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Chapter 15 

Computer-Aided Diagnosis and Prediction in Brain 
Disorders 

Vikram Venkatraghavan, Sebastian R. van der Voort, Daniel Bos, 
Marion Smits, Frederik Barkhof, Wiro J. Niessen, Stefan Klein, 
and Esther E. Bron 

Abstract 

Computer-aided methods have shown added value for diagnosing and predicting brain disorders and can 
thus support decision making in clinical care and treatment planning. This chapter will provide insight into 
the type of methods, their working, their input data –such as cognitive tests, imaging, and genetic data– and 
the types of output they provide. We will focus on specific use cases for diagnosis, i.e., estimating the current 
“condition” of the patient, such as early detection and diagnosis of dementia, differential diagnosis of brain 
tumors, and decision making in stroke. Regarding prediction, i.e., estimation of the future “condition” of 
the patient, we will zoom in on use cases such as predicting the disease course in multiple sclerosis and 
predicting patient outcomes after treatment in brain cancer. Furthermore, based on these use cases, we will 
assess the current state-of-the-art methodology and highlight current efforts on benchmarking of these 
methods and the importance of open science therein. Finally, we assess the current clinical impact of 
computer-aided methods and discuss the required next steps to increase clinical impact. 

Key words Dementia, Stroke, Glioma, Cognitive impairment 

1 Introduction 

Computer-aided methods have major potential value for diagnos-
ing and predicting outcomes in brain disorders such as dementia, 
brain cancer, and stroke. Diagnosis aims to determine the current 
“condition” of the patient. Prediction, or prognosis, on the other 
hand, aims to forecast the future “condition” of the patient. In this 
way, the patient’s current and future condition can be estimated in a 
more detailed and accurate way, which opens up possibilities for 
better patient care and personalized medicine, with interventions 
tailored to the individual patient. Moreover, diagnosis and
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prediction are crucial not only for decision making in clinical care 
and treatment planning but also for managing the expectations of 
patients and their caregivers. This is particularly important in brain 
disorders as they may strongly affect life expectancy and quality of 
life, as symptoms of the disorder and side effects of the treatment 
can have a major impact on the patient’s cognitive skills, daily 
functioning, social interaction, and general well-being. In clinical 
practice, diagnosis and prediction are typically performed using 
multiple sources of information, such as symptomatology, medical 
history, cognitive tests, brain imaging, electroencephalography 
(EEG), magnetoencephalography (MEG), blood tests, cerebrospi-
nal fluid (CSF) biomarkers, histopathological or molecular find-
ings, and lifestyle and genetic risk factors. These various pieces of 
information are integrated by the treating clinician, often in con-
sensus with other experts at a multidisciplinary team meeting, in 
order to reach a final diagnosis and/or treatment plan. The aim of 
computer-aided methods for diagnosis and prediction is to support 
this process, in order to achieve more accurate, objective, and 
efficient decision making.
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In the literature, numerous examples of computer-aided meth-
ods for diagnosis and prediction in brain disorders can be found. 
Most of the state-of-the-art methods use some form of machine 
learning to construct a model that maps (often high-dimensional) 
input data to the output variable of interest. There exists a large 
variation in machine learning technology, types of input data, and 
output variables. Chapters 1–6 introduced the main machine 
learning technologies used for computer-aided diagnosis and pre-
diction. These include, on the one hand, classical methods such as 
linear models, support vector machines, and random forests, and 
on the other hand, deep learning methods such as convolutional 
neural networks and recurrent neural networks. These methods can 
be implemented either as classification models (estimating discrete 
labels) or as regression models (estimating continuous quantities), 
possibly specialized for survival (or “time-to-event”) analysis. In 
addition, Chapter 17 highlights the category of disease progression 
modeling techniques, which could be considered as a specialized 
form of machine learning incorporating models of the disease 
evolution over time. Chapters 7–12 described the main types of 
input data used in machine learning for brain disorders: clinical 
evaluations, neuroimaging, EEG/MEG, genetics and omics data, 
electronic health records, and smartphone and sensor data. The 
current chapter focuses on the choice of the output variable, i.e., 
the diagnosis or prediction of interest (Fig. 1). 

To illustrate the various ways in which machine learning could 
aid diagnosis and prediction, we focus on representative use cases
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1.1 Diagnosis

organized according to the type of output. Subheading 1.1 pre-
sents diagnostic use cases, including early diagnosis, differential 
diagnosis, and decision making for treatment. Subheading 1.2 
presents prediction use cases, including estimation of the natural 
disease course and prediction of patient outcomes after 
treatment. While the diagnostic use cases are the core of current 
clinical practice which could be aided by machine learning, the 
prediction use cases represent a potential future application. Cur-
rently, prediction is not so often made as clinicians are not yet able 
to make a reliable prediction in most cases. After these introductory 
sections, Subheading 2 provides a more comprehensive survey of 
the state-of-the-art methodology, and Subheading 3 analyzes the 
clinical impact of such methodology and suggests a roadmap for 
further clinical translation. Finally, Subheading 5 concludes this 
chapter. 
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Fig. 1 Overview of the topics covered in this chapter, in the context of the other chapters in this book 

Diagnosis aims to determine the current “condition” of the patient 
to inform patient care and treatment decisions. Here, we introduce 
three categories of diagnostic tasks that occur in clinical practice 
and describe why and how computer-aided models have or could 
have added value.
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Box 1: Diagnosis 
Categories of diagnostic tasks that occur in clinical practice in 
which computer-aided models have or could have added 
value, with brain disorders for which this is relevant as 
examples:

• Early diagnosis Dementia and MS

• Differential diagnosis Dementia and brain cancer

• Decision making for treatment Stroke 

Early diagnosis is highly challenging in neurodegenerative 
diseases such as dementia and multiple sclerosis (MS). Dementia 
is a clinical syndrome which can be caused by several underlying 
diseases, Alzheimer’s disease (AD) being the most prevalent, and is 
estimated to affect 50 million people worldwide [4]. The mean age 
at dementia diagnosis is approximately 83 years [106]. MS is esti-
mated to affect about two million people worldwide, and it primar-
ily affects younger adults with the mean age of onset for incident 
MS being approximately 30 years [74]. Both for dementia and MS, 
establishing the diagnosis usually takes a substantial period of time 
after the first clinical symptoms arise [58, 139]. Early detection and 
accurate diagnosis is crucial for timely decision making regarding 
care and management of dementia symptoms, and as such can 
reduce healthcare costs and improve quality of life as it gives 
patients access to supportive therapies that help to delay institu-
tionalization [107]. Early diagnosis of MS is important, because 
patients who begin treatment earlier do reap more benefit than 
those who start late [90]. In addition, advancing the diagnosis in 
time is essential to support the development of new disease-
modifying treatments, since late treatment is expected to be a 
major factor in failure of clinical trials [88]. The clinical diagnosis 
of dementia is currently based on objective assessment of cognitive 
impairment, assessment of biomarkers [29], and evaluation of its 
interference with daily living [2, 42, 87, 112]. The clinical diagno-
sis of MS is based on frequency of relapsing inflammatory attacks, 
associated symptoms, and distribution of lesions on MRI 
[132]. For a subset of MS patients with demyelinating lesions 
highly suggestive of MS, termed as radiologically isolated syndrome 
(RIS), a separate diagnostic criteria was formed by Okuda et al. [98] 
to improve the diagnostic accuracy. However, objective assessment 
of biomarkers of the underlying processes can advance diagnosis, 
since symptoms are known to arise relatively late in the disease 
process. This holds, for example, for cognitive impairment due to 
dementia and physical disability or cognitive impairment due to MS 
[25, 40, 52]. By combining neuroimaging and other biomarkers



with machine learning based on large datasets, computer-aided 
diagnosis algorithms aim to facilitate medical decision support by 
providing a potentially more objective diagnosis than that obtained 
by conventional clinical criteria [63, 113]. In addition to biomar-
kers, machine learning based on data from remote monitoring 
technology, such as wearables and smart watches, is an emerging 
field of research aimed at detecting cognitive, behavioral, and phys-
ical symptoms in an objective way at the earliest stage possible 
[95, 126]. 
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Beyond an early diagnosis, accurate identification of the under-
lying disease, i.e., differential diagnosis, is crucial for planning 
care and treatment decisions. For example, in dementia, the most 
common underlying diseases are AD, vascular cognitive 
impairment (VCI), dementia with Lewy bodies (DLB), and fron-
totemporal lobar degeneration (FTLD). Although clinical symp-
tomatology differs between the diseases, symptoms in the early 
stage may be unclear and can overlap [42, 87, 112]. The current 
clinical criteria for AD and FTLD, for example, which entail quali-
tative inspection of neuroimaging, fail to accurately differentiate 
the two diseases [47]. Additionally, a young patient (<65 years 
old) with behavioral problems could have a differential diagnosis of 
dementia (i.e., behavioral phenotypes of FTLD or AD) or primary 
psychiatric disorder, as symptomatology overlaps substantially 
[68]. An accurate diagnosis of primary psychiatric disorder can be 
informative in such patients by suggesting that progressive decline 
in the condition is not necessarily expected [30]. For some specific 
diseases, measurements of proteins causing the underlying pathol-
ogy have in the last decade shown high accuracy for diagnosis of the 
pathology. AD is a good example with blood-based biomarkers 
measuring phosphorylated-Tau (P-Tau), CSF biomarkers measur-
ing amyloid β, P-Tau and Tau, and PET imaging measuring amy-
loid-β and Tau. However, while highly promising, measurement of 
these proteins is not yet widely performed in clinical practice as 
blood-based biomarkers of AD are not widely available yet, CSF 
biomarkers require an invasive lumbar puncture, and PET imaging 
is too expensive and not sufficiently widely accessible to be done in 
each patient. Moreover, such markers of the underlying pathology 
are currently unavailable for other types of dementia. As an alterna-
tive, quantitative neuroimaging and other biomarkers, especially in 
combination with machine learning and large datasets, have shown 
to be beneficial in difficult cases of differential diagnosis [14, 110]. 

Another disorder where differential diagnosis is crucial is brain 
cancer. Diagnosis of brain tumors typically starts with the analysis of 
MRI brain data. A first diagnostic task is to differentiate between 
primary and secondary lesions. Primary lesions are tumors that 
originated from healthy brain cells, with glioma being the most 
common primary brain tumor type. Secondary lesions are metas-
tases from tumors located elsewhere in the body, which may trigger



very different care and treatment paths. Also the distinction 
between glioma and other less common malignant primary lesions 
such as lymphoma is relevant. Whereas neuroradiologists are 
trained to differentiate these different types of lesions, the large 
variation in appearance of tumors induces uncertainty in the differ-
ential diagnosis. Machine learning has been shown to be able to 
distinguish glioma from metastasis [20] and lymphoma [86] based 
on quantitative analysis of brain MRI, and may thus be used as a 
“second” reader supporting the radiologists. Once a diagnosis of 
cancer is established, a second task in differential diagnosis is the 
further subtyping of the lesion. While glioma is one of the deadliest 
forms of cancer [97], there exist large differences in survival and 
treatment response between patients. These differences can be 
attributed to the glioma’s genetic and histological features, in 
particular the isocitrate dehydrogenase (IDH) mutation status, 
the 1p19q co-deletion status, MGMT promoter methylation sta-
tus, and the tumor grade [28, 31, 38]. These insights have led to 
classification guidelines by the World Health Organization (WHO) 
[77]. In current clinical practice, these genetic and histological 
features are determined from tumor tissue after resection. How-
ever, there has been an increasing interest in complementary non-
invasive alternatives that can provide the genetic and histological 
information before resection [10, 152]. Also here, neuroradiolo-
gists can be trained to visually distinguish the subtypes based on 
MRI [26, 128], but uncertainty often remains and the inherent 
subjectivity associated with visual inspection of subtle differences in 
appearance, by radiologists with varying levels of expertise, is unde-
sirable. A large body of research has therefore focused on develop-
ment of machine learning approaches to support MRI-based 
determination of genetic and histological features of glioma 
[41, 65, 122, 127]. 
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The third diagnostic task we address is decision making for 
treatment. This is relevant when multiple therapeutic options are 
available, such as for patients with stroke. Multiple treatment 
options for stroke exist such as thrombolytic medication and endo-
vascular clot retrieval (mechanical thrombectomy). Since depend-
ing on the situation different treatments or their combination may 
be optimal, and since the costs per patient are rising, there is a real 
and urgent need for computer-aided diagnosis techniques to aid in 
the streamlined care of patients and individualized treatment deci-
sions [56]. To enable early treatment of acute stroke, early and 
reliable diagnosis is required, which heavily relies on imaging. The 
vast majority of strokes are of ischemic origin, caused by a blood 
clot occluding an artery resulting in oxygen deprivation of the brain 
tissue supplied by this artery. Typical causes are large vessel occlu-
sion with or without thrombus dislodgement (e.g., carotid steno-
sis) or a cardiac cause resulting in embolies (e.g., atrial fibrillation). 
The less common subtype is hemorrhagic stroke, which has



1.2 Prediction

substantially different etiology and is often caused by hypertension. 
Without early treatment of stroke, prognosis is poor. Each minute 
without treatment leads to loss of an estimated 1.8 million neurons 
[64]. Patients who enter the hospital with acute stroke symptoms 
often immediately undergo CT (or MR) scanning, even before 
detailed clinical evaluation of the patient [64]. Imaging here has 
three roles in decision making for treatment: (1) rule out hemor-
rhagic stroke, (2) establish the exact cause and the extent of ische-
mic stroke, and (3) determine a patient’s suitability for (intra-
arterial) treatment [33, 80]. Applications of machine learning for 
treatment decisions in stroke include identification of hemorrhage 
and early identification of imaging findings to determine the cause 
and extent of stroke and estimation of the time of onset. Time of 
onset is relevant since most current treatments aim for rapid reper-
fusion of ischemic tissue, either using intravenous thrombolytic 
medications or using endovascular techniques to mechanically 
remove the obstruction to blood flow, which should be performed 
within 4.5 h of stroke onset [56]. 

Computer-Aided Diagnosis and Prediction in Brain Disorders 465

Prediction or prognosis aims to understand the future “condition” 
of the patient, which can then be used for considering and planning 
therapeutic or lifestyle interventions proactively [22] that may slow 
the disease process or may reduce the risk for event recurrence. In 
addition, it can be used for effective patient management, for 
managing the expectations of patients and their caregivers [82], as 
well as for patient selection in clinical trials [35, 102]. We distin-
guish two main categories of prediction targets here: the natural 
disease course and patient outcomes after treatment. 

Box 2: Prediction 
Categories of prediction targets for which computer-aided 
models have or could have added value, with example brain 
disorders for which this is relevant as discussed in this chapter:

• Natural disease course Dementia and MS

• Patient outcomes after treatment MS, brain cancer, and 
stroke 

Predicting the natural disease course, i.e., the future progres-
sion of the disease and its symptoms in a subject, is clinically 
relevant as it can aid care planning and managing the expectations 
of patients and caregivers about their future quality of life, physical 
health, and dependency [81]. Additionally, in disorders where 
treatment options are limited, it would improve future clinical trials



for new medication through identification of patients most likely to 
benefit from an effective treatment, i.e., those at early stages of 
disease who are likely to progress over the short-to-medium term 
(1–5 years) [83]. 
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In dementia, prediction is challenging because of disease het-
erogeneity, i.e., differences in symptoms between patients along the 
disease process. For example, a patient can have either typical AD 
with memory problems or atypical AD with either language pro-
blems [43] or behavioral problems [99]. Moreover, patients with 
comparable brain atrophy may decline differently as the disease 
progresses, reflecting cognitive resilience due to genetic or lifestyle 
factors that may help to compensate for the level of atrophy 
[147]. Lastly, a similar symptom in two patients could be resulting 
from different diseases altogether. For example, a patient with mild 
cognitive impairment (MCI) either may have early stage dementia 
or may have cognitive impairment due to a different cause such as 
older age, injury, or a virus such as SARS-CoV-2 [44]. The latter, 
i.e., cognitive impairment due to non-degenerative disorders, is 
almost twice as prevalent as cognitive impairment due to dementia 
[106]. Here it is of interest to predict how the symptoms will 
develop over time for an individual; while patients without demen-
tia may remain stable over time or even improve, the symptoms of 
patients with dementia typically worsen with time. Hence, the 
applications of machine learning in predicting the future course of 
dementia include the following: (i) predicting if a patient with 
cognitive impairment patient will develop dementia [138], 
(ii) predicting when the patient will reach a clinical dementia stage 
(i.e., duration of the prodromal disease phase) [83], and (iii) pre-
dicting the progression of biomarkers such as cognition and MRI 
measurements [61, 66]. 

In MS, especially in the early stages when patients experience 
clinical symptoms sporadically, prediction of the future disease 
course is highly relevant for care planning and expectation manage-
ment. The early stage of MS, known as the relapsing-remitting 
phase, is characterized by sporadic inflammatory attacks on the 
neuronal protective coating called myelin. Over time, the recovery 
from these relapses becomes incomplete, resulting in permanent 
and progressive disability [144]. Because of this progressive nature 
and the variation between individuals, predicting the number of 
relapses and the time to permanent disability in a specific patient is 
highly important for care and treatment planning [18]. 

Next to prediction of the natural disease course, prediction of 
the future disease course after an intervention, i.e., outcome pre-
diction after treatment, could be instrumental for planning of 
treatment and subsequent follow-up. This is of particular interest 
in MS where multiple treatment options are available. There are



currently 21 FDA-approved disease-modifying drugs available [27] 
that inhibit different aspects of pathological progression of MS 
mainly by immune modulation and sometimes through neuropro-
tection or remyelination. It is hence clinically highly relevant to 
choose the treatment option that an individual patient is expected 
to have most benefit from and to determine whether risks of 
second-line treatment are justified [131]. The same holds for stroke 
in the post-acute phase, where prediction of patient outcomes after 
treatment based on imaging may play a role for choosing between 
available treatments such as medication and rehabilitation therapy 
[80]. Here the focus is on the long term: reducing risk of recur-
rence and optimization of functioning. Computer-aided 
approaches can thus help in personalizing the treatment for a 
patient. 
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Predicting the outcomes after treatment is also of major inter-
est for patients with brain tumors, and specifically in case of glioma 
where treatment response varies greatly across patients. Treatment 
usually consists of surgical resection followed by radiotherapy 
and/or chemotherapy. Almost invariably tumor recurrence or 
regrowth occurs; however, the question is when. In case of high-
grade glioma (i.e., glioblastoma), tumor regrowth typically hap-
pens within a few months. In low-grade glioma, progression after 
treatment is often slower, and it may take years before any signifi-
cant regrowth is detected; at some point, however, malignant 
transformation (to a high-grade glioma) may occur, leading to 
accelerated regrowth. As discussed in Subheading 1.1, computer-
aided diagnosis methods can be used to identify the current 
tumor’s genetic and histological profile, which already provides 
important prognostic information. Beyond this example of 
computer-aided differential diagnosis, machine learning methods 
can contribute in different ways by directly predicting outcomes 
after treatment [65, 127]. First, machine learning methods have 
shown promise to aid the differentiation between tumor progres-
sion and treatment-related abnormalities (pseudoprogression, radi-
ation necrosis) [54, 65, 73, 127, 143]. Second, machine learning 
can be used to predict local relapse locations after radiotherapy, 
thus highlighting locations that should be targeted with a higher 
radiation dose, leading to personalized radiotherapy planning 
[114]. Third, a machine learning approach can predict local 
response to stereotactic radiosurgery of brain metastases, based 
on radiomics analysis of pretreatment MRI, where the outcome of 
interest (local tumor progression) was defined in terms of maxi-
mum axial diameter growth as measured on a follow-up scan 
[94]. Fourth, machine learning methods have been proposed for 
prediction of progression-free and overall survival, which aids care 
planning and managing the expectations of patients about their 
future [60, 108, 122, 127].
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2 Method Evaluation 

2.1 State-of-the-Art 

Methodology for 

Diagnosis and 

Prediction 

For early diagnosis in dementia, a large body of research has been 
published on classification of subjects into AD, mild cognitive 
impairment (MCI), and normal aging [36, 113, 145]. Overall, 
classification methods show high performance for classification of 
AD patients and cognitively normal controls with an area under the 
receiver operating characteristic curve (AUC) of 85-98%. 
Reported performances are somewhat lower for early diagnosis in 
patients with MCI, i.e., prediction of imminent conversion to AD 
(AUC: 62-82%). Dementia classification is usually based on clini-
cal diagnosis as a reference standard for training and validation 
[87], but biological diagnosis based on assessment of amyloid 
pathology with PET imaging or CSF has been increasingly used 
over the last years [53, 129]. Structural T1-weighted (T1w) MRI 
to quantify neuronal loss is the most commonly used biomarker, 
whereas the support vector machine (SVM) is the most commonly 
used classifier. For T1w, both voxel-based maps (e.g., voxel-based 
morphometry maps quantifying local gray matter density [62]) and 
region-based features [78] have been frequently used. While using 
only region-based volumes may limit performance, combining 
those with regional shape and texture has been shown to perform 
competitively with using voxel-wise maps [13, 15, 24]. Using mul-
timodal imaging such as FDG-PETor DTI in addition to structural 
MRI may have added value over structural MRI only, but limited 
data is available [76, 150]. Following the trends and successes in 
medical image analysis and machine learning, neural network 
classifiers –convolutional neural networks (CNN) in particular– 
have increasingly been used since a few years [16, 145], but have 
not been shown to significantly outperform conventional classifiers. 
In addition, data-driven disease progression models are being 
developed [101], which do not rely on a priori defined labels but 
instead derive disease progression in a data-driven way. 

Regarding differential diagnosis in dementia, studies focus 
mostly on discriminating AD from other types of dementia. Differ-
ential diagnosis based on CSF and PET biomarkers of AD pathol-
ogy has shown good performance for distinguishing AD from 
FTLD with sensitivities of 0.83 (p-tau/amyloid-β ratio from 
CSF) and 0.87 (amyloid PET) [48, 111, 117]. In addition, 
machine learning approaches have been published based on either 
structural or multimodal MRI as region-wise or voxel-wise imaging 
features and generally SVM as a classifier, similar to those used for 
early diagnosis in dementia. These methods focused mostly on 
differential diagnosis of AD and FTLD and reported performances 
in the range of AUC = 0.75 - 0.85 [12, 14, 92, 110]. A few 
studies addressed differential diagnosis of AD and vascular



dementia (VaD) [151] or multiclass differential diagnosis (5+ clas-
ses including AD, FTLD, VaD, dementia with Lewy bodies, and 
subjective cognitive decline) [93, 133]. 

Computer-Aided Diagnosis and Prediction in Brain Disorders 469

For differential diagnosis in brain cancer, numerous 
MRI-based machine learning approaches have been presented. 
These developments have partly been facilitated by the availability 
of several valuable public datasets; see, for example, the overviews in 
[89, 135]. Most literature is dedicated to glioma characterization, 
which is therefore discussed in more detail here. Studies vary in the 
choice of input MRI sequences (T1w pre- and post-contrast, 
FLAIR, T2w, diffusion-weighted imaging, perfusion-weighted 
imaging, MR spectroscopy, APT CEST), the machine learning 
methodology (ranging from conventional radiomics approaches 
with hand-crafted features derived from manual tumor segmenta-
tions to deep learning approaches that automatically segment the 
tumor), the classification target(s) (e.g., grade, IDH, 1p19q, 
and/or MGMT status), the selection of glioma subtypes on 
which the method is validated (e.g., only low-grade glioma, only 
high-grade glioma, or both), and the extent of validation per-
formed (single train-test split, repeated cross-validation, internal 
versus external validation). A systematic review on the use of 
machine learning in neuro-oncology found four articles on glioma 
grading, and four articles on identifying genetic/molecular char-
acteristics of glioma based on MRI [122]. Among those, only one 
study used convolutional neural networks as a machine learning 
tool—to predict 1p19q status in low-grade glioma [1]. A more 
recent systematic review identified 27 studies on glioma grading of 
which 6 used deep learning, and 48 studies on MRI-based estima-
tion of genetic/molecular characteristics of which 8 used deep 
learning [19]. Another recent review dedicated to machine learning 
approaches for MRI-based glioma characterization found 12 studies 
on glioma grading of which 2 used deep learning, and 43 studies on 
molecular characterization out of which 10 used deep learning 
[41]. These numbers indicate a trend toward deep learning 
approaches as we see in the entire field, but with conventional 
machine learning approaches with pre-defined radiomics features 
still being used frequently. Regarding the performance, two recent 
systematic reviews performed a meta-analysis of studies on molecu-
lar characterization of glioma. Jian et al. [55] found a pooled 
sensitivity/specificity/AUC in the validation set of 0.85/0.83/ 
0.90 for IDH status prediction (12 studies), and 0.70/0.72/0.75 
for 1p19q status prediction (5 studies). For MGMT, sensitivities 
and specificities ranging from 0.70 to 0.88 were found in 3 studies 
reporting validation performance, not allowing a meta-analysis. 
Van Kempen et al. [136] reported a pooled AUC of 0.91 for 
IDH status prediction (7 studies), 0.75 for 1p19q status prediction 
(3 studies), and 0.87 for MGMT promoter status prediction 
(3 studies). Thus, while the studies applied somewhat different



criteria for inclusion in the meta-analysis and used different statisti-
cal analysis methods, they obtained similar performance estimates. 
Whereas both meta-analyses suggest promising accuracy for 
MRI-based MGMT promoter status prediction based on the results 
reported in literature, a comprehensive evaluation of deep learning 
approaches for MGMT promoter status prediction on the 
BraTS2021 dataset [6] yielded disappointing results, with AUCs 
ranging from 0.5 to 0.6 [120]. Also, the winning method of the 
BraTS2021 challenge achieved an AUC of 0.62 [8], suggesting 
that MGMT promoter status prediction from MRI is a very difficult 
task. Both systematic reviews [55, 136] also pointed out the low 
proportion of studies with external validation (10 out of 44 in [55] 
and 12 out of 60 in [136]). Figure 2, recreated based on [55], 
shows a number of other insightful statistics on the methodologies 
found in literature. Finally, both reviews also identified machine 
learning methods aimed at predicting other, less frequently consid-
ered molecular targets, including ATRX, TERT, EGFR, P53, and 
PTEN, indicating the broad range of possible future research direc-
tions in this area. 
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Fig. 2 Summary of tumor segmentation methods (a), types of imaging features (b), means of internal 
validation (c), and external validation (d) used by studies (n= 44) investigating machine learning models for 
predicting genetic subtypes of glioma. VASARI, Visually Accessible Rembrandt Imaging. Recreated from 
[55]. Permission to reuse was kindly granted by the publishers
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Beyond glioma characterization, other differential diagnosis 
problems in brain cancer are differentiation between glioma and 
lymphoma, between glioblastoma and metastasis, between differ-
ent types of meningioma, and between glioma, meningioma, and 
pituitary tumors [19, 65, 122, 127, 149], with promising perfor-
mances reported (AUC/accuracies around 90%). Of note, a recent 
study pointed out an important potential source of bias (the 
“Clever Hans effect”) in studies focused on differentiation between 
glioma, meningioma, and pituitary tumors, due to implicit radiol-
ogist input in the selection of the 2D slices in a commonly used 
benchmark dataset [142]. 

For decision making in stroke, different targets for machine 
learning based on imaging data have been identified, mostly 
focused at determining the cause and extent of stroke and to a 
lesser extent, on informing treatment decisions [56]. Regarding 
cause and extent of acute stroke, automatic lesion detection and 
identification of tissue-at-risk include the most important elements. 
These remain challenging as there is a lot of variation in lesion shape 
and location depending on time-from-symptom onset, vessel 
occlusion site, and collateral status [70]. Machine learning methods 
for segmentation and detection are increasingly successful (see 
Chapter 13). The step toward computer-aided diagnosis in stroke 
is also being taken using, for example, the CE-marked eASPECTS 
score [49], which is a machine learning-based assessment of the 
Alberta Stroke Program Early Computed Tomography Score 
(ASPECTS). This system for scoring acute ischemic damage to 
the brain has shown to be a simple, reliable, and strong predictor 
of functional outcome after stroke. Regarding treatment decisions, 
machine learning is used in several studies to determine whether a 
patient qualifies for a specific stroke treatment. For thrombolytic 
treatment, this qualification depends on time elapsed after symp-
tom onset and treatment should be performed within 4.5 h. For 
this application, methods are developed that provide a binary esti-
mation of stroke onset time (i.e., more or less than 4.5 h) based on 
either DWI and FLAIR [71] or perfusion-weighted imaging (CTor 
MR) [50]. Both approaches used a radiomics-like approach of 
feature extraction (e.g., intensity/gradient/texture based or using 
an autoencoder) followed by a machine learning classifier (support 
vector machine, random forest, and logistic regression). These 
machine learning methods had greater sensitivity than human read-
ers using the standard procedure of DWI-FLAIR mismatch and 
comparable specificity. In addition, thrombolysis may cause the rare 
complication of symptomatic intracranial hemorrhage. Several 
machine learning methods have been developed to predict the 
risk of this complication achieving promising predictive perfor-
mance, for example, using a support vector machine classifiers 
based on CT data (AUC = 0.74) [9].

https://doi.org/10.1007/978-1-0716-3195-9_13


472 Vikram Venkatraghavan et al.

For prediction of the future course of subjects at-risk of 
developing dementia, there are three frequently used approaches 
for defining the prediction problem at hand. First, predicting 
whether the patient will develop dementia. In specific diseases, 
measurement of proteins causing underlying pathology has shown 
to be very promising to identify patients in a prodromal disease 
state. Here, prediction is performed either using univariate analysis 
or using logistic regression with few variables as input. Blood-based 
P-Tau biomarker can predict incident AD within 4 years with an 
AUC of 0.78-0.83 [103], and CSF biomarkers and PET images of 
amyloid β and Tau can predict clinical progression of subjects in 
their prodromal AD state with an AUC of 0.94-0.96 [46]. Alter-
natively, in the absence of pathology-specific markers, MRI and 
cognitive markers of a patient together with machine learning 
approaches have been used to predict AD with an AUC of 0.70-
0.83 [16, 23, 75, 141]. For a systematic review of the different 
machine learning methods developed for the purpose of predicting 
AD, see [5]. Support vector machines (SVM) and logistic regres-
sions are the most used algorithms in the last decade (Fig. 3). In 
FTD, where it is currently not possible to measure the pathological 
proteins in body fluids, prediction based on a combination of 
biomarkers that are nonspecific to the underlying pathology is 
promising. This is demonstrated, for example, by van der Ende 
et al. [134], who predicted disease onset in familial FTD based on 
unspecific blood-based and CSF-based biomarkers using a disease 
progression model and identified presymptomatic subjects that 
developed dementia in the near future with an AUC of 0.85. 

1.0 

0.8 

0.6 

0.4 

0.2 

0.0 
2010 2011 2012 2013 2014 2015 2016 2017 2018 

Logistic regression 
Neural network 
OPLS 

Other 
Random Forest 
SVM 

Linear SVM 
Non-linear SVM 

Fig. 3 Evolution with time of the use of various algorithms for predicting the progression of mild cognitive 
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SVM, support vector machine. Reproduced from [5]. Permission to reuse was kindly granted by the publishers
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Second, predicting the time for conversion to dementia. While 
the previous problem predicts a dichotomous output variable, here 
it involves predicting a continuous variable of time to dementia. 
Bilgel et al. [11] predicted time to AD dementia with a mean error 
of <1.5 years. In the TADPOLE challenge, machine learning 
approaches to predict time for conversion to AD dementia of 
33 participating teams have been assessed quantitatively 
[83]. Ansart et al. [5] strongly favor predicting the exact time for 
conversion to dementia and argue against predicting converters 
within a given time interval (e.g., within 3 years), because of the 
precision in the predictions. While this is indeed methodologically 
more elegant, the implications for clinical use and perception of 
patients regarding prediction precision and the inherent uncer-
tainty remain to be established. 

Third, prediction of disease markers could help to obtain 
insight into the clinical prognosis in an individual. Important dis-
ease markers are, for example, measures of global cognition (mini-
mental state examination [MMSE] or Alzheimer’s disease assess-
ment scale [ADAS] scores), or salient imaging markers (volume of 
the brain ventricles or longitudinal Tau protein accumulation). 
ADAS scores could not be reliably predicted by any participating 
team in the TADPOLE challenge [83], but a recent disease pro-
gression model called AD course map [66] could predict ADAS 
scores (which is scored from 0 to 150) after 3 years with a mean 
absolute error of 7.6 points. AD course map could also predict 
MMSE scores (which is scored from 0 to 30) after 3 years with a 
mean absolute error of 3.2 points. While these predictions used 
MRI as input, Tau PET was recently shown to be more predictive of 
future MMSE scores using linear mixed models [100]. However, a 
thorough validation of this Tau PET-based prediction is lacking. 
Predicting salient imaging markers such as volume of the ventricles 
[83], volume of the hippocampus [66], or longitudinal Tau accu-
mulation [72] is a promising topic. Identifying the most clinically 
useful target to be predicted, the imaging modality that has the best 
cost-benefit ratio for prognosis of a patient, and the method that 
best predicts it are all important questions that still need answers in 
the future. 

Most prediction methods in MS focus on predicting either 
physical disability, cognitive impairment, or treatment response in 
imaging data of an individual patient [57]. Physical disability as 
measured by expanded disability status scale (EDSS, range 0–10) 
has been the most commonly used predictor variable as recently 
used in [104, 118]. An ensemble of classifiers consisting of con-
volutional neural networks, random forests, and manifold learning 
was reported to predict EDSS with a mean square error of 3.0 
[118]. Cognitive impairment has been predicted either as a global 
measure of cognition or as specific cognitive domains such as 
attention or working memory [32]. For predicting treatment



response in MS, Signori et al. [124] used meta-analysis to identify 
subject characteristics that have higher treatment effects. In [34], 
the authors used an unsupervised disease progression model to 
identify subtypes of progression pathways in MS and found in 
post hoc analysis that one of the subtypes predicted better treat-
ment effects. Current challenges in this evolving field of predicting 
treatment response in MS and future directions have been summar-
ized in [37]. 
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For the prediction of patient outcomes after treatment of 
brain cancer, most machine learning studies have focused on 
MRI-based prediction of progression-free survival or overall sur-
vival, which will therefore be discussed in more detail here. A 
systematic review by Sarkiss et al. identified nine articles on survival 
prediction in glioma, and two on survival prediction for patients 
after stereotactic radiosurgery of brain metastases [122]. A more 
recent systematic review by Buchlak et al. identified 17 studies on 
survival prediction with performance estimates (AUC or accuracy) 
mostly in the range 0.7–0.8 [19]. Among those, only one study 
reported results of external validation, predicting overall survival of 
patients with low-grade glioma, and obtained an AUC of 0.71 with 
a model combining radiomics with non-imaging features including 
age, resection extent, grade, and IDH status [21]. Random (sur-
vival) forests and support vector machines were most often used 
methods. One study used a CNN as a pre-trained feature extractor 
[69]. Other recent approaches using CNNs to extract features that 
are subsequently combined with other factors into a final prognos-
tic model include [45, 51, 96]. The 2017/2018 editions of the 
well-known BraTS challenges also included a task on overall sur-
vival prediction, with best teams obtaining accuracies around 0.6 in 
a three-class classification setting distinguishing short-, mid-, and 
long-survivors, [7]. Here, it was also pointed out that conventional 
machine learning methods outperformed deep learning methods, 
likely due to the limited size of available datasets for training. 

Beyond MRI-based methods, methods using histopathology 
images and/or genomics data as input for the machine learning 
model are also considered in the literature on outcome prediction 
for glioma patients. In one of the pioneering studies on digital 
pathology images of glioma, better prognostication was obtained 
with deep learning when pathology images were combined with 
genetic markers (IDH, 1p19q) [91]. Preliminary work on so-called 
radiopathomics in glioma is also available, supporting the notion 
that combining histology and radiology features improves prognos-
tication (overall survival prediction) in glioma patients [115, 116]. 

2.2 Benchmarks and 

Challenges 

For 15 years, grand challenges have been organized in the biomed-
ical image analysis research field. These are international bench-
marks in competition form that have the goal of objectively 
comparing algorithms for a specific task on the same clinically



representative data using the same evaluation protocol. In such 
challenges, the organizers supply reference data and evaluation 
measures on which researchers can evaluate their algorithms. Over 
the past years, the number and the impact of such grand challenges 
have increased [79]. Also in the field of computer-aided diagnosis 
and prediction, such grand challenges have been organized. For 
example, in the dementia field, four challenges have been organized 
focusing on early diagnosis [3, 15, 121] and predicting the natural 
disease course [3, 83, 121]. In general, algorithms winning the 
challenges performed rigorous data pre-processing and combined a 
wide range of input features [17]. In the field of brain cancer, the 
series of BraTS challenges has had a major impact [6, 7]. These 
benchmarks are instrumental to gaining insight into successful 
approaches and their potential for use in clinical practice and clinical 
trials. 
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2.3 Open-Source 

Software 

Open-source machine learning software such as scikit-learn1 and 
MONAI2 have been fundamental to the development of this field 
of research. More specifically for computer-aided diagnosis and 
prediction in brain diseases, dedicated platforms are available such 
as Clinica [119], NeuroPredict [109], and PRoNTo [123]. We also 
see a trend of researchers publishing their scripts and trained classi-
fiers with their publications in order to promote reproducibility. 

3 Clinical Impact 

There are multiple ways in which computer-aided diagnosis and 
prediction models can make an impact on clinical practice. Key 
areas of impact are in decision making for treatment and care, 
replacing invasive diagnostic procedures and patient selection for 
clinical trials. Here we will discuss to what extent these clinical 
needs are addressed by current methods. 

First, the most direct impact is on decision making for treat-
ment and care. This not only affects clinical care and treatment 
planning in patients with, for example, dementia, stroke, MS, or 
brain cancer but also is important for managing the expectations of 
patients and their caregivers. Although high performances are 
achieved for some related tasks such as dementia classification, 
validation of those results on external datasets and clinical cohorts 
is still very limited as well as knowledge on the robustness of the 
methods. For other applications, there is still room for performance 
improvement, and key factors in achieving that would be the com-
bination of multimodal input and the availability of more well-

1 https://scikit-learn.org/. 
2 https://monai.io/.

https://scikit-learn.org/
https://monai.io/


maintained and large-scale datasets for training and evaluation. In 
general, there is room for improvement in how well real clinical 
questions are addressed by current methodology. Second, machine 
learning models can have an impact by replacing invasive diagnostic 
procedures. This is especially relevant in brain cancer, where 
machine learning techniques based on imaging data are developed 
to predict, for example, genetic mutation status or tumor grade, 
thereby avoiding or reducing the need for biopsies [10, 152]. As a 
motivating example, MRI-based prediction of MGMT methylation 
status could be beneficial to guide treatment decisions. This is 
supported by findings from a population-based study assessing 
survival in 131 patients with radiological diagnosis of glioblastoma 
who did not undergo surgery and thus lacked (histological or 
molecular) tissue-based verification of the diagnosis [146]. While 
patients without treatment had extremely poor prognosis with 
median survival of 3.6 months, those who received upfront temo-
zolomide treatment did significantly better (with median survival of 
6.8 months). Since the response to temozolomide is known to be 
highly dependent on the MGMT status, MRI-based prediction of 
MGMT status could give insight into which patients would benefit 
from treatment avoiding the need for biopsies in patients to frail for 
tumor biopsy. Third, patient selection for clinical trials is relevant in 
diseases where no to limited options for treatment exist, such as 
dementia, or diseases where existing treatments are suboptimal for 
some patients, such as MS. This can boost the power of trials by 
enrolling, for example, individuals who are more likely to progress 
based on prediction models. Several pilot studies demonstrated the 
added value of machine learning models to select a subgroup of 
participants to increase sensitivity to the treatment using phase III 
trial data (e.g., for Alzheimer’s disease treatment using donepezil or 
semagacestat) [35, 102]. This will ultimately reduce the size, dura-
tion, and cost of clinical trials.
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The number of published methods is not evenly distributed 
over tasks. While many methods have been published on, for exam-
ple, the classification of Alzheimer’s disease patients versus controls, 
much fewer publications exist on differential diagnosis in dementia. 
In addition, there seems to be a mismatch in some applications 
between published classification methods and clinical needs, e.g., 
the clinically relevant problem of early diagnosis does not directly 
translate to the frequently studied classification task of established 
Alzheimer’s disease versus healthy controls, but would instead 
require separation of early disease stage Alzheimer’s disease patients 
from those that have cognitive complaints but not dementia. 

Several approved machine learning products to assist diagnosis 
and prediction are making their way into clinical practice, in partic-
ular in the imaging domain. Van Leeuwen et al. evaluated 100 com-
mercially available products for AI in radiology, of which 38 are 
related to brain diseases [137]. These include mostly segmentation,



quantification, and normative comparison for neurodegenerative 
diseases and detection of lesions for stroke and oncology. Most 
methods generate a sample radiologist report which can be 
inspected and modified. In dementia, for example, 17 reporting 
tools that use automated brain MRI segmentation software and 
normative reference data for single-subject comparison are regu-
latory approved for use in the memory clinic [105]. 
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One of these is Quantib ND (Quantib BV, Rotterdam, the 
Netherlands),3 which is an approved commercial software that per-
forms automatic segmentation into 20 brain regions as well as 
normative volumetry reference curves based on data of 5000 sub-
jects from a population-based cohort. While Quantib ND and most 
other available tools use machine learning for brain segmentation, 
their output is not a diagnostic label produced by a machine 
learning algorithm. Another approved software, cDSI (Combinos-
tics, Tampere, Finland),4 does output diagnostic labels as confi-
dence scores in addition to segmentation and normative volumetry 
based on MRI. It uses univariate machine learning to normalize 
individual biomarkers of different modalities based on reference 
values of patient and control groups, color-codes these biomarkers 
to improve visualization of large-data datasets, and combines con-
fidence scores based on individual biomarkers into one score 
[84, 85]. While cDSI is a machine learning tool for computer-
aided diagnosis and prognosis, it does not exploit the power of 
machine learning to detect complex patterns in high-dimensional 
data but rather focuses on visualization and interpretability. Diag-
nosis and prediction algorithms that map high-dimensional input, 
i.e., images and other clinical data, to an outcome measure using 
machine learning have not yet made their way into clinical practice. 

4 Roadmap for Clinical Translation 

There are numerous challenges for clinical translation of computer-
aided diagnosis and prediction methods. Some key items that 
should be on the roadmap for translation relate to large and stan-
dardized datasets, to technical and clinical validation, to interpret-
ability by clinicians and patients, and to practical issues related to 
implementation. In this section, we will discuss these requirements 
and related developments and initiatives. 

The first requirement for translation is large and standardized 
datasets. For a few brain disorders, one or multiple large datasets 
(i.e., up to 2500 participants) are available to train machine 
learning algorithms for diagnosis and prediction tasks, facilitated

3 quantib.com/solutions/quantib-nd. 
4 combinostics.com/cdsi.

https://quantib.com/solutions/quantib-nd
https://combinostics.com/cdsi


by large multicenter initiatives such as the Alzheimer’s Disease 
Neuroimaging Initiative (ADNI) or the Parkinson’s Progression 
Markers Initiative (PPMI). For validation in other cohorts and for 
development of algorithms in other diseases, there is only limited 
data available and a need for more (well-annotated) data exists. In 
particular, there is a need for validation data that reflect the reality 
of clinical routine with no to limited data harmonization and large 
variation in imaging protocols and data quality. Setting up such 
large-scale datasets is complex due to various reasons including 
obstacles in inter-institutional data sharing and a lack of funding 
for collection, curation, and labeling of data. To overcome these 
challenges, developments in research software and infrastructure 
may provide a solution by sharing easily reproducible algorithms 
rather than the data. Wrapping an algorithm in a container (e.g., 
Docker,5 Singularity [67]) and applying the algorithms locally to 
the data (at one site or multiple sites in a federated approach) 
enables method validation on large sets of data within the confines 
of the local institute’s firewalls. Such an approach could be also used 
for enabling training on larger datasets (i.e., federated learning 
[125]). Standardization of the data is important for eventual trans-
lation as it enables researchers to combine multiple datasets for 
development and validation of machine learning methods for diag-
nosis and prediction. Such standardization entails both data collec-
tion (e.g., diagnostic criteria, protocols for image acquisition, and 
clinical tests) and data organization (e.g., through open-source 
standards and platforms for data storage such as the Brain Imaging 
Data Structure (BIDS) and the Extensible Imaging Archive Toolkit 
(XNAT)).
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Second, technical and clinical validation is a key focus area on 
the roadmap for translation. In the field of radiology, the quantita-
tive neuroradiology initiative (QNI) framework has been developed 
as a model framework for translation defining the technical and 
clinical validation necessary to embed automated software into the 
clinical workflow [39]. Based on this framework, [105] reviewed 
the published evidence regarding commercial automated volumet-
ric MRI tools for dementia diagnosis. For the 17 products identi-
fied, 11 companies have published some form of technical 
validation on their methods, but only 4 have published clinical 
validation in a dementia population. They concluded that there is 
a significant evidence gap in the literature regarding clinical valida-
tion and in-use evaluation. Whereas this review only addressed 
image volumetry in dementia, these findings likely extend to 
other brain diseases, applications, and modalities. Hence, there is 
a need for both retrospective and prospective studies validating 
algorithms in a clinical setting. In addition, performance metrics

5 www.docker.com.

http://www.docker.com


used in validation studies should aim to capture real clinical appli-
cability and address different aspects of the reliability of an algo-
rithm, including accuracy, uncertainty estimation, reproducibility, 
and generalizability to other data. Standards for validation and 
reporting are provided by guidelines such as STARD-AI [130] 
and TRIPOD-AI.6
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A third key item for clinical translation is interpretability by 
end users such as clinicians and patients. As clinicians have respon-
sibility for the decisions related to care and treatment, they should 
have trust in a computer-aided diagnosis or prediction system and 
understand its outputs to an extent that they can rely on them for 
decision making and explanation to a patient. Performance metrics 
should aim to capture real clinical applicability and be understand-
able to intended users [59]. High validation performance is impor-
tant for building trust in methods, but not sufficient by itself, since 
performance may reduce in individual cases because of unac-
counted inter-individual such as comorbidities or population dif-
ferences such as MRI scan protocol. Therefore, apart from model 
accuracy, relevant questions for interpretation are, for example, Is 
the model suitable for the data of this patient? What features 
contribute to the machine learning decision for this patient? How 
certain is the decision for this patient and can the algorithm know 
when it is uncertain about an individual’s decision? Such questions 
are important and methods should be designed and implemented 
in a way that facilitates answers to such questions. This could be 
obtained by using interpretability methods on top of “black box” 
machine learning models or directly by using interpretable models. 
For the first category, many methods have been developed based on 
model weight visualization, feature map visualization, back-
propagation methods, or perturbation of inputs (see also 
Chapter 22). For interpretable models, an example in the field of 
computer-aided diagnosis and prognosis is disease progression 
models [140, 148]. These data-driven models are designed specifi-
cally for neurodegenerative diseases and explain their decisions 
based on their estimate of the natural progression of the disease in 
the cohort (see also Chapter 17). 

As a final key item, we will discuss implementation feasibility. 
For machine learning models to be actually used in practice, it is 
essential that models and reporting are integrated into the clinical 
workflow and that the sending and processing of clinical data and 
receiving results is fully automated. Current commercial products 
for automatic volumetry in dementia all reported to have imple-
mented an integration with radiology systems and the clinical work-
flow. While validation of the workflows is limited [105], this does 
support the feasibility for machine learning in clinical practice.

6 osf.io/zyacb.

https://doi.org/10.1007/978-1-0716-3195-9_22
https://doi.org/10.1007/978-1-0716-3195-9_17
http://www.osf.io/zyacb


While these products integrate with the radiological workflow, a key 
challenge for the clinical translation of algorithms that use 
non-imaging clinical data (such as cognitive scores) as input is to 
also integrate with the clinical workflow of multidisciplinary 
diagnosis.
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5 Final Summary and Conclusion 

Computer-aided diagnosis and prediction of brain disorders is an 
important research area, with a wide variety of applications. While 
typically for these applications generic machine learning methods 
are used, domain knowledge of these brain disorders is crucial for 
selecting novel clinically relevant applications as well as for making 
domain-specific methodological improvements. Regarding diagno-
sis, clinical challenges are in early diagnosis of dementia and MS, 
differential diagnosis of dementia and brain cancer, and decision 
making for treatment in stroke. Regarding prediction, challenges 
are in the prediction of the natural disease course in dementia and 
MS, and the prediction of patient outcomes after treatment in 
stroke, brain cancer, and MS. Even though the disorders on 
which we focused are important avenues for impact, computer-
aided diagnosis and prognosis would also be extremely useful in 
other disorders such as movement disorders for predicting response 
to treatment and side effects, epilepsy for predicting response to 
epilepsy surgery, and psychiatric disorders where diagnosis can be 
particularly difficult. 

Key areas of impact are in (1) decision making for treatment 
and care in patients with dementia, stroke, MS, or brain cancer, 
(2) replacing invasive diagnostic procedures in brain cancer, and 
(3) patient selection for clinical trials in dementia and MS. While 
the first AI methods are making their way to clinical practice, 
diagnosis and prediction algorithms that map high-dimensional 
input, i.e., images and other clinical data, to an outcome measure 
using machine learning are not yet clinically available. To enable 
translation, major items on the roadmap relate to the availability of 
large and standardized datasets and technical and clinical validation 
of the developed machine learning methods. In addition, other 
important aspects are interpretability of the results by clinicians 
and patients, optimization of the diagnostic or treatment workflow 
in the clinic, and other practical issues related to implementation. 

With this chapter, we aimed to provide a comprehensive over-
view, bringing together the clinical context of representative use 
cases of diagnosis and prediction in brain disorders and their state-
of-the-art computer-aided methods. Future research should focus 
on bridging the identified gaps between clinical needs and the 
solutions brought by machine learning, to further improve decision 
making, treatment, and care in brain diseases.



Computer-Aided Diagnosis and Prediction in Brain Disorders 481

6 Conflict of Interest 

Quantib BV is a spin-off company of Erasmus MC. W.J.N. is a 
cofounder, part-time Chief Scientific Officer, and stockholder of 
Quantib BV. S.R.V, D.B., M.S., S.K., and E.E.B. are affiliated to 
Erasmus MC but have no personal relationships with or financial 
interest in Quantib BV. F.B. is a consultant to Combinostics. 

Acknowledgements 

V. Venkatraghavan is supported by JPND-funded E-DADS project 
(ZonMW project #733051106). W.J. Niessen and E.E. Bron are 
supported by Medical Delta Diagnostics 3.0: Dementia and Stroke. 
E.E. Bron acknowledges support from the Netherlands CardioVas-
cular Research Initiative (Heart-Brain Connection: CVON2012-
06, CVON2018-28). 

References 
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Ahdidan J, Lévy M, Samri D, Hampel H, 
Dubois B, Teichmann M, Epelbaum S, Col-
liot O (2020) Accuracy of MRI classification 
algorithms in a tertiary memory center clinical 
routine cohort. J Alzheimers Dis 74(4): 
1157–1166. https://doi.org/10.3233/ 
jad-190594 

94. Mouraviev A, Detsky J, Sahgal A, Ruschin M, 
Lee YK, Karam I, Heyn C, Stanisz GJ, Martel 
AL (2020) Use of radiomics for the prediction 
of local control of brain metastases after ste-
reotactic radiosurgery. Neuro-Oncology 
22(6):797–805. https://doi.org/10.1093/ 
neuonc/noaa007 

95. Muurling M, de Boer C, Kozak R, Religa D, 
Koychev I, Verheij H, Nies VJM, Duyndam A, 
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