
Game Theoretic Stable Mi-
crogrid Formation in the
Electricity Grid

K. Oudshoorn

Te
ch

ni
sc

he
Un

iv
er

sit
eit

D
elf

t

GAME THEORETIC STABLE
MICROGRID FORMATION IN THE

ELECTRICITY GRID

by

K. Oudshoorn

in partial fulfillment of the requirements for the degree of

Master of Science
in Computer Science

Supervisor: Prof. dr. C. Witteveen
Thesis committee: Prof. dr. C. Witteveen TU Delft

Dr. M. M. de Weerdt, TU Delft
Dr. L. M. Ramirez Elizondo, TU Delft

An electronic version of this thesis is available at
http://repository.tudelft.nl/.

http://repository.tudelft.nl/

ABSTRACT

The current architecture of the power grid is outdated and will not provide the
means to deal with the decentralization of energy sources. The smart grid is a
newly envisioned architecture for the power grid that should solve the weaknesses
in the current grid. One application that is part of the smart grid vision is the
microgrid: a coalition of prosumers that is able to operate either in parallel to the
power grid or isolated from it.

In this work we investigate how these microgrids should be formed in order to
maximize their usability while at the same time preserving the freedom of choice
for participants. We apply a game theoretic perspective to simulate the choices
of individual users. This results in a problem that combines the notion of core
stability and maximization of social welfare. For this problem we provide a com-
plexity proof, followed by a relaxation of core stability, k-stability, by limiting the
available knowledge for participants. Finally we produce our own distributed al-
gorithm which can act as a heuristic.

ii

CONTENTS

1 Introduction 1
1.1 The Smart Grid . 2
1.2 Microgrids . 4
1.3 Dynamic Microgrids . 7
1.4 Problem Statement . 9
1.5 Outline . 10

2 Background 11
2.1 Grouping of Electricity Consumers 11

2.1.1 Negligence of Topology 14
2.1.2 Negligence of producers 14
2.1.3 Arbitrary target consumption 15
2.1.4 Fixed amount of microgrids 15

2.2 Defining the Microgrid . 15
2.2.1 Constraints of Microgrid Formation 15
2.2.2 Preferred Properties of Microgrids 16

2.3 Coalition Theory . 19
2.3.1 Utility of Coalitions . 19
2.3.2 Social Welfare . 20

2.4 Coalition Formation Techniques 21
2.4.1 Existing Methods. 23
2.4.2 Exact Algorithm . 23
2.4.3 Approximation Algorithm 25

2.5 Coalition Structure Generation over Graphs 27
2.5.1 Exact Algorithm . 28
2.5.2 Anytime Algorithm. 30

2.6 Stability of Coalitions . 31
2.7 Research Questions . 32

3 Stable Graph Partitioning 35
3.1 Complexity of SGP . 35
3.2 A New Notion of Stability . 40

3.2.1 The Effect of k-Stability 41
3.2.2 The Value of k . 42

3.3 Centralized Algorithm. 43
3.4 Distributed Algorithm. 45

3.4.1 Basic Approach . 46
3.4.2 Proposal Creation . 47
3.4.3 Proposal evaluation . 48

iii

iv CONTENTS

3.4.4 Greedy Growth . 48

4 Experimental Evaluation 50
4.1 Methods . 52
4.2 Material . 53

4.2.1 Implementation . 53
4.2.2 Problem Instances . 53

4.3 Results & Discussion . 56
4.3.1 The Value of k . 57
4.3.2 Distributed Algorithm Performance 60

5 Conclusion 64
5.1 Future Work. 65

1
INTRODUCTION

The job of the power grid is to reliably provide electricity to consumers. This
also means shielding the consumer from blackouts and brownouts. Blackouts
are events when there is no electricity at all, they are the result of equipment
failure, environmental events or even human errors. Brownouts are occurrences
of a voltage drop in the supply of electricity (a voltage sag).

Blackouts are, most of the time, caused by a single failure: the tearing of a
cable due to stormy weather or perhaps a malfunction at a power plant. Even
though there is only a small area where the cause is, the affected area can be
quite large. A blackout can even result in a cascading failure: an event where
one failure leads to a chain of failures.

Sudden loss of electricity can be an annoyance for households: impossibility
of watching TV, shutting down of electrical heating. For other areas however,
power outages have a more damaging effect. For instance, most public transport
is powered by electricity: trains, trams and the subway. Even though blackouts
do not occur often, when they do occur, they affect a large number of people. For
example, during last years’ blackout in Turkey around 70 million people were
left without power over a duration of 5-10 hours [The15]. Even though this is an
exceptional case, NetBeheerNL [Net12] reported that the average Dutch citizen
is deprived of electricity for 20 minutes a year. The situation is worse in the U.S.
where, according to Clark [Cla14], customers lose power for an average of 214
minutes per year.

Brownouts are detrimental to the power grid since voltage sags cause de-
vices to work poorly (e.g. dimmed lights). Other devices that are more sensitive
to voltage sags (like PC’s and microwaves) even need to be reset as a result. For
households these events are usually just a nuisance, but, as Bollen [Bol96] states,
for industrial processes they lead to a loss of revenue or even dangerous situa-
tions.

According to Willis et al. [Wil+16], the current power grid is old-fashioned as
its architecture has hardly changed since its creation. When the power grid was

1

2 1. INTRODUCTION

first created, its only usage of electricity was lighting. During this time it was
a lot easier to predict the electricity demand. In the present, there are numer-
ous applications for electricity, making it much harder to predict the demand
during the day. The grid itself has hardly evolved with this trend. Even though
efforts have been made to stimulate certain behaviour of consumers by using
pricing mechanisms1, the grid still has no means to adapt to consumer demand
in real time. In order to prevent brownouts from occurring, the grid makes sure
to generate more electricity than would be needed in a demand peak. This al-
lows the grid to avoid the need of real time information. In doing so, the grid is
also wasting a lot of energy, since these peaks only sparsely occur.

Another disturbing factor for the management of the power grid has been
the introduction of distributed energy resources (DER’s). Because consumers
install their own solar panels and wind turbines, there are occasions where ex-
cess energy is fed back into the grid electricity. This transforms consumers into
so called prosumers: entities that alternate between consuming and producing
electricity. As of such, the behaviour of the grid is changing. Energy is no longer
produced on a few locations, but rather anywhere in the grid depending on the
prosumers’ demand, wind speeds, brightness of the sun and other factors. As a
result, the current hierarchy structure of the power grid is starting to make less
and less sense and the prediction of electricity demand is becoming increasingly
harder.

In coming years, it is expected that the demand for electricity will keep on in-
creasing, especially with the upcoming of electric vehicles. Estimations indicate
that between 2007 and 2050, electricity consumption will increase by 115% [Tan11].
Given the current infrastructure, the larger energy demands and the increased
difficulty of demand prediction the power grid is becoming harder and harder
to manage.

Due to this increasing dependency on electricity, it is all the more important
to increase reliability and efficiency of the grid. At the same time it is also impor-
tant to provide means to recover from grid failures as it is infeasible to construct
a completely secure grid. The current architecture of the power grid does not
have the means to fulfil these needs. Thus it is required to transform the power
grid into something that can: the smart grid.

1.1. THE SMART GRID
The smart grid is an evolved version of the current power grid. It is not the re-
sult of a single change, but instead relies on a number of them. Tanaka [Tan11]
provides probably the best description of what a smart grid encompasses:

“The smart grid is an electricity network that uses digital and other
advanced technologies to monitor and manage the transport of elec-
tricity from all generation sources to meet the varying electricity de-
mands of end-users. Smart grids co-ordinate the needs and capabil-
ities of all generators, grid operators, end-users and electricity mar-

1A common used pricing mechanism is making electricity cheaper in the night and weekends.

1.1. THE SMART GRID 3

ket stakeholders to operate all parts of the system as efficiently as
possible, minimizing costs and environmental impacts while maxi-
mizing system reliability, resilience and stability.”

Transitions towards the smart grid has already begun in recent years with the
introduction of smart meters. These allow a two-way flow of information: the
supplier obtains information on the demand of the consumers and consumers
obtain information about the prices set by the suppliers. Energy suppliers can
use this information to properly adjust their power generation or provide incen-
tives to the consumers to divert from their current behaviour. At the same time
the consumer can estimate bills and manage their energy consumption accord-
ingly.

Smart meters are, however, only the beginning. [Fan+12] predicts that, ul-
timately, the smart grid will have the capabilities of autonomous maintenance,
recovery of power outages (self-healing), enhanced efficiency and other bene-
fits. An overview of the difference between the existing grid and the smart grid
can be seen in Table 1.1.

Existing grid Smart grid
Electromechanical Digital
One-Way communication Two-Way communication
Centralized generation Distributed generation
Hierarchical Network
Few sensors Sensors throughout
Blind Self-Monitoring
Manual restoration Self-Healing
Failures and blackouts Adaptive and islanding
Manual check/test Remote check/test
Limited control pervasive control
Few customer choices Many customer choices

Table 1.1: A comparison of the smart grid and the existing grid by Farhangi [Far10]

The smart grid is envisioned to improve the power grid in a lot of areas, but
it is not a single invention that allows these improvements. As stated in Tanaka’s
quote, the smart grid will be the result of combining several technologies. We
can therefore assume that there will not be a golden hammer that will allow each
of these improvements at once. In this thesis we will focus on how the smart grid
will achieve a network structure and counter failures and blackouts.

One idea to minimize damage as a result of failures is to contain the areas
where they occur. However, the power grid does not have the capability to do
this. After all, this would require locating the cause of the blackout and dis-
connecting the appropriate section of the power grid. In addition, one cannot
blindly remove a section of the power grid as it cannot not guaranteed that the
rest of the grid will have enough electricity to continue normally.

A better option would be to define self-sufficient clusters in the grid, which

4 1. INTRODUCTION

can remove outgoing connections when faults occur in the grid. Even though
no direct action is taken here to contain the failure, the other areas cannot be
affected by it since they isolate themselves from the entire grid. This way the
majority of the grid will be unaffected by the power outage while the cause of
the outage is being solved.

In [LA02], a system was proposed that can do just that: microgrids. The idea
of microgrids is to sort prosumers into small manageable groups. A microgrid
is envisioned to have the ability to isolate itself from the rest the grid, so called
islanding. By allowing the microgrid to operate as a separate power grid, the
prosumers within will be unaffected by blackouts happening elsewhere in the
grid. Furthermore, these groups will be managed internally, allowing the grid to
view such a group as a single, large prosumer, effectively reducing the amount of
entities in the grid that need to be managed. As a result microgrids will simplify
management of the grid and provide reliable energy for the prosumers within.

1.2. MICROGRIDS
In general, a microgrid is considered to be a coalition of energy sources, loads
and storage devices that is able to operate either in parallel to the existing utility
power grid or isolated from it.

Storage devices (e.g. large batteries or flywheels), can be considered to be
like a prosumer: they consume energy when charging and produce energy when
discharging. Their downside however, is that they have a limit to the amount of
electricity they can deliver/store. As these limits have to be taken into consider-
ation during their usage, they complicate any reasoning on microgrids. For this
reason we neglect their existence in this thesis.

We therefore define the microgrid as follows:

Definition 1.1. A microgrid is a coalition of prosumers that is able to operate
either in parallel to the power grid or isolated from it.

Concerning how large microgrids are, this is not set in stone. There are exist-
ing examples of various sizes: in Schwass [Sch08] a single hospital was described
and in Østergaard and Nielsen [ØN08] an entire island with over 28 thousand
inhabitants. Burr, Zimmer, and Douglass also state the following in About Mi-
crogrids:

“Microgrids are defined by their function, not their size”.

The exact size of a microgrid is not considered to be important. What is impor-
tant is what it can achieve.

So, what is the function of microgrids? It was previously indicated that mi-
crogrids will simplify management of the grid. A microgrid can be seen from
the outside as a single entity that produces or consumes energy. This allows the
environment to form trade contracts with the microgrid without having to con-
cern itself with the numerous entities within the microgrid, thus decreasing the
amount of management needed (from an outside perspective).

1.2. MICROGRIDS 5

Example. In figure 1.1 there are two different presentations of a small power grid
based on an American Electric Power System [Chr99]. This grid contains different
loads and sources, where each entity has the amount of energy it supplies or con-
sumes displayed as a positive or negative number. This grid has been divided into
four separate microgrids (in figure 1.1a indicated by the red borders).

A simplification of the grid is shown in Figure 1.1b. Here, the prosumers in-
side the same microgrid have been aggregated into one entity. The aggregation
maintains the total amount of energy consumed/produced and the external con-
nections. The result is a smaller representation of the same grid.

(a) (b)

Figure 1.1: Two different presentations of a small power grid. On the left is a detailed version with a
number of sources and loads with the red borders indicating microgrids. On the right is the aggre-
gated version where only the microgrids and their total energy supply/consumption is displayed.

The other function of microgrids is to provide reliable energy for the pro-
sumers within. On one hand, we can consider this to be achieved because the
local management of the microgrid prioritizes the benefit of its members, but
the main contribution is a microgrid’s ability of islanding.

Islanding is a different name for the act of a microgrid isolating itself from
the main power grid. In doing so, prosumers inside the isolated microgrid will
only depend on local power production and consumption. They are therefore
unaffected by any events that occur on the outside of the microgrid. In the orig-
inal work on microgrids (Lasseter and Akhil [LA02]), islanding becomes possible
by placing separation devices in between the connections to the main power
grid. When required, these devices shut down these connections and isolation
is achieved.

Blackouts and brownouts, whenever they occur, have been shown to affect
a large area even though the cause can be at a single point in the grid. When
the cause of such an error is outside of a microgrid, a microgrid can protect its
prosumers by isolating itself. The isolation itself does nothing to solve the fault,
but since the prosumers in the microgrid are unaffected, damage is mitigated.
When the entire power grid is subdivided into microgrids, the islanding of mi-

6 1. INTRODUCTION

Figure 1.2: A situation of the small power grid where microgrids are unbalanced.

crogrids helps to contain the area of influence of a brownout/blackout to the
single microgrid it originates from. Assuming their microgrid is self-sufficient,
the prosumers will not notice much of any blackouts/brownouts occurring on
the outside.

There is however, a possibility that a microgrid is not entirely self-sufficient.
For the energy balance of a microgrid during isolation, three different scenarios
can occur:

1. The supply and demand of energy is balanced. This is the optimal case.

2. There is an excess of energy. Producers will have to lower their supply,
resulting in a loss of profit.

3. There is a shortage of energy. Consumers will have to lower their demand,
limiting their actions.

Apart from the first scenario, there are two cases where someone will be nega-
tively impacted due to isolation. Normally, shortages and excesses can be man-
aged with the rest of the grid by selling or buying energy. When a microgrid
is isolated, this option disappears and different tools will need to be used like
changing the behaviour of the prosumers within. However, this can have a neg-
ative impact on the prosumers, as people are usually not so happy if they are not
allowed to watch television.

Defining a balanced microgrid is, however, not enough. The power grid is a
dynamic environment. Consumption of electricity is already variable over the
day and, with the upcoming distributed energy sources, the production is also
starting to become less constant. There is therefore no guarantee that a bal-
anced microgrid will stay balanced over time.

1.3. DYNAMIC MICROGRIDS 7

Example. In figure 1.1, we see the occurrence of the three possible scenario’s for a
microgrid: there are two microgrids with an overall energy consumption of 0kw,
one with a positive amount and one with a negative amount. With the imbalance
being relatively close to zero, the microgrids can be considered to be acceptable.
However, even minor changes in the grid can disrupt this balance.

If we consider a group of prosumers to rely on solar energy (A, B, C, D and E)
and a different group (F, K, L, M and N) to rely on wind energy. But the weather
changes, it becomes more cloudy and the wind speeds up. The solar energy group
will notice a decrease in production and the wind energy group an increase. Every
prosumer within these groups will have a decrease/increase in power of 1 kW. The
result can be seen in figure 1.2. Here there are a number of unbalanced microgrids.
{A,B ,C } has an accumulated shortage of -5 kW. For {E ,D,G , H } this is -2 kW. On
the other hand, {L,K ,L,O} and {F, M , N } now both have an excess of 3 kW.

Static microgrids, no matter how well configured, are not a perfect solution.
Over time, there will always be someone who is negatively affected by it. A more
versatile approach, where energy imbalances could be continuously be avoided,
would therefore be better, as that would treat the cause instead of the symptoms.
Such a situation can be obtained by occasionally altering the composition of the
microgrid. For example, when there is a shortage of energy in a microgrid, pro-
sumers with a large energy consumption could be excluded from the coalition
or other energy producers could be included. This means that microgrids would
become dynamic entities instead of static.

1.3. DYNAMIC MICROGRIDS
Allowing microgrids to change their composition over time increases their capa-
bility to keep their energy production/consumption balanced. This would allow
microgrids to exclude or include prosumers according to its current needs.

Changing the composition of a group of consumers in order to obtain a tar-
geted energy consumption is a concept that has been introduced in [Min+10].
Here, consumers are grouped together to allow for an easier demand manage-
ment. These groups are periodically reorganized to obtain a demand curve within
the groups that is nearly constant as can be seen in figure 1.3. As power gener-
ation is usually configured to accommodate (possible) peak demand, a more
constant consumption results in reduced production costs and creates a more
reliable system [Fan+12].

Microgrid reorganization has another benefit besides adjusting the peak de-
mand. It can also be used to maintain self-sufficient microgrids such that when
isolation is required, none of the isolated prosumers will have to suffer. As faults
can occur out of nowhere and rapidly disrupt the system, there is no time to
organize the microgrids properly after the event occurred. By constantly reorga-
nizing the microgrids according to their estimated consumption/production, it
will be known beforehand which separation devices should be activated to ob-
tain isolation the moment a fault is observed.

The reorganization of the microgrids does not involve any physical changes
to the grid. It merely dictates which separation devices will be activated when

8 1. INTRODUCTION

Figure 1.3: Appliance of dynamic microgrids as defined in [Min+10]. Two existing groups of con-
sumers are reorganized to obtain a configuration where the energy consumption is more constant.

isolation is required. As it is easier to balance the supply and demand using ad-
ditional outside sources/loads, a microgrid will usually operate in parallel with
the main grid. No connections will therefore be established or severed during
the reorganization itself, this only happens due to the activation of separation
devices.

Example. Continuing from the point where the microgrids were imbalanced (see
figure 1.2). We can attempt to rebalance them by altering the microgrid composi-
tion. After the reorganization, the composition of figure 1.4 is reached. Here, we
have three microgrids with an accumulated energy consumption/production of
(nearly) 0 kW.

Now if a power outage is caused by some error at E, the microgrids will react by
removing all outgoing connections (e.g. E −G and B −C). This means {F, N , M ,O}
will be on its own for some time though be it with no excess or shortage of elec-
tricity. Had it been the organization of Figure 1.2, the microgrid {F, N , M } would
have had an excess of electricity during this isolation.

In order to be able to reorganize the microgrids, the power grid will need the
ability to break connections at multiple places in the grid. As any formed micro-
grid has to be able to isolate itself, a microgrid that does not have a separation
device on all outgoing connections is meaningless. Thus to be able to reorganize
microgrids, a larger amount of separation devices is necessary in the grid than it
would be the case for static microgrids.

On the other hand, it is not a must to have a separation device in between
every connection. Entities that cannot disconnect from each other can be ag-

1.4. PROBLEM STATEMENT 9

Figure 1.4: A rearranged version of the unbalanced power grid. Here, microgrids are once again
(nearly) balanced.

gregated and considered as one entity instead, similar to the aggregation of Fig-
ure 1.1b.

With the introduction of dynamic microgrids, a microgrid is no longer a
structure that has been planned, designed or revised by a team of experts. In-
stead, it is a continuously changing structure. If the reorganization of the micro-
grids is not done properly, the newly formed microgrids could turn out worse
than what they used to be or might even become unusable. The formation of
dynamic microgrids should therefore be handled with care.

1.4. PROBLEM STATEMENT
Microgrids can be a great asset for the power grid in terms of management and
reliability. At the same time, they are delicate structures that cannot be created
without some sense of thought. Making microgrids dynamic improves the ben-
efits that they provide, though that does not mean that any reorganization will
result in an improvement and could even lead to a deterioration.

In this thesis we will research how we can compute beneficial reorganiza-
tions of microgrids. On the basis of the work of Mine et al. we will determine
what “beneficial” is. Our research is solely interested in the method of compu-
tation, not the hardware and alterations of the power grid that are required to
realize these reorganizations.

In this thesis we will investigate how it can be ensured that the reorganiza-
tion of microgrids will be beneficial. We hope to provide some insight on this
subject by solving our main problem:

What are suitable techniques to form dynamic microgrids?

The suitability of a technique is determined by a number of requirements:

10 1. INTRODUCTION

• Scalability: as a power grid can easily consist out millions of entities, mi-
crogrid formation can be quite difficult, but this should not result in the
formation to take years to calculate.

• Feasibility and optimality: the resulting microgrid distribution should be
feasible in practice and optimized (what feasible and optimal is will be
discussed in Chapter 2).

• Preservation of freedom of choice: eventually microgrids are being used
and made by individuals, the fact that microgrid assignment could occur
through an algorithm does not remove the ability of those individual to
agree or disagree with the assignment.

1.5. OUTLINE
Admittedly the requirements might seem a bit general, but during the remainder
of this thesis they will be clarified. The next chapter will start with an investiga-
tion of the closely related work of Mine et al. [Min+10]. This will help us define
the constraints and preferences of microgrids.

With our goal being formulated, the focus will shift towards related work on
comparable problems, outside of the power grid research area. After examining
this work, a consideration will be made on what is still required in order to solve
our initial problem. This will lead to the formulation of a number of research
questions.

Chapter 3 will attempt to answer these questions by providing new work in
the form of definitions algorithms and proofs. Some questions might only be hy-
pothetically answered in case no theoretical proof can be provided. An empirical
investigation will be conducted in Chapter 4 in order to test these hypothesises.

Finally, in Chapter 5, all obtained results will be summarized and discussed
in contrast to the original problem statement in order to conclude this thesis.

2
BACKGROUND

In the previous chapter, the problem of forming microgrids has been introduced.
While we have a general idea of what this problem involves (partitioning a net-
work of prosumers into coalitions that optimizes the energy balance), we lack
a formal definition. The work closest related to the formation of dynamic mi-
crogrids we have found so far is that of Mine et al. [Min+10]. As of such this
work will be used as a starting point of our investigation. We will explore the
interesting points of this work together with its downsides and use that to define
the constraints and goals of microgrid formation. Next, the closely related prob-
lem where players try to form coalitions for increased benefit, Coalition Struc-
ture Generation and its related work will be discussed in Section 2.4 followed by
a more specific version that is constrained by the topology of networks in Sec-
tion 2.5. Afterwards, a different problem is discussed where the overall quality of
the coalitions no longer considered. Instead the problem is centred around the
rationality of players, meaning players care less about others and more about
the benefit they obtain. This chapter will then finally be wrapped up by a dis-
cussion of the found work and the formulations of the research questions that
remain.

2.1. GROUPING OF ELECTRICITY CONSUMERS
As stated before in Section 1.3, Mine et al. propose to repeatedly alter the com-
position of consumer groups in order to reach a targeted energy consumption
that minimizes fluctuations in demand.

First of all they calculate for each group its target consumption1. Each con-
sumer has a predicted amount of energy consumption over a certain timespan.
This knowledge is used to divide the consumers over the groups in such a way
that the total absolute difference between the target consumption and the pre-

1According to the authors, the target consumption of a group is calculated using the history of power
consumption of that group, though exact details have been omitted.

11

12 2. BACKGROUND

dicted consumption is minimized. In [Min+10], the market of Japan is consid-
ered where electricity is sold in intervals of 30 minutes. As of such, the consid-
ered timespan is of 30 steps of a minute. More formally, this problem can be
described as an Optimized Grouping problem.

Optimized Grouping: Given a set of bins M, with for every j ∈ M a target sum at
time step t G ′

j (t), a set of individuals V , where each i ∈ V has an integer associ-

ated at time step t , Hi (t). Define G j (t) = ∑
i∈ j Hi (t). Divide V over M such that∑M

j=1

∑30
t=0(G j (t)−G ′

j (t))2 is minimized.

The Optimized Grouping problem is solved using a mixed integer linear pro-
gram (MILP). In this program, the distribution of V over M is indicated by a bi-
nary matrix X .

X =

X1,1 · · · X1,m
...

. . .
...

Xn,1 · · · Xn,m

 (2.1)

Where m = |M | and n = |V |. In X , every column represents a bin and every row
an individual. If an Xi j = 1 then that means i ∈V is part of j ∈ M . Furthermore,
it is enforced that an individual must be part of exactly one bin. This means that
exactly one element in every row should be set to 1 (since X is a binary matrix,
only 0 or 1 is an appropriate value). This boils down to the following MILP:

Minimize
M∑

i=1

30∑
t=0

(Gi (t)−G ′
i (t))2

Subject to
M∑

m=1
Xnm = 1 ∀n ∈V

Xi j ∈ {0,1} ∀i , j

As explained, the optimization function is used to obtain a group structure
where each j has an expected sum G j (t) that approaches its target sum G ′

j (t) as

close as possible over a timespan of 30 steps (hence the summation of t = 0 to
30). The constraint function deals with the amount of different bins an individ-
ual can be in.

Example. Consider the consumers of Figure 2.1 {A,C ,G , H ,K ,L, M ,O}, with their
respective consumption amount H = {5,6,5,20,4,5,12,3} (in this example we will
negate any changes over time). Assume, the energy consumption does not change
overtime. We would like to form four groups where energy production and con-
sumption is balanced. Thus we formulate G ′ = {9,25,13,12}. Then if we solve our

2.1. GROUPING OF ELECTRICITY CONSUMERS 13

Figure 2.1: A power grid representation before any micorgrids have been formed. Prosumers
are connected by electricity cables (the connections between nodes) and have a energy produc-
tion/consumption indicated by the number inside the nodes.

MILP, we find:

X =

1 0 0 0
0 0 1 0
0 1 0 0
0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1
0 0 1 0

(2.2)

With G = {9,25,14,12}, hence
∑M

j=1(G j −G ′
j)2 = 1. Translating X to a more read-

able set of coalitions we get {{A,K }, {G , H }, {C ,L,O}, {M }}. Including the producers
that were attached to the coalitions we get {{A,B ,K }, {D,E ,G , H }, {C , J ,L,O}, {F, M , N }}

The Optimized Grouping problem seems very similar to the problem of form-
ing dynamic microgrids. There are however, some important differences that
show why we cannot apply this approach directly:

• Negligence of topology

• Negligence of producers

• Arbitrary target consumption

• Fixed amount of microgrids

Each of these differences will be discussed to give a clearer view of their mean-
ing.

14 2. BACKGROUND

Figure 2.2: A small power grid divided up into microgrids according to the partitioning {{A,B ,K },
{D,E ,G , H }, {C , J ,L,O}, {F, M , N }}. Due to not every partition being connected, the effective parti-
tioning is in fact {{A,B}, {K }, {D,E ,G , H }, {C }, {J }, {L}, {O}, {F, M , N }}

2.1.1. NEGLIGENCE OF TOPOLOGY
First of all, the topology of the grid seems to be disregarded. It is implicitly as-
sumed that the grid spans a complete graph. In case a microgrid isolates it-
self from the rest of the grid, it severs all outside connections. This means that
in order to be able to share electricity within the microgrid it needs to span a
connected graph by itself. In the MILP, this property is not guaranteed unless
the whole network is a complete graph. Reality is, however, far from this situa-
tion. In a survey on the properties of the grid infrastructure by Pagani and Aiello
[PA12] it was shown that an entity is, on average, connected to roughly three
other entities. It is therefore unlikely that a random partition from the grid will
span a connected graph.

Example. In the previous example, one of the formed groups was {C ,L,O}. If
this were a microgrid that isolates itself by closing off all external connections2 we
would end up with three separate prosumers instead of one island. If this idea
is extended to the whole partitioning, a collection of microgrids is found that is
rather unbalanced in contrast to the proposed solution (see Figure 2.2).

2.1.2. NEGLIGENCE OF PRODUCERS
The second difference is the negligence of power suppliers. Energy producers
are also part of the grid and since they are becoming a less centralized entity,
they are important for ensuring the connectedness of microgrids. Furthermore,
consumers are not the only ones with fluctuations. Not every power source
can provide a constant amount of energy (think of windmills and solar panels).

2An external connection is a connection between two prosumers of different microgrids

2.2. DEFINING THE MICROGRID 15

Therefore, it is important to know which suppliers are to be within the micro-
grid, instead of assuming a giant energy pool.

2.1.3. ARBITRARY TARGET CONSUMPTION

This brings us to the third difference: the arbitrary target consumption of each
group. When producers are also able to switch groups, target consumption is a
meaningless value. It would suffice to say that the consumption of a microgrid
should be close to equal to its production. On a side note, it is also unclear how
targeted consumption is calculated by Mine et al. as they only shortly mention
that it is based on the history of the existing groups.

2.1.4. FIXED AMOUNT OF MICROGRIDS

The last difference with Optimized Grouping is that, there, the number of bins
is fixed. With the removal of target consumption, there is no reason to keep the
number of microgrids fixed. This allows for more freedom and solutions with a
possibly more balanced energy production/consumption.

Clearly, the formation of dynamic microgrids is not as straightforward as it
seems. It is, therefore, important to define what the dynamic microgrids are
trying to achieve and what the constraints of a valid solution are. For this reason
we need to dive a bit deeper into the definition of a microgrid and investigate
what a valid microgrid is and when it is beneficial for its prosumers.

2.2. DEFINING THE MICROGRID
In the previous section we have noted several aspects that could collide with
the very idea of what a microgrid is (network topology being one of them). For
clarity it is needed to formulate constraints for microgrids, then we will have a
good view of what a legitimate microgrid is.

A legitimate microgrid is however, not per se a beneficial one. For one, it
is not a requirement for a microgrid to have a balanced energy production and
consumption, though it is highly preferred. There are certain preferences for the
composition of a microgrid and in order to find the optimal one, these prefer-
ences need to be defined.

2.2.1. CONSTRAINTS OF MICROGRID FORMATION

The formation of microgrids is constrained by a number of factors. One cannot
simply group together a bunch of prosumers and call them a microgrid. There
are rules for this process and it is important to know what they are.

First of all, the prosumers within a microgrid have to be connected with each
other, either directly or through a path of other prosumers of the same micro-
grid. In practice, a prosumer is not directly connected to everyone else in the
grid and when microgrids are in island-mode, energy can only be transported
over connections within the microgrid. Thus, When there are sources and loads
that are not interconnected within this island (as in figure 2.2), energy cannot be
shared between these entities and the whole microgrid idea becomes obsolete.

16 2. BACKGROUND

Furthermore, prosumers will have the ability to choose whom to affiliate
with. Since, it hard to predict this kind of behaviour, we will assume that pro-
sumers are rationally selfish. This means that they will want what benefits them
the most3 and do not decide on factors like a gut feeling. It is important to think
about how these prosumers would act in consideration to the rest of the grid.
Selfish prosumers will not accept a given configuration if they know that there is
a better one available for them.

With the knowledge of these constraints the eventual formed microgrids should
be valid. However, constructing viable microgrids is not the only thing we are
concerned about. It is also a goal to form convenient microgrids. A valid mi-
crogrid does not guarantee that it is advantageous. There are microgrids that
are more beneficial than others. Some can provide more secure energy, others
have a larger amount of renewable resources. There are a number of factors that
determine the quality of a microgrid.

2.2.2. PREFERRED PROPERTIES OF MICROGRIDS
Microgrids have the purpose of benefiting prosumers, but some can do this bet-
ter than others. Before it can be determined when a microgrid is better than an-
other, the preferred properties should be indicated. Combining the evaluation
of these properties we can form a function that can give an indication of how
good a given microgrid is. The idea of this function is that it could be substi-
tuted in order to adjust the evaluation of microgrids (without having to change
the algorithm).

In the work of [Min+10], consumers were organized based on their estimated
demand trend G j (t) for a given time space. As was already stated in the Sec-
tion 2.1.2, this approach neglects the existence producers. In order to make a
self-sufficient microgrid, prosumers should be gathered such that the estimated
demand and supply trend closely matches each other.

In this thesis we simplify the representation of the demand/supply trend
over time to a single number. Admittedly, this is an inaccurate representation
of the consumption/production of a prosumer as it does not provide any infor-
mation about a prosumer’s behaviour over time. However, switching between
the two representations will only influence the difficulty of modelling the pro-
sumers, not the way microgrids will be organized.

Even though the grid consists out of prosumers, it does not take away that
there are producers and consumers in the grid. Both have a different preference
when it comes to available energy in the microgrid. Consumers generally want
a surplus of energy so they have no limits in their behaviour. Simply speaking,
they want to be able to turn on the tv whenever they want. Producers, on the
other hand, want to sell as much energy as they can produce. It is therefore
more in their favour when the demand is higher than the supply.

From our point of view it suffices to say that microgrids should have a bal-
anced demand and supply, since that is in everyone’s interest. More formally,
it means that for a microgrid X ⊆ V , where each prosumer i ∈ V has an energy

3A description of what is beneficial will be given at section 2.2.2

2.2. DEFINING THE MICROGRID 17

consumption/production ri , we can calculate the total supply S(X) =∑
i∈X , ri>0 ri

and total demand D(X) = −∑
i∈X , ri<0 ri . The balance value can then be calcu-

lated by:

ub(X) = min{S(X),D(X)}

max{S(X),D(X)}
(2.3)

The closer ub(X) is to 1, the better the energy balance in X is. The minimum of
the demand and supply is divided by the maximum in order to stay indifferent to
whether demand or supply is larger. Ratio is believed to be more suitable than
difference for the formula of bal ance as this allows the obtained utility to be
proportionate to the relative power balance. A difference of 5 MW has a larger
negative impact in a microgrid with a total demand of 10 MW than in one with
100 kW.

Another preferred property of microgrids is safety of errors. Isolation keeps
the prosumers in a microgrid safe from occurring on the outside, but it will not
help when errors are occurring inside the microgrid. The safety of a microgrid
is based on factors such as the type of power sources or the age of the electricity
lines present. As these kind of factors are quite hard to model, we have chosen
for a different one to represent the safety of a microgrid: its size.

Microgrids should be small in comparison of the power grid. If we were to
assume that every location in the grid is equally prone to faults, the probability
of a single prosumer being the origin of a fault during such an event, is 1

n , with
n being the total number of prosumers in the grid. Therefore, for a microgrid X ,
the probability of the fault originating from one of the prosumers of X is given
by |X |

n . The negation of that, the probability of a fault occurring outside of X is

given by 1− |X |
n .

When a fault occurs outside of the microgrid, it can protect itself by island-
ing. To obtain safety of errors, the probability of a fault occurring outside of the
microgrid should be preferably large. Thus the safety of a microgrid X is some-
what represented by its smallness:

us (X) = 1− |X |
n

(2.4)

By combining ub(X) and us (X), a function can be created that can evaluate
the relative value of a microgrid. As these properties are not necessarily equal in
importance with respect to each other, they are both weighted by a variable w :

u(X) = w ·us (X)+ (1−w) ·ub(X) (2.5)

u(X) always returns a value between 0 and 1, which allows for an easy judge-
ment of good and bad coalitions (e.g. u(X) = 0.98 would be very good and
u(X) = 0.2 would be poor).

The only problem is that both us and ub provide a linear evaluation of the
coalitions. In our opinion, a coalition A that is already balanced (ub(A) = 0.85)
has less to gain from improving that balance than a less balanced coalition B
(ub(B) = 0.5). A can already be considered pretty self-sufficient but B is not, thus

18 2. BACKGROUND

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
x

y

1

1 + e10(0.5−x)
1

1 + e0.5−x

x

Figure 2.3: Plot of the sigmoid function σ(x) = 1
1+e10·(0.5−x) . It is a slightly modified version of the

standard sigmoid function, where the turnover point y = 0.5 has been shifted to x = 0.5 and the curve
occurs in a shorter range. The obtained function is better suited for evaluating values 0 ≤ x ≤ 1.

an improvement in balance of 0.1 for both A en B improves the ability to be self-
sufficient more for B than it does for A, thus it should provide more extra utility
for B than for A. On the other end for the spectrum (close to 0), very imbalanced
coalitions are unlikely to be self-sufficient thus an improvement in balance of
0.1 should have a small effect on the utility.

The same reasoning can be applied to the smallness of coalitions as very
small coalitions can be considered desirable and coalitions close to the size of
the network way too big. The closer the property values are to their limits, the
less the differences should matter. To establish this behaviour, a sigmoid func-
tion is used (well known for its S-shaped curve).

The standard sigmoid function 1
1+ex has its turning point of 0.5 at x = 0. Our

goal is to use this function for x ∈ (0,1) therefore this turning point has to shift
to x = 0.5 and a small adjustment is necessary: 1

1+e0.5−x . Furthermore, in order
to reach the asymptotes earlier a multiplier of 10 is used. This results in the final
σ-function:

σ(x) = 1

1+e10·(0.5−x)
(2.6)

The behaviour of this function and its alternatives can be seen in Figure 2.3.
With the addition of the sigmoid function, the frame for the utility function

is set. However, the value of the weight for balance and smallness has not yet
been determined. One thing that can be said is that balance is more important
than smallness. The main reason for the coalitions is to obtain a proper balance,
smallness is mostly there to make sure that coalitions do not cover the whole
network just to obtain a slightly better balance.

Smallness deters the occurrence of extreme size increases for small increase
in utility. But it should not be used to justify a small imbalanced coalition. In our
opinion, the minimum balance that would overrule the usage of an entire net-

2.3. COALITION THEORY 19

work with perfect balance is around 0.6 . This would probably provide enough
means to become temporarily self-sufficient in case of emergencies, though be
it far from ideal. Combined with the perfect smallness the utility of such a coali-
tion should be about the same as that of a coalition with perfect balance and
and minimal smallness. This leads to the following equation:

w ·σ(1)+ (w −1) ·σ(0.6) = w ·σ(0)+ (w −1) ·σ(1)

w ·1+ (w −1) ·0.75 ≈ w ·0+ (w −1) ·1

w ≈ 0.2

We estimate a proper value for the weight to be w = 0.2, resulting in the final
utility function:

u(X) = 0.2 ·σ(us (X))+0.8 ·σ(ub(X)) (2.7)

With this function we have obtained a means to evaluate how well a single
microgrid is. However, how does one assess the quality of multiple microgrids?
Is a small amount of elite microgrids better than a large amount of mediocre
ones? These questions need answers before we can investigate how the forma-
tion should be performed.

According to Gittoi [Git] coalition theory deals with the analysis of one or
more groups of agents, called coalitions. This involves evaluating individual
coalitions, but also a group of coalitions. The ideas of coalition theory can there-
fore also be applied to the formation of microgrids, which are in essence a groups
(microgrids) of agents (prosumers) as well.

2.3. COALITION THEORY
Coalitions are generally formed when people have something to gain from it. In
some cases they need the help of others to achieve a certain goal and in other
cases they can achieve their goal more efficiently with the help of others.

Example. Using the state of prosumers in the power grid of Figure 2.1, we can
consider the situation of prosumer M. M is currently consuming 12 kW. When
there occurs a blackout and M acts like a microgrid, isolating himself from the
grid, M will be a single consumer with no power to consume. Therefore, in order
to stay safe during blackouts he will need the help of producers. At the same time,
producers like F have an incentive to help out consumers, or they will not be able
to sell their energy during isolation. Thus, both producers and consumers have
a common interest to form coalitions with each other. However, one can wonder:
who should form a coalition with whom in order to maximize the obtained ben-
efits? Will any kind of coalition work? What will happen if a new prosumer joins
the grid? These are the kind of questions coalition theory concerns itself with.

2.3.1. UTILITY OF COALITIONS
A coalition can provide benefits for a person. As one coalition will be more ben-
eficial than another, a preference for certain coalitions can be formed. Such a
preference for coalitions can be expressed in a linearly ordered way. If PM is the

20 2. BACKGROUND

collection of preferences for all coalitions that include M then part of it could
look like this: PM ({M ,F, N }) > PM ({M ,F }) > PM ({M , N }) > PM (M). As such, it
can be stated that M ’s preference for the coalition {M ,F, N } is larger than that
for {M ,F }.

However, when we start to include coalition possibilities with more and more
players, the amount of possible coalitions becomes larger and larger. There are
occasions where the amount becomes so large that it is infeasible to maintain a
collection of preferences for all coalitions from the viewpoint of all players. For
these cases an evaluation function is more appropriate. Thus instead of having
a set PM , there would be a function uM that can link a value to a coalition that
is provided as input. uM ({M ,F, N }) could for instance depend on the net energy
and the size of the coalition (an indication of how stable energy supply will be).
the higher this value is, the more robust the energy supply is expected to be and
the more preferred that coalition is for M .

Definition 2.1. Utility represents the motivations of players. A utility function as-
signs a number for every possible coalition with the property that a higher num-
ber implies that the outcome is more preferred. [Sho05]

Knowledge on the utility of coalitions is useful in different ways. As explained,
one of these is the ability to determine a preference order for coalitions. Another
benefit is the ability to evaluate a set of multiple coalitions, not from the individ-
ual’s point of view, but from the perspective of the greater good, known as social
welfare.

2.3.2. SOCIAL WELFARE

Coalitions are not always used for the purpose of improving the utility of selfish
individuals, they can also be used to improve the utility of a whole environment.
The main reason to use microgrids in the power grid is to provide reliable energy
to prosumers. This means that, for the evaluation of the system, it is more im-
portant to measure the utility of the entire system instead of deciding whether a
single prosumer was able to maximize its utility or not.

As described in [TW04], there are multiple ways to determine social welfare:
using the sum of utility for each player, the sum of player utilities and variances
and the utility of the worst of player. In this thesis we use the following defini-
tion:

Definition 2.2. Given a set of coalitions P = {P1, . . . ,Pk } and a utility function
u(X), the social welfare of P is given by

∑
P j ∈P (|P j |∗u(P j)).

Maximizing social welfare is an important goal in order to improve the situ-
ation for everyone involved. However, coalitions are non-overlapping, meaning
that if someone joins a coalition, he will have to leave his current one. This will
have an effect on both coalitions. Coalition formation is not a straightforward
task as we will see in the next section.

2.4. COALITION FORMATION TECHNIQUES 21

2.4. COALITION FORMATION TECHNIQUES
Definition 2.3. Given a set of players N = {1,2, ...,n} a coalition structure is a set
of disjoint subsets P = {P1,P2, ...,Pm} that partitions V :

⋃m
j=1 P j = V , Pi ∩P j =;

with i 6= j .

Coalition Structure Generation (CSG) focuses on creating a structure such
that social welfare is maximized. It has been shown to be a very time consum-
ing problem, since the amount of different coalition structures is so large. An
example can be seen in Figure 2.4. Here we can see a Coalition Structure Graph,
showing all the different structures that are possible. The connecting lines be-
tween the combinations show how we can transfer from one coalition structure
to the other.

Coalition Structure Generation (CSG): Given a set of players V and a utility
function u(X). Find a partitioning P = {P1, . . . ,Pm} of V such that

∑
P j ∈P (|P j | ∗

u(P j)) is maximized.

Figure 2.4: Coalition Structure Graph for a game with 4 players[San+99]. Represents all possible
coalition structures that can be formed with 4 players. Lines indicate a single merge/split move to
transition from one structure to the other.

Consider the number of different ways a set of size n can be partitioned. We
can partition the set into one subset, or into two disjoint subsets all the way to n
subsets. In the first case the single subset will contain all the elements and in the
latter, every subset will contain a single element. Both of these options can only
be formed in one way. But with any intermediate amount of subsets the number
of possibilities is less straightforward.

Definition 2.4. The number of ways to partition a set of n objects into i , non-
empty sets is given by Z (n, i), the Stirling number of the second kind (or Stirling
partition number)[GKP89].

22 2. BACKGROUND

Z (n, i) = i Z (n −1, i)+Z (n −1, i −1) (2.8)

Z (n,n) = 1 (2.9)

Z (n,1) = 1 (2.10)

As explained before, the base cases consist of Z(n, n), the case where all sub-
sets contain one element, and Z(n, 1), the case where one subset contains all
elements. To comprehend the main recurrence formula, one needs to under-
stand how this is obtained from the results of the smaller set. By increasing the
set size by one, the new element either needs to be added to existing subsets, or
added as a single subset. By adding the element to existing subsets, the amount
of subsets does not increase. Since there are i different subsets, Z (n−1, i) can be
changed n times. Thus we reach the first term i Z (n−1, i). The second term con-
siders the addition of a subset with solely the new element and therefore counts
all the known possibilities for i −1 subsets. Hence Z (n −1, i −1) is used.

Using this, we can find the total amount of possible partitions. This is called
the Bell Number B(n) (see Figure 2.5). With

B(n) =
n∑

i=1
Z (n, i) (2.11)

In [San+99] it has been shown that B(n) ∈ω(n
n
2) and B(n) ∈ O(nn). This means

that the growth of the Bell Number sequence is super exponential4. Therefore, it
can be concluded that the amount of possible coalition structures is exception-
ally large.

Figure 2.5: The sequence of Bell Numbers [Slo16] compared to 2n , nn and nn/2.

The most notable achievements in the literature are that of [San+99] and
[RJ08]. [RJ08] constructed a dynamic programming algorithm that can find the

4A super exponential function grows faster than an exponential function

2.4. COALITION FORMATION TECHNIQUES 23

optimal coalition structure in O(3n) and [San+99] proved that for a bounded
approximation algorithm, at least 2n−1 comparisons are needed. While such
an approximation is certainly better than checking all combinations, it is still
somewhat unusable for something as large as the power grid, where the num-
ber of individuals can easily be larger than a thousand (2999 > 1080 ≈ number of
fundamental particles in the observable universe).

2.4.1. EXISTING METHODS
In order to form the coalitions, there is the possibility of just letting the agents
sort it out on their own. In most cases this will result in the usage of a Best-First
decision. Each agent will propose the coalition that is most suitable for him. But
when agents have different needs and agendas, chances are you will end up in
a situation where agents will keep on changing their coalition because there is
always a group of agents that can find a better coalition.

As a rule of thumb, coalition formation usually happens in 3 steps [San+99]:

1. Coalition Value Calculation: For each possible coalition, the value of that
coalition is calculated. This value can then be used as an indication of how
well that coalition will perform, should it be formed. These coalition val-
ues can then be used to decide which should form the coalition structure.

2. Coalition Structure Generation: Using the coalition values, the coalition
structure is decided. Usually the goal is to maximize the social welfare of
the system.

3. Pay-off Distribution: After coalitions have been formed, there is still the
question whether they are stable. A coalition structure with maximized
social welfare is no guarantee for stability. However, as shown in [Vin+12],
stability can be achieved by distributing the pay-offs properly.

Due to the large amount of possibilities (see Section 2.4), the most computa-
tionally intense of these steps is Coalition Structure Generation (CSG). That is
probably also the reason the focus of the literature is on that part of coalition
formation.

There have been a number of approaches to coalition structure generation,
both exact and approximative. Some are more useful in relation to the view of
dynamic microgrids, others are not. Here we will discuss a number of them and
whether they can be applied to forming microgrids or not.

2.4.2. EXACT ALGORITHM
Rothkopf, Pekec, and Harstad [RPH98] proposed an exact algorithm for CSG us-
ing dynamic programming. The worst-case runtime of this algorithm is O(3n).
Later, an improvement on this algorithm was proposed in [RJ08], lowering the
amount of needed operations as well as the amount of memory needed. The re-
sulting decrease was at most a factor 3, thus not being able to significantly lower
the bound on the runtime.

24 2. BACKGROUND

size Coalition The evaluations that are performed before setting f1 and f2 f1 f2

1 {1} u({1}) = 30 {1} 30
{2} u({2}) = 40 {2} 40
{3} u({3}) = 25 {3} 25
{4} u({4}) = 45 {4} 45

2 {1,2} u({1, 2}) = 50 f2[{1}]+ f2[{2}] = 70 {1} {2} 70
{1,3} u({1, 3}) = 60 f2[{1}]+ f2[{3}] = 55 {1, 3} 60
{1,4} u({1, 4}) = 80 f2[{1}]+ f2[{4}] = 75 {1, 4} 80
{2,3} u({2, 3}) = 55 f2[{2}]+ f2[{3}] = 65 {2} {3} 65
{2,4} u({2, 4}) = 70 f2[{2}]+ f2[{4}] = 85 {2} {4} 85
{3,4} u({3, 4}) = 80 f2[{3})+ f2[{4}] = 70 {3, 4} 80

3 {1,2,3} u({1, 2, 3}) = 90 f2[{1}]+ f2[{2,3}] = 95 {2} {1, 3} 100
f2[{2}]+ f2[{1,3}] = 100 f2[{3}]+ f2[{1,2}] = 95

{1,2,4} u({1, 2, 4}) = 120 f2[{1}]+ f2[{2,4}] = 115 {1, 2, 4} 120
f2[{2}]+ f2[{1,4}] = 110 f2[{4}]+ f2[{2,3}] = 115

{1,3,4} u({1, 3, 4}) = 100 f2[{1}]+ f2[{3,4}] = 110 {1} {3, 4} 110
f2[{3}]+ f2[{1,4}] = 105 f2[{4}]+ f2[{1,3}] = 105

{2,3,4} u({2,3,4}) = 115 f2[{2})+ f2[{3,4}] = 120 {2} {3, 4} 120
f2[{3}]+ f2[{2,4}] = 110 f2[{4}]+ f2[{2,3}] = 110

4 {1,2,3,4} u({1, 2, 3, 4}) = 140 f2[{1}]+ f2[{2,3,4}] = 150 {1,2} {3,4} 150
f2[{2}]+ f2[{1,3,4}] = 150 f2[{3}]+ f2[{1,2,4}] = 145
f2[{4}]+ f2[{1,2,3}] = 145 f2[{1,2}]+ f2[{3,4}] = 150
f2[{1,3}]+ f2[{2,4}] = 145 f2[{1,4}]+ f2[{2,3}] = 145

Table 2.1: Example from [RJ08] on how the DP-algorithm computes the tables f1 and f2.

The idea of the algorithm is to construct a path through the coalition struc-
ture graph, starting from the grand coalition, towards the optimal node. Move-
ment through the coalition structure graph can be seen as the splitting of a coali-
tion (merging of two coalitions would be a backwards movement).

Construction of the path is achieved by building two separate tables: f1 and
f2. In f1 the most beneficial split is saved and in f2 the maximum value achiev-
able with that split. The most beneficial split is determined using already filled
in values in f2 for subsets of the current coalition and the value for the coalition
itself.

Take for example the coalition {1, 2} in Table 2.1. The value of this coalition
is 50 whereas the combined value of the separate coalitions {1}, {2} is larger than
that: 70. Thus whenever a node with the coalition {1, 2} is reached in the coali-
tion structure graph, the decision will be made to split into {1},{2}.

When both tables have been filled, the path can be constructed. Starting
with the grand coalition {1, 2, 3, 4}, table f1 returns {1, 2}, {3, 4}. Following these
coalitions, the optimal coalition structure is obtained: {{1},{2}, {3, 4}}.

In Table 2.1 it can be seen that there are three different ways to obtain the

2.4. COALITION FORMATION TECHNIQUES 25

Algorithm 2.1 A Dynamic Programming algorithm for CSG [RJ08]

1: function DP_CSG(N , u)
2: for all n ∈ N do
3: f1[{n}] := {n}
4: f2[{n}] := u({n})

5: for s := 2 to |N | do
6: for all {C |C ⊆ N , |C | = s} do
7: f2[C] := max

C ′⊂C , 1≤|C ′|≤ 1
2 |C |

f2[C ′]+ f2[C −C ′]

8: if f2[C] ≥ u(C) then
9: f1[C] := {C ′,C −C ′}

10: else
11: f1[C] :=C
12: f2[C] := u(C)

13: return GET({N})

14:

15: function GET(N)
16: if | f1[C]| > 1 then
17: C S =;
18: for all C ∈ f1[C] do
19: C S :=C S∪ GET(C)

20: else
21: C S := {C }
22: return C S

maximum value of 150: {{1}, {2, 3, 4}} ,{{2}, {1, 3, 4}} and {{1 2}, {3, 4}}. This can
be related to the fact that there are three different paths from the grand coalition
to the optimal CS. This means that redundant calculations are being made. In
the improved version they lower this redundancy by avoiding edges that lead to
the same node. They only consider a split of a coalition of size s′′+ s′ into two
coalitions of sizes s′′ and s′, with s′′ ≥ s′ if:

s′′ ≤ n − (s′+ s′′) or n = s′+ s′′ (2.12)

Thus only if n = 3, will a split into two coalitions of sizes 1 and 2 be considered.
This lowers the amount of checks as can be seen in the resulting CSG graph (see
Figure 2.6). It does not remove all the redundant checks, as there are still a lot
of edges going towards the 4th level, but it does clear up a large amount. More
importantly, all the nodes in the CSG graph are still reachable. In [RJ08] they
prove that this holds for any number of players.

2.4.3. APPROXIMATION ALGORITHM
In attempt to obtain a more feasible way of generating coalition structures, an
approximation algorithm was constructed in [San+99]. This approximation is
tightly bound by the amount of agents a and is acquired by solely looking at the

26 2. BACKGROUND

Figure 2.6: Coalition Structure Graph for a game with 4 players while only considering splits accord-
ing to te rule of [RJ08].

cases where one coalition is split from the grand coalition (see level 2 in Fig-
ure 2.4). The resulting coalition structure would then be a set of two coalitions.
Since there are 2a−1 different coalitions that can split of from the grand coali-
tion, it is required to evaluate at least 2a−1 structures. If after doing this, there
is still time left, the result can be improved by looking at the next level (coali-
tion structure with three coalitions). Moreover, they show that no algorithm can
achieve a bound on the optimal solution with any less then 2a−1 evaluations.

Algorithm 2.2 A bounded anytime approximation algorithm for CSG [San+99]

1: function DP_CSG(u)
2: Search the bottom two levels of the CSGraph
3: Continue with a breadth-first search from the top of the graph as long as

there is time left, or until the entire graph has been searched
4: Return the coalition structure with the highest welfare among the ones

seen so far

The problem with this approximation is, that only a small amount of coali-
tions will be formed. The resulting coalition structure will therefore either have
very few equally large coalitions, or at least one very large coalition. Both of
these possibilities are far from ideal for the idea of microgrids, where the goal is
to partition the grid into many small coalitions. Even though it is possible that
there are a few well-formed microgrids, there will always be a bad coalition left.
Which provides a lot of unfairness towards the prosumer in the large coalition.

Since this algorithm simply evaluates all coalition structures one by one, it
can return the best found so far at any time. So yes, this one does have an any-
time property.

The ability to conform to graphical structures uses the same argumentation

2.5. COALITION STRUCTURE GENERATION OVER GRAPHS 27

as for the previous algorithm. As long as we can find a way to filter out illegal
combinations, we can simply evaluate the left over possibilities.

For finding a solution, the coalition structures are checked one by one. Us-
ing the previous solution as starting point would mean that you would skip all
the coalition structures that come before that one. This would only be useful
if the value of the skipped structures did not change in the mean time. Other-
wise, there still is the possibility that a better coalition structure exists within the
skipped set.

2.5. COALITION STRUCTURE GENERATION OVER GRAPHS

So far, we have seen a number of approaches to generating coalition structures.
In general it is assumed that there are no restrictions on who can form a coalition
with whom. However, as we have shown in Section 2.2.1, not every combination
of players is feasible. Coalitions can be constrained by communication, trust or
the ability to share resources.

As Myerson [Mye77] first noted, such constraints can be modelled as a net-
work, where coalitions are only considered feasible if all members are connected
with each other, either directly or indirectly through other members of the coali-
tion. In Section 2.2.1 we have seen how this works for the formation of micro-
grids: a microgrid (coalition) should not be formed if not all members are con-
nected with each other. Disconnected prosumers of the same microgrid cannot
share energy with each other, which can lead to unexpected results during isola-
tion. Another example is given by Hoefer, Váz, and Wagner [HVW14]: a situation
where scientists collaborate on papers and projects. A scientist does not know
every other scientist in the world, and hence can only cooperate with the ones
that he does know. These acquaintances span a network where a collaboration
of scientists can only exist if they know each other directly or through someone
else in the collaboration.

Graph Coalition Structure Generation (GCSG): Given a graph G = (V ,E) and
a utility function u(X). Find a partitioning P = {P1, . . . ,Pm} of V such that the
induced subgraphs of P are connected and

∑
P j ∈P (|P j |∗u(P j)) is maximized.

Even with the presence of constraints for coalitions, the traditional approaches
for CSG can be used. By giving infeasible coalitions a utility of −∞, these coali-
tions are avoided in order to maximize social welfare. However, this does not
mean infeasible coalitions do not participate in the calculation of a solution. As
a result, redundant work is being done and calculations take a longer time than
they should.

To counter the redundant work, proposals have been made that focus on the
graphical constraints of coalitions. Most of this work concentrates on enumer-
ating the possible coalitions (or structures) in a smart way such that infeasible
coalitions are not considered. The optimal coalition structure can then be found
much faster within this bounded search space.

28 2. BACKGROUND

2.5.1. EXACT ALGORITHM
The most straightforward solution for CSG over graphs is most likely that of
Voice, Ramchurn, and Jennings [VRJ12]. They propose a method called SlyCE
(Sequentially connected Coalition Enumeration), which can be used to enu-
merate all feasible coalitions in a graph. On top of SlyCE they propose DyCE
(Dynamic Programming for optimal connected Coalition structure Evaluation),
an algorithm based on IDP, the algorithm of Rahwan and Jennings [RJ08] (see
Section 2.4.2). DyCE improves upon this work by only evaluating the coalitions
provided by SlyCE. Though this creates an overhead on the runtime for complete
graphs, DyCE speeds up when the density of the graph lowers whereas IDP re-
mains constant.

SlyCE (Algorithm 2.3) is a recursive algorithm that will enumerate all possi-
ble coalitions of at most size m, given a current coalition R and expansion pos-
sibilities F . In doing so it traverses a tree representation of the set of feasible
coalitions in a graph G = (N ,E).

Algorithm 2.3 Algorithm for enumerating feasible coalitions in a graph [VRJ12]

1: function SLYCE(R,F,m,E)
2: C :=;
3: if F 6= ; and m > 0 then
4: for all F∗ ⊆ F with 1 ≤ |F∗| ≤ m do
5: R ′ := F∗∪R
6: F := N (F∗,R)
7: C :=C∪SLYCE(R ′,F ′,m −|F∗|)
8: return C

Blindly following this procedure will lead to coalitions being redundantly
enumerated, as a coalition {A,B} can be obtained by starting at {A} as well as
{B}. For this reason, F is generated using

N (F,R) = { j | j > min(R ∪F)}∪N (F)−N (R)∪R ∪F

Where N (·) denotes the set of neighbours of a subset in G (i.e N (R) = { j |∃i ∈
R, (i , j) ∈ E }). As a result, only those players with a higher id than the lowest in
R will be added. This removes the redundancy in the enumeration but still en-
sures its completeness. Obtaining the complete set will be achieved by running
SlyCE(;, {i }, |N |,E) for all i ∈ N .

As mentioned before, the enumeration of SlyCE is used by DyCE to avoid in-
feasible coalitions. If we compare Algorithm 2.4 to Algorithm 2.1, we can see a
few minor differences. First of all f2 is set to −∞ for all C ⊂ N , f2 is then over-
written by u(C) for each feasible coalition C found by SlyCE. This initialisation
is used to skip infeasible solutions at line 14. Next, SlyCE is used again to obtain
the to be evaluated splits at line 15, making sure no infeasible split is considered.
The final difference is at line 10-12, where the limit of the split sizes is set, though
this is more due to the improvement of Rahwan and Jennings on Algorithm 2.1
than due to that of DyCE.

2.5. COALITION STRUCTURE GENERATION OVER GRAPHS 29

Algorithm 2.4 DyCE algorithm

1: function DYCE(G = (N ,E),u)
2: for all C ⊂ N do
3: f2[C] :=−∞
4: for all i ∈ N do
5: A :=SLYCE(;, {i }, |N |,E)
6: for all C ∈ A do
7: f1[C] := C
8: f2[C] := u(C)

9: for all s = 1 to |N | do
10: m := bsc/2
11: if s < |N | then
12: m := min(m,n − s)

13: for all {C |C ⊆ N , |C | = s} do
14: if f2[C] >−∞ then
15: A :=

⋃
i∈C SLYCE(;, {i },m, {(i , j)|i , j ∈C , (i , j) ∈ E })

16: max := max
C ′∈A

f2[C ′]+ f2[C −C ′]

17: if max ≥ u(C) then
18: f1[C] := {C ′,C −C ′}
19: f2[C] := max

20: return GET(N)

The combination of SlyCE and DyCE improves the runtime for CSG over
graphs when the graphs are sparse, the worst case runtime, however, does not
improve. An improvement for this runtime was found for a special class of CSG
instances.

Definition 2.5. As defined by Diestel [Die05], a tree decomposition of a graph
G = (V ,E) is a mapping of G into a pair (X ,T), where X = {X1, . . . , Xn} with ∀Xi ∈
X , X ⊆V and T is a tree with X as its nodes such that:

1.
⋃

Xi∈X =V

2. ∀(v, w) ∈ E, ∃Xi ∈ X where {v, w} ⊆ Xi

3. Given two nodes Xi and X j , ∀Xk on the path from Xi to X j , Xi ∩X j ⊆ Xk

In [VPJ12], Voice, Polukarov, and Jennings prove that, using tree decompo-
sitions, the runtime of CSG over graphs is bounded by O(w w+O(1)n), where w
is the treewidth5 and n the number of players. Though this only holds for in-
stances where the utility functions are independent of disconnected members
(IDM).

5 The treewidth of a tree decomposition of a graph is an indication of how tree-like the graph is. A
tree has a treewidth of 1 and a complete graph has a treewidth of n −1.

30 2. BACKGROUND

Definition 2.6. For a graph G = (N ,E), a utility function u(X) is IDM if ∀i , j ∈ N
with (i , j) ∉ E and coalition C with i , j ∉C ,

u(C ∪ {i })−u(C) = u(C ∪ {i , j })−u(C ∪ { j })

As with the general version of CSG, there also exists an anytime algorithm
for CSG over graphs as proposed by Bistaffa, Cerquides, and Rodriguez-aguilar
[BCR14]. Allowing for an approximative solution which will be improved while
there is still time left.

2.5.2. ANYTIME ALGORITHM
Similar to the usage of SlyCE and DyCE, the anytime algorithm proposed by
Bistaffa, Cerquides, and Rodriguez-aguilar [BCR14] starts by generating a search
space. Though, instead of generating feasible coalitions, it generates feasible
coalition structures. Using a branch and bound algorithm, a search is executed
in order to find the optimal coalition structure while limiting the search space.

The search space of coalition structures is constructed using the contraction
of edges. Given a graph G(N ,E) an edge (i , j) ∈ E can be contracted to form a
new node k, any edge to or from i and/or j is then redirected to k. If we con-
sider each node in G to be a coalition, we start out with a coalition structure of
singletons. The contraction of an edge (i , j) then represents the merger of coali-
tions i and j .

From the starting point of a coalition structure of singletons, the decision
of which edge to contract can be seen as a branching decision. The possible
decisions then form a search tree with on each node a feasible coalition struc-
ture. Whenever an edge is contracted, it is marked. Marked edges are no longer
considered for contraction in order to avoid redundant coalition structures. An
example of such a search tree can be seen in Figure 2.7.

As we know, the search space of coalition structures is very large. Iterat-
ing over all possibilities is therefore not an option. Bistaffa, Cerquides, and
Rodriguez-aguilar manage to bound their search space using a special property
of their domain: the sum of utility for an entire coalition structure is given by an
m+a function (f = f ++ f −), which is partly monotonic and anti-monotonic6. In
the context of coalition formation, a utility function is monotonic if for any two
distinct coalitions A,B ⊂ N , u(A ∪B) ≥ u(A)+u(B) and anti-monotonic when
u(A∪B) ≤ u(A)+u(B).

Given a position in the search tree C S, we can conclude that for the anti-
monotonic part, no merge of coalitions will improve the solution. At the same
time, for the monotonic part, applying every possible merge (by contracting all
unmarked edges) will result in a C Smer g e that maximizes the solution. Let T C S

be the subtree of C S, the upper bound of every coalition structure in T C S is given
by U B(T C S) = f +(C Smer g e)+ f (C S). This upper bound, in combination with the
best found solution so far, is used to decide whether a part of the search tree
should be investigated or not.

6A function g is monotonic (resp. anti-monotonic) if, for all x and y such that x ≤ y , one has that
g (x) ≤ g (y) (resp. g (x) ≥ g (y)). [BCR14]

2.6. STABILITY OF COALITIONS 31

Figure 2.7: A search tree for coalition structures for a square graph. Green edges are available for
contraction, red ones are marked and have already been used.

If the algorithm is allowed to finish, an exact solution will be obtained. How-
ever, the runtime can also be limited. During the traversal of the search tree,
the best found coalition structure so far is stored. Whenever there is not enough
time for a complete execution, the algorithm can be stopped to return the best
found solution so far.

There certainly are a number of approaches to CSG in graphs. Though, in
these approaches an important assumption being made. Which is that the play-
ers that participate in the formation of coalitions actually want to maximize the
social welfare. While maximizing social welfare is a nice goal for the whole com-
munity, each individual can have a different agenda. When players are rational,
they only care about the benefits they obtain. A coalition structure that max-
imizes social welfare could conflict with the interests a number of individuals,
which could interfere with its formation as players could refuse cooperation.

2.6. STABILITY OF COALITIONS
Rational players are always looking to maximize their own utility. This makes it
so that these players will not stay in their designated coalitions when they can
find a better one as there is no restriction that stops a player from leaving a coali-
tion if he wants to. A set of coalitions where no player is inclined to leave is called
stable.

However, when a player is able to “find a better coalition” is loosely defined
and has multiple interpretations. In the literature, one can find multiple notions
of stability. Probably the most important one being defined by Bogomolnaia and
Jackson [BJ02]: core stability. This notion of stability is focussed on the possibil-
ity of a coalition that improves the utility for all its participants.

Example. Consider Figure 2.1, where each prosumer v has an energy consump-

32 2. BACKGROUND

tion/production rv (indicated by the numbers inside the nodes) and let u(X) =
−|∑v∈X rv |. Let the current set of coalitions be {{A,B ,C ,D,E ,G , H }, {J ,K ,L,O}, {F, N , M }}.
Calculating the utility values, we get u({A,B ,C ,D,E ,G , H }) =−2, u({J ,K ,L,O}) =
−1 and u({F, N , M }) = 0. In this situation, for some of the members of the first
coalition, there exists a better coalition: {D,E ,G , H } with u({A,B ,C ,D,E ,G , H }) <
u({D,E ,G , H }) = 0. The current set of coalitions is therefore not considered core
stable.

Definition 2.7. Given a set of players N and partitioning P = {P1, . . . ,Pm} of N .
For an i ∈ N , P (i) denotes the coalition P ∈ P such that i ∈ P j .

Definition 2.8. A partitioning P of a set of players N is core stable if ØX ⊆ N such
that ∀i ∈ X , u(X) > u(P (i)).

Core stability is the most general notion of stability as it considers all avail-
able options. However, there also exists a stricter notion: individual stability.
In contrast to core stability, this notion focusses on the movement of a single
player. Here, a coalition structure is considered stable when there is no player
that can move to a different coalition, improving his utility and not reducing
the utility for the other players of that coalition. Determining the existence of a
core stable coalition structure has been shown to be

∑P
2 -complete7 by Woegin-

ger [Woe13] for the case where every player i has its own utility function ui (X).

Example. In 2.1, let P = {{A,B}, {C ,D,G , H , J }, {M ,F, N }, {E }, {K }, {L}, {O}}. As u({A,B}) =
−4, u({E }) = −8 and u({A,B ,E }) = −4, E can improve its utility by joining {A,B}.
This move is possible since u({A,B}) ≤ u({A,B ,E }). Thus P is not considered indi-
vidually stable.

It can also be concluded that P is not core stable but not for the same reasons.
As the coalition {A,B ,E } does not improve the utility for A and B, this is not the
coalition that causes the instability. Instead the coalition {D,E ,G , H } is the coali-
tion possibility that causes instability.

Definition 2.9. A partitioning P of a set of players N is individually stable if there
is no i ∈ N and P j ∈ P ∪{;} such that u(P j ∪{i }) > u(P (i)) and u(P j ∪{i }) ≥ u(P j).

As individual stability only concerns the options for a single player, it is a eas-
ier to verify than core stability: for every player, you can check whether there is
an existing coalition P j that satisfies the requirements within polynomial time.
Individual stability is therefore an easier problem, shown to be NP-Complete by
Ballester [Bal04]. Though, it can be said that this notion is also less interesting
as it only shows short-sighted decisions of players.

2.7. RESEARCH QUESTIONS
In this chapter we have seen some problems that are close to the formation of
microgrids, both for the goal of maximizing the benefit for the entire network
(GCSG) as for its individuals (stability). For both problems it has been shown

7∑P
2 -complete is also known as N P N P -complete

2.7. RESEARCH QUESTIONS 33

that neither can be solved within polynomial time. However, for the formation
of microgrids it would be ideal to solve the combination of these two problems:
maximizing the social welfare while keeping the participants content.

Stable Graph Partitioning (SGP): Given a graph G = (V ,E) and an evaluation
function u(X). Find a partitioning P = {P1, . . . ,Pm} of V such that P is core stable,
the induced subgraphs of P are connected and the social welfare,

∑m
j=1(|P j |u(P j)),

is maximized.

Because GCSG is already NP-Complete, the addition of an extra constraint,
for which verification is also NP-Complete, can only be expected to make the
problem more difficult. Furthermore, no work has been found for this partic-
ular problem, which also makes it more difficult to find an appropriate tech-
nique. The work for CSG and GCSG is therefore the closest we will get towards
an applicable existing approach, though adjustments would be needed in order
to guarantee stability of solutions. We therefore think it is wise to disregard the
constraint of stability for now and start with GCSG first.

In the literature we have seen a number of approaches to GCSG and CSG.
First of all, the dynamic programming algorithm of Rahwan and Jennings [RJ08]
is an all purpose solution that can take care of restrictions by giving infeasible
coalitions −∞ utility. The anytime approach of Sandholm et al. [San+99], on the
other hand, is more of a theoretical contribution than a practical one as it simply
iterates over every coalition structure using a smart order.

Of the algorithms for GCSG, the SlyCE and DyCE approach of Voice, Ram-
churn, and Jennings [VRJ12] is probably the only one that can be applied for
microgrid formation as the utility function of this problem does not have the
IDM property nor is it an m +a function, which is required for the algorithm of
[BCR14].

A short discussion as to why the utility function does not have these prop-
erties: in Section 2.2.2 it was stated that microgrids are preferred to have a bal-
anced energy consumption/production, which was given by the ub(X) function.
This means that adding a player to a coalition can result in an increase of utility,
when the energy balance approaches 0, as well as a decrease of utility, when the
energy balance distances from 0. The utility function for microgrid formation
will therefore neither be monotonic or anti-monotonic. The same holds for the
IDM property, following a simple example for three nodes A, B and C , where
r A = −4, rB = 2 and rC = 4, it can be seen that u({A}∪ {B})−u({A}) = −1+ 3 6=
−3+−1 = u({A}∪ {B ,C })−u({A}∪ {C }).

As the SlyCE and DyCE algorithm outperforms the IDP algorithm of Rahwan
and Jennings for sparse graphs, it can be considered the state of the art approach
of GCSG. But even this approach is not able to handle more than tens of nodes
(ranging from 30 to 60). The scalability of GCSG is certainly a problem, especially
since the power grid is an environment with millions of entities.

For the remainder of this thesis we will need to ensure that SGP is indeed
more complex than GCSG as this would an alteration of the constraint of core
stability. Next we would need to find a proper substitution for core stability.

34 2. BACKGROUND

Then we can try to find a heuristic for the new version of SGP. In short this thesis
will focus on the following research questions:

For the remainder of the thesis we need to determine whether SGP is indeed
of a higher complexity than GCSG. If it is, a revision of SGP might be needed
in order to make the problem somewhat easier. In our search for suitable tech-
niques for microgrid formation we will therefore answer the following research
question:

Is SGP of a higher complexity than GCSG?

In case SGP is too hard to sufficiently solve, a relaxation of the problem will
be needed. As the optimization of social welfare will remain the main goal of the
problem, the requirement of core stability is probably the only place where SGP
can be simplified. As the contentment of participants is important to the prob-
lem of microgrid formation, any relaxation of the problem should still conform
to the main idea of stability. Under the assumption that SGP with core stability
is too difficult, another research question will have to be answered:

What relaxation of SGP is easier to solve, but still provides some form
of stability?

Given that GCSG by itself is NP-Complete, a scalable approach to SGP will
have to be a heuristic. So in the end, regardless of whether a relaxation is needed
or not, a heuristic will have to be found for SGP. This leads to our final research
question:

What heuristic can be used to solve SGP(-relaxed) in a scalable man-
ner?

Bondi [Bon00] describes several types of scalability. In this thesis we refer
to his definition of space/time-scalability when scalability is mentioned as this
definition is more focused on the algorithm and its ability to handle increasingly
larger problems.

Definition 2.10. A system is scalable if the data structures and algorithms used to
implement it are conducive to smooth and speedy operation whether the system
is of moderate size or large.

This definition is dependant on the context as smooth and speedy is a very
subjective manner to describe a process. In our context, considering that the
power grid is a very large network and we do not know how much larger it will
grow, we can only only allow a linear runtime of O(n).

In the remaining chapters of this thesis we will answer these questions one
by one and thus provide a solution to our original problem on how to form mi-
crogrids.

3
STABLE GRAPH PARTITIONING

In the previous chapter Graph Coalition Structure Generation (GCSG) was de-
scribed: a problem closely related to microgrid formation. This problem was
used in the formulation of our own extended version: Stable Graph Partition-
ing (SGP). Thus far, a suitable approach for SGP has not yet been found and on
top of that SGP is expected to be too difficult to solve. In this chapter we will
prove that SGP is indeed harder than GCSG. This will lead to the definition of a
new notion of stability, which will make SGP easier. In order to guarantee this
new notion of stability, the existing DyCE algorithm will be altered and a new
distributed algorithm will be constructed.

3.1. COMPLEXITY OF SGP
Even though the problem of deciding the existence of a core stable solution was
proved to be

∑P
2 -Complete1 by Woeginger, the complexity of SGP could be dif-

ferent as every player has the same utility function in SGP.
We can prove that a core stable solution always exists when the utility func-

tion is uniform for all players. This would mean that there is a special class of
problem instances for which determining the existence of a core stable solution
is solvable in polynomial time: check whether the utility function is uniform for
all players, if so return true.

Theorem 3.1. Given a set of players V , if ∀i , j ∈ V ,ui (X) = u j (X), then a core
stable partitioning always exists.

The proof that a core stable partitioning exists for these cases will follow by
proving that an algorithm, that always returns a core stable solution in these
circumstances, is correct.

Algorithm 3.1 is such an algorithm. Given a set of players V and a utility
function u(X) it finds an X ⊆ V with that maximizes u(X), X is then added to

1Also known as N P N P -Complete

35

36 3. STABLE GRAPH PARTITIONING

the final partition P and its players are removed from V . These steps are re-
peated until V = ;, after which P contains all the coalitions that form a core
stable partitioning of V .

Algorithm 3.1 Algorithm that finds a core stable partitioning of a set of players
with a uniform utility function

1: function CORE(V , u(X))
2: P :=;
3: while V ′ 6= ; do
4: Let X ⊆V such that u(X) = maxC⊆V u(C)
5: V :=V −X
6: P := P

⋃
{X }

7: return P

Lemma 3.2. Given a set of players V , and a utility function u(X) that is uniform
for all players of V . Algorithm 3.1 will return a core stable partitioning.

Proof. Given that Algorithm 3.1 returns a partitioning P = {X1, . . . , Xm}, P will be
proven to be core stable. This proof is done inductively by showing that a subset
of V is core stable given the partitioning P . That is, for increasing l :

ØX ⊆V , such that
l⋃

i=1
Xi ∩X 6= ; and ∀v ∈ X ,u(X) > u(P (v) (3.1)

When l = m we obtain
⋃l

i=1 Xi =V , after which (3.1) becomes the regular notion
of core stability2.
Basis: l = 1: As a result of Algorithm 3.1, for P = {X1, . . . , Xm}, X1 is a coalition
such that u(X1) = maxC⊆V u(C). Therefore ØX ⊆ V with u(X) > u(X1) and thus
(3.1) holds.
Induction hypothesis: Suppose (3.1) holds for all l up to some k, k ≥ 1.
Induction: Assume (3.1) holds for l = k. Assume (3.1) does not hold for l = k+1.
Then there should be an X ⊆ V , such that

⋃k+1
i=1 Xi ∩ X 6= ; and ∀v ∈ X ,u(X) >

u(P (v). As (3.1) holds for l = k,
⋃k

i=1 Xi ∩ X = ; and therefore Xk+1 ∩ X 6= ;. It

follows that X ⊆ V −⋃k
i=1 Xi and u(X) > u(Xk+1). Algorithm 3.1 chooses Xk+1

such that u(Xk+1) = maxC⊆V −⋃k
i=1 Xi

u(C) thus there can be no X ⊆ V −⋃k
i=1 Xi

with u(X) > u(Xk+1). This is a contradiction, thus (3.1) holds for l = k +1.
By induction it follows that Lemma 3.2 is indeed true.

By proving Lemma 3.2, we have shown that there exists a method that will
find a core stable partitioning for a set of players for the case where∀i , j ∈V ,ui (X) =
u j (X). Indirectly, we have proven that there exists a core stable solution for this
class of instances, thus Theorem 3.1 also holds. The complexity of core stabil-
ity in SGP is clearly different in contrast to what was originally proven and this
could possibly influence the complexity of SGP itself.

2It always holds for an X ⊆V , X 6= ; that X ∩V 6= ;.

3.1. COMPLEXITY OF SGP 37

In Section 2.7, two problem definitions were formulated, one for the dy-
namic version of the problem and one for the static. We can claim that the
original SGP problem is at least as hard as its static version as a reduction from
the static version to SGP can be made: create a random partitioning P ′ from V
and take u(P ′, X) = u(X). But, for the sake of determining the appropriate com-
plexity class, we will alter the problem one step further by transforming it into a
decision problem.

SGP-Decide: Given a graph G = (V ,E), an evaluation function u(X) and an in-
teger k. Is there a partitioning P = {P1, . . . ,Pm} of V such that P is stable, the
induced subgraphs of P are connected and

∑m
i=1 u(Pi) ≥ k.

It is known that an optimization problem is always at least as hard as its deci-
sion counterpart, making it a useful tool to determine the lower bounding com-
plexity of the optimization problem. We will provide some arguments as to why
SGP-Decide ∈ ∑P

2 and possibly
∑P

2 -Complete, though we do miss a few impor-
tant results to indefinitely prove this. Our argumentation is as follows:

• First we show that SGP-Decide ∈ NP-Hard and that a subproblem, Stabil-
ity, is Co-NP-Complete.

• This result leads to the conclusion that SGP-Decide ∉ NP ∪ Co-NP

• Finally we show that SGP-Decide ∈ ∑P
2 (though not

∑P
2 -complete)

Lemma 3.3. SGP-Decide ∈ NP-Hard

Proof. We can show that SGP-Decide ∈ NP-Hard by reducing an NP-Complete
problem to it within polynomial time. For this purpose we will use the Partition
problem, which is already known to be NP-Complete.

Partition problem: Given a set of integers I = {i1, . . . , in}, can I be split into two
subsets I1 and I2, such that

∑
i∈I1 i =∑

j∈I2 j ?

Let s = ∑
i∈I i , then we can create a reduction from Partition to SGP-Decide

as follows:

1. ∀i ∈ I create a vertex v ∈V with Rv = i and u(X) =−| 1
2 s −∑

w∈X Rw |
2. Let G = (V ,E) be a complete graph.

3. Take k = 0.

The reduction is valid iff for every YES-instance of Partition, the reduction will
result in a YES-instance of SGP-Decide and for every instance of Partition that
results in a YES-instance of SGP-Decide, the instance is a YES-instance of Par-
tition. Some notes upfront: considering the evaluation function u(X) = −| 1

2 s −∑
v∈X Rv |, the maximum value is 03. u(X) = 0 iff

∑
v∈X Rv = 1

2 s. Due to the reduc-
tion, ∀v ∈ V , Rv ∈ I . Thus, the maximum value of u(X) can only be obtained if
there exists an I1 ⊂ I with

∑
i∈I1 i = 1

2 s.

3The maximum of a function f (x) =−|x| is f (0) = 0.

38 3. STABLE GRAPH PARTITIONING

Now assume there is a valid partitioning of I . Then there exist two subsets
I1 and I2 such that

∑
i∈I1 i = ∑

j∈I2 j . In other words
∑

i∈I1 i = 1
2 s. This means

that there is a P = {P1,P2} that partitions V such that u(P1) = u(P2) = 0, fulfilling∑m
i=1 u(Pi) ≥ k = 0. Since G is a complete graph, the induced subgraphs of P are

connected and since u(P1) = u(P2) = 0 is the maximum obtainable utility, ØX ,
such that ∀w ∈ X , w ∈ Pw ∈ P , u(X) > u(Pw), meaning P is also stable. Thus the
reduction of a YES-instance of Partition is a YES-instance of SGP-Decide.

Next, assume the reduction of an instance of Partition is a YES-instance of
SGP-Decide. Then there is a P = {P1,P2} that partitions V such that

∑m
i=1 u(Pi) ≥

k = 0. Since max{u(X)} = 0, u(P1) = u(P2) = 0, therefore
∑

v∈P1 Rv = ∑
v∈P2 Rv =

1
2 s. From the reduction follows that

⋃
v∈V Rv = I , thus I can be split I1 and I2,

such that
∑

i∈I1 i = ∑
j∈I2 j . Therefore an instance of Partition that is reduced to

a YES-instance of SGP-Decide, is a YES-instance of Partition.
Hence there exists a valid reduction within polynomial time from Partition

to SGP-Decide and as a result SGP-Decide ∈ NP-Hard.

Noticeable in our proof is that the requirement of stability in SGP-Decide
does not influence the possibility to reduce Partition to SGP-Decide. Merely the
requirement of utility maximization would have sufficed. However, the stability
requirement is a difficult part of the problem nonetheless. This fact hints at the
possibility of SGP-Decide being a harder problem than Partition. Therefore, we
also consider the complexity of Stability.

Stability: Given a partitioning P = {P1, . . . ,Pm} of V and an evaluation function
u(X). Does it hold for P that ØX ⊆V such that ∀i ∈ X u(X) > u(P (i)) ?

Lemma 3.4. Stability ∈ Co-NP-Complete

Proof. Stability ∈ Co-NP-Complete iff Stability ∈ Co-NP and Stability ∈ Co-NP-
Hard. We will start by showing that Stability ∈ Co-NP. Thus, for a given instance
I = (P,u(X)) and a certificate X , it needs to be verifiable within polynomial time
that I is a no-instance.

Algorithm 3.2 Verification that an instance I = (P,u(X)) is a no-instance using a
certificate X .

1: Let X ⊆V such that ∀i ∈ X , u(X) > u(P (i))
2: for all i ∈ X do
3: if u(X) ≤ u(P (i)) then
4: return UNDECIDED
5: return NO-INSTANCE

As X is the given certificate it does not influence the runtime, furthermore
there are at most n elements in X and finding the corresponding set P (i) is also
doable in O(n) time. Thus, with algorithm 3.2, it has been shown that verifica-
tion of a no-instance is possible within polynomial time.

In order to prove that Stability ∈ Co-NP-Hard, we will show that Tautology, a
Co-NP-Complete problem, is reducible to Stability.

3.1. COMPLEXITY OF SGP 39

Tautology: Given a boolean formula f containing the variables B = {b1, . . . ,bn},
is f satisfied for each assignment of B?

In our reduction, we consider that an X ⊆ B represents an assignment where
∀bi ∈ X , bi is true and ∀bi ∉ X , bi is false. As an empty coalition cannot exist, an
additional variable c will be added to represent the case where all bi ∈ B are set
to false. The reduction can be created as follows:

1. Take P = {B ∪ {c}}, where c is an additional variable.

2. Take u(X) =
{

1 if (c ∉ X and !(X satisfies f)) or ({c} = X and !(; satisfies f))

0 otherwise

First of all, it is trivial that this reduction can be executed in polynomial time.
The reduction is valid iff for every YES-instance of Tautology, the reduction

will result in a YES-instance of Stability and for every instance of Tautology that
results in a YES-instance of Stability, the instance is a YES-instance of Tautology.

Assume f is a tautology, then there exists no assignment such that f is not
satisfied. As P = {B∪{c}} there is only one coalition and u(B∪{c}) = 0. An improv-
ing coalition can only be found when there is an assignment that does not satisfy
f . Since no such assignment exists, there is no improving coalition and thus P
is stable. Thus the reduction of a YES-instance of Tautology is a YES-instance of
Stability.

Assume P is stable, then there is no X such that u(X) = 1. As of such, there
is no assignment for which f is not satisfied. Thus f is a tautology. Therefore
an instance of Tautology that is reduced to a YES-instance of Stability, is a YES-
instance of Tautology.

Thus there exists a valid reduction in polynomial time from tautology to Sta-
bility and therefore Stability ∈ Co-NP-Hard.

Since Stability∈Co-NP-Hard and Stability∈Co-NP, Stability∈Co-NP-Complete.

With SGP-Decide being NP-Hard and its subproblem, Stability, being Co-NP-
Complete, we are pointed in a direction where SGP-Decide might be outside of
NP and Co-NP. The complexity class we then reach is a subclass of the polyno-
mial hierarchy:

∑P
2 . This is a class for which a YES-instance is verifiable within

polynomial time with the use of an NP-Oracle, a black box program that can
decide an NP-problem within polynomial time.

Theorem 3.5. SGP-Decide ∈ ∑P
2

Proof. We can show that SGP-Decide ∈ ∑P
2 by providing an algorithm that can

verify a YES-instance of SGP-Decide in polynomial time using an NP-Oracle (see
algorithm 3.3).

Even though this problem uses an Oracle for the Co-NP-Complete problem
Stability, it is still considered an NP-Oracle. A Co-NP problem is the complement
of an NP-Problem, meaning that a decider of a Co-NP problem can return the
complement of the result of the corresponding NP decider. Thus, Co-NP and
NP-Oracles are equal in complexity.

40 3. STABLE GRAPH PARTITIONING

Algorithm 3.3 Verification that an SGP-Decide instance I = (P,u(X)) is a NO-
instance.

1: function VERIFYSGP-DECIDE(G = (V ,E), u(X), k)
2: Let P partition V .
3: STABILITYORACLE(P , u(X))
4: sum := 0
5: for all Pi ∈ P do
6: ISCONNECTED(Pi)
7: sum := sum + u(Pi)∗|Pi |
8: return sum ≥ k

As of yet, we are unable to show that SGP-Decide ∈∑P
2 -Complete. The com-

plexity proof of Woeginger [Woe13] relied heavily on a set of players with differ-
ent utility functions, so that proof is not reusable for SGP-Decide. While giving
every player the same utility function had the effect of making the search for a
core stable solution easier, the addition of a minimum social welfare could make
the problem harder again. However, since both stability and social welfare heav-
ily depend on the same utility function, it is hard to find a proper reduction from
existing

∑P
2 -Complete problems.

Nonetheless, we have shown that SGP is indeed more complex than the NP-
Complete problem GCSG. While core stability is a nice property to have in mi-
crogrid formation, it simply is too difficult. We should therefore first focus on a
solution for GCSG and then determine what kind of stability can be achieved.

3.2. A NEW NOTION OF STABILITY
The main reason core stability is so difficult is the large amount of possibilities
for the coalitions. This is mainly due to an important aspect of core stability:
everyone has perfect knowledge of the entire environment. However, in prac-
tice obtaining perfect knowledge is not very likely nor should it be needed. The
further away two players are situated, the less likely it is that they will form a
coalition. If it is unlikely that two players will ever form a coalition, why would
they need information about each other? It seems more intuitive to only have
knowledge of those players that are in your neighbourhood.

The size of a neighbourhood can be determined by the maximum number
of hops one can take to reach a “neighbour”. In a complete graph of n nodes,
a neighbourhood with 1 hop will contain all n nodes. But, in sparser graphs
with an average degree d , this neighbourhood size will shrink to d nodes. In
particular, a neighbourhood with k hops contains O(d k) nodes (note that this
number cannot exceed n).

Definition 3.1. Let d(i , j) be the length of the shortest path between i and j .
Given a graph G = (V ,E) and an integer k, the k-neighbourhood of an i ∈ V is
defined as Nk (i) = { j | j ∈V ,d(i , j) ≤ k}

When players are aware of fewer other players, their possibilities also de-

3.2. A NEW NOTION OF STABILITY 41

crease. With less possibilities, the problem of stability becomes easier to solve.
An added addition is that the average size of a neighbourhood will not increase
when more nodes are added to the graph as long as the average degree stays the
same.

Using the definition of a k-neighbourhood, a new notion of stability can be
defined: k-stability. With this notion of stability, it is assumed that no one is
aware of any players outside of their neighbourhood. Players are therefore un-
aware of any possible coalitions that are not contained within their neighbour-
hood. As of such, a coalition that provides at least as much utility as the best
coalition within the neighbourhood of its members can be considered a stable
coalition.

Definition 3.2. Given a graph G = (V ,E), a partitioning P of V is k-stable if ∀i ∈
V ØX ⊆ Nk (i) with u(X) > u(P (i)).

3.2.1. THE EFFECT OF K-STABILITY
Using k-stability instead of core stability for SGP will have an impact on the ob-
tained solutions depending on the chosen value of k. This impact is mainly fo-
cused on the stability and social welfare of the solution. When k increases, play-
ers have more knowledge of the network. It is expected that as a result, partitions
will become more stable.

Theorem 3.6. Given a partition P that is (k +1)-stable, then P is also k-stable.

Proof. From the definition of k-stability, we know that for P it holds that ∀i ∈V
ØX ⊆ Nk+1(i) such that u(X) > u(P (i)). By definition Nk (i) ⊆ Nk+1(i)∀i ∈ V .
Thus for P it holds that ∀i ∈V ØX ⊆ Nk (i) such that u(X) > u(P (i)). Therefore P
is k-stable.

The higher k, the more stable the partition. On the other hand, it is expected
that a more stable solution will result in more restrictions for usable coalitions
and therefore a lower social welfare. Intuitively it holds that the more selfish
players are, the lower social welfare will be.

Theorem 3.7. Given the maximum social welfare Wk for an SGP instance with
k-stability, Wk ≥Wk+1.

Proof. In order to obtain a Wk+1, there should be a P such that P is (k+1)-stable
and

∑
Pi∈P |Pi |u(Pi) = Wk+1. Following Theorem 3.6 it holds that P is k-stable.

Thus Wk ≥∑
Pi∈P |Pi |u(Pi), therefore Wk is at least as high as Wk+1.

We can show that it is also possible for Wk to be higher than Wk+1 with the
example of Figure 3.1. Given a utility function u(X) = −|∑i∈X ri |, the coalition
with the highest individual utility is that of {A, B, C, D} with u({A,B ,C ,D}) =−5.
As this is the coalition with the highest individual utility, a 2-stable solution
would be P ={{A, B, C, D}, {E}} with

∑
Pi∈P |Pi |u(Pi) = −31. Disregarding sta-

bility, the solution for maximum social welfare would be Pmax ={{A, B, C, D, E}}
which would result in a social welfare of −30. No one is aware of {A, B, C, D}

42 3. STABLE GRAPH PARTITIONING

Figure 3.1: An example graph where, if the utility function were u(X) = −|∑i∈X ri |, a 1-stable solu-
tion can obtain a higher social welfare than a 2-stable solution.

when k = 1, thus Pmax is 1-stable. When k = 2 however, {A, B, C, D} is within the
neighbourhood of B and C, thus Pmax is not 2-stable.

As Wk can never be lower than Wk+1, but it can be higher, we can conclude
Wk ≥Wk+1.

Social welfare and stability counteract each other. With higher values of k
more stability is achieved, but the social welfare worsens. The decision of k
therefore not only influences the difficulty of the problem, but also the result-
ing solutions.

3.2.2. THE VALUE OF k
So far, the effect of the value of k has been discussed, but it is still quite intan-
gible what this value truly is. From the description of k-stability, we know that
k defines the maximum amount of hops between two neighbours. k, in combi-
nation with the topology of a graph G = (V ,E), defines the neighbourhood Nk (i)
∀i ∈ V . It is a given that the neighbourhood of any i ∈ V cannot be larger than
V . Thus increasing k beyond a point where ∀i ∈V Nk (i) =V , has no effect at all.

For each graph there exists some bound for which it is meaningless to have
k exceed that. When for every player the neighbourhood contains the entire
network, there is no longer a reason to increase k as the neighbourhood cannot
grow any larger anyway. At this point k-stability will have become equivalent to
core stability since every player will have complete knowledge of the network.

The value of k for which core stability is achieved is dependant on the topol-
ogy of the network. In a complete graph, the k-neighbourhood of each player
already covers the entire graph when k = 1. Graphs where players are further
apart, on the other hand, will require higher values of k.

The dependency on topology would suggest that the average degree of a graph
dictates the maximum value of k. But this is far from the truth.

Definition 3.3. The average degree of a graph G = (V ,E) reflects the average
number of edges each vertex has and is given by 2|E |

|V | .

Graphs with the same average degree (and the same amount of vertices) can
have a very different bound for k. This behaviour can be seen in the next exam-
ple.

Example. Given a linear graph Gl i n = (Vl i n ,El i n) where Vl i n = {v1, . . . , vn} and
El i n = {{v1, v2}, {v2, v3} . . . , {vn−1, vn}} and a star graph Gst ar = (Vst ar ,Est ar) where
Vst ar = {v1, . . . , vn} and Est ar = {{v1, v2}, {v1, v3} . . . , {v1, vn}}. As |Vl i n | = |Vst ar |
and |El i n | = |Est ar |, the graphs have the same average degree. However, for Gst ar

the neighbourhood of every player contains the entire graph when k ≥ 2, while for
Gl i n , this only occurs when k ≥ n −1.

3.3. CENTRALIZED ALGORITHM 43

Under some circumstances, even sparse networks can have large neighbour-
hoods with a relative small value of k. Sparsity does not seem to be the deciding
factor for the neighbourhood size. The major difference between Gst ar and Gl i n

is that every vertex in Gst ar can reach every other vertex within 2 steps, while for
Gl i n this amount is much higher. This attribute is called the diameter.

Definition 3.4. The diameter of a graph d(G) is the maximum length of the short-
est path between any pair of vertices.

We can show that the required value of k for k-stability ≡ core stability is
upper bounded by the diameter of a graph.

Theorem 3.8. Given a graph G = (V ,E), k-stability is equivalent to core stability
when k ≥ d(G)

Proof. The effect of d(G) is that for each i ∈ V every other vertex is reachable
within d(G) hops. In other words, Nd(G)(i) = V ∀i ∈ V . By definition k-stability
is equivalent to core stability when Nk (i) = V for all i ∈ V . Thus k-stability is
equivalent to core stability when k ≥ d(G).

With the upper bound for k it can be concluded that for any given graph
G = (V ,E), k should be an integer in the range of 0 to d(G). However, this does
not mean for lower values of k core stability is unachievable. It depends on the
problem instances. If a supposedly core stable partition solely consists out of
singleton coalitions then core stability can even be achieved with k ≥ 0. An
empirical study will have to decide how k-stability will behave for our practical
problem of microgrid formation.

3.3. CENTRALIZED ALGORITHM
k-stability has been defined as one of the constraints of SGP, but we do not yet
have a way of find k-stable solutions. The existing DyCE algorithm is able to
maximize social welfare but without considering stability. In the previous sec-
tion it was mentioned that the best choice for an individual is not necessarily
the best choice for the community, but the opposite can also be said: the best
choice for the community is not necessarily the best choice for an individual.
Maximizing social welfare does not ensure k-stability. Thus DyCE needs to be
altered to conform to the additional requirement of k-stability.

Forming a k-stable partition works kind of the same way as that of core sta-
bility: by partitioning V using coalitions with high values of utility (see Lemma 3.2).
For core stability this meant that the best coalition in a set of players V would
be chosen, but for k-stability, the chosen coalitions only need to be better than
what is available in each player’s neighbourhood.

44 3. STABLE GRAPH PARTITIONING

Algorithm 3.4 DyCE algorithm altered to provide k-hood stable solutions.

1: function SDYCE(G = (N ,E),u,k)
2: for all C ⊂ N do
3: f2[C] :=−∞
4: for all i ∈ N do
5: A :=SLYCE(;, {i }, |N |,E)
6: for all C ∈ A do
7: f1[C] := C
8: f2[C] := u(C)
9: f3[C] := FINDMAX(C, k)

10: f4[C] := u(C)

11: for all s = 1 to |N | do
12: m := bsc/2
13: if s < |N | then
14: m := min(m,n − s)

15: for all {C |C ⊆ N , |C | = s} do
16: if f2[C] >−∞ then
17: A :=

⋃
i∈C SLYCE(;, {i },m, {(i , j)|i , j ∈C , (i , j) ∈ E })

18: max := max
C ′∈A

f2[C ′]+ f2[C −C ′]

19: bestC := max{ f4[C ′], f4[C −C ′]}
20: if bestC ≥ f3[C] AND max ≥ u(C) then
21: f1[C] := {C ′,C −C ′}
22: f2[C] := max
23: f4[C] := bestC

24: return GET(N)

25:

26: function FINDMAX(C, k)
27: max := −∞
28: for all i ∈C do
29: max := max{max, f3[C − {i }]}

30: if ∃i ∈C , C ⊆ Nk (i) then
31: max := max{max,u(C)}

32: return max

3.4. DISTRIBUTED ALGORITHM 45

In the DyCE algorithm, given a C ⊆ V , information was already stored on
the most beneficial split (f1) and the resulting utility (f2). For our alteration, we
need to keep track of two extra things:

1. The best possible coalition available in the neighbourhood of players within
C (f3).

2. The best coalition of those C will split into (f4).

For a C ⊆V should only be split into C ′ and C −C ′, when either f4[C ′] ≥ f3[C] or
f4[C −C ′] ≥ f3[C]. Applying these changes results in Algorithm 3.4.

The FindMax function of Algorithm 3.4 is quite straightforward except for
the ∃i ∈C , C ⊆ Nk (i) expression. However, this can be solved by calculating the
shortest paths of the subgraph G ′ = (C ,E) using a Floyd-Warshall algorithm and
verifying whether there is a path longer than 2k. If the path is longer, then C
cannot be within the neighbourhood of a single player.

As ∀i ∈ V Nk (i) ⊆ V , the available coalitions will typically have lower utility
than those possible in the entire set. A solution with k-stability therefore has
more freedom than that of a core stable one.

A centralized solution, has a number of quirks. It lacks the ability to handle
larger number of players in an efficient way. Existing solutions have only be
shown to be able solve to problems with a maximum of 60 players. This is a
strong indication that a centralized algorithm will not be able to form microgrids
in the power grid, where the number of players (households) can easily exceed
a million.

Furthermore, the production and consumption of energy is constantly chang-
ing. Gathering and processing the information of over a million entities in one
central point will also provide problems.

Given the complexity of the problem (see Section 3.1) and the size of practi-
cal problems, a centralized approach is not going to be the final solution. A more
promising approach would be distributed, where coalitions can be formed from
the bottom up.

3.4. DISTRIBUTED ALGORITHM
It is common knowledge that a distributed algorithm cannot cover for the size
explosion of the problem. This is understood as the growth from the network
solving the problem cannot keep up with the growth of the problem, just like a
supercomputer would not be able to keep up with its increase of processors. In
order to be useful for practical cases of SGP, the envisioned distributed algorithm
will therefore be a heuristic. As we have not found any work on this particular
problem, evaluation of such a heuristic will occur in relation to the centralized
algorithm.

The main idea of the distributed algorithm is to let every prosumer in the grid
think for himself. This means that every vertex in the graph, will be a distinct
processor that can calculate options and communicate with the rest. We will
assume that the network only restricts which coalitions can be formed, not the

46 3. STABLE GRAPH PARTITIONING

communication between nodes, meaning that any two nodes can communicate
with each other regardless of their position in the network.

Communication occurs with the use of messages. To indicate what kind of
information a message contains, different types will be used. At the same time,
a number of states will be used to determine what actions should be taken and
which messages should be processed. What the different states and message
types are, will be explained at a later point in this section.

3.4.1. BASIC APPROACH
The basic approach fo the distributed algorithm is an approach where the coali-
tions will only expand. Individual players will each start out as a singleton (a
coalition with only one member). In order to improve their utility, each coali-
tion will gather information on the other coalitions situated within its neigh-
bourhood (defined by k) and evaluate possible merges.

Out of the possible merges, a coalition chooses the optimal one4 and formu-
lates that merger into a proposal. Proposals are exchanged between neighbours
after which each coalition can compare received proposals with their own. This
allows a coalition to consider merges that involve coalitions outside of its own
neighbourhood. Any received proposal that does not contain the coalition in
question is not considered as an option, but is used as a notification in order to
determine whether a coalition should wait for more proposals or continue.

Out of all received proposals (including its own) each coalition chooses the
one that provides the most improvement for its utility. Once this proposal has
been chosen, a reply is send to each proposer in order to inform them of this
decision.

If a proposer receives a positive reply of each participant of the proposal,
it can consider the proposal to be accepted. If there are one or more negative
replies, a proposal can be considered rejected. Once a proposer has determined
the status of a proposal, a confirmation will be send to all positive repliers to
inform them whether the merge will take place or not. If a proposal has been ac-
cepted, the participating coalitions will form a new coalition, otherwise nothing
will happen. Either way, the coalition will restart by gathering information on its
neighbourhood.

A summary of this process can be seen in Figure 3.2. It is repeated until no
merges occur in consecutive rounds.

Even though coalition can exist out of multiple players, they make decisions
and take actions as a single entity. This is possible since the utility function is the
same for everyone, hence there is no real need for discussion within a coalition.
To realize this behaviour, every coalition has a leader randomly elected in order
to make decision for the coalition.

During the execution of the distributed algorithm, there are two important
decisions being made: which coalition is to be proposed and which of the pro-
posals is going to be pursued. As these decisions depict in what way the coali-
tions will grow, they have a large influence on the performance of the algorithm.

4The merge that provides the most gain in utility.

3.4. DISTRIBUTED ALGORITHM 47

Figure 3.2: The flow of a node in the distributed algorithm. Starting by gathering information,
proposing a better coalition, replying to received proposals and forming a new coalition if a pro-
posal was accepted. These steps are repeated until no new coalitions are formed.

3.4.2. PROPOSAL CREATION
Given a coalition C and its neighbouring coalitions Nk (C), C is looking for the
best new coalition X with C ∈ X and X − {C } ⊆ Nk (C). Finding the best coalition
within the neighbourhood will be done in a similar matter as with the DyCE al-
gorithm: by enumerating and evaluating the options using the SlyCE algorithm.
For coalitions with an equal amount of utility, a random decision is made.

Normally, iterating over all combinations would seem like a bad idea, given

that there can be as many as d k distinct neighbouring coalitions and thus 2d k

possibilities. However, a study on the characteristics of the power grid, con-
ducted in [PA12] observed that the average degree of the power grid network is
somewhere around 3. This makes us believe that we can get away with a brute
force approach as long as k is sufficiently low5.

A downside to this approach is that proposals are blindly made by pursu-
ing the best coalition possible. However, there can be occasions where one or
more of the participants of a proposal keep on rejecting it, either because they
are content with their current coalition or because they are pursuing other pro-
posals themselves. In such a situation, the proposer is not making any progress
since it keeps on proposing something that will be rejected anyway.

Whenever a coalition rejects a proposal, it is unlikely that it will accept that
same proposal the next round. Additionally, since the proposal usually contains
the best thing the proposer can come up with, any modifications to it will likely
be rejected again by the rejecter. A coalition therefore maintains a list of re-
jecters. Any coalition in this list will be temporarily disregarded in the creation
of subsequent proposals. The result is a new proposal which will possibly pro-
vide less utility, but will be more likely to be accepted.

In case of the rejecter forming a new coalition, it will be removed from the
list as this change opens up new possibilities and therefore a new chance for
a proposal to be accepted. The same goes for when the proposer forms a new
coalition, but in this case the entire list is discarded. Finally, when the rejected
list contains the entire neighbourhood, the list is reset.

After the creation and transmission of proposals, each coalition will have
to determine what to reply. For each network that does not represent a com-
plete graph, the neighbourhoods of coalitions can differ. As of such, the pro-

5Whether it is actually doable or not the brute force over the combinations will possibly be shown
in the experiments.

48 3. STABLE GRAPH PARTITIONING

posed coalitions can be different, even though each proposer initially believes
that their proposal is the best one possible. An evaluation of received proposals
is therefore still needed in order for a coalition to determine whether it should
pursue its own proposed coalition or that of one of his neighbours.

3.4.3. PROPOSAL EVALUATION
The evaluation of received proposals is more straightforward than their creation.
A coalition C has |Nk (C)| = m neighbours, which means that C will receive at
most m proposals that include itself. For each of these proposals, the one that
results in the highest amount of utility will be chosen. For proposals with equal
utility an additional calculation is required.

A random decision for proposals with equal utility is not preferred as it could
lead to bad results.

Example. If a coalition B proposes {A,B ,C } and C proposes a coalition of equal
utility {B ,C ,D}, there is a possibility that B and C do not chose the same coalition.
As a result, neither of these coalitions will come into existence even though there
is no good reason as to why B and C should not be able to come to an agreement.

In order to get two parties to agree to the same proposal, the random factor
should be removed. Thus instead of deciding randomly, a deciding factor is used
that is the same for each coalition that evaluates a proposal.

Each proposal contains a coalition that is being proposed. When comparing
two proposals with respectively a coalition C1 and C2 where u(C1) = u(C2), we
find for both coalitions the player with the smallest id that is not in the other
coalition:

i dC1 = min{i |i ∈ (C1 −C2)}

i dC2 = min{i |i ∈ (C2 −C1)}

The coalition for which this id is the smallest is then chosen as the "better" pro-
posal.

With the definition of proposal creation and evaluation, the main function-
ality of the algorithm has been described. But there is still one aspect that needs
to be discussed: the algorithms greedy growth.

3.4.4. GREEDY GROWTH
The greedy growth of the distributed algorithm is an easy way to find coalitions
fast. On the other hand, it also gets the algorithm stuck in some local optimum
fast. Due to the algorithms’ incapability to search around a local optimum, the
result is highly dependent on early made choices.

Example. The effect of the greedy growth can be seen in Figure 3.3. It is the coali-
tion structure formed as a result of the simplistic algorithm. The decision of cre-
ating the coalition {G , J ,K ,O} has removed the possibility for D to find a coalition
for himself, with four singleton coalitions as a result.

3.4. DISTRIBUTED ALGORITHM 49

Figure 3.3: A coalition structure formed by the simplistic distributed algorithm.

If we were to make a slight adjustment by removing G and adding L, the coali-
tion {D,G} could come into existence which would then expand to {D,E ,G , H }.
This coalition structure would provide a lot more social welfare.

To counter this weakness, some extra work should be added once a local
optimum is reached. Because it is always a coalition that blocks the possibilities
of smaller coalitions, the larger coalition should operate as a mediator. During
this state with coalition structure P , each coalition C ∈ P should check if it can
improve a neighbouring coalition B ∈ P by excluding one of its members i ∈
C . At the same time, this coalition can try to find a replacement R for the to-
be-excluded-member (if none is available R = ; with u(R) = 0. The resulting
operation should then only be executed if it improves the social welfare.

u(C)+u(B)+u(R) < u(C − {i }∪R)+u(B ∪ {i })

The improvement of social welfare is required in order to prevent operations
that deter the solution. An example would be the operation of switching C to
{D} as u({C ,D}) > u({D}) as this would not help the solution in any way.

With the new distributed algorithm we have obtained a heuristic that pro-
vides a k-stable partitioning of a network while approximating the maximum
social welfare. However, it remains a question whether this algorithm is scalable
and how useful k-stability is as opposed to core stability.

4
EXPERIMENTAL EVALUATION

In the previous chapter it was shown that Stable Graph Partitioning (SGP) is
probably harder than Graph Coalition Structure Generation (GCSG). Consequen-
tially, a relaxation of core stability, k-stability, was proposed in order to simplify
SGP. In Section 3.2 some characteristics of k-stability for different values of k
were proven: the equivalence to core stability when k is equal to the diameter
of the network and the effect of a low k as opposed to a high one. However, no
recommendation for the most suitable value of k was given. Setting k to equal
the diameter of the network would be ill-advised as this would make the stabil-
ity problem as hard as core stability, whose complexity was the reason k-stability
was created in the first place. Without a decent suggestion for the value of k, the
k-stability is not quite usable as a relaxation for the problem.

To improve the likelihood of obtaining a scalable algorithm for SGP, the cho-
sen value of k will have to be significantly smaller than the diameter of large
networks. However, k cannot be arbitrarily small as it should still come close to
the idea of core stability. In order to determine the appropriate k, the following
question will have to be answered:

Q. 1 What is the most fitting value of k for k-stability?

The most fitting value will have to be small to sufficiently reduce the search area
for coalitions, but large enough for k-stability to be representative of core sta-
bility. If such a value can be found, k-stability would be proven to be a useful
relaxation of core stability as it would reduce the amount of work needed to find
proper coalition structures and at the same time maintain the concept of stabil-
ity.

We hypothesize that k-stability can approach core stability even when k is
small. Coalitions receive less utility the larger they are (see Section 2.2.2), thus it
is likely that optimal coalitions will be relatively small. This means that optimal
coalitions are likely to be found within neighbourhoods that cover only a small
part of the network. The fact that larger, less optimal coalitions cannot be found

50

51

with the use of small k should not conflict with the notion of core stability where
the focus is to find the best individual coalition anyway.

H. 1 A small k is the most fitting value for k-stability.

Admittedly, “small” is subjective, but the experiments will provide an exact
value. In our opinion a small k is significantly smaller than the diameter of a
network. This would certainly reduce the amount of work necessary to find k-
stable coalitions, although whether this reduction is enough for the algorithm,
constructed in Section 3.4, to be scalable for this k remains unknown.

The value of k determines the size of the neighbourhood and thus how fast
the difficulty increases as the problem size increases. For neighbourhoods with
larger k, it is more likely that an additional node will fit in that neighbourhood
as they cover a larger portion of the network than neighbourhoods with smaller
k. If every additional node will be part of more neighbourhoods, the average
neighbourhood size will grow faster. Thus the growth of neighbourhood sizes
will likely be slower for smaller k.

Q. 2 Is the distributed algorithm scalable for small values of k?

Considering the scalability of the algorithm, it is hypothesized to rely on the
value of k. As was shown in Theorem 3.8, there is a point where k-stability be-
comes equivalent to core stability. It was already proven that SGP with core
stability is too hard to solve, even for a heuristic, so at this point it is very un-
likely that the distributed algorithm is scalable. In order to narrow this down, we
should look at the growth of neighbourhood size for a given k.

Recall Figure 3.2, in our algorithm, every node i iterates over four distinct
phases: inform, propose, reply and form. Of these phases, the propose phase is
the most computational intensive as each node traverses its entire neighbour-
hood and evaluates each possible subgraph (O(2Nk (i)) combinations). Consid-
ering that our utility function u(X) is computable within O(|X |), the runtime of
each iteration of a node is O(2Nk (i)Nk (i)). Given a total of n nodes, a single iter-
ation will be executed n times. As each iteration at least one coalition is formed,
there will be O(n) iterations. Let N max

k = maxi Nk (i), the expected runtime of

the algorithm is O(2N max
k N max

k n2).
In a complete network, the neighbourhood size would be equal to the to-

tal amount of nodes and our algorithm would perform in the order of O(2nn3).
However, we consider power grid networks, which are far from complete. It is
hypothesized that in sparse networks the neighbourhood sizes will eventually
reach an asymptote (in a sparse network) and that O(N max

k) ¿O(n). The neigh-

bourhood sizes could even be small enough such that O(2N max
k N max

k) < O(n)

which would indicate the scalability runtime of the algorithm as O(n3).

H. 2 The distributed algorithm is scalable when used in
combination with small values of k.

The research for the optimal value of k will be commenced using the exact
algorithm constructed in Section 3.3, it will be used to confirm the effect of k on

52 4. EXPERIMENTAL EVALUATION

the stability and social welfare of the solutions and to find a threshold for k for
which the stability does not improve much further. For the performance of the
distributed algorithm, we will test it against against different values of k. The
scalability will be determined using the increase of runtime as the problem size
increases.

4.1. METHODS
In order to test H. 1 and H. 2, we need to determine what needs to be measured
and how. For H. 1 we already deduced that the smaller k is, the better it would
be for the reduction of the amount of work. What is left is determining how
small k can be in order to provide a sufficient representation of core stability.
This means that we somehow need to measure how close an obtained coalition
structure is to being core stable. Even though core stable coalition structures
could theoretically be obtained by the algorithm as long as k is sufficiently high,
it is unlikely that a solution will be given within reasonable time for all problem
sizes. For these cases, the obtained k-stable coalition structures can therefore
not be directly compared to core stable ones.

As it is impractical to obtain the core stable coalition structures for each
problem instance, a direct comparison between k-stable and core stable coali-
tion structures is not possible. Instead of comparing solutions where k is equal
to the diameter of the network, a different approach can also be used. From The-
orem 3.6 we know that a (k +1)-stable solution is at least as stable, if not more,
than a k-stable solution. This means that for every increase in k we get closer to
core stability. If under these circumstances a k-stable solution is subsequently
comparable to a (k +1)-stable solution, the stability is either on a plateau or it is
core stable.

Measuring the difference in stability can be done in two ways. The first one
is to count the number of players in the k-stable solution that have not improved
their utility in the (k +1)-stable solution and divide that over the total number
of players. This will result in a value between 0 and 1 where 1 means that the
k-stable solution is also (k +1)-stable (the closer to 1, the better). Basically this
measures the ratio of (k +1)-stable players in the k-stable solution.

The other option is to measure how content unstable players are. This is
done by dividing their utility in the k-stable solution by the utility obtained in
the (k +1)-stable solution. This shows how much worse of the unstable players
are due to the usage of a lower k. This measure is called satisfaction.

For the testing of H. 2 we have to measure the scalability of the algorithm
given a set value of k. Normally in a distributed algorithm, the processing capac-
ity increases automatically when the network size increases. In the experimental
environment, this capacity is limited and cannot grow along with the problem
size. The algorithm is therefore possibly slower during the experiments than it
would be in practice.

On the other hand, the processing capacity will never grow faster than the
problem size. While additional capacity would make the algorithm faster, it
cannot speed up the algorithm more than the increase in problem size would

4.2. MATERIAL 53

slow it down. In other words, if the runtime of an algorithm with a set amount
of processing units leads to the conclusion that it is unscalable, it would also
be considered unscalable with a dynamic amount. Thus in order to determine
whether the algorithm is scalable, the runtime will be measured for different
problem sizes and its growth will be compared to that of a linear regression line.

4.2. MATERIAL
Having discussed how the experiments will be conducted, it is now time to dis-
cuss what was used for the experiments. This section will explain how the ex-
periments were set up and which hardware was used. Finally the used problem
instances were explored.

4.2.1. IMPLEMENTATION
All algorithms were implemented in Java 8. For the graph representation we
used a third party library called GraphStream [Bal+10]. This provided us with
a basic data structure, tools to generate graphs and a means to visualize cre-
ated graphs. Furthermore, in order to make our distributed algorithm truly dis-
tributable, we used Java’s Remote Method Invocation (RMI). This system allows
applications to call object methods situated in a separate machine, providing
the necessary tools required for message passing between the different nodes.

Experiments were performed on the TU Delft cluster of the DAS-4 [ASC]: a
distributed supercomputer. The TU Delft cluster consists out of 32 dual-quad-
core compute nodes where each node has a clock speed of 2.4 GHz and 24 GB
memory. Twenty of these nodes were used in our experiments by dividing the
players of each network over them. Using an extra node, each experiment was
set up on the different nodes. This master node was merely used to establish the
IP-addresses of each node and record the needed time to obtain a solution, it did
not contribute to the computation itself. Furthermore, as the DAS-4 is a shared
facility, execution time for each experiment had to be limited to 15 minutes.

4.2.2. PROBLEM INSTANCES
The initial plan for obtaining problem instances was to use existing network
topologies like those of the IEEE bus system examples. However, there were only
five different topologies with a size ranging from 14 to 300 nodes, so the exam-
ples are too few in number and lack large instances. Instead using them for the
experiments they were used as a reference point for the creation of new topolo-
gies. This is needed as random graphs are unlikely to uphold the characteristics
that are apparent in an electricity network. A method that allows for the gener-
ation of pseudo-random networks that conform to these characteristics would
be much more adequate.

The attributes that we focused on were the average degree of the network
and its diameter. These attributes are important for the difficulty of the problem
since they dictate the expected neighbourhood size. While the average degree
determines the size of a k-neighbourhood for k = 1, the diameter determines
how fast the neighbourhood sizes grow when k increases. Given two networks of

54 4. EXPERIMENTAL EVALUATION

●

● ●

●
●

●

●
●

●

●

● ●
●●

●

●
●

●
●

●●
●

●
●●

●
●
●
●
●
●●●●

●●●

●●
●

●

●
●●

●
●●

●●
●●
●

●●

●
●

●

●
●

●

●

●

●

● ●
●

● ●

●

●
●

● ●
●

●

●

●

●

●

0

20

40

60

100 10000
Size

D
ia

m
et

er colour
●●

●●

Generated

IEEE

Figure 4.1: The diameter of the generated networks (red) and the IEEE instances (green). If k were
to be set to these respective values for each instance, core stability would be achieved.

n nodes but different diameters, for k > n, the average neighbourhood of these
networks will be the same (namely n), but for the network with a larger diame-
ter, k will have to be larger than for a network with a small diameter before this
maximum will be reached.

The average diameter of the IEEE instances was 2.7 and the diameter for
each instance can be seen in Figure 4.1.

Our method of topology construction works by first distributing nodes in a
2-dimensional plane and constructing a minimal spanning tree. Then edges are
added until the desired average degree is obtained. For the addition of an edge,
a random source node is chosen. Next a target node is chosen either at random
or by searching for the node, which is not yet a neighbour, that is closest to the
source node. The decision for a random target node occurs with a probability p
(based on distance occurs with 1−p).

As we can precisely choose the amount of edges, the average degree will al-
ways match up with the desired value. The diameter of the network on the other
hand happens to be tunable with p. For completely random edges (p = 1) the
network diameter ended up lower and for edges only based on distance the di-
ameter would be too high. With p = 0.2 the diameter showed a trend reasonably
comparable to that of the IEEE instances (see Figure 4.1).

With this generation method, the problem instances of the experiments were
constructed. In steps of 5, networks of 15 to 300 vertices were created. Following
that, the size was further increased with a factor 1.5 until a network of 10 000

4.2. MATERIAL 55

0

25

50

75

100

125

100 1000 10000
Size

A
ve

ra
ge

 N
ei

gh
bo

ur
H

oo
d

S
iz

e
k=0
k=1
k=2
k=3
k=4

Figure 4.2: The maximum neighbourhood size plotted against the size of the generated problems
displayed for various values of k. The top green line represents the maximum neighbourhood size
possible (i.e. the network size).

vertices was reached. For each problem size 10 different variations were gener-
ated.

The diameter of the generated networks can be seen in Figure 4.1. Following
Theorem 3.8, core stability will be achieved if k were to be set to these values for
the given problem sizes. This is also the point where the k-neighbourhood of
every vertex will cover the whole network.

Our goal is to determine the usability of k-stability for small values of k, so
the k will be much smaller than the diameter. As the neighbourhood size is very
important for the development of the algorithm, some initial investigation was
conducted on the neighbourhood sizes for varying k. The results can be seen
in Figure 4.2. It can be seen that for each k the average neighbourhood size
converges to a certain value. Even for k = 4, the average neighbourhood size
stays relatively small. This should be positive for the algorithm as it is likely that
the search for optimal coalitions will be conducted in small neighbourhoods.

However, it could also be that a single player will become the bottleneck of
the algorithm. A single player with a large neighbourhood will take a long time
deciding on his appropriate coalition. In the mean time the other players will
have to wait for his decision. That is why, the maximum neighbourhood size
was also investigated (see Figure 4.3).

Sadly, the maximum neighbourhood sizes are much larger than the average
ones, especially for k = 4 and k = 3. This could result in the existence of bottle-

56 4. EXPERIMENTAL EVALUATION

0

25

50

75

100

125

100 1000 10000
Size

M
ax

 N
ei

gh
bo

ur
H

oo
d

S
iz

e

k=0
k=1
k=2
k=3
k=4

Figure 4.3: The maximum neighbourhood size plotted against the size of the generated problems
displayed for various values of k. The top green line is the represents the maximum neighbourhood
size possible (i.e. the network size).

necks in the algorithm: the members of these large neighbourhoods will take a
very long time to come up with a proposal, making the surrounding nodes wait
for a long time. The experiments will show whether the algorithm can overcome
these bottlenecks, or that it will result in an unscalable algorithm.

In addition to the structure of te networks, each node was assigned an energy
attribute to indicate its production/consumption. As a reminder, this attribute
is used in the evaluation function of the coalitions. The amount of energy was
random for each node, negative or positive. But, in order to make sure that there
is at least a possibility of energy balance, the final energy amounts were adjusted
such that the sum of energy in the entire graph was 0.

An additional input parameter for the algorithm is the utility function. This
is the function that decides what a beneficial coalition is and what not. For this
function there are also variations possible. But, as to not let the number of ex-
periments explode, we have decided to use a single utility function, namely the
one that was determined in Section 2.2.2 to reflect the quality of a microgrid:

u(X) = 0.2 ·σ(us (X))+0.8 ·σ(ub(X)) (4.1)

4.3. RESULTS & DISCUSSION
As mentioned before, two types of experiments were conducted. One for deter-
mining whether the preferred k for k-stability and one for judging the scalability

4.3. RESULTS & DISCUSSION 57

Size k Stability Satisfaction
15 0 0.8484848 0.9550897
20 0 0.7928571 0.9575348
15 1 0.9393939 0.9689302
20 1 0.9142857 0.9818506
15 2 1.0000000 1.0000000
20 2 1.0000000 1.0000000
15 3 1.0000000 1.0000000
20 3 1.0000000 1.0000000

Table 4.1: Average results for the stability and satisfaction produced by the exact algorithm for SGP.

of the algorithm. For each hypothesis the results will be separately presented
and discussed.

4.3.1. THE VALUE OF k
In order to determine the recommended value of k, the centralized algorithm
(which produces exact results) was initially used. Sadly the largest problem in-
stances it could handle were those of 20 vertices. The resulting stability and
satisfaction can be seen in Table 4.1. Here, the value of k = 0 was used addition-
ally to simulate the effect of disregarding stability. Both stability and satisfaction
were measured against the results of k +1 (e.g. for k = 1, stability was measured
against the results of k = 2). Satisfaction was only measured when st abi l i t y < 1,
in order to observe that, whenever there was instability, how much worse off the
unstable players were.

From the results of k = 0 it is visible that even when coalitions focus solely
on social welfare some form of stability can be provided. Furthermore, though
around 20% of the network ought to be able to improve their utility, the resulting
improvement is on average less than 5%. For k = 1 the resulting coalition struc-
tures are more stable, however, the available improvement of utility is compa-
rable to the improvement for k = 0. Finally, core stability seems to be achieved
for k = 2, as stability does not improve any more when k is increased. As the
coalitions are stable, the players are fully satisfied as well.

This is a positive result, even though it is only for the small problem in-
stances, as it proves that core stability can be achieved with a k that is less than
a third of the diameter of the network (see Figure 4.1). Though these results do
not show whether this will hold for the larger problems as well.

As these initial results only provide a small indication on the behaviour of k-
stability, the investigation needed to be expanded. In order to get more results,
the distributed algorithm was also used to compare the stability for various k.
This produced slightly different results, as here the social welfare is no longer
guaranteed to be maximized. Additionally, for k = 3 and k = 4, the algorithm
eventually went beyond the time limit for the experiments. Thus we were unable
to measure the stability for k = 2 and k = 3 for all instances.

Following the results of Figure 4.4, it can be seen that the stability for k = 1,

58 4. EXPERIMENTAL EVALUATION

0.00

0.25

0.50

0.75

1.00

100 1000 10000
Size

S
ta

bi
lit

y

k=1
k=2
k=3

Figure 4.4: The measured stability of obtained coalition structures for various k (relative to the result
of k +1) compared to the increase in problem size.

0

5

10

15

0.5 0.6 0.7 0.8 0.9 1.0
Stability

D
en

si
ty

k=1
k=2
k=3

Figure 4.5: A frequency histogram of the values of stability displayed in Figure 4.4. It shows the
density of obtained stability values for various k.

4.3. RESULTS & DISCUSSION 59

Figure 4.6: A frequency histogram of the satisfaction of found coalition structures for various values
of k.

compared to that of k = 2 is on average somewhere around 0.75. This means
that at around a quarter of the players could increase their utility if k were to be
increased to 2. The partitions for k = 2 are more stable, as the lowest stability
value for this k is at around 0.75. Likewise, the partitions for k = 3 are even more
stable.

One could also say that the improvement of stability for each increment of
k rapidly decreases. This becomes even more evident when the density of the
stability values is plotted (see Figure 4.5). Here we see the distribution of the
obtained stability values. For k = 1 the majority of stability is somewhere around
0.76 whereas for k = 2 the majority is situated at around 1.0 and even more so
for k = 3.

As expected, the stability of the partitions increases as k increases. But, it is
remarkable that the increase in stability for each increment in k deteriorates so
fast. On the other hand, the satisfaction is a lot worse when k is increased as is
shown in Figure 4.6.

Even though the partitions for k = 1 are less stable, the unstable players can
improve their utility less compared to the more stable partitions for higher val-
ues of k. Use of a k > 1 ensures that more players obtain a stable coalition, but on
the other hand players can end up in a much worse coalition then what should
be their stable coalition.

Concerning Q. 1, our hypothesis H. 1 can be accepted. k-Stability with k = 2
seems to approach core stability quite closely and is also significantly smaller

60 4. EXPERIMENTAL EVALUATION

1e+04

1e+06

100 10000
Size

T
im

e
(m

s)

k=1
k=2
k=3
k=4

Figure 4.7: The runtime for each problem instance given a certain value of k. Both axis are displayed
on a log-scale. Each run on an instance was limited to a maximum of 15 minutes, indicated by the
red line.

than the diameter of the networks. k = 1 also seems acceptable if a further re-
duction of neighbourhood size is needed. This choice however, comes at the
cost of stability as formed coalition structures are clearly more unstable than for
k = 2. Besides the need for a small neighbourhood size, one could also motivate
this choice with the resulting satisfaction as it was shown that even in unstable
coalitions, the obtained utility can only be improved by 5%.

4.3.2. DISTRIBUTED ALGORITHM PERFORMANCE

With k-stability being useful for SGP, even when k is small, the question remains
whether the constructed distributed algorithm is scalable. The expectations are
that the algorithm is scalable for k = 1 and k = 2. To this end, the runtime of the
distributed algorithm will be evaluated.

The first results we will consider, are those of Figure 4.7 where the algorithm
is clearly unscalable for k = 3 and k = 4. As was stated before, this was ex-
pected due to the relatively large neighbourhood sizes. The performance for
k = 1 also shows nothing out of the ordinary: reasonable trend for the runtime
versus problem size.

Remarkable is that for k = 2 the algorithm is unexpectedly slow. According to
the given neighbourhood sizes, the performed calculations should all be within
tolerable sizes. An investigation showed, however, that during the execution of
the algorithm some players would end up with a neighbourhood size exceeding

4.3. RESULTS & DISCUSSION 61

30 players. This is unlike what was shown in Figure 4.3, where the neighbour-
hood size does not exceed 25 for problem instances of less than 1000 players.
While the data on this figure is definitely not untrue, the maximum neighbour-
hood size does seem to change during the execution of the algorithm.

Consider the formation of a coalition, during this formation, all outgoing
edges will be gathered and used in the remainder of the algorithm. This means
that the coalition will continue with a union of the neighbourhoods of its mem-
bers. The aggregation of vertices results in a higher degree of the graph and
therefore an increase in neighbourhood sizes. This growth is large enough that
the algorithm cannot keep up.

To counter this behaviour and still maintain the k-stability guarantee, an al-
ternative version of the algorithm was used in subsequent experiments. In this
version, the neighbourhoods just start out regularly for the given value of k, but
once a coalition is formed it will continue as if k = 1 in order to limit subsequent
neighbourhood sizes. The resulting runtime can be seen in Figure 4.8.

There is no surprise that, for k = 1, nothing changes. For k = 2 the algorithm
runs a lot faster than previously, though there is a lot of variance in the runtime.
For the other values of k, the runtime is definitely improved, but it is not enough
to counter its rapid increase.

The variance for k = 2 can be explained by the differences in neighbourhood
sizes. In Figure 4.3 it can be seen that the neighbourhood size varies more as
k becomes larger. Given that searching for coalitions inside a given neighbour-
hood is very difficult, even a small difference in size can result in a large differ-
ence in runtime.

For both k, a regression analysis was conducted. The results are shown in
Table 4.2. The regression for k = 2 provides a different result than k = 1. This
can be mainly subjected to the variance that is more abundant in the results for
k = 2. While the exponential model provides a somewhat better fit for the data of
k = 1 in comparison to the polynomial models, it is not decisive as the fit for the
data of k = 2 is comparable for both polynomial and exponential models. From
the estimated coefficients we can conclude that the correct model is not O(n2) or
O(n3) as these coefficients are very small or even negative. These values suggest
that the coefficients were only used to provide a better fit for the data better and
not because the model is of an actual higher degree.

Our initial hypothesis for the scalability of the distributed algorithm for small
k was that it would be scalable. From our data we can neither accept or reject
this hypothesis as our regression analysis does not provide us with a conclusive
model for the runtime. It is not clear whether the model of the algorithm fits a
linear one or an exponential one.

The inconclusiveness of the analysis is mainly due to the influence of the
neighbourhood size on the runtime. We have determined the runtime to be
bounded by O(2N max

k N max
k n2), but this cannot be modelled to the network size

directly. Figure 4.3 gave an indication that O(N max
k) <<O(n), but this might not

be enough to counter the exponential nature of the runtime.

So it remains a question whether the algorithm is truly scalable. Though we

62 4. EXPERIMENTAL EVALUATION

1e+04

1e+06

100 10000
Size

T
im

e
(m

s)

k=1
k=2
k=3
k=4

Figure 4.8: The new runtime performance for the adjusted algorithm. Again, both axis are displayed
on a log-scale. Here, the k-neighbourhood is only used when a player is not yet in a coalition. Sub-
sequent coalitions are searched in a neighbourhood as if k = 1.

can take comfort in the fact that the algorithm was able to find coalition struc-
tures in networks of 10 000 nodes within 15 minutes as the exact algorithm of
[VRJ12] took 2.6 hours for a network of 40 nodes.

4.3. RESULTS & DISCUSSION 63

k Model R2 Estimated Formula
1 O(n) 0.5768 T i me = 198+3.75 ·Si ze
1 O(n2) 0.5893 T i me = 715+2.01 ·Si ze +0.000218 ·Si ze2

1 O(n3) 0.5906 T i me = 937.9+0.8923 ·Si ze +0.0005997 ·Si ze2 −2.840 ·10−8 ·Si ze3

1 O(en) 0.7409 T i me = e6.77+0.00047·Si ze

2 O(n) 0.3938 T i me =−1323+32.94 ·Si ze
2 O(n2) 0.3990 T i me =−2582+38.85 ·Si ze −0.0013 ·Si ze2

2 O(n3) 0.3992 T i me = 2879+40.64 ·Si ze −0.0023 ·Si ze2 +8.9 ·10−8 ·Si ze3

2 O(en) 0.405 T i me = e7.54+0.0013·Si ze

Table 4.2: Regression analysis of the runtime in Figure 4.8 for k = 1 and k = 2.

5
CONCLUSION

During this thesis a number of results were obtained. In Section 3.1 it was shown
that Stable Graph Partitioning (SGP) is likely a complex problem. Though we
were unable to prove SGP ∈ ∑P

2 -complete, the combination of the stability re-
quirement and the goal of social welfare maximization suggests that SGP can
only be solved by using an NP-oracle. Under the assumption that P 6= N P , there-
fore SGP ∉ N P and SGP ∈∑P

2 . The requirement of core stability was an impor-
tant part for the formulation of SGP and could therefore not be disregarded so
easily. Therefore the decision was to formulate a relaxation of core stability.

Consequentially k-stability was defined: a new notion of stability where the
knowledge of each player is limited to neighbours that are reachable within k
hops. It was shown that this notion of stability can be tuned using the value
k. It is equivalent to core stability when k equals the diameter of the network
and approaches a situation without considering stability when k = 0. Further-
more, it was shown that increasing k would increase stability, but decrease the
maximum obtainable social welfare. During the experiments in Section 4.3.1
it was determined that even for small values of k, such as k = 2, a stability is
achieved that is close to that of core stability as subsequent increases of k hardly
improved the stability of the solutions. This was an important result as the us-
age of k-stability in combination with such a small k reduces the search area of
individuals significantly.

Finally, a distributed algorithm was constructed in Section 3.4 that could
guarantee this form of stability. This algorithm assumes a starting point where
everyone is in a singleton coalition. From here, everyone explores possible merges
with other coalitions around them (fitting within their k-neighbourhood) and
formulates a proposal containing the best merge they found. Proposals are then
exchanged after which participants of these proposals reply whether they sup-
port this new coalitions or not. Finally, the coalitions of proposals that have full
support are formed and the process repeats.

The experiments that focused on determining the scalability of this algo-

64

5.1. FUTURE WORK 65

rithm were not so successful. A regression analysis of its runtime was inconclu-
sive. We were unable to determine the correct model fitting the obtained data
and thus unable to determine whether the algorithm is scalable or not.

This result does not rule out that there is no scalable heuristic for solving SGP
with k-stability. As explained in Section 3.4.2, the algorithm uses a brute force
approach when searching for optimal coalitions. This leaves room for a more
efficient approach, though it will take some effort to maintain the guarantee of
k-stability.

During this thesis, three research questions were formulated:

1. Is SGP of a higher complexity than GCSG?

2. What relaxation of SGP is easier to solve, but still provides some form of
stability?

3. What heuristic can be used to solve SGP(-relaxed) in a scalable manner?

Comparing the obtained results to these questions, we can conclude that the
first two have been appropriately answered. GCSG is known to be NP-Complete
whereas SGP ∉ NP was proven in this thesis. Therefore, SGP is indeed a more
complex problem than GCSG.

Concerning the second question, k-stability has been shown to be an appro-
priate substitution for core stability in SGP when k = 2. In addition, the sug-
gested value for k results in a significant reduction of required work, thus mak-
ing the problem easier. Though it should be noted that the usage of k-stability
does not lead to a lower complexity classification.

The third question is still left unanswered as our proposed heuristic has not
been proven to be scalable. While it is clear that the runtime would be exponen-
tial for complete networks, the sparsity of power grid networks allows for some
leeway.

Though we have shown that the algorithm was able to solve SGP instances of
10 000 nodes within 15 minutes given a limited distributed environment. This is
a positive result as the existing work for the similar problem of coalition struc-
ture generation, discussed in Section 2.5, indicated to be at its limits with net-
work sizes of around 60 nodes.

In relation to our initial problem this means that we have not entirely solved
it. Recall that our initial problem was to find suitable techniques for microgrid
formation. We have paved the way by exploring the nature of this problem and
proposing a mathematical counterpart that is both solvable and intuitive. This
means that we have a clear idea of what the problem of microgrid formation is
and how we can simplify it.

5.1. FUTURE WORK
In respect to the problem of microgrid formation, there are a few subjects that
were not covered, but which would still be interesting to investigate. One of

66 5. CONCLUSION

those is the utility function that was defined in Section 2.2.2. It was already indi-
cated that the utility function is not entirely accurate with respect to the prefer-
ences of microgrids: the demand and supply of prosumers could be represented
by a function over time instead of a constant, the safety of errors could be mod-
elled explicitly than just by size alone. Its formulation definitely has some room
for improvement and could lead to more user-friendly microgrids. We hypothe-
size that as long as the new utility function does not result in larger microgrids,
its usage will not affect the performance of our algorithm.

Another subject of interest would be the usage of pricing schemes to improve
the social welfare. In this work, coalition stability was pursued using the quality
of an obtained microgrid, here the cost of electricity was disregarded for the ob-
tained utility. However by manipulating this cost, utility can perhaps be changed
in such a way that unstable coalitions become stable. By properly manipulating
the prices, social welfare could be improved without violating the constraint of
stability.

Another thing we have not covered is a dynamic situation in the power grid.
Demand and supply is constantly changing and even the network topology can
change (connections can disappear, others appear). This would mean that a
well formed microgrid could deteriorate over time. It would require constant
awareness of the situation and the ability to adapt changes.

Perhaps a decent approach would be to maintain a hierarchy of coalitions
instead of a single one (like it is now). Since every coalition is a combination of
smaller coalitions, each individual coalition could maintain whether the merge
of the sub-coalitions is still feasible and whether it should stay in its super-
coalition or change. This would probably also make it easier to provide some
means of backtracking in the formation of coalitions and further improve the
social welfare.

On a final note, it might be possible to reduce the search area of the algo-
rithm even further. While k-stability already decreases the search area from
an entire network to a small neighbourhood, the algorithm still evaluates ev-
ery possible combination within that neighbourhood. Perhaps one can shrink it
even further by excluding unpromising combinations either by deduction or the
use of a heuristic. This might be the decisive step needed to make the algorithm
truly scalable.

BIBLIOGRAPHY

[ASC] ASCI. DAS: Distributed ASCI Supercomputer.

[Bal+10] Stefan Balev et al. GraphStream. 2010.

[Bal04] Coralio Ballester. “NP-completeness in hedonic games”. In: Games
and Economic Behavior 49 (2004), pp. 1–30. ISSN: 08998256. DOI: 10.
1016/j.geb.2003.10.003.

[BCR14] Filippo Bistaffa, J. Cerquides, and Juan Rodriguez-aguilar. “Anytime
Coalition Structure Generation on Synergy Graphs”. In: International
Conference on Autonomous Agents and Multiagent Systems (2014),
pp. 13–20.

[BJ02] Anna Bogomolnaia and Matthew O. Jackson. “The Stability of He-
donic Coalition Structures”. In: Games and Economic Behavior 38.2
(2002), pp. 201–230. ISSN: 08998256. DOI: 10.1006/game.2001.
0877.

[Bol96] M.H.J. Bollen. “Voltage sags: effects, mitigation and prediction”. In:
Power Engineering Journal 10.3 (1996), p. 129. ISSN: 09503366. DOI:
10.1049/pe:19960304.

[Bon00] A Bondi. “Characteristics of Scalability and Their Impact on Perfor-
mance”. In: Proceedings of the 2nd international workshop on Soft-
ware and performance (2000), pp. 195–203. ISSN: 158113195X. DOI:
10.1145/350391.350432.

[BZD14] Michael Burr, Michael Zimmer, and Peter Douglass. About Micro-
grids. 2014.

[Chr99] Richard D. Christie. Power Systems Test Archive. 1999.

[Cla14] Megan Clark. Aging US Power Grid Blacks Out More Than Any Other
Developed Nation. 2014.

[Die05] Reinhard Diestel. “Graph Theory. 2005”. In: Grad. Texts in Math 101
(2005).

[Fan+12] Xi Fang et al. “Smart grid - The new and improved power grid: A sur-
vey”. In: Communications Surveys & Tutorials (2012).

[Far10] H Farhangi. “The path of the smart grid”. In: Power and Energy Mag-
azine, IEEE february (2010).

[Git] Paolo Gittoi. Coalition Formation Theory | coalitiontheory.net.

[GKP89] Ronald L. Graham, Donald E. Knuth, and Oren Patashnik. Concrete
Mathematics: a foundation for computer science. Addison-Wesley,
1989, p. 244.

67

https://doi.org/10.1016/j.geb.2003.10.003
https://doi.org/10.1016/j.geb.2003.10.003
https://doi.org/10.1006/game.2001.0877
https://doi.org/10.1006/game.2001.0877
https://doi.org/10.1049/pe:19960304
https://doi.org/10.1145/350391.350432

68 BIBLIOGRAPHY

[HVW14] Martin Hoefer, D Váz, and Lisa Wagner. “Hedonic Coalition Forma-
tion in Networks”. In: Twenty-Ninth AAAI Conference on Artificial In-
telligence (2014).

[LA02] R Lasseter and A Akhil. “The CERTS microgrid concept”. In: White
paper for Transmission Reliability Program, Office of Power Technolo-
gies, US Department of Energy (2002), p. 29.

[Min+10] Gouki Mine et al. “Construction Method of Dynamic Microgrid by
Using Optimized Grouping Method”. In: Industrial Informatics (IN-
DIN), 2010 8th IEEE International Conference on (2010).

[Mye77] Roger B Myerson. “Graphs and Cooperation in Games.” In: Math-
ematics of Operations Research 2.3 (1977), pp. 225–229. ISSN: 0364-
765X. DOI: 10.1287/moor.2.3.225.

[Net12] NetBeheerNL. Storingen. 2012.

[ØN08] Jacob Østergaard and Je Nielsen. “The Bornholm Power System An
Overview”. In: Centre for Electric Technology, Technical University of
Denmark April (2008).

[PA12] G.A. Pagani and M. Aiello. The Power Grid as a Complex Network: a
Survey. 2012. arXiv: 1105.3338.

[RJ08] Talal Rahwan and N R Jennings. “An improved dynamic program-
ming algorithm for coalition structure generation”. In: Proc 7th Int
Conf on Autonomous Agents and Multi-Agent Systems (2008), pp. 1417–
1420.

[RPH98] Michael H. Rothkopf, Aleksandar Pekec, and Ronald M. Harstad. “Com-
putitional Manageable Combinatitional Auction”. In: Management
science 44 (1998), pp. 1131–1147.

[San+99] Tuomas Sandholm et al. “Coalition structure generation with worst
case guarantees”. In: Artificial Intelligence 111 (1999), pp. 209–238.
ISSN: 00043702. DOI: 10.1016/S0004- 3702(99)00036- 3. arXiv:
9810005 [cs].

[Sch08] Roderick Schwass. “Case studies of onsite energy systems for health-
care facilities”. In: (2008).

[Sho05] Mike Shor. Game Theory Dictionary. 2005.

[Slo16] N. J. A. Sloane. Sequence A000110 in The On-Line Encyclopedia of In-
teger Sequences. 2016.

[Tan11] Nobuo Tanaka. “Technology Roadmap Smart Grids”. In: International
Energy Agency (2011), p. 52. DOI: 10.1007/SpringerReference_
7300.

[The15] The Guardian. Turkey power outage shuts down public transporta-
tion and half of provinces. Istanbul, Mar. 2015.

[TW04] Kagan Tumer and David Wolpert. “A survey of collectives”. In: Col-
lectives and the design of complex systems (2004).

https://doi.org/10.1287/moor.2.3.225
http://arxiv.org/abs/1105.3338
https://doi.org/10.1016/S0004-3702(99)00036-3
http://arxiv.org/abs/9810005
https://doi.org/10.1007/SpringerReference_7300
https://doi.org/10.1007/SpringerReference_7300

BIBLIOGRAPHY 69

[Vin+12] Meritxell Vinyals et al. “Coalitional energy purchasing in the smart
grid”. In: 2012 IEEE International Energy Conference and Exhibition,
ENERGYCON 2012. 2012, pp. 848–853. ISBN: 9781467314541. DOI: 10.
1109/EnergyCon.2012.6348270.

[VPJ12] Thomas Voice, Maria Polukarov, and Nicholas R Jennings. “Coali-
tion Structure Generation over Graphs”. In: Journal of Artificial In-
telligence Research 45 (2012), pp. 165–196. DOI: 10.1145/0000000.
0000000. arXiv: arXiv:1410.6516v1.

[VRJ12] Thomas Voice, Sarvapali D Ramchurn, and Nicholas R Jennings. “On
Coalition Formation with Sparse Synergies”. In: Aamas 2012 (2012),
pp. 223–230.

[Wil+16] Willis et al. Aging Power Delivery Infrastructures. CRC Press, 2016.

[Woe13] Gerhard J. Woeginger. “A hardness result for core stability in addi-
tive hedonic games”. In: Mathematical Social Sciences 65.2 (2013),
pp. 101–104. ISSN: 01654896. DOI: 10.1016/j.mathsocsci.2012.
10.001.

https://doi.org/10.1109/EnergyCon.2012.6348270
https://doi.org/10.1109/EnergyCon.2012.6348270
https://doi.org/10.1145/0000000.0000000
https://doi.org/10.1145/0000000.0000000
http://arxiv.org/abs/arXiv:1410.6516v1
https://doi.org/10.1016/j.mathsocsci.2012.10.001
https://doi.org/10.1016/j.mathsocsci.2012.10.001

	Introduction
	The Smart Grid
	Microgrids
	Dynamic Microgrids
	Problem Statement
	Outline

	Background
	Grouping of Electricity Consumers
	Negligence of Topology
	Negligence of producers
	Arbitrary target consumption
	Fixed amount of microgrids

	Defining the Microgrid
	Constraints of Microgrid Formation
	Preferred Properties of Microgrids

	Coalition Theory
	Utility of Coalitions
	Social Welfare

	Coalition Formation Techniques
	Existing Methods
	Exact Algorithm
	Approximation Algorithm

	Coalition Structure Generation over Graphs
	Exact Algorithm
	Anytime Algorithm

	Stability of Coalitions
	Research Questions

	Stable Graph Partitioning
	Complexity of SGP
	A New Notion of Stability
	The Effect of k-Stability
	The Value of k

	Centralized Algorithm
	Distributed Algorithm
	Basic Approach
	Proposal Creation
	Proposal evaluation
	Greedy Growth

	Experimental Evaluation
	Methods
	Material
	Implementation
	Problem Instances

	Results & Discussion
	The Value of k
	Distributed Algorithm Performance

	Conclusion
	Future Work

