgets in a matter of minutes after bootstrapping Tribler, because
of the fast Widget Discovery and Download module. Comments and Ratiegs ar
disseminated fast and without using too much bandwidth, because it usesmou
Intra-Widget Communication API.

With the results of our evaluation, we can conclude that our P2P Widg&ti8ys
is:

51

e Scalable and fast We have shown that within the first few minutes, widgets
are already discovered and downloaded. It is scalable, becauss itous
bandwidth gossipping to discover the widgets and the scalable BitTorrent
download engine to download the widgets. With a repository of about 2000
widgets with on average a size of 5KB, the total size of the repository is only
10 MB.

e Bandwidth efficient. Without any installation of widgets, the user will need
about 0.1 KB/s bandwidth to be able to use the system. Further, most widgets
also do not need more than 0.1 KB/s to be able to work and the user is able
to control the number of widgets it has installed and can thus control its
bandwidth usage.

e Innovative. Because of the unique design of the Local Storage and Intra-
Widget Communication API, which supports the automatic formation wid-
get swarms, newscalable social and interactive features are introduced with-
out the need to overload Web 2.0 applications, as current types of widgets
do.

e Easy to use Not only is the user interface for browsing and installing the
widgets easy, creating a widget is also easy. As shown in Section 4.2, sim-
ple widgets are created within 50 lines of code. Communication and Local
Storage is introduced to a widget with less than 10 lines of code!

Further, we think that this P2P Widget System is able to provide P2P rasearc
a more powerful tool to design and test P2P applications.

6.2 Future Work

Although the P2P Widget System presented in this thesis is a giant step towards
a social and interactive P2P experience, there are also many things ithiaé ca
improved. Because people with a critical view can make the list of possible im-
provements infinite, we will discuss the most important ones according to us.

¢ Intra-Widget Communication can be more secure Currently, no valida-
tion of the gossip messages is implemented, although the architecture sup-
ports it easily. Also, the size of a gossip message may vary freely. These tw
things can be implemented, but will also greatly reduce the possibilities of
widgets. Questions on how to implement these features arise. For example,
what happens when a gossip message is rejected because of its siz-or inv
idation? How to validate a message without creating some sort of standard
for messages? These questions are not answered easily and greatgenc
the complexity of the Intra-Widget Communication API.

52

¢ Intra-Widget Communication’s bandwidth can be more controlled. The
bandwidth for this could be controlled for all widgets together or per widget.
A User Interface could be made where the user may prioritise the widgets.
Important widgets could get more bandwidth, or the bandwidth could be
set manually per widget. A more loose solution could be to control the total
bandwidth rate for all widgets. The system can then use a queue forgeessa
and wait to send when it already met its quota for this time interval. Using
Round Robin algorithm, the queue could stay fair for each widget. More
sophisticated methods are also possible.

Another option is to create multiple bandwidth modes for widgets, just as is
done in BuddyCast. BuddyCast starts with a bootstrapping period, commu-
nication a lot in a small time window, but decreases the bandwidth require-
ments when the system is bootstrapped.

e The Widget Runtime Environment can be better secured This is ad-
dressed several times in this thesis, where we already presented tkat cod
restrictions or other forms of security is hard to achieve, without greatly re-
ducing the freedom or leaving security gaps to be exploited.

e Version Management could be introduced Finding the latest version of
a widget you are currently using, automatic updating of widgets, showing
a changelog for each widget are just a few features that are possthle w
Version Management. Currently, a new version of a widget is just treated
as another widget. Using a universally unique identifier (UUID), Version
Management is possible. The problem is however, when is a widget a new
version of an existing widget and when is it another new widget? Can you
update automatically to a new widget version, even if this widget is created
by someone else than the widget author? Even if this might be someone
you do not trust. Multiple users could create different versions for getid
which one is the real one?

e Widgets that extend other widgets When widgets can be extended by
other widgets, or when widgets can use features of other widgets, aleal s
managing and evolving environment could be made. However, this requires
a careful design and a lot of Runtime Environment programming. Wid-
gets should become more like plugins, small applications that may extend
whichever part of the system. It requires a far more sophisticated widget
structure and metadata.

e Direct Peer-to-Peer Communication could be introduced This would
innovate the system even more and an obvious application is chatting. Cur-
rently however, peers are anonymous entities to each other, which does in
fact make direct communication illogical. Who would we choose to com-
municate with, if peers do not have any identity? When social networks are

53

introduced to P2P networks, which is already being researched by ithe Tr
bler researchers, this does in fact make a lot of sense. If you hiavel$

you could communicate with them. The widgets could get access to a Social
API, just like the Social Widgets in social network sites such as Facebook,
MySpace and Hyves. Social networking is already very popular, aniiSo
P2P Widgets might get more users to use P2P technology!

We believe that the first steps can be taken by implementing Version Managemen
and bandwidth control for Intra-Widget Communication. These featusemare
easily designed and implemented than the other features, which would take more
than a year to research and implement.

54

Bibliography

[1]
2]
[3]
[4]

[5]
[6]

[7]
(8]
[9]

[10]
[11]

[12]

[13]

[14]

[15]

[16]

[17]
[18]

[19]

[20]

Azureuswiki: Peer exchange.htt p://ww. azureuswi ki . cont i ndex.
php/ Peer _Exchange.

Facebook appsht t p: / / ww. f acebook. com apps/ di rectory. php.
Google desktop gadgetht t p: / / deskt op. googl e. com pl ugi ns/ .
Microsoft gadgetsht t p: // gal | ery. m crosoft. coni si debar/vi st a.
aspx.

The pirate bayht t p: / / www. pi r at ebay. or g.

Python-spidermonkey. http:// code. googl e. com p/
pyt hon- spi der nonkey/ .
Python’s restrictedpython. http://pypi.python. org/pypi/

Restri ct edPyt hon/ 3. 4. 2.

Python's rexec module. http://docs. python.org/library/rexec.
htm .

Wikipedia: Widget engine.http://en. w ki pedi a. or g/ w ki / W dget _
engi ne.

Yahoo! widgetsht t p: / / wi dget s. yahoo. cont .

Burton H. Bloom. Space/time trade-offs in hash codirithwallowable errorsCom-
munications of the ACM, 13:422-426, 1970.

F.R.A. Bordignon and G.H. Tolosa. Gnutella: DistribdtSystem for Information
Storage and Searching Model Descriptialournal of Internet Technology, Taipel
(Taiwan), 2(5), 2002.

I. Clarke, O. Sandberg, B. Wiley, and T.W. Hong. Freeretlistributed anonymous
information storage and retrieval systebecture Notesin Computer Science, pages
46-66, 2001.

B. Cohen. Incentives build robustness in BitTorremtWorkshop on Economics of
Peer-to-Peer Systems, volume 6, 2003.

F. M. Cuenca-Acuna, C. Peery, R. P. Martin, and T. D. Nguy Planetp: using
gossiping to build content addressable peer-to-peernrdton sharing communi-
ties. InProc. 12th |EEE Inter national Symposium on High Performance Distributed
Computing, pages 236—246, 22—-24 June 2003.

Cuong Do Cuong. Seattle conference on scalability: tiybe scalability. Video,
June 2007.

Ipoque GmbH. Internet study 2008-2009. Internet St@{8-2009.

Cisco Systems Inc. Approaching the zettabyte era. WRajeer, Cisco Systems Inc.,
June 2008.

M. Jelasity and M. van Steen. Large-scale newscast atngpon the Internet. Tech-
nical Report IR-503, VU, 2002.

A. Norberg and L. Strigeus. libtorrent: extension el htt p:
/I www. r ast er bar. cont products/|ibtorrent/extension_
protocol . htm.

55

[21]

[22]

(23]

[24]

[25]

[26]

J.A. Pouwelse, P. Garbacki, J. Wang, A. Bakker, J. Yaadpsup, D.H.J. Epema,
M. Reinders, M.R. Van Steen, and H.J. Sips. TRIBLER: a sdué&led peer-to-peer
system.Concurrency and Computation: Practice and Experience, 20(2), 2008.

J.A. Pouwelse, J. Yang, M. Meulpolder, D.H.J. Epemal. Bips, G.J.M. Smit, and
M.S. Lew. Buddycast: an operational peer-to-peer epid@nitocol stack. IrProc.
of the 14th Annual Conf. of the Advanced School for Computing and Imaging, pages
200-205. ASCI, 2008.

Sylvia Ratnasamy, Paul Francis, Mark Handley, Rich&adp, and Scott Schenker.
A scalable content-addressable networkSIBCOMM ' 01: Proceedings of the 2001
conference on Applications, technologies, architectures, and protocols for computer
communications, pages 161-172, New York, NY, USA, 2001. ACM.

Jelle Roozenburg. Secure decentralized swarm disganeribler. Master’s thesis,
Delft University of Technology, November 2006.

Antony Rowstron and Peter Druschel. Pastry: Scalatif#ributed object location
and routing for large-scale peer-to-peer systeriisMiddleware, pages 329-350,
2001.

I. Stoica, R. Morris, D. Karger, M.F. Kaashoek, and Hl&aishnan. Chord: A scal-
able peer-to-peer lookup service for internet applicationProceedings of the 2001
conference on Applications, technologies, architectures, and protocols for computer
communications, pages 149-160. ACM New York, NY, USA, 2001.

56

