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W Continuous function

w Component of airplane velocity along Z-body axis

w⋆ Update law

X⋆ Laplace transform of system state variable x⋆

X̄ Total aerodynamic force along X-body axis

x⋆ System state variable

xcg Center-of-gravity location

Ȳ Total aerodynamic force along Y-body axis

y⋆ Output state variable
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xxii List of Symbols

Z̄ Total aerodynamic force along Z-body axis

z⋆ Tracking error

z̄⋆ Compensated tracking error

Subscripts

0 Part of the aerodynamic force or moment that is independent of the control surface

0 Sea level

b Body-fixed reference frame

e Equilibrium

k Time step

M Magnitude

n Natural frequency

pf Prefilter

R Rate

r, ref Reference

s Sampling

s Stability-axes reference frame

Superscripts

† Conjugate transpose

0 Raw signal

T Transpose
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Chapter 1

Introduction

According to the European Aviation Safety Agency (EASA), the highest number of fatal
accidents involving airplanes operated by EASA Member States in the last 10 years are due
to Loss Of Control In-flight (LOC-I) (European Aviation Safety Agency, 2013). This can be
attributed to pilot error, technical malfunctioning, or a combination thereof. The accident
rate of Unmanned Aerial Vehicles (UAVs) lies much higher compared to that of manned
aircraft (Williams, 2004). About 80 percent of the flight incidents concerning UAVs are due
to faults affecting propulsion, flight control surfaces, or sensors (Schaefer, 2003).

These findings underline the research relevance of Fault Tolerant Flight Control (FTFC),
which has become feasible since the eighties due to the increase in available computational
power. Previous research on flight accidents and their corresponding FTFC strategies suggests
that an aircraft, under many post-failure circumstances, can still achieve a certain level of
flight performance with the remaining valid control effectors (Smaili, Breeman, Lombaerts, &
Joosten, 2006; Lombaerts, Smaili, et al., 2009; Lombaerts, Huisman, Chu, Mulder, & Joosten,
2009). Therefore, aviation safety can be improved by increasing the survivability of damaged
(unmanned) aircraft by implementing FTFC systems.

Traditionally, and even today, gain-scheduling of linear feedback controllers is applied to
achieve stabilization and satisfactory tracking performance of aircraft over a wide range of
flight conditions. Because the dynamic behavior of an aircraft changes throughout the flight
envelope, many different linear flight control laws must be designed for each region. In
flight envelope regions with significant nonlinearities, or in case of failures (e.g. structural
damage), gain-scheduling is not able to provide accurate tracking performance because this
control strategy is based on linearized and nominal aircraft models (Sonneveldt, 2010; Falkena,
2012). Next, it is difficult to guarantee satisfactory stability and tracking performance over
the complete flight envelope (Sonneveldt, 2010). At last, gain-scheduling of linear controllers
is an extensive task. The main reason why this control strategy is still applied nowadays is
because it is based on well-developed classical linear control theory. Furthermore, certification
authorities are used to dealing with them.
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2 Introduction

Nonlinear and model-based control methods such as Nonlinear Dynamic Inversion (NDI) and
Backstepping (BS) do not suffer from the drawbacks of gain-scheduled linear controllers. The
idea behind these techniques is to cancel (part of) the nonlinear aircraft dynamics and to
derive a control law for the resulting system. These methods have been successfully applied
in off-line and on-line applications to control aircraft (Sonneveldt, 2010; Lombaerts, 2010;
van Oort, 2011; Falkena, 2012). Backstepping is a design method that is, in contrary to NDI,
based on Lyapunov stability theory. This can be a major benefit for certification of BS control
laws, because the goals of global asymptotic stabilization and tracking can be guaranteed.
Furthermore, BS is flexible in the choice of control law and can avoid wasteful cancellations
as opposed to NDI (Sonneveldt, 2010). Because the flexible and Lyapunov-based BS control
method offers many benefits compared to NDI and gain-scheduled linear control, this thesis
focuses on reconfigurable Backstepping control laws.

However, because BS is a model-based control strategy, it is sensitive to model uncertainties.
To make the BS control approach fault tolerant, which is of paramount importance for safety-
critical systems such as aircraft, several approaches have been taken. In the literature survey
(see Appendix A) the following promising fault tolerant approaches based on BS have been
encountered:

1. Incremental Backstepping (Acquatella, 2011; Koschorke, 2012);

2. Sensor-Based Backstepping (Falkena, van Oort, & Chu, 2011; Falkena, Borst, van Oort,
& Chu, 2013; Galrinho, de Visser, Chu, van Kampen, & Walpot, 2013);

3. Tuning Functions Adaptive Backstepping (Sonneveldt, Chu, & Mulder, 2007; Choi &
Bang, 2011; Farrell, Polycarpou, Djapic, & Sharma, 2012);

4. Immersion and Invariance Adaptive Backstepping (Astolfi & Ortega, 2003; Hu & Zhang,
2013; Ali, Chu, van Kampen, & de Visser, 2014);

5. Least-Squares Adaptive Backstepping (van Oort, Sonneveldt, Chu, & Mulder, 2007).

The literature survey of the preliminary thesis report has shown some blind spots in the
Adaptive Backstepping (ABS) theory. First of all, a comprehensive comparison study of
the closed-loop performance and sensitivity to parametric uncertainties of these adaptive
controllers does currently not exist. It is impossible to compare the performance of these
control laws on basis of the existing literature, because different models and reference signals
have been used. Next, most literature does not address the sensitivity of the developed
controllers to sensor dynamics and noise. Because the ultimate goal is to use FTFC systems
to increase the aviation safety, it is of paramount importance to evaluate the performance of
these Adaptive Control laws in a practical context. At last, in some of the literature only the
closed-loop performance of the adaptive controller is addressed, and not the performance of
the parameter estimator itself. Although it is not necessary that the parameters converge to
their true values for satisfactory closed-loop performance, Control Allocation (CA) modules
require accurate estimates of the control effectiveness parameters.
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From the motivation put above, the research question of this master thesis is formulated as
follows:

How do the different Adaptive Backstepping Flight Control approaches

perform in practical applications under parametric uncertainties of the

aircraft model?

The results of this thesis research will contribute towards the further development of FTFC
systems. The originality of this thesis shows in three ways. First, a comprehensive comparison
study of the closed-loop performance and sensitivity to parametric uncertainties of these
adaptive controllers is provided. Second, to the best knowledge of the author, Incremental
Backstepping (IBS) control has not earlier been combined with Least-Squares (LS) and Tuning
Function (TF) parameter estimators. At last, the sensitivity of the developed controllers to
sensor dynamics and noise is addressed.

The Appendices of this report, starting from page 47, contain the literature study on FTFC
and the preliminary thesis report. In this preliminary analysis use have been made of a
simple nonlinear pendulum model to allow for an initial evaluation of the different BS control
laws. This model has been selected because it is simple and therefore the complexity of
the derivations is minimized. Furthermore, the pendulum model consists of two states such
that the recursive approach of the BS method can be illustrated. The model, as well as
the derived control laws, have been implemented in the Matlab/Simulink environment to
generate simulation results.

Based on the conclusions of the preliminary analysis, the paper of this thesis uses an accu-
rate high-fidelity aerodynamic Lockheed Martin F-16 Matlab/Simulink software package for
further analysis of the ABS control laws, see Chapter 2. According to (Sonneveldt, 2010),
this highly nonlinear model is currently the most accurate dynamic aircraft model available.
The model is augmented with sensor dynamics and noise in order to make the simulations
more realistic. Next, the nonlinear ABS control laws are derived and implemented in the
software. The control laws as well as the tracking performance, parameter estimation errors
and stability properties are compared and conclusions are drawn. The recommendations for
future research, based on the findings of the current work, finally complete the research.
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Adaptive Incremental Backstepping Flight Control for

a High-Performance Aircraft with Uncertainties

P. van Gils∗ and Q. P. Chu†

Delft University of Technology, P.O. Box 5058, 2600 GB Delft, The Netherlands

This paper deals with the development of Adaptive Incremental Backstepping control
laws for a high-performance aircraft model (F-16), in order to make the airplane robustly
seek references in roll rate and angle of attack at a constant airspeed while minimizing
sideslip. An Incremental Backstepping scheme that relies on estimates of the angular
accelerations and measurements of the current control deflections is used to reduce the
dependency on the on-board aircraft model. The contribution of this paper is the design
and evaluation of three parameter estimators to handle the remaining uncertainties. The
estimators that are evaluated in this research are based on Tuning Functions, Least-Squares
and Immersion & Invariance. It is shown that the Incremental Backstepping controller is
not only more robust to uncertainties in the system dynamics compared to Backstepping,
but is also more robust to uncertainties in the control effectiveness matrix. Furthermore, by
augmenting the Incremental control law with on-line parameter update laws, the tracking
performance of the uncertain F-16 model is significantly increased. The results of this
study show the great potential of Adaptive Incremental Backstepping control in increasing
the survivability of damaged aircraft.

Nomenclature

Ax, Ay, Az Specific forces along Xb, Yb and Zb-axis, m/s2 u, v, w Velocities along Xb, Yb and Zb-axis, m/s
b Wing span, m VT Total velocity, m/s
C? Control or stability derivative X̄, Ȳ , Z̄ Aerodynamic forces along Xb, Yb and
c? Inertia term Zb-axis, N
c̄ Wing mean aerodynamic chord, m x? System state variable
FT Engine thrust force, N xcg Center-of-gravity location
g Acceleration due to gravity, m/s2 z? Tracking error
I? Moment of inertia, kgm2 z̄? Compensated tracking error
L̄, M̄ , N̄ Aerodynamic moments about Xb, Yb, α Aerodynamic angle of attack, rad

Zb-axis, Nm β Sideslip angle, rad
M Mach number ∆x Incremental variable, that is, ∆x = x− x0
m Mass, kg δe, δa, δr Elevator, aileron and rudder deflection, rad
p, q, r Roll rate about Xb, Yb and Zb-axis, rad/s θ? (Unknown) parameter
ps, qs, rs Roll rate about Xs, Ys and Zs-axis, rad/s ρ Air density, kg/m3

q̄ Free-stream dynamic pressure, Pa φ, θ, ψ Roll, pitch and heading angle, rad
S Wing area, m2 ϕ? Regressor function
s Laplace operator

Subscripts
b Body-fixed reference frame ref Reference
pf Prefilter s Stability-axes reference frame

Superscripts
0 Raw signal T Transpose
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†Associate Professor, Faculty of Aerospace Engineering, Control and Simulation Division, 2626 HS Delft, The Netherlands.
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I. Introduction

According to the European Aviation Safety Agency (EASA), the highest number of fatal accidents in-
volving airplanes operated by EASA Member States in the last 10 years are due to Loss Of Control In-flight
(LOCI).1 This can be attributed to pilot error, technical malfunctioning, or a combination thereof. The
accident rate of Unmanned Aerial Vehicles (UAVs) lies much higher compared to that of manned aircraft.2

About 80 percent of the flight incidents concerning UAVs are due to faults affecting propulsion, flight control
surfaces, or sensors.3

These findings underline the research relevance of Fault Tolerant Flight Control (FTFC), which has be-
come feasible since the eighties due to the increase in available computational power. Previous research on
flight accidents and their corresponding FTFC strategies suggests that an aircraft, under many post-failure
circumstances, can still achieve a certain level of flight performance with the remaining valid control effec-
tors.4–6 Therefore, aviation safety can be improved by increasing the survivability of damaged (unmanned)
aircraft by implementing FTFC systems.

Traditionally, and even today, gain-scheduling of linear feedback controllers is applied to achieve stabi-
lization and satisfactory tracking performance of aircraft over a wide range of flight conditions. Because the
dynamic behavior of an aircraft changes throughout the flight envelope, many different linear flight control
laws must be designed for each region. In flight envelope regions with significant nonlinearities, or in case
of failures (e.g. structural damage), gain-scheduling is not able to provide accurate tracking performance
because this control strategy is based on linearized and nominal aircraft models.7,8 Next, it is difficult to
guarantee satisfactory stability and tracking performance over the complete flight envelope.7 At last, gain-
scheduling of linear controllers is an extensive task. The main reason why this control strategy is still applied
nowadays is because it is based on well-developed classical linear control theory. Furthermore, certification
authorities are used to dealing with them.

Nonlinear and model-based control methods such as Nonlinear Dynamic Inversion (NDI) and Backstep-
ping (BS) do not suffer from the drawbacks of gain-scheduled linear controllers. The idea behind these
techniques is to cancel (part of) the nonlinear aircraft dynamics and to derive a control law for the resulting
system. These methods have been successfully applied in off-line and on-line applications to control air-
craft.7–10 Backstepping is a design method that is, in contrary to NDI, based on Lyapunov stability theory.
This can be a major benefit for certification of BS control laws, because the goals of global asymptotic
stabilization and tracking can be guaranteed. Furthermore, BS is flexible in the choice of control law and
can avoid wasteful cancellations as opposed to NDI.7 Because the flexible and Lyapunov-based BS control
method offers many benefits compared to NDI and gain-scheduled linear control, this paper focuses on
reconfigurable Backstepping control laws.

The BS control approach has been augmented with command filters in the literature11–14 to obviate the
need for analytic computation of virtual control derivatives, which becomes very tedious when working with
high-order systems. Furthermore, these filters eliminate the Backstepping’s restriction to nonlinear systems
of a lower triangular form. Finally, they improve the performance of Lyapunov-based parameter update laws
by implementing magnitude, rate and bandwidth constraints on the (virtual) controls.

However, because Command-Filtered BS is a model-based control strategy, it is sensitive to model uncer-
tainties. To make the BS control approach fault tolerant, which is of paramount importance for safety-critical
systems such as aircraft, these control methods have been applied in an incremental8,15,16 and in a sensor-
based form.17–19 The advantage of these approaches is that the dependency on the on-board aircraft model
is reduced by using measurements or estimates of the state derivatives and current actuator states. Another
approach is that of Adaptive Backstepping (ABS), which uses parameter update laws to guarantee closed-
loop stability of uncertain systems. Earlier research has combined BS control with update laws based on
Least-Squares (LS),6,20 Lyapunov functions11,21,22 and Immersion and Invariance (I&I).23–26

The approach of Incremental Backstepping (IBS) has been augmented with command filters and I&I
update laws in Ali, Chu, Van Kampen and De Visser.26 By using an incremental control law, the estimator
now only has to estimate the aircraft control derivatives. The advantage of this approach is that the compu-
tational complexity is significantly reduced with respect to ABS. In this reference only a small uncertainty
has been introduced in the pitching moment control derivative to evaluate the I&I identifier. Furthermore,
the improvements in robustness thanks to the I&I estimator appear to be marginal; according to the authors
this is likely due to the lack of a detailed regressor model in the identifier.
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A comparison study of the closed-loop performance and sensitivity to parametric uncertainties of these
ABS controllers does currently not exist. Moreover, most literature does not address the sensitivity of the
developed controllers to sensor noise and dynamics. Because the ultimate goal is to use FTFC systems to
increase the aviation safety, it is of paramount importance to evaluate the performance of these Adaptive
Control laws in a practical context.

This paper deals with the development of three Command-Filtered Adaptive IBS control laws for a
high-performance aircraft model (F-16) with a large flight envelope. The control objective is to make the
airplane robustly seek references in roll rate and angle of attack at a constant airspeed while minimizing
sideslip. However, first a non-adaptive Command-Filtered BS controller is derived that forms the baseline
control system of this research. Next, in order to cope with the uncertainties introduced by the aerodynamic
forces and moments, IBS is applied. The contribution of this paper is the design and evaluation of three
distinct estimators to handle the remaining unknown parameters. First of all, the integrated Lyapunov-
based Tuning Functions (TFs) approach is evaluated. Second, the Recursive Least-Squares (RLS) algorithm
is implemented to obtain estimates of the unknown parameters. This results in a modular approach that is
based on the certainty equivalence principle.10,27 Finally, an I&I identifier is evaluated that includes more
detailed regressor models compared to Ali et al .26 To the best knowledge of the authors of this paper,
IBS control has not earlier been combined with LS and TF parameter estimators. Because the designed
controllers and estimators heavily rely on sensor measurements; sensor dynamics and noise are simulated to
evaluate the control approaches on an uncertain F-16 aircraft model.

The paper outline is as follows: Section II discusses the nonlinear F-16 aircraft model that is used in
this paper. Next, the design of the flight controllers and parameter estimators is described in Section III.
The performance of these controllers is verified through Matlab/Simulink simulations in Section IV and the
paper is concluded in Section V. Finally, the Appendices contain more information on the F-16 model and
additional simulation results.

II. Nonlinear F-16 Aircraft Model

In this study the nonlinear F-16 low-fidelity aircraft model of Russell28 is used to evaluate five BS
control laws. This highly nonlinear model is currently the most accurate dynamic aircraft model available.7

Assumptions and limitations for this model are:29

1. The aircraft is a rigid body;

2. The earth is flat and non-rotating and regarded as an inertial reference;

3. The mass is constant during the time interval over which the motion is considered;

4. The mass distribution of the aircraft is symmetric relative to the XbOZb-plane, this implies that
Iyz = Ixy = 0;

5. The thrust produced by the engine, FT , acts through the center of gravity and along the Xb-axis;

6. The engine angular momentum has been neglected;

7. The leading edge flap is not implemented;

8. The horizontal tail has only symmetric deflection;

9. Speed brakes are not used;

10. There is a complete decoupling between the longitudinal and the lateral-directional equations.

The low-fidelity F-16 model is valid for the following flight envelope: −10 ≤ α ≤ 45 degrees, −30 ≤ β ≤ 30
degrees and 0.1 ≤M ≤ 0.6.
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II.A. Equations of Motion

With the given assumptions, the force equations of motion referenced to a body-fixed reference frame are
given by30

u̇ = rv − qw − g sin θ +
X̄

m
+
FT
m

(1a)

v̇ = pw − ru+ g cos θ sinφ+
Ȳ

m
(1b)

ẇ = qu− pv + g cos θ cosφ+
Z̄

m
, (1c)

where the aerodynamic forces are defined as

X̄ ≡ q̄SCX,T (2a)

Ȳ ≡ q̄SCY,T (2b)

Z̄ ≡ q̄SCZ,T . (2c)

where q̄ = ρV 2
T /2 is the free-stream dynamic pressure. The moment equations of motion referenced to a

body-fixed reference frame are given by31

ṗ = (c1r + c2p)q + c3L̄+ c4N̄ (3a)

q̇ = c5pr − c6
(
p2 − r2

)
+ c7M̄ (3b)

ṙ = (c8p− c2r)q + c4L̄+ c9N̄ , (3c)

where the moments of inertia are defined as

Γc1 = (Iy − Iz)Iz − I2
xz Γc4 = Ixz c7 =

1

Iy
(4a)

Γc2 = (Ix − Iy + Iz)Ixz c5 =
Iz − Ix
Iy

Γc8 = Ix(Ix − Iy) + I2
xz (4b)

Γc3 = Iz c6 =
Ixz
Iy

Γc9 = Ix , (4c)

with Γ = IxIz − I2
xz. The aerodynamic moments are defined as

L̄ ≡ q̄SbCL,T (5a)

M̄ ≡ q̄SbCM,T (5b)

N̄ ≡ q̄SbCN,T . (5c)

In Appendix A the total coefficient equations are listed that are used to sum the various aerodynamic
contributions to a given force or moment coefficient of the F-16 model.

II.B. Atmospheric Model

An approximation of the International Standard Atmosphere is used for the atmospheric data:32

T = T0 − 0.0065h , for 0 ≤ h ≤ 11, 000 (6a)

T = 216.65 , for h > 11, 000 (6b)

ρ = ρ0e
− g

287.05T h (6c)

a =
√

1.4× 287.05T , (6d)

where T0 = 288.15 K and ρ0 = 1.225 kg/m3 are respectively the temperature and air density at sea level.
The aircraft’s altitude h is given in meters, the current temperature T in Kelvin, the speed of sound a in
m/s and g = 9.81 m/s2 is the acceleration due to gravity. Wind and atmospheric turbulence have not been
modeled.
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II.C. Control Variables

The control variables used in this study are the engine thrust force FT , elevator δe, aileron δa and rudder δr.
The control inputs are magnitude and rate limited and are implemented as first-order, low-pass filters with
unity low-frequency (DC) gain and time constants τ , see Table 1.

Table 1. Actuator dynamics of the control inputs.28

Control Units Min. Max. Rate limit τ [s]

Elevator deg -25 25 ± 60 deg/s 0.0495

Ailerons deg -21.5 21.5 ± 80 deg/s 0.0495

Rudder deg -30 30 ± 120 deg/s 0.0495

Thrust lbs 1 000 19 000 ± 10 000 lbs/s 1.0

II.D. Aerodynamic Model

An overview of the total aerodynamic force and moment coefficients is given in Table 2. These coefficients are
used to sum the various aerodynamic contributions to the given force or moment. In Appendix A a complete
overview of the total coefficient equations can be found. As can be seen, coefficients CX,T and CM,T are
not affine with respect to the elevator deflection; this has consequences for the BS control approach as we
will see later on. The aerodynamic data of the F-16 model consists of a set of multi-dimensional data tables
based on wind-tunnel measurements.30,31 Linear interpolation is performed in between the data points.

Table 2. Force and moment coefficients for the F-16 model.31 The aerodynamic coefficients in bold font are not affine
in the control input.

Force coefficients

X-axis force coefficient CX,T = f(α, δe)

Y-axis force coefficient CY,T = f(α, β) + gδa + hδr

Z-axis force coefficient CZ,T = f(α) + g(α, β)δe

Moment coefficients

Rolling-moment coefficient CL,T = f(α, β) + g(α, β)δa + h(α, β)δr

Pitching-moment coefficient CM,T = f(α, β, δe)

Yawing-moment coefficient CN,T = f(α, β) + g(α, β)δa + h(α, β)δr

II.E. Sensors

The F-16 model has been augmented with air data, inertial and attitude sensors to allow for more realistic
simulations:33

• Air data sensors (VT , q̄, α, β)

H(s) =
1

0.02s+ 1
. (7)

• Inertial sensors (p, q, r, Ax, Ay, Az)

H(s) =
0.0001903s2 + 0.005346s+ 1

0.0004942s2 + 0.03082s+ 1
. (8)

• Attitude sensors (φ, θ)

H(s) =
1

0.00104s2 + 0.0323s+ 1
. (9)
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In addition to the sensor dynamics, independent zero-mean Gaussian noise has been added to the measure-
ments. The selected noise standard deviations are given in Table 3. It has been assumed that the actuator
dynamics are known, or equivalently, that the actuator positions are perfectly measured.

Table 3. Standard deviations of the measurement noise.

VT q̄ α, β p, q, r Ax, Ay, Az φ, θ

1 m/s 50 Pa 0.1 deg 0.01 deg/s 0.01 m/s2 0.1 deg

II.F. Aircraft Dynamics used for Control

In this paper control laws for an F-16 model are designed, in order to make the airplane robustly seek
references in roll rate ps and angle of attack α at a constant airspeed VT while minimizing sideslip β. The
angle of attack α is a typical control variable for high-performance aircraft because it is closely coupled to
the normal acceleration.34 The advantage of rolling around the stability Xs-axis instead of the body Xb-axis
is that it reduces the amount of sideslip during a roll, especially at high angles of attack.13 Summarizing,
the task of the control system is to make sure that

VT = VT,ref (10a)

α = αref (10b)

β = 0 (10c)

ps = ps,ref , (10d)

is an asymptotic equilibrium. To avoid unachievable commands due to the actuator constraints, first-order
lag prefilters are used to obtain the reference signals, e.g.

Hpf,α(s) =
αref (s)

α(auto)pilot(s)
=

1

σαs+ 1
. (11)

The prefilter time constants σ? are chosen to allow for fast tracking while avoiding command saturation as
much as possible. The prefilters are also used to obtain the time derivatives of the reference signals, which
are required by the BS control law as we will see later see on.

With the control objective set as Eq. (10), it is more convenient to express the force equations (see
Eq. (1)) in the wind-axes reference frame. This implies the following transformations:29

VT =
√
u2 + v2 + w2 u = VT cosα cosβ (12a)

α = arctan
w

u
⇔ v = VT sinβ (12b)

β = arcsin
v

VT
w = VT sinα cosβ . (12c)

Taking the time derivative of VT , α and β results in

V̇T =
uu̇+ vv̇ + wẇ

VT
(13a)

α̇ =
uẇ − wu̇
u2 + w2

(13b)

β̇ =
v̇VT − vV̇T
V 2
T cosβ

. (13c)

Substituting Eqs. (1) and (12) into Eq. (13) gives the force equations in the wind-axes reference frame:

V̇T =
1

m

[
X̄ cosα cosβ + Ȳ sinβ + Z̄ sinα cosβ + FT cosα cosβ +mg1

]
(14a)

α̇ = q − p cosα tanβ − r sinα tanβ +
1

mVT cosβ

[
− X̄ sinα+ Z̄ cosα− FT sinα+mg3

]
(14b)

β̇ = p sinα− r cosα+
1

mVt

[
− X̄ cosα sinβ + Ȳ cosβ − Z̄ sinα sinβ − FT cosα sinβ +mg2

]
, (14c)
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where the gravity components g1, g2 and g3 are defined by

g1 = g
[
− cosα cosβ sin θ + sinβ sinφ cos θ + sinα cosβ cosφ cos θ

]
(15a)

g2 = g
[

cosα sinβ sin θ + cosβ sinφ cos θ − sinα sinβ cosφ cos θ
]

(15b)

g3 = g
[

sinα sin θ + cosα cosφ cos θ
]
. (15c)

By using the transformation matrix Tsb from the body rotation rates to the stability-axes rotation rates:29



ps

qs

rs


 =




cosα 0 sinα

0 1 0

− sinα 0 cosα




︸ ︷︷ ︸
Tsb



p

q

r


 , (16)

we can write Eq. (14) as

V̇T =
1

m

[
X̄ cosα cosβ + Ȳ sinβ + Z̄ sinα cosβ + FT cosα cosβ +mg1

]
(17a)

α̇ = qs − ps tanβ +
1

mVT cosβ

[
− X̄ sinα+ Z̄ cosα− FT sinα+mg3

]
(17b)

β̇ = −rs +
1

mVt

[
− X̄ cosα sinβ + Ȳ cosβ − Z̄ sinα sinβ − FT cosα sinβ +mg2

]
. (17c)

Taking the time derivative of Eq. (16) and substituting Eq. (3) results in



ṗs

q̇s

ṙs


 = Tsb




(c1r + c2p)q + c3L̄+ c4N̄

c5pr − c6
(
p2 − r2

)
+ c7M̄

(c8p− c2r)q + c4L̄+ c9N̄


+



rs

0

−ps


 α̇ . (18)

By selecting the states as

x1 =



VT

α

β


 , x2 =



ps

qs

rs


 , (19)

we can write Eqs. (17) and (18) as respectively

ẋ1 = f1 +G1



FT

qs

rs


 (20a)

ẋ2 = f2 +
(
H2 +D2G2

)


δe

δa

δr


 , (20b)
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where

f1 =




1
m

[
X̄ cosα cosβ + Ȳ sinβ + Z̄ sinα cosβ +mg1

]

−ps tanβ + 1
mVT cos β

[
Z̄ cosα−

(
X̄ + FT

)
sinα+mg3

]

1
mVT

[
−
(
X̄ + FT

)
cosα sinβ + Ȳ cosβ − Z̄ sinα sinβ +mg2

]


 (21a)

G1 =




cosα cos β
m 0 0

0 1 0

0 0 −1


 (21b)

f2 =




rs

[
qs − ps tanβ + 1

mVT cos β

(
−X̄0 sinα+ Z̄0 cosα− FT sinα+mg3

) ]

0

−ps
[
qs − ps tanβ + 1

mVT cos β

(
−X̄0 sinα+ Z̄0 cosα− FT sinα+mg3

) ]


 (21c)

+ Tsb




(c1r + c2p)q

c5pr − c6
(
p2 − r2

)

(c8p− c2r)q


+D2



L̄0

M̄0

N̄0




H2 =




rs
mVT cos β

[
Z̄δe cosα− X̄δe sinα

]
0 0

0 0 0
−ps

mVT cos β

[
Z̄δe cosα− X̄δe sinα

]
0 0


 (21d)

D2 = Tsb



c3 0 c4

0 c7 0

c4 0 c9


 , G2 =




0 L̄δa L̄δr
M̄δe 0 0

0 N̄δa N̄δr


 . (21e)

Note that the aerodynamic forces and moments have been split in a part that is independent of the control
variables and a part that is linearly dependent on the control variables:

X̄ = X̄0 + X̄δeδe (22a)

Ȳ = Ȳ0 + Ȳδaδa + Ȳδrδr (22b)

Z̄ = Z̄0 + Z̄δeδe (22c)

L̄ = L̄0 + L̄δaδa + L̄δrδr (22d)

M̄ = M̄0 + M̄δeδe (22e)

N̄ = N̄0 + N̄δaδa + N̄δrδr . (22f)
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III. Flight Control Design

III.A. Backstepping

In the BS control approach,7,27,34 the tracking error states are defined as

z1 =



z11

z12

z13


 =



VT

α

β


−



VT

α

β



ref

= x1 − x1,ref (23a)

z2 =



z21

z22

z23


 =



ps

qs

rs


−



ps

qs

rs



ref

= x2 − x2,ref , (23b)

where qs,ref and rs,ref are the intermediate control laws that will be defined by the BS controller. The
remaining reference variables are obtained from the prefilters (see Eq. (11)). For the BS control approach
including command filters,11–14 the modified tracking errors are now defined as

z̄i =



z̄i,1

z̄i,2

z̄i,3


 =



zi,1

zi,2

zi,3


−



χi,1

χi,2

χi,3


 = zi − χi , i = 1, 2 , (24)

where χi will be defined later on. Backstepping is a recursive design approach; therefore we start by
considering the x1-subsystem in Section III.A.1 and then move on to subsystem x2 in Section III.A.2.
Finally, Section III.A.3 contains the proof that shows that the developed control law accomplishes control
objective Eq. (10).

III.A.1. Outer loop control design

The dynamics of modified tracking error z̄1 are given by

˙̄z1 = f1 +G1



FT

qs

rs


− ẋ1,ref − χ̇1 . (25)

By using measurements of the specific forces:

Ax =
X̄ + FT
m

, Ay =
Ȳ

m
, Az =

Z̄

m
, (26)

the number of required on-board model parameters can be reduced.6 Ideally, this would mean that the vector
f1 is no longer dependent on the aerodynamic forces

(
X̄, Ȳ , Z̄

)
. However, it is not allowed to rewrite V̇T in

terms of the specific force Ax, otherwise the control input FT does not appear explicitly in the dynamics.
Therefore vector f1 changes to:

f1,m =




X̄
m cosα cosβ +Ay sinβ +Az sinα cosβ + g1

−ps tanβ + 1
VT cos β (Az cosα−Ax sinα+ g3)

1
VT

(−Ax cosα sinβ +Ay cosβ −Az sinα sinβ + g2)


 . (27)

The raw real control F 0
T and the raw virtual controls q0

s,ref and r0
s,ref are defined as



FT

qs,ref

rs,ref




0

= G−1
1


−C1z1 − f̂1,m +



V̇T

α̇

β̇



ref


−




0

χ22

χ23


 , (28)
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where C1 is a positive diagonal matrix and where f̂1,m denotes the estimate of f1,m. Note from Eq. (21b)
that matrix G1 becomes singular when α = kπ/2 or β = kπ/2 with k a non-zero integer. Fortunately, these
values for α and β are not located in the flight envelope for which the F-16 model is valid (see Section II).

The raw (virtual) control vector
[
F 0
T q0

s,ref r0
s,ref

]T
is led through command filters13,14,35 to obtain the

vector
[
FT qs,ref rs,ref

]T
and its time derivative. The effect that the use of these command filters have on

the tracking error z1 is estimated by the stable linear filter:


χ̇11

χ̇12

χ̇13


 = −C1



χ11

χ12

χ13


+G1






FT

qsref
rsref


−



FT

qsref
rsref




0
 , (29)

with zero initial conditions, that is, χ1(0) = 0.

III.A.2. Inner loop control design

The dynamics of modified tracking error z̄2 are given by

˙̄z2 = f2 +
(
H2 +D2G2

)
u− ẋ2,ref − χ̇2 , (30)

where we have assumed that control signal u equals the primary control deflections [δe, δa, δr]
T

, that is,
actuator dynamics have been neglected. This is a valid assumption because the primary control actuator
dynamics on the F-16 model are much faster than the plant dynamics. The use of these primary control
deflections to control ps and qs through α̇ will now be neglected, because these surfaces are primarily moment
generators instead of force generators.34,36 Consequently, matrix H2 is completely removed, which results
in the following expression:

˙̄z2 = f2 +D2G2u− ẋ2,ref − χ̇2 . (31)

Applying the Command-Filtered BS procedure11–14 to this simplified vector equation yields the following
raw BS control law:

D2Ĝ2u
0 = D2Ĝ2



δe

δa

δr




0

= −C2z2 − f̂2 +



ṗs

q̇s

ṙs



ref

−G1




0

z̄12

z̄13


 , (32)

where C2 is a positive diagonal matrix and where f̂2 and Ĝ2 denote the estimates of respectively vector f2

and matrix G2. The time derivative ṗs,ref is obtained from the prefilter, while q̇s,ref and ṙs,ref are obtained
from the command filters. Because the F-16 model that is used in this research is not over-actuated, D2G2

is a square matrix. If this would not be the case, some form of control allocation would be required.9,37

Note from Eq. (21e) that matrix G2 is always of full rank as long as the primary control surfaces remain
operable.

The raw control vector
[
δ0
e δ0

a δ0
r

]T
is led through command filters to obtain the vector [δe δa δr]

T
.

The effect that the use of these command filters have on the tracking error z2 is estimated by the stable
linear filter: 


χ̇21

χ̇22

χ̇23


 = −C2



χ21

χ22

χ23


+D2Ĝ2






δe

δa

δr


−



δe

δa

δr




0
 , (33)

with zero initial conditions, that is, χ2(0) = 0. The command filters that transform the raw signals

(FT , qs,ref , rs,ref , δe, δa, δr)
0

to produce magnitude, rate and bandwidth-limited signals and their derivatives
are selected to be second-order, low-pass filters with unity low-frequency (DC) gain and bandwidth ωn:13,14,35

[
q̇1

q̇2

]
=

[
q2

2ζωn

(
SR

{
ω2
n

2ζωn

[
SM

(
x0
i,ref

)
− q1

]}
− q2

)
]

(34a)

[
xi,ref

ẋi,ref

]
=

[
q1

q2

]
, (34b)
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with initial conditions:

q1(0) = α1 (zi−1(0), xi−1,ref (0)) (35a)

q2(0) = 0 . (35b)

The saturation functions SM and SR are defined similarly as

SM (x) =





M if x ≥M
x if |x| < M

−M if x ≤M .

(36)

The reason for using low-pass second-order filters is to suppress noise of the output signal and its time
derivative, while minimizing the time delay between the input and output.

The controller structure developed in this section can be seen in Figure 1. In this diagram CF 1 and CF 2
represent the Command Filters Eq. (34). The BS outer and inner loop blocks correspond to respectively
Eqs. (28) and (32). The estimator update laws will be designed in Sections III.C to III.E.

Pre-
filters

+

−

Faults




VT

α
β
ps






VT

α
β







FT

qs,ref
rs,ref



0 


ps

qs
rs



ref



δe
δa
δr



0




FT

δe
δa
δr






VT

α
β



ref z1 (I)BS

outer loop
CF 1

+

−

z2
CF 2

FT

Estimator
update law

(I)BS
inner loop



ps

qs
rs




ps,ref

θ̂m

(auto)
pilot

Figure 1. Command-Filtered (Adaptive Incremental) Backstepping controller structure.

III.A.3. Proof of stability

If we assume that f̂1,m = f1,m, f̂2 = f2 and Ĝ2 = G2, then stability can be proved on basis of the following
control Lyapunov function:

V(z̄) =
1

2
z̄T1 z̄1 +

1

2
z̄T2 z̄2 . (37)

Taking the time derivative of V along Eqs. (25) and (31) results in

V̇ = z̄T1

{
f1 +G1

[
FT qs rs

]T
− ẋ1,ref − χ̇1

}
+ z̄T2

{
f2 +D2G2u− ẋ2,ref − χ̇2

}
(38)

= z̄T1

{
f1 +G1

[
FT qsref rsref

]T
+G1

[
0 z22 z23

]T
− ẋ1,ref − χ̇1

}

+ z̄T2

{
f2 +D2G2u− ẋ2,ref − χ̇2

}

= z̄T1

{
f1 +G1

[
F 0
T q0

s,ref r0
s,ref

]T
+G1

[
0 z22 z23

]T
− ẋ1,ref + C1χ1

}

+ z̄T2

{
f2 +D2G2u

0 − ẋ2,ref + C2χ2

}

= z̄T1

{
− C1z1 + C1χ1 +G1

[
0 z̄22 z̄23

]T }
+ z̄T2

{
− C2z2 + C2χ2 −G1

[
0 z̄12 z̄13

]T }

= z̄T1

{
− C1z̄1 +G1

[
0 z̄22 z̄23

]T }
+ z̄T2

{
− C2z̄2 −G1

[
0 z̄12 z̄13

]T }

= −z̄T1 C1z̄1 − z̄T2 C2z̄2 .
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By the theorem of LaSalle-Yoshizawa (see e.g. Theorem B.9 in Sonneveldt7) it now follows that the
equilibrium z̄ = 0 is globally uniformly asymptotically stable. Note that this derivation only guarantees
desirable properties for the modified tracking error z̄ and not the actual tracking error z. According to
Farrell, Sharma and Polycarpou,38 in the absence of physical limitations (i.e. magnitude, rate, and bandwidth
constraints on the commanded states xi,ref for i = 1, 2 and control u), convergence of the tracking error z
is still guaranteed. When the inputs are too aggressive, the implemented limits can come into effect. During
such a period z and χ become nonzero because the desired control signals are not able to be implemented.
However, the χ-signals and therefore also the tracking error z will remain bounded, because χ is the output
of a stable linear system with a bounded input. When the limits are no longer in effect, the tracking error z
will converge to 0.

III.A.4. Approximations of non-affine force and moment coefficients

In the derivations of the aircraft dynamics used for control, the aerodynamic forces and moments have been
split in a part that is independent of the control variables and a part that is linearly dependent on the control
variables (see Eq. (22)). However, the aerodynamic data tables for aerodynamic coefficients CX,T and CM,T

are not affine in the input vector u:

CX,T = CX(α, δe) +
qc̄

2VT
CXq (α) (39a)

CM,T = CZ,T [xcgr − xcg] +
qc̄

2VT
CMq

(α) + CM (α, δe) , (39b)

where

CZ,T = δCZδe (α, β)

(
δe
25

)
+

qc̄

2VT
CZq (α) , (40)

and where the coefficients CX , CXq , CMq
, CM , δCZδe and CZq are given in tabular form for −10 ≤ α ≤ 45,

−30 ≤ β ≤ 30 and −24 ≤ δe ≤ 24 degrees. Therefore aerodynamic coefficients CX and CM have been
approximated by polynomials with degree r in α and degree s in δe. The total degree of the polynomial is
the maximum of r and s. For aerodynamic coefficient CM we have:

CM (α, δe) ∼= ĈM (α, δe) =

r∑

i=0

s∑

j=0

pijα
iδje , i+ j ≤ max(r, s) , (41)

where ĈM is the approximation of CM and pij are constant coefficients. By following the definitions of
Eq. (22), this approximation is written in a part that is independent of the control variable δe and a part
that is linearly dependent on δe:

ĈM (α, δe) = ĈM0
(α) + ĈMα,δe

(α, δe)δe , (42)

where

ĈM0
(α) =

r∑

i=0

pi0α
i (43a)

ĈMα,δe
(α, δe) =

r−1∑

i=0

s∑

j=1

pijα
iδj−1
e , i+ j ≤ max(r, s) . (43b)

Note that ĈMα,δe
(α, δe) is a function of δe, which is possible because the current δe is already available

from the corresponding command filter. The coefficients pij have been determined by obtaining a linear

least-squares fit of the polynomial to the aerodynamic data table of the F-16 model. The order of the ĈM
and ĈX polynomials have been selected to ensure a good fit and to prevent instability of the models. This
has resulted in polynomial orders of (r, s) = (5, 3) and (r, s) = (4, 2) for respectively coefficient ĈM and ĈX .
Plots of the polynomial approximations can be seen in Appendix B.
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III.B. Incremental Backstepping

Incremental Backstepping8,15,16 is applied to reduce the dependency on the on-board aircraft model com-
pared to conventional BS control. The derivations for subsystem x1 remain exactly the same as in Sec-
tion III.A.1, because this subsystem is assumed to be fully known. Therefore we directly move on to the
inner loop dynamics:

ẋ2 = f2(x) +D2(x)G2(x, u)u , (44)

where f2, D2 and G2 are given by Eqs. (21c) to (21e). Taking the first-order Taylor series expansion around
the current solution [x0,u0] results in

ẋ2
∼= f2(x0) +D2(x0)G2(x0,u0)u0 +

∂

∂x

[
f2(x) +D2(x)G2(x,u)u

]∣∣∣x=x0
u=u0

(x− x0) (45)

+
∂

∂u

[
D2(x)G2(x,u)u

]∣∣∣x=x0
u=u0

(u− u0) ,

where x =
[
xT1 xT2

]T
. The linearization error is small when the sampling rate is sufficiently high. Equa-

tion (45) can be written as
ẋ2
∼= ẋ2,0 +A2,0∆x+B2,0∆u , (46)

where

∆x = x− x0 , ∆u = u− u0 (47a)

A2,0 =
∂

∂x

[
f2(x) +D2(x)G2(x,u)u

]∣∣∣x=x0
u=u0

(47b)

B2,0 =
∂

∂u

[
D2(x)G2(x,u)u

]∣∣∣x=x0
u=u0

= D2(x0)

[
G2(x0,u0) +

∂G2(x,u)

∂u

∣∣∣∣x=x0
u=u0

u0

]
. (47c)

The vectors ∆x and ∆u are known as respectively the incremental state vector and the incremental control
input. Note from Eqs. (21e) and (42) that we obtain the following approximation:

Ĝ2 +
∂Ĝ2

∂u
= q̄Sb




0 ĈLδa ĈLδr

ĈMα,δe
+

∂ĈMα,δe
∂δe

δe 0 0

0 ĈNδa ĈNδr


 , (48)

where we now introduce the following parameter estimate for notational convenience:

ĈMδe
≡ ∂ĈM

∂δe
= ĈMα,δe

+
∂ĈMα,δe

∂δe
δe . (49)

If we assume a sufficiently time-scale separated system, that is the increment in state ∆x is much smaller
than the increment in both state derivative ∆ẋ2 and input ∆u, we can neglect the former.8,39–41 This
is allowed because the deflections of the control surfaces directly effect the angular accelerations, while the
angular rates only change by integrating these angular accelerations. Hence Eq. (46) can be further simplified
as follows:

ẋ2
∼= ẋ2,0 +B2,0(x0,u0)∆u . (50)

Applying the Command-Filtered BS procedure11–14 to this simplified vector equation yields the following
incremental BS control law:

B̂2,0(x0,u0)∆u0 = −C2z2 +



ṗs

q̇s

ṙs



ref

−



ṗs0
q̇s0
ṙs0


−G1




0

z̄12

z̄13


 , (51)

where C2 is a positive diagonal matrix and where B̂2,0 denotes the estimate of B2,0. The time derivative
ṗs,ref is obtained from the prefilter, while q̇s,ref and ṙs,ref are obtained from the command filters. Because
the F-16 model is not over-actuated, B2,0 is a square matrix. If this would not be the case, some form of
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control allocation would be required.9,37 Note from Eqs. (21e) and (47c) that matrix B2,0 is always of full
rank as long as the primary control surfaces remain operable.

The current control deflections u0 have to be added to the incremental raw control signal ∆u0 to get
the total raw input vector u0. The final commanded deflections u for the F-16 aircraft are subsequently
obtained using command filters. The effect that the use of these command filters have on the tracking error
z2 is estimated by the stable linear filter



χ̇21

χ̇22

χ̇23


 = −C2



χ21

χ22

χ23


+ B̂2,0






δe

δa

δr


−



δe

δa

δr




0
 , (52)

with zero initial conditions, that is, χ2(0) = 0. If the sampling rate is sufficiently high, and we assume that

f̂1,m = f1,m and B̂2,0 = B2,0, i.e. we only deal with uncertainties in the system dynamics f2, then stability
can be proved similar as in Section III.A.3.

If we compare IBS control law Eq. (51) with conventional BS controller Eq. (32), we can see that the
incremental controller uses sensor measurements or estimates of the angular acceleration and the current
control deflections to reduce the sensitivity to uncertainties and possibly model mismatch of the system
dynamics f2. This is a huge improvement, because now we no longer need knowledge of the largest part of
the aerodynamic model, the location of the center of gravity and the moments of inertia in order to control
the F-16 aircraft.

Note that Ali42 and Simpĺıcio, Pavel, Van Kampen and Chu41 state that for sufficiently high update
rate, closed-loop stability of incremental control law Eq. (51) is still guaranteed even when uncertainties are
introduced in the control effectiveness matrix B2,0. However, this conclusion was obtained by neglecting
the difference between two consecutive measurements of the state vector derivative, which is not allowed
because this would also imply that ∆u = 0. Therefore, without the availability of simulation results or
further theoretical analysis, nothing can be said about the robustness properties of the IBS controller with
respect to uncertainties in the control effectiveness matrix B2,0.

III.C. Tuning Functions Adaptive Incremental Backstepping

As seen in the previous section, IBS control law Eq. (51) improves the robustness of the closed-loop system
with respect to conventional BS by reducing its dependency on the exact knowledge of the plant dynamics f2.
However, the IBS controller still requires accurate knowledge of the control effectiveness matrix B2,0. In
this section the incremental control law is augmented with Lyapunov-based update laws11,21,22 to guarantee
closed-loop stability even when uncertainties are introduced in the control effectiveness matrix B2,0. By
using an incremental control law, the estimator now only has to estimate the aircraft control derivatives.

The derivations for subsystem x1 remain exactly the same as in Section III.A.1, because this subsystem is
assumed to be fully known. Therefore we directly move on to the outer loop control design in Section III.C.1.
The proof that shows that the Tuning Functions Adaptive Incremental Backstepping (TFAIBS) controller
guarantees closed-loop stability in case of inner loop uncertainties can be found in Section III.C.2. Finally
in Section III.C.3, function approximators are defined to estimate an unknown parameter.

III.C.1. Outer loop control design

In the previous section we have seen that if the sampling rate is sufficiently high, the x2-subsystem can be
written as

ẋ2
∼= ẋ2,0 +B2,0(x0,u0)∆u , (50 revisited)

where B2,0 is defined by Eq. (47c) and contains uncertainties. The dynamics of modified tracking error z̄2

are now given by
˙̄z2
∼= ẋ2,0 +B2,0(x0,u0)∆u− ẋ2,ref − χ̇2 . (53)

Similar as in the previous section, the desired incremental control law and the stable linear filter are defined
by respectively Eqs. (51) and (52). The estimation error is now introduced:

B̃2,0 = B2,0 − B̂2,0 , (54)
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where the estimate B̂2,0 is defined as

b̂2j = ΦTb2j (x)θ̂b2j , for j = 1, 2, 3 , (55)

where b̂2j represents the jth column of B̂2,0, ΦTb2j are the known regressor functions and θ̂b2j are vectors
with time-varying adaptive estimates. It is assumed that there exists a constant vector θb2j such that

b2j = ΦTb2j (x)θb2j . (56)

Now the parameter estimation errors can be defined as

θ̃b2j = θb2j − θ̂b2j → ˙̃
θb2j = − ˙̂

θb2j . (57)

The following Lyapunov-based TFs11,21,22 are selected to obtain the time-varying adaptive estimates θ̂b2j :

˙̂
θb2j = Pb2j

[
Γb2jΦb2j (x0)z̄2∆uj

]
, (58)

where Pb2j is a projection operator7,27 to ensure that full rank of B̂2,0 is always maintained, Γb2j are positive
diagonal matrices containing the adaptation gains and ∆uj is the jth element of ∆u. Note that the vectors

θ̂b2j for j = 1, 2, 3 contain respectively the time-varying adaptive estimates of the control derivatives with
respect to the elevator, aileron and rudder. Also note that the Lyapunov-based update law Eq. (58) is a
function of the modified tracking error z̄2 instead of the actual tracking error z2, this prevents the estimator
to “unlearn” as soon as the input is saturated.

III.C.2. Proof of stability

If the sampling rate is sufficiently high, and we assume that f̂1,m = f1,m, i.e. we only deal with uncertainties
in the inner loop (vector equation f2 and matrix B2,0), then stability can be proved on basis of the following
control Lyapunov function:

V(z̄) =
1

2
z̄T1 z̄1 +

1

2
z̄T2 z̄2 +

1

2

3∑

j=1

θ̃
T

b2jΓ
−1
b2j
θ̃b2j . (59)

Taking the time derivative of V along the trajectories of Eqs. (25), (53) and (57) yields

V̇ = z̄T1

{
f1 +G1

[
FT qs rs

]T
− ẋ1,ref − χ̇1

}
+ z̄T2

{
ẋ2,0 +

(
B̃2,0 + B̂2,0

)
∆u− ẋ2,ref − χ̇2

}

−
3∑

j=1

θ̃
T

b2jΓ
−1
b2j

˙̂
θb2j (60)

= z̄T1

{
f1 +G1

[
FT qsref rsref

]T
+G1

[
0 z22 z23

]T
− ẋ1,ref − χ̇1

}

+ z̄T2

{
ẋ2,0 + B̃2,0∆u+ B̂2,0

(
u0 − u0

)
− ẋ2,ref + C2χ2

}
−

3∑

j=1

θ̃
T

b2jΓ
−1
b2j

˙̂
θb2j

= z̄T1

{
f1 +G1

[
FT qsref rsref

]T
+G1

[
0 z22 z23

]T
− ẋ1,ref − χ̇1

}

+ z̄T2

{
− C2z2 + B̃2,0∆u−G1

[
0 z̄12 z̄13

]T
+ C2χ2

}
−

3∑

j=1

θ̃
T

b2jΓ
−1
b2j

˙̂
θb2j

= z̄T1

{
f1 +G1

[
F 0
T q0

sref
r0
sref

]T
+G1

[
0 z22 z23

]T
− ẋ1,ref + C1χ1

}

+ z̄T2

{
− C2z̄2 −G1

[
0 z̄12 z̄13

]T }
−

3∑

j=1

θ̃
T

b2jΓ
−1
b2j

{
˙̂
θb2j − Γb2jΦb2j z̄2∆uj

}

= z̄T1

{
− C1z1 +G1

[
0 z̄22 z̄23

]}
+ z̄T2

{
− C2z̄2 −G1

[
0 z̄12 z̄13

]T }

= −z̄T1 C1z̄1 − z̄T2 C2z̄2 .
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The exact same result was obtained in Eq. (38), thus we can draw the same conclusions on the stability
properties of the tracking errors as in Section III.A.3. Note that the parameter estimation error is completely
canceled in Eq. (60) by selecting the parameter update law as Eq. (58), therefore we cannot guarantee that

the parameter estimate θ̂b2j actually converges to the real parameter θb2j . All we can conclude from Eqs. (59)

and (60) with respect to the parameter estimation error θ̃b2j is that it is bounded. In Krstić43 it is proven that
convergence of the parameter estimate to a constant value is always achieved. In case of Persistent Excitation
(PE), the parameter estimate converges to the actual parameter. The requirement of PE basically means that
the reference signal must be “rich enough”, i.e. “contain enough frequencies” for the parameter estimation
error to converge to zero.44

III.C.3. Estimating unknown control derivative CMδe

The regressor functions Φ and parameter vectors θ̂ in update law Eq. (58) have not yet been specified. The
non-dimensional aerodynamic coefficients of the F-16 model are available as aerodynamic data tables that
are functions of flight parameters such as the angle of attack α and the sideslip angle β. In order to apply
the TFs approach, these lookup tables have to be approximated in a parametric form.

In this paper a time-varying uncertainty in the pitching moment coefficient CM (α, δe) will be introduced
in order to evaluate the (adaptive, incremental) BS control laws. Note from Eqs. (22e) and (48) that an
uncertainty in coefficient CM (α, δe) results in an uncertain CM0

and CMδe
coefficient. Because incremental

control law Eq. (51) is robust to uncertainties in CM0
, we only need to estimate control derivative CMδe

(see Eq. (49) for the definition of this coefficient). The following three function approximators that are
linear-in-the-parameters will be used for estimation of the uncertain control derivative CMδe

:

ĈMδe,1
= a0 (61a)

ĈMδe,2
= b0 + b1α+ b2δe (61b)

ĈMδe,3
= c0 + c1α+ c2δe + c3α

2 + c4αδe + c5δ
2
e , (61c)

where the coefficients (a0, b?, c?) are estimated using TFs Eq. (58). The corresponding regressor functions Φ

and parameter vectors θ̂ are given by

ΦTb21,1 = q̄SbD2




0

1

0


 , ΦTb21,2 = q̄SbD2




0 0 0

1 α δe

0 0 0


 , ΦTb21,3 = q̄SbD2




0 0 0 0 0 0

1 α δe α2 αδe δ2
e

0 0 0 0 0 0


 (62a)

θ̂b21,1 = a0, θ̂b21,2 =
[
b0 b1 b2

]
, θ̂b21,3 =

[
c0 c1 c2 c3 c4 c5

]
. (62b)

For example, the TF update law corresponding to the first function approximator now follows from Eqs. (58)
and (62):

˙̂
CMδe,1

=
˙̂
θb21,1 = Pb21

[
Γb21,1 q̄Sbc7z̄22∆δe

]
, (63)

where Γb21,1 is in this case a scalar adaptation gain.

III.D. Least-Squares Adaptive Incremental Backstepping

As seen in Section III.B, the IBS control law Eq. (51) improves the robustness of the closed-loop system with
respect to conventional BS by reducing its dependency on the exact knowledge of the plant dynamics f2.
However, the IBS controller still requires accurate knowledge of the control effectiveness matrix B2,0. In this
section the incremental control law is augmented with update laws based on Least-Squares6,20 to estimate
matrix B2,0. By using an incremental control law, the estimator now only has to estimate the aircraft control
derivatives.

The derivations for subsystem x1 remain exactly the same as in Section III.A.1, because this subsystem
is assumed to be fully known. Therefore we directly move on to the outer loop control design:

ẋ2
∼= ẋ2,0 +B2,0(x0,u0)∆u , (50 revisited)
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where B2,0 is defined by Eq. (47c) and contains uncertainties. Similar as in the previous section, the desired
incremental control law and the stable linear filter are defined by respectively Eqs. (51) and (52). Again, it
is assumed that there exists a vector θb2j such that

b2j = ΦTb2j (x)θb2j , for j = 1, 2, 3 , (64)

where b2j represents the jth column of B2,0, ΦTb2j are the known regressor functions and θb2j is an unknown

constant vector. Now Eq. (50) can be written as

∆ẋ2
∼=
[
ΦTb21(x0)∆δe ΦTb22(x0)∆δa ΦTb23(x0)∆δr

]


θb21
θb22
θb23


 , (65)

where ∆ẋ2 = ẋ2 − ẋ2,0. At time k the following vector equation can be constructed by using the past N
measurements:

y ∼= Aθ , (66)

where

y =
[
∆ẋ2,k−N · · · ∆ẋ2,k−1 ∆ẋ2,k

]T
, θ =

[
θTb21 θTb22 θTb23

]T
, (67a)

A =




ΦTb21(xk−N−1)∆δe,k−N ΦTb22(xk−N−1)∆δa,k−N ΦTb23(xk−N−1)∆δr,k−N
...

...
...

ΦTb21(xk−2)∆δe,k−1 ΦTb22(xk−2)∆δa,k−1 ΦTb23(xk−2)∆δr,k−1

ΦTb21(xk−1)∆δe,k ΦTb22(xk−1)∆δa,k ΦTb23(xk−1)∆δr,k



. (67b)

If we assume measurements or estimates of ẋ2, x and u are available, then the unknown parameters can be
estimated on-line by the efficient RLS algorithm with exponential forgetting:45

θ̂k+1 = P
[
θ̂k +Kk+1

(
yk+1 − ak+1θ̂k

)]
(68a)

Kk+1 = Pka
T
k+1

(
ak+1Pka

T
k+1 + λ

)−1
(68b)

Pk+1 =
1

λ
(IN −Kk+1ak+1)Pk , (68c)

where

Ak+1 =
[
Ak ak+1

]T
(69a)

yk =
[
y1 y2 . . . yk

]T
(69b)

yk+1 =
[
yTk yk+1

]T
, (69c)

and where P represents the parameter projection operator to prevent singularity problems, a the regression
vector, K the Kalman gain, P the covariance matrix and λ the forgetting factor for which we have 0 < λ ≤ 1.
Setting λ = 1 corresponds to “no forgetting” and estimating constant coefficients. Setting λ < 1 implies that
past measurements are less significant for parameter estimation and can be “forgotten”. λ < 1 should be set
to estimate time-varying coefficients. Note that for this estimation procedure an initial parameter estimate
and covariance matrix need to be provided.

A well-known problem of the RLS estimator utilizing forgetting is that the covariance matrix grows with-
out bounds when the reference signal is non-persistently exciting. This causes unbounded noise sensitivity
and leads to numerical difficulties.46–48 One approach to avoid covariance windup is to use a variable forget-
ting factor, which changes the forgetting factor from a value slightly less than one to the value of one when
the system is working in the steady state for a longer time. Another problem of the RLS estimator is that
of saturation, in which the covariance matrix, which can be seen as an adaptation gain of the algorithm,
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tends to approach a small positive constant when the parameter estimates converge. This reduces the ability
of the identifier to adjust to abrupt changes in the system parameters. This problem can be overcome by
decreasing the forgetting factor, however, this increases the sensitivity of the estimator to noise and modeling
error. Furthermore, a smaller forgetting factor increases the covariance windup problem. A better approach
to prevent estimator saturation is that of covariance resetting6,7, 49 or by introducing a variable forgetting
factor.47,50

Note that no formal proof is included for the Least-Squares Adaptive Incremental Backstepping (LSAIBS)
controller that guarantees closed-loop stability in case of inner loop uncertainties. If the real-time identifi-
cation routine is not able to provide accurate estimates of the control derivatives, then the possibility exists
that this control approach leads to an unsatisfactory result. Therefore, robust BS could be considered for
application in this context.51–53 Another option is to include nonlinear damping terms in the control law
to robustify the design against parameter estimation errors.49 In this research it has been assumed that
sufficiently accurate estimates are supplied by the estimator, such that the natural dynamics of the system
are successfully canceled by selection of incremental control law Eq. (51). Generally, the more accurate the
parameter estimates, the better the cancellation of the dynamics, and with that, the higher the performance
of the controller.54

In this paper a time-varying uncertainty in the pitching moment coefficient CM (α, δe) will be introduced
in order to evaluate the (adaptive, incremental) BS control laws. Note from Eqs. (22e) and (48) that an
uncertainty in coefficient CM (α, δe) results in an uncertain CM0 and CMδe

coefficient. Because incremental
control law Eq. (51) is robust to uncertainties in CM0

, we only need to estimate control derivative CMδe

(see Eq. (49) for the definition of this coefficient). The three function approximators that will be used for
estimation of this uncertain control derivative CMδe

are given in Eq. (61). Note that every row of Eq. (66)
is a vector equation. In order to estimate the control efficiency CMδe

, we only need to consider the second
vector equation: 



∆ẋ2,2,k−N
...

∆ẋ2,2,k−1

∆ẋ2,2,k




︸ ︷︷ ︸
y

∼=




ΦTb21(xk−N−1)∆δe,k−N
...

ΦTb21(xk−2)∆δe,k−1

ΦTb21(xk−1)∆δe,k




︸ ︷︷ ︸
A

θb21 . (70)

Now the unknown parameter vector θb21 can be estimated on-line by the RLS algorithm Eq. (68). Note that

the regressor functions Φb21 and parameter vectors θ̂b21 that correspond to function approximations Eq. (61)
are given by Eq. (62).

III.E. Immersion & Invariance Adaptive Incremental Backstepping

As seen in Section III.B, the IBS control law Eq. (51) improves the robustness of the closed-loop system with
respect to conventional BS by reducing its dependency on the exact knowledge of the plant dynamics f2.
However, the IBS controller still requires accurate knowledge of the control effectiveness matrix B2,0. In this
section the incremental control law is augmented with update laws based on I&I23–26 to guarantee closed-
loop stability even when uncertainties are introduced in the control effectiveness matrix B2,0. By using an
incremental control law, the estimator now only has to estimate the aircraft control derivatives.

The derivations for subsystem x1 remain exactly the same as in Section III.A.1, because this subsystem is
assumed to be fully known. Therefore we directly move on to the outer loop control design in Section III.E.1.
The proof that shows that the I&I estimator obtains asymptotically converging estimates of each unknown
term can be found in Section III.E.2. Finally in Section III.E.3, update laws are defined to estimate an
unknown parameter.

III.E.1. Outer loop control design

In the previous section we have seen that when we assume a sufficiently high sampling rate, the x2-subsystem
can be written as

ẋ2
∼= ẋ2,0 +B2,0(x0,u0)∆u , (50 revisited)

where B2,0 is defined by Eq. (47c) and contains uncertainties. Similar as in the previous two sections, the
desired incremental control law and the stable linear filter are defined by respectively Eqs. (51) and (52). It
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is assumed that Eq. (50) can be written as follows to facilitate the design procedure of the I&I estimator:

ẋ2,i = fi +ϕi(x1, x2,1, . . . , x2,i,∆u)Tθ , for i = 1, 2, 3 (71a)

ξ̇i = wi , (71b)

where ẋ2,0 = [f1 f2 f3]
T

, ϕi ∈ Rr are the smooth and known regressor functions, θ ∈ Rr is a vector
with unknown constant parameters, ξi ∈ Rr is the estimator state and wi ∈ Rr is the update law to be
determined. The design of the overparameterized I&I estimator of order 3r starts by defining the estimation
errors as

σi = ξi + βi (x1, x2,1, . . . , x2,i,∆u)− θ , for i = 1, 2, 3 , (72)

where βi(·) are continuous functions yet to be specified. The dynamics of the estimation error are given by

σ̇i = ξ̇i + β̇i (x1, x2,1, . . . , x2,i,∆u)

= wi +
∂βi
∂x1

ẋ1 +

i∑

j=1

∂βi
∂x2,j

ẋ2,j +

3∑

k=1

∂βi
∂∆uk

∆u̇k

= wi +
∂βi
∂x1

ẋ1 +

i∑

j=1

∂βi
∂x2,j

[
fj +ϕTj (ξi + βi − σi)

]
+

3∑

k=1

∂βi
∂∆uk

∆u̇k . (73)

The update law wi is selected as

wi = − ∂βi
∂x1

ẋ1 −
i∑

j=1

∂βi
∂x2,j

[
fj +ϕTj (ξi + βi)

]
−

3∑

k=1

∂βi
∂∆uk

∆u̇k , (74)

which yields the following estimation error dynamics

σ̇i = −
i∑

j=1

∂βi
∂x2,j

ϕTj σi . (75)

Note that the update law wi is selected such that the estimation error dynamics Eq. (75) have an equilibrium
at zero. In order to obtain an asymptotically converging estimate of each unknown term ϕTi θ, we can select
the βi-functions as:7,55

βi(x1, x2,1, . . . , x2,i,∆u) = Γi

∫ x2,i

0

ϕi(x1, x2,1, . . . , x2,i−1, χ,∆u) dχ+ εi(x2,i) , (76)

where Γi is a positive diagonal matrix containing the update gain parameters and where εi are continuously
differentiable functions that satisfy the partial differential matrix inequality:

Fi(x1, x2,1, . . . , x2,i,∆u)T + Fi(x1, x2,1, . . . , x2,i,∆u) ≥ 0 , for i = 2, 3 , (77)

where

Fi(x1, x2,1, . . . , x2,i,∆u) = Γi

i−1∑

j=1

∂

∂x2,j

[∫ x2,i

0

ϕi(x1, x2,1, . . . , x2,i−1, χ,∆u) dχ

]
ϕj(x1, x2,1, . . . , x2,j ,∆u)T

+
∂εi
∂x2,i

ϕi(x1, x2,1, . . . , x2,i,∆u)T . (78)

In the special case in which ϕi(·) is not a function of x2,l for i 6= l and l = 1, 2, 3, the trivial solution
εi(x2,i) = 0 satisfies inequality (77). The same simplification occurs when only one of the functions ϕi(·)
is non-zero. In general, it is not easy to find functions εi that satisfy Eq. (78). The problem of finding the
εi-functions can be prevented by using dynamic scaling and output filters.7,56
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III.E.2. Proof of stability

In order to prove that the I&I estimator consisting of Eqs. (74) and (76) yields an asymptotically converging
estimate of each unknown term ϕTi θ, we consider the following Lyapunov function:

V(σ) =

3∑

i=1

σTi σi . (79)

Taking the time derivative of V along the trajectories of Eq. (75) yields

V̇ = −2

3∑

i=1

σTi




i∑

j=1

∂βi
∂x2,j

ϕTj


σi . (80)

Note that the term between the square brackets can be written as

i∑

j=1

∂βi
∂x2,j

ϕTj =

i−1∑

j=1

∂

∂x2,j

[
Γi

∫ x2,i

0

ϕi(x1, x2,1, . . . , x2,i−1, χ,∆u)dχ

]
ϕj(x1, x2,1, . . . , x2,j ,∆u)T

+
∂

∂x2,i

[
Γi

∫ x2,i

0

ϕi(x1, x2,1, . . . , x2,i−1, χ,∆u)dχ+ εi(x2,i)

]
ϕi(x1, x2,1, . . . , x2,i,∆u)T

=

i−1∑

j=1

∂

∂x2,j

[
Γi

∫ x2,i

0

ϕi(x1, x2,1, . . . , x2,i−1, χ,∆u)dχ

]
ϕj(x1, x2,1, . . . , x2,j ,∆u)T

+ Γiϕi(x1, x2,1, . . . , x2,i,∆u)ϕi(x1, x2,1, . . . , x2,i,∆u)T +
∂εi(x2,i)

∂x2,i
ϕi(x1, x2,1, . . . , x2,i,∆u)T

= Γiϕi(x1, x2,1, . . . , x2,i,∆u)ϕi(x1, x2,1, . . . , x2,i,∆u)T + Fi . (81)

Therefore the time derivative of V along the trajectories of Eq. (75) becomes

V̇ = −2

3∑

i=1

σTi

[
Γiϕi(x1, x2,1, . . . , x2,i,∆u)ϕi(x1, x2,1, . . . , x2,i,∆u)T + Fi

]
σi

= −2

3∑

i=1

σTi

[
Γiϕi(x1, x2,1, . . . , x2,i,∆u)ϕi(x1, x2,1, . . . , x2,i,∆u)T + 0.5FTi + 0.5Fi

]
σi

≤ −2

3∑

i=1

ϕi(x1, x2,1, . . . , x2,i,∆u)TΓiσiϕi(x1, x2,1, . . . , x2,i,∆u)Tσi , (82)

where σTi Fiσi = σTi
[
0.5FTi + 0.5Fi

]
σi and Eq. (77) were used. By the theorem of LaSalle-Yoshizawa it

now follows that an asymptotically converging estimate of the unknown term ϕTi θ is obtained. Stability
of the closed-loop system with IBS control law Eq. (51) and the I&I based estimator introduced in this

section can be proved by using the following Lyapunov function V(z̄,σ) =
∑2
j=1 z̄

T
j z̄j +

∑3
i=1 σ

T
i σi, see e.g.

Sonneveldt.7

III.E.3. Estimating unknown control derivative CMδe

In this paper a time-varying uncertainty in the pitching moment coefficient CM (α, δe) will be introduced
in order to evaluate the (adaptive, incremental) BS control laws. Note from Eqs. (22e) and (48) that an
uncertainty in coefficient CM (α, δe) results in an uncertain CM0

and CMδe
coefficient. Because incremental

control law Eq. (51) is robust to uncertainties in CM0
, we only need to estimate control derivative CMδe

(see
Eq. (49) for the definition of this coefficient). The three function approximators that will be used for estima-
tion of this uncertain control derivative CMδe

are given in Eq. (61). For constant function approximator (1)
we have the following regressor function:

ϕ2,1 = c7q̄Sb∆δe . (83)
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We are dealing with only one uncertain equation, therefore the trivial solution ε2(x2,2) = 0 satisfies inequal-
ity (77). Substituting regressor ϕ2,1 into Eq. (76) yields

β2,1(x1, x2,1, x2,2,∆u) = Γ2,1

∫ x2,2

0

ϕ2,1 (x1, x2,1, χ,∆u) dχ

= Γ2,1ϕ2,1x2,2 , (84)

where Γ2,1 is now a scalar adaptation gain. Following from Eq. (74), the update law becomes

ξ̇2,1 = −
2∑

j=1

∂β2,1

∂x2,j
ẋ2,j −

3∑

k=1

∂β2,1

∂∆uk
∆u̇k −

∂β2,1

∂q̄
˙̄q

= −Γ2,1ϕ2,1 [f2 + ϕ2,1(ξ2,1 + β2,1)]− Γ2,1c7Sbx2,2

(
q̄∆δ̇e + ˙̄q∆δe

)
. (85)

Note that one additional term involving ˙̄q arises because the dynamic pressure q̄(t), which is an auxiliary
state of the F-16 aircraft model, appears in regressor Eq. (83). In the I&I approach the estimation error is
defined as

σ2,1 = ĈMδe
− CMδe

= ξ2,1 + β2,1 − CMδe
. (86)

Therefore the estimate of the control efficiency CMδe
is now given by

ĈMδe
= P

[
ξ2,1 + Γ2,1ϕ2,1x2,2

]
, (87)

where P represents the parameter projection operator to prevent singularities of IBS control law Eq. (51).
The dynamics of the estimation error σ2,1 can now be derived:

σ̇2,1 = ξ̇2,1 +
∂β2,1

∂x2,2
ẋ2,2 +

∂β2,1

∂∆δe
∆δ̇e +

∂β2,1

∂q̄
˙̄q

= ξ̇2,1 + Γ2,1ϕ2,1

[
f2 + ϕ2,1(ξ2,1 + β2,1 − σ2,1)

]
+ Γ2,1c7q̄Sbx2,2∆δ̇e + Γ2,1c7Sb∆δex2,2 ˙̄q

= −Γ2,1ϕ
2
2,1σ2,1 . (88)

Note that the same result for the estimation error dynamics can be obtained by using Eq. (75). As can be
seen from Eq. (88), the dynamics of the parameter estimation error σ2,1 are described by a first-order linear
ordinary, homogeneous differential equation with a time-varying coefficient. The well-known solution to this
differential equation is

σ2,1(t) = σ2,1(0)e−Γ2,1

∫ t
0
ϕ2,1(ξ)2 dξ , (89)

which indicates that the parameter estimation error is a monotonically non-increasing function. In the same
way the update laws for the second and third function approximator of Eq. (61) have been derived, see
Appendix D. Overparameterization for all derived I&I estimators is eliminated since we are dealing with
only one uncertain equation. Note that the parameter estimation errors that correspond to the non-constant
function approximators are no longer monotonically non-increasing functions. Also note that the derived I&I
update laws in this paper are significantly different from those in Ali et al .26 and Sun,57 where the update

laws ξ̇? (in the referred literature denoted as
˙̂
C?δ? ) are incorrectly obtained by setting them equal to the

time derivative of β?δ? .

IV. Simulation Results

All simulations have been run with a fixed sampling frequency of 100 Hz and the ode5 (Dormand-Prince)

solver of Matlab/Simulink. The F-16 model has been trimmed in a steady level flight at an altitude of 5000 m
and a total velocity of 170 m/s. The resulting trim values can be found in Table 4. The parameters of the
command filters are obtained from Sonneveldt, Chu and Mulder,11 see Table 5. The time constants for the
first-order lag prefilters (see Eq. (11)) have been set as σα = σps = 0.3 s.

In none of the simulations the sign of the parameter estimate ĈMδe
changes, therefore there was no need

to implement parameter projection operators P to prevent singularities of incremental control law Eq. (51)
in the domain of operation.
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In Section IV.A simulation results of the conventional BS controller are analyzed. Subsequently in
Section IV.B, the robustness properties of the IBS controller are compared with those of the BS controller.
Finally in Section IV.C, the adaptive control laws are simulated to see whether they are able to increase the
closed-loop performance of the uncertain F-16 model compared to the (incremental) BS control laws.

Table 4. Trim values (steady level flight)

FT δe δa δr α VT h

1903 lbs −0.7 deg 0 deg 0 deg 3.3 deg 170 m/s 5000 m

Table 5. Command filter parameters

Command variable ωn (rad/s) ζ Mag. limit Rate limit

FT 2 1 [1000, 19 000] lbs ± 10 000 lbs/s

qs 10 1 ± 20 deg/s –

rs 10 1 ± 25 deg/s –

δe 40.4 1 ± 25 deg ± 60 deg/s

δa 40.4 1 ± 21.5 deg ± 80 deg/s

δr 40.4 1 ± 30 deg ± 120 deg/s

IV.A. Backstepping

For the BS control approach we need to select three control gains for the inner loop and three gains for the
outer loop. As we have seen in Section III.A, the Lyapunov stability theory only requires the control gains
to be larger than zero. One option to find these gains is to make use of reference and linearized models for
which the characteristics of the roll mode, the short period mode and the Dutch roll mode are specified.34

However, because the goal of this paper is to evaluate three approaches to adaptive incremental BS control,
handling characteristics of the closed-loop system are of less importance. Therefore the gains of the BS have
been found through experimental tuning, see Table 6.

Table 6. Backstepping control gains

c11 c12 c13 c21 c22 c23

0.5 3 4 1.5 12 8

From the simulations of the BS controller (see Figures 2 to 5) can be concluded that the polynomial
approximations of aerodynamic coefficients CM and CX result in accurate tracking performance for the
angle of attack α and roll rate ps when no additional uncertainties are introduced. Furthermore, the sideslip
angle β is successfully minimized. As can be seen, the total velocity VT does not accurately follow the
reference value. This is because the orientation of the aircraft is not controlled during the maneuver, and
therefore it becomes physically impossible to keep VT constant, see also Figures 3 and 4. Nevertheless, the
thrust control loop is able to keep the F-16 model within the flight envelope for which the aerodynamic data
is valid.

To evaluate the robustness of this controller, uncertainties in all the aerodynamic damping coefficients
are introduced. In reality such uncertainties might be caused due to structural damage. Two types of
uncertainties are considered:58

• Magnitude scaling. In this case the actual coefficients are obtained by scaling the magnitude of the
nominal coefficient from the look-up table:

C?act(x) = [1 + Fmag]C?nom(x) . (90)
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• Variable scaling. In this case the actual coefficients are obtained by scaling the independent variable
of the nominal coefficient from the look-up table:

C?act(x) = C?nom
(
[1 + Fvar]x

)
, (91)

where F is the uncertainty factor and x denotes the state variables such as α and β.
From Figure 2 can be seen that the controller is not able to track the reference signals accurately when

the damping coefficients used by the controller deviate from the actual damping coefficients. This is as
expected because BS controller Eq. (32) highly relies on correct on-board parameters.
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Figure 2. Tracking performance of the Backstepping controller with and without uncertainties in the aerodynamic
damping coefficients.
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Figure 3. Control variables of the F-16 model for the simulation with Fvar = Fmag = 0.

23 of 40

American Institute of Aeronautics and Astronautics



0 5 10 15 20 25 30 35 40 45 50
1000

2000

3000

4000

5000

6000

time (s)

Z
(m

)

Figure 4. Altitude and orientation of the F-16 model for the simulation with Fvar = Fmag = 0.
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Figure 5. True and estimated values of aerodynamic coefficients CX,T and CM,T for the simulation with Fvar = Fmag = 0.

IV.B. Incremental Backstepping

Similar as for the conventional BS controller, the IBS control gains have been found through experimental
tuning, see Table 7. The angular acceleration estimation algorithms with the most promising tuning pa-
rameters (see Appendix C) have been evaluated in a closed-loop simulation in absence of uncertainties, see
Figure 6. That is, the estimated angular accelerations are used in an on-line fashion by the incremental
controller. The numerical differentiator uses the two-point backward-difference formula. The bandwidth
of the washout filter and the tuning parameter of the sliding mode differentiator have been respectively
selected as 200 rad/s and L = 5. No loop synchronization has been introduced,16,59 because the noise power
is relatively low; therefore a high bandwidth of the washout filters can be used resulting in a very small
effective time delay. From these simulation results can be concluded that all three approaches lead to almost
identical closed-loop performance. For this reason, the most simplest approach, i.e. the two-point numerical
differentiator, has been selected for all further simulations to provide the angular accelerations.

Table 7. Incremental Backstepping control gains

c11 c12 c13 c21 c22 c23

0.5 1.5 2 1.5 2 5
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Figure 6. Tracking performance of the Incremental Backstepping controller in absence of uncertainties by using three
different approaches to estimate the angular accelerations.

From the simulation of the IBS controller (see Figure 7) it can be concluded that, in contrary to the
conventional BS controller, the incremental control law is robust to uncertainties in the aerodynamic damp-
ing coefficients. This is as expected because the incremental controller does not depend on the system
dynamics f2.
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Figure 7. Tracking performance of the Backstepping (BS) and Incremental Backstepping (IBS) controller with uncer-
tainties in the aerodynamic damping coefficients (Fvar = −Fmag = 0.4).

Uncertainties in the control efficiency matrix B2,0 are now introduced to further asses the robustness of the
(Incremental) BS controller. This is achieved by magnitude scaling of the aerodynamic coefficient CM (α, δe).
Note from Eqs. (22e) and (48) that an uncertainty in coefficient CM (α, δe) results in an uncertain CM0

and

CMδe
coefficient, this results in respectively f̂2 6= f2 and B̂2,0 6= B2,0. In reality such an uncertainty

might be caused due to structural damage of the all-moving tail of the F-16. The simulation results of
the (incremental) BS control laws with an uncertain pitching coefficient can be seen in Figure 8. The
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Root-Mean-Square Deviation (RMSD) of the angle of attack has been defined as follows:

RMSD =

√√√√ 1

n

n∑

i=1

(
αref [i]− α[i]

)2
, (92)

where n is the total number of samples. From Figure 8 can be seen that the incremental controller tracks the
angle of attack reference signal more accurately compared to the conventional BS controller now coefficient
CM (α, δe) is uncertain. However, when we keep increasing the uncertainty in the pitching moment coefficient,
then also the incremental controller is no longer able to provide accurate tracking performance. This is as
expected because the incremental controller still relies on accurate knowledge of matrix B2,0.
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Figure 8. Tracking performance of Backstepping (upper left) and Incremental Backstepping (upper right) in case of
uncertainties in the pitching moment coefficient CM (α, δe).

IV.C. Adaptive Incremental Backstepping

Now a time-varying magnitude uncertainty in the pitching moment coefficient CM (α, δe) is introduced in
order to evaluate the (adaptive, incremental) BS control laws, see Figure 9. Note from Eqs. (22e) and (48)
that an uncertainty in coefficient CM (α, δe) results in an uncertain CM0

and CMδe
coefficient. By using an

incremental control law, the parameter estimator now only has to estimate the control derivative CMδe
, see

also the discussion in Section III.B. The initial parameter estimates of function approximators Eq. (61) have
been set as

a0(0) = b0(0) = c0(0) = ĈMδe,nom
(0) (93a)

b1(0) = b2(0) = c1(0) = c2(0) = c3(0) = c4(0) = c5(0) = 0 , (93b)

where ĈMδe,nom
(0) is given by the polynomial approximation of aerodynamic data table CM (α, δe), see also

Section III.A.4. The gains of the incremental controller have been set similar as in Table 7. The adaptation
gain matrices have been found through experimental tuning, see Table 8. The forgetting factor of the LS
estimator has been set as λ = 0.9999.

The simulation results of the (adaptive, incremental) BS control laws with constant function approximator
Eq. (61a) can be seen in Figure 10. Note that the reference value of ĈMδe

in Figure 10(c) is not the actual
CMδe

, but follows from scaling the magnitude of the (accurate) polynomial approximation of aerodynamic
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Table 8. Adaptation gains. The coefficients in the top row correspond to function approximators Eq. (61).

a0 b0 b1 b2 c0 c1 c2 c3 c4 c5

Tuning Functions Γ 3 3 7 7 3 7 7 7 7 7

Least-Squares P0 0.1 0.1 0.2 0.2 0.1 0.2 0.2 1 1 1

Immersion & Invariance Γ 1.8 1.8 5 5 1.8 5 5 5 5 5
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Figure 9. Magnitude scaling of the pitching moment coefficient CM (α, δe) to introduce a time-varying uncertainty.

data table CM (α, δe):

ĈMδe,ref
= [1 + Fmag]

∂ĈM
∂δe

= [1 + Fmag]
∂

∂δe

5∑

i=0

3∑

j=0

pijα
iδje , i+ j ≤ 5 . (94)

The RMSD of the angle of attack in Figure 10(d) has been calculated by using simulation data of the last
45 seconds, which is the region in which the introduced uncertainty is largest after the maneuver starts.
The IBS controller reduces the RMSD with more than 50% compared to conventional BS. An additional
reduce of the RMSD with about 20% is achieved by augmenting the incremental control law with parameter
estimators based on TF, LS or I&I. Although these parameter estimators yield different estimates, the closed-
loop performance of the adaptive IBS approaches is almost identical. This can be explained by the fact that
the IBS controller is already robust to some degree to uncertainties in the control efficiency parameter as
we have seen in Section IV.B; therefore it is not necessary to obtain very accurate estimates for satisfactory
tracking performance. From Figure 10(c) can be seen that all parameter estimates converge to the (accurate)
polynomial approximation ĈMδe,ref

.
Because the LSAIBS simulation only runs for 100 seconds and there are no long periods in which the

system is working in the steady state, there was no need to take measures to avoid estimator saturation or
covariance windup, see also the discussion in Section III.D.

The time derivative ∆δ̇e required for the I&I update laws (see Eqs. (85), (108) and (113)) has been
obtained by using (delayed) outputs of the command filter, while the time derivatives (δ̇e, α̇, ˙̄q) are approxi-
mated by using two-point backward-difference schemes, see Eq. (101). These numerical derivatives result in
more noise in the parameter estimate of the I&I controller compared to these of the TF and LS estimator.
However, these high frequency oscillations do not appear in the input and output of the F-16 model because
the noise is filtered by the low-pass command filters and actuator dynamics.

In Figure 11 the parameter estimate of the I&I estimator with constant function approximator Eq. (61a)
is shown together with the theoretical estimate that follows from the estimator error dynamics Eq. (89).
Naturally, the theoretical estimate does not exactly equal the parameter estimate that follows from the
simulation. This is due to the fact that the estimator error dynamics Eq. (89) have been derived by neglecting
sensor dynamics, actuator dynamics and the higher order terms in Eq. (46). Furthermore, these error
dynamics were derived on the assumption that the unknown parameter CMδe

is constant, which it is not.
However, the derived estimator error dynamics render a good impression of the speed of converge of the
I&I estimator as a function of the adaptation gain. Therefore, the estimator error dynamics Eq. (89) may
be used for initial tuning of the I&I estimator; thereby simplifying the tuning process of the I&I estimator
compared to that of the TF and LS estimators.
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Figure 10. Tracking performance of the (Incremental) Backstepping controller and the Adaptive Incremental Back-
stepping controllers with a constant function approximator in case of uncertainties in the pitching moment CM (α, δe).
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Figure 11. Parameter estimates of the Immersion & Invariance estimator. The theoretical estimate follows from estimator
error dynamics Eq. (89) while the practical estimate follows from a simulation with function approximator Eq. (61a).

IV.C.1. Influence of the adaptation gain

The influence of the adaptation gain of the TF estimator on the closed-loop performance and the parameter
estimation is shown in Figure 16 of Appendix E. Changing the adaptation gain of the TF estimator has
a similar effect as changing the adaptation gain of the I&I estimator and the initial covariance matrix of
the LS estimator, therefore the plots of the LSAIBS and Immersion and Invariance Adaptive Incremental
Backstepping (IIAIBS) controllers are omitted. As expected, increasing the adaptation gain results in faster
convergence of the parameter estimate. However, by increasing the adaptation gain, the sensitivity to noise
and model error increases which may result in unstable closed-loop performance.

From Figure 16 we can see that the parameter estimates for the different gains seem to converge to
constant values, but not necessarily converge to ĈMδe,ref

. However, because the IBS controller is already
robust to some degree to uncertainties in the control efficiency parameter, the tracking performance for the
three different adaptation gains is nearly identical. The reason why the parameter estimates do not always
converge to ĈMδe,ref

may be due to model mismatch which results from neglecting the sensor dynamics,
actuator dynamics and the higher order terms in Eq. (46). Furthermore, by using the constant function
approximator we have assumed that unknown parameter CMδe

is constant, which it is not. Finally, ĈMδe,ref

is only an approximation of uncertain parameter CMδe
, and therefore additional errors are introduced.

IV.C.2. Influence of the forgetting factor

The forgetting factor of the LS estimator is set as λ < 1 to allow parameter estimation of time-varying
coefficient CMδe

. In Figure 17 of Appendix E the effect of this forgetting factor can be seen on the closed-
loop performance and the parameter estimates. As can be seen, a lower forgetting factor leads to a faster
parameter estimation. However, by decreasing the forgetting factor the sensitivity to noise and model error
increases which may result in unstable closed-loop performance. From Figure 17 we can see that not all
parameter estimates converge to ĈMδe,ref

. Note that the RLS estimator only results in unbiased estimates
when we are dealing with zero mean white noise in the observation vector y and when the data matrix A is
exactly known.60 However, in this paper matrix A is not free or error because of sensor noise and neglecting
the sensor dynamics, actuator dynamics and the higher order terms in Eq. (46). In order to keep the LS
estimate unbiased and efficient in case of errors in both the data matrix A and the observation vector y, the
Total Least-Squares method may be considered.61,62

IV.C.3. Influence of the function approximator

In Figure 18 of Appendix E the three function approximators of Eq. (61) have been simulated for the IIAIBS
control law. The results of the different function approximators for the TF and LS estimator are nearly
identical, therefore the plots of the TFAIBS and LSAIBS controllers are omitted. Note that the tracking
performance of the IIAIBS controller is not noticeably influenced by selecting a function approximator
with a higher approximation power. This is caused by the fact that only coefficients (a0, b0, c0) of the
function approximators are estimated accurately, while the remaining coefficients appear to be unidentifiable.
However, because the terms related to the angle of attack and elevator deflection are much smaller compared
to these constant terms, the closed-loop performance is not influenced by these inaccurate estimates.

More accurate estimates of the α and δe dependent terms of the function approximators may be obtained
by increasing the “richness” of the reference trajectory by, for example, superimposing a sinusoidal signal on
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the reference signal. The amplitude of this excitation signal may be modulated dependent upon the tracking
error to guarantee parameter convergence.63,64 Although this extra excitation might improve the parameter
estimates, the closed-loop performance will hardly benefit from this because the IBS controller is already
robust to a large degree to uncertainties in the control efficiency parameter as we have seen in Section IV.B.

V. Conclusions and Recommendations

V.A. Conclusions

In this paper nonlinear Backstepping (BS) control laws have been derived for a high-performance aircraft
(F-16). Initial results have confirmed that the conventional BS control law does not provide accurate tracking
performance when parametric uncertainties are introduced. By comparing the simulation results of the BS
and the Incremental Backstepping (IBS) control law, we have seen that the IBS controller is more robust to
uncertainties in the system dynamics. This finding is in line with the existing literature.8,15,16 Furthermore,
it has been shown that the IBS control law is more robust to uncertainties in the control efficiency matrix.
To the best knowledge of the authors of this paper, this has not earlier been concluded in the literature
on basis of simulation results. However, when we keep increasing the uncertainty of the control efficiency
matrix, then also the incremental controller will no longer be able to provide accurate tracking performance.

The incremental control law derived in this paper requires the angular accelerations. Sensors to measure
these accelerations exist, however, they are not common. Therefore, three algorithms with varying complexity
have been evaluated to estimate the angular accelerations on basis of noisy angular rate measurements.
From the simulation results can be concluded that all three approaches lead to almost identical closed-loop
performance for the noise standard deviation and sampling frequency considered in this research.

The main contribution of this paper is the design of three Adaptive IBS control laws for the highly
nonlinear F-16 model. By using an incremental control law, the estimator now only has to estimate the
control efficiency matrix. This simplifies the controller design significantly compared to the Adaptive non-
Incremental BS controllers of Sonneveldt.7 The IBS controller is already robust to some degree to uncer-
tainties in the control efficiency matrix; therefore the parameter estimations do not have to be very accurate
in order to obtain satisfactory tracking performance. The closed-loop performance of the three designed
Adaptive IBS approaches is almost identical; a reduce of the Root-Mean-Square Deviation (RMSD) with
about 20% is achieved by augmenting the incremental control law with parameter estimators based on Tun-
ing Function (TF), Least-Squares (LS) or Immersion and Invariance (I&I) in case of an uncertain pitching
moment coefficient. This increase of performance is more significant compared to the findings of Ali et al .26

The advantage of the modular LS estimator is the very low design complexity. However, guaranteed
closed-loop stability in case of uncertainties can not be proven. The design complexity of the I&I estimator
is highest, however, the advantage is that an analytical expression of the estimator error can easily be derived.
The dynamics of the estimator error may be used for initial tuning of the I&I estimator; thereby simplifying
the tuning process of the I&I estimator compared to that of the TF and LS estimators.

Three function approximators with different complexity have been used for estimation of an uncertain
control derivative. From the simulations can be concluded that the tracking performance of the Incremental
Adaptive Backstepping (ABS) controllers is not noticeably influenced by selecting a function approximator
with a higher approximation power. These simulation results are not in agreement with the hypothesis of
Ali et al ,26 in which the authors suggest that better performance of the Immersion and Invariance Adaptive
Incremental Backstepping (IIAIBS) controller may be obtained by using a more detailed regressor model in
the identifier.

In conclusion, the results of this study show the great potential of Adaptive Incremental Backstepping
in increasing the survivability of damaged aircraft.

V.B. Recommendations

This paper contains the development and evaluation of three Adaptive IBS control laws for a high-performance
aircraft (F-16) with a large flight envelope. Because we have seen that these adaptive control laws have great
potential, the research described in this paper can be extended into various directions. In the following,
considerations are discussed that require further attention.
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• Structural failure models are not available for the F-16 model that is used in this research. There-
fore simulation scenarios of the F-16 model are limited to actuator hard-overs or lock-ups, center of
gravity shift and uncertainties in the aerodynamic coefficients. However, it would be interesting to
see how the developed Adaptive IBS control laws perform in more complex and asymmetric structural
failure scenarios. Furthermore, the F-16 model may be extended with Failure Detection, Isolation and
Estimation for health monitoring to simplify the task of on-line model identification.

• No formal proof for the Least-Squares Adaptive Incremental Backstepping (LSAIBS) controller is
included in this paper that guarantees closed-loop stability in case of uncertainties, this is likely to
impede certification of this control strategy. If the real-time identification routine is not able to provide
accurate estimates of the control derivatives, then the possibility exists that this control approach
leads to an unsatisfactory result. Therefore, robust BS could be considered for application in this
context.51–53 Another option is to include nonlinear damping terms in the control law to robustify the
design against parameter estimation errors.49

• Because the goal of this paper was to evaluate three approaches to Adaptive IBS control, handling
characteristics of the closed-loop system have not been considered. Nonetheless, it would be interesting
to evaluate the designed Adaptive IBS control laws by performing pilot-in-the-loop simulations to assess
the handling qualities of damaged aircraft.

• In the simulations in this paper the sign of the parameter estimate did not change, therefore there
was no need to implement parameter projection operators to prevent singularities of the incremental
control law in the domain of operation. Furthermore, because the simulation only ran for 100 seconds
and there were no long periods in which the system was working in the steady state, there was no need
to take measures to avoid estimator saturation or covariance windup of the LS estimator. It would be
interesting to incorporate parameter project operators and time-varying forgetting factors to allow for
an evaluation of the controllers in a larger domain of operation.

• The control objective of this paper was to make the airplane robustly seek references in roll rate and
angle of attack at a constant airspeed while minimizing sideslip. Because the body orientation of the
F-16 model is not controlled, the total velocity VT does not accurately follow the reference value due to
physical constraints. To keep the F-16 model within the speed range for which the aerodynamic data
is valid, the freedom to select the α-reference signal was rather limited. More variety in the reference
signals can be introduced for testing the parameter estimators when an outer loop is added to control
the flight path angle of the F-16 model.

• As we have seen in the derivations in this paper, the incremental control law is robust to uncertainties
in the system dynamics when the sampling rate is sufficiently high. Furthermore, the IBS control law
appears to be robust to some degree to uncertainties in the control efficiency matrix. It would be
interesting to see the influence of the sampling rate on the closed-loop performance and robustness
properties of the incremental controller; preferably with a supporting theoretical analysis to obtain an
expression between the sampling rate and the accompanying level of robustness.

• In this paper four control variables have been selected: the engine trust force, elevator, aileron and
rudder. The number of control variables is equal to the amount of states appearing in the control
objective. However, if we have complete failure of an actuator, then the BS and IBS control laws
are no longer well-defined. In this case a control allocation module is required to distribute the
required moments and forces over the available control effectors in some “optimal” way. Adaptive IBS
augmented with control allocation algorithms to cope with complete actuator failures would make an
interesting research topic.

• Very few actual flight tests have been performed with incremental control laws.59,65 The limited flight
results with Unmanned Aerial Vehicles (UAVs) have shown that this incremental control approach is
very sensitive to small time delays, which may lead to oscillations on the control surfaces. Therefore ad-
ditional off-line research should be performed on phase differences between the measured and estimated
signals before adaptive incremental control laws can be tested on actual flight tests. Next, incremental
control laws rely on more measurements compared to conventional controllers, therefore additional
research on sensor redundancy and failure detection methods now becomes even more important.
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Appendices

Appendix A. Aerodynamic Coefficients F-16 Model

In this appendix the total coefficient equations are listed that are used to sum the various aerodynamic
contributions to a given force or moment coefficient of the F-16 model.30,31

A.1 Force coefficients

X-axis force coefficient:

CX,T = f(α, δe) (95)

= CX(α, δe) +
qc̄

2VT
CXq (α)

Y-axis force coefficient:

CY,T = f(α, β) + gδa + hδr (96)

= −0.02β + 0.021δa + 0.086δr +
rb

2VT
δCYr (α) +

pb

2VT
CYp(α)

Z-axis force coefficient:

CZ,T = f(α) + g(α, β)δe (97)

= δCZδe (α, β)

(
δe
25

)
+

qc̄

2VT
CZq (α)

A.2 Moment coefficients

Rolling-moment coefficient:

CL,T = f(α, β) + g(α, β)δa + h(α, β)δr (98)

= CL(α, β) + δCLδa (α, β)

(
δa

21.5

)
+ δCLδr (α, β)

(
δr
30

)
+

rb

2VT
CLr (α) +

pb

2VT
CLp(α)

Pitching-moment coefficient:

CM,T = f(α, β, δe) (99)

= CM (α, δe) + CZ,T [xcgr − xcg] +
qc̄

2VT
CMq

(α)

Yawing-moment coefficient:

CN,T = f(α, β) + g(α, β)δa + h(α, β)δr (100)

= CN (α, β)− CYT
[
xcgr − xcg

] c̄
b

+ δCNδa (α, β)

(
δa

21.5

)
+ δCNδr (α, β)

(
δr
30

)

+
rb

2VT
CNr (α) +

pb

2VT
CNp(α)
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Appendix B. Approximation of Non-Affine Force and Moment Coefficient

In the figures below the non-affine force coefficient CX and moment coefficient CM , together with their
polynomial approximation and model error, are displayed. These polynomial approximations are used to
allow the Backstepping procedure to be applied to the F-16 model.
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Appendix C. Estimation of Angular Accelerations

As can be seen from Eq. (51), the incremental control law requires the angular accelerations. Sensors to
measure these accelerations exist, however, they are not common. Therefore noisy angular rate measurements
are used to estimate the angular accelerations. The following three approaches have earlier been used to
estimate the angular accelerations within the incremental control framework:26,66,67

• Numerical differentiation

Two-point backward-difference:68

ω̇t =
1

dt
[ωt − ωt−dt] +

dt

2
ω

(2)
t (ξ) , (101)

for some ξ between t and t − dt, where dt is the sampling time, ω is a vector containing the angular
rate measurements [pm qm rm]

T
and where ω(2) is the second time derivative of ω.

Five-point backward-difference:68

ω̇t = − 1

12dt
[−25ωt + 48ωt−dt − 36ωt−2dt + 16ωt−3dt − 3ωt−4dt]−

dt4

5
ω

(5)
t (ξ) , (102)

for some ξ between t and t − 4dt. Note that the last term of Eqs. (101) and (102) are the truncation
errors. The disadvantage of numerically differentiating a noisy signal is that the noise is amplified.
Moreover, when the sampling frequency is increased, the noise will be amplified even more. Neverthe-
less, this approach has been successfully taken in the literature to provide the angular accelerations for
an incremental control law.26

• Filtering

Second-order washout filter (Figure 14):69

H(s)washout =
sΩdel(s)

Ω(s)
=

sω2
n

s2 + 2ωns+ ω2
n

, (103)

where ωn is the bandwidth of the filter and where Ω(s) and Ωdel(s) are respectively the Laplace
transform of ω and ωdel, where ωdel is the delayed ω signal. This washout filter eliminates the need
for numerical differentiation. The second-order washout filter provides a filtered angular acceleration
at the price of a time delay. The order of the washout filter can be increased to further suppress noise,
however, this will increase the time delay between the output and input signal.

• Sliding mode differentiator

5th-order sliding mode differentiator:70

ż0 = v0, v0 = −12L|z0 − ω(t)|5/6 sgn(z0 − ω(t)) + z1 (104a)

ż1 = v1, v1 = −8L|z1 − v0|4/5 sgn(z1 − v0) + z2 (104b)

ż2 = v2, v2 = −5L|z2 − v1|3/4 sgn(z2 − v1) + z3 (104c)

ż3 = v3, v3 = −3L|z3 − v2|2/3 sgn(z3 − v2) + z4 (104d)

ż4 = v4, v4 = −1.5L|z4 − v3|1/2 sgn(z4 − v3) + z5 (104e)

ż5 = −1.1L sgn(z5 − v4) , (104f)

in which z1 is the estimated derivative and L is a tuning parameter. Increasing the value of L results
in faster convergence but higher sensitivity to input noise. This approach has been successfully taken
in the literature to provide the angular accelerations for an incremental control law.66,67
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Figure 14. Second-order washout filter that generates a filtered angular acceleration at the price of a time delay.

In order to test these three approaches, a simulation has been run with conventional BS control law
Eq. (32) in which the estimated and true angular accelerations are compared, see Figure 15. The RMSD of
the angular acceleration estimation has been defined as follows:

RMSD =

3∑

j=1

√√√√ 1

n

n∑

i=1

(
ẋ2,j [i]− ẋ2,jest [i]

)2
, (105)

where n is the number of samples and ẋ2est is the estimate of the true angular acceleration ẋ2. The
RMSD values have been averaged over five simulation runs for each combination of estimation algorithm
and tuning parameter. The results of the simulations for two sampling rates fs and two different noise
standard deviations σ can be found in Table 9.

From these results can be concluded that for three out of four combinations of fs and σ the sliding
mode differentiator with L = 5 gives the most accurate estimation of the angular acceleration in terms of
the RMSD. Note that the 5-point numerical differentiation scheme performs worse compared to the 2-point
numerical scheme. The reason for this is that the error term of the 5-point method contains the term ω(5),
which is much larger compared to ω(2) of the 2-point scheme because taking derivatives enhances noise.
Furthermore, note that the optimal bandwidth ωn of the washout filter decreases when the noise standard
deviation increases. This is explained as follows: when the noise power increases, the frequency reduces
where the signal-to-noise ratio [dB] equals zero. Therefore, to effectively attenuate the noise for larger σ,
the bandwidth ωn of the washout filter should be reduced, which results in a larger effective time delay.
Incremental control is known to be sensitive to these time delays,8,39,71 and therefore compensation of this
time delay (loop synchronization) might be required to achieve satisfactory closed-loop performance.16,59 At
last, note that all estimated angular accelerations lag behind the real angular accelerations, including the
ones obtained by numerical differentiation. This is because the inertial sensor dynamics introduce a small
effective time delay on the measured rates, see Eq. (8).

Because a small RMSD value for the angular acceleration estimator does not guarantee satisfactory
tracking performance of the IBS controller; the algorithms of this section have been evaluated in closed-loop
simulations in Section IV.B.
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ṙ
(d
eg

/
s2
)

time (s)

Sliding mode differentiation

 

 

True
L = 1
L = 5
L = 10

Figure 15. Estimation of the yaw acceleration by using a noisy rate measurement rm for fs = 100 Hz and σr = 0.01 deg/s.
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Table 9. Root-mean-square deviations of the estimated angular acceleration.

Numerical Washout filter Sliding mode

2-point 5-point ωn = 50 ωn = 100 ωn = 200 L = 1 L = 5 L = 10

fs = 100 Hz, σp,q,r = 0.01 deg/s 0.11 0.30 0.16 0.12 0.11 0.35 0.09 0.20

fs = 500 Hz, σp,q,r = 0.01 deg/s 0.38 1.46 0.16 0.11 0.10 0.34 0.08 0.08

fs = 100 Hz, σp,q,r = 0.1 deg/s 0.74 2.90 0.18 0.21 0.55 0.35 0.22 0.61

fs = 500 Hz, σp,q,r = 0.1 deg/s 3.70 14.58 0.16 0.16 0.29 0.35 0.15 0.26

Appendix D. Immersion & Invariance Update Laws

D.1 Function approximator (2)

The regressor ϕ2,2 and the β2,2-function are given by

ϕT2,2 = c7q̄Sb∆δe

[
1 α δe

]
(106)

β2,2 = Γ2,2ϕ2,2x2,2 . (107)

Following from Eq. (74), the update law becomes

ξ̇2,2 = −Γ2,2ϕ2,2

[
f2 +ϕT2,2(ξ2,2 + β2,2)

]
− Γ2,2c7Sbx2,2




q̄∆δ̇e + ˙̄q∆δe

q̄∆δeα̇+ q̄∆δ̇eα+ ˙̄q∆δeα

q̄∆δeδ̇e + q̄∆δ̇eδe + ˙̄q∆δeδe


 . (108)

The estimate of the control efficiency CMδe
is now given by

ĈMδe
= P

{[
1 α δe

] (
ξ2,2 + Γ2,2ϕ2,2x2,2

)}
, (109)

where P represents the parameter projection operator to prevent singularities of IBS control law Eq. (51).
The dynamics of the estimation error σ2,2 now become

σ̇2,2 = −Γ2,2ϕ2,2ϕ
T
2,2σ2,2 . (110)

D.2 Function approximator (3)

The regressor ϕ2,3 and the β2,3-function are now given by

ϕT2,3 = c7q̄Sb∆δe

[
1 α δe α2 αδe δ2

e

]
(111)

β2,3 = Γ2,3ϕ2,3x2,2 . (112)

Following from Eq. (74), the update law becomes

ξ̇2,3 = −Γ2,3ϕ2,3

[
f2 +ϕT2,3(ξ2,3 + β2,3)

]
− Γ2,3c7Sbx2,2




q̄∆δ̇e + ˙̄q∆δe

q̄∆δeα̇+ q̄∆δ̇eα+ ˙̄q∆δeα

q̄∆δeδ̇e + q̄∆δ̇eδe + ˙̄q∆δeδe

2q̄∆δeαα̇+ q̄∆δ̇eα
2 + ˙̄q∆δeα

2

q̄∆δeαδ̇e + q̄∆δeα̇δe + q̄∆δ̇eαδe + ˙̄q∆δeαδe

2q̄∆δeδeδ̇e + q̄∆δ̇eδ
2
e + ˙̄q∆δeδ

2
e




.

(113)
The estimate of the control efficiency CMδe

is now given by

ĈMδe
= P

{[
1 α δe α2 αδe δ2

e

] (
ξ2,3 + Γ2,3ϕ2,3x2,2

)}
, (114)

where P represents the parameter projection operator to prevent singularities of IBS control law Eq. (51).
The dynamics of the estimation error σ2,3 now become

σ̇2,3 = −Γ2,3ϕ2,3ϕ
T
2,3σ2,3 . (115)
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Appendix E. Additional simulation results
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Figure 16. The performance of the Tuning Function estimator with constant function approximator (61a) for different
values of the adaptation gain Γ in the presence of uncertainties in the pitching moment coefficient CMδe

(α, δe).
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Figure 17. The performance of the Least-Squares Adaptive Incremental Backstepping controller with constant function
approximator (61a) for P0 = 0.1 and different values of the forgetting factor λ in the presence of uncertainties in the
pitching moment coefficient CMδe

(α, δe).
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Figure 18. The performance of the Immersion & Invariance Adaptive Incremental Backstepping controller for three dif-
ferent Function Approximators (FAs) (see Eq. (61)) in the presence of uncertainties in the pitching moment CMδe
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Appendix A

Research Context

This appendix contains a summary of the literature survey on Fault Tolerant Flight Control
(FTFC). This fault tolerant approach to flight control is of paramount importance for safety-
critical systems such as (unmanned) aircraft to enhance the survivability during an incident.
First, the different classifications of FTFC and previous achievements are discussed in Ap-
pendix A-1. One of the subcategories of FTFC is Adaptive Control, which has the inherent
ability to adapt to changes in the system parameters. This promising control strategy is
discussed in more detail in Appendix A-2. These Adaptive Control schemes generally contain
nonlinear flight control laws, that do not suffer from the drawbacks of gain-scheduled linear
controllers, see Appendix A-3.

A-1 Fault Tolerant Flight Control

There are different approaches to FTFC, a simplified classification of these can be found in
Figure A-1. A complete overview of FTFC including a detailed description of each method
can be found in (Lombaerts, 2010). Generally speaking, FTFC systems can be classified into
Passive Fault Tolerant Flight Control (PFTFC) and Active Fault Tolerant Flight Control
(AFTFC). These two approaches are elaborated in respectively Appendices A-1-1 and A-1-
2. Active Fault Tolerant Flight Control is a flexible control strategy with more potential
compared to Passive Fault Tolerant Flight Control, and is further subdivided into on-line
redesign and projection-based methods, see Appendix A-1-3.

A-1-1 Passive Fault Tolerant Flight Control

The controllers of PFTFC systems are fixed and are only robust inside a predefined uncer-
tainty region around the nominal model. Passive Fault Tolerant Flight Control is therefore
robust to presumed faults, but is generally not able to stabilize the aircraft during unantic-
ipated failures. Another disadvantage of these schemes is that large stability radii lead to
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Figure A-1: The location of Adaptive Control within Fault Tolerant Flight Control. A complete
classification of Fault Tolerant Flight Control can be found in (Lombaerts, 2010).

unnecessary conservativeness of the controller (Lombaerts, 2010; van Oort, 2011). However,
PFTFC systems are generally less complex than AFTFC systems, because PFTFC does not
require a reconfigurable controller and a Fault Detection and Isolation (FDI) module that
provides on-line fault information.

In for example (Reiner, Balas, & Garrard, 1996), PFTFC has been applied by using a Non-
linear Dynamic Inversion (NDI)-based control law that has been augmented with a linear
µ-controller. The resulting controller enhances the robustness to parameter variations and
requires no gain scheduling with flight condition. This design technique appears to provide
excellent performance, is robust to parametric uncertainties and results in a low-order linear
controller. However, this design only guarantees stability of parametric uncertainties up to
20%. Therefore, it is not guaranteed that this design can anticipate for modeling errors or
larger parametric uncertainties.

A-1-2 Active Fault Tolerant Flight Control

A flexible control strategy with more potential compared to PFTFC is AFTFC, which is
also known as reconfigurable flight control. These active schemes are able to cope with
unanticipated failures, without resulting in unnecessary conservativeness of the controller.
This property is achieved by an FDI that provides on-line fault information to reconfigure
the controller. Although this control strategy does not lead to unnecessary conservativeness,
often degraded performance with respect to the nominal model has to be accepted during
failures due to a downsized safe flight envelope (van Oort, 2011). As mentioned in (Jacklin,
2008), when AFTFC systems are able to make rapid and automatic adjustments to stabilize
the aircraft during failures, they also have the ability to make a healthy aircraft unflyable in
case of a malfunction of the flight control computer. Therefore, AFTFC needs to be proven
to be highly safe and reliable before such systems can be possibly certified. Note that even
AFTFC systems require some form of robustness, because generally the on-line estimated
aircraft model is only an approximation of the real aircraft dynamics.
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The components of an AFTFC system can be seen in Figure A-2. Flight Envelope Protection
(FEP) is used to determine the safe flight envelope of the (damaged) aircraft in an on-line
fashion. In (van Oort, 2011) the following definition for the safe flight envelope is given:

Safe Flight Envelope: the part of the state space for which safe operation of the
aircraft and safety of its cargo can be guaranteed and externally posed constraints
will not be violated.

Figure A-2: The components of an Active Fault Tolerant Flight Control system.

Knowledge of the safe flight envelope during flight is essential in order to prevent Loss Of
Control In-flight (LOC-I). The FEP modifies the reference signals provided by the (auto)pilot
to make them consistent with the predicted safe flight envelope. More information on FEP can
be found in (van Oort, 2011; Holzapfel & Theil, 2011; Lombaerts, Schuet, Wheeler, Acosta,
& Kaneshige, 2013; Schuet, Lombaerts, Acosta, Wheeler, & Kaneshige, 2014).

The goal of Control Allocation (CA) is to determine the commanded actuator positions based
on the output of the controller, i.e. the commanded forces and moments. Because generally
the amount of actuators (flight control surfaces and engines) is larger than the six degrees of
freedom of a rigid aircraft, a solution or approximation have to be found to an underdetermined
system subject to constraints. These constraints arise from the actuator dynamics; which
are subject to bandwidth, rate and magnitude limits. The CA module has to account for
actuator failures in real-time based on on-line fault information provided by the FDI. The FDI
provides estimates of the control efficiencies, which are used by the CA module to transform
the commanded forces and moments into control deflections of the (remaining) actuators.
Control Allocation can be implemented without actually modifying the controller itself, and is
therefore a convenient method to implement in current systems. Control Allocation techniques
are generally based on linear or quadratic programming, see (Enns, 1998; Lombaerts, 2010).

The remaining components of an AFTFC system are a reconfigurable controller and the FDI.
A reconfigurable controller consists of a control law and parameters that can be updated. The
well-known gain scheduling control technique uses look-up tables and interpolation functions
to update the controller gains. When Adaptive Control is used, a compensation mechanism
is used to provide gains that guarantee desired closed-loop properties. The FDI module
is the heart of AFTFC systems, and provides on-line fault information to the FEP, CA
and reconfigurable controller based on the input and output measurements of the controlled
system. The interaction between the AFTFC components can be seen in Figure A-3. The
focus of this thesis lies on the reconfigurable controller and the FDI.
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Figure A-3: A general structure of Active Fault Tolerant Flight Control.

A-1-3 On-line Redesign vs Projection-Based methods

Active Fault Tolerant Flight Control systems can be subdivided into on-line redesign and
projection-based methods (Figure A-4). The difference between these methods is the way
in which the post-fault controller is formed. For projection-based control a set of off-line
controllers is designed (Figure A-4a). One of these controllers may be designed for a rudder
runaway failure, while another controller can cope with an engine separation. The fault must
be detected by an FDI to activate a reconfiguration mechanism that selects the controller
which can stabilize the damaged aircraft. Note that similar to PFTFC systems, projection-
based methods are generally not able to stabilize the aircraft during unanticipated failures.

A flexible control strategy with more potential compared to projection-based methods is on-
line redesign (Figure A-4b). These active schemes are, as opposed to project-based methods,
able to cope with unanticipated failures. This property is achieved by an FDI that provides
on-line fault information to update the parameters of the controller. The disadvantage of
such control schemes is that they are computationally expensive (Lombaerts, 2010).

In (Tang, 2014) a fault-tolerant Sensor-Based Backstepping (SBB) controller in combination
with a projection-based method is applied to a Boeing 747-100/200 aircraft. In case of a
rudder runaway failure, this projection method switches from a control law in which the
rudder is used, to a control law in which differential thrust is applied to improve the lateral
control. In this research the switch from one controller to another is performed manually,
however, this could be automatized by implementation of an FDI.
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Figure A-4: Two different implementations of Adaptive Control.
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A-2 Adaptive Control

Adaptive Control is a method of on-line redesign AFTFC. This control approach has a high
potential because it is able to compensate for inaccuracies in the nominal aircraft model.
Moreover, sudden changes in the dynamic behavior of the aircraft can be identified and
isolated to avoid LOC-I. A classification of Adaptive Control often found in literature is that
of Direct and Indirect Adaptive Control; these two approaches are elaborated in respectively
Appendices A-2-1 and A-2-2. Adaptive Control generally uses a model-based flight control
law, because this is a more transparent approach compared to model-free control laws. This
can be a major benefit for certification of these control laws. In order to apply model-based
flight control, an accurate aerodynamic model is required during flight. System identification
is the process of creating such a model based on the system’s input-output behavior, see
Appendix A-2-3.

A-2-1 Direct Adaptive Control

In Direct Adaptive Control (Figure A-5a), the control parameters θc are obtained on-line
without first identifying the model parameters θm (Duarte & Narendra, 1989). This direct
method is also known as Integrated or Implicit Adaptive Control (Lombaerts, 2010). The
control parameters are updated by use of update laws that are selected in order to obtain
favorable closed-loop properties. The proof of stability often depends on Lyapunov theory,
therefore these schemes are sometimes referred to as Lyapunov-based Adaptive Control. In
some applications the model parameters θm are approximated based on the estimated control
parameters θ̂c (Duarte & Narendra, 1989). These model parameter estimations θ̂m can then
be used in health monitoring algorithms to detect failures such as structural damage or control
surface runaway.

A well-known Integrated, Lyapunov-based Adaptive Control approach is Tuning Functions
Adaptive Backstepping (Farrell, Polycarpou, & Sharma, 2004; Choi & Bang, 2011; Farrell et
al., 2012). This technique has been widely applied to guarantee stability of nonlinear systems
with parametric uncertainties. The parameter estimates converge to the real parameters when
a “sufficiently rich” reference signal is injected.

A-2-2 Indirect Adaptive Control

In Indirect Adaptive Control (Figure A-5b), first the model parameters θm are estimated
on-line by using a separate module for model identification. In the next step, the control
parameters θc are estimated by using the provided model parameter estimates θ̂m. This
indirect method is also known as modular, explicit or estimated-based Adaptive Control
(Lombaerts, 2010). Indirect Adaptive Control schemes are based on the certainty equivalence
principle (Krstić, Kanellakopoulos, & Kokotović, 1995; van Oort, 2011). This means that
the controller is designed by assuming perfect knowledge of the model. Next, the model
parameters are estimated by a separate module. The certainty equivalence controller is then
simply obtained by replacing the model parameters θm by their estimates θ̂m. The advantage
of estimation-based designs is that they are more broadly applicable and allow a great choice
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Figure A-5: Two different implementations of Adaptive Control.

of parameter update laws, such as gradient and least-squares algorithms. The disadvantage
of these schemes is that stability of the closed-loop system is difficult to prove (Krstić et al.,
1995).

In (Lombaerts, Smaili, et al., 2009; Lombaerts, Huisman, et al., 2009) an Indirect Adaptive
Control approach has been adopted for a piloted simulator evaluation of a new FTFC algo-
rithm. A nonlinear control law is developed that is a function of the model parameters θm.
An identification module based on state and parameter estimation is used to provide estimates
of these model parameters. It is assumed that the identifier is able to provide a sufficient
accurate aircraft model, to avoid instability of the closed-loop system. The proposed Indirect
Adaptive Control scheme has been shown to be successful in recovering damaged aircraft.

A-2-3 System Identification

Earlier in Appendix A-1 we subdivided FTFC systems into active and passive systems. An-
other classification often found in literature, independent of the active / passive categoriza-
tion, is that of (1) model-based and (2) model-free schemes. Examples of model-based FTFC
are Adaptive Backstepping (ABS) and Adaptive Nonlinear Dynamic Inversion (ANDI). A
commonly used model-free flight control scheme is (robust) Proportional-Integral-Derivative
(PID) control. Model-based schemes have advantages over model-free control with respect to
reconfigurable flight control and from the aspect of on-line flight envelope protection (Sun,
2014). Model-based flight control is generally a more transparent approach which can be a
major benefit for the certification of these advanced control laws.

In order to apply model-based flight control, an accurate aerodynamic model is required
during flight. System identification is the process of creating such a model based on the
system’s input-output behavior (Figure A-6). For AFTFC this identification must be carried
out in real-time in order to account for changes in the nominal aircraft model during flight
(e.g. structural damage).
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The most important steps of (on-line) aircraft system identification are:

• Model structure selection;

• State estimation;

• Parameter estimation.

These three phases are elaborated in the next sections.

system input u system to
be identified
& estimated

+

+system output y measured system output z

a priori knowledge

model selection,
state estimation &

parameter estimation

estimated system

system noise w measurement noise v

Figure A-6: General overview of the setup of system identification.

Model structure selection

The aircraft model describes the dynamic motion of the aircraft. Popular types of models are
state space models, differential equations and transfer functions (Lombaerts, 2010). These
models can be linear or nonlinear, time-invariant or time-varying, continuous or discrete and
deterministic or stochastic. The choice of model depends on for example the equipment
on board of the aircraft, the required accuracy and the choice whether or not to consider
Gaussian processes. Independent of the type of model, three different modeling approaches
can be distinguished (van Oort, 2011; de Visser, 2012):

White-box models are fully derived by first principles and assume underlying physics are
completely understood. All equations and parameters of these models can be determined
by theoretical modeling. An example of a white-box model are the rotational kinematic
equations, which are essentially a transformation between two reference frames. The
advantage of using white-box models is that they have a high prediction power and are
valid for the complete operating domain of the system.

Black-box models are solely based on input-output measurements of the real system. The
model structure as well as the parameters are determined from experimental modeling.
The advantage of black-box models is that no knowledge of the physical workings of
the system is required. However, the disadvantage of such models is that they are
only valid inside the domain of the given input data, because the prediction power is
generally difficult or impossible to verify. An example of black-box modeling are neural
networks, see for instance (Kim & Calise, 1997).
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Gray-box models combine the strengths of white and black-box models. These models
are based on the integration of physical principles that are known together with input-
output measurements. An example are the aerodynamic model equations, where we
assume a structure of the forces and moments based on a priori knowledge, and subse-
quently determine the aerodynamic coefficients by using collected measurement data.

An important criterion in model structure selection is the principle of Parsimony (also known
as Occam’s razor), which seeks for a trade-off between good data fitting and prediction capa-
bilities (Lombaerts, 2010).

Principle of parsimony: if there are two mathematical models to represent the
same system with equal accuracy, then the model with the fewest parameters is
preferable.

By applying this principle we try to avoid overfitting of the measurement data, which could
result in unnecessary complexity and poor prediction capabilities of the model.

One method for on-line aerodynamic model structure selection is called the Ordinary Poly-
nomial Basis Based (OPBB) identification method (van Oort, 2011; Sun, 2014). In this
technique a regressor is selected from a pre-determined regressor pool on basis of the output
fitting error. In (van Oort, 2011) the whole flight envelope is split into partitions with locally
valid models in order to reduce the computational load of the model structure selection. The
model structure is recursively and locally updated during flight to obtain an accurate fit with
the measurement data. Continuity in between the local models is achieved by using smooth
interpolation functions. In (de Visser, 2011) multivariate simplex spline functions are used as
model structure. These splines consist of a geometric component and a polynomial compo-
nent. Current research at the Delft University of Technology (DUT) is aimed at optimizing
the B-coefficients and vertex coordinates of these simplex splines.

State estimation

A realistic system, i.e. a system including system and sensor noise, can be represented by the
following equations (de Visser, 2011, 2012):

ẋ(t) = f(θ(t),x(t),u(t), t) +Gw(t) (A-1a)

z(t) = h(θ(t),x(t),u(t), t) + v(t) , (A-1b)

where x is the state vector, f is the system model, θ is the parameter vector, u is the control
input, G is the system noise input matrix, w is the system noise, z is the measured system
output, h is the observation model and v is the measurement noise. State estimation is the
technique in which we search for the best estimate of the states x while the parameters θ are
known. This is achieved by making use of the measured system inputs u and outputs z (see
Figure A-6).

State estimation is necessary because the system’s controller requires accurate knowledge of
the states for adequate tracking performance and to restrain the aircraft to its safe operat-
ing envelope. Sensors alone are not sufficient for this purpose, because these measurements
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contain biases and noise. Moreover, important aircraft states like the true geometric angle
of attack and angle of sideslip are not measurable directly (Mulder, Chu, Sridhar, Breeman,
& Laban, 1999). At last, by combining different sensors such as Global Positioning System
(GPS) and inertial sensors, more accurate estimates can be obtained.

If Eq. (A-1) is a linear system, a Kalman Filter (KF) can be used to estimate the states
based on past and present measurements of input u(t) and output z(t). By applying a
KF (see for instance (Kalman, 1960; de Visser, 2012)), a weighted least-squares estimate is
obtained by minimizing a quadratic cost function that penalizes the state prediction error
and the measurement prediction error. The selected weight depends on the uncertainty in
the measurements. The KF obtains an optimal estimate of the states when (1) the model
perfectly matches the system, (2) the noise is white and (3) the covariances are exactly known
(Kalman, 1960).

The Extended Kalman Filter (EKF) has been developed because the KF only applies to linear
systems, while most systems for aerospace applications turn out to be nonlinear. The EKF
is a non-optimal extension of the KF to nonlinear systems of the form Eq. (A-1). This filter
is a recursive estimator and linearizes the system at each time-step and subsequently applies
the regular KF to obtain the state estimates. The main disadvantage of the EKF is that the
linearization of the system at each time-step can introduce large errors, which generally leads
to sub-optional performance and sometimes even divergence (Wan & Van Der Merwe, 2000).

The approximation issues of the EKF are addressed in the Iterated Extended Kalman Filter
(IEKF) (see (Lombaerts, Huisman, et al., 2009; de Visser, 2011, 2012)) and the Unscented
Kalman Filter (UKF) (see (Wan & Van Der Merwe, 2000; Zhan & Wan, 2007)). The IEKF
uses iterations to compensate for the inaccuracies resulting from the linearization (de Visser,
2011). The UKF makes use of sample points (also known as sigma points) that are propagated
through the non-linear system to achieve a better level of accuracy compared to the EKF at a
comparable level of complexity (Wan & Van Der Merwe, 2000). Because the UKF avoids the
cumbersome evaluation of Jacobian and Hessian matrices, the algorithm is generally easier to
implement. Finally, in (Zhan & Wan, 2007) the Iterated Unscented Kalman Filter (IUKF) is
developed, which is based on the IEKF and UKF. The IUKF further improves the tracking
performance and robustness of the state estimator, while having a similar computational
complexity as that of the UKF and IEKF.

Parameter estimation

Parameter estimation is the technique in which we search for the best estimate of the param-
eters θ while the states x are known. This is achieved by making use of the measured system
inputs u and outputs z (see Figure A-6). Note that parameter estimation is the inverse
problem of state estimation. Estimation of parameters is necessary in order to derive accu-
rate mathematical models of aircraft, which are required for simulators, model-based flight
control systems and health monitoring algorithms. These parameter estimates are generally
obtained by synthesis of Computational Fluid Dynamics (CFD), wind tunnel measurements
and flight test data and result in a nominal aircraft model. For AFTFC systems fault-induced
changes in parameters should be detected and estimated in real-time in order to enhance the
survivability of damaged aircraft.
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A simple form of parameter estimation can be seen in Figure A-7, in which the slope and the
intercept of the straight line are the two parameters to be estimated based on measurements.
A standard approach to obtain this approximation is Least-Squares (LS), in which the best
fit is obtained by minimizing the sum of squared residuals, called the cost function. The LS
method is credited to Carl Friedrich Gauss, who already applied this method early in the
19th century to calculate the orbits of celestial bodies (Eason, 1976).
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Figure A-7: Simulated measurement data. A typical problem would be to estimate the slope
and the intercept of the straight line by minimizing some function of the error between model
and measurement data.

Least-Squares can be applied in an on-line fashion by using the efficient Recursive Least-
Squares (RLS) algorithm (see for instance (Li, 1999)). In (Lauzon & Bates, 1991; Lombaerts,
Smaili, et al., 2009; Lombaerts, Huisman, et al., 2009) RLS has been applied to estimate
time-varying parameters. In (Farrell et al., 2004; Choi & Bang, 2011; Farrell et al., 2012)
Tuning Functions (TFs) in combination with a Backstepping (BS) control law are used to
guarantee stability of a nonlinear system with parametric uncertainties. The parameter esti-
mates converge to the real parameters when a “sufficiently rich” reference signal is injected.
In (Astolfi & Ortega, 2003; Karagiannis & Astolfi, 2008b, 2008a, 2010; Sonneveldt, Oort,
Chu, & Mulder, 2010; Hu & Zhang, 2013) a parameter estimator based on Immersion and
Invariance (I&I) is used to guarantee global asymptotic stability of the closed-loop system
and parameter convergence for uncertain nonlinear systems.

Note that in order to obtain satisfactory closed-loop performance, i.e. for example a zero
steady-state error, it is not necessary that the parameters converge to their true values
(Narendra, 1994). However, if we make use of a CA module (see Appendix A-1-2), accu-
rate estimates of some of the parameters might be required.

Two important notions in parameter estimation are identifiability of the parameters and rich-
ness of the input. Model parameters are identifiable when they can be uniquely estimated
from a set of observations (Pronzato & Pázman, 2013). In general it is very difficult to
solve the problem of parameter identifiability of highly nonlinear systems (Serban & Free-
man, 2001). One approach based on computing algorithms is presented in (Floret-Pontet &
Lamnabhi-Lagarrigue, 2002). Identifiability of a parametric model not only depends on the
model structure, but also on the input signal. Richness of the input, also known as the re-
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quirement of Persistent Excitation (PE), basically means that the input signal must “contain
enough frequencies” for the parameter estimation error to converge to zero (Boyd & Sastry,
1986).

In (Chowdhary & Jategaonkar, 2010; Edwards, Lombaerts, & Smaili, 2010) a method is pre-
sented to simultaneously tackle the problem of state and parameter estimation by transform-
ing the parameter estimation problem into a state estimation problem. This is accomplished
by augmenting the state vector x with the unknown parameter vector θ. In (Chowdhary &
Jategaonkar, 2010) the EKF and UKF have been used for recursive parameter estimation.
It has been found that the UKF filter is the fastest in terms of convergence, but is also the
costliest in terms of computational power.

An alternative to the joint-method for state and parameter estimation is presented in (Laban,
1994; Mulder et al., 1999; Lombaerts, Smaili, et al., 2009; Lombaerts, Huisman, et al., 2009;
Sun, 2014). In these references the Two-Step Method (TSM), developed at the DUT, is
applied that separates the steps of state and parameter estimation. First, an IEKF is used to
estimate the states based upon redundant, contaminated information from all sensors. The
system model that is used within the IEKF is the well-known nonlinear aircraft kinematics
model. The output of the first step, the filtered and estimated aircraft states, provide the
input to the next step. In this second step a RLS is used to estimate the aerodynamic
model parameters. A trigger for re-identification is implemented that artificially increases the
covariance matrix when the current model is not reliable anymore. By resetting this covariance
matrix the parameter estimates are more influenced by new measurements, resulting in faster
adaptation. In (Lombaerts, Smaili, et al., 2009; Lombaerts, Huisman, et al., 2009) it is shown
that the TSM combined with a NDI controller is successful in recovering damaged aircraft.
Moreover, the TSM has proven to be implementable in real-time by using standard desktop
computers.

A-3 Nonlinear Flight Control

Traditionally, and even today, gain-scheduling of linear feedback controllers is applied to
achieve stabilization and satisfactory tracking performance of aircraft over a wide range of
flight conditions. Because the dynamic behavior of an aircraft changes throughout the flight
envelope, many different linear flight control laws must be designed. In flight envelope regions
with significant nonlinearities, or in case of failures (e.g. structural damage), gain-scheduling
is not able to provide good performance because it is based on linearized and nominal air-
craft models (Sonneveldt, 2010; Falkena, 2012). Next, it is difficult to guarantee satisfactory
stability and tracking performance over the complete flight envelope (Sonneveldt, 2010). At
last, gain-scheduling of linear controllers is an extensive task. The main reason why this
control strategy is still applied nowadays is because it is based on well-developed classical
linear control theory. Furthermore, certification authorities are used to dealing with them.
In (Jacklin, 2008) this certification gap in adaptive flight control software is discussed. Fur-
thermore, research efforts are considered that will likely be needed to make adaptive flight
control become certifiable.

The nonlinear control methods that are discussed in this section do not suffer from the
drawbacks of gain-scheduled linear controllers. The DUT has performed extensive research on
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these advanced control laws since the last decade. In this section the following two prominent
nonlinear control methods are discussed:

1. Nonlinear Dynamic Inversion;

2. Backstepping.

A-3-1 Nonlinear Dynamic Inversion

The concept of NDI is to cancel the nonlinear aircraft dynamics, resulting in a system that
behaves like a pure integrator that is easily controllable. One of the main advantages of NDI
is the absence of any need for gain scheduling over the flight envelope (Lombaerts, Smaili, et
al., 2009). Another advantage is a complete decoupling between the input-output relations.
Nonlinear Dynamic Inversion is a special form of feedback linearization suited for flight control
applications (Sonneveldt, 2010). This nonlinear control method has successfully been applied
during actual flight tests already in the late seventies (Meyer, Su, & Hunt, 1984; Kim &
Calise, 1997). Incorporation of pilot inputs into the design technique was accomplished in
(Wehrend, 1979).

Nonlinear Dynamic Inversion has been applied in two different ways by the DUT:

1. Conventional Nonlinear Dynamic Inversion;

2. Incremental Nonlinear Dynamic Inversion.

These two nonlinear flight control methods are discussed in the next two sections.

Conventional nonlinear dynamic inversion

To illustrate the basic concept behind NDI we consider the following Multiple-Input and
Multiple-Output (MIMO) system:

ẋ = f(x) +G(x)u (A-2a)

y = x , (A-2b)

where x ∈ R
n is the state vector, f is a known vector field on R

n, G ∈ R
n×m is a known

matrix whose columns are vector fields, u ∈ R
m is the control input vector and y ∈ R

n is the
system output vector. The control task is to make sure that the output y follows a predefined
reference output yref , whose first derivative is assumed to be known and bounded.

If the matrix G(x) is non-singular (i.e. invertible), all nonlinearities can be canceled by se-
lecting the following NDI control input:

u = G−1(x) [v − f(x)] , (A-3)

where v is the new input, also known as virtual control. Substituting control law (A-3) in
Eq. (A-2) yields

ẋ = ẏ = v . (A-4)
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As we can see, by canceling the nonlinear dynamics, the resulting system behaves like a pure
integrator. Now the vector to be controlled y can easily be stabilized or tracked by using, for
example, a proportional controller based on the tracking error e = yref − y. Selecting the
virtual control law as

v = ẏref +Ke , (A-5)

results in exponentially stable error dynamics

ė = −Ke , (A-6)

where K is a square matrix with positive diagonal entries. These control gains can be selected
in a way to obtain favorable closed-loop performance based on well-known classical linear
control theory.

From Figure A-8 can be seen that the entire control problem basically consists of two parts:
the inner linearization loop based on Eq. (A-3) and an outer control loop based on Eq. (A-5)
which is used to stabilize the pure integrator dynamics.

K
e

dynamic inversion
controller gain

yref

G
−1(x) [v − f(x)]

u

system dynamics

ẋ = f(x) +G(x)u x, ẋ,y

y = x

f(x)

++ +

ẏref

v

desired-dynamics dependent plant dependent

inner linearization loop

outer control loop

−
+ −

Figure A-8: Tracking of a Multiple-Input and Multiple-Output system with Nonlinear Dynamic
Inversion, based on (Acquatella et al., 2012).

Note that system (A-2) is affine in the control vector u, and therefore no nonlinear solvers are
required to obtain control input (A-3). In (Hovakimyan, Lavretsky, & Sasane, 2007) a method
is presented for dynamic inversion of nonaffine-in-control systems via Time-Scale Separation
(TSS).

When the first-order time derivative of the control variable vector y does not contain the
control input u, subsequent time derivatives of the control variable vector should be derived
until the control input appears. Then, similar to Eq. (A-3), we can cancel the nonlinearities
and define the virtual input to stabilize the resulting linear system. Examples of this approach
can be found in the literature (Looye, 2008; Sieberling, Chu, & Mulder, 2010).

In general, the number of physical control effectors on aircraft exceeds the number of variables
to be controlled. In this case G−1 may be interpreted as a pseudoinverse of matrix G. In
(Lombaerts, 2010) methods are described to handle the four cases that can be considered
for calculation of this inverse. These four cases are the over-determined solution, the exactly
determined solution, the under-determined solution and the singular matrix.
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In the derivation of control law (A-3), we have implicitly made the following two assumptions
(Acquatella et al., 2012):

1. The model of the system is accurately known;

2. There is complete and accurate knowledge of all system states.

If the first assumption is not satisfied, the (partially) unknown nonlinear dynamics cannot
be completely canceled, and therefore system identification or robust control will have to be
applied. If the sensors cannot provide accurate knowledge of all the states, nonlinear observers
or estimators have to be implemented.

In (Reiner et al., 1996) NDI has been augmented with a linear µ-controller that enhances ro-
bustness to parameter variations and requires no gain scheduling with flight condition. This
design technique appears to provide excellent performance, is robust to parametric uncertain-
ties and results in a low-order linear controller. However, this design only guarantees stability
of parametric uncertainties up to 20%. Therefore, it is not guaranteed that this design can
anticipate for modeling errors or larger parametric uncertainties.

An adaptive tracking control architecture is discussed in (Kim & Calise, 1997) that combines
NDI and Neural Networks (NNs). The NNs are used to represent the nonlinear inverse
transformation. These NNs are able to learn on-line and therefore can be used to compensate
for the nominal inversion error, which may arise from imperfect modeling or sudden changes
in aircraft dynamics. On basis of simulations for an F-18 aircraft model, it is concluded
that NDI augmented with on-line adaptive NNs shows outstanding potential for rapid and
accurate adaptation in case of sudden changes in aircraft configuration.

In (Lombaerts, Smaili, et al., 2009; Lombaerts, Huisman, et al., 2009) NDI control has been
augmented with an Aircraft State Estimator (ASE) and Aerodynamic Model Identification
(AMI). The resulting control method is referred to as ANDI. A dual NDI loop has been
implemented, consisting of an inner-loop body angular rate and an outer-loop sideslip angle
control loop. In this research the ASE and AMI are performed in real-time in two separate
steps. First, an IEKF is used that merges redundant and contaminated data resulting in
accurate knowledge of the system states. Next, the a priori aerodynamic model is updated
by means of an RLS operation that uses the accurate state information obtained from the
first step. Physical experiments of this control strategy on the SIMONA research simulator
of the DUT have shown that this approach greatly increases the ability to reconfigure aircraft
in presence of component as well as structural failures.

Incremental nonlinear dynamic inversion

In (Sieberling et al., 2010; Acquatella et al., 2012; Vlaar, 2014) Incremental Nonlinear Dy-
namic Inversion (INDI) has been applied in order to improve the robustness of the closed-loop
system with respect to conventional NDI-based control. This is achieved by reducing its de-
pendency on the exact knowledge of the plant dynamics. To illustrate the basic concept
behind INDI we again consider the following system:

ẋ = f(x) +G(x)u (A-2a revisited)

y = x , (A-2b revisited)
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where x ∈ R
n is the state vector, f is a smooth vector field on R

n, G ∈ R
n×m is a known

matrix whose columns are smooth vector fields, u ∈ R
m is the control input vector and y ∈ R

n

is the system output vector. It is assumed that the output y is the vector to be controlled.

Taking the first-order Taylor series expansion of Eq. (A-2a) around the current solution
[x0,u0] results in

ẋ ∼= f(x0) +G(x0)u0 +
∂

∂x

[

f(x) +G(x)u
]∣
∣
∣x=x0
u=u0

(x− x0) +
∂

∂u

[

G(x)u
]∣
∣
∣x=x0
u=u0

(u− u0) .

(A-8)

The linearization error is small when the sampling rate is sufficiently high. Eq. (A-8) can be
written as

ẋ ∼= ẋ0 +A0∆x+B0∆u , (A-9)

where

∆x = x− x0 , ∆u = u− u0 (A-10a)

A0 =
∂

∂x

[

f(x) +G(x)u
]∣
∣
∣x=x0
u=u0

(A-10b)

B0 =
∂

∂u

[

G(x)u
]∣
∣
∣x=x0
u=u0

= G(x0) . (A-10c)

The variables ∆x and ∆u are known as respectively the incremental state vector and the
incremental control input. Similar as for conventional NDI-based control we can now invert
the dynamics to obtain an expression for the incremental input:

∆u = B−1
0

[

v −
(
ẋ0 +A0∆x

)]

= G−1(x0)
[

v −
(
ẋ0 +A0∆x

)]

, (A-11)

where v is the new (virtual) input. Substituting the incremental control law (A-11) in Eq. (A-
9) results in

ẋ = ẏ ∼= v . (A-12)

As we can see, by canceling the dynamics, the resulting system behaves like a pure integrator
when the sampling rate is sufficiently high. Similar as for conventional NDI, the vector to be
controlled y can easily be stabilized or tracked by using, for example, a proportional controller
based on the tracking error. Note that if B0 is a non-square matrix or a square matrix without
full rank, some form of control allocation would be required, see for instance (Enns, 1998;
Lombaerts, 2010).

The control law (A-11) results in increments of control commands; these changes must be
added to the current input to obtain the full input signal. If we assume a sufficiently time-scale
separated system, that is the increment in state ∆x is much smaller than the increment in
both state derivative ∆ẋ and input ∆u, we can neglect the former (Falkena, 2012; Sieberling
et al., 2010; Acquatella et al., 2012; Simpĺıcio, Pavel, Kampen, & Chu, 2013). This is allowed
for many aerospace applications because the deflections of the control surfaces directly effect
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the angular accelerations, while the angular rates only change by integrating these angular
accelerations. Hence Eqs. (A-9) and (A-11) can be further simplified as respectively

ẋ ∼= ẋ0 +B0∆u (A-13)

∆u = G−1(x0) [v − ẋ0] . (A-14)

By comparing respectively the conventional NDI-based and INDI control laws for a time-scale
separated system of the form (A-2):

u = G−1(x) [v − f(x)] (A-3 revisited)

u = u0 +G−1(x0) [v − ẋ0] , (A-14 revisited)

we can see that the incremental controller does not rely on exact knowledge of the system
dynamics f(x), but instead on the current control input u0 and state derivative ẋ0. Therefore,
by implementing INDI instead of conventional-NDI, the system robustness against model
mismatch and model uncertainties is largely increased. However, because INDI relies on
more measurements (or estimates) compared to conventional-NDI, sensor redundancy and
failure detection methods now become even more important.

In (Vlaar, 2014) an INDI rate controller has been implemented and tested during actual flights
on an electrically powered fixed wing aircraft. In this research the angular accelerations and
current actuator positions are both estimated, because the Unmanned Aerial Vehicle (UAV)
was not equipped with sensors to measure these directly. The angular accelerations were
obtained by a technique which differentiates the measured angular rates. The current actuator
positions were estimated on basis of an actuator model. These flight tests have proven that
INDI using estimated signals is feasible and leads to good tracking performance.

The disadvantage of NDI or INDI in combination with a separate identifier for system identi-
fication is that the certainty equivalence property does not hold for nonlinear systems (Krstić
et al., 1995; Sonneveldt, 2010; van Oort et al., 2007). Therefore, the closed-loop system might
become unstable when the parameter estimates do not exactly equal the real parameters. One
way to achieve strong parametric robustness properties is to apply robust control, as has been
done in for example (Reiner et al., 1996). However, robust control tends to yield rather con-
servative control laws, resulting in poor closed-loop performance (Sonneveldt, 2010; van Oort,
Chu, & Mulder, 2006). Another disadvantage of NDI and INDI is the lack of any inherent
stability characteristics in the controller’s design procedure, which is likely to cause problems
during the certification process of the controller (Ali, 2013). Therefore a better way to deal
with large model uncertainties is to integrate the controller and identifier design, which is
possible by using ABS (van Oort et al., 2007; Sonneveldt, 2010; Choi & Bang, 2011).

A-3-2 Backstepping

Backstepping is a recursive, Lyapunov-based, nonlinear design method. The concept of BS is
to design a controller in a recursive way by considering some of the state variables as “virtual
controls” and designing intermediate control laws for these, starting at the scalar equation
which is separated by the largest number of integrations from the control input (Sonneveldt,
2010). Backstepping is a design method that is, in contrary to NDI, based on Lyapunov

P. van Gils Adaptive Incremental Backstepping Flight Control



A-3 Nonlinear Flight Control 63

stability theory. This can be a major benefit for certification of BS control laws, because the
goals of global asymptotic stabilization and tracking can be guaranteed. Another advantage
of BS is that it is applicable to a broad class of systems. At last, BS is flexible in the choice
of control law and can avoid wasteful cancellations as opposed to NDI (Sonneveldt, 2010).

Backstepping has been applied in the beginning of the 1990s as a recursive design for sys-
tems with nonlinearities not constrained by linear bounds. Not much later, adaptive and
robust BS has been applied to achieve global stabilization in the presence of unknown pa-
rameters (Kokotović & Arcak, 2001). The BS design method is discussed in detail in the
literature (Khalil & Grizzle, 2002; Sonneveldt, 2010; Ali, 2013). To illustrate the basic con-
cept behind BS we consider the following pure feedback (lower triangular) system:

ẋ1 = f1(x1) + g1(x1)x2 (A-15a)

ẋ2 = f2(x1, x2) + g2(x1, x2)u (A-15b)

y = x1 , (A-15c)

where xi ∈ R for i = 1, 2 are the state variables, fi and gi for i = 1, 2 are known functions,
u ∈ R is the physical control input and gi 6= 0 for i = 1, 2. It is assumed that the first-order
derivatives of f1 and g1 are continuous, that is f1 and g1 ∈ C1. The control task is to make
sure that the output y follows a predefined reference output yr, whose first and second-order
time derivative are assumed to be known and bounded.

We start the BS procedure by defining the tracking errors as

z1 = x1 − yr (A-16a)

z2 = x2 − α1 , (A-16b)

where x2 will be considered as virtual control and α1 is the stabilizing control law yet to be
defined. We start by considering the first subsystem (A-15a), which is the equation separated
by the largest number of integrations from the control input u. This subsystem can now be
rewritten in terms of the error states:

ż1 = f1 + g1 (z2 + α1)− ẏr . (A-17)

To stabilize this nonlinear system, a Control Lyapunov Function (CLF) V is selected and
the time derivative of this CLF will be rendered negative definite by proper selection of the
stabilizing control law α1 and real physical input u in a later stage. The first CLF is selected
as

V1(z1) =
1

2
z21 . (A-18)

Taking the time derivative of this CLF along the trajectories of Eq. (A-17) results in

V̇1 = z1 [f1 + g1 (z2 + α1)− ẏr] . (A-19)

An obvious choice for a stabilizing control law α1 is

α1 = g−1
1 (−c1z1 − f1 + ẏr) , (A-20)
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which results in the following expression for V̇1:

V̇1 = −c1z
2
1 + g1z1z2 . (A-21)

Note that V̇1 is currently not a negative definite function, due to presence of the cross
term g1z1z2. This term will be removed in the next design step.

Now we consider the dynamics of the second tracking error:

ż2 = f2 + g2u− α̇1 . (A-22)

Augmenting the earlier CLF to penalize the second error state as well results in

V2(z1, z2) =
1

2
z21 +

1

2
z22 . (A-23)

Taking the time derivative along the solutions of Eqs. (A-17) and (A-22) yields

V̇2 = −c1z
2
1 + g1z1z2 + z2 [f2 + g2u− α̇1] . (A-24)

By selecting the following physical control law:

u = g−1
2 [−c2z2 − f2 + α̇1 − z1g1] , (A-25)

we yield the CLF negative definite

V̇2 = −c1z
2
1 − c2z

2
2 . (A-26)

According to the theorem of LaSalle-Yoshizawa (see e.g. Theorem B.9 in (Sonneveldt, 2010))
the equilibrium z = 0 is globally uniformly asymptotically stable when c1 > 0 and c2 > 0,
implying that the reference output state yr is successfully tracked by y, that is:

lim
t→∞

[yr − y] = 0 . (A-27)

Note that the time derivative of α1(x1, yr, ẏr) which appears in the control law (A-25) can be
computed analytically from Eq. (A-20):

α̇1 =
∂α1

∂x1
ẋ1 +

∂α1

∂yr
ẏr +

∂α1

∂ẏr
ÿr

=
∂α1

∂x1
[f1(x1) + g1(x1)x2] +

∂α1

∂yr
ẏr +

∂α1

∂ẏr
ÿr . (A-28)

Calculating the time derivatives of the stabilizing functions can be complicated and tedious
in applications where the number of states is large. In (Farrell, Polycarpou, Sharma, & Dong,
2009) Command-Filtered BS is presented, which obviates the need for analytic computation of
stabilizing function derivatives. Other advantages of this approach are the elimination of the
Backstepping’s restriction to nonlinear systems of a lower triangular form and to improve the
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performance of parameter update laws, by implementing constraints on the (virtual) controls
(Farrell et al., 2009; Sonneveldt, 2010).

In (van Oort et al., 2007) the BS procedure has been augmented with an identification module
based on RLS. The resulting control approach has been applied to control a nonlinear missile
model. The combination of the BS controller and the identification module results in ABS
that guarantees global boundedness of the tracking errors despite parametric uncertainties.
The RLS implementation consists of a forgetting factor, thereby speeding up the identification
process by exponential data weighing. A change detection algorithm is implemented to reset
the covariance matrix in order to rapidly respond to sudden changes in the system’s behavior.
The resulting controller shows excellent tracking performance before and after a sudden failure
in the system dynamics. Furthermore, the estimated parameters converge to their true values
after a certain time of maneuvering.

Backstepping has been augmented with command filters and Lyapunov-based on-line param-
eter update laws in (Sonneveldt et al., 2007; Choi & Bang, 2011). The command filters are
used for constraint handling and to obviate the need for analytic computation of the virtual
control derivatives. In this first reference nonlinear Adaptive Control method has been ap-
plied to an F-16 aircraft model. Neural Networks are used inside the parameter update laws
to approximate the uncertain aerodynamic forces and moments. Computer simulations have
indicated that good tracking performance can be obtained even when large sudden actuator
or symmetric structural failures occur. It was found that the main drawback of the implemen-
tation with Lyapunov-based on-line parameter update laws is that the experimental tuning
of the update gains is a tedious task.

In (Choi & Bang, 2011) a similar control strategy without NNs has been implemented for a
quadrotor UAV. In this reference the controller is tuned by subsequently tuning the control law
gains, the command filter parameters and finally the update law gains. Computer simulations
have shown that the estimated parameters converge to values close to the true parameters.
However, the main purpose of the estimates is to enhance controller performance, and not
necessarily good parameter estimates. Computer simulations demonstrate that this control
approach results in good tracking performance even under physically constrained inputs and
uncertainties.

In (Sonneveldt, 2010) an Inverse Optimal ABS control approach is developed. This control
strategy is optimal with respect to some meaningful cost function in order to simplify the
tuning of the ABS controller. The resulting controller possesses certain robustness properties,
but the numerical sensitivity makes this approach less suitable than the other ABS controllers
for complex flight control design problems (Sonneveldt, 2010). Moreover, the complexity of
this approach does not simplify the tuning of the controller and update laws.

Backstepping has been augmented with a parameter estimator based on I&I in (Hu & Zhang,
2013; Ali et al., 2014). In both references use is made of a command filter for constraint
handling and to obviate the need for analytic computation of the virtual control derivatives.
In the first reference this nonlinear adaptive control method has been applied to a Vertical
Take-Off and Landing (VTOL) vehicle. The designed I&I adaptive law guarantees that the
mass’ estimation error is a monotonically non-increasing function. Simulations have been run
to illustrate the effectiveness of the BS controller with the I&I estimator.
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In (Ali et al., 2014) the robustness properties of different BS flight controllers applied to an
F-16 model are evaluated. An Incremental Backstepping (IBS) controller is derived that uses
angular acceleration measurements and current actuator states to reduce the dependency on
the on-board aircraft model. However, this controller still depends on a small portion of the
aircraft model. An IBS augmented with an I&I estimator is shown to further improve the
tracking performance in presence of parametric uncertainties related to the control effective-
ness. However, the development of such an I&I identifier is rather complex. Moreover, the
improvements in robustness appear to be marginal. According to (Ali, 2013; Ali et al., 2014)
it is likely that better performance can be obtained when a more detailed regressor model is
used as a function approximator for the I&I identifier.

In (Falkena et al., 2011, 2013; Galrinho et al., 2013; Galrinho, 2013; Tang, 2014) SBB has
been applied, this BS based control strategy is based on the singular perturbation theory (see
(Khalil & Grizzle, 2002)) and removes the dependency on the system dynamics by using mea-
surements of the state derivatives. This is something we have earlier seen for IBS and INDI.
However, the SBB controller uses even less model information compared to the incremental
control laws. In (Falkena et al., 2011) an attitude rate controller is designed based on SBB.
The only model-dependent part of the resulting control law is the sign of the control effec-
tiveness matrix. Furthermore, the influence of sensor noise on the SBB controller has been
addressed by computer simulations. It has been found that the influence of noise, including
angular acceleration noise, on the system’s response is small.

In (Falkena et al., 2013) an outer-loop based on BS is added to the SBB-based attitude rate
loop to control the body orientation of a Piper Seneca II model. In both references the
sign of the control effectiveness matrix is assumed to be known, however, a crude form of
on-line aerodynamic model identification can be used to obtain this information in real-time
(Lombaerts, Huisman, et al., 2009). In these references it is concluded that SBB provides
good tracking performance with and without model uncertainties. Furthermore, because the
SBB controller is Lyapunov-based, stability of the controlled system is guaranteed. The SBB
approach makes use of a time-scale tuning parameter ǫ, which is in some articles considered
to be a constant (Sun, 2014; Falkena et al., 2013), and in other publications a function of the
Mach number (Galrinho, 2013; Galrinho et al., 2013).

Concluding, BS is a Lyapunov-based, nonlinear design method. Therefore the goals of global
asymptotic stabilization and tracking can be guaranteed, which can be a major benefit for
certification of these advanced control laws. Another advantage of BS-based control is that
it is applicable to a broad class of systems. At last, BS is flexible in the choice of control law
and can avoid wasteful cancellations as opposed to NDI (Sonneveldt, 2010). However, BS is
sensitive to model uncertainties. As we have seen, this drawback can be mitigated by applying
robust control or adaptive control that incorporates a parameter estimator, such as TF or
I&I. A promising control strategy is SBB, because it almost completely removes the need for
adaptation to uncertain parameters or unknown model structures. Because the flexible and
Lyapunov-based BS control method offers many benefits compared to NDI and gain-scheduled
linear control, the remainder of this thesis only focuses on reconfigurable Backstepping control
laws.
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Appendix B

Pendulum Model

The state space equations of a simple pendulum with a rigid, massless rod are given by (Khalil
& Grizzle, 2002)

ẋ1 = x2 (B-1a)

ẋ2 = −g

l
sin(x1)−

k

m
x2 +

1

ml2
u , (B-1b)

where x1 is the angle subtended by the rod and the vertical axis through the pivot point
(Figure B-1). The length of the rod is denoted by l, m denotes the mass of the bob, g is the
acceleration due to gravity, k is the coefficient of friction and u is the torque applied to the
pendulum. The control task is to track the smooth reference state x1,r with the state x1.

Figure B-1: Pendulum.

By introducing the following parameters for notational convenience:

θ2 =
[
θ2,1 θ2,2 θ2,3

]T
=
[
− g

l
− k

m
1

ml2

]T
, (B-2)
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we can write system (B-1) as

ẋ1 = x2 (B-3a)

ẋ2 = θ2,1 sin(x1) + θ2,2x2 + θ2,3u . (B-3b)

In (Zinober & Owens, 2003) it is verified that system (B-3) is globally identifiable, indicating
that the pendulum model is described by a unique parameter vector. This identifiability
analysis is based on Lie derivatives (see (Floret-Pontet & Lamnabhi-Lagarrigue, 2002)).

In the next appendices controllers and parameter estimators will be designed for system (B-3)
by neglecting the relationships of Eq. (B-2), i.e. uncertainties will be added to the elements
of θ2 independently of each other.
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Appendix C

Backstepping Control

Backstepping (BS) is a recursive, Lyapunov-based, nonlinear design method. The main ad-
vantage of BS is that it is based on Lyapunov stability theory, and thereby guarantees the
goals of global asymptotic stabilization and tracking (C-1). The concept of BS is to design a
controller in a recursive way by considering some of the state variables as “virtual controls”
and designing intermediate control laws for these, starting at the scalar equation which is
separated by the largest number of integrations from the control input (C-2). In order to
evaluate this nonlinear control approach, a BS control law is derived and simulated for the
pendulum model (C-3).

C-1 Lyapunov Theory

In this section a brief overview of Lyapunov theory is given on which BS is based. A more
extensive review of Lyapunov theory can be found in for example (Krstić et al., 1995; Khalil
& Grizzle, 2002; Sonneveldt, 2010). First of all, the definitions of Lyapunov stability are
introduced. Next, Lyapunov’s direct method is discussed which can be applied to determine
stability of nonlinear dynamical systems without explicitly solving the differential equations.
At last, the Lyapunov theory is extended for control design in order to create a closed-loop
system with desirable stability properties.

C-1-1 Lyapunov Stability

In this section we consider the nonlinear dynamical system

ẋ = f(x), x(t0) = x0 , (C-1)

where x ∈ R
n is the state and f is locally Lipschitz in x (see definition 3.1 in (Sonneveldt,

2010)). We assume that system (C-1) has an equilibrium point xe ∈ R
n that by definition sat-

isfies the relation f(xe) = 0. Without loss of generality, we will assume that this equilibrium
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point is located at the origin, that is xe = 0. Note that any equilibrium of the system (C-1)
can be shifted to the origin by a change of variables.

The equilibrium point xe is stable when all solutions that start nearby xe stay nearby this
point, otherwise xe is called unstable. The equilibrium point xe is called asymptotically
stable when the solutions that start nearby xe, converge to this equilibrium point as time
approaches infinity. When this convergence takes place with an exponential rate, one speaks
of exponential stability. In for example definition 3.2 of (Sonneveldt, 2010) and definition 4.1
of (Khalil & Grizzle, 2002) these notions are made more precise.

The region of attaction of an asymptotically stable equilibrium point is defined as the set
of all initial conditions that converge to the given equilibrium point. When this domain of
attraction is equal to R

n, xe is called globally asymptotically stable, otherwise xe is called
locally asymptotically stable. Note that if a system has more than one equilibrium point,
none of the equilibrium points can be globally stable.

Another classification is that of uniform and non-uniform stable equilibrium points. An
equilibrium point is uniformly (asymptotically) stable when xe is (asymptotically) stable for
all initial times t0.

C-1-2 Lyapunov’s Direct Method

The advantage of Lyapunov’s direct method, also known as Lyapunov’s second method, is
that we can apply it to determine stability of system (C-1) without explicitly solving the
differential equation. Lyapunov’s direct method turns the question of determining stability
into a search for a suitable Lyapunov function. The main difficulty of this method is to find
such a Lyapunov function. Fortunately, approaches for searching Lyapunov functions exist
and are discussed in for instance (Khalil & Grizzle, 2002).

We start by introducing the definitions for positive (semi-)definite and negative (semi-)definite
functions (Sonneveldt, 2010):

Definition C.1
A continuously differentiable scalar function V(x) is:

• positive definite if V(0) = 0 and V(x) > 0 for x 6= 0 ;

• positive semi-definite if V(0) = 0 and V(x) ≥ 0 for x 6= 0 ;

• negative (semi-)definite if −V(x) is positive (semi-)definite.

On basis of these definitions, the energy-like Lyapunov function can be defined as

Definition C.2 (Lyapunov function)
A continuously differentiable and positive definite scalar function V(x), where the domain
is an open set containing the origin, is said to be a Lyapunov function for system (C-1) if
its time derivative along the system’s trajectories, that is:

V̇ =
∂V
∂x

ẋ =
∂V
∂x

f(x) , (C-2)

is negative semi-definite. Before these conditions are verified, the function V(x) is generally
indicated as a Lyapunov Candidate Function (LCF).
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Stability of system (C-1) can now be determined without explicitly solving the differential
equation by using the following theorem (Khalil & Grizzle, 2002):

Theorem C.1 (Lyapunov’s Direct Method)
Let V(x) be a continuous differentiable and positive definite function on R

n and let V̇ rep-
resent the time derivative of V along the trajectories of system (C-1). Furthermore, let D
be an open region containing the equilibrium point xe = 0. The equilibrium state xe of
system (C-1) is:

• stable, if V̇ is negative semi-definite for x ∈ D ;

• asymptotically stable, if V̇ is negative definite for x ∈ D ;

• exponentially stable, if there exists three positive constant c1, c2 and c3 such that
c1|x|2 ≤ V(x) ≤ c2|x|2 and V̇ ≤ −c3|x|2 for all x ∈ D .

The proof of this theorem can be found in chapter 4 of (Khalil & Grizzle, 2002). This theorem
can be conveniently summarized as follows (Khalil & Grizzle, 2002):

Lyapunov’s Direct Method: the origin of system (C-1) is stable if there is a
continuously differentiable positive definite function V(x) so that V̇(x) is negative
semi-definite, and it is asymptotically stable if V̇(x) is negative definite.

According to Theorem C.1, when the time derivative of the Lyapunov function along the
trajectories of system (C-1) is negative definite, the equilibrium xe = 0 is asymptotically
stable. Finding such a Lyapunov function is generally very difficult. Fortunately, the powerful
LaSalle-Yoshizawa theorem may be used to conclude asymptotic convergence even when V̇ is
only negative semi-definite (Krstić et al., 1995).

Theorem C.2 (LaSalle-Yoshizawa)
Let xe be an equilibrium point of

ẋ = f(x, t) , (C-3)

where x ∈ R
n, and f : R

n × R
+ → R

n is locally Lipschitz in x uniformly in t. Let
V : Rn → R

+ be a continuously differentiable function V(x) satisfying:

1. V(x) > 0 and V(0) = 0 ;

2. V̇ = ∂V
∂x

f(x, t) ≤ −W (x) ≤ 0 ;

3. V(x) → ∞ as |x| → ∞ .

∀x ∈ R
n and where W (x) is a continuous function. Then all solutions x(t) of system (C-3)

are uniformly globally bounded and

lim
t→∞

W (x(t)) = 0 . (C-4)

In addition, if W (x) > 0, then the equilibrium point xe of system (C-3) is globally uniformly
asymptotically stable.
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Note that Theorem C.2 for checking stability is global in nature. If the LCF does satisfy this
theorem in some open region D ∈ R

n containing the equilibrium point xe and D 6= R
n, then

we can only guarantee that xe is locally uniformly asymptotically stable.

Failure of a LCF to satisfy the conditions for stability does not mean that the equilibrium
is not stable (Khalil & Grizzle, 2002). All we can conclude in this case is that the stability
of the system cannot be determined by use of this LCF. However, it turns out that when
an equilibrium point is stable, there exists a Lyapunov function V(x) for the corresponding
system (Sonneveldt, 2010).

C-1-3 Lyapunov Control Design

In the previous section Lyapunov’s direct method has been discussed which can be applied to
analyze the stability properties of autonomous systems. In this section the Lyapunov theory is
extended for control design to create a closed-loop system with desirable stability properties.
We now consider the following nonlinear system that needs to be controlled:

ẋ = f(x, u) , (C-5)

where x ∈ R
n is the state, u ∈ R is the control input and f(0, 0) = 0. The control objective is

to find a feedback control law α(x) for the control input u, such that the equilibrium xe = 0
is globally asymptotically stable.

Theorem C.2 can be applied to system (C-5) resulting in the following relationship:

V̇ =
∂V
∂x

f(x, α(x)) ≤ −W (x) ≤ 0 , ∀x ∈ R
n . (C-6)

If we can find a Lyapunov function V(x) and a stabilizing control law α(x) such that this
equation is satisfied, then the equilibrium xe = 0 of system (C-5) is rendered globally asymp-
totically stable. If such a choice for V(x) exists, then the corresponding system is said to
possess a Control Lyapunov Function (CLF) (Sonneveldt, 2010; Koschorke, 2012).

Definition C.3 (Control Lyapunov Function)
A smooth positive definite and radially unbounded function V, with V(0) = 0 and V(x) > 0
for x 6= 0, is called a CLF for the system (C-5) if there exists a u ∈ R that satisfies

{
∂V
∂x

f(x, u)

}

≤ 0 , ∀x ∈ R
n . (C-7)

In (Artstein, 1983) it is proven that the existence of a CLF for system (C-5) is equivalent to the
existence of a global asymptotic stabilizing control law α(x) of that system. In other words,
when there exists a control law α(x) that renders the equilibrium point xe of system (C-
5) globally asymptotically stable, it is guaranteed that a CLF exists. The difficulty now is
to find such a CLF. Fortunately there is a group of functions meeting the requirements to
become a CLF, of which a selection is listed in Table C-1 (Koschorke, 2012). The nonlinear
control technique BS which is explained in the following sections makes use of CLF# 1. The
advantage of this CLF is that sign definiteness can easily be checked.

P. van Gils Adaptive Incremental Backstepping Flight Control



C-2 Recursive Backstepping 73

Table C-1: Commonly used candidate Control Lyapunov Functions (Koschorke, 2012).

CLF# V(x) V̇(x)

1 1
2x

2 xẋ

2 |x| sgn(x)

3
√

|x| sgn(x)12 |x|−
1
2 ẋ

4 ln(x2 + 1) 2xẋ
(
x2 + 1

)−1

5 [ln(x+ 1)]2 xẋ · log[x+ 1](x+ 1)−1

C-2 Recursive Backstepping

Backstepping is a recursive, Lyapunov-based, nonlinear design method. The main advantage
of BS is that it is based on Lyapunov stability theory, and thereby guarantees the goals of
global asymptotic stabilization and tracking. The concept of BS is to design a controller in a
recursive way by considering some of the state variables as “virtual controls” and designing
intermediate control laws for these, starting at the scalar equation which is separated by the
largest number of integrations from the control input. The recursive BS control approach can
be subdivided into three parts (Sonneveldt, 2010):

1. Define tracking errors z⋆ and rewrite the current state equation in terms of these errors;

2. Augment the CLF with a quadratic term that penalizes the new tracking error;

3. Select a stabilizing control law that renders the time derivative of the augmented CLF
negative definite.

We consider the following lower triangular, strict-feedback system:

ẋi = fi(x̄i) + gi(x̄i)xi+1 , i = 1, . . . , n− 1 (C-8a)

ẋn = fn(x) + gn(x)u , (C-8b)

where x̄i = [x1, · · · , xi]T and x = [x1, · · · , xn]T are the states, xi ∈ R, u ∈ R the control signal
and gi 6= 0 for i = 1, . . . , n. The control objective is to track a smooth reference signal x1,r, for
which the n-order time derivatives are assumed to be known and bounded, with the state x1.
Furthermore, the signals xi for i = 2, . . . , n must remain bounded. It is assumed that fi and
gi are known and have n− i continuous derivatives, that is fi and gi ∈ Cn−i for i = 1, . . . , n.

Subsystem 1

We start by considering the first subsystem, which is the subsystem “furthest” away from the
actual control u:

ẋ1 = f1(x1) + g1(x1)x2 . (C-9)
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Now we regard state x2 as the control input for this subsystem. However, because x2 is just
a state variable and not the real control input u, we call x2 the virtual control.

The tracking errors are defined as

z1 = x1 − x1,r (C-10a)

z2 = x2 − x2,r ≡ x2 − α1 , (C-10b)

where x2,r ≡ α1 is called the stabilizing function, which is the desired value of x2. Rewriting
the current subsystem in terms of the tracking error z1 results in

ż1 = ẋ1 − ẋ1,r

= f1 + g1x2 − ẋ1,r

= f1 + g1 (z2 + α1)− ẋ1,r . (C-11)

Now we formulate a quadratic scalar CLF for the first subsystem (C-9):

V1(z1) =
1

2
z21 . (C-12)

The reason for choosing a quadratic scalar function is to allow for ease of checking sign
definiteness. Taking the time derivative of the CLF along the trajectories of subsystem (C-
11) results in

V̇1 = z1 [f1 + g1 (z2 + α1)− ẋ1,r] . (C-13)

In order to yield the CLF negative definite, an obvious choice for stabilizing control law α1

is

α1 = g−1
1 [−c1z1 − f1 + ẋ1,r] , (C-14)

which results in the following expression for V̇1:

V̇1 = −c1z
2
1 + z1g1z2 . (C-15)

Note that V̇1 is not negative definite for all values of z1 and z2. The cross term z1g1z2 will be
removed in the next design step. By selecting the stabilizing function as Eq. (C-14) we have
canceled the natural dynamics of the system. However, if certain nonlinearities are stabilizing,
they need not to be canceled (Farrell et al., 2009).

Subsystem i, i = 2, ..., n - 1

Now we consider the i-th subsystem:

ẋi = fi(x̄i) + gi(x̄i)xi+1 , i = 2, . . . , n− 1 . (C-16)

We regard state xi+1 as the control input for the i-th subsystem. However, because xi+1 is
just a state variable and not the real control input u, we call xi+1 the virtual control.
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Now we introduce the tracking errors:

zi = xi − αi−1 , i = 3, . . . , n , (C-17)

and rewrite the i-th subsystem in terms of the tracking error:

żi = ẋi − α̇i−1 , i = 2, . . . , n− 1

= fi + gixi+1 − α̇i−1

= fi + gi (zi+1 + αi)− α̇i−1 . (C-18)

Augmenting scalar CLF V1 yields:

Vi(z̄i) =
1

2

i∑

j=1

z2j , i = 2, . . . , n− 1

= V1(z1) +
1

2

i∑

j=2

z2j , (C-19)

where z̄i = [z1, · · · , zi]T . Taking the time derivative of the CLF along the trajectories of
Eqs. (C-11) and (C-18) results in

V̇i = V̇1 +
i∑

j=2

zj żj , i = 2, . . . , n− 1

= −c1z
2
1 + z1g1z2 +

i∑

r=2

zj [fj + gj (zj+1 + αj)− α̇j−1] . (C-20)

In order to yield the i-th CLF negative definite, an obvious choice for stabilizing control αj

is

αj = g−1
j [−cjzj − fj + α̇j−1 − zj−1gj−1] , j = 2, . . . , i , (C-21)

which results in the following expression for V̇i:

V̇i =
i∑

j=1

−cjz
2
j + zigizi+1 , i = 2, . . . , n− 1 . (C-22)

Note that V̇n−1 is not negative definite for all values of zn−1 and zn. The cross term zn−1gn−1zn
will be removed in the final step.

Subsystem n

Now we consider the final subsystem:

ẋn = fn(x) + gn(x)u , (C-23)
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and rewrite this subsystem in terms of the tracking error

żn = ẋn − α̇n−1

= fn + gnu− α̇n−1 . (C-24)

The final Lyapunov function is now defined as

Vn(z) =
1

2

n∑

j=1

z2j

= Vn−1(z̄n−1) +
1

2
z2n . (C-25)

Taking the time derivative of the CLF along the trajectories of Eqs. (C-11), (C-18) and (C-24)
results in

V̇n = V̇n−1 + znżn

=
n−1∑

j=1

−cjz
2
j + zn−1gn−1zn + zn [fn + gnu− α̇n−1] . (C-26)

In order to yield V̇n negative definite, an obvious choice for the real control u is

u = g−1
n [−cnzn − fn + α̇n−1 − zn−1gn−1] , (C-27)

which results in the following expression for V̇n:

V̇n =
n∑

j=1

−cjz
2
j . (C-28)

According to the theorem of LaSalle-Yoshizawa (see Theorem C.2, page 71) the equilibrium
z = 0 is globally uniformly asymptotically stable when c1 > 0 and c2 > 0, implying that the
reference output state x1,r is successfully tracked by x1, that is:

lim
t→∞

[x1 − x1,r] = 0 . (C-29)

Note that the BS control approach is restricted to lower triangular (strict-feedback) systems,
because when we we apply the BS approach to non-triangular feedback passive systems, one
or more (virtual) control laws become differential equations instead of algebraic equations.

C-3 Simulations

In this section a BS control law is derived for the pendulum model, which is for convenience
repeated below:

ẋ1 = x2 (B-3a revisited)

ẋ2 = θ2,1 sin(x1) + θ2,2x2 + θ2,3u . (B-3b revisited)
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The control task is to track the smooth reference state x1,r with the state x1. The BS
procedure starts by defining the tracking errors as

z1 = x1 − x1,r (C-31a)

z2 = x2 − α1 , (C-31b)

where α1 is a stabilizing control law which is later defined. Now system (B-3) can be rewritten
in terms of the error states:

ż1 = z2 + α1 − ẋ1,r (C-32a)

ż2 = θ2,1 sin(x1) + θ2,2x2 + θ2,3u− α̇1 . (C-32b)

We start by formulating a quadratic scalar CLF for the first subsystem (C-32a):

V1(z1) =
1

2
z21 . (C-33)

The reason for choosing a quadratic scalar function is to allow for ease of checking sign
definiteness. Taking the time derivative of the CLF along the trajectories of subsystem (C-
32a) results in

V̇1 = z1 [z2 + α1 − ẋ1,r] . (C-34)

An obvious choice for a stabilizing control law α1 is

α1 = −c1z1 + ẋ1,r , (C-35)

which results in the following expression for V̇1:

V̇1 = −c1z
2
1 + z1z2 . (C-36)

The cross term z1z2 will be dealt with in the next design step. Now we move on to the second
and last subsystem (C-32b). The earlier formulated quadratic CLF is augmented to penalize
the second tracking error as well:

V(z) = V1 +
1

2
z22 . (C-37)

Taking the time derivative of the CLF along the trajectories of system (C-32) yields

V̇ = V̇1 + z2ż2

= −c1z
2
1 + z1z2 + z2 [θ2,1 sin(x1) + θ2,2x2 + θ2,3u− α̇1] . (C-38)

An obvious choice for the control torque u is:

u =
1

θ2,3
[−c2z2 − z1 − θ2,1 sin(x1)− θ2,2x2 + α̇1] , (C-39)
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which results in the following expression for V̇:
V̇ = −c1z

2
1 − c2z

2
2 . (C-40)

According to the theorem of LaSalle-Yoshizawa (see Theorem C.2, page 71) the equilibrium
z = 0 is globally uniformly asymptotically stable when c1 > 0 and c2 > 0, implying that the
reference output state x1,r is successfully tracked by x1, that is:

lim
t→∞

[x1 − x1,r] = 0 . (C-41)

Note that it is physically impossible for θ2,3 =
1

ml2
to equal zero, therefore the control law (C-

39) does not contain a singularity. The time derivative α̇1 can be analytically obtained from
Eq. (C-35):

α̇1 = −c1ż1 + ẍ1,r

= −c1 (z2 + α1 − ẋ1,r) + ẍ1,r . (C-42)

Because we generally do not have exact information on the model parameters θ2, the following
controller might be applied in practice:

u =
1

θ̂2,3

[

−c2z2 − z1 − θ̂2,1 sin(x1)− θ̂2,2x2 + α̇1

]

, (C-43)

where θ̂2 =
[
θ̂2,1 θ̂2,2 θ̂2,3

]T
is the estimate of θ2. In order to obtain a singularity-free

controller, a parameter projection method should be used to guarantee that θ̂2,3 6= 0 (Krstić
et al., 1995; Sonneveldt, 2010). Because in general θ̂2 6= θ2, nothing can be said about the
stability of system (B-3) when we use control law (C-43).

Simulations of BS control law (C-43) have been performed in Matlab / Simulink with a
sampling time of 0.01 s. The following initial conditions and parameters have been used for
the model :

x1(0) = 1 ,

θ2,1 = −9.81 ,

θ2,3 = 0.1 .

x2(0) = −1 ,

θ2,2 = −0.5 , (C-44)

The following control parameters have been selected:

c1 = 10 ,

θ̂2,1 = θ2,1 ,

θ̂2,3 = θ2,3 .

c2 = 10 ,

θ̂2,2 = θ2,2 , (C-45)

The results of the simulation can be seen in Figure C-1. As expected, the full-information BS
controller performs well in the absence of any parametric uncertainties.

To find out whether this BS controller can cope with parametric uncertainties, the parameter
estimates now equal the real model parameters multiplied by an uncertainty factor. Simu-
lations have been performed with an uncertainty factor of 5 and 10 and a sampling time of
0.01 s, the results can be seen in Figure C-2. Clearly, the BS controller is no longer able to
accurately track the reference signal with the introduced uncertainties.
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Figure C-1: The control performance of a Backstepping controller in the absence of any uncer-
tainties.
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Figure C-2: The control performance of a Backstepping controller in the presence of parametric
uncertainties.
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Appendix D

Command-Filtered Backstepping

In this appendix the conventional Backstepping (BS) technique is augmented with command
filters. Advantages of implementing command filters are (Sonneveldt, 2010):

• Obviating the need for analytic computation of virtual control derivatives, which be-
comes very tedious when working with high-order systems;

• Eliminating the Backstepping’s restriction to nonlinear systems of a lower triangular
form;

• Improving the performance of parameter update laws; by implementing magnitude,
rate, and bandwidth constraints on the (virtual) controls.

The derivation of the Command-Filtered BS controller for non-triangular, feedback passive
systems can be found in Appendix D-1. In this derivation command filters are used to
produce magnitude, rate and bandwidth-limited signals and their time derivative. For this
purpose generally first or second-order, low-pass filters with unity low-frequency (DC) gain
are used (D-2). In order to evaluate this nonlinear control approach, a Command-Filtered
BS control law is derived and simulated for the pendulum model (D-3).

D-1 Theory

We now consider the following non-triangular, feedback passive system:

ẋi = fi(x) + gi(x)xi+1 , i = 1, . . . , n− 1 (D-1a)

ẋn = fn(x) + gn(x)u , (D-1b)

where x ∈ R
n is the state vector, xi ∈ R, u ∈ R the control signal and gi 6= 0 for i = 1, . . . , n.

The control objective is to track a smooth reference signal x1,r, for which the time derivative
is assumed to be known and bounded, with the state x1. Furthermore, the signals xi for
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i = 2, . . . , n must remain bounded. It is assumed that the functions fi and gi are known
and that their first-order derivatives are continuous, that is fi and gi ∈ C1 for i = 1, . . . , n.
Note that the difference with system (C-8) is that functions fi and gi may now depend on all
states x.

Subsystem 1

We start by considering the first subsystem, which is the subsystem “furthest” away from the
actual control u:

ẋ1 = f1(x) + g1(x)x2 . (D-2)

Now we regard state x2 as the control input for this subsystem. However, because x2 is just
a state variable and not the real control input u, we call x2 the virtual control.

Now we introduce the tracking errors:

z1 = x1 − x1,r (D-3a)

z2 = x2 − x2,r , (D-3b)

where x2,r is the new virtual control law to be designed. As with the standard BS procedure,
the first stabilizing control law is defined as

α1 = g−1
1 [−c1z1 − f1 + ẋ1,r] . (C-14 revisited)

However, instead of directly applying this virtual control, a new signal x02,r is defined as

x02,r = α1 − χ2 , (D-4)

where χ2 will be defined later on. The raw signal x02,r is led through a command filter to
obtain x2,r and its time derivative ẋ2,r. The effect that the use of this command filter has on
the tracking error z1 is estimated by the stable linear filter:

χ̇1 = −c1χ1 + g1
(
x2,r − x02,r

)
, (D-5)

with χ1(0) = 0. This auxiliary system compensates for the constraint effects due to magni-
tude, rate and bandwidth limitations of the command filter. Now we introduce the compen-
sated tracking errors:

z̄1 = z1 − χ1 (D-6a)

z̄2 = z2 − χ2 . (D-6b)

The z̄1-dynamics are given by

˙̄z1 = ż1 − χ̇1

= ẋ1 − ẋ1,r − χ̇1

= f1 + g1x2 − ẋ1,r + c1χ1 − g1
(
x2,r − x02,r

)

= f1 + g1 (z2 + x2,r)− ẋ1,r + c1χ1 − g1
(
x2,r − x02,r

)
. (D-7)
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Now we formulate a quadratic scalar Control Lyapunov Function (CLF) for the first compen-
sated tracking error:

V1(z̄1) =
1

2
z̄21 . (D-8)

Taking the time derivative of the CLF along the trajectories of subsystem (D-7) yields

V̇1 = z̄1
[
f1 + g1 (z2 + x2,r)− ẋ1,r + c1χ1 − g1

(
x2,r − x02,r

)]

= z̄1
[
f1 + g1 (z2 + x2,r)− g1x

0
2,r + g1x

0
2,r − ẋ1,r + c1χ1 − g1

(
x2,r − x02,r

)]

= z̄1
[
f1 + g1 (z2 + x2,r)− g1x

0
2,r + g1 (α1 − χ2)− ẋ1,r + c1χ1 − g1

(
x2,r − x02,r

)]

= z̄1
[
−c1z1 + g1 (z2 + x2,r)− g1x

0
2,r − g1χ2 + c1χ1 − g1

(
x2,r − x02,r

)]

= z̄1 [−c1z1 + g1z̄2 + c1χ1]

= z̄1 [−c1 (z1 − χ1) + g1z̄2]

= −c1z̄
2
1 + z̄1g1z̄2 . (D-9)

Note that V̇1 is not negative definite for all values of z̄1 and z̄2. The cross term z̄1g1z̄2 will be
removed in the next design step.

Subsystem i, i = 2, ..., n - 1

Now we consider the i-th subsystem:

ẋi = fi(x) + gi(x)xi+1 , i = 2, . . . , n− 1 . (D-10)

We regard state xi+1 as the control input for the i-th subsystem. However, because xi+1 is
just a state variable and not the real control input u, we call xi+1 the virtual control.

Now we introduce the tracking errors:

zi = xi − xi,r, i = 3, . . . , n , (D-11)

where xi,r are the new virtual control laws to be designed. As with the standard BS procedure,
the stabilizing control laws are defined as

αi = g−1
i [−cizi − fi + ẋi,r − z̄i−1gi−1] , i = 2, . . . , n− 1 . (D-12)

Note that the variables α̇i−1 and zi−1 in Eq. (C-21) have been replaced by respectively ẋi,r
and z̄i−1 because of the new definitions of the tracking error.

However, instead of directly applying this virtual control, new signals x0i,r are defined by

x0i,r = αi−1 − χi , i = 3, . . . , n , (D-13)

where χi will be defined later on. The raw signals x0i,r are led through command filters to
obtain xi,r and their time derivatives ẋi,r. The effect that the use of these command filters
have on the tracking error zi is estimated by the stable linear filters:

χ̇i = −ciχi + gi
(
xi+1,r − x0i+1,r

)
, i = 2, . . . , n− 1 , (D-14)
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with χi(0) = 0. These auxiliary systems compensate for the constraint effects due to magni-
tude, rate and bandwidth limitations of the command filter. Now we introduce the compen-
sated tracking errors:

z̄i = zi − χi , i = 3, . . . , n . (D-15)

The z̄i-dynamics are given by

˙̄zi = żi − χ̇i, i = 2, . . . , n− 1

= ẋi − ẋi,r − χ̇i

= fi + gixi+1 − ẋi,r + ciχi − gi
(
xi+1,r − x0i+1,r

)

= fi + gi (zi+1 + xi+1,r)− ẋi,r + ciχi − gi
(
xi+1,r − x0i+1,r

)
. (D-16)

Augmenting the scalar CLF V1 yields

Vi(z̄i) =
1

2

i∑

j=1

z̄2j , i = 2, . . . , n− 1

= V1(z̄1) +
1

2

i∑

j=2

z̄2j , (D-17)

where z̄i = [z̄1, · · · , z̄i]T . Taking the time derivative of the CLF along the trajectories of
Eqs. (D-7) and (D-16) results in

V̇i = V̇1 +
i∑

j=2

z̄j
[
fj + gj (zj+1 + xj+1,r)− ẋj,r + cjχj − gj

(
xj+1,r − x0j+1,r

)]
, i = 2, . . . , n− 1

= −c1z̄
2
1 + z̄1g1z̄2

+
i∑

j=2

z̄j
[
fj + gj (zj+1 + xj+1,r)− gjx

0
j+1,r + gjx

0
j+1,r − ẋj,r + cjχj − gj

(
xj+1,r − x0j+1,r

)]

= −c1z̄
2
1 + z̄1g1z̄2

+

i∑

j=2

z̄j
[
fj + gj (zj+1 + xj+1,r) + gj (αj − χj+1)− ẋj,r + cjχj − gjxj+1,r − x0j+1,r

]

= −c1z̄
2
1 + z̄1g1z̄2 +

i∑

j=2

z̄j [−cjzj + gj z̄j+1 + cjχj − z̄j−1gj−1]

= −
i∑

j=1

cj z̄
2
j + z̄igiz̄i+1 . (D-18)

Note that V̇n−1 is not negative definite for all values of z̄n−1 and z̄n. The cross term z̄n−1gn−1z̄n
will be removed in the final step.
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Subsystem n

Now we consider the final subsystem:

ẋn = fn(x) + gn(x)u . (D-19)

The raw signal u0 is led through a command filter to obtain u and its time derivative u̇. The
effect that the use of this command filter has on the tracking error zn is estimated by the
stable linear filter:

χ̇n = −cnχn + gn
(
u− u0

)
, (D-20)

with χn(0) = 0. The z̄n-dynamics are given by

˙̄zn = żn − χ̇n

= ẋn − ẋn,r − χ̇n

= fn + gnu− ẋn,r + cnχn − gn
(
u− u0

)
. (D-21)

The final Lyapunov function is now defined as

Vn(z) =
1

2

n∑

j=1

z̄2j

= Vn−1(z̄n−1) +
1

2
z̄2n . (D-22)

Taking the time derivative of the CLF along the trajectories of Eqs. (D-7), (D-16) and (D-21)
results in

V̇n = V̇n−1 + z̄n ˙̄zn

=

n−1∑

j=1

−cj z̄
2
j + z̄n−1gn−1z̄n + z̄n

[
fn + gnu− ẋn,r + cnχn − gn

(
u− u0

)]

=
n−1∑

j=1

−cj z̄
2
j + z̄n−1gn−1z̄n + z̄n

[
fn + gnu

0 − ẋn,r + cnχn

]
. (D-23)

In order to yield V̇n negative definite, an obvious choice for the raw control law u0 is

u0 =
1

gn
[−cnzn − fn + ẋn,r − z̄n−1gn−1] , (D-24)

this yields

V̇n =
n−1∑

j=1

−cj z̄
2
j + z̄n−1gn−1z̄n + z̄n [−cnzn − z̄n−1gn−1 + cnχn]

=
n−1∑

j=1

−cj z̄
2
j + z̄n [−cn (zn − χn)]

=
n∑

j=1

−cj z̄
2
j . (D-25)
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By the theorem of LaSalle-Yoshizawa (see Theorem C.2, page 71) it now follows that the
equilibrium z̄ = 0 is globally uniformly asymptotically stable. Note that this derivation
only guarantees desirable properties for the compensated tracking error z̄ and not the actual
tracking error z. According to (Farrell, Sharma, & Polycarpou, 2005), in the absence of
physical limitations (i.e. magnitude, rate, and bandwidth constraints on the commanded
state x2,r and control u), convergence of the tracking error z is still guaranteed. When the
inputs are too aggressive, the implemented limits can come into effect. During such a period z

and χ become nonzero because the desired control signals are not able to be implemented.
However, the χ-signals and therefore also the tracking error z will remain bounded, because χ
is the output of a stable linear system with a bounded input. When the limits are no longer
in effect, the tracking error z will converge to 0.

D-2 Command Filters

In the previous section command filters are mentioned that transform x0i,r to produce magni-
tude, rate and bandwidth-limited signals xi,r and their time derivatives ẋi,r. For this purpose
first-order, low-pass filters with unity low-frequency (DC) gain and bandwidth wn can be
used:

ẋi,r = SR

({
SM

[
x0i,r
]
− xi,r

}
ωn

)
, (D-26)

with initial condition:

xi,r(0) = α1 (zi−1(0), xi−1,r(0)) . (D-27)

The saturation functions SM and SR are defined similarly as

SM (x) =







M if x ≥ M
x if |x| < M

−M if x ≤ M .
(D-28)

In the linear range of the functions SM and SR the transfer function of Eq. (D-26) is given
by

Xi,r(s)

X0
i,r(s)

=
ωn

s+ ωn
. (D-29)

The corresponding block diagram of Eq. (D-29) can be seen in Figure D-1.

−

+

ωn
1
s

Magnitude

Limiter

Rate

Limiter

x
0

i,r xi,r

ẋi,r

Figure D-1: First-order filter that generates the command and command derivative while en-
forcing magnitude, bandwidth and rate limit constraints.
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Many other filters are possible as long as the order is at least one. In (Farrell et al., 2005)
the following second-order command filter is used:

[
q̇1
q̇2

]

=

[
q2

2ζωn

(

SR

{
ω2
n

2ζωn

[

SM

(

x0i,r

)

− q1

]}

− q2

)

]

(D-30a)

[
xi,r
ẋi,r

]

=

[
q1
q2

]

, (D-30b)

with initial conditions:

q1(0) = α1 (zi−1(0), xi−1,r(0)) (D-31a)

q2(0) = 0 . (D-31b)

In the linear range of the functions SM and SR the transfer function of Eq. (D-30) is given
by

[
Xi,r(s)
sXi,r(s)

]

X0
i,r

=

[
ω2
n

sω2
n

]

s2 + 2ζωns+ ω2
n

. (D-32)

The corresponding block diagram of Eq. (D-30) can be seen in Figure D-2.

−

+ ω
2

n

2ζωn

Magnitude

Limiter

Rate

Limiter

x
0

i,r xi,r

ẋi,r

−

+

2ζωn
1
s

1
s

Figure D-2: Second-order filter that generates the command and command derivative while
enforcing magnitude, bandwidth and rate limit constraints.

A second-order filter can be obtained by combining two first-order filters. The advantage of
increasing the order of the filter is that noise is further suppressed, however, the time delay
between the output and input signal will increase.

When the only purpose of the command filter is to compute a command and its derivative
(i.e. there are no rate, magnitude, or bandwidth limitations), then we can simply select SR =
1, SM = 1. Note that if a magnitude limit is required, then we should set the damping ratio
as ζ ≥ 1 in order to prevent xr from overshooting the limit M . According to (Farrell et al.,
2009), by increasing the command filter natural frequency ωn, the solution to the Command-
Filtered BS closed-loop system can be made arbitrarily close to the BS solution that relies on
analytic derivatives. However, the sampling rate of the simulation should be consistent with
ωn, i.e. the sampling rate should be sufficiently large to capture the high frequent dynamics
to avoid instability.
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Note that even when we derive an exact analytical expression for the derivative of the sta-
bilizing function α1, it is still an approximation because the model is only an approximate
representation of the plant. Therefore, the choice is not between a correct analytic expression
or a filtered estimate of the command derivative, but between two estimates of the command
derivative (Farrell et al., 2009).

Note from Figures D-1 and D-2 that we can only implement rate, magnitude and bandwidth
limitations on the commanded states xr and the commanded inputs ur, and not on the actual
states x and the actual inputs u. When the magnitude, rate and bandwidth limitations
implemented on ur are within the actuation system, then we have u = ur. In that case, the
limitations will not only apply to the commanded control ur, but also to the real control u.

D-3 Simulations

In order to evaluate the Command-Filtered BS approach, two simulations are performed by
using the pendulum model:

1. Command-Filtered Backstepping without constraints;

2. Command-Filtered Backstepping with constraints.

D-3-1 Command-Filtered Backstepping without constraints

In this section a Command-Filtered BS control law is derived for the pendulum model, which
is for convenience repeated below:

ẋ1 = x2 (B-3a revisited)

ẋ2 = θ2,1 sin(x1) + θ2,2x2 + θ2,3u . (B-3b revisited)

The control task is to track the smooth reference state x1,r with the state x1. We start by
defining the tracking errors as

z1 = x1 − x1,r (D-34a)

z2 = x2 − x2,r , (D-34b)

where x2,r is the new virtual control law to be designed. As with the standard BS procedure,
the first virtual control is defined as

α1 = −c1z1 + ẋ1,r , c1 > 0 . (C-35 revisited)

However, instead of directly applying this virtual control, a new signal x02,r is defined as

x02,r = α1 − χ2 , (D-35)

where χ2 will be defined later on. The raw signal x02,r is led through a command filter to
obtain x2,r and its derivative ẋ2,r. The effect that the use of this command filter has on the
tracking error z1 is estimated by the stable linear filter

χ̇1 = −c1χ1 +
(
x2,r − x02,r

)
, (D-36)
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with χ1(0) = 0. The auxiliary system (D-36) compensates for the constraint effects due to
magnitude, rate and bandwidth limitations of the command filter. Now we introduce the
compensated tracking errors:

z̄1 = z1 − χ1 (D-37a)

z̄2 = z2 − χ2 . (D-37b)

The z̄1-dynamics are given by

˙̄z1 = z2 + x2,r − ẋ1,r − χ̇1 . (D-38)

We start by formulating a quadratic scalar CLF for the first compensated tracking error:

V1(z̄1) =
1

2
z̄21 . (D-39)

Taking the time derivative of V1 along the trajectories of Eq. (D-38) results in

V̇1 = z̄1 (z2 + x2,r − ẋ1,r − χ̇1)

= z̄1
(
z2 + x2,r − x02,r + x02,r − ẋ1,r − χ̇1

)

= z̄1
(
z2 + x2,r − x02,r + α1 − χ2 − ẋ1,r − χ̇1

)

= z̄1
(
−c1z1 + z̄2 + x2,r − x02,r + c1χ1 − x2,r + x02,r

)

= z̄1 (−c1 (z1 − χ1) + z̄2)

= −c1z̄
2
1 + z̄1z̄2 . (D-40)

The cross term z̄1z̄2 will be dealt with in the next design step. Now we move on to the second
and final compensated subsystem. The z̄2-dynamics are given by

˙̄z2 = θ2,1 sin(x1) + θ2,2x2 + θ2,3u− ẋ2,r − χ̇2 . (D-41)

Now we augment the quadratic CLF function to penalize the second compensated tracking
error as well:

V(z̄) = V1 +
1

2
z̄22 . (D-42)

Taking the time derivative of V along the solutions of Eqs. (D-38) and (D-41) results in

V̇ = −c1z̄
2
1 + z̄1z̄2 + z̄2 [θ2,1 sin(x1) + θ2,2x2 + θ2,3u− ẋ2,r − χ̇2] . (D-43)

A raw control signal u0 is led through a command filter to obtain u. The effect that the use
of this command filter has on the tracking error z2 is estimated by the stable linear filter

χ̇2 = −c2χ2 + θ2,3
(
u− u0

)
, (D-44)

with χ2(0) = 0. This yields

V̇ = −c1z̄
2
1 + z̄1z̄2 + z̄2

[
θ2,1 sin(x1) + θ2,2x2 − ẋ2,r + c2χ2 + θ2,3u

0
]
. (D-45)
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Selecting the following raw control law:

u0 =
1

θ2,3
[−c2z2 − z̄1 − θ2,1 sin(x1)− θ2,2x2 + ẋ2,r] , c2 > 0 , (D-46)

renders the CLF negative definite

V̇ = −c1z̄
2
1 + z̄1z̄2 + z̄2 (c2χ2 − c2z2 − z̄1)

= −c1z̄
2
1 + z̄1z̄2 + z̄2 (−c2z̄2 − z̄1)

= −c1z̄
2
1 − c2z̄

2
2 . (D-47)

By Theorem C.2 it now follows that the equilibrium z̄ = 0 is globally uniformly asymptotically
stable. Note that this derivation only guarantees desirable properties for the compensated
tracking error z̄ and not the actual tracking error z. According to (Farrell et al., 2005), in
the absence of physical limitations (i.e. magnitude, rate, and bandwidth constraints on the
commanded state x2,r and control u), convergence of the tracking error z is still guaranteed.
When the inputs are too aggressive, the implemented limits can come into effect. During
such a period z and χ become nonzero because the desired control signals are not able to
be implemented. However, the χ-signals and therefore also the tracking error z will remain
bounded, because χ is the output of a stable linear system with a bounded input. When the
limits are no longer in effect, the tracking error z will converge to 0.

The controller structure developed in this section can be seen in Figure D-3. In this diagram
CF represents the Command Filter (see Appendix D-2) and AF represents the Auxiliary
Filter (see Eqs. (D-36) and (D-44)).

x1
+

−

z1

x1,r

α1
x
0
2,r

CF1
+

− z2
u
0 CF2

x2,r
+

−

u

d

dt ẋ1,r

+

−

AF1
−

+

x2

z̄1

χ1

z̄1

AF2
+

−

χ2 ẋ2,r

u − u
0

Figure D-3: Command-Filtered Backstepping controller structure.

Note that if magnitude, rate and bandwidth constraints on the control u are not necessary,
then we can omit the second command filter and the second auxiliary filter (D-44).

If we compare the earlier designed conventional BS controller with the Command-Filtered BS
control law:

u =
1

θ2,3
[−c2 (x2 − α1)− z1 − θ2,1 sin(x1)− θ2,2x2 + α̇1] (C-39 revisited)

u0 =
1

θ2,3
[−c2 (x2 − x2,r)− z̄1 − θ2,1 sin(x1)− θ2,2x2 + ẋ2,r] , (D-46 revisited)
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we can see that the Command-Filtered BS control law depends on x2,r and ẋ2,r. These
signals are the output of the command filter and therefore the analytical derivative α̇1 is no
longer required. In the absence of physical limitations (i.e. magnitude, rate and bandwidth
constraints on the commanded state x2,r and control u), convergence of the tracking errors is
still guaranteed.

Simulations of the full-information BS controller augmented with a first-order, low-pass com-
mand filter with unity DC gain and bandwidth ωn have been run with a sampling time
of 0.01 s. The command filter is used to obtain an estimate of the stabilizing function α1

and its time derivative α̇1. Note that we make use of a first-order filter because we are deal-
ing with noise-free measurements. The initial conditions and parameters which have been
used in this simulation for the model and controller can be found in respectively Eqs. (C-44)
and (C-45). The results of the simulation can be seen in Figures D-4 and D-5. As expected,
when ωn increases, the solution of the Command-Filtered BS closed-loop system converges to
the BS solution that relies on analytic derivatives. However, if we keep increasing the natural
frequency of the command filter, then at around ωn = 300 rad/s the system becomes unstable
because the high frequent dynamics cannot be captured with the relatively low sampling rate
of 100Hz. By increasing the sampling rate or by selecting a solver with a higher order of
accuracy, the natural frequency of the command filter can be further increased.
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Figure D-4: The control performance of the Backstepping controller in the absence of any
uncertainties. A first-order, low-pass filter with unity DC gain and bandwidth ωn is used to
obtain an estimate of the stabilizing function and its time derivative.
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Figure D-5: Using a first-order, low-pass filter with unity DC gain and bandwidth ωn to obtain
an estimate of the stabilizing function and its time derivative.

D-3-2 Command-Filtered Backstepping with constraints

Now we introduce a magnitude limit for the control u of 1000Nm. This control limit has
been implemented in two different ways. In the first simulation, referred to as BS + 1CF in
Figures D-6 and D-7, this control limit has been implemented as follows:

u = S1000

{
1

θ2,3
[−c2z2 − z̄1 − θ2,1 sin(x1)− θ2,2x2 + ẋ2,r]

}

, (D-48)

where SM is defined in Eq. (D-28). In this simulation only one command filter is used to
obviate the need for analytic computation of the virtual control derivative. That is, we only
define a raw signal x02,r but not a raw control signal u0. In the second simulation, referred to as
BS + 2CF in Figures D-6 and D-7, this control limit has been introduced by implementation
of a very simple second command filter:

u = S1000

{
u0
}

= S1000

{
1

θ2,3
[−c2z2 − z̄1 − θ2,1 sin(x1)− θ2,2x2 + ẋ2,r]

}

. (D-49)

A second stable linear filter Eq. (D-44) is used to estimate the effect that the use of this
command filter has on the tracking error z2. The initial conditions and parameters which
have been used in this simulation for the model and controller can be found in respectively
Eqs. (C-44) and (C-45). The results of the simulation with a sampling time of 0.01 s can be
seen in Figures D-6 and D-7.
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Figure D-6: Using two different ways of implementing the control magnitude limitation
of 1000Nm. The bandwidths of the command filters are selected as ωn,1 = ωn,2 = 200 rad/s.
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ẋ2,r

0 5 10 15 20 25 30
−10

0

10

α̇
1
−
ẋ
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Figure D-7: Using two different ways of implementing the control magnitude limitation
of 1000Nm. The bandwidths of the command filters are selected as ωn,1 = ωn,2 = 200 rad/s.
The variables x2,r and ẋ2,r are approximations of the virtual control law α1 and its derivative α̇1.
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From Figure D-6 we can conclude that both implementations of the control magnitude limit
result in good tracking performance. The small tracking errors during the maneuver are
due to the physical constraints. From Figure D-7 it can be seen that the variables x2,r
and ẋ2,r for the BS + 2CF implementation are much larger compared to the more simpler
implementation BS + 1CF. This can be explained as follows: when the control is saturated,
the term

(
u− u0

)
in Eq. (D-44) will no longer equal 0, resulting in an increase of magnitude

of signal χ2. Following Eq. (D-35), the variable x02,r and thus the command-filtered signal

x2,r will increase in magnitude. Now note that the raw control input u0 is given by

u0 =
1

θ2,3
[−c2 (x2 − x2,r)− z̄1 − θ2,1 sin(x1)− θ2,2x2 + ẋ2,r] . (D-46 revisited)

By analyzing this formula we expect to encounter saturation problems for the BS + 2CF
implementation when the variables x2,r and ẋ2,r become very large. To verify this, we now
make the control input u more restrictive by setting its magnitude limit to only 800Nm with
the same initial conditions and control parameters as before. The results of this simulation
can be found in Figure D-8. Clearly, the BS + 2CF implementation results in unsatisfactory
tracking performance. The reason is that the variables x2,r and ẋ2,r now become even larger
compared to the previous simulation due to the lower magnitude limit of the control, resulting
in a larger raw control signal u0 according to Eq. (D-46). From Figure D-9 we can conclude
that this results in almost continuous saturation of the control input, and therefore we can
no longer guarantee desirable properties of the actual tracking error z.
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Figure D-8: Using two different ways of implementing the control magnitude limitation
of 800Nm. The bandwidths of the command filters are selected as ωn,1 = ωn,2 = 200 rad/s.
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Figure D-9: The raw control input u0 and the actual control input u with a magnitude limitation
of 800Nm for the BS + 2CF implementation.

Note that we can set a magnitude limit on x2,r using the command filter in order to prevent
continuous saturation of the control (see Eq. (D-46)), and thereby improve the tracking per-
formance of the BS + 2CF implementation. A new simulation has been run with the same
initial conditions, control parameters and real control magnitude limit as before, but now also
with a magnitude limit on the variable x2,r. From Figure D-10 we can conclude that the per-
formance of the two different implementations is now almost identical. From these simulation
results it seems that when we only need to apply magnitude limits to the actual control, it is
advantageous to use the BS + 1CF implementation because it is simpler and the performance
is almost identical to that of the BS + 2CF implementation. However, in later sections it
will become evident that the use of the second command filter significantly improves the
parameter estimation of adaptive controllers when control limits come into effect.

Note that the command filters as in Figures D-1 and D-2 cannot be used to implement rate,
magnitude or bandwidth constraints on the actual state x2, but only on the commanded state
x2,r. Setting a limit on x2,r does not guarantee that x2 will not exceed this limit, as can be
seen from Figure D-11.
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Figure D-10: Using two different ways of implementing the control magnitude limitation of
800Nm. The bandwidths of the command filters are selected as ωn,1 = ωn,2 = 200 rad/s. The
variable x2,r is constrained to ±40 rad/s for the BS + 2CF implementation to avoid continuous
saturation of the input signal.
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Figure D-11: The angular rate x2 and the commanded angular rate x2,r, the latter is magnitude
limited to ±15 rad/s.
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Appendix E

Incremental Backstepping

Incremental Backstepping (IBS) improves the robustness of the closed-loop system with re-
spect to conventional Backstepping (BS). This is achieved by reducing the dependency on
the exact knowledge of the plant dynamics (E-1). In order to evaluate this nonlinear control
approach, (Command-Filtered) IBS control laws are derived and simulated for the pendulum
model (E-2).

E-1 Theory

In order to apply IBS, a first-order Taylor series expansion of the nonlinear system needs to
be derived. The incremental control law is then obtained on basis of the linearized system (E-
1-1). Similar as for conventional BS, IBS can be extended with command filters to obviate
the need for analytic computation of virtual control derivatives (E-1-2).

E-1-1 Incremental Backstepping

We consider the following cascaded nonlinear system:

ẋ1 = h(x1) +K(x1)x2 (E-1a)

ẋ2 = f(x1,x2) +G(x1,x2)u , (E-1b)

where x1 ∈ R
n1 and x2 ∈ R

n2 are the state vectors, u ∈ R
m is the input vector, h and

f are smooth vector fields on respectively R
n1 and R

n2 , and K ∈ R
n1×n2 and G ∈ R

n2×m

are known matrices whose columns are smooth vector fields. The control task is to track a
smooth reference signal x1,r, for which the first and second-order time derivative are assumed
to be known and bounded. Furthermore, the signal x2 must remain bounded. It is assumed
that the x1-subsystem is fully known while subsystem x2 contains uncertainties. This is a
valid assumption in many aerospace control applications, because the x1-subsystem generally
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contains the known kinematic equations, while subsystem x2 contains the uncertain dynamic
equations.

The design procedure for the IBS controller is as follows:

Subsystem x1

Similar as in the recursive BS approach, we start by considering the subsystem which is
located “furthest” away from the control vector u, that is:

ẋ1 = h(x1) +K(x1)x2 . (E-1a revisited)

Now we regard state vector x2 as the control input for this subsystem. However, because x2

is just a state vector and not the real control vector u, we call x2 the virtual control.

The tracking errors are defined as

z1 = x1 − x1,r (E-2a)

z2 = x2 − x2,r ≡ x2 −α1 , (E-2b)

where x2,r ≡ α1 is called the stabilizing vector field, which is the desired value of x2. Rewriting
the current subsystem in terms of the tracking error z1 results in

ż1 = ẋ1 − ẋ1,r

= h+Kx2 − ẋ1,r

= h+K (z2 +α1)− ẋ1,r . (E-3)

Now we formulate a quadratic scalar Control Lyapunov Function (CLF) for the first subsys-
tem:

V1(z1) =
1

2
z
T
1 z1 . (E-4)

The reason for choosing a quadratic scalar function is to allow for ease of checking sign
definiteness. Taking the time derivative of the CLF along the trajectories of subsystem (E-3)
results in

V̇1 = z1

[
h+K (z2 +α1)− ẋ1,r

]
. (E-5)

In order to yield the CLF negative definite, an obvious choice for stabilizing control law α1

is
α1 = K−1 [−c1z1 − h+ ẋ1,r] , c1 > 0 , (E-6)

which results in the following expression for V̇1:

V̇1 = −z
T
1 c1z1 + z

T
1 Kz2 . (E-7)

The time derivative of the CLF V̇1 is not negative definite for all values of z1 and z2. The
cross term z

T
1 Kz2 will be removed in the next design step. By selecting the stabilizing

function as Eq. (E-6) we have canceled the natural dynamics of the system. However, if
certain nonlinearities are stabilizing, they need not to be canceled (Farrell et al., 2009).

Note that if K is a non-square matrix or a square matrix without full rank, some form of
virtual control allocation would be required, see for instance (Enns, 1998; Lombaerts, 2010).
Also note that the approach taken so far is identical to that of recursive BS, see Appendix C-2.
This is as expected because the first subsystem is assumed to be fully known.
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Subsystem x2

Now we consider the final subsystem:

ẋ2 = f(x1,x2) +G(x1,x2)u . (E-1b revisited)

Taking the first-order Taylor series expansion of Eq. (E-1b) around the current solution
[x0,u0] results in

ẋ2
∼= f(x0) +G(x0)u0 +

∂

∂x

[

f(x) +G(x)u
]∣
∣
∣x=x0
u=u0

(x− x0) +
∂

∂u

[

G(x)u
]∣
∣
∣x=x0
u=u0

(u− u0) .

(E-8)

The linearization error is small when the sampling rate is sufficiently high. Eq. (E-8) can be
written as

ẋ2
∼= ẋ2,0 +A0∆x+B0∆u , (E-9)

where

∆x = x− x0 , ∆u = u− u0 (E-10a)

A0 =
∂

∂x

[

f(x) +G(x)u
]∣
∣
∣x=x0
u=u0

(E-10b)

B0 =
∂

∂u

[

G(x)u
]∣
∣
∣x=x0
u=u0

= G(x0) , (E-10c)

and where x0 and u0 are the current state and control commands. The variables ∆x and ∆u

are known as respectively the incremental state vector and the incremental control input.

If we assume a sufficiently time-scale separated system, that is the increment in state ∆x is
much smaller than the increment in both state derivative ∆ẋ2 and input ∆u, we can neglect
the former (Falkena, 2012; Sieberling et al., 2010; Acquatella et al., 2012; Simpĺıcio et al.,
2013). This is allowed for many aerospace applications because the deflections of the control
surfaces directly effect the angular accelerations, while the angular rates only change by
integrating these angular accelerations. Hence Eq. (E-9) can be further simplified as follows:

ẋ2
∼= ẋ2,0 +B0∆u . (E-11)

Now the x2-subsystem is written in incremental form, the BS procedure can be continued.
Rewriting Eq. (E-11) in terms of the tracking error yields

ż2 = ẋ2 − α̇1

∼= ẋ2,0 +B0∆u− α̇1 . (E-12)

The final Lyapunov function is now defined as

V2(z1, z2) =
1

2
z
T
1 z1 +

1

2
z
T
2 z2 . (E-13)
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Taking the time derivative of the CLF along the solutions of the error dynamics results in

V̇2 = V̇1 + z
T
2 ż2

∼= −z
T
1 c1z1 + z

T
1 Kz2 + z

T
2 [ẋ2,0 +B0∆u− α̇1]

= −z
T
1 c1z1 + z

T
2

[
ẋ2,0 +B0∆u− α̇1 +KT

z1

]
. (E-14)

In order to yield V̇2 negative definite, an obvious choice for the incremental control vector ∆u

is
∆u = B−1

0

[
− c2z2 − ẋ2,0 + α̇1 −KT

z1

]
, c2 > 0 , (E-15)

which results in the following expression for V̇2:

V̇2
∼= −z

T
1 c1z1 − z

T
2 c2z2 . (E-16)

If the sampling rate is sufficiently high, then according to the theorem of LaSalle-Yoshizawa
(see Theorem C.2, page 71) the equilibrium z = 0 is globally uniformly asymptotically stable
when c1 > 0 and c2 > 0, implying that the reference output state x1,r is successfully tracked
by x1, that is:

lim
t→∞

[x1 − x1,r] = 0 . (E-17)

Note that if B0 is a non-square matrix or a square matrix without full rank, some form of
control allocation would be required, see for instance (Enns, 1998; Lombaerts, 2010).

In order to obtain the total control signal u, the current control deflection u0 needs to be
added to the incremental control signal ∆u:

u = u0 +B−1
0

[
− c2z2 − ẋ2,0 + α̇1 −KT

z1

]
. (E-18)

If we compare this incremental control with that of the recursive BS approach:

u = g−1
n [−cnzn − fn + α̇n−1 − zn−1gn−1] , (C-27 revisited)

we can see that the newly developed IBS controller does not rely on exact knowledge of the
system dynamics f . However, from Eq. (E-18) we can see that that the incremental controller
still depends on the control efficiency matrix B0.

In the derivation of incremental control law (E-18), we have implicitly made Assumption E.1
(Acquatella et al., 2012).

Assumption E.1 (Incremental Backstepping)
1. Complete and accurate knowledge of the states is available. Note that IBS control

law (E-18) requires information of the angular acceleration ẋ2,0. Sensors to measure
these accelerations exist, however, they are not common. Therefore the angular accel-
erations are generally estimated on basis of (noisy) angular rate data.
Moreover, incremental control law (E-18) requires actuator output measurements. If
these are not available, they need to be estimated on basis of a high-fidelity model of
the actuator dynamics.

2. The sampling rate is sufficiently high and the control actions are instantaneous. This
suggests that the term A0∆x can be left out of incremental equation (E-9). Only
when this assumption is valid, the incremental control law is robust to uncertainties
in the system dynamics f .
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E-1-2 Command-Filtered Incremental Backstepping

We consider the following cascaded nonlinear system:

ẋ1 = h(x1,x2) +K(x1,x2)x2 (E-19a)

ẋ2 = f(x1,x2) +G(x1,x2)u , (E-19b)

where x1 ∈ R
n1 and x2 ∈ R

n2 are the state vectors, u ∈ R
m is the input vector, h and f

are smooth vector fields on respectively R
n1 and R

n2 , and K ∈ R
n1×n2 and G ∈ R

n2×m are
known matrices whose columns are smooth vector fields. The control task is to track a smooth
reference signal x1,r, for which the time derivative is assumed to be known and bounded.
Furthermore, the signal x2 must remain bounded. It is assumed that the x1-subsystem
is fully known while subsystem x2 contains uncertainties. This is a valid assumption in
many aerospace control applications, because the x1-subsystem generally contains the known
kinematic equations, while subsystem x2 contains the uncertain dynamic equations. Note that
the difference with system (E-1) is that vector function h and matrix K may now depend on
all states x.

The design procedure for the Command-Filtered IBS controller is as follows:

Subsystem x1

Similar as in the recursive BS approach, we start by considering the subsystem which is
located “furthest” away from the control vector u, that is:

ẋ1 = h(x1,x2) +K(x1,x2)x2 . (E-19a revisited)

Now we regard state vector x2 as the control input for this subsystem. However, because x2

is just a state vector and not the real control vector u, we call x2 the stabilizing vector field.

The tracking errors are defined as

z1 = x1 − x1,r (E-20a)

z2 = x2 − x2,r , (E-20b)

where x2,r is the new virtual control law to be designed. As with the standard BS procedure,
the first stabilizing control law is defined as

α1 = K−1 [−c1z1 − h+ ẋ1,r] , c1 > 0 . (E-6 revisited)

However, instead of directly applying this virtual control, a new signal x0
2,r is defined as

x
0
2,r = α1 − χ2 , (E-21)

where χ2 will be defined later on. The raw signal x0
2,r is led through a command filter to

obtain x2,r and its time derivative ẋ2,r. The effect that the use of this command filter has on
the tracking error z1 is estimated by the stable linear filter

χ̇1 = −c1χ1 +K
(
x2,r − x

0
2,r

)
, (E-22)
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with χ1(0) = 0. This auxiliary system compensates for the constraint effects due to magni-
tude, rate and bandwidth limitations of the command filter. Now we introduce the compen-
sated tracking errors

z̄1 = z1 − χ1 (E-23a)

z̄2 = z2 − χ2 . (E-23b)

The z̄1-dynamics are given by

˙̄z1 = ż1 − χ̇1

= h+Kx2 − ẋ1,r + c1χ1 −K
(
x2,r − x

0
2,r

)

= h+K (z2 + x2,r)− ẋ1,r + c1χ1 −K
(
x2,r − x

0
2,r

)
. (E-24)

Now we formulate a quadratic scalar CLF for the first compensated tracking error

V1(z̄1) =
1

2
z̄
T
1 z̄1 . (E-25)

Taking the time derivative of the CLF along the trajectories of subsystem (E-24) results in

V̇1 = z̄
T
1

[
h+K (z2 + x2,r)− ẋ1,r + c1χ1 −K

(
x2,r − x

0
2,r

)]

= z̄
T
1

[
h+K (z2 + x2,r)−Kx

0
2,r +Kx

0
2,r − ẋ1,r + c1χ1 −K

(
x2,r − x

0
2,r

)]

= z̄
T
1

[
h+K (z2 + x2,r)−Kx

0
2,r +K (α1 − χ2)− ẋ1,r + c1χ1 −K

(
x2,r − x

0
2,r

)]

= z̄
T
1

[
−c1z1 +K (z2 + x2,r)−Kx

0
2,r −Kχ2 + c1χ1 −K

(
x2,r − x

0
2,r

)]

= z̄
T
1 [−c1z1 +Kz̄2 + c1χ1]

= z̄
T
1 [−c1 (z1 − χ1) +Kz̄2]

= −z̄
T
1 c1z̄1 + z̄

T
1 Kz̄2 . (E-26)

The time derivative V̇1 is not negative define for all values of z̄1 and z̄2. The cross term
z̄
T
1 Kz̄2 will be removed in the next design step. Note that if K is a non-square matrix or a

square matrix without full rank, some form of virtual control allocation would be required,
see for instance (Enns, 1998; Lombaerts, 2010). Also note that the approach taken so far is
identical to that of Command-Filtered BS, see Appendix D. This is as expected because the
first subsystem is assumed to be fully known.

Subsystem x2

Now we consider the final subsystem:

ẋ2 = f(x1,x2) +G(x1,x2)u . (E-19b revisited)

Taking the first-order Taylor series expansion of Eq. (E-19b) around the current solution
[x0,u0] results in

ẋ2
∼= f(x0) +G(x0)u0 +

∂

∂x

[

f(x) +G(x)u
]∣
∣
∣x=x0
u=u0

(x− x0) +
∂

∂u

[

G(x)u
]∣
∣
∣x=x0
u=u0

(u− u0) .

(E-27)
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The linearization error is small when the sampling rate is sufficiently high. Eq. (E-27) can be
written as

ẋ2
∼= ẋ2,0 +A0∆x+B0∆u , (E-28)

where

∆x = x− x0 , ∆u = u− u0 (E-29a)

A0 =
∂

∂x

[

f(x) +G(x)u
]∣
∣
∣x=x0
u=u0

(E-29b)

B0 =
∂

∂u

[

G(x)u
]∣
∣
∣x=x0
u=u0

= G(x0) , (E-29c)

and where x0 and u0 are respectively the current state and the current control input. The
variables ∆x and ∆u are known as respectively the incremental state vector and the incre-
mental control input.

If we assume a sufficiently time-scale separated system, that is the increment in state ∆x

is much smaller than the increment in both state derivative ∆ẋ2 and input ∆u, we can
neglect the former (Falkena, 2012; Sieberling et al., 2010; Acquatella et al., 2012; Simpĺıcio
et al., 2013). This is allowed for many aerospace applications because the deflections of the
control surfaces directly effect the angular accelerations, while the angular rates only change
by integrating these angular accelerations. Hence Eq. (E-28) can be further simplified as
follows:

ẋ2
∼= ẋ2,0 +B0∆u . (E-30)

Now the x2-subsystem is written in incremental form, the Command-Filtered IBS procedure
can be continued. The raw signal u0 is led through a command filter to obtain u. The effect
that the use of this command filter has on the tracking error z2 is estimated by the stable
linear filter:

χ̇2 = −c2χ2 +B0

(
u− u

0
)
, (E-31)

with χ2(0) = 0. The z̄2-dynamics are given by

˙̄z2 = ż2 − χ̇2

= ẋ2 − ẋ2,r − χ̇2

∼= ẋ2,0 +B0∆u− ẋ2,r + c2χ2 −B0

(
u− u

0
)
. (E-32)

The final Lyapunov function is now defined as

V2(z̄1, z̄2) =
1

2
z̄
T
1 z̄1 +

1

2
z̄
T
2 z̄2 . (E-33)

Taking the time derivative of the CLF along the solutions of the compensated error dynamics
results in

V̇2 = V̇1 + z̄
T
2
˙̄z2

∼= −z̄
T
1 c1z̄1 + z̄

T
1 Kz̄2 + z̄

T
2

[
ẋ2,0 +B0∆u− ẋ2,r + c2χ2 −B0

(
u− u

0
)]

= −z̄
T
1 c1z̄1 + z̄

T
1 Kz̄2 + z̄

T
2

[
ẋ2,0 +B0

(
u
0 − u0

)
− ẋ2,r + c2χ2

]
. (E-34)
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Selecting the following raw control law:

u
0 = u0 +B−1

0

[
−c2z2 − ẋ2,0 + ẋ2,r −KT

z̄1

]
, c2 > 0 , (E-35)

yields the CLF negative definite

V̇2
∼= −z̄

T
1 c1z̄1 + z̄

T
1 Kz̄2 + z̄

T
2

[
−c2z2 + c2χ2 −KT

z̄1

]

= −z̄
T
1 c1z̄1 + z̄

T
1 Kz̄2 + z̄

T
2

[
−c2z̄2 −KT

z̄1

]

= −z̄
T
1 c1z̄1 +−z̄

T
2 c2z̄2 . (E-36)

By Theorem C.2 it now follows that:

lim
t→∞

z̄ = 0 , (E-37)

when the sampling rate is sufficiently high. The new incremental control law (E-35) depends
on x2,r and ẋ2,r, which are the output of the command filter and therefore the analytical
derivative α̇1 is no longer required. In the absence of physical limitations (i.e. magnitude, rate
and bandwidth constraints on the intermediate state x2 and control u) and for sufficiently high
update rate, closed-loop stability is still guaranteed even when uncertainties are introduced
in either the system dynamics or the control effectiveness matrix.

Note that if B0 is a non-square matrix or a square matrix without full rank, some form of
control allocation would be required, see for instance (Enns, 1998; Lombaerts, 2010).

E-2 Simulations

In order to evaluate the IBS approach, four simulations are performed by using the pendulum
model:

1. Incremental Backstepping with Time-Scale Separation;

2. Command-Filtered Incremental Backstepping with Time-Scale Separation;

3. Incremental Backstepping without Time-Scale Separation;

4. Command-Filtered Incremental Backstepping without Time-Scale Separation.

E-2-1 Incremental Backstepping with Time-Scale Separation

In this section an IBS control law is derived for the pendulum model, which is for convenience
repeated below:

ẋ1 = x2 (B-3a revisited)

ẋ2 = θ2,1 sin(x1) + θ2,2x2 + θ2,3u . (B-3b revisited)
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The control task is to track the smooth reference state x1,r with the state x1. Similar as
before, we start by introducing the following tracking errors:

z1 = x1 − x1,r (E-39a)

z2 = x2 − α1 . (E-39b)

The derivations for subsystem x1 remain exactly the same as in Appendix C-3 (see Eqs. (C-
32) to (C-36)), because this subsystem is assumed to be fully known. Therefore we directly
move on to the second and final subsystem. Taking the first-order Taylor series expansion of
this system around the current solution [x0, u0] results in

ẋ2 ∼= ẋ2,0 + θ2,1 cos(x1,0)∆x1 + θ2,2∆x2 + θ2,3∆u , (E-40)

where ∆xi = xi−xi,0 and ∆u = u−u0 are respectively the incremental state and incremental
control. The linearization error is small when the sampling rate is sufficiently high. The
terms appearing in Eq. (E-40) have been plotted for a simulation with conventional BS control
law (C-43) and with model and control parameters as in Eqs. (C-44) and (C-45), see Figure E-
1. From this simulation it is clear that:

θ2,3∆u ≫ θ2,1 cos(x1,0)∆x1 + θ2,2∆x2 , (E-41)

which allows us to simplify Eq. (E-40) even further:

ẋ2 ∼= ẋ2,0 + θ2,3∆u . (E-42)

Note that this simplification only holds when Eq. (E-41) is satisfied, and thus may not be
justified for a different selection of the model parameters θ2.
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Figure E-1: The terms of incremental equation (E-46) for a sampling time of 0.01 s.
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The dynamics of the second error state can now be written as

ż2 = ẋ2 − α̇1

∼= ẋ2,0 + θ2,3∆u− α̇1 . (E-43)

Now the quadratic CLF is augmented to penalize the second tracking error as well:

V(z) = V1 +
1

2
z22 . (E-44)

Taking the time derivative of V along the trajectories of the error dynamics yields

V̇ = V̇1 + z2ż2
∼= −c1z

2
1 + z1z2 + z2 [ẋ2,0 + θ2,3∆u− α̇1] . (E-45)

An obvious choice for the incremental control law ∆u is

∆u =
1

θ2,3
[−ẋ2,0 + α̇1 − z1 − c2z2] , (E-46)

which results in the following expression for V̇:

V̇ ∼= −c1z
2
1 − c2z

2
2 . (E-47)

When our assumptions on the sampling rate and Time-Scale Separation (TSS) are valid, this
CLF is a negative definite function and therefore according to Theorem C.2:

lim
t→∞

[x1 − x1,r] = 0 . (E-48)

To find the actual IBS control law, the incremental input needs to be added to the current
input:

u = u0 +∆u

= u0 +
1

θ2,3
[−ẋ2,0 + α̇1 − z1 − c2z2] . (E-49)

If we compare this control law with the earlier designed conventional BS controller:

u =
1

θ2,3
[−θ2,1 sin(x1)− θ2,2x2 + α̇1 − z1 − c2z2] , (C-39 revisited)

we can see that the newly developed IBS controller does not rely on exact knowledge of the
system dynamics. From Eq. (E-49) we can see that the incremental controller still depends
on the control effectiveness, i.e. parameter θ2,3. In (Chu, 2014) it is shown that for suffi-
ciently high update rate, closed-loop stability is still guaranteed even when uncertainties are
introduced in the control effectiveness matrix.
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The IBS controller Eq. (E-49) relies on measurements of the angular acceleration ẋ2,0 and
the control input u0, therefore sensor redundancy and failure detection methods now become
mandatory.

Simulations of the newly designed IBS controller have been performed to compare its robust-
ness properties with the full-information BS controller. The uncertainties that have been
introduced in the parameters of the system dynamics are θ̂2,1 = 30 · θ2,1 and θ̂2,2 = 30 · θ2,2.
The initial conditions and model parameters which have been used in this simulation can be
found in Eq. (C-44). The sampling time has been selected as 0.01 s, the results can be seen
in Figure E-2. As expected, the IBS controller is able to accurately track the reference signal
even in case of uncertainties in the parameters of the system dynamics.

Another simulation has been run with an uncertainty in the control effectiveness, see Figure E-
3. Because the incremental control law (E-49) still depends on θ2,3, the tracking performance
degrades when this parameter becomes uncertain. However, we can see that by increasing
the sampling rate fs, the control law becomes less sensitive to this uncertainty.
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Figure E-2: The control performance of two control laws in the presence of parametric uncer-
tainties in the system dynamics. The uncertainties that have been introduced are θ̂2,1 = 30 · θ2,1
and θ̂2,2 = 30 · θ2,2.
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Figure E-3: The control performance of the Incremental Backstepping control law in the presence
of an uncertain control effectiveness. The uncertainty that have been introduced is θ̂2,3 = 20·θ2,3.

E-2-2 Command-Filtered Incremental Backstepping with Time-Scale Separation

In this section the design procedure of a Command-Filtered IBS controller for the pendulum is
discussed. We now consider the following time-scale separated incremental pendulum model
(see Eqs. (E-41) and (E-42)):

ẋ1 = x2 (E-50a)

ẋ2 = ẋ2,0 + θ2,3∆u . (E-50b)

The control task is to track the smooth reference state x1,r with the state x1. Similar as
before, we start by defining the tracking errors as

z1 = x1 − x1,r (E-51a)

z2 = x2 − x2,r , (E-51b)

and the compensated tracking errors as

z̄1 = z1 − χ1 (E-52a)

z̄2 = z2 − χ2 . (E-52b)

The derivations for subsystem x1 remain exactly the same as in Appendix D-3 (see Eqs. (D-
35) to (D-40)), because this subsystem is assumed to be fully known. Therefore we directly
move on to the second and final compensated subsystem. The z̄2-dynamics are given by

˙̄z2 = ẋ2,0 + θ2,3∆u− ẋ2,r − χ̇2 . (E-53)

P. van Gils Adaptive Incremental Backstepping Flight Control



E-2 Simulations 109

Augmenting the quadratic CLF function to penalize the second compensated tracking error
yields

V(z̄) = V1 +
1

2
z̄22 . (E-54)

Taking the time derivative of V along the compensated error dynamics results in

V̇ = −c1z̄
2
1 + z̄1z̄2 + z̄2 [ẋ2,0 + θ2,3∆u− ẋ2,r − χ̇2] . (E-55)

Now there are two options for implementation of the second command filter, see Figure E-4.
We start with the derivations for command filter (1).
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Unit delay
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(b) Command filter (2)

Figure E-4: Two different implementations for the second command filter. The Backstepping
(BS) control laws refer to Eqs. (E-58) and (E-63).

Command Filter (1)

The effect that the use of command filter (1) (see Figure E-4a) has on the tracking error z2
is estimated by the stable linear filter:

χ̇2 = −c2χ2 + θ2,3
(
∆u−∆u0

)
, (E-56)

with χ2(0) = 0. Substituting this expression in Eq. (E-55) yields

V̇ = −c1z̄
2
1 + z̄1z̄2 + z̄2

[
ẋ2,0 + θ2,3∆u0 − ẋ2,r + c2χ2

]
. (E-57)

Selecting the following raw incremental control law ∆u0:

∆u0 =
1

θ2,3
[−c2z2 − z̄1 − ẋ2,0 + ẋ2,r] , c2 > 0 , (E-58)

yields the CLF negative definite

V̇ = −c1z̄
2
1 + z̄1z̄2 + z̄2 [c2χ2 − c2z2 − z̄1]

= −c1z̄
2
1 + z̄1z̄2 + z̄2 [−c2z̄2 − z̄1]

= −c1z̄
2
1 − c2z̄

2
2 . (E-59)

By Theorem C.2 it now follows that:

lim
t→∞

z̄ = 0 . (E-60)
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The new incremental control law (E-58) depends on x2,r and ẋ2,r, which are the output
of the command filter and therefore the analytical derivative α̇1 is no longer required. In
the absence of physical limitations (i.e. magnitude, rate and bandwidth constraints on the
intermediate state x2 and control u) and for sufficiently high update rate, closed-loop stability
is still guaranteed even when uncertainties are introduced in either the system dynamics or
the control effectiveness matrix.

Command Filter (2)

The effect that the use of command filter (2) (see Figure E-4b) has on the tracking error z2
is estimated by the stable linear filter:

χ̇2 = −c2χ2 + θ2,3
(
u− u0

)
, (E-61)

with χ2(0) = 0. Substituting this expression in Eq. (E-55) yields

V̇ = −c1z̄
2
1 + z̄1z̄2 + z̄2

[
ẋ2,0 + θ2,3

(
u0 − u0

)
− ẋ2,r + c2χ2

]
. (E-62)

Selecting the following raw control law:

u0 = u0 +
1

θ2,3
[−c2z2 − z̄1 − ẋ2,0 + ẋ2,r] , c2 > 0 , (E-63)

yields the CLF negative definite

V̇ = −c1z̄
2
1 + z̄1z̄2 + z̄2 [c2χ2 − c2z2 − z̄1]

= −c1z̄
2
1 + z̄1z̄2 + z̄2 [−c2z̄2 − z̄1]

= −c1z̄
2
1 − c2z̄

2
2 . (E-64)

By Theorem C.2 it now follows that:

lim
t→∞

z̄ = 0 . (E-65)

The new incremental control law (E-63) depends on x2,r and ẋ2,r, which are the output
of the command filter and therefore the analytical derivative α̇1 is no longer required. In
the absence of physical limitations (i.e. magnitude, rate, and bandwidth constraints on the
intermediate state x2 and control u) and for sufficiently high update rate, closed-loop stability
is still guaranteed even when uncertainties are introduced in either the system dynamics or
the control effectiveness matrix.
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Simulations of the full-information Command-Filtered IBS controller with two different im-
plementations of the command filter (see Figure E-4) have been run with a sampling time
of 0.01 s. The parameters which have been used in this simulation for the model and controller
can be found in respectively Eqs. (C-44) and (C-45). The results of the simulation can be seen
in Figure E-5. Clearly, the implementation with the command filter (1) (see Figure E-4a)
appears to be very sensitive to the delay that this filter introduces, resulting in an unstable
closed-loop system. On the contrary, the second implementation of the command filter (see
Figure E-4b) performs satisfactory. On basis of these results, the second option is used in all
future simulations that involve the Command-Filtered IBS controller.
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Figure E-5: The control performance of the Command-Filtered Incremental Backstepping con-
troller with two different implementations of the command filter (see Figure E-4) in the absence
of any uncertainties.

E-2-3 Incremental Backstepping without Time-Scale Separation

In this section the design procedure of an IBS controller for the pendulum is discussed. This
time we do not make the assumption of TSS (see Eq. (E-41)), thus when the sampling rate
is sufficiently high we can write the pendulum model as

ẋ1 = x2 (E-66a)

ẋ2 = ẋ2,0 + θ2,1 cos(x1,0)∆x1 + θ2,2∆x2 + θ2,3∆u . (E-66b)
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The control task is to track the smooth reference state x1,r with the state x1. Similar as
before, we start by introducing the following tracking errors:

z1 = x1 − x1,r (E-67a)

z2 = x2 − α1 . (E-67b)

The derivations for subsystem x1 remain exactly the same as in Appendix C-3 (see Eqs. (C-
32) to (C-36)), because this subsystem is assumed to be fully known. Therefore we directly
move on to the second and final subsystem. Augmenting the quadratic CLF yields

V(z) = V1 +
1

2
z22 . (E-68)

Taking the time derivative of V along the trajectories of the error dynamics results in

V̇ = V̇1 + z2ż2

= −c1z
2
1 + z1z2 + z2 [ẋ2,0 + θ2,1 cos(x1,0)∆x1 + θ2,2∆x2 + θ2,3∆u− α̇1] . (E-69)

An obvious choice for the incremental control law ∆u is

∆u =
1

θ2,3
[−ẋ2,0 + α̇1 − θ2,1 cos(x1,0)∆x1 − θ2,2∆x2 − z1 − c2z2] , (E-70)

which results in the following expression for V̇:

V̇ = −c1z
2
1 − c2z

2
2 . (E-71)

By Theorem C.2 it now follows that:

lim
t→∞

z1 = 0 → lim
t→∞

[x1 − x1,r] = 0 (E-72a)

lim
t→∞

z2 = 0 . (E-72b)

Now the performance of the conventional BS controller is compared to that of the incremental
control laws with Time-Scale Separation (IBS TSS) and without Time-Scale Separation (IBS).
The control laws are respectively:

u =
1

θ2,3
[−z1 − c2z2 − θ2,1 sin(x1)− θ2,2x2 + α̇1] (C-39 revisited)

u = u0 +
1

θ2,3
[−z1 − c2z2 − ẋ2,0 + α̇1] (E-49 revisited)

u = u0 +
1

θ2,3
[−z1 − c2z2 − θ2,1 cos(x1,0)∆x1 − θ2,2∆x2 − ẋ2,0 + α̇1] . (E-70 revisited)

We see that both Eqs. (C-39) and (E-70) rely on exact knowledge of the plant dynamics and
that both control laws depend on the control effectiveness parameter, i.e. θ2,3. A difference is
that control law (E-70) also needs to measure/estimate ẋ2,0 and u0, making it more dependent
on the corresponding sensors/estimators.
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Simulations have been run with a sampling time of 0.01 s. The selected initial conditions and
model parameters can be found in Eq. (C-44). The following control parameters have been
used:

c1 = 10 ,

θ̂2,1 = 25 · θ2,1 ,
θ̂2,3 = θ2,3 .

c2 = 10 ,

θ̂2,2 = 25 · θ2,2 , (E-73)

That is, uncertainties have been implemented in the system dynamics. The results of the
simulation can be seen in Figure E-6. It is clear that the conventional BS controller (C-39)
is not able to accurately track the reference signal now uncertainties have been introduced.
The incremental controller (E-49) performs well because the following assumption holds (see
Figure E-1):

θ2,3∆u ≫ θ2,1 cos(x1,0)∆x1 + θ2,2∆x2 , (E-41 revisited)

which we used when deriving this control law, and therefore it is robust to uncertainties in
parameters θ2,1 and θ2,2. The control law (E-70) performs slightly worse compared to the IBS
controller with TSS because it depends on the uncertain parameters θ2,1 and θ2,2. However,
this controller performs much better compared to the full-information BS controller because
the uncertainties are now multiplied by the very small difference variables ∆x1 and ∆x2.

0 5 10 15 20 25 30

−10

−5

0

5

10

x
1
(r
a
d
)

 

 

Reference
BS
IBS TSS
IBS

0 5 10 15 20 25 30
−5

0

5

time (s)

er
ro
r
(r
a
d
)

Figure E-6: The control performance of three control laws in the presence of parametric uncer-
tainties in the system dynamics.

Now we change the model parameters to find out whether the IBS TSS controller will still
perform satisfactory. The following initial conditions and parameters have been used for the
model:

x1(0) = 1 ,

θ2,1 = −9.81 ,

θ2,3 = 0.1 .

x2(0) = −1 ,

θ2,2 = −200 ,
(E-74)
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Simulations have been run with a sampling time of 0.01 s, no uncertainties have been intro-
duced. The results of the simulation can be found in Figure E-7. From this figure it is clear
that the IBS TSS controller is no longer able to accurately track the reference signal. This
can be explained on basis of Figure E-8, where we can see that assumption (E-41) which we
made during the derivation of this control law no longer holds.
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Figure E-7: The control performance of three control laws in the absence of any uncertainties.
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Figure E-8: The terms of incremental equation (E-46) for a sampling time of 0.01 s.
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Now we select the control parameters as follows:

c1 = 10 ,

θ̂2,1 = θ2,1 ,

θ̂2,3 = θ2,3 .

c2 = 10 ,

θ̂2,2 = 1.1 · θ2,2 , (E-75)

The results of the simulation with a sampling time of 0.01 s can be seen in Figure E-9.
Clearly, only the IBS controller is now able to provide accurate tracking of the reference
signal. However, we can see that even for this controller there is a small tracking error during
the maneuvers. This small error is caused by the parametric uncertainty and can be reduced
by increasing the sampling rate of the simulation, as can be seen in Figure E-10. Note that the
tracking capability of the IBS TSS controller now also significantly improves, this is because
the terms ∆x and ∆u in Eqs. (E-49) and (E-70) become even smaller for very high sampling
rates. That is, both incremental controllers become model independent for sufficiently high
sampling rates.
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Figure E-9: The control performance of three control laws in the presence of parametric uncer-
tainty θ̂2,2 = 1.1 · θ2,2 with a sampling time of 0.01 s.
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Figure E-10: The control performance of three control laws in the presence of parametric un-
certainty θ̂2,2 = 1.1 · θ2,2 with a sampling time of 0.001 s.

E-2-4 Command-Filtered Incremental Backstepping without Time-Scale Sepa-
ration

In this section the design procedure of a Command-Filtered IBS controller for the pendulum
model is discussed. We do not make the assumption of TSS (see Eq. (E-41)), thus when the
sampling rate is sufficiently high we can write the pendulum model as

ẋ1 = x2 (E-66a revisited)

ẋ2 = ẋ2,0 + θ2,1 cos(x1,0)∆x1 + θ2,2∆x2 + θ2,3∆u . (E-66b revisited)

The control task is to track the smooth reference state x1,r with the state x1. Earlier we
obtained the following control laws for the complete nonlinear pendulum:

u =
1

θ2,3
[−c2 (x2 − α1)− z1 − θ2,1 sin(x1)− θ2,2x2 + α̇1] (C-39 revisited)

u0 =
1

θ2,3
[−c2 (x2 − x2,r)− z̄1 − θ2,1 sin(x1)− θ2,2x2 + ẋ2,r] , (D-46 revisited)

which are respectively the conventional full-information BS controller and the Command-
Filtered BS control law. In the last section we obtained the following IBS control law:

u = u0 +
1

θ2,3
[−c2 (x2 − α1)− z1 − ẋ2,0 − θ2,1 cos(x1,0)∆x1 − θ2,2∆x2 + α̇1] .

(E-70 revisited)

Now the following Command-Filtered IBS control seems viable:

u0 = u0 +
1

θ2,3
[−c2 (x2 − x2,r)− z1 − ẋ2,0 − θ2,1 cos(x1,0)∆x1 − θ2,2∆x2 + ẋ2,r] . (E-77)
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In order to proof stability of the closed-loop system, we consider the following quadratic
Lyapunov function:

V(z̄) = 1

2
z̄21 +

1

2
z̄22 , (E-78)

where z̄ and the z̄1-dynamics are similar as in Eqs. (D-37) and (D-38). The z̄2-dynamics are
now given by

˙̄z2 = ẋ2,0 + θ2,1 cos(x1,0)∆x1 + θ2,2∆x2 + θ2,3∆u− ẋ2,r − χ̇2 . (E-79)

Taking the time derivative of V along the trajectories of Eqs. (D-38) and (E-79) yields

V̇ = −c1z̄
2
1 + z̄1z̄2 + z̄2 [ẋ2,0 + θ2,1 cos(x1,0)∆x1 + θ2,2∆x2 + θ2,3∆u− ẋ2,r − χ̇2] . (E-80)

Now χ2 is the output of the following stable linear filter:

χ̇2 = −c2χ2 + θ2,3
(
u− u0

)
, (E-81)

with χ2(0) = 0. This yields:

V̇ = −c1z̄
2
1 + z̄1z̄2 + z̄2

[
ẋ2,0 + θ2,1∆x1 + θ2,2∆x2 + θ2,3

(
u0 − u0

)
− ẋ2,r + c2χ2

]

= −c1z̄
2
1 + z̄1z̄2 + z̄2 [−z̄1 − c2z2 + c2χ2]

= −c1z̄
2
1 + z̄1z̄2 + z̄2 [−z̄1 − c2z̄2]

= −c1z̄
2
1 − c2z̄

2
2 . (E-82)

By Theorem C.2 it now follows that:

lim
t→∞

z̄ = 0 . (E-83)

The new incremental control law (E-77) depends on x2,r and ẋ2,r, which are the output
of the command filter and therefore the analytical derivative α̇1 is no longer required. In
the absence of physical limitations (i.e. magnitude, rate and bandwidth constraints on the
intermediate state x2 and control u) and for sufficiently high update rate, closed-loop stability
is still guaranteed even when uncertainties are introduced in either the system dynamics or
the control effectiveness matrix.
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Appendix F

Tuning Functions Adaptive
Backstepping

In this appendix the Tuning Functions Adaptive Backstepping (TFABS) control approach is
derived and evaluated that makes use of Lyapunov-based on-line parameter update laws to
increase the robustness against parametric uncertainties (F-1). In order to evaluate this non-
linear control approach, (Command-Filtered) TFABS control laws are derived and simulated
for the pendulum model (F-2).

F-1 Theory

First the recursive Adaptive Backstepping (ABS) procedure is derived, in which the update
laws are recursively build up in order to prevent overparameterization (F-1-1). Next, this
approach is augmented with command filters to reduce the complexity (F-1-2).

F-1-1 Recursive Adaptive Backstepping

We consider the following strict-feedback system:

ẋi = fi(x̄i) + gi(x̄i)xi+1 , i = 1, . . . , n− 1 (F-1a)

ẋn = fn(x) + gn(x)u , (F-1b)

where x ∈ R
n is the state, x̄i = [x1, · · · , xi]T , xi ∈ R and u ∈ R the control signal and

gi 6= 0 for i = 1, . . . , n. The control objective is to track a smooth reference signal x1,r, for
which the n-order time derivatives are assumed to be known and bounded, with the state x1.
Furthermore, the signals xi for i = 2, . . . , n must remain bounded. The smooth functions fi
and gi ∈ Cn−i for i = 1, . . . , n contain the unknown dynamics of the system and will have to
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be approximated. It is assumed there exist vectors θfi and θgi such that

fi(x̄i) = ϕfi
(x̄i)

T
θfi , i = 1, . . . , n (F-2a)

gi(x̄i) = ϕgi
(x̄i)

T
θgi . (F-2b)

Now we can write system (F-1) as

ẋi = ϕfi
(x̄i)

T
θfi +ϕgi

(x̄i)
T
θgixi+1 , i = 1, . . . , n− 1 (F-3a)

ẋn = ϕfn(x)
T
θfn +ϕgn(x)

T
θgnu . (F-3b)

The estimates of the nonlinear functions fi and gi are defined as

f̂i(x̄i, θ̂fi) = ϕfi
(x̄i)

T
θ̂fi , i = 1, . . . , n (F-4a)

ĝi(x̄i, θ̂gi) = ϕgi
(x̄i)

T
θ̂gi , (F-4b)

and the parameter errors as

θ̃fi = θfi − θ̂fi → ˙̃
θfi = − ˙̂

θfi (F-5a)

θ̃gi = θgi − θ̂gi → ˙̃
θgi = − ˙̂

θgi . (F-5b)

Subsystem 1

We start by considering the first subsystem, which is the subsystem “furthest” away from the
actual control u:

ẋ1 = ϕf1
(x1)

T
θf1 +ϕg1

(x1)
T
θg1x2 . (F-6)

Now we regard state x2 as the control input for this subsystem. However, because x2 is just
a state variable and not the real control input u, we call x2 the virtual control.

Now we introduce the tracking errors:

z1 = x1 − x1,r (F-7a)

z2 = x2 − x2,r ≡ x2 − α1 , (F-7b)

where x2,r ≡ α1 is the desired value of x2, called the stabilizing function. Rewriting the
current subsystem in terms of the tracking error z1 results in

ż1 = ẋ1 − ẋ1,r

= ϕ
T
f1
θf1 +ϕ

T
g1
θg1x2 − ẋ1,r

= ϕ
T
f1
θf1 +ϕ

T
g1
θg1 [z2 + α1]− ẋ1,r . (F-8)

Now we formulate a quadratic scalar Control Lyapunov Function (CLF) for the first subsys-
tem:

V1(z1, θ̃⋆1) =
1

2
z21 +

1

2
θ̃
T

f1
Γ−1
f1

θ̃f1 +
1

2
θ̃
T

g1
Γ−1
g1

θ̃g1 . (F-9)
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Taking the time derivative along the trajectories of Eqs. (F-5) and (F-8) yields

V̇1 = z1
[
ϕ

T
f1
θf1 +ϕ

T
g1
θg1 (z2 + α1)− ẋ1,r

]
− θ̃

T

f1
Γ−1
f1

˙̂
θf1 − θ̃

T

g1
Γ−1
g1

˙̂
θg1

= z1

[

ϕ
T
f1

(

θ̃f1 + θ̂f1

)

+ϕ
T
g1

(

θ̃g1 + θ̂g1

)

(z2 + α1)− ẋ1,r

]

− θ̃
T

f1
Γ−1
f1

˙̂
θf1 − θ̃

T

g1
Γ−1
g1

˙̂
θg1

= z1

[

ϕ
T
f1
θ̂f1 +ϕ

T
g1
θ̂g1 (z2 + α1)− ẋ1,r

]

− θ̃
T

f1
Γ−1
f1

[
˙̂
θf1 − Γf1ϕf1

z1

]

−θ̃
T

g1
Γ−1
g1

[
˙̂
θg1 − Γg1ϕg1

x2z1

]

. (F-10)

The stabilizing control law α1 and the intermediate update laws τ f11 and τ g11 are now selected
as

α1 =
1

ϕT
g1
θ̂g1

[

−c1z1 −ϕ
T
f1
θ̂f1 + ẋ1,r

]

(F-11a)

τ f11 = Γf1ϕf1
z1 (F-11b)

τ g11 = Γg1ϕg1
x2z1 , (F-11c)

this yields

V̇1 = −c1z
2
1 + z1ϕ

T
g1
θ̂g1z2 − θ̃

T

f1
Γ−1
f1

[
˙̂
θf1 − τ f11

]

− θ̃
T

g1
Γ−1
g1

[
˙̂
θg1 − τ g11

]

. (F-12)

Note that by selecting
˙̂
θf1 = τ f11 and

˙̂
θg1 = τ g11 we can cancel the last two indefinite terms.

However, doing this at every design step will result in overparameterization of the estimator
(Sonneveldt, 2010). In the TFABS approach, the Tuning Functions (TFs) τ ⋆ are updated
every step to prevent overparameterization.

Subsystem 2

Now we consider the second subsystem:

ẋ2 = ϕf2
(x̄2)

T
θf2 +ϕg2

(x̄2)
T
θg2x3 . (F-13)

We regard state x3 as the control input for the second subsystem. However, because x3 is
just a state variable and not the real control input u, we call x3 the virtual control.

Now we introduce the tracking error:

z3 = x3 − α2 , (F-14)

and rewrite the second subsystem in terms of the tracking errors

ż2 = ẋ2 − α̇1

= ϕ
T
f2
θf2 +ϕ

T
g2
θg2x3 − α̇1

= ϕ
T
f2
θf2 +ϕ

T
g2
θg2 (z3 + α2)− α̇1 . (F-15)
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The time derivative of the first stabilizing function α1 = f
(
x1, x1,r, ẋ1,r, θ̇f1 , θ̇g1

)
can be writ-

ten as

α̇1 =
∂α1

∂x1

(
ϕ

T
f1
θf1 +ϕ

T
g1
θg1x2

)
+

∂α1

∂x1,r
ẋ1,r +

∂α1

∂ẋ1,r
ẍ1,r +

∂α1

∂θ̂f1

˙̂
θf1 +

∂α1

∂θ̂g1

˙̂
θg1

=
∂α1

∂x1

(

ϕ
T
f1
θ̃f1 +ϕ

T
g1
θ̃g1x2

)

+ λ1 , (F-16)

where

λ1 =
∂α1

∂x1

(

ϕ
T
f1
θ̂f1 +ϕ

T
g1
θ̂g1x2

)

+
∂α1

∂x1,r
ẋ1,r +

∂α1

∂ẋ1,r
ẍ1,r +

∂α1

∂θ̂f1

˙̂
θf1 +

∂α1

∂θ̂g1

˙̂
θg1 . (F-17)

Now we augment the scalar CLF V1:

V2(z̄2, θ̃⋆2) = V1 +
1

2
z22 +

1

2
θ̃
T

f2
Γ−1
f2

θ̃f2 +
1

2
θ̃
T

g2
Γ−1
g2

θ̃g2 , (F-18)

where z̄2 = [z1, z2]
T and θ̃⋆2 = [θ̃f1 , θ̃g1 , θ̃f2 , θ̃g2 ]

T . Taking the time derivative of the CLF
along the trajectories of Eqs. (F-5), (F-8) and (F-15) results in

V̇2 = V̇1 + z2

[

ϕ
T
f2
θf2 +ϕ

T
g2
θg2 (z3 + α2)−

∂α1

∂x1

(

ϕ
T
f1
θ̃f1 +ϕ

T
g1
θ̃g1x2

)

− λ1

]

−θ̃
T

f2
Γ−1
f2

˙̂
θf2 − θ̃

T

g2
Γ−1
g2

˙̂
θg2

= −c1z
2
1 + z1ϕ

T
g1
θ̂g1z2 + z2

[

ϕ
T
f2
θ̂f2 +ϕ

T
g2
θ̂g2 (z3 + α2)− λ1

]

−θ̃
T

f1
Γ−1
f1

[

˙̂
θf1 − τ f11 + Γf1ϕf1

∂α1

∂x1
z2

]

− θ̃
T

g1
Γ−1
g1

[

˙̂
θg1 − τ g11 + Γg1ϕg1

∂α1

∂x1
x2z2

]

−θ̃
T

f2
Γ−1
f2

[
˙̂
θf2 − Γf2ϕf2

z2

]

− θ̃
T

g2
Γ−1
g2

[
˙̂
θg2 − Γg2ϕg2

x3z2

]

. (F-19)

The stabilizing control law α2 and the intermediate update laws are now selected as

α2 =
1

ϕT
g2
θ̂g2

[

−c2z2 −ϕ
T
g1
θ̂g1z1 −ϕ

T
f2
θ̂f2 + λ1

]

(F-20a)

τ f12 = τ f11 − Γf1ϕf1

∂α1

∂x1
z2 = Γf1ϕf1

[

z1 −
∂α1

∂x1
z2

]

(F-20b)

τ g12 = τ g11 − Γg1ϕg1

∂α1

∂x1
x2z2 = Γg1ϕg1

x2

[

z1 −
∂α1

∂x1
z2

]

(F-20c)

τ f22 = Γf2ϕf2
z2 (F-20d)

τ g22 = Γg2ϕg2
x3z2 , (F-20e)

this yields

V̇2 = −c1z
2
1 − c2z

2
2 + z2ϕ

T
g2
θ̂g2z3 − θ̃

T

f1
Γ−1
f1

[
˙̂
θf1 − τ f12

]

− θ̃
T

g1
Γ−1
g1

[
˙̂
θg1 − τ g12

]

−θ̃
T

f2
Γ−1
f2

[
˙̂
θf2 − τ f22

]

− θ̃
T

g2
Γ−1
g2

[
˙̂
θg2 − τ g22

]

. (F-21)

P. van Gils Adaptive Incremental Backstepping Flight Control



F-1 Theory 123

Subsystem i, i = 3, ..., n - 1

Now we consider the i-th subsystem:

ẋi = ϕfi
(x̄i)

T
θfi +ϕgi

(x̄i)
T
θgixi+1 , i = 3, . . . , n− 1 . (F-22)

We regard state xi+1 as the control input for the i-th subsystem. However, because xi+1 is
just a state variable and not the real control input u, we call xi+1 the virtual control.

Now we introduce the tracking errors:

zi = xi − αi−1 , i = 4, . . . , n , (F-23)

and rewrite the i-th subsystem in terms of the tracking errors

żi = ẋi − α̇i−1 , i = 3, . . . , n− 1

= ϕ
T
fi
θfi +ϕ

T
gi
θgixi+1 − α̇i−1

= ϕ
T
fi
θfi +ϕ

T
gi
θgi (zi+1 + αi)− α̇i−1 . (F-24)

The time derivative of the stabilizing function αi−1 can be written as

α̇i−1 =
i−1∑

j=1

∂αi−1

∂xj

(

ϕ
T
fj
θfj +ϕ

T
gj
θgjxj+1

)

+
i−1∑

j=1

(

∂αi−1

∂θ̂fj

˙̂
θfj +

∂αi−1

∂θ̂gj

˙̂
θgj

)

+
i∑

j=1

∂αi−1

∂x
(j−1)
1,r

x
(j)
1,r

=
i−1∑

j=1

∂αi−1

∂xj

(

ϕ
T
fj
θ̃fj +ϕ

T
gj
θ̃gjxj+1

)

+ λi−1 , (F-25)

where

λi−1 =
i−1∑

j=1

∂αi−1

∂xj

(

ϕ
T
fj
θ̂fj +ϕ

T
gj
θ̂gjxj+1

)

+
i−1∑

j=1

(

∂αi−1

∂θ̂fj

˙̂
θfj +

∂αi−1

∂θ̂gj

˙̂
θgj

)

+
i∑

j=1

∂αi−1

∂x
(j−1)
1,r

x
(j)
1,r .

(F-26)

Now we augment the scalar CLF:

Vi(z̄i, θ̃⋆i) = Vi−1 +
1

2
z2i +

1

2
θ̃
T

fi
Γ−1
fi

θ̃fi +
1

2
θ̃
T

gi
Γ−1
gi

θ̃gi , i = 3, . . . , n− 1 , (F-27)

where z̄i = [z1, · · · , zi]T and θ̃⋆i = [θ̃f1 , · · · , θ̃fi , θ̃g1 , · · · , θ̃gi ]
T . Taking the time derivative of
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the CLF along the trajectories of Eqs. (F-5), (F-8), (F-15) and (F-24) results in

V̇i = V̇i−1 + zi

[

ϕ
T
fi
θfi +ϕ

T
gi
θgi (zi+1 + αi)−

∂αi−1

∂xi−1

(

ϕ
T
fi−1

θ̃fi−1 +ϕ
T
gi−1

θ̃gi−1xi

)

− λi−1

]

−θ̃
T

fi
Γ−1
fi

˙̂
θfi − θ̃

T

gi
Γ−1
gi

˙̂
θgi (F-28)

= −
i−1∑

j=1

cjz
2
j + zi−1ϕ

T
gi−1

θ̂gi−1zi + zi

[

ϕ
T
fi
θ̂fi +ϕ

T
gi
θ̂gi (zi+1 + αi)− λi−1

]

−
i−1∑

j=1

θ̃
T

fj
Γ−1
fj

[

˙̂
θfj − τ fj(i−1)

+ Γfjϕfj

∂αi−1

∂xj
zi

]

− θ̃
T

fi
Γ−1
fi

[
˙̂
θfi − Γfiϕfi

zi

]

−
i−1∑

j=1

θ̃
T

gj
Γ−1
gj

[

˙̂
θgj − τ gj(i−1)

+ Γgjϕgj

∂αi−1

∂xj
xj+1zi

]

− θ̃
T

gi
Γ−1
gi

[
˙̂
θgi − Γgiϕgi

xi+1zi

]

.

The stabilizing control law αi and the intermediate update laws are now selected as

αi =
1

ϕT
gi
θ̂gi

[

−cizi −ϕ
T
gi−1

θ̂gi−1zi−1 −ϕ
T
fi
θ̂fi + λi−1

]

(F-29a)

τ fji = τ fj(i−1)
− Γfjϕfj

∂αi−1

∂xj
zi = Γfjϕfj



zj −
i−1∑

k=j

∂αk

∂xj
zk+1



 (F-29b)

τ gji = τ gj(i−1)
− Γgjϕgj

∂αi−1

∂xj
xj+1zi = Γgjϕgj

xj+1



zj −
i−1∑

k=j

∂αk

∂xj
zk+1



 (F-29c)

τ fii = Γfiϕfizi (F-29d)

τ gii = Γgiϕgixi+1zi , (F-29e)

this yields

V̇i = −
i∑

j=1

cjz
2
j + ziϕ

T
gi
θ̂gizi+1 −

i∑

j=1

θ̃
T

fj
Γ−1
fj

[
˙̂
θfj − τ fji

]

−
i∑

j=1

θ̃
T

gj
Γ−1
gj

[
˙̂
θgj − τ gji

]

. (F-30)

Subsystem n

Now we consider the final subsystem:

ẋn = ϕfn(x)
T
θfn +ϕgn(x)

T
θgnu . (F-31)

The z̄n-dynamics are given by

żn = ẋn − α̇n−1

= ϕ
T
fn
θfn +ϕ

T
gnθgnu− α̇n−1 . (F-32)
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The final Lyapunov function is now defined as

Vn(z̄n, θ̃⋆n) = Vn−1 +
1

2
z2n +

1

2
θ̃
T

fnΓ
−1
fn

θ̃fn +
1

2
θ̃
T

gnΓ
−1
gn θ̃gn

=
1

2

n∑

j=1

(

z2j + θ̃
T

fj
Γ−1
fj

θ̃fj + θ̃
T

gj
Γ−1
gj

θ̃gj

)

. (F-33)

Taking the time derivative of the CLF along the trajectories of Eqs. (F-5), (F-8), (F-15),
(F-24) and (F-32) results in

V̇n = V̇n−1 + zn

[

ϕ
T
fn
θfn +ϕ

T
gnθgnu− ∂αn−1

∂xn−1

(

ϕ
T
fn−1

θ̃fn−1 +ϕ
T
gn−1

θ̃gn−1xn

)

− λn−1

]

−θ̃
T

fnΓ
−1
fn

˙̂
θfn − θ̃

T

gnΓ
−1
gn

˙̂
θgn (F-34)

= −
n−1∑

j=1

cjz
2
j + zn−1ϕ

T
gn−1

θ̂gn−1zn + zn

[

ϕ
T
fn
θ̂fn +ϕ

T
gn θ̂gnu− λn−1

]

−
n−1∑

j=1

θ̃
T

fj
Γ−1
fj

[

˙̂
θfj − τ fj(n−1)

+ Γfjϕfj

∂αn−1

∂xj
zn

]

− θ̃
T

fnΓ
−1
fn

[
˙̂
θfn − Γfnϕfnzn

]

−
n−1∑

j=1

θ̃
T

gj
Γ−1
gj

[

˙̂
θgj − τ gj(n−1)

+ Γgjϕgj

∂αn−1

∂xj
xj+1zn

]

− θ̃
T

gnΓ
−1
gn

[
˙̂
θgn − Γgnϕgnuzn

]

.

The control law u and the final update laws are now selected as

u =
1

ϕT
gn θ̂gn

[

−cnzn −ϕ
T
gn−1

θ̂gn−1zn−1 −ϕ
T
fn
θ̂fn + λn−1

]

(F-35a)

˙̂
θfj = τ fj(n−1)

− Γfjϕfj

∂αn−1

∂xj
zn = Γfjϕfj



zj −
n−1∑

k=j

∂αk

∂xj
zk+1



 (F-35b)

˙̂
θgj = τ gj(n−1)

− Γgjϕgj

∂αn−1

∂xj
xj+1zn = Γgjϕgj

xj+1



zj −
n−1∑

k=j

∂αk

∂xj
zk+1



 (F-35c)

˙̂
θfn = Γfnϕfnzn (F-35d)

˙̂
θgn = Γgnϕgnuzn , (F-35e)

this yields

V̇n = −
n∑

j=1

cjz
2
j . (F-36)

According to the theorem of LaSalle-Yoshizawa (see Theorem C.2, page 71) the equilibrium
z = 0 is globally uniformly asymptotically stable when c1 > 0 and c2 > 0, implying that the
reference output state x1,r is successfully tracked by x1, that is:

lim
t→∞

[x1 − x1,r] = 0 . (F-37)
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F-1-2 Command-Filtered Adaptive Backstepping

In this section the TFABS technique is augmented with command filters to obviate the need for
analytic computation of the virtual control derivatives. Another advantage of using command
filters is that systems no longer have to be in triangular form. Moreover, command filters
allow the engineer to include magnitude, rate and bandwidth limits on the (virtual) controls.

We consider the following non-triangular, feedback passive system:

ẋi = fi(x) + gi(x)xi+1 , i = 1, . . . , n− 1 (F-38a)

ẋn = fn(x) + gn(x)u , (F-38b)

where x ∈ R
n is the state, xi ∈ R and u ∈ R the control signal and gi 6= 0 for i = 1, . . . , n.

The control objective is to track a smooth reference signal x1,r, for which the first-order
time derivative is assumed to be known and bounded, with the state x1. Furthermore, the
signals xi for i = 2, . . . , n must remain bounded. The smooth functions fi and gi contain the
unknown dynamics of the system and will have to be approximated. It is assumed there exist
vectors θfi and θgi such that

fi(x) = ϕfi
(x)Tθfi , i = 1, . . . , n (F-39a)

gi(x) = ϕgi
(x)Tθgi . (F-39b)

Now we can write Eq. (F-38) as

ẋi = ϕfi
(x)Tθfi +ϕgi

(x)Tθgixi+1 , i = 1, . . . , n− 1 (F-40a)

ẋn = ϕfn(x)
T
θfn +ϕgn(x)

T
θgnu . (F-40b)

The estimates of the nonlinear functions fi and gi are defined as

f̂i(x, θ̂fi) = ϕfi
(x)T θ̂fi , i = 1, . . . , n (F-41a)

ĝi(x, θ̂gi) = ϕgi
(x)T θ̂gi , (F-41b)

and the parameter errors as

θ̃fi = θfi − θ̂fi → ˙̃
θfi = − ˙̂

θfi (F-42a)

θ̃gi = θgi − θ̂gi → ˙̃
θgi = − ˙̂

θgi . (F-42b)

Subsystem 1

We start by considering the first subsystem, which is the subsystem “furthest” away from the
actual control u:

ẋ1 = ϕf1
(x)Tθf1 +ϕg1

(x)Tθg1x2 . (F-43)

Now we regard state x2 as the control input for this subsystem. However, because x2 is just
a state variable and not the real control input u, we call x2 the virtual control.
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The tracking errors are defined as

z1 = x1 − x1,r (F-44a)

z2 = x2 − x2,r , (F-44b)

where x2,r is the new virtual control law to be designed. As with TFABS, the first stabilizing
control law is defined as

α1 =
1

ϕT
g1
θ̂g1

[

−c1z1 −ϕ
T
f1
θ̂f1 + ẋ1,r

]

. (F-11a revisited)

However, instead of directly applying this virtual control, a new signal x02,r is defined as

x02,r = α1 − χ2 , (F-45)

where χ2 will be defined later on. The raw signal x02,r is led through a command filter to
obtain x2,r and its time derivative ẋ2,r. The effect that the use of this command filter has on
the tracking error z1 is estimated by the stable linear filter:

χ̇1 = −c1χ1 +ϕ
T
g1
θ̂g1

(
x2,r − x02,r

)
, (F-46)

with χ1(0) = 0. This auxiliary system compensates for the constraint effects due to magni-
tude, rate and bandwidth limitations of the command filter. Now we introduce the compen-
sated tracking errors:

z̄1 = z1 − χ1 (F-47a)

z̄2 = z2 − χ2 . (F-47b)

The z̄1-dynamics are given by

˙̄z1 = ż1 − χ̇1

= ẋ1 − ẋ1,r − χ̇1

= ϕ
T
f1
θf1 +ϕ

T
g1
θg1x2 − ẋ1,r + c1χ1 −ϕ

T
g1
θ̂g1

(
x2,r − x02,r

)

= ϕ
T
f1
θf1 +ϕ

T
g1
θg1 (z2 + x2,r)− ẋ1,r + c1χ1 −ϕ

T
g1
θ̂g1

(
x2,r − x02,r

)
. (F-48)

Now we formulate a quadratic scalar CLF for the first subsystem:

V1(z̄1, θ̃⋆1) =
1

2
z̄21 +

1

2
θ̃
T

f1
Γ−1
f1

θ̃f1 +
1

2
θ̃
T

g1
Γ−1
g1

θ̃g1 . (F-49)
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Taking the time derivative of V1 along the trajectories of Eqs. (F-42) and (F-48) results in

V̇1 = z̄1

[

ϕ
T
f1
θf1 +ϕ

T
g1
θg1 (z2 + x2,r)− ẋ1,r + c1χ1 −ϕ

T
g1
θ̂g1

(
x2,r − x02,r

)]

−θ̃
T

f1
Γ−1
f1

˙̂
θf1 − θ̃

T

g1
Γ−1
g1

˙̂
θg1

= z̄1

[

ϕ
T
f1
θf1 +ϕ

T
g1
θg1 (z2 + x2,r)−ϕ

T
g1
θ̂g1x

0
2,r +ϕ

T
g1
θ̂g1x

0
2,r − ẋ1,r + c1χ1

−ϕ
T
g1
θ̂g1

(
x2,r − x02,r

)]

− θ̃
T

f1
Γ−1
f1

˙̂
θf1 − θ̃

T

g1
Γ−1
g1

˙̂
θg1

= z̄1

[

ϕ
T
f1
θf1 +ϕ

T
g1
θg1 (z2 + x2,r)−ϕ

T
g1
θ̂g1x

0
2,r +ϕ

T
g1
θ̂g1 (α1 − χ2)− ẋ1,r + c1χ1

−ϕ
T
g1
θ̂g1

(
x2,r − x02,r

)]

− θ̃
T

f1
Γ−1
f1

˙̂
θf1 − θ̃

T

g1
Γ−1
g1

˙̂
θg1

= z̄1

[

−c1z1 +ϕ
T
f1
θ̃f1 +ϕ

T
g1
θg1 (z2 + x2,r)−ϕ

T
g1
θ̂g1x

0
2,r −ϕ

T
g1
θ̂g1χ2 + c1χ1

−ϕ
T
g1
θ̂g1

(
x2,r − x02,r

)]

− θ̃
T

f1
Γ−1
f1

˙̂
θf1 − θ̃

T

g1
Γ−1
g1

˙̂
θg1

= z̄1

[

−c1 (z1 − χ1) +ϕ
T
f1
θ̃f1 +ϕ

T
g1
θ̃g1x2 +ϕ

T
g1
θ̂g1 z̄2

]

− θ̃
T

f1
Γ−1
f1

˙̂
θf1 − θ̃

T

g1
Γ−1
g1

˙̂
θg1

= −c1z̄
2
1 + z̄1ϕ

T
g1
θ̂g1 z̄2 − θ̃

T

f1
Γ−1
f1

[
˙̂
θf1 − Γf1ϕf1

z̄1

]

− θ̃
T

g1
Γ−1
g1

[
˙̂
θg1 − Γg1ϕg1

x2z̄1

]

. (F-50)

The parameter update laws are now selected as

˙̂
θf1 = Γf1ϕf1

z̄1 (F-51a)

˙̂
θg1 = Γg1ϕg1

x2z̄1 , (F-51b)

this yields

V̇1 = −c1z̄
2
1 + z̄1ϕ

T
g1
θ̂g1 z̄2 . (F-52)

Subsystem i, i = 2, ..., n - 1

Now we consider the i-th subsystem:

ẋi = ϕfi
(x)Tθfi +ϕgi

(x)Tθgixi+1 , i = 2, . . . , n− 1 . (F-53)

We regard state xi+1 as the control input for the i-th subsystem. However, because xi+1 is
just a state variable and not the real control input u, we call xi+1 the virtual control.

Now we introduce the tracking errors:

zi = xi − xi,r , i = 3, . . . , n , (F-54)

where xi,r are the new virtual control laws to be designed. As with TFABS, the stabilizing
control laws are defined as

αi =
1

ϕT
gi
θ̂gi

[

−cizi −ϕ
T
gi−1

θ̂gi−1 z̄i−1 −ϕ
T
fi
θ̂fi + ẋi,r

]

, i = 2, . . . , n− 1 . (F-55)
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Note that the variables λi−1 and zi−1 in Eq. (C-21) have been replaced by respectively ẋi,r
and z̄i−1 because of the new definitions of the tracking error.

However, instead of directly applying this virtual control, new signals x0i,r are defined by

x0i,r = αi−1 − χi , i = 3, . . . , n , (F-56)

where χi will be defined later on. The raw signals x0i,r are led through command filters to
obtain xi,r and their time derivative ẋi,r. The effect that the use of these command filters
have on the tracking error zi is estimated by the stable linear filters:

χ̇i = −ciχi +ϕ
T
gi
θ̂gi

(
xi+1,r − x0i+1,r

)
, i = 2, . . . , n− 1 , (F-57)

with χi(0) = 0. These auxiliary systems compensate for the constraint effects due to magni-
tude, rate and bandwidth limitations of the command filter. Now we introduce the compen-
sated tracking errors:

z̄i = zi − χi, i = 3, . . . , n . (F-58)

The z̄i-dynamics are given by

˙̄zi = żi − χ̇i, i = 2, . . . , n− 1

= ẋi − ẋi,r − χ̇i

= ϕ
T
fi
θfi +ϕ

T
gi
θgixi+1 − ẋi,r + ciχi −ϕ

T
gi
θ̂gi

(
xi+1,r − x0i+1,r

)

= ϕ
T
fi
θfi +ϕ

T
gi
θgi (zi+1 + xi+1,r)− ẋi,r + ciχi −ϕ

T
gi
θ̂gi

(
xi+1,r − x0i+1,r

)
. (F-59)

Augmenting the scalar CLF V1:

Vi(z̄i, θ̃⋆i) =
1

2

i∑

j=1

[

z̄2j +
1

2
θ̃
T

fj
Γ−1
fj

θ̃fj +
1

2
θ̃
T

gj
Γ−1
gj

θ̃gj

]

, i = 2, . . . , n− 1

=
1

2
z̄21 +

1

2
θ̃
T

f1
Γ−1
f1

θ̃f1 +
1

2
θ̃
T

g1
Γ−1
g1

θ̃g1 +
1

2

i∑

j=2

[

z̄2j +
1

2
θ̃
T

fj
Γ−1
fj

θ̃fj +
1

2
θ̃
T

gj
Γ−1
gj

θ̃gj

]

= V1(z̄1) +
1

2

i∑

j=2

[

z̄2j +
1

2
θ̃
T

fj
Γ−1
fj

θ̃fj +
1

2
θ̃
T

gj
Γ−1
gj

θ̃gj

]

. (F-60)

where z̄i = [z̄1, · · · , z̄i]T and θ̃⋆i = [θ̃f1 , · · · , θ̃fi , θ̃g1 , · · · , θ̃gi ]
T . Taking the time derivative of
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the CLF along the trajectories of Eqs. (F-42), (F-48) and (F-59) results in

V̇i = V̇1 +
i∑

j=2

z̄j

[

ϕ
T
fj
θfj +ϕ

T
gj
θgj (zj+1 + xj+1,r)− ẋj,r + cjχj − ϕT

gj
θ̂gj

(
xj+1,r − x0j+1,r

)]

−
i∑

j=2

[

θ̃
T

fj
Γ−1
fj

˙̂
θfj + θ̃

T

gj
Γ−1
gj

˙̂
θgj

]

= −c1z̄
2
1 + z̄1ϕ

T
g1
θ̂g1 z̄2 −

i∑

j=2

[

θ̃
T

fj
Γ−1
fj

˙̂
θfj + θ̃

T

gj
Γ−1
gj

˙̂
θgj

]

+

i∑

j=2

z̄j

[

ϕ
T
fj
θfj +ϕ

T
gj
θgj (zj+1 + xj+1,r)− ẋj,r + cjχj − ϕT

gj
θ̂gj

(
xj+1,r − x0j+1,r

)]

= −c1z̄
2
1 + z̄1ϕ

T
g1
θ̂g1 z̄2 −

i∑

j=2

[

θ̃
T

fj
Γ−1
fj

˙̂
θfj + θ̃

T

gj
Γ−1
gj

˙̂
θgj

]

+
i∑

j=2

z̄j

[

ϕ
T
fj
θfj +ϕ

T
gj
θgj (zj+1 + xj+1,r)− ϕT

gj
θ̂gjx

0
j+1,r + ϕT

gj
θ̂gj (αj − χj+1)

− ẋj,r + c1χ1 − ϕT
gj
θ̂gj

(
xj+1,r − x0j+1,r

)]

= −c1z̄
2
1 + z̄1ϕ

T
g1
θ̂g1 z̄2 −

i∑

j=2

[

θ̃
T

fj
Γ−1
fj

˙̂
θfj + θ̃

T

gj
Γ−1
gj

˙̂
θgj

]

+
i∑

j=2

z̄j

[

−cjzj −ϕ
T
gj−1

θ̂gj−1 z̄j−1 +ϕ
T
fj
θ̃fj +ϕ

T
gj
θgj (zj+1 + xj+1,r)− ϕT

gj
θ̂gjx

0
j+1,r

−ϕT
gj
θ̂gjχj+1 + cjχj − ϕT

gj
θ̂gj

(
xj+1,r − x0j+1,r

)]

= −c1z̄
2
1 + z̄1ϕ

T
g1
θ̂g1 z̄2 −

i∑

j=2

[

θ̃
T

fj
Γ−1
fj

˙̂
θfj + θ̃

T

gj
Γ−1
gj

˙̂
θgj

]

+
i∑

j=2

z̄j

[

−cj (zj − χj)−ϕ
T
gj−1

θ̂gj−1 z̄j−1 +ϕ
T
fj
θ̃fj +ϕ

T
gj
θ̃gjxj+1 + ϕT

gj
θ̂gj z̄j+1

]

= −
i∑

j=1

cj z̄
2
j + z̄iϕ

T
gi
θ̂gi z̄i+1 −

i∑

j=2

θ̃
T

fj
Γ−1
fj

[
˙̂
θfj − Γfjϕfj

z̄j

]

−
i∑

j=2

θ̃
T

gj
Γ−1
gj

[
˙̂
θgj − Γgjϕgj

xj+1z̄j

]

. (F-61)

The parameter update laws are now selected as

˙̂
θfj = Γfjϕfj

z̄j (F-62a)

˙̂
θgj = Γgjϕgj

xj+1z̄j , (F-62b)
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this yields

V̇i = −
i∑

j=1

cj z̄
2
j + z̄iϕ

T
gi
θ̂gi z̄i+1 . (F-63)

Subsystem n

Now we consider the final subsystem:

ẋn = ϕfn(x)
T
θfn +ϕgn(x)

T
θgnu . (F-64)

The raw signal u0 is led through a command filter to obtain u. The effect that the use of this
command filter has on the tracking error zn is estimated by the stable linear filter:

χ̇n = −cnχn +ϕ
T
gn θ̂gn

(
u− u0

)
, (F-65)

with χn(0) = 0. The z̄n-dynamics are given by

˙̄zn = żn − χ̇n

= ẋn − ẋn,r − χ̇n

= ϕ
T
fn
θfn +ϕ

T
gnθgnu− ẋn,r + cnχn −ϕ

T
gn θ̂gn

(
u− u0

)
. (F-66)

The final Lyapunov function is now defined as

Vn(z̄n, θ̃⋆n) =
1

2

n∑

j=1

[

z̄2j +
1

2
θ̃
T

fj
Γ−1
fj

θ̃fj +
1

2
θ̃
T

gj
Γ−1
gj

θ̃gj

]

= Vn−1(z̄n−1) +
1

2
z̄2n +

1

2
θ̃
T

fnΓ
−1
fn

θ̃fn +
1

2
θ̃
T

gnΓ
−1
gn θ̃gn . (F-67)

Taking the time derivative of the CLF along the trajectories of Eqs. (F-42), (F-48), (F-59)
and (F-66) results in

V̇n = V̇n−1 + z̄n

[

ϕ
T
fn
θfn +ϕ

T
gnθgnu− ẋn,r + cnχn −ϕ

T
gn θ̂gn

(
u− u0

)]

−θ̃
T

fnΓ
−1
fn

˙̂
θfn − θ̃

T

gnΓ
−1
gn

˙̂
θgn

= −
n−1∑

j=1

cj z̄
2
j + z̄n−1ϕ

T
gn−1

θ̂gn−1 z̄n − θ̃
T

fnΓ
−1
fn

˙̂
θfn − θ̃

T

gnΓ
−1
gn

˙̂
θgn

+z̄n

[

ϕ
T
fn
θfn +ϕ

T
gn θ̂gnu

0 − ẋn,r + cnχn +ϕ
T
gn θ̃gnu

]

. (F-68)

Now we select the following control law

u0 =
1

ϕT
gn θ̂gn

[

−cnzn −ϕ
T
gn−1

θ̂gn−1 z̄n−1 −ϕ
T
fn
θ̂fn + ẋn,r

]

, (F-69)
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this yields

V̇n = −
n−1∑

j=1

cj z̄
2
j + z̄n−1ϕ

T
gn−1

θ̂gn−1 z̄n − θ̃
T

fnΓ
−1
fn

˙̂
θfn − θ̃

T

gnΓ
−1
gn

˙̂
θgn

+z̄n

[

−cnzn −ϕ
T
gn−1

θ̂gn−1 z̄n−1 +ϕ
T
fn
θ̃fn +ϕ

T
gn θ̃gnu+ cnχn

]

= −
n−1∑

j=1

cj z̄
2
j − θ̃

T

fnΓ
−1
fn

˙̂
θfn − θ̃

T

gnΓ
−1
gn

˙̂
θgn + z̄n

[

−cn (zn − χn) +ϕ
T
fn
θ̃fn +ϕ

T
gn θ̃gnu

]

= −
n∑

j=1

cj z̄
2
j − θ̃

T

fnΓ
−1
fn

[
˙̂
θfn − Γfnϕfn z̄n

]

− θ̃
T

gnΓ
−1
gn

[
˙̂
θgn − Γgnϕgnuz̄n

]

. (F-70)

The parameter update laws are now selected as

˙̂
θfn = Γfnϕfn z̄n (F-71a)

˙̂
θgn = Γgnϕgnuz̄n , (F-71b)

this yields

V̇n = −
n∑

j=1

cj z̄
2
j . (F-72)

By the theorem of LaSalle-Yoshizawa (see Theorem C.2, page 71) it now follows that the
equilibrium z̄ = 0 is globally uniformly asymptotically stable. Note that this derivation
only guarantees desirable properties for the compensated tracking error z̄ and not the actual
tracking error z. According to (Farrell et al., 2005), in the absence of physical limitations
(i.e. magnitude, rate and bandwidth constraints on the commanded state x2,r and control u),
convergence of the tracking error z is still guaranteed. When the inputs are too aggressive,
the implemented limits can come into effect. During such a period z and χ become nonzero
because the desired control signals are not able to be implemented. However, the χ-signals
and therefore also the tracking error z will remain bounded, because χ is the output of a
stable linear system with a bounded input. When the limits are no longer in effect, the
tracking error z will converge to 0.

F-2 Simulations

In order to evaluate the TFABS approach, six simulations are performed by using the pen-
dulum model:

1. Adaptive Backstepping with one unknown parameter;

2. Command-Filtered Adaptive Backstepping with one unknown parameter;

3. Adaptive Backstepping with one unknown time-varying parameter;

4. Adaptive Backstepping with three unknown parameters;

5. Adaptive Incremental Backstepping with Time-Scale Separation;

6. Adaptive Incremental Backstepping without Time-Scale Separation.
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F-2-1 Adaptive Backstepping with one unknown parameter

In this section a Backstepping (BS) controller is augmented with a TF in order to cope with
a parametric uncertainty of the pendulum model, which is for convenience repeated below:

ẋ1 = x2 (B-3a revisited)

ẋ2 = θ2,1 sin(x1) + θ2,2x2 + θ2,3u , (B-3b revisited)

where we now assume θ2,2 is an unknown constant parameter. The control task is to track
the smooth reference state x1,r with the state x1. Similar as before, we start by defining the
tracking errors as

z1 = x1 − x1,r (F-74a)

z2 = x2 − α1 . (F-74b)

The derivations for subsystem x1 remain exactly the same as in Appendix C-3 (see Eqs. (C-
32) to (C-36)), because this subsystem is assumed to be fully known. Therefore we directly
move on to the second and final subsystem. Now we introduce the parameter estimation
error θ̃2,2:

θ̃2,2 = θ2,2 − θ̂2,2 → ˙̃
θ2,2 = − ˙̂

θ2,2 , (F-75)

where θ̂2,2 is the estimate of θ2,2. Now we can rewrite the dynamics of the second error state
as follows:

ż2 = θ2,1 sin(x1) +
(

θ̃2,2 + θ̂2,2

)

x2 + θ2,3u− α̇1 . (F-76)

The earlier formulated Lyapunov function V1 is now augmented to penalize the second tracking
error and the parameter estimation error as well:

V(z, θ̃2,2) =
1

2
z21 +

1

2
z22 +

1

2γ2
θ̃22,2 , (F-77)

where γ2 > 0 is the adaptation gain. Taking the time derivative of V along the trajectories
of the error dynamics and Eq. (F-75) results in

V̇ = −c1z
2
1 + z1z2 + z2

[

θ2,1 sin(x1) +
(

θ̃2,2 + θ̂2,2

)

x2 + θ2,3u− α̇1

]

− 1

γ2
θ̃2,2

˙̂
θ2,2

= −c1z
2
1 + z1z2 + z2

[

θ2,1 sin(x1) + θ̂2,2x2 + θ2,3u− α̇1

]

− 1

γ2
θ̃2,2

(
˙̂
θ2,2 − γ2z2x2

)

. (F-78)

Now we introduce the following real control u:

u =
1

θ2,3

[

−c2z2 − z1 − θ2,1 sin(x1)− θ̂2,2x2 + α̇1

]

, (F-79)

which reduces V̇ to

V̇ = −c1z
2
1 − c2z

2
2 −

1

γ2,2
θ̃2,2

(
˙̂
θ2,2 − γ2z2x2

)

. (F-80)
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By selecting the following update law:

˙̂
θ2,2 = γ2z2x2 , (F-81)

we render V̇ negative definite:
V̇ = −c1z

2
1 − c2z

2
2 . (F-82)

By Theorem C.2 it now follows that

lim
t→∞

z1 = 0 → lim
t→∞

[x1 − x1,r] = 0 (F-83a)

lim
t→∞

z2 = 0 . (F-83b)

Note that the parameter estimation error is completely canceled in Eq. (F-80) by selecting the
parameter update law as (F-81), therefore we cannot guarantee that the parameter estimate
θ̂2,2 actually converges to the real parameter θ2,2. All we can conclude from Eqs. (F-77)
and (F-82) with respect to the parameter estimation error θ̃2,2 is that it is bounded. In (Krstić,
1996) it is proven that convergence of the parameter estimate to a constant value is always
achieved. In case of Persistent Excitation (PE), the parameter estimate converges to the
actual parameter value. The requirement of PE basically means that the reference signal
must be “rich enough”, i.e. “contain enough frequencies” for the parameter estimation error
to converge to zero (Boyd & Sastry, 1986).

Simulations of the TFABS controller have been run for the system (B-3) with one unknown
parameter and a sampling time of 0.01 s. The initial conditions and parameters which have
been used in this simulation for the model can be found in Eq. (C-44). The following control
and estimator parameters have been selected:

c1 = 10 ,

θ̂2,1 = θ2,1 ,

θ̂2,3 = θ2,3 .

c2 = 10 ,

θ̂2,2(0) = −50 · θ2,2 , (F-84)

Different values of the adaptation gain γ2 have been selected. From Figure F-1 we can
clearly see that the TFABS controller performs much better compared to the conventional
BS controller (C-39) in presence of the introduced parametric uncertainty. From Figure F-
2 we can see that the parameter estimates for the different values of γ2 seem to converge
to the real parameter. Increasing the adaptation gain γ2 results in faster convergence of
the parameter estimate. However, if we keep increasing γ2, the overshoot of the parameter
estimate becomes significant which might results in an undesired transient response of the
closed-loop system.
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Figure F-1: The control performance of the Tuning Functions Adaptive Backstepping controller
with γ2 = 0.03 in the presence of a parametric uncertainty.
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Figure F-2: The performance of the Tuning Function estimator for different values of γ2. The
dashed black line represents the value of the real parameter θ2,2.
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Now we introduce a magnitude limit for the control u of ±850Nm to find out how the TFABS
controller performs in case of such a constraint. The results can be found in Figures F-3 and F-
4. As can be seen, the TFABS control law still performs better compared to the conventional
BS controller in case of the introduced parametric uncertainty and the magnitude limit for
the control. However, the introduction of the magnitude limit considerably decreases the
performance of the TF estimator. The reason for this is that the adaptation is driven by the
tracking error z2 (see Eq. (F-81)), which is now no longer due to the parameter estimation error
exclusively. Therefore, as soon as the input is saturated the estimator starts to “unlearn”,
resulting in less accurate tracking of the reference signal.
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Figure F-3: The control performance of the Tuning Functions Adaptive Backstepping controller
with γ2 = 0.3 in the presence of a parametric uncertainty. The control u has been magnitude
limited to ±850Nm.

Note that if a priori knowledge is available in terms of a lower and/or upper bound on the
value of the unknown parameter, a projection method may be adopted to possibly improve the
robustness and closed-loop transient response (Akella & Subbarao, 2005). In this example, a
projection method could have forced the parameter estimate of θ2,2 = −k/m to be negative at
all time instances. This technique is not further discussed in this report, but more information
can be found in the literature (Krstić et al., 1995; Timmons, Chizeck, Casas, Chankong, &
Katona, 1997; Akella & Subbarao, 2005).
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Figure F-4: The performance of the Tuning Function estimator with γ2 = 0.3. The control u
has been magnitude limited to ±850Nm. The dashed black line represents the value of the real
parameter θ2,2.

F-2-2 Command-Filtered Adaptive Backstepping with one unknown parameter

In the last section we saw that the TF estimator does not work satisfactory when the control
input is saturated. Therefore we now augment the TFABS controller with command filters
in order to simultaneously cope with parametric uncertainties and control limitations. The
pendulum model is for convenience repeated below:

ẋ1 = x2 (B-3a revisited)

ẋ2 = θ2,1 sin(x1) + θ2,2x2 + θ2,3u , (B-3b revisited)

where we assume θ2,2 is an unknown constant parameter. The control task is to track the
smooth reference state x1,r with the state x1. Similar as before, we start by defining the
tracking errors as

z1 = x1 − x1,r (F-86a)

z2 = x2 − x2,r , (F-86b)

and the compensated tracking errors as

z̄1 = z1 − χ1 (F-87a)

z̄2 = z2 − χ2 . (F-87b)

The derivations for subsystem x1 remain exactly the same as in Appendix D-3 (see Eqs. (D-
35) to (D-40)), because this subsystem is assumed to be fully known. Therefore we directly
move on to the second and final compensated subsystem. The z̄2-dynamics are given by:

˙̄z2 = θ2,1 sin(x1) + θ2,2x2 + θ2,3u− ẋ2,r − χ̇2 . (F-88)

Similar as in the last section we now introduce the parameter estimation error θ̃2,2:

θ̃2,2 = θ2,2 − θ̂2,2 → ˙̃
θ2,2 = − ˙̂

θ2,2 , (F-89)
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where θ̂2,2 is the parameter estimate of θ2,2. Now we can rewrite the z̄2-dynamics as

˙̄z2 = θ2,1 sin(x1) +
(

θ̃2,2 + θ̂2,2

)

x2 + θ2,3u− ẋ2,r − χ̇2 . (F-90)

Now we augment the quadratic CLF function to penalize the second tracking compensated
error and the parameter estimation error as well:

V (z̄) = V1 +
1

2
z̄22 +

1

2γ2
θ̃22,2 , (F-91)

where γ2 > 0 is the adaptation gain. Taking the time derivative of V along the trajectories
of the compensated error dynamics and Eq. (F-89) results in

V̇ = −c1z̄
2
1 + z̄1z̄2 + z̄2

[

θ2,1 sin(x1) +
(

θ̃2,2 + θ̂2,2

)

x2 + θ2,3u− ẋ2,r − χ̇2

]

− 1

γ2
θ̃2,2

˙̂
θ2,2

= −c1z̄
2
1 + z̄1z̄2 + z̄2

[

θ2,1 sin(x1) + θ̂2,2x2 + θ2,3u− ẋ2,r − χ̇2

]

− 1

γ2
θ̃2,2

(
˙̂
θ2,2 − γ2z̄2x2

)

.

(F-92)

A raw control signal u0 is led through a command filter to obtain u. The effect that the use
of this command filter has on the tracking error z2 is estimated by the stable linear filter:

χ̇2 = −c2χ2 + θ2,3
(
u− u0

)
, (F-93)

with χ2(0) = 0. This yields

V̇ = −c1z̄
2
1 + z̄1z̄2 + z̄2

[

θ2,1 sin(x1) + θ̂2,2x2 + θ2,3u
0 − ẋ2,r + c2χ2

]

− 1

γ2
θ̃2,2

(
˙̂
θ2,2 − γ2z̄2x2

)

.

(F-94)

Selecting the raw control law and update law as

u0 =
1

θ2,3

[

−c2z2 − z̄1 − θ2,1 sin(x1)− θ̂2,2x2 + ẋ2,r

]

, c2 > 0 (F-95a)

˙̂
θ2,2 = γ2z̄2x2 , (F-95b)

yields the CLF negative definite:

V̇ = −c1z̄
2
1 + z̄1z̄2 + z̄2 [c2χ2 − c2z2 − z̄1]

= −c1z̄
2
1 + z̄1z̄2 + z̄2 [−c2z̄2 − z̄1]

= −c1z̄
2
1 − c2z̄

2
2 . (F-96)

By Theorem C.2 it now follows that the equilibrium z̄ = 0 is globally uniformly asymptotically
stable. Note that this derivation only guarantees desirable properties for the compensated
tracking error z̄ and not the actual tracking error z. When the inputs are too aggressive,
the implemented limits can come into effect. During such a period z and χ become nonzero
because the desired control signals are not able to be implemented. However, the χ-signals
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ẋ2,r
−

+

χ2

χ2

˙̂
θ2,2 = γ2z̄2x2

z̄2 θ̂2,2 ẋ2,r
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Figure F-5: Command-Filtered Tuning Functions Adaptive Backstepping controller structure.

and therefore also the tracking error z will remain bounded, because χ is the output of a
stable linear system with a bounded input. When the limits are no longer in effect, the
tracking error z will converge to 0.

The controller structure developed in this section can be seen in Figure F-5. In this diagram
CF represents the Command Filter (see Appendix D-2) and AF represents the Auxiliary
Filter (see Eqs. (D-5) and (F-93)).

Similar as in the last section, a magnitude limit for the control input u has been introduced.
The results of the simulation can be found in Figures F-6 and F-7. The variable x2,r is
constrained to ±40 rad/s for the TFABS (Command Filter (CF)) implementation to avoid
continuous saturation of the input signal, see also the discussion in Appendix D-3-2. As can
be seen, the command filters significantly increase the performance of the TFABS controller
when control limitations are introduced. The reason for this is that when limits on the
command filter are in effect, the real tracking errors zi may increase, but the compensated
tracking errors z̄i that drive the estimation process are still unaffected (Sonneveldt, 2010).
Another advantage of the TFABS (CF) implementation is that we now no longer need to
analytically derive the time derivative of the stabilizing control law α1.

F-2-3 Adaptive Backstepping with one unknown time-varying parameter

In the two previous sections we assumed that θ2,2 is an unknown constant parameter. Now
a simulation has been performed in which this parameter changes halfway the simulation,
in order to find out how the TF estimator performs in case of an abrupt parameter change.
Simulations of the TFABS controller have been run for the system (B-3) with one unknown
parameter and a sampling time of 0.01 s. The initial conditions and parameters which have
been used in this simulation for the model can be found in Eq. (C-44), the control and
estimator parameters are similar as in Eq. (F-84). The estimation results can be seen in
Figure F-8. Clearly, the TF estimator is able to cope with the sudden parameter change.
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Figure F-6: The control performance of the Tuning Functions Adaptive Backstepping controller
with γ2 = 0.3 in the presence of a parametric uncertainty. The control u has been magnitude
limited to ±850Nm.
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Figure F-7: The performance of the Tuning Function estimator with γ2 = 0.3. The control u
has been magnitude limited to ±850Nm. The dashed black line represents the value of the real
parameter θ2,2.
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Figure F-8: The performance of the Tuning Function estimator with γ2 = 0.1 in case of an
abrupt parameter change. The dashed black line represents the value of the real parameter θ2,2.

Now a simulation is performed in which the uncertain parameter θ2,2 is a linear function of
state x1(t). The simulation has been run for different values of the adaptation gain γ2 and with
θ̂2,2(0) = −1. The initial conditions and parameters which have been used in this simulation
for the model can be found in Eq. (C-44). From Figure F-9 we can see that the parameter
estimator, which has been derived by assuming a constant unknown parameter θ2,2, is not
able to accurately track the time-varying parameter θ2,2(t). By increasing the adaptation
gain, the estimator tracks the changes of parameter θ2,2 more accurately, however, this also
leads to an undesired transient behavior. Moreover, by increasing the adaptation gain, the
sensitivity to noise and actuator dynamics increases (Karagiannis & Astolfi, 2010).
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Figure F-9: The performance of the Tuning Function estimator for different values of γ2 in case
of a time-varying parameter. The dashed black line represents the real parameter θ2,2(t).

A better way to estimate time-varying parameters with TF estimators is to use function
approximators that are capable of approximating the (unknown) functions. If we know that
θ2,2(t) is a linear function of state x1(t), we may use the following function approximator:

θ̂2,2(t) = âx1(t) + b̂ , (F-97)
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where â and b̂ are now the parameter estimates. Now we introduce the parameter estimation
errors:

ã = a− â → ˙̃a = − ˙̂a (F-98a)

b̃ = b− b̂ → ˙̃
b = − ˙̂

b . (F-98b)

The z2-dynamics are now given by

ż2 = θ2,1 sin(x1) + (ax1 + b)
︸ ︷︷ ︸

θ2,2(t)

x2 + θ2,3u− α̇1 . (F-99)

The earlier formulated Lyapunov function V1 is now augmented to penalize the second tracking
error and both parameter estimation errors as well:

V(z, θ̃2,2) =
1

2
z21 +

1

2
z22 +

1

2γ2,1
ã2 +

1

2γ2,2
b̃2 , (F-100)

where γ2,1 > 0 and γ2,2 > 0 are the adaptation gains. Taking the time derivative of V along
the trajectories of the error dynamics and Eq. (F-98) results in

V̇ = −c1z
2
1 + z1z2 + z2

[

θ2,1 sin(x1) +
(

[ã+ â]x1 + b̃+ b̂
)

x2 + θ2,3u− α̇1

]

− 1

γ2,1
ã ˙̂a− 1

γ2,2
b̃
˙̂
b

= −c1z
2
1 + z1z2 + z2

[

θ2,1 sin(x1) +
(

âx1 + b̂
)

x2 + θ2,3u− α̇1

]

− 1

γ2,1
ã
(

˙̂a− γ2,1x1x2z2

)

− 1

γ2,2
b̃
(
˙̂
b− γ2,2x2z2

)

. (F-101)

By selecting real control u as (F-79) and the following update laws:

˙̂a = γ2,1x1x2z2 (F-102a)

˙̂
b = γ2,2x2z2 , (F-102b)

we render V̇ negative definite
V̇ = −c1z

2
1 − c2z

2
2 . (F-103)

By Theorem C.2 it now follows that

lim
t→∞

z1 = 0 → lim
t→∞

[x1 − x1,r] = 0 (F-104a)

lim
t→∞

z2 = 0 . (F-104b)

Note that the parameter estimation errors are completely canceled in Eq. (F-101) by selecting
the parameter update laws as (F-102), therefore we cannot guarantee that the parameter
estimates â and b̂ actually converge to the real parameters a and b. All we can conclude from
Eqs. (F-100) and (F-103) with respect to the parameter estimation errors ã and b̃ is that they
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are bounded. In (Krstić, 1996) it is proven that convergence of the parameter estimates to
constant values is always achieved. In case of PE, the parameter estimates converge to the
actual parameter values. The requirement of PE basically means that the reference signal
must be “rich enough”, i.e. “contain enough frequencies” for the parameter estimation errors
to converge to zero (Boyd & Sastry, 1986).

A simulation has been run to estimate unknown time-varying parameter θ2,2(t) by using
function approximator (F-97) and a sampling time of 0.01 s. The initial conditions and pa-
rameters which have been used in this simulation for the model can be found in Eq. (C-44).
The following control and estimator parameters have been selected:

c1 = 10 ,

θ̂2,1 = θ2,1 ,

a = 1 ,

b = 1 ,

γ2,1 = 0.1 ,

c2 = 10 ,

θ̂2,3 = θ2,3 ,

â(0) = −1 ,

b̂(0) = 0 ,

γ2,2 = 0.3 .

(F-105)

By comparing Figure F-10 with Figure F-9, we can clearly see that the performance of the pa-
rameter estimator significantly improves when using a function approximator that is capable
of approximating the (unknown) function.
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Figure F-10: The performance of the Tuning Function estimator with γ2,1 = 0.1 and γ2,2 = 0.3
in case of a time-varying parameter. The dashed black lines represent the real parameters.
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F-2-4 Adaptive Backstepping with three unknown parameters

In this section a BS controller is augmented with TFs in order to cope with parametric
uncertainties. The pendulum model is for convenience repeated below:

ẋ1 = x2 (B-3a revisited)

ẋ2 = θ2,1 sin(x1) + θ2,2x2 + θ2,3u , (B-3b revisited)

where θ2,1, θ2,2 and θ2,3 are assumed to be unknown constant parameters. The control task
is to track the smooth reference state x1,r with the state x1. Similar as before, we start by
defining the tracking errors as

z1 = x1 − x1,r (F-107a)

z2 = x2 − α1 . (F-107b)

The derivations for subsystem x1 remain exactly the same as in Appendix C-3 (see Eqs. (C-32)
to (C-36)), because this subsystem is assumed to be fully known. Therefore we directly move
on to the second and final subsystem. Now we introduce the parameter estimation error θ̃2:

θ̃2 =
[

θ̃2,1 θ̃2,2 θ̃2,3
]T

= θ2 − θ̂2 → ˙̃
θ2 = − ˙̂

θ2 , (F-108)

where θ̂2 is estimate of θ2. Now we can rewrite the dynamics of the second error state as
follows:

ż2 =
(

θ̃2,1 + θ̂2,1

)

sin(x1) +
(

θ̃2,2 + θ̂2,2

)

x2 +
(

θ̃2,3 + θ̂2,3

)

u− α̇1 . (F-109)

The earlier formulated Lyapunov function V1 is now augmented to penalize the second tracking
error and the parameter estimation errors as well:

V(z, θ̃2) =
1

2
z21 +

1

2
z22 +

1

2γ2,1
θ̃22,1 +

1

2γ2,2
θ̃22,2 +

1

2γ2,3
θ̃22,3 , (F-110)

where γ2,i > 0 for i = 1, 2, 3 are the adaptation gains. Taking the time derivative of V along
the trajectories of the error dynamics and Eq. (F-108) results in

V̇ = −c1z
2
1 + z1z2 + z2

[(

θ̃2,1 + θ̂2,1

)

sin(x1) +
(

θ̃2,2 + θ̂2,2

)

x2 +
(

θ̃2,3 + θ̂2,3

)

u− α̇1

]

− 1

γ2,1
θ̃2,1

˙̂
θ2,1 −

1

γ2,2
θ̃2,2

˙̂
θ2,2 −

1

γ2,3
θ̃2,3

˙̂
θ2,3 (F-111)

= −c1z
2
1 + z1z2 + z2

[

θ̂2,1 sin(x1) + θ̂2,2x2 + θ̂2,3u− α̇1

]

− 1

γ2,1
θ̃2,1

[
˙̂
θ2,1 − γ2,1z2 sin(x1)

]

− 1

γ2,2
θ̃2,2

[
˙̂
θ2,2 − γ2,2z2x2

]

− 1

γ2,3
θ̃2,3

[
˙̂
θ2,3 − γ2,3z2u

]

.

We introduce the following real control u:

u =
1

θ̂2,3

[

−c2z2 − z1 − θ̂2,1 sin(x1)− θ̂2,2x2 + α̇1

]

, (F-112)
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which reduces V̇ to:

V̇ = −c1z
2
1 − c2z

2
2 −

1

γ2,1
θ̃2,1

[
˙̂
θ2,1 − γ2,1z2 sin(x1)

]

− 1

γ2,2
θ̃2,2

[
˙̂
θ2,2 − γ2,2z2x2

]

− 1

γ2,3
θ̃2,3

[
˙̂
θ2,3 − γ2,3z2u

]

. (F-113)

By selecting the following parameter update laws:

˙̂
θ2,1 = γ2,1z2 sin(x1) (F-114a)

˙̂
θ2,2 = γ2,2z2x2 (F-114b)

˙̂
θ2,3 = γ2,3z2u , (F-114c)

we render V̇ negative definite:
V̇ = −c1z

2
1 − c2z

2
2 . (F-115)

By Theorem C.2 it now follows that:

lim
t→∞

z1 = 0 → lim
t→∞

[x1 − x1,r] = 0 (F-116a)

lim
t→∞

z2 = 0 . (F-116b)

Note that the parameter estimation error is completely canceled in Eq. (F-113) by selecting
the parameter update laws as (F-114), therefore we cannot guarantee that the parameter
estimate θ̂2 actually converges to the real parameter θ2. All we can conclude from Eqs. (F-77)
and (F-82) with respect to the parameter estimation error θ̃2 is that it is bounded. In (Krstić,
1996) it is proven that convergence of the parameter estimate to a constant value is always
achieved. In case of PE, the parameter estimate converges to the actual parameter value.
The requirement of PE basically means that the reference signal must be “rich enough”, i.e.
“contain enough frequencies” for the parameter estimation error to converge to zero (Boyd &
Sastry, 1986).

Simulations of the TFABS controller have been run for the system (B-3) with three unknown
parameters and a sampling time of 0.01 s. The initial conditions and parameters which have
been used in this simulation for the model can be found in Eq. (C-44). The following control
and estimator parameters have been selected:

c1 = 10 ,

γ2,1 = 10 ,

γ2,2 = 10−2 ,

γ2,3 = 5−5 ,

c2 = 10 ,

θ̂2,1 = 20 · θ2,1 ,
θ̂2,2 = −20 · θ2,2 ,
θ̂2,3 = 5 · θ2,3 .

(F-117)

From Figure F-11 we can clearly see that the TFABS controller performs much better com-
pared to the conventional BS controller (C-39) in presence of the introduced parametric un-
certainties. From Figure F-12 we can see that the parameter estimation errors slowly converge
to values around 0.

Similar as in the last section, we can implement command filters to cope with control limita-
tions and to obviate the need for analytic computation of the virtual control derivative.
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Figure F-11: The control performance of the Tuning Functions Adaptive Backstepping controller
in the presence of parametric uncertainties.
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Figure F-12: The performance of the Tuning Function estimators. The dashed black lines
represent the values of the real parameters.
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F-2-5 Adaptive Incremental Backstepping with Time-Scale Separation

In this section a TFABS controller is designed to guarantee global asymptotic stability of the
closed-loop system and parameter convergence for an uncertain nonlinear system. We now
consider the following time-scale separated incremental pendulum model (see Eqs. (E-41)
and (E-42)):

ẋ1 = x2 (E-50a revisited)

ẋ2 = ẋ2,0 + θ2,3∆u , (E-50b revisited)

where we assume that θ2,3 is an unknown constant parameter. Note that Eq. (E-50b) is the
incremental form of the full equation of the pendulum, see Eq. (B-3b). The control task is to
track the smooth reference state x1,r with the state x1. Similar as before, we start by defining
the tracking errors as

z1 = x1 − x1,r (F-119a)

z2 = x2 − α1 . (F-119b)

The derivations for subsystem x1 remain exactly the same as in Appendix C-3 (see Eqs. (C-
32) to (C-36)), because this subsystem is assumed to be fully known. Therefore we directly
move on to the second and final subsystem. Now we introduce the parameter estimation
error θ̃2,3:

θ̃2,3 = θ2,3 − θ̂2,3 → ˙̃
θ2,3 = − ˙̂

θ2,3 , (F-120)

where θ̂2,3 is the estimate of θ2,3. Now we can rewrite the dynamics of the second error state
as follows:

ż2 = ẋ2,0 +
(

θ̃2,3 + θ̂2,3

)

∆u− α̇1 . (F-121)

The earlier formulated Lyapunov function V1 is now augmented to penalize the second tracking
error and the parameter estimation error as well:

V(z, θ̃2,3) =
1

2
z21 +

1

2
z22 +

1

2γ2
θ̃22,3 , (F-122)

where γ2 > 0 is the adaptation gain. Taking the time derivative of V along the trajectories
of the error dynamics and Eq. (F-120) results in

V̇ = −c1z
2
1 + z1z2 + z2

[

ẋ2,0 +
(

θ̃2,3 + θ̂2,3

)

∆u− α̇1

]

− 1

γ2
θ̃2,3

˙̂
θ2,3

= −c1z
2
1 + z1z2 + z2

[

ẋ2,0 + θ̂2,3∆u− α̇1

]

− 1

γ2
θ̃2,3

(
˙̂
θ2,3 − γ2z2∆u

)

. (F-123)

Now we introduce the following real incremental control ∆u:

∆u =
1

θ̂2,3
[−c2z2 − z1 − ẋ2,0 + α̇1] , (F-124)
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which reduces V̇ to:

V̇ = −c1z
2
1 − c2z

2
2 −

1

γ2
θ̃2,3

(
˙̂
θ2,3 − γ2z2∆u

)

. (F-125)

By selecting the following update law:

˙̂
θ2,3 = γ2z2∆u , (F-126)

we render V̇ negative definite:

V̇ = −c1z
2
1 − c2z

2
2 . (F-127)

By Theorem C.2 it now follows that:

lim
t→∞

z1 = 0 → lim
t→∞

[x1 − x1,r] = 0 (F-128a)

lim
t→∞

z2 = 0 . (F-128b)

Note that the parameter estimation error is completely canceled in Eq. (F-125) by selecting
the parameter update law as (F-126), therefore we cannot guarantee that the parameter
estimate θ̂2,3 actually converges to the real parameter θ2,3. All we can conclude from Eqs. (F-
122) and (F-127) with respect to the parameter estimation error θ̃2,3 is that it is bounded.
In (Krstić, 1996) it is proven that convergence of the parameter estimate to a constant value
is always achieved. In case of PE, the parameter estimate converges to the actual parameter
value. The requirement of PE basically means that the reference signal must be “rich enough”,
i.e. “contain enough frequencies” for the parameter estimation error to converge to zero (Boyd
& Sastry, 1986).

Simulations of the newly designed incremental TFABS controller have been run for system (B-
3) with an uncertain control efficiency and a sampling time of 0.01 s. The initial conditions and
parameters which have been used in this simulation for the model can be found in Eq. (C-44).
The following control and estimator parameters have been selected:

c1 = 10 ,

θ̂2,3(0) = 20 · θ2,3 .
c2 = 10 ,

(F-129)

Different values of the adaptation gain γ2 have been selected. From Figure F-13 we can
clearly see that the TFABS controller performs much better compared to the conventional
BS controller (C-39) in presence of the introduced parametric uncertainty. From Figure F-
14 we can see that the parameter estimates for the different values of γ2 seem to converge
to the real parameter. Increasing the adaptation gain γ2 results in faster convergence of
the parameter estimate. However, if we keep increasing γ2, the overshoot of the parameter
estimate becomes significant which might results in an undesired transient response of the
closed-loop system.
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Figure F-13: The control performance of the Tuning Functions Adaptive Incremental Backstep-
ping controller with γ2 = 5 · 10−3 in the presence of a parametric uncertainty.
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Figure F-14: The performance of the Tuning Function estimator for different values of γ2. The
dashed black line represents the value of the real parameter θ2,3.
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F-2-6 Adaptive Incremental Backstepping without Time-Scale Separation

In this section a TFABS controller is designed to guarantee global asymptotic stability of
the closed-loop system and parameter convergence for an uncertain nonlinear system. We do
not make the assumption of Time-Scale Separation (TSS) (see Eq. (E-41)), thus when the
sampling rate is sufficiently high we can write the pendulum model as

ẋ1 = x2 (E-66a revisited)

ẋ2 = ẋ2,0 + θ2,1 cos(x1,0)∆x1 + θ2,2∆x2 + θ2,3∆u , (E-66b revisited)

where we assume θ2,1, θ2,2 and θ2,3 are unknown constant parameters. Note that Eq. (E-66b)
is the incremental form of the full equation of the pendulum, see Eq. (B-3b).

Similar as before, we start by defining the tracking errors as

z1 = x1 − x1,r (F-131a)

z2 = x2 − α1 . (F-131b)

The derivations for subsystem x1 remain exactly the same as in Appendix C-3 (see Eqs. (C-32)
to (C-36)), because this subsystem is assumed to be fully known. Therefore we directly move
on to the second and final subsystem. Now we introduce the parameter estimation error θ̃2:

θ̃2 =
[

θ̃2,1 θ̃2,2 θ̃2,3
]T

= θ2 − θ̂2 → ˙̃
θ2 = − ˙̂

θ2 , (F-132)

where θ̂2 is the estimate of θ2. Now we can rewrite the dynamics of the second error state as
follows:

ż2 = ẋ2,0 +
(

θ̃2,1 + θ̂2,1

)

cos(x1,0)∆x1 +
(

θ̃2,2 + θ̂2,2

)

∆x2 +
(

θ̃2,3 + θ̂2,3

)

∆u− α̇1 . (F-133)

The earlier formulated Lyapunov function V1 is now augmented to penalize the second tracking
error and the parameter estimation errors as well:

V(z, θ̃2) = V1 +
1

2
z22 +

1

2γ2,1
θ̃22,1 +

1

2γ2,2
θ̃22,2 +

1

2γ2,3
θ̃22,3 , (F-134)

where γ2,i > 0 for i = 1, 2, 3 are the adaptation gains. Taking the time derivative of V along
the trajectories of the error dynamics and Eq. (F-132) results in

V̇ = −c1z
2
1 + z1z2 −

1

γ2,1
θ̃2,1

˙̂
θ2,1 −

1

γ2,2
θ̃2,2

˙̂
θ2,2 −

1

γ2,3
θ̃2,3

˙̂
θ2,3 (F-135)

+z2

[

ẋ2,0 +
(

θ̃2,1 + θ̂2,1

)

cos(x1,0)∆x1 +
(

θ̃2,2 + θ̂2,2

)

∆x2 +
(

θ̃2,3 + θ̂2,3

)

∆u− α̇1

]

= −c1z
2
1 + z1z2 −

1

γ2,1
θ̃2,1

(
˙̂
θ2,1 − γ2,1z2 cos(x1,0)∆x1

)

− 1

γ2,2
θ̃2,2

(
˙̂
θ2,2 − γ2,2z2∆x2

)

− 1

γ2,3
θ̃2,3

(
˙̂
θ2,3 − γ2,3z2∆u

)

+ z2

[

ẋ2,0 + θ̂2,1 cos(x1,0)∆x1 + θ̂2,2∆x2 + θ̂2,3∆u− α̇1

]

.
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By selecting the following real incremental control:

∆u =
1

θ̂2,3

[

−c2z2 − z1 − ẋ2,0 − θ̂2,1 cos(x1,0)∆x1 − θ̂2,2∆x2 + α̇1

]

, (F-136)

and update laws:

˙̂
θ2,1 = γ2,1z2 cos(x1,0)∆x1 (F-137a)

˙̂
θ2,2 = γ2,2z2∆x2 (F-137b)

˙̂
θ2,3 = γ2,3z2∆u , (F-137c)

we render V̇ negative definite:
V̇ = −c1z

2
1 − c2z

2
2 . (F-138)

By Theorem C.2 it now follows that:

lim
t→∞

z1 = 0 → lim
t→∞

[x1 − x1,r] = 0 (F-139a)

lim
t→∞

z2 = 0 . (F-139b)

Note that the parameter estimation errors are completely canceled in Eq. (F-135) by selecting
the parameter update laws as (F-137), therefore we cannot guarantee that the parameter
estimate θ̂2 actually converges to the real parameter θ2. All we can conclude from Eqs. (F-
134) and (F-138) with respect to the parameter estimation error θ̃2 is that it is bounded.
In (Krstić, 1996) it is proven that convergence of the parameter estimate to a constant value
is always achieved. In case of PE, the parameter estimates converge to the actual parameters.
The requirement of PE basically means that the reference signal must be “rich enough”, i.e.
“contain enough frequencies” for the parameter estimation error to converge to zero (Boyd &
Sastry, 1986).
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Appendix G

Least-Squares Adaptive Backstepping

In this appendix the Backstepping (BS) control approach is augmented with Least-Squares
(LS) parameter estimators. This is a form of Indirect Adaptive Control that is based on
the certainty equivalence principle (Krstić et al., 1995; van Oort, 2011). This means that
the controller is designed by assuming perfect knowledge of the model. Next, the model
parameters are estimated by a separate module (G-1). The certainty equivalence controller is
then simply obtained by replacing the model parameters θm by their estimates θ̂m. In order
to evaluate this nonlinear control approach, Least-Squares Adaptive Backstepping (LSABS)
control laws are derived and simulated for the pendulum model (G-2).

G-1 Theory

In order to apply LSABS, the non-triangular, feedback passive system is rewritten to obtain
an overdetermined system (G-1-1). Subsequently, LS fitting is applied to obtain an estimate
of the model parameters (G-1-2).

G-1-1 Obtaining an Overdetermined System

The overdetermined system that we need to obtain before we can apply the technique of LS
fitting can be derived in two ways:

• Conventional method;

• Incremental method.

These two approaches are discussed in the next sections.
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Conventional method

We consider the following non-triangular, feedback passive system:

ẋi = fi(x) + gi(x)xi+1 , i = 1, . . . , n− 1 (G-1a)

ẋn = fn(x) + gn(x)u , (G-1b)

which can be written as

ẋi = fi(x) + gi(x)xi+1 , i = 1, . . . , n , (G-2)

where x = [x1, · · · , xn]T is the state vector, xi ∈ R and xn+1 ≡ u ∈ R the control signal. The
smooth functions fi and gi contain the unknown dynamics of the system and will have to be
approximated. It is assumed there exist vectors θfi and θgi such that

fi(x) = ϕfi
(x)Tθfi (G-3a)

gi(x) = ϕgi
(x)Tθgi , (G-3b)

where ϕ⋆ are the regressors and θ⋆ are vectors of unknown constant parameters. Now Eq. (G-
2) can be written as

ẋi = ϕfi
(xi)

T
θfi +ϕgi

(xi)
T
θgixi+1 . (G-4)

At time k the following vector equations can be constructed by using the past N measure-
ments:

yi
∼= Aiθi , i = 1, . . . , n , (G-5)

where

yi =
[
ẋi,k−N · · · ẋi,k−1 ẋi,k

]T
, θi =

[
θ
T
fi

θ
T
gi

]T
, (G-6)

Ai =








ϕfi
(xi,k−N )T ϕgi

(xi,k−N )Txi+1,k−N

...
...

ϕfi
(xi,k−1)

T
ϕgi

(xi,k−1)
Txi+1,k−1

ϕfi
(xi,k)

T
ϕgi

(xi,k)
Txi+1,k







.

The method of Least-Squares can be applied to estimate the unknown constant parameters
when we assume that ẋi and xi for i = 1, . . . , n and xn+1 ≡ u are measurable or can be ac-
curately estimated. The certainty equivalence controller is then simply obtained by replacing
the model parameters θm of the (incremental) BS control law by their estimates θ̂m.

Incremental method

Again, we consider the following non-triangular, feedback passive system:

ẋi = fi(x) + gi(x)xi+1 , i = 1, . . . , n− 1 (G-7a)

ẋn = fn(x) + gn(x)u , (G-7b)
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Taking the first-order Taylor series expansion around the current solution [x0, u0] of Eq. (G-7)
results in

ẋi ∼= fi(x0) + gi(x0)xi+1,0 +
∂

∂x
[fi(x) + gi(x)xi+1]|x=x0

(x− x0) , i = 1, . . . , n− 1

(G-8a)

ẋn ∼= fn(x0) + gn(x0)u0 +
∂

∂x
[fn(x) + gn(x)u]|x=x0

u=u0

(x− x0) +
∂

∂u
[gn(x)u]|x=x0

u=u0

(u− u0) .

(G-8b)

By definition, the current state rates satisfy

ẋi,0 = fi(x0) + gi(x0)xi+1,0 , i = 1, . . . , n− 1 (G-9a)

ẋn,0 = fn(x0) + gn(x0)u0 , (G-9b)

resulting in

ẋi ∼= ẋi,0 +
∂

∂x
[fi(x) + gi(x)xi+1]|x=x0

(x− x0) , i = 1, . . . , n− 1 (G-10a)

ẋn ∼= ẋn,0 +
∂

∂x
[fn(x) + gn(x)u]|x=x0

u=u0

(x− x0) + gn(x0) (u− u0) . (G-10b)

By using Eq. (G-3) and the following notation

∆ẋi = ẋi − ẋi,0 , i = 1, . . . , n (G-11a)

∆x = x− x0 , ∆u = u− u0 , (G-11b)

we can write Eq. (G-10) as

∆ẋi ∼=
∂

∂x

[
ϕfi

(x)Tθfi +ϕgi
(x)Tθgixi+1

]∣
∣
x=x0

∆x , i = 1, . . . , n− 1 (G-12a)

∆ẋn ∼= ∂

∂x

[
ϕfn(x)

T
θfn +ϕgn(x)

T
θgnu

]∣
∣x=x0
u=u0

∆x+ϕgn(x0)
T
θgn∆u , (G-12b)

rewriting yields

∆ẋi ∼= ∆x
T ∂

∂x

[
ϕfi

(x)Tθfi +ϕgi
(x)Tθgixi+1

]∣
∣
T

x=x0
, i = 1, . . . , n− 1 (G-13a)

∆ẋn ∼= ∆x
T ∂

∂x

[
ϕfn(x)

T
θfn +ϕgn(x)

T
θgnu

]∣
∣
T
x=x0
u=u0

+ϕgn(x0)
T∆uθgn , (G-13b)

and further rewriting yields

∆ẋi ∼= ∆x
T ∂

∂x

[
ϕfi

(x)
]∣
∣T

x=x0
θfi +∆x

T ∂

∂x

[
ϕgi

(x)xi+1

]∣
∣T

x=x0
θgi , i = 1, . . . , n− 1

(G-14a)

∆ẋn ∼= ∆x
T ∂

∂x

[
ϕfn(x)

]∣
∣T

x=x0
θfn +∆x

T ∂

∂x

[
ϕgn(x)

]∣
∣T

x=x0
u0θgn +ϕgn(x0)

T∆uθgn .

(G-14b)
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At time k the following vector equations can be constructed by using the past N measure-
ments:

yi
∼= Aiθi , i = 1, . . . , n− 1 (G-15a)

yn
∼= Anθn , (G-15b)

where

yi =
[
∆ẋi,k−N · · · ∆ẋi,k−1 ∆ẋi,k

]T
, θi =

[
θ
T
fi

θ
T
gi

]T
, (G-16)

Ai =












∆x
T
k−N

∂
∂x

ϕfi

∣
∣T

x=xk−N−1
∆x

T
k−N

∂
∂x

[
ϕgi

xi+1

]T
∣
∣
∣
x=xk−N−1

...
...

∆x
T
k−1

∂
∂x

ϕfi

∣
∣T

x=xk−2
∆x

T
k−1

∂
∂x

[
ϕgi

xi+1

]T
∣
∣
∣
x=xk−2

∆x
T
k

∂
∂x

ϕfi

∣
∣T

x=xk−1
∆x

T
k

∂
∂x

[
ϕgi

xi+1

]T
∣
∣
∣
x=xk−1












,

and
yn =

[
∆ẋn,k−N · · · ∆ẋn,k−1 ∆ẋn,k

]T
, θn =

[
θ
T
fn

θ
T
gn

]T
, (G-17)

An =










∆x
T
k−N
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∣T
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T
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∂
∂x
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∣T
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T∆uk−N

...
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∆x
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∂
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ϕfn

∣
∣T

x=xk−2
∆x

T
k−1

∂
∂x

ϕgn

∣
∣T

x=xk−2
uk−2 +ϕgn(xk−2)

T∆uk−1

∆x
T
k

∂
∂x

ϕfn

∣
∣T

x=xk−1
∆x

T
k

∂
∂x

ϕgn

∣
∣T

x=xk−1
uk−1 +ϕgn(xk−1)

T∆uk










.

The method of Least-Squares can be applied to estimate the unknown constant parameters
when we assume that ẋi and xi for i = 1, . . . , n and xn+1 ≡ u are measurable or can be ac-
curately estimated. The certainty equivalence controller is then simply obtained by replacing
the model parameters θm of the (incremental) BS control law by their estimates θ̂m.

Note that if we assume a sufficiently time-scale separated system, that is the increment in
state ∆x is much smaller than the increment in both state derivative ∆ẋ2 and input ∆u, we
can neglect the former. In that case Eq. (G-15b) simplifies to:








∆ẋn,k−N

...
∆ẋn,k−1

∆ẋn,k








∼=








ϕgn(xk−N−1)
T∆uk−N

...
ϕgn(xk−2)

T∆uk−1

ϕgn(xk−1)
T∆uk







θgn . (G-18)

G-1-2 Least-Squares Fitting

In the previous section we have obtained systems of linear equations in the form

y = Aθ , (G-19)

where θ are the parameters to be estimated. In the next sections the following linear Least-
Squares approaches will be discussed to approximate the unknown parameter vector θ:
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• Ordinary least-squares

• Weighted least-squares

• Recursive least-squares

• Recursive least-squares with forgetting

• Total least-squares

Ordinary least-squares

The Ordinary Least-Squares (OLS) algorithm is obtained by minimizing the following cost
function:

J(θ) = (y −Aθ)T (y −Aθ) . (G-20)

This results in the well-known OLS solution:

θ̂OLS =
(
ATA

)−1
AT

y . (G-21)

The OLS-estimator results in unbiased parameter estimates when we are dealing with zero
mean white noise in the observation vector y and when the data matrix A is exactly known
(van Huffel & Vandewalle, 1991). However, the assumption that measurements in matrix A
are free of error is frequently unrealistic resulting in biased parameter estimates.

Weighted least-squares

The Weighted Least-Squares (WLS) algorithm is obtained by minimizing the following cost
function:

J(θ) = (y −Aθ)TW (y −Aθ) , (G-22)

where W is a diagonal weighting matrix. This results in the well-known WLS solution:

θ̂WLS =
(
ATWA

)−1
ATWy . (G-23)

With WLS we are able to give the data points the proper amount of influence over the
parameter estimate. This is different from OLS in which all data is treated equally.

Recursive least-squares

The cost function as used for deriving the OLS solution (see Eq. (G-20)) is now split into a
new and an old part as follows:

J(θk+1) = (yk+1 −Ak+1θk+1)
T (yk+1 −Ak+1θk+1) (G-24)

= (yk −Akθk+1)
T (yk −Akθk+1)

︸ ︷︷ ︸

old data

+(yk+1 − ak+1θk+1)
T (yk+1 − ak+1θk+1)

︸ ︷︷ ︸

new data

,
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where

Ak+1 =
[
Ak ak+1

]T
(G-25a)

yk =
[
y1 y2 . . . yk

]T
(G-25b)

yk+1 =
[
y
T
k yk+1

]T
. (G-25c)

Minimizing cost function (G-24) results in the Recursive Least-Squares (RLS) algorithm (Zhu
& Li, 1999):

θ̂k+1 = θ̂k +Kk+1

(

yk+1 − ak+1θ̂k

)

︸ ︷︷ ︸

∆k

, (G-26)

where ∆ is the innovation, a the regression vector and K the Kalman gain given by

Kk+1 = Pka
T
k+1

(
ak+1Pka

T
k+1 + 1

)−1
(G-27a)

Pk+1 = (IN −Kk+1ak+1)Pk , (G-27b)

and where P is the covariance matrix. For this algorithm we need an initial estimate of the
unknown parameter and the covariance matrix. The advantage of the RLS algorithm is that
it can be executed very efficiently in on-line applications.

Recursive least-squares with forgetting

The cost function as used for deriving the WLS solution (see Eq. (G-22)) is now split into a
new and an old part as follows:

J(θk+1) = (yk+1 −Ak+1θk+1)
TWk+1(yk+1 −Ak+1θk+1) (G-28)

= (yk −Akθk+1)
TWk(yk −Akθk+1)

︸ ︷︷ ︸

old data

+(yk+1 − ak+1θk+1)
Twk+1(yk+1 − ak+1θk+1)

︸ ︷︷ ︸

new data

,

where

Ak+1 =
[
Ak ak+1

]T
(G-29a)

yk =
[
y1 y2 . . . yk

]T
(G-29b)

yk+1 =
[
y
T
k yk+1

]T
(G-29c)

Wk+1 =

[
Wk 0
0 wk+1

]T

, (G-29d)

where k is the current instant and N is the amount of past measurements used to obtain the
WLS solution. By applying exponential forgetting, the weighting matrix is as follows:

Wk+1 =








λN−1 0 0 0

0
. . . 0 0

0 0 λ1 0
0 0 0 λ0







. (G-30)
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For the forgetting factor we have 0 < λ ≤ 1. Setting λ = 1 corresponds to “no forgetting”
and estimating constant coefficients. Setting λ < 1 implies that past measurements are less
significant for parameter estimation and can be “forgotten”. λ < 1 should be set to estimate
time-varying coefficients.

Minimizing cost function (G-28) results in the RLS algorithm with exponential forgetting
(Dayal & MacGregor, 1997):

θ̂k+1 = θ̂k +Kk+1

(

yk+1 − ak+1θ̂k

)

(G-31a)

Kk+1 = Pka
T
k+1

(
ak+1Pka

T
k+1 + λ

)−1
(G-31b)

Pk+1 =
1

λ
(IN −Kk+1ak+1)Pk . (G-31c)

Total least-squares

The OLS-estimator results in unbiased parameter estimates only when we are dealing with
zero mean white noise in the observation vector y and when the data matrix A is exactly
known (van Huffel & Vandewalle, 1991). However, the assumption that measurements in
matrix A are free of error is frequently unrealistic. In for example (Laban, 1994; Mulder
et al., 1999; Lombaerts, Smaili, et al., 2009; Lombaerts, Huisman, et al., 2009; Sun, 2014)
the Two-Step Method (TSM) is applied for state and parameter estimation. The parameter
estimation in this approach uses direct measurements and estimated states which are the
output of the first step (flight path reconstruction). The OLS provides an unbiased estimate
of the aerodynamic parameters only in case of perfect flight path reconstruction. Once the
output of the first step contains errors, the OLS estimator becomes biased (Edwards et al.,
2010).

In order to keep the Least-Squares estimate unbiased and efficient in case of errors in both the
data matrix A and the observation vector y, the Total Least-Squares (TLS) method may be
applied, which is also known as errors-in-variables or orthogonal regression. The TLS gives
the “best” estimate (in a statistical sense) of the parameter vector when all variables are
subject to zero mean white noise and common covariance matrix equal to the identity matrix
up to a scaling factor (van Huffel & Vandewalle, 1991). In the TLS approach, the sum of
squares of residuals on all the variables in Eq. (G-19) is minimized.

The TLS solution of the overdetermined system of linear equations y = Aθ is given by
(van Huffel & Vandewalle, 1991; Markovsky & Van Huffel, 2007)

θ̂TLS = −1/(vn+1,n+1)[v1,n+1, · · · , vn,n+1]
T , (G-32)

where vij refers to the (i, j)-th entry of V which is given by the Singular Value Decomposition
(SVD) of A ∈ R

m×n and y ∈ R
m, where m > n:

[
A y

]
= UΣV † , (G-33)

and where U is a m × m unitary matrix, Σ is a m × n diagonal matrix with non-negative
real numbers on the diagonal and V † denotes the conjugate transpose of the n × n unitary
matrix V . In (van Huffel & Vandewalle, 1991) this basic TLS solution has been extended to
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avoid the singularity at vn+1,n+1 = 0. In order to reduce the computational load of the TLS
algorithm in on-line applications, the TLS can be calculated in a sequential manner (Soijer,
2004; Edwards et al., 2010).

In Figure G-1 the difference between the OLS and TLS is visualized for θ ∈ R. In the OLS
cost function the sum of the squared blue line segments is penalized, while in the TLS cost
function the sum of the squared red line segments is penalized.
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Figure G-1: Simulated measurement data of a system with equation y = x. In the OLS cost
function the sum of the squared blue line segments is penalized, while in the TLS cost function
the sum of the squared red line segments is penalized.

G-2 Simulations

In order to evaluate the LSABS approach, seven simulations are performed by using the
pendulum model:

1. Adaptive Backstepping with one unknown parameter;

2. Adaptive Backstepping with one unknown time-varying parameter;

3. Adaptive Backstepping with three unknown parameters;

4. Adaptive Incremental Backstepping with one unknown parameter;

5. Adaptive Incremental Backstepping with one unknown time-varying parameter;

6. Adaptive Incremental Backstepping with three unknown parameters;

7. Adaptive Incremental Backstepping with Time-Scale Separation.
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G-2-1 Adaptive Backstepping with one unknown parameter

In this section a Least-Squares estimator is combined with a BS controller by using the
certainty equivalence principle. The pendulum model is for convenience repeated below:

ẋ1 = x2 (B-3a revisited)

ẋ2 = θ2,1 sin(x1) + θ2,2x2 + θ2,3u , (B-3b revisited)

where we assume θ2,2 is an unknown constant parameter. The control task is to track the
smooth reference state x1,r with the state x1. At time k the following vector equation can be
constructed from Eq. (B-3b) by using the past N measurements:








ẋ2,k−N

...
ẋ2,k−1

ẋ2,k







=








sin(x1,k−N ) x2,k−N uk−N

...
...

...
sin(x1,k−1) x2,k−1 uk−1

sin(x1,k) x2,k uk












θ2,1
θ2,2
θ2,3



 , (G-35)

which can be rewritten as







ẋ2,k−N − sin(x1,k−N )θ2,1 − uk−Nθ2,3
...

ẋ2,k−1 − sin(x1,k−1)θ2,1 − uk−1θ2,3
ẋ2,k − sin(x1,k)θ2,1 − ukθ2,3








︸ ︷︷ ︸

y

=








x2,k−N

...
x2,k−1

x2,k








︸ ︷︷ ︸

A

θ2,2 . (G-36)

If we assume measurements or accurate estimates of ẋ2, x1, x2 and u are available, then
parameter θ2,2 can simply be estimated by applying the OLS solution:

θ̂2,2 =
(
ATA

)−1
AT

y , (G-21 revisited)

where θ̂2,2 is the Least-Squares estimate for θ2,2. Earlier we derived the following control laws
for the non-time scale separated system Eq. (B-3):

u =
1

θ2,3
[−c2z2 − z1 − θ2,1 sin(x1)− θ2,2x2 + α̇1] (C-39 revisited)

∆u =
1

θ2,3
[−c2z2 − z1 − θ2,1 cos(x1,0)∆x1 − θ2,2∆x2 + α̇1 − ẋ2,0] . (E-70 revisited)

The corresponding certainty equivalence adaptive controllers when θ2,2 is unknown are simply

obtained by replacing the parameter θ2,2 with its estimate θ̂2,2:

u =
1

θ2,3

[

−c2z2 − z1 − θ2,1 sin(x1)− θ̂2,2x2 + α̇1

]

(G-37)

∆u =
1

θ2,3

[

−c2z2 − z1 − θ2,1 cos(x1,0)∆x1 − θ̂2,2∆x2 + α̇1 − ẋ2,0

]

. (G-38)
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The adaptive implementation consisting of the LS estimator and control law (G-37) is from
now on referred to as LSABS, while the implementation with the LS estimator and control
law (G-38) is referred to as Least-Squares Adaptive Incremental Backstepping (LSAIBS).

Because the OLS solution should be calculated on-line, i.e. while the simulation is running,
the efficient RLS algorithm has been implemented in Matlab/Simulink to obtain the LS
solution, see Eq. (G-27).

Simulations of the LSABS and LSAIBS controllers have been run for system (B-3) with one
unknown parameter and a sampling time of 0.01 s. The initial conditions and parameters
which have been used in this simulation for the model can be found in Eq. (C-44). The
following control and estimator parameters have been selected:

c1 = 10 ,

θ̂2,1 = θ2,1 ,

θ̂2,3 = θ2,3 .

c2 = 10 ,

θ̂2,2(0) = −50 · θ2,2 , (G-39)

Different values of the initial parameter variance P0 have been selected. From Figure G-2 we
can clearly see that the LSABS and LSAIBS controllers perform much better compared to
the conventional BS controller (C-39) in presence of the introduced parametric uncertainty.
The control performance of the LSABS and LSAIBS controllers are nearly identical, this is
as expected because the linearization error is small due to the high sampling rate. However,
initially the LSAIBS controller performs slightly better because in Eq. (G-38) the uncer-
tainty θ2,2 is multiplied by the small difference variable ∆x2, making this control law more
robust to uncertainties. From Figure G-3 we can see that the parameter estimates for the
different values of P0 seem to converge to the real parameter. Increasing the initial parameter
variance P0 results in faster convergence of the parameter estimate, and therefore we can
consider this parameter as an adaptation gain similar to what we have seen for the Tuning
Function (TF) and Immersion and Invariance (I&I) estimators.

G-2-2 Adaptive Backstepping with one unknown time-varying parameter

In the previous section we assumed that θ2,2 is an unknown constant parameter. Now a
simulation has been performed in which this parameter changes halfway the simulation, in
order to find out how the LS estimator performs in case of an abrupt parameter change.
Simulations of the LSABS controller have been run for system (B-3) with one unknown
parameter and a sampling time of 0.01 s. The initial conditions and parameters which have
been used in this simulation for the model can be found in Eq. (C-44), the control and
estimator parameters are similar as in Eq. (F-84). The parameter estimation results can be
seen in Figure G-4. Clearly, the LS estimator is not able to cope with the sudden parameter
change. This can be explained on basis of the fact that the RLS-based estimate after t = 15 s
is contaminated by the old data. One way to counteract this problem is to apply RLS with
exponential forgetting. From Figure G-4 we can see that by applying RLS with a forgetting
factor λ < 1, the LS estimator is able to cope with the sudden parameter change. However,
by decreasing the forgetting factor, the estimator will become more sensitive to noise.
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Figure G-2: The control performance of the Least-Squares Adaptive Backstepping controllers
with P0 = 10−3 in the presence of a parametric uncertainty.

0 5 10 15 20 25 30
−5

0

5

10

15

20

25

time (s)

θ̂ 2
,2

 

 

P 0 = 10−5

P 0 = 10−3

P 0 = 10−1

Figure G-3: The performance of the Least-Squares parameter estimator for different values of P0.
The dashed black line represents the value of the real parameter θ2,2.
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Figure G-4: The performance of the Least-Squares estimator with P0 = 10−3 and different
values of the forgetting factor λ in case of an abrupt parameter change. The dashed black line
represents the value of the real parameter θ2,2.

Now a simulation is performed in which the uncertain parameter θ2,2 is a linear function
of state x1(t). The simulation has been run for different values of the forgetting factor λ
and with θ̂2,2(0) = −1. The initial conditions and parameters which have been used in this
simulation for the model can be found in Eq. (C-44). From Figure H-8 we can see that the
parameter estimator, which has been derived by assuming a constant unknown parameter θ2,2,
is able to accurately track the time-varying parameter θ2,2(t) with a forgetting factor λ < 1.
However, by decreasing the forgetting factor, the estimator will become more sensitive to noise.
Therefore it is more judicious to use a function approximator that is capable of approximating
the time-varying parameter, in a way similar as explained in Appendix F-2-3.
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Figure G-5: The performance of the Least-Squares estimator for different values of the for-
getting factor λ in case of a time-varying parameter. The dashed black line represents the real
parameter θ2,2(t).
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G-2-3 Adaptive Backstepping with three unknown parameters

In this section a LS estimator is combined with a BS controller based on the certainty equiv-
alence principle. The pendulum model is for convenience repeated below:

ẋ1 = x2 (B-3a revisited)

ẋ2 = θ2,1 sin(x1) + θ2,2x2 + θ2,3u , (B-3b revisited)

where θ2,1, θ2,2 and θ2,3 are assumed to be unknown constant parameters. The control task
is to track the smooth reference state x1,r with the state x1. At time k the following vector
equation can be constructed from Eq. (B-3b) by using the past N measurements:








ẋ2,k−N

...
ẋ2,k−1

ẋ2,k








︸ ︷︷ ︸

y

=








sin(x1,k−N ) x2,k−N uk−N

...
...

...
sin(x1,k−1) x2,k−1 uk−1

sin(x1,k) x2,k uk








︸ ︷︷ ︸

A





θ2,1
θ2,2
θ2,3





︸ ︷︷ ︸

θ2

. (G-41)

If we assume measurements or accurate estimates of ẋ2, x1, x2 and u are available, then
parameters θ2 can simply be estimated by applying the OLS solution:

θ̂2 =
(
ATA

)−1
AT

y , (G-21 revisited)

where θ̂2 is the Least-Squares estimate for θ2. Earlier we derived the following (incremental)
BS control laws for system (B-3):

u =
1

θ2,3
[−c2z2 − z1 − θ2,1 sin(x1)− θ2,2x2 + α̇1] (C-39 revisited)

∆u =
1

θ2,3
[−c2z2 − z1 − θ2,1 cos(x1,0)∆x1 − θ2,2∆x2 + α̇1 − ẋ2,0] . (E-70 revisited)

The corresponding certainty equivalence adaptive controllers when the parameters θ2 are
unknown are simply obtained by replacing these parameters by their estimate:

u =
1

θ̂2,3

[

−c2z2 − z1 − θ̂2,1 sin(x1)− θ̂2,2x2 + α̇1

]

(G-42)

∆u =
1

θ̂2,3

[

−c2z2 − z1 − θ̂2,1 cos(x1,0)∆x1 − θ̂2,2∆x2 + α̇1 − ẋ2,0

]

. (G-43)

The adaptive implementation consisting of the LS estimator and control law (G-42) is referred
to as LSABS, while the implementation with the LS estimator and control law (G-43) is
referred to as LSAIBS.

Because the OLS solution should be calculated on-line, i.e. while the simulation is running,
the efficient RLS algorithm has been implemented in Matlab/Simulink to obtain the LS
solution, see Eq. (G-27).
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Simulations of the BS and Incremental Backstepping (IBS) control laws with and without LS
estimator have been run for system (B-3) with three unknown parameters and a sampling
time of 0.01 s. The initial conditions and parameters which have been used in this simulation
for the model can be found in Eq. (C-44). The following control and estimator parameters
have been selected:

c1 = 10 ,

P0,1 = 10 ,

P0,2 = 0.1 ,

P0,3 = 1 ,

c2 = 10 ,

θ̂2,1 = 20 · θ2,1 ,
θ̂2,2 = −20 · θ2,2 ,
θ̂2,3 = 5 · θ2,3 .

(G-44)

From Figure G-6 we can clearly see that the IBS, LSABS and LSAIBS controllers perform
much better compared to the conventional BS controller (C-39) in presence of the intro-
duced parametric uncertainties. The IBS control law performs better compared to the full-
information BS controller because the uncertainties are now multiplied by the very small
difference variables ∆x1 and ∆x2. The control performances of the LSABS and LSAIBS con-
trollers are nearly identical after the parameters have converged, this is as expected be-
cause the linearization error is small due to the high sampling rate. However, initially the
LSAIBS controller performs better compared to the LSABS controller because in Eq. (G-43)
the uncertainties are multiplied by small difference variables. From Figure G-7 we can see
that the parameter estimates for both the LSABS and LSAIBS controller quickly converge
to the real parameters.
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Figure G-6: The tracking errors of two different control laws with and without adaptation in the
presence of parametric uncertainties.
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Figure G-7: The performance of the Least-Squares parameter estimators. The dashed black lines
represent the value of the real parameter.

G-2-4 Adaptive Incremental Backstepping with one unknown parameter

In this section an incremental LS estimator is combined with a BS controller based on the
certainty equivalence principle. Now we consider the following incremental system:

ẋ1 = x2 (E-66a revisited)

ẋ2 = ẋ2,0 + θ2,1 cos(x1,0)∆x1 + θ2,2∆x2 + θ2,3∆u , (E-66b revisited)

where we assume θ2,2 is an unknown constant parameter. The control task is to track the
smooth reference state x1,r with the state x1. At time k the following vector equation can be
constructed from Eq. (E-66b) by using the past N measurements:








∆ẋ2,k−N

...
∆ẋ2,k−1

∆ẋ2,k







=








cos(x1,k−N−1)∆x1,k−N ∆x2,k−N ∆uk−N

...
...

...
cos(x1,k−2)∆x1,k−1 ∆x2,k−1 ∆uk−1

cos(x1,k−1)∆x1,k ∆x2,k ∆uk












θ2,1
θ2,2
θ2,3



 , (G-46)

which can be rewritten as







∆ẋ2,k−N − cos(x1,k−N−1)∆x1,k−Nθ2,1 −∆uk−Nθ2,3
...

∆ẋ2,k−1 − cos(x1,k−2)∆x1,k−1θ2,1 −∆uk−1θ2,3
∆ẋ2,k − cos(x1,k−1)∆x1,kθ2,1 −∆ukθ2,3








︸ ︷︷ ︸

y

=








∆x2,k−N

...
∆x2,k−1

∆x2,k








︸ ︷︷ ︸

A

θ2,2 . (G-47)

If we assume measurements or accurate estimates of ẋ2, x1, x2 and u are available, then
parameter θ2,2 can simply be estimated by applying the OLS solution:

θ̂2,2 =
(
ATA

)−1
AT

y , (G-21 revisited)
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where θ̂2,2 is the Least-Squares estimate for θ2,2. Earlier we derived the following control laws
for the non-time scale separated system Eq. (B-3):

u =
1

θ2,3
[−c2z2 − z1 − θ2,1 sin(x1)− θ2,2x2 + α̇1] (C-39 revisited)

∆u =
1

θ2,3
[−c2z2 − z1 − θ2,1 cos(x1,0)∆x1 − θ2,2∆x2 + α̇1 − ẋ2,0] . (E-70 revisited)

The corresponding certainty equivalence adaptive controllers when θ2,2 is unknown are simply

obtained by replacing the parameter θ2,2 with its estimate θ̂2,2:

u =
1

θ2,3

[

−c2z2 − z1 − θ2,1 sin(x1)− θ̂2,2x2 + α̇1

]

(G-48)

∆u =
1

θ2,3

[

−c2z2 − z1 − θ2,1 cos(x1,0)∆x1 − θ̂2,2∆x2 + α̇1 − ẋ2,0

]

. (G-49)

The adaptive implementation consisting of the incremental estimator and control law (G-48)
is from now on referred to as Incremental Parameter Estimation Backstepping (IPEBS), while
the implementation with the estimator and control law (G-49) is referred to as Incremental
Parameter Estimation Incremental Backstepping (IPEIBS).

Because the OLS solution should be calculated on-line, i.e. while the simulation is running,
the efficient RLS algorithm has been implemented in Matlab/Simulink to obtain the Least-
Squares solution, see Eq. (G-27).

Simulations of the IPEBS and IPEIBS controllers have been run for system (B-3) with one
unknown parameter and a sampling time of 0.01 s. The initial conditions and parameters
which have been used in this simulation for the model can be found in Eq. (C-44). The
following control and estimator parameters have been selected:

c1 = 10 ,

θ̂2,1 = θ2,1 ,

θ̂2,3 = θ2,3 .

c2 = 10 ,

θ̂2,2(0) = −50 · θ2,2 , (G-50)

Different values of the initial parameter variance P0 have been selected. From Figure G-8
we can clearly see that the IPEBS and IPEIBS controllers perform much better compared to
the conventional BS controller (C-39) in presence of the introduced parametric uncertainty.
The control performance of the IPEBS and IPEIBS controllers are nearly identical, this is
as expected because the linearization error is small due to the high sampling rate. From
Figure G-9 we can see that the parameter estimates for the different values of P0 seem to
converge to values close to the real parameter. Increasing the initial parameter variance P0

results in faster convergence of the parameter estimate, and therefore we can consider this
parameter as an adaptation gain similar to what we have seen for the TF and I&I estimators.
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Figure G-8: The control performance of the Incremental Parameter Estimation Backstepping
controller with P0 = 1 in the presence of a parametric uncertainty.
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Figure G-9: The performance of the Incremental Parameter Estimator for different values of P0.
The dashed black line represents the value of the real parameter θ2,2.
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G-2-5 Adaptive Incremental Backstepping with one unknown time-varying pa-
rameter

In the previous section we assumed that θ2,2 is an unknown constant parameter. Now a sim-
ulation has been performed in which this parameter changes halfway the simulation, in order
to find out how the Incremental Parameter Estimator (IPE) performs in case of an abrupt
parameter change. Simulations of the IPEBS controller have been run for the system (B-3)
with one unknown parameter and a sampling time of 0.01 s. The initial conditions and pa-
rameters which have been used in this simulation for the model can be found in Eq. (C-44),
the control and estimator parameters are similar as in Eq. (F-84). The estimation results
can be seen in Figure G-10. Clearly, the IPE is not able to cope with the sudden parameter
change. This can be explained on basis of the fact that the RLS-based estimate after t = 15 s
is contaminated by the old data.

One way to counteract this problem is to apply RLS with exponential forgetting. From
Figure G-10 we can see that by applying RLS with a forgetting factor λ < 1, the IPE is able
to cope with the sudden parameter change. However, by decreasing the forgetting factor, the
estimator will become more sensitive to the linearization error and to noise.
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Figure G-10: The performance of the Incremental Parameter Estimator with P0 = 5 and different
values of the forgetting factor λ in case of an abrupt parameter change. The dashed black line
represents the value of the real parameter θ2,2.

Now a simulation is performed in which the uncertain parameter θ2,2 is a linear function of
state x1(t). The simulation has been run for different values of the forgetting factor λ and with
θ̂2,2(0) = −1. The initial conditions and parameters which have been used in this simulation
for the model can be found in Eq. (C-44). From Figure H-8 we can see that the parameter
estimator, which has been derived by assuming a constant unknown parameter θ2,2, is not able
to accurately track the time-varying parameter θ2,2(t). Therefore a function approximator
should be used that is capable of approximating the time-varying parameter, in a way similar
as explained in Appendix F-2-3.
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Figure G-11: The performance of the Incremental Parameter Estimator for different values of
the forgetting factor λ in case of a time-varying parameter. The dashed black line represents the
real parameter θ2,2(t).

G-2-6 Adaptive Incremental Backstepping with three unknown parameters

In this section an IPE is combined with a BS controller based on the certainty equivalence
principle. Again we consider the following incremental system:

ẋ1 = x2 (E-66a revisited)

ẋ2 = ẋ2,0 + θ2,1 cos(x1,0)∆x1 + θ2,2∆x2 + θ2,3∆u , (E-66b revisited)

where we assume θ2,1, θ2,2 and θ2,3 are unknown constant parameters. The control task is
to track the smooth reference state x1,r with the state x1. At time k the following vector
equation can be constructed from Eq. (E-66b) by using the past N measurements:








∆ẋ2,k−N

...
∆ẋ2,k−1

∆ẋ2,k








︸ ︷︷ ︸

y

=








cos(x1,k−N−1)∆x1,k−N ∆x2,k−N ∆uk−N

...
...

cos(x1,k−2)∆x1,k−1 ∆x2,k−1 ∆uk−1

cos(x1,k−1)∆x1,k ∆x2,k ∆uk








︸ ︷︷ ︸

A





θ2,1
θ2,2
θ2,3





︸ ︷︷ ︸

θ2

. (G-52)

If we assume measurements or accurate estimates of ẋ2, x1, x2 and u are available, then
parameters θ2 can simply be estimated by applying the OLS solution:

θ̂2 =
(
ATA

)−1
AT

y , (G-21 revisited)

where θ̂2 is the Least-Squares estimate for θ2. Earlier we derived the following control laws
for the non-time scale separated system Eq. (B-3):

u =
1

θ2,3
[−c2z2 − z1 − θ2,1 sin(x1)− θ2,2x2 + α̇1] (C-39 revisited)

∆u =
1

θ2,3
[−c2z2 − z1 − θ2,1 cos(x1,0)∆x1 − θ2,2∆x2 + α̇1 − ẋ2,0] . (E-70 revisited)

Adaptive Incremental Backstepping Flight Control P. van Gils



172 Least-Squares Adaptive Backstepping

The corresponding certainty equivalence adaptive controllers when the parameters θ2 are
unknown are simply obtained by replacing these parameters by their estimate:

u =
1

θ̂2,3

[

−c2z2 − z1 − θ̂2,1 sin(x1)− θ̂2,2x2 + α̇1

]

(G-53)

∆u =
1

θ̂2,3

[

−c2z2 − z1 − θ̂2,1 cos(x1,0)∆x1 − θ̂2,2∆x2 + α̇1 − ẋ2,0

]

. (G-54)

Because the OLS solution should be calculated on-line, i.e. while the simulation is running,
the efficient RLS algorithm has been implemented in Matlab/Simulink to obtain the Least-
Squares solution, see Eq. (G-27).

Simulations of the BS and IBS control laws with and without IPE have been run for the
system (B-3) with three unknown parameters and a sampling time of 0.01 s. The initial
conditions and parameters which have been used in this simulation for the model can be
found in Eq. (C-44). The following control and estimator parameters have been selected:

c1 = 10 ,

P0,1 = 10 ,

P0,2 = 0.1 ,

P0,3 = 1 ,

c2 = 10 ,

θ̂2,1 = 20 · θ2,1 ,
θ̂2,2 = −20 · θ2,2 ,
θ̂2,3 = 5 · θ2,3 .

(G-55)

From Figure G-12 we can clearly see that the IBS, IPEBS and IPEIBS controllers perform
much better compared to the conventional BS controller (C-39) in presence of the intro-
duced parametric uncertainties. The IBS control law performs better compared to the full-
information BS controller because the uncertainties are now multiplied by the very small
difference variables ∆x1 and ∆x2. The IPEIBS controller performs better compared to the
IPEBS controller because in Eq. (G-54) the uncertainties are multiplied by small difference
variables. From Figure G-13 we can see that the parameter estimates for both the IPEBS
and IPEIBS controller quickly converge to the real parameters.

G-2-7 Adaptive Incremental Backstepping with Time-Scale Separation

In this section an IPE is designed and combined with a BS controller based on the certainty
equivalence principle for the pendulum system. We now consider the following time-scale
separated incremental pendulum model (see Eqs. (E-41) and (E-42)):

ẋ1 = x2 (G-56a)

ẋ2 = ẋ2,0 + θ2,3∆u , (G-56b)

where we assume that θ2,3 is an unknown constant parameter.
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Figure G-12: The tracking errors of two different control laws with and without adaptation in
the presence of parametric uncertainties.
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Figure G-13: The performance of the incremental parameter estimators. The dashed black lines
represent the value of the real parameter.
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Note that Eq. (G-56b) is the incremental form of the full equation of the pendulum, see
Eq. (B-3b). At time k the following vector equation can be constructed from Eq. (G-56b) by
using the past N measurements:








∆ẋ2,k−N

...
∆ẋ2,k−1

∆ẋ2,k








︸ ︷︷ ︸

y

∼=








∆uk−N

...
∆uk−1

∆uk








︸ ︷︷ ︸

A

θ2,3 . (G-57)

If we assume measurements or accurate estimates of ẋ2 and u are available, then parameter
θ2,3 can simply be estimated by applying the OLS solution:

θ̂2,3 =
(
ATA

)−1
AT

y , (G-21 revisited)

where θ̂2,3 is the Least-Squares estimate for θ2,3. Earlier we derived the following control law
for the time-scale separated system Eq. (G-56):

∆u =
1

θ2,3
[−c2z2 − z1 + α̇1 − ẋ2,0] . (E-46 revisited)

The corresponding certainty equivalence adaptive controller when the parameter θ2,3 is un-
known is simply obtained by replacing this parameter by its estimate:

∆u =
1

θ̂2,3
[−c2z2 − z1 + α̇1 − ẋ2,0] . (G-58)

Note that we can rewrite Eq. (G-57) as follows:








∆uk−N

...
∆uk−1

∆uk








︸ ︷︷ ︸

y

∼=








∆ẋ2,k−N

...
∆ẋ2,k−1

∆ẋ2,k








︸ ︷︷ ︸

A

θ−1
2,3 . (G-59)

Now we can determine the inverse of the control efficiency parameter directly by applying
the OLS solution:

θ̂−1
2,3 =

(
ATA

)−1
AT

y . (G-60)

This approach is computationally more efficient because IBS control law (G-58) depends on
the inverse of the control efficiency θ2,3. Because the OLS solution should be calculated on-
line, i.e. while the simulation is running, the efficient RLS algorithm has been implemented
in Matlab/Simulink to obtain the Least-Squares solution, see Eq. (G-27).

Simulations of the IBS control law with and without IPE have been run for the system (B-3)
with an unknown control efficiency θ2,3 and a sampling time of 0.01 s. The initial conditions
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and parameters which have been used in this simulation for the model can be found in Eq. (C-
44). The following control and estimator parameters have been selected:

c1 = 10 ,

P0 = 1 · 10−4 ,

θ̂2,2 = θ2,2 ,

c2 = 10 ,

θ̂2,1 = θ2,1 ,

θ̂2,3 = 20 · θ2,3 .
(G-61)

From Figure G-14 we can clearly see that the IBS and IPEIBS controllers perform much
better compared to the conventional BS controller (C-39) in presence of the introduced para-
metric uncertainty. The IBS control law performs better compared to the full-information BS
controller because the uncertainties are now multiplied by the very small difference variables
∆x1 and ∆x2. From Figure G-15 we can see that the parameter estimate for the IPEIBS
controller quickly converges to the real parameter.
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Figure G-14: The control performance of the Incremental Parameter Estimation Backstepping
controller with Time-Scale Separation and P0 = 1 · 10−4.
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Figure G-15: The performance of the Incremental Parameter Estimator with Time-Scale Sepa-
ration. The dashed black line represents the value of the real parameter θ2,3.
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Appendix H

Immersion and Invariance Adaptive
Backstepping

In this appendix the Immersion and Invariance Adaptive Backstepping (IIABS) control ap-
proach is derived and evaluated that makes use of update laws that are based on Immersion
and Invariance (I&I). This control technique guarantees asymptotic stability of the closed-
loop system and parameter convergence for uncertain nonlinear systems (H-1). In order to
evaluate this nonlinear control approach, IIABS control laws are derived and simulated for
the pendulum model (H-2).

H-1 Theory

We consider the following cascaded nonlinear system:

ẋ1 = h(x1,x2) +K(x1,x2)x2 (H-1a)

ẋ2 = f(x1,x2) +G(x1,x2)u , (H-1b)

where x1 ∈ R
n1 and x2 ∈ R

n2 are the state vectors, u ∈ R
m is the input vector, h is a known

and f an unknown smooth vector field on respectively R
n1 and R

n2 , and K ∈ R
n1×n2 is a

known and G ∈ R
n2×m an unknown matrix whose columns are smooth vector fields. The

control task is to track a smooth reference signal x1,r, for which the time derivative is assumed
to be known and bounded. Furthermore, the signal x2 must remain bounded. It is assumed
that the x1-subsystem is fully known while subsystem x2 contains uncertainties. This is a
valid assumption in many aerospace control applications, because the x1-subsystem generally
contains the known kinematic equations, while subsystem x2 contains the uncertain dynamic
equations.
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It is assumed that Eq. (H-1b) can be written as follows to facilitate the design procedure of
the I&I estimator:

ẋ2,i = fi(x1,x2,u) +ϕi(x1, x2,1, . . . , x2,i,u)
T
θ , for i = 1, . . . , n2 (H-2a)

ξ̇i = wi , (H-2b)

where fi represents the certain part of system (H-1b), ϕi ∈ R
r are the smooth and known

regressor functions, θ ∈ R
r is a vector with unknown constant parameters, ξi ∈ R

r is the
estimator state and wi ∈ R

r is the update law to be determined. The design of the overpa-
rameterized I&I estimator of order n2 × r starts by defining the estimation errors as

σi = ξi + βi (x1, x2,1, . . . , x2,i,u)− θ , for i = 1, . . . , n2 , (H-3)

where βi(·) are continuous functions yet to be specified. The dynamics of the estimation error
are given by

σ̇i = ξ̇i + β̇i (x1, x2,1, . . . , x2,i,u)

= ξ̇i +
∂βi

∂x1
ẋ1 +

i∑

j=1

∂βi

∂x2,j
ẋ2,j +

m∑

k=1

∂βi

∂uk
u̇k

= ξ̇i +
∂βi

∂x1
ẋ1 +

i∑

j=1

∂βi

∂x2,j

[
fj +ϕ

T
j (ξi + βi − σi)

]
+

m∑

k=1

∂βi

∂uk
u̇k . (H-4)

The update laws wi are selected as

wi ≡ ξ̇i = −∂βi

∂x1
ẋ1 −

i∑

j=1

∂βi

∂x2,j

[
fj +ϕ

T
j (ξi + βi)

]
−

m∑

k=1

∂βi

∂uk
u̇k , (H-5)

which yields the following estimator error dynamics:

σ̇i = −
i∑

j=1

∂βi

∂x2,j
ϕ

T
j σi . (H-6)

Note that the update laws wi are selected such that the estimation error dynamics (H-6)
have an equilibrium at zero. In order to obtain an asymptotically converging estimate of
each unknown term ϕ

T
i θ, we can select the βi-functions as (Karagiannis & Astolfi, 2008a;

Sonneveldt, 2010):

βi(x1, x2,1, . . . , x2,i,u) = Γi

∫ x2,i

0
ϕi(x1, x2,1, . . . , x2,i−1, χ,u) dχ+ ǫi(x2,i) , (H-7)

where Γi is a positive diagonal matrix containing the update gain parameters:

Γi =






γi,1 0 0

0
. . . 0

0 0 γi,r




 , (H-8)
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and where ǫi are continuously differentiable functions that satisfy the partial differential
matrix inequality:

Fi(x1, x2,1, . . . , x2,i,u)
T + Fi(x1, x2,1, . . . , x2,i,u) ≥ 0 , (H-9)

where

Fi(x1, x2,1, . . . , x2,i,u) = Γi

i−1∑

j=1

∂

∂x2,j

[∫ x2,i

0
ϕi(x1, x2,1, . . . , x2,i−1, χ,u) dχ

]

(H-10)

·ϕj(x1, x2,1, . . . , x2,j ,u)
T +

∂ǫi
∂x2,i

ϕi(x1, x2,1, . . . , x2,i,u)
T .

In the special case in which ϕi(·) is not a function of x2,l for i 6= l and l = 1, 2, 3, the
trivial solution ǫi(x2,i) = 0 satisfies inequality (H-10). The same simplification occurs when
only one of the functions ϕi(·) is non-zero. In general, it is not easy to find functions ǫi

that satisfy Eq. (H-10). The problem of finding the ǫi-functions can be prevented by using
dynamic scaling and output filters, which is demonstrated in (Karagiannis & Astolfi, 2008b;
Sonneveldt, 2010).

In order to proof that the I&I estimator (H-5) and (H-7) yields an asymptotically converging
estimate of each unknown term ϕ

T
i θ, we consider the following Lyapunov function:

V(σ) =
n2∑

i=1

σ
T
i σi . (H-11)

Taking the time derivative of V along the trajectories of Eq. (H-6) yields

V̇ = −2

n2∑

i=1

σ
T
i





i∑

j=1

∂βi

∂x2,j
ϕ

T
j



σi . (H-12)

Note that the term between the square brackets can be written as

i∑

j=1

∂βi

∂x2,j
ϕ

T
j =

i−1∑

j=1

∂

∂x2,j

[

Γi

∫ x2,i

0
ϕi(x1, x2,1, . . . , x2,i−1, χ,u)dχ

]

ϕj(x1, x2,1, . . . , x2,j ,u)
T

+
∂

∂x2,i

[

Γi

∫ x2,i

0
ϕi(x1, x2,1, . . . , x2,i−1, χ,u)dχ+ ǫi(x2,i)

]

·ϕi(x1, x2,1, . . . , x2,i,u)
T

=
i−1∑

j=1

∂

∂x2,j

[

Γi

∫ x2,i

0
ϕi(x1, x2,1, . . . , x2,i−1, χ,u)dχ

]

·ϕj(x1, x2,1, . . . , x2,j ,u)
T

+ Γiϕi(x1, x2,1, . . . , x2,i,u)ϕi(x1, x2,1, . . . , x2,i,u)
T

+
∂ǫi(x2,i)

∂x2,i
ϕi(x1, x2,1, . . . , x2,i,u)

T

= Γiϕi(x1, x2,1, . . . , x2,i,u)ϕi(x1, x2,1, . . . , x2,i,u)
T + Fi . (H-13)
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Therefore the time derivative of V along the trajectories of Eq. (H-6) becomes

V̇ = −2

n2∑

i=1

σ
T
i

[

Γiϕi(x1, x2,1, . . . , x2,i,u)ϕi(x1, x2,1, . . . , x2,i,u)
T + Fi

]

σi

= −
n2∑

i=1

σ
T
i

[

2Γiϕi(x1, x2,1, . . . , x2,i,u)ϕi(x1, x2,1, . . . , x2,i,u)
T + F T

i + Fi

]

σi

≤ −2

n2∑

i=1

σ
T
i

[

Γiϕi(x1, x2,1, . . . , x2,i,u)ϕi(x1, x2,1, . . . , x2,i,u)
T
]

σi

≤ −2

n2∑

i=1

ϕi(x1, x2,1, . . . , x2,i,u)
TΓiσiϕi(x1, x2,1, . . . , x2,i,u)

T
σi , (H-14)

where σT
i Fiσi = σ

T
i

[
0.5F T

i + 0.5Fi

]
σi and Eq. (H-9) were used. By the theorem of LaSalle-

Yoshizawa (see e.g. Theorem B.9 in (Sonneveldt, 2010)) it now follows that the equilib-
rium ϕ

T
i σi is globally uniformly asymptotically stable.

The (Command-Filtered, Incremental) Backstepping (BS) control law for system (H-1) is
derived as explained in Appendices C to E. The adaptive control law based on the I&I esti-
mator is then obtained by replacing the unknown terms ϕT

i θ by their estimates ϕT
i (ξi + βi).

Stability of the closed-loop system can then be proved by using the following Lyapunov func-
tion V(z̄,σ) = ∑n2

i=1 σ
T
i σi +

∑2
j=1 z̄

T
j z̄j , see e.g. (Sonneveldt, 2010). This approach is also

illustrated in the next section.

H-2 Simulations

In order to evaluate the IIABS approach, seven simulations are performed by using the pen-
dulum model:

1. Adaptive Backstepping for one unknown parameter;

2. Command-Filtered Adaptive Backstepping with one unknown parameter;

3. Adaptive Backstepping with one unknown time-varying parameter;

4. Adaptive Backstepping with two unknown parameters;

5. Command-Filtered Adaptive Backstepping with three unknown parameters;

6. Command-Filtered Adaptive Incremental Backstepping with Time-Scale Separation;

7. Command-Filtered Adaptive Incremental Backstepping without Time-Scale Separation.
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H-2-1 Adaptive Backstepping with one unknown parameter

In this section an I&I estimator is combined with a BS controller to guarantee global asymp-
totic stability of the closed-loop system and parameter convergence for an uncertain nonlinear
system. Now we assume θ2,2 is an unknown constant parameter, and consider the following
augmented pendulum model:

ẋ1 = x2 (H-15a)

ẋ2 = θ2,1 sin(x1) + θ2,2x2 + θ2,3u (H-15b)

ξ̇2,2 = w , (H-15c)

in which ξ2,2 ∈ R is the estimator state and w is the update law to be determined. The
control task is to track the smooth reference state x1,r with the state x1. Now we introduce
the following one-dimensional manifold:

M =
{
(x, ξ2,2) ∈ R

3|ξ2,2 + β2(x)− θ2,2 = 0
}
, (H-16)

where β2(x) is a continuous function yet to be specified. The estimate of the unknown
constant θ2,2 is given by

θ̂2,2 = ξ2,2 + β2 . (H-17)

If the manifold M is invariant (see Definition H.1), the dynamics of the x-subsystem of
(H-15) restricted to this manifold can be written as

ẋ1 = x2 (H-18a)

ẋ2 = θ2,1 sin(x1) + (ξ2,2 + β2(x))x2 + θ2,3u . (H-18b)

Definition H.1 (Invariant Manifold)
The manifold M = {x ∈ R

n|s(x) = 0}, with s(x) smooth, is said to be (positively) invariant
for ẋ = f(x) if s(x(0)) = 0, which implies s(x(t)) = 0, for all t ≥ 0.

The dynamics of this system are completely known, i.e. the dynamics are independent of the
unknown parameter θ2,2. Now we define the off-the-manifold coordinate:

σ2 = θ̂2,2 − θ2,2 = ξ2,2 + β2 − θ2,2 , (H-19)

which plays the role of estimation error. The off-the-manifold dynamics are given by

σ̇2 = w +
∂β2
∂x1

ẋ1 +
∂β2
∂x2

ẋ2 . (H-20)

Substituting Eqs. (H-15a), (H-15b) and (H-19) into Eq. (H-20) results in

σ̇2 = w +
∂β2
∂x1

x2 +
∂β2
∂x2

[θ2,1 sin(x1) + (ξ2,2 + β2(x)− σ2)x2 + θ2,3u] . (H-21)
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To render the manifold M invariant, the following update law is selected:

w = ξ̇2,2 = −∂β2
∂x1

x2 −
∂β2
∂x2

[θ2,1 sin(x1) + (ξ2,2 + β2(x))x2 + θ2,3u] , (H-22)

which results in the following off-the-manifold dynamics:

σ̇2 = −∂β2
∂x2

σ2x2 . (H-23)

The Lyapunov function is now constructed as

V(σ2) =
1

2γ2
σ2
2 , γ2 > 0 , (H-24)

where γ2 is the adaptation gain. Taking the time derivative of this function along the trajec-
tories of Eq. (H-23) results in

V̇ = − 1

γ2

∂β2
∂x2

σ2
2x2 . (H-25)

To render V̇ negative definite, the following nonlinear function is selected:

β2 =
γ2
2
x22 →

∂β2
∂x2

= γ2x2 , (H-26)

which results in

V̇ = − (x2σ2)
2 , (H-27)

and
σ̇2 = −γ2x

2
2σ2 . (H-28)

Note that the dynamics of the parameter estimation error σ2 are described by a first-order
linear ordinary, homogeneous differential equation with a time-varying coefficient. The well-
known solution to this differential equation is

σ2(t) = σ2(0)e
−γ2

∫ t

0 x2(ξ)2 dξ , (H-29)

which indicates that the parameter estimation error is a monotonically non-increasing func-
tion. Note that overparameterization of the derived I&I estimator is eliminated since we are
dealing with only one uncertain equation.

Now we have succeeded in making the manifold M attractive and invariant. The next task is
to find a BS control law such that the closed-loop system globally asymptotically tracks the
reference signal x1,r, whose derivatives are known and bounded.

We start by introducing the following tracking errors:

z1 = x1 − x1,r (H-30a)

z2 = x2 − α1 . (H-30b)
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The derivations for subsystem x1 remain exactly the same as in Appendix C-3 (see Eqs. (C-32)
to (C-36)), because this subsystem is assumed to be fully known. Therefore we directly move
on to the second and final subsystem. We can rewrite this system by using the definition of
the off-the-manifold coordinate, resulting in:

ż2 = θ2,1 sin(x1) + (ξ2,2 + β2 − σ2)x2 + θ2,3u− α̇1 . (H-31)

Now the following real control u is introduced:

u =
1

θ2,3

[

−ρ− θ2,1 sin(x1)− θ̂2,2x2 + α̇1

]

=
1

θ2,3
[−ρ− θ2,1 sin(x1)− (ξ2,2 + β2)x2 + α̇1] , (H-32)

where ρ is a stabilizing function to be defined. This reduces the z2-dynamics to

ż2 = −ρ− σ2x2 . (H-33)

Augmenting the quadratic Control Lyapunov Function (CLF) to penalize the second tracking
error and the off-the-manifold coordinate yields

V(z, σ2) = V1 + z22 +
L

2γ2
σ2
2 , (H-34)

where L is a positive constant. Taking the time derivative of V along the trajectories of the
error dynamics and Eq. (H-28) results in

V̇ = −2c1z
2
1 + 2z1z2 + 2z2(−ρ− σ2x2) + Lσ2

(
−x22σ2

)

= −2c1z
2
1 + 2z1z2 − 2z2ρ− 2σ2x2z2 − Lσ2

2x
2
2

= −2c1z
2
1 + 2z1z2 − 2z2ρ+ ǫz22 −

(
1√
ǫ
σ2x2 +

√
ǫz2

)2

−
(

L− 1

ǫ

)

(σ2x2)
2

≤ −2c1z
2
1 + 2z1z2 − 2z2ρ+ ǫz22 −

(

L− 1

ǫ

)

(σ2x2)
2 , (H-35)

where ǫ is a positive constant. The derivative V̇ is made negative definite by using the
following expression for the stabilizing function ρ:

ρ = z1 + c2z2, c2 > 0 . (H-36)

This renders V̇ into

V̇ ≤ −2c1z
2
1 − (2c2 − ǫ) z22 −

(

L− 1

ǫ

)

(σ2x2)
2 . (H-37)

By Theorem C.2 it now follows that if c2 >
ǫ
2 and L > 1

ǫ
, then:

lim
t→∞

z1 = 0 → lim
t→∞

[x1 − x1,r] = 0 (H-38a)

lim
t→∞

z2 = 0 (H-38b)

lim
t→∞

σ2x2 =
(

θ̂2,2 − θ2,2

)

x2 = 0 . (H-38c)
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Because ǫ and L are arbitrary positive constants, stability is guaranteed when c2 > 0. Note
that Eq. (H-38c) does not imply that the estimate θ̂2,2 converges to the real parameter θ2,2. Ac-
cording to (Karagiannis & Astolfi, 2010) this requires a Persistent Excitation (PE) condition,
and can be achieved only by injecting “sufficiently rich” reference signals. From Eqs. (H-29)
and (H-38c) can be seen that this requires a reference signal that results in x2 6= 0.

If we substitute Eq. (H-26) into update law (H-22) we obtain:

ξ̇2,2 = −γ2x2

[

θ2,1 sin(x1) +
(

ξ2,2 +
γ2
2
x22

)

x2 + θ2,3u
]

. (H-39)

By substituting Eq. (H-36) into Eq. (H-32) we find the following control law:

u =
1

θ2,3

[

−z1 − c2z2 − θ2,1 sin(x1)− θ̂2,2x2 + α̇1

]

. (H-40)

By comparing the new control law with the earlier designed conventional BS controller:

u =
1

θ2,3
[−z1 − c2z2 − θ2,1 sin(x1)− θ2,2x2 + α̇1] , (C-39 revisited)

we can see that the new control law based on the I&I estimator can simply be obtained from
the full-information BS controller by replacing the parameter θ2,2 by its estimate θ̂2,2.

The controller structure developed in this section can be seen in Figure H-1. Note that the
I&I-dynamics can be found in Eq. (H-39).

x1
+

−

z1

x1,r

α1

d

dt ẋ1,r

+

− z2
u

x2

x2

β2
I&I

dynamics

ξ2,2

+

+ θ̂2,2

x2

d

dt
α̇1 x1

z1

u

I&I estimator

β2

Figure H-1: Immersion & Invariance Adaptive Backstepping controller structure.

Note that the positive constant ǫ, which was introduced in Eq. (H-35), is only used to rewrite V̇
to prove stability of the closed-loop system. The constant ǫ does not turn up in the physical
control law (H-40). This is an improvement compared to (Sonneveldt, 2010; Ali, 2013),
in which the parameter ǫ is finally transformed into another tuning parameter. In these
references the adaptation gain γ2 also becomes a function of the parameter ǫ, which is not the
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case for the current derivation. Therefore, the way in which stability has been proved in this
section significantly improves the ease of tuning compared to (Sonneveldt, 2010; Ali, 2013).

Simulations of the BS controller augmented with an I&I estimator have been run for sys-
tem (H-15) with one unknown parameter and a sampling time of 0.01 s. The initial condi-
tions and parameters which have been used in this simulation for the model can be found in
Eq. (C-44). The following control and estimator parameters have been selected:

c1 = 10 ,

θ̂2,1 = θ2,1 ,

θ̂2,3 = θ2,3 .

c2 = 10 ,

ξ2,2(0) = −50 · θ2,2 , (H-41)

Different values of the parameter γ2 have been selected. Increasing the gain γ2 results in a
better tracking performance as can be seen in Figure H-2. After the parameter estimate has
converged, all three controllers are able to accurately follow the reference signal. As expected
from Eq. (H-28), increasing the gain γ2 results in faster convergence of the parameter estimate
(see Figure H-3). The trade-off is that sensitivity to noise and actuator dynamics increases
(Karagiannis & Astolfi, 2010). Also, if we keep increasing γ2 without lowering the sample
time, the closed-loop system might become unstable due to an unbounded ξ̇2,2, see Eq. (H-39).
Note from Figure H-3 that the parameter estimation error is monotonically non-increasing,
which is as expected from Eq. (H-28). In Figure H-4 we can see that the variables z1, z2 and
σ2x2 all converge to 0, which is in accordance with Eq. (H-38).
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Figure H-2: The control performance of the Backstepping controller augmented with an Immer-
sion & Invariance estimator for different values of γ2 in the presence of a parametric uncertainty.
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Figure H-3: The performance of the Immersion and Invariance estimator for different values
of γ2. The dashed black line represents the value of the real parameter θ2,2.
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Figure H-4: The control performance of the Backstepping controller augmented with an Immer-
sion & Invariance estimator for different values of γ2.
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Similar as in section (F-2-2), we now introduce a magnitude limit for the control u of ±850Nm
to find out how this new controller and I&I estimator perform in case of such a limit. The
results can be found in Figures H-5 and H-6. The small tracking errors during the maneuver
are due to the physical constraints. Clearly, the I&I estimator is not influenced by the
magnitude limit for the control, as opposed to the Tuning Function (TF) estimator (see
Figure F-4). The reason for this is that the I&I update law (H-39) is not driven by the
tracking error z2, in contrary to the TF estimator (F-81).
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Figure H-5: The control performance of the Backstepping controller with and without an Im-
mersion & Invariance estimator with γ2 = 0.02 in the presence of a parametric uncertainty. The
control u has been magnitude limited to ±850Nm.

H-2-2 Command-Filtered Adaptive Backstepping with one unknown parameter

In this section the BS controller will be augmented with command filters to compute the com-
manded signals and their time derivatives, so that we no longer have to derive the analytical
expression of the virtual control derivative. The design of the I&I estimator can be found in
the previous section, and is independent of the command filter design. The pendulum model
is for convenience repeated below:

ẋ1 = x2 (B-3a revisited)

ẋ2 = θ2,1 sin(x1) + θ2,2x2 + θ2,3u . (B-3b revisited)

Adaptive Incremental Backstepping Flight Control P. van Gils



188 Immersion and Invariance Adaptive Backstepping

0 5 10 15 20 25 30
−5

0

5

10

15

20

25

30

θ̂ 2
,2

time (s)

Figure H-6: The performance of the Immersion & Invariance estimator with γ2 = 0.02. The
control u has been magnitude limited to ±850Nm. The dashed black line represents the value
of the real parameter θ2,2.

The control task is to track the smooth reference state x1,r with the state x1. Similar as
before, we define the following tracking errors:

z1 = x1 − x1,r (H-43a)

z2 = x2 − x2,r , (H-43b)

and the compensated tracking errors as

z̄1 = z1 − χ1 (H-44a)

z̄2 = z2 − χ2 . (H-44b)

The derivations for subsystem x1 remain exactly the same as in Appendix D-3 (see Eqs. (D-
35) to (D-40)), because this subsystem is assumed to be fully known. Therefore we directly
move on to the second and final compensated subsystem. The z̄2-dynamics are given by

˙̄z2 = θ2,1 sin(x1) + θ2,2x2 + θ2,3u− ẋ2,r − χ̇2

= θ2,1 sin(x1) + (ξ2,2 + β2 − σ2)x2 + θ2,3u− ẋ2,r − χ̇2 . (H-45)

Now we augment the quadratic CLF function to penalize the second compensated error and
the off-the-manifold coordinate as well:

V (z̄, σ2) = V1 + z̄22 +
L

2γ2
σ2
2 , (H-46)

where L is a positive constant. Taking the time derivative of V along the trajectories of the
compensated error dynamics and Eq. (H-28) results in

V̇ = −2c1z̄
2
1 + 2z̄1z̄2 + 2z̄2 [θ2,1 sin(x1) + (ξ2,2 + β2 − σ2)x2 + θ2,3u− ẋ2,r − χ̇2]

−Lσ2
2x

2
2 . (H-47)
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The raw control signal u0 is led through a command filter to obtain u. The effect that the
use of the command filter has on the tracking error z2 is estimated by the stable linear filter:

χ̇2 = −c2χ2 + θ2,3
(
u− u0

)
, (H-48)

with χ2(0) = 0. This yields

V̇ = −2c1z̄
2
1 + 2z̄1z̄2 + 2z̄2

[
θ2,1 sin(x1) + (ξ2,2 + β2 − σ2)x2 − ẋ2,r + c2χ2 + θ2,3u

0
]

−Lσ2
2x

2
2 . (H-49)

Now we select the following raw control law u0:

u0 =
1

θ2,3

[

−ρ− θ2,1 sin(x1)− θ̂2,2x2 + ẋ2,r

]

=
1

θ2,3
[−ρ− θ2,1 sin(x1)− (ξ2,2 + β2)x2 + ẋ2,r] , (H-50)

where ρ is a stabilizing function to be defined. This yields

V̇ = −2c1z̄
2
1 + 2z̄1z̄2 + 2z̄2 (−ρ− σ2x2 + c2χ2)− Lσ2

2x
2
2

= −2c1z̄
2
1 − 2c2z̄

2
2 + 2z̄1z̄2 + 2z̄2 (−ρ− σ2x2 + c2z2)− Lσ2

2x
2
2

= −2c1z̄
2
1 − 2c2z̄

2
2 + 2z̄1z̄2 − 2z̄2ρ+ 2c2z2z̄2 − 2σ2x2z̄2 − Lσ2

2x
2
2

= −2c1z̄
2
1 − 2c2z̄

2
2 + 2z̄1z̄2 − 2z̄2ρ+ 2c2z2z̄2 + ǫz̄22 −

(
1√
ǫ
σ2x2 +

√
ǫz̄22

)2

−
(

L− 1

ǫ

)

(σ2x2)
2

≤ −2c1z̄
2
1 − (2c2 − ǫ) z̄22 + 2z̄1z̄2 − 2z̄2ρ+ 2c2z2z̄2 −

(

L− 1

ǫ

)

(σ2x2)
2 . (H-51)

The derivative V̇ is now made negative definite by using the following expression for the
stabilizing function ρ:

ρ = z̄1 + c2z2, c2 > 0 , (H-52)

which yields

V̇ ≤ −2c1z̄
2
1 − (2c2 − ǫ) z̄22 −

(

2γ − 1

ǫ

)

(σ2x2)
2 . (H-53)

By Theorem C.2 it now follows that if c2 >
ǫ
2 and L > 1

ǫ
, then:

lim
t→∞

z̄ = 0 (H-54a)

lim
t→∞

σ2x2 =
(

θ̂2,2 − θ2,2

)

x2 = 0 . (H-54b)

Because ǫ and L are arbitrary positive constants, stability of the equilibrium z̄ = 0 is guaran-
teed when c2 > 0. Note that Eq. (H-54b) does not imply that the estimate θ̂2 converges to the
real parameter θ2. According to (Karagiannis & Astolfi, 2010) this requires a PE condition,
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and can be achieved only by injecting “sufficiently rich” reference signals. From Eqs. (H-29)
and (H-54b) can be seen that this requires a reference signal that results in x2 6= 0.

If we compare the new raw control law with the earlier designed conventional BS controller
and the BS controller based on the I&I estimator:

u0 =
1

θ2,3

[

−z̄1 − c2 (x2 − x2,r)− θ2,1 sin(x1)− θ̂2,2x2 + ẋ2,r

]

(H-55)

u =
1

θ2,3
[−z1 − c2 (x2 − α1)− θ2,1 sin(x1)− θ2,2x2 + α̇1] (C-39 revisited)

u =
1

θ2,3

[

−z1 − c2 (x2 − α1)− θ2,1 sin(x1)− θ̂2,2x2 + α̇1

]

, (H-40 revisited)

we can see that the new raw Command-Filtered BS control law based on the I&I estimator
depends on x2,r and ẋ2,r, which are the output of the command filter and therefore the analyt-
ical derivative α̇1 is no longer required. In the absence of physical limitations (i.e. magnitude,
rate and bandwidth constraints on the intermediate state x2 and control u), convergence of
the tracking errors is still guaranteed even when the parameter θ2,2 is an unknown constant.

H-2-3 Adaptive Backstepping with one unknown time-varying parameter

In the two previous sections we assumed that θ2,2 is an unknown constant parameter. Now
a simulation has been performed in which this parameter changes halfway the simulation,
in order to find out how the I&I estimator performs in case of an abrupt parameter change.
Simulations of the I&I BS controller have been run for system (B-3) with one unknown
parameter and a sampling time of 0.01 s. The initial conditions and parameters which have
been used in this simulation for the model can be found in Eq. (C-44), the control and
estimator parameters are similar as in Eq. (F-84). The estimation results can be seen in
Figure H-7. Clearly, the I&I estimator is able to cope with the sudden parameter change.
If we compare the performance of the I&I estimator with that of the TF estimator (see
Figure F-8), we can see that the I&I estimator performs better because it does not exhibit
any overshoot.

Now a simulation is performed in which the uncertain parameter θ2,2 is a linear function of
state x1(t). The simulation has been run for different values of the adaptation gain γ2 and with
θ̂2,2(0) = −1. The initial conditions and parameters which have been used in this simulation
for the model can be found in Eq. (C-44). From Figure H-8 we can see that the parameter
estimator, which has been derived by assuming a constant unknown parameter θ2,2, is not
able to accurately track the time-varying parameter θ2,2(t). By increasing the adaptation
gain, the estimator tracks the changes of parameter θ2,2 more accurately. However, if we keep
increasing the adaptation gain the estimator will become unstable, see also the discussion in
Appendix H-2-1. Moreover, by increasing the adaptation gain, the sensitivity to noise and
actuator dynamics increases (Karagiannis & Astolfi, 2010). A better way to estimate time-
varying parameters with I&I estimators is to use function approximators that are capable of
approximating the desired function, in a way similar as explained in Appendix F-2-3.
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Figure H-7: The performance of the Immersion & Invariance estimator with γ2 = 0.05 in case of
an abrupt parameter change. The dashed black line represents the value of the real parameter θ2,2.
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Figure H-8: The performance of the Immersion & Invariance estimator for different values of γ2
in case of a time-varying parameter. The dashed black line represents the real parameter θ2,2(t).
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H-2-4 Adaptive Backstepping with two unknown parameters

In this section an I&I estimator is combined with a BS controller to guarantee global asymp-
totic stability of the closed-loop system and parameter convergence for an uncertain nonlinear
system. Now we assume θ2,1 and θ2,2 are unknown constant parameters, and consider the
following augmented pendulum model:

ẋ1 = x2 (H-56a)

ẋ2 = θ2,1 sin(x1) + θ2,2x2 + θ2,3u (H-56b)

ξ̇2 = w , (H-56c)

in which ξ2 ∈ R
2 is the estimator state and w is the update law to be determined. The

control task is to track the smooth reference state x1,r with the state x1. The x-subsystem
can be written as

ẋ1 = x2 +ϕ1(x1)
T
θ2 (H-57a)

ẋ2 = θ2,3u+ϕ2(x)
T
θ2 , (H-57b)

where

ϕ1(x1) =

[
0
0

]

, ϕ2(x) =

[
sin(x1)

x2

]

, θ2 =

[
θ2,1
θ2,2

]

. (H-58)

Now we introduce the following two-dimensional manifold:

M =
{
(x, ξ2) ∈ R

4|ξ2 + β2(x)− θ2 = 0
}
, (H-59)

where β2(x) is a continuous function yet to be specified. The estimate of the unknown
constant θ2 is given by

θ̂2 = ξ2 + β2 . (H-60)

If the manifold M is invariant (see Definition H.1 on page 181), the dynamics of the x-
subsystem of (H-56) restricted to this manifold can be written as

ẋ1 = x2 +ϕ1(x1)
T (ξ2 + β2(x)) (H-61a)

ẋ2 = θ2,3u+ϕ2(x)
T (ξ2 + β2(x)) . (H-61b)

The dynamics of this system are completely known, i.e. the dynamics are independent of the
unknown parameters θ2,1 and θ2,2. Now we define the off-the-manifold coordinate:

σ2 = θ̂2 − θ2 = ξ2 + β2 − θ2 , (H-62)

which plays the role of estimation error. The off-the-manifold dynamics are given by

σ̇2 = w +
∂β2

∂x1
ẋ1 +

∂β2

∂x2
ẋ2 . (H-63)
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Substituting Eqs. (H-56a), (H-56b) and (H-62) into Eq. (H-63) results in

σ̇2 = w+
∂β2

∂x1

[
x2 +ϕ1(x1)

T (ξ2 + β2(x)− σ2)
]
+

∂β2

∂x2

[
θ2,3u+ϕ2(x)

T (ξ2 + β2(x)− σ2)
]
.

(H-64)

To render the manifold M invariant, the following update law is selected:

w = ξ̇2 = −∂β2

∂x1

[
x2 +ϕ1(x1)

T (ξ2 + β2(x))
]
− ∂β2

∂x2

[
θ2,3u+ϕ2(x)

T (ξ2 + β2(x))
]
, (H-65)

which results in the following off-the-manifold dynamics:

σ̇2 = −∂β2

∂x1
ϕ1(x1)

T
σ2 −

∂β2

∂x2
ϕ2(x)

T
σ2 . (H-66)

In order to render the manifold M attractive, we can select the β2-function as (Karagiannis
& Astolfi, 2008a):

β2(x) = γ2

∫ x2

0
ϕ2(x1, χ) dχ , (H-67)

which gives

β2(x) = γ2

[
x2 sin(x1)

1
2x

2
2

]

. (H-68)

The partial derivatives are given by

∂β2,1
∂x1

= γ2x2 cos(x1) ,
∂β2,1
∂x2

= γ2 sin(x1) , (H-69a)

∂β2,2
∂x1

= 0 ,
∂β2,2
∂x2

= γ2x2 . (H-69b)

The off-the-manifold dynamics are now given by

σ̇2,1 = −γ2[σ2,1 sin
2(x1) + σ2,2 sin(x1)x2] (H-70a)

σ̇2,2 = −γ2[σ2,1 sin(x1)x2 + σ2,2x
2
2] . (H-70b)

In order to proof that the manifold M is indeed attractive, we now select the following
Lyapunov function:

V(σ2) =
1

2γ2
σ2
2,1 +

1

2γ2
σ2
2,2 , γ2 > 0 . (H-71)

Taking the time derivative of this function along the trajectories of Eq. (H-66) results in

V̇ =
1

γ2
σ2,1σ̇2,1 +

1

γ2
σ2,2σ̇2,2

= − 1

γ2
σ2,1

∂β2,1
∂x2

[σ2,1 sin(x1) + σ2,2x2]−
1

γ2
σ2,2

∂β2,2
∂x2

[σ2,1 sin(x1) + σ2,2x2]

= −σ2,1 sin(x1) [σ2,1 sin(x1) + σ2,2x2]− σ2,2x2 [σ2,1 sin(x1) + σ2,2x2]

= −
[
σ2
2,1 sin

2(x1) + 2σ2,1σ2,2 sin(x1)x2 + σ2
2,2x

2
2

]

= − [σ2,1 sin(x1) + σ2,2x2]
2 . (H-72)
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Now we have succeeded in making the manifold M attractive and invariant. The next task is
to find a BS control law such that the closed-loop system globally asymptotically tracks the
reference signal x1,r, whose time derivatives are known and bounded.

Similar as before, we start by introducing the following tracking errors:

z1 = x1 − x1,r (H-73a)

z2 = x2 − α1 . (H-73b)

The derivations for subsystem x1 remain exactly the same as in Appendix C-3 (see Eqs. (C-32)
to (C-36)), because this subsystem is assumed to be fully known. Therefore we directly move
on to the second and final subsystem. We can rewrite this system by using the definition of
the off-the-manifold coordinate, resulting in

ż2 = (ξ2,1 + β2,1 − σ2,1) sin(x1) + (ξ2,2 + β2,2 − σ2,2)x2 + θ2,3u− α̇1 . (H-74)

We introduce the following real control u:

u =
1

θ2,3

[

−ρ− θ̂2,1 sin(x1)− θ̂2,2x2 + α̇1

]

=
1

θ2,3
[−ρ− (ξ2,1 + β2,1) sin(x1)− (ξ2,2 + β2,2)x2 + α̇1] , (H-75)

where ρ is a stabilizing function to be defined. This reduces the z2-dynamics to

ż2 = −ρ− σ2,1 sin(x1)− σ2,2x2 . (H-76)

The quadratic CLF is augmented to penalize the second tracking error and the off-the-
manifold coordinates as well:

V(z,σ2) = V1 + z22 +
L

2γ2
σ2
2,1 +

L

2γ2
σ2
2,2 , (H-77)

where L is a positive constant. Taking the time derivative of V along the trajectories of the
error dynamics and Eq. (H-70) results in

V̇ = −2c1z
2
1 + 2z1z2 + 2z2 (−ρ− σ2,1 sin(x1)− σ2,2x2)

−Lσ2,1
[
σ2,1 sin

2(x1) + σ2,2 sin(x1)x2
]
− Lσ2,2

[
σ2,1 sin(x1)x2 + σ2,2x

2
2

]

= −2c1z
2
1 + 2z1z2 − 2z2ρ− 2z2 [σ2,1 sin(x1) + σ2,2x2]

−Lσ2
2,1 sin

2(x1)− 2Lσ2,1σ2,2 sin(x1)x2 − Lσ2
2,2x

2
2

= −2c1z
2
1 + 2z1z2 − 2z2ρ− 2z2 [σ2,1 sin(x1) + σ2,2x2]− L [σ2,1 sin(x1) + σ2,2x2]

2

= −2c1z
2
1 + 2z1z2 − 2z2ρ+ ǫz22

−
(

1√
ǫ
[σ2,1 sin(x1) + σ2,2x2] +

√
ǫz2

)2

−
(

L− 1

ǫ

)

[σ2,1 sin(x1) + σ2,2x2]
2

≤ −2c1z
2
1 + 2z1z2 − 2z2ρ+ ǫz22 −

(

L− 1

ǫ

)

[σ2,1 sin(x1) + σ2,2x2]
2 , (H-78)
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where ǫ is a positive constant. The derivative V̇ is made negative definite by using the
following expression for the stabilizing function ρ:

ρ = z1 + c2z2 , c2 > 0 , (H-79)

which yields

V̇ ≤ −2c1z
2
1 − (2c2 − ǫ) z22 −

(

L− 1

ǫ

)

[σ2,1 sin(x1) + σ2,2x2]
2 . (H-80)

By Theorem C.2 it now follows that if c2 >
ǫ
2 and L > 1

ǫ
then:

lim
t→∞

z1 = 0 → lim
t→∞

[x1 − x1,r] = 0 (H-81a)

lim
t→∞

z2 = 0 (H-81b)

lim
t→∞

[σ2,1 sin(x1) + σ2,2x2] = lim
t→∞

[

ϕ
T
2

(

θ̂2 − θ2

)]

= 0 . (H-81c)

Because ǫ and L are arbitrary positive constants, stability is guaranteed when c2 > 0. Note
that Eq. (H-81c) does not imply that the estimate θ̂2 converges to the real parameter θ2.
According to (Karagiannis & Astolfi, 2010) this requires a PE condition, and can be achieved
only by injecting “sufficiently rich” reference signals. From Eqs. (H-70) and (H-81c) can be
seen that this requires a reference signal that results in x1 6= kπ and x2 6= 0 with k an integer.

If we substitute Eqs. (H-68) and (H-69) into Eq. (H-65) we obtain:

w1 = ξ̇2,1 = −γ2
[
h(x, u) sin(x1) + x22 cos(x1,0)

]
(H-82a)

w2 = ξ̇2,2 = −γ2
[
h(x, u)x2

]
, (H-82b)

where

h(x, u) = θ2,3u+ sin(x1) (ξ2,1 + β2,1) + x2 (ξ2,2 + β2,2) . (H-83)

If we substitute Eq. (H-79) into Eq. (H-75) we find the following control law:

u =
1

θ2,3

[

−z1 − c2z2 − θ̂2,1 sin(x1)− θ̂2,2x2 + α̇1

]

. (H-84)

If we compare the new control law with the earlier designed conventional BS controller:

u =
1

θ2,3
[−z1 − c2z2 − θ2,1 sin(x1)− θ2,2x2 + α̇1] , (C-39 revisited)

we can see that the new control law based on the I&I estimator can simply be obtained
from the full-information BS controller by replacing the parameters θ2,1 and θ2,2 by their

estimates θ̂2,1 and θ̂2,2.
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Simulations of the BS controller augmented with an I&I estimator have been run for sys-
tem (H-56) with two unknown parameters and a sampling time of 0.01 s. The initial condi-
tions and parameters which have been used in this simulation for the model can be found in
Eq. (C-44). The following control and estimator parameters have been selected:

c1 = 10 ,

ξ2,1(0) = −50 · θ2,1 ,
θ̂2,3 = θ2,3 .

c2 = 10 ,

ξ2,2(0) = −50 · θ2,2 , (H-85)

Different values for the adaptation gain γ2 have been selected, the results of the simulations
can be seen in Figures H-9 and H-10. From Figure H-9 it is clear that the tracking performance
is best for the I&I estimator with the highest adaptation gain. However, from Figure H-10
we can conclude that the highest adaptation gain results in very large fluctuations for the
estimate θ̂2,2. These results, together with the fact that the parameter update laws (H-82)
are significantly different from each other, makes it judicious to use distinct adaption gains
for the parameter update laws. Using distinct adaption gains for the different update laws is
an approach we earlier saw for the TF estimator, see for example Eq. (F-114).
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Figure H-9: The control performance of the Backstepping controller augmented with an Immer-
sion & Invariance estimator for different values of γ2 in the presence of parametric uncertainties.
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Figure H-10: The performance of the Immersion & Invariance estimators for different values
of γ2. The dashed black lines represent the values of the real parameters.

The β2-function, earlier defined in Eq. (H-68), is therefore now selected as

β2(x) =

[
γ2,1x2 sin(x1)

1
2γ2,2x

2
2

]

, (H-86)

where γ2,1 and γ2,2 are the adaptation gains. The off-the-manifold dynamics are now given
by

σ̇2,1 = −γ2,1[σ2,1 sin
2(x1) + σ2,2 sin(x1)x2] (H-87a)

σ̇2,2 = −γ2,2[σ2,1 sin(x1)x2 + σ2,2x
2
2] . (H-87b)

Similar to Eqs. (H-71) and (H-72), the following Lyapunov function can now be used to
demonstrate that the manifold M (see Eq. (H-59)) is attractive:

V(σ2) =
1

2γ2,1
σ2
2,1 +

1

2γ2,2
σ2
2,2 , γ2,1 , γ2,2 > 0 . (H-88)

Analogous to Eqs. (H-77) to (H-80), we can guarantee closed-loop stability by evaluating the
following quadratic CLF:

V(z,σ2) = z21 + z22 +
L

2γ2,1
σ2
2,1 +

L

2γ2,2
σ2
2,2 , (H-89)

where L is a positive constant.
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Simulations of the BS controller augmented with an I&I estimator have been run for the
system (H-56) with two unknown parameters and a sampling time of 0.01 s. The initial
conditions and parameters which have been used in this simulation for the model can be
found in Eq. (C-44). The following control and estimator parameters have been selected:

c1 = 10 ,

γ2,1 = 2 ,

γ2,2 = 0.01 ,

θ̂2,3 = θ2,3 .

c2 = 10,

ξ2,1(0) = −50 · θ2,1 ,
ξ2,2(0) = −50 · θ2,2 ,

(H-90)
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Figure H-11: The control performance of the Backstepping controller with and without Immer-
sion & Invariance estimator in the presence of parametric uncertainties.
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Figure H-12: The performance of the Immersion & Invariance estimators. The dashed black
lines represent the values of the real parameters.

H-2-5 Command-Filtered Adaptive Backstepping with three unknown parame-
ters

In this section an I&I estimator is combined with a BS controller to guarantee global asymp-
totic stability of the closed-loop system and parameter convergence for an uncertain nonlinear
system. A command filter is designed to obtain the time derivative of the control input u,
which is required in the estimator design.

We consider the following augmented pendulum model:

ẋ1 = x2 (H-91a)

ẋ2 = θ2,1 sin(x1) + θ2,2x2 + θ2,3u (H-91b)

ξ̇2 = w , (H-91c)

in which ξ2 ∈ R
3 is the estimator state and w is the update law to be determined. Now we

assume parameters θ2,1, θ2,2 and θ2,3 are unknown constants. The control task is to track the
smooth reference state x1,r with the state x1. The x-subsystem can be written as

ẋ1 = x2 +ϕ1(x1)
T
θ2 (H-92a)

ẋ2 = ϕ2(x, u)
T
θ2 , (H-92b)

where

ϕ1(x1) =





0
0
0



 , ϕ2(x, u) =





sin(x1)
x2
u



 , θ2 =





θ2,1
θ2,2
θ2,3



 . (H-93)

Now we introduce the following three-dimensional manifold:

M =
{
(x, u, ξ2) ∈ R

6|ξ2 + β2(x, u)− θ2 = 0
}
, (H-94)
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where β2(x, u) is a continuous function yet to be specified. The estimate of the unknown
constants θ2 is given by

θ̂2 = ξ2 + β2 . (H-95)

If the manifold M is invariant (see Definition H.1 on page 181), the dynamics of the x-
subsystem of (H-91) restricted to this manifold can be written as

ẋ1 = x2 +ϕ
T
1 (ξ2 + β2(x, u)) (H-96a)

ẋ2 = ϕ2(x, u)
T (ξ2 + β2(x, u)) . (H-96b)

The dynamics of this system are completely known, i.e. the dynamics are independent of the
unknown parameters θ2,1, θ2,2 and θ2,3. Now we define the off-the-manifold coordinate:

σ2 = θ̂2 − θ2 = ξ2 + β2 − θ2 , (H-97)

which plays the role of estimation error. The off-the-manifold dynamics are given by

σ̇2 = w +
∂β2

∂x1
ẋ1 +

∂β2

∂x2
ẋ2 +

∂β2

∂u
u̇ . (H-98)

Substituting Eqs. (H-91a), (H-91b) and (H-97) into Eq. (H-98) results in

σ̇2 = w +
∂β2

∂x1

[
x2 +ϕ

T
1 (ξ2 + β2(x, u)− σ2)

]

+
∂β2

∂x2

[
ϕ2(x, u)

T (ξ2 + β2(x, u)− σ2)
]
+

∂β2

∂u
u̇ . (H-99)

To render the manifold M invariant, the following update law is selected:

w = ξ̇2 =− ∂β2

∂x1

[
x2 +ϕ

T
1 (ξ2 + β2(x, u))

]

− ∂β2

∂x2

[
ϕ2(x, u)

T (ξ2 + β2(x, u))
]
− ∂β2

∂u
u̇ , (H-100)

which results in the following off-the-manifold dynamics:

σ̇2 = −∂β2

∂x1
ϕ

T
1 σ2 −

∂β2

∂x2
ϕ2(x, u)

T
σ2 . (H-101)

Note that the derivative of the control input is required in the estimator design. This deriva-
tive will be obtained from a command filter. In order to render the manifold M attractive,
we can select the β2-function as

β2(x, u) = Γ2

∫ x2

0
ϕ2(x1, χ, u) dχ , (H-102)

which results in

β2(x, u) = Γ2





x2 sin(x1)
1
2x

2
2

x2u



 , (H-103)
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where Γ2 is a positive diagonal matrix:

Γ2 =





γ2,1 0 0
0 γ2,2 0
0 0 γ2,3



 . (H-104)

The partial derivatives of β2(x, u) are given by

∂β2,1
∂x1

= γ2,1x2 cos(x1) ,
∂β2,1
∂x2

= γ2,1 sin(x1) ,
∂β2,1
∂u

= 0 , (H-105a)

∂β2,2
∂x1

= 0 ,
∂β2,2
∂x2

= γ2,2x2 ,
∂β2,2
∂u

= 0 , (H-105b)

∂β2,3
∂x1

= 0 ,
∂β2,3
∂x2

= γ2,3u ,
∂β2,3
∂u

= γ2,3x2 . (H-105c)

The off-the-manifold dynamics are now given by

σ̇2,1 = −γ2,1
[
σ2,1 sin

2(x1) + σ2,2 sin(x1)x2 + σ2,3 sin(x1)u
]

(H-106a)

σ̇2,2 = −γ2,2
[
σ2,1 sin(x1)x2 + σ2,2x

2
2 + σ2,3x2u

]
(H-106b)

σ̇2,3 = −γ2,3
[
σ2,1 sin(x1)u+ σ2,2x2u+ σ2,3u

2
]
. (H-106c)

Note that we selected distinct adaptation gains for the different parameter update laws, the
reason for doing so has earlier been explained in Appendix H-2-4. In order to proof that the
manifold M is indeed attractive by selecting the β2 function as Eq. (H-103), we now select
the following Lyapunov function:

V(σ2) =
1

2γ2,1
σ2
2,1 +

1

2γ2,2
σ2
2,2 +

1

2γ2,3
σ2
2,3 . (H-107)

Taking the time derivative of this function along the trajectories of Eq. (H-106) results in

V̇ =
1

γ2,1
σ2,1σ̇2,1 +

1

γ2,2
σ2,2σ̇2,2 +

1

γ2,3
σ2,3σ̇2,3

= −σ2,1
[
σ2,1 sin

2(x1) + σ2,2 sin(x1)x2 + σ2,3 sin(x1)u
]

−σ2,2
[
σ2,1 sin(x1)x2 + σ2,2x

2
2 + σ2,3x2u

]
− σ2,3

[
σ2,1 sin(x1)u+ σ2,2x2u+ σ2,3u

2
]

= −
[
σ2
2,1 sin

2(x1) + σ2
2,2x

2
2 + σ2

2,3u
2 + 2σ2,1σ2,2 sin(x1)x2 + 2σ2,1σ2,3 sin(x1)u

+ 2σ2,2σ2,3x2u
]

= − [σ2,1 sin(x1) + σ2,2x2 + σ2,3u]
2 . (H-108)

Now we have succeeded in making the manifold M attractive and invariant. The next task
is to find a BS control law such that the closed-loop system globally asymptotically tracks
the reference signal x1,r, whose time derivative is known and bounded. Command filters will
be used to obviate the need for analytic computation of the virtual control derivative and to
obtain the time derivative of the real control u which is required for the I&I estimator, see
Eq. (H-100).
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Earlier we obtained the following control laws for the nonlinear pendulum:

u0 =
1

θ2,3

[

−z̄1 − c2 (x2 − x2,r)− θ2,1 sin(x1)− θ̂2,2x2 + ẋ2,r

]

(H-55 revisited)

u =
1

θ2,3

[

−z1 − c2 (x2 − α1)− θ̂2,1 sin(x1)− θ̂2,2x2 + α̇1

]

, (H-109)

which are respectively the Command-Filtered BS controller with an I&I estimator for one
unknown parameter, and the BS controller with an I&I estimator for two unknown parame-
ters. Now the following Command-Filtered BS controller based on an I&I estimator for three
unknowns seems viable:

u0 =
1

θ̂2,3

[

−z̄1 − c2 (x2 − x2,r)− θ̂2,1 sin(x1)− θ̂2,2x2 + ẋ2,r

]

(H-110)

=
1

ξ2,3 + β2,3
[−z̄1 − c2 (x2 − x2,r)− (ξ2,1 + β2,1) sin(x1)− (ξ2,2 + β2,2)x2 + ẋ2,r] .

In order to proof stability of the closed-loop system, we consider the following quadratic
Lyapunov function:

V(z̄,σ2) = z̄21 + z̄22 +
L

2γ2,1
σ2
2,1 +

L

2γ2,2
σ2
2,2 +

L

2γ2,3
σ2
2,3 , (H-111)

where z̄ and the z̄1-dynamics are similar as in Eqs. (D-37) and (D-38) and L is a positive
constant. The z̄2-dynamics are now given by

˙̄z2 = (ξ2,1 + β2,1 − σ2,1) sin(x1) + (ξ2,2 + β2,2 − σ2,2)x2 + (ξ2,3 + β2,3 − σ2,3)u− ẋ2,r − χ̇2 .
(H-112)

Taking the time derivative of V along the trajectories of Eqs. (D-38), (H-106) and (H-112)
results in

V̇ = −2c1z̄
2
1 + 2z̄1z̄2

+2z̄2
[
(ξ2,1 + β2,1 − σ2,1) sin(x1) + (ξ2,2 + β2,2 − σ2,2)x2 + (ξ2,3 + β2,3 − σ2,3)u

−ẋ2,r − χ̇2

]
− Lσ2,1

[
σ2,1 sin

2(x1) + σ2,2 sin(x1)x2 + σ2,3 sin(x1)u
]

−Lσ2,2
[
σ2,1 sin(x1)x2 + σ2,2x

2
2 + σ2,3x2u

]

−Lσ2,3
[
σ2,1 sin(x1)u+ σ2,2x2u+ σ2,3u

2
]
. (H-113)

Now χ2 is the output of the following stable linear filter:

χ̇2 = −c2χ2 + (ξ2,3 + β2,3)
(
u− u0

)
, (H-114)
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with χ2(0) = 0. This yields

V̇ = −2c1z̄
2
1 + 2z̄1z̄2

+2z̄2
[
(ξ2,1 + β2,1 − σ2,1) sin(x1) + (ξ2,2 + β2,2 − σ2,2)x2

+(ξ2,3 + β2,3)u
0 − σ2,3u− ẋ2,r + c2χ2

]

−Lσ2,1
[
σ2,1 sin

2(x1) + σ2,2 sin(x1)x2 + σ2,3 sin(x1)u
]

−Lσ2,2
[
σ2,1 sin(x1)x2 + σ2,2x

2
2 + σ2,3x2u

]

−Lσ2,3
[
σ2,1 sin(x1)u+ σ2,2x2u+ σ2,3u

2
]

= −2c1z̄
2
1 + 2z̄1z̄2

+2z̄2 [−z̄1 − c2z2 − σ2,1 sin(x1)− σ2,2x2 − σ2,3u+ c2χ2]

−Lσ2,1
[
σ2,1 sin

2(x1) + σ2,2 sin(x1)x2 + σ2,3 sin(x1)u
]

−Lσ2,2
[
σ2,1 sin(x1)x2 + σ2,2x

2
2 + σ2,3x2u

]

−Lσ2,3
[
σ2,1 sin(x1)u+ σ2,2x2u+ σ2,3u

2
]

= −2c1z̄
2
1 − 2c2z̄

2
2 − 2z̄2 [σ2,1 sin(x1) + σ2,2x2 + 2σ2,3u]

−L
[
σ2
2,1 sin

2(x1) + σ2
2,2x

2
2 + σ2

2,3u
2 + 2σ2,1σ2,2 sin(x1)x2 + 2σ2,1σ2,3 sin(x1)u

+2σ2,2σ2,3x2u
]

= −2c1z̄
2
1 − 2c2z̄

2
2 + ǫz̄22 −

(
1√
ǫ
[σ2,1 sin(x1) + σ2,2x2 + σ2,3u] +

√
ǫz̄2

)2

−
(

L− 1

ǫ

)

[σ2,1 sin(x1) + σ2,2x2 + σ2,3u]
2

≤ −2c1z̄
2
1 − (2c2 − ǫ) z̄22 −

(

L− 1

ǫ

)

[σ2,1 sin(x1) + σ2,2x2 + σ2,3u]
2 , (H-115)

where ǫ is a positive constant. If c2 > ǫ
2 and L > 1

ǫ
, it follows according to Theorem C.2

that:

lim
t→∞

z̄ = 0 (H-116a)

lim
t→∞

[σ2,1 sin(x1) + σ2,2x2 + θ2,3u] = lim
t→∞

[

ϕ
T
2

(

θ̂2 − θ2

)]

= 0 . (H-116b)

Because ǫ and L are arbitrary positive constants, stability is guaranteed when c2 > 0. Note
that Eq. (H-116b) does not imply that the estimate θ̂2 converges to the real parameter θ2.
According to (Karagiannis & Astolfi, 2010) this requires a PE condition, and can be achieved
only by injecting “sufficiently rich” reference signals. From Eqs. (H-106) and (H-116b) can
be seen that this requires a reference signal u 6= 0 that results in x1 6= kπ and x2 6= 0 with k
an integer.

The new control law (H-110) based on the I&I estimator depends on x2,r and ẋ2,r, which are
the output of the command filter and therefore the analytical derivative α̇1 is no longer re-
quired. In the absence of physical limitations (i.e. magnitude, rate and bandwidth constraints
on the intermediate state x2 and control u), closed-loop stability is still guaranteed even when
uncertainties are introduced in either the system dynamics or the control effectiveness matrix.
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Simulations of the Command-Filtered BS controller augmented with an I&I estimator have
been run for the system (H-56) with three unknown parameters and a sampling time of 0.01 s.
The initial conditions and parameters which have been used in this simulation for the model
can be found in Eq. (C-44). The following control, command filter and estimator parameters
have been selected:

c1 = 10 ,

ω1 = 200 ,

γ2,1 = 2,

γ2,2 = 5 · 10−3 ,

γ2,3 = 5 · 10−6 ,

c2 = 10,

ω2 = 200 ,

ξ2,1(0) = 20 · θ2,1 ,
ξ2,2(0) = −20 · θ2,2 ,
ξ2,3(0) = 5 · θ2,3 .

(H-117)

From Figure H-13 we can clearly see that the Adaptive Backstepping (ABS) I&I controller
performs much better compared to the conventional BS controller in presence of the intro-
duced parametric uncertainties. From Figure H-14 we can see that the parameter estimates
quickly converge to the real parameters.
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Figure H-13: The control performance of the Backstepping controller with and without an
Immersion & Invariance estimator in the presence of parametric uncertainties.
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Figure H-14: The performance of the Immersion & Invariance estimators. The dashed black
lines represent the values of the real parameters.

H-2-6 Command-Filtered Adaptive Incremental Backstepping with Time-Scale
Separation

In this section an I&I estimator is combined with a BS controller to guarantee global asymp-
totic stability of the closed-loop system and parameter convergence for an uncertain nonlinear
system.

We consider the following augmented incremental pendulum model:

ẋ1 = x2 (H-118a)

ẋ2 = ẋ2,0 + θ2,3∆u (H-118b)

ξ̇2,3 = w , (H-118c)

where ξ2,3 is the estimator state and w the update law to be determined. The control task
is to track the smooth reference state x1,r with the state x1. Note that Eq. (H-118b) is the
incremental form of the full equation of the pendulum, see Eq. (B-3b). We now assume θ2,3
is an unknown constant parameter and define the following one-dimensional manifold:

M =
{
(x2, ξ2,3,∆u) ∈ R

3|ξ2,3 + β2(x2,∆u)− θ2,3 = 0
}
, (H-119)

where β2(x2,∆u) is a continuous function yet to be specified. The estimate of the unknown
constant θ2,3 is given by

θ̂2,3 = ξ2,3 + β2 . (H-120)

Provided that this manifold is invariant (see Definition H.1 on page 181), the dynamics of
subsystem (H-118b) on the manifold M are given by

ẋ2 = ẋ2,0 + (ξ2,3 + β2)∆u , (H-121)
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which is completely known. Now we define the off-the-manifold coordinate σ2:

σ2 = θ̂2,3 − θ2,3 = ξ2,3 + β2 − θ2,3 , (H-122)

which plays the role of estimation error. The off-the-manifold dynamics are given by

σ̇2 = w +
∂β2
∂x2

(ẋ2,0 + θ2,3∆u) +
∂β2
∂∆u

∆u̇

= w +
∂β2
∂x2

(ẋ2,0 + (ξ2,3 + β2 − σ2)∆u) +
∂β2
∂∆u

∆u̇ . (H-123)

To render the manifold M invariant, the following update law is selected:

w = ξ̇2,3 = −∂β2
∂x2

(ẋ2,0 + (ξ2,3 + β2)∆u)− ∂β2
∂∆u

∆u̇ , (H-124)

which transforms the off-the-manifold dynamics into:

σ̇2 = −∂β2
∂x2

σ2∆u . (H-125)

Note that the time derivative of the incremental control input ∆u is required in the estimator
design. This derivative will be obtained by using (delayed) outputs of the command filter,
see Figure H-15.
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+

CFBS

u0

Figure H-15: Obtaining signal ∆u and ∆u̇ by using (delayed) outputs of the command filter.

Now the next step is to find an expression for the function β2 such that this system is globally
asymptotically stable thereby making the manifold M attractive. We choose the following
quadratic Lyapunov function:

V(σ2) =
1

2γ2
σ2
2 , γ2 > 0 . (H-126)

Taking the time derivative of this function along the trajectories of Eq. (H-125) results in

V̇ =
1

γ2
σ2σ̇2

= − 1

γ2

∂β2
∂x2

σ2
2∆u . (H-127)

To render V̇ negative definite, β2 can be chosen as

β2 = γ2x2∆u → ∂β2
∂x2

= γ2∆u ,
∂β2
∂∆u

= γ2x2 , (H-128)
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resulting in

V̇ = −(σ2∆u)2 , (H-129)

and

σ̇2 = −γ2σ2∆u2 . (H-130)

Note that the dynamics of the parameter estimation error σ2 are described by a first-order
linear ordinary, homogeneous differential equation with a time-varying coefficient. The well-
known solution to this differential equation is

σ2(t) = σ2(0)e
−γ2

∫ t

0 [∆u(ξ)]2 dξ , (H-131)

which indicates that the parameter estimation error is a monotonically non-increasing func-
tion. If we substitute Eq. (H-128) into update law (H-124) we obtain:

ξ̇2,3 = −γ2
[
ẋ2,0∆u+ (ξ2,3 + γ2x2∆u)∆u2 + x2∆u̇

]
. (H-132)

This concludes the estimator design of the controller. Now we have succeeded in making
the manifold M invariant and attractive, it is time to find a BS control law such that the
system (H-118) globally asymptotically tracks the reference signal x1,r. Command filters will
be used to obviate the need for analytic computation of the virtual control derivative and to
obtain the time derivative of the incremental control input ∆u which is required for the I&I
estimator, see Eq. (H-124).

Earlier we obtained the following Command-Filtered Incremental Backstepping (IBS) control
law for the incremental system with Time-Scale Separation (TSS):

u0 = u0 +
1

θ2,3
[−z̄1 − c2 (x2 − x2,r)− ẋ2,0 + ẋ2,r] . (E-63 revisited)

For the incremental system with TSS we earlier obtained the following Tuning Functions
Adaptive Backstepping (TFABS) control law:

u = u0 +
1

θ̂2,3
[−z1 − c2 (x2 − α1)− ẋ2,0 + α̇1] . (F-124 revisited)

Now the following Command-Filtered IBS control law based on an I&I estimator seems viable
for system (H-118):

u0 = u0 +
1

θ̂2,3
[−z̄1 − c2 (x2 − x2,r)− ẋ2,0 + ẋ2,r]

= u0 +
1

ξ2,3 + β2
[−z̄1 − c2 (x2 − x2,r)− ẋ2,0 + ẋ2,r] . (H-133)

In order to proof stability of the closed-loop system, we consider the following quadratic
Lyapunov function:

V(z̄, σ2) = z̄21 + z̄22 +
L

2γ2
σ2
2 , (H-134)
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where z̄ and the z̄1-dynamics are similar as in Eqs. (D-37) and (D-38). The z̄2-dynamics are
now given by

˙̄z2 = ẋ2,0 + θ2,3∆u− ẋ2,r − χ̇2

= ẋ2,0 + (ξ2,3 + β2)∆u− σ2∆u− ẋ2,r − χ̇2 . (H-135)

Taking the time derivative of V along the trajectories of the compensated error dynamics and
Eq. (H-130) results in

V̇ = −2c1z̄
2
1 + 2z̄1z̄2 + 2z̄2 [ẋ2,0 + (ξ2,3 + β2)∆u− σ2∆u− ẋ2,r − χ̇2]− Lσ2

2∆u2 . (H-136)

Now χ2 is the output of the following stable linear filter:

χ̇2 = −c2χ2 + (ξ2,3 + β2)
(
u− u0

)
, (H-137)

with χ2(0) = 0. This yields

V̇ = −2c1z̄
2
1 + 2z̄1z̄2 + 2z̄2

[
ẋ2,0 + (ξ2,3 + β2)

(
u0 − u0

)
− σ2∆u− ẋ2,r + c2χ2

]
− Lσ2

2∆u2

= −2c1z̄
2
1 + 2z̄1z̄2 + 2z̄2 [−z̄1 − c2z2 − σ2∆u+ c2χ2]− Lσ2

2∆u2

= −2c1z̄
2
1 + 2z̄2 [−c2z2 − σ2∆u+ c2χ2]− Lσ2

2∆u2

= −2c1z̄
2
1 − 2c2z̄

2
2 − 2σ2∆uz̄2 − Lσ2

2∆u2

= −2c1z̄
2
1 − 2c2z̄

2
2 + ǫz̄22 −

(
1√
ǫ
σ2∆u+

√
ǫz̄2

)2

−
(

L− 1

ǫ

)

(σ2∆u)2

≤ −2c1z̄
2
1 − (2c2 − ǫ) z̄22 −

(

L− 1

ǫ

)

(σ2∆u)2 , (H-138)

where ǫ is a positive constant. If c2 > ǫ
2 and L > 1

ǫ
, it follows according to Theorem C.2

that:

lim
t→∞

z̄ = 0 (H-139a)

lim
t→∞

σ2∆u =
(

θ̂2,3 − θ2,3

)

∆u = 0 . (H-139b)

Because ǫ and L are arbitrary positive constants, stability is guaranteed when c2 > 0. Note
that Eq. (H-139b) does not imply that the estimate θ̂2,3 converges to the real parameter θ2,3.
According to (Karagiannis & Astolfi, 2010) this requires a PE condition, and can be achieved
only by injecting “sufficiently rich” reference signals. From Eq. (H-139b) can be seen that
this requires a reference signal ∆u 6= 0.

The new incremental control law (H-133) depends on x2,r and ẋ2,r, which are the output
of the command filter and therefore the analytical derivative α̇1 is no longer required. In
the absence of physical limitations (i.e. magnitude, rate and bandwidth constraints on the
intermediate state x2 and control u) and for sufficiently high update rate, closed-loop stability
is still guaranteed even when uncertainties are introduced in either the system dynamics or
the control effectiveness matrix.
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H-2-7 Command-Filtered Adaptive Incremental Backstepping without Time-
Scale Separation

In this section a Command-Filtered BS controller with I&I estimator is designed to guaran-
tee global asymptotic stability of the closed-loop system and parameter convergence for an
uncertain nonlinear system. We do not make the assumption of TSS (see Eq. (E-41)), thus
when the sampling rate is sufficiently high we can write the pendulum model as

ẋ1 = x2 (H-140a)

ẋ2 = ẋ2,0 + θ2,1 cos(x1)∆x1 + θ2,2∆x2 + θ2,3∆u (H-140b)

ξ̇2 = w , (H-140c)

in which ξ2 ∈ R
3 is the estimator state and w is the update law to be determined. The

parameters θ2,1, θ2,2 and θ2,3 are assumed to be unknown constant parameters. Note that
Eq. (E-66b) is the incremental form of the full equation of the pendulum, see Eq. (B-3b).

The x-subsystem can be written as

∆ẋ1 = ∆x2 +ϕ
T
1 θ2 (H-141a)

∆ẋ2 = ϕ2(x1,∆x,∆u)Tθ2 , (H-141b)

where

ϕ1 =





0
0
0



 , ϕ2(x1,∆x,∆u) =





cos(x1)∆x1
∆x2
∆u



 , θ2 =





θ2,1
θ2,2
θ2,3



 . (H-142)

Now we introduce the following three-dimensional manifold:

M =
{
(∆x, ξ2,∆u) ∈ R

6|ξ2 + β2(x1,∆x,∆u)− θ2 = 0
}
, (H-143)

where β2(x1,∆x,∆u) is a continuous function yet to be specified. The estimate of the
unknown constants θ2 is given by

θ̂2 = ξ2 + β2 . (H-144)

If the manifold M is invariant (see Definition H.1 on page 181), the dynamics of system (H-
141) restricted to this manifold can be written as

∆ẋ1 = ∆x2 (H-145a)

∆ẋ2 = ϕ2(x1,∆x,∆u)T (ξ2 + β2(x1,∆x,∆u)) . (H-145b)

The dynamics of this system are completely known, i.e. the dynamics are independent of the
unknown parameters θ2,1, θ2,2 and θ2,3. Now we define the off-the-manifold coordinate:

σ2 = θ̂2 − θ2 = ξ2 + β2(x1,∆x,∆u)− θ2 , (H-146)
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which plays the role of estimation error. Now the task is to guarantee that the off-the-manifold
coordinate σ2 globally asymptotically converges to its zero equilibrium. The off-the-manifold
dynamics are given by

σ̇2 = w +
∂β2

∂x1
ẋ1 +

∂β2

∂∆x1
∆ẋ1 +

∂β2

∂∆x2
∆ẋ2 +

∂β2

∂∆u
∆u̇ (H-147)

= w +
∂β2

∂x1
x2 +

∂β2

∂∆x1
∆x2 +

∂β2

∂∆x2

[
ϕ2(x1,∆x,∆u)Tθ2

]
+

∂β2

∂∆u
∆u̇

= w +
∂β2

∂x1
x2 +

∂β2

∂∆x1
∆x2 +

∂β2

∂∆x2

[
ϕ2(x1,∆x,∆u)T (ξ2 + β2 − σ2)

]
+

∂β2

∂∆u
∆u̇ .

We select the update law in order to render the manifold M invariant as

w = ξ̇2 = −∂β2

∂x1
x2 −

∂β2

∂∆x1
∆x2 −

∂β2

∂∆x2

[
ϕ2(x1,∆x,∆u)T (ξ2 + β2)

]
− ∂β2

∂∆u
∆u̇ , (H-148)

which results in the following off-the-manifold dynamics:

σ̇2 = − ∂β2

∂∆x2
ϕ

T
2 σ2 . (H-149)

Note that the time derivative of the incremental control input ∆u is required in the estimator
design. This derivative will be obtained by using (delayed) outputs of the command filter,
see Figure H-15. In order to render the manifold M attractive, we can select the β2-function
as

β2(x1,∆x,∆u) = Γ2

∫ ∆x2

0
ϕ2(x1,∆x1, χ,∆u) dχ , (H-150)

which results into

β2(x1,∆x,∆u) = Γ2





∆x2 cos(x1)∆x1
1
2∆x22

∆x2∆u



 , (H-151)

where Γ2 is a positive diagonal matrix:

Γ2 =





γ2,1 0 0
0 γ2,2 0
0 0 γ2,3



 . (H-152)

The nonzero partial derivatives of function β2 are given by

∂β2,1
∂x1

= −γ2,1∆x2 sin(x1)∆x1 ,
∂β2,1
∂∆x1

= γ2,1∆x2 cos(x1) ,
∂β2,1
∂∆x2

= γ2,1 cos(x1)∆x1 ,

∂β2,2
∂∆x2

= γ2,2∆x2 ,
∂β2,3
∂∆x2

= γ2,3∆u ,
∂β2,3
∂∆u

= γ2,3∆x2 . (H-153)

The off-the-manifold dynamics are now given by

σ̇2,1 = −γ2,1
[
σ2,1 cos

2(x1)∆x21 + σ2,2 cos(x1)∆x1∆x2 + σ2,3 cos(x1)∆x1∆u
]

(H-154a)

σ̇2,2 = −γ2,2
[
σ2,1 cos(x1)∆x1∆x2 + σ2,2∆x22 + σ2,3∆x2∆u

]
(H-154b)

σ̇2,3 = −γ2,3
[
σ2,1 cos(x1)∆x1∆u+ σ2,2∆x2∆u+ σ2,3∆u2

]
. (H-154c)
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In order to proof that the manifold M is indeed attractive, we now select the following
Lyapunov function:

V(σ2) =
1

2γ2,1
σ2
2,1 +

1

2γ2,2
σ2
2,2 +

1

2γ2,3
σ2
2,3 . (H-155)

Taking the time derivative of this function along the trajectories of Eq. (H-154) results in

V̇ =
1

γ2,1
σ2,1σ̇2,1 +

1

γ2,2
σ2,2σ̇2,2 +

1

γ2,3
σ2,3σ̇2,3

= −σ2,1
[
σ2,1 cos

2(x1)∆x21 + σ2,2 cos(x1)∆x1∆x2 + σ2,3 cos(x1)∆x1∆u
]

−σ2,2
[
σ2,1 cos(x1)∆x1∆x2 + σ2,2∆x22 + σ2,3∆x2∆u

]

−σ2,3
[
σ2,1 cos(x1)∆x1∆u+ σ2,2∆x2∆u+ σ2,3∆u2

]

= −
[
σ2
2,1 cos

2(x1)∆x21 + σ2
2,2∆x22 + σ2

2,3∆u2
]

− [2σ2,1σ2,2 cos(x1)∆x1∆x2 + 2σ2,1σ2,3 cos(x1)∆x1∆u+ 2σ2,2σ2,3∆x2∆u]

= − [σ2,1 cos(x1)∆x1 + σ2,2∆x2 + σ2,3∆u]2 . (H-156)

Now we have succeeded in making the manifold M attractive and invariant. The next task
is to find a BS control law such that the closed-loop system globally asymptotically tracks
the reference signal x1,r, whose derivatives are known and bounded. Command filters will
be used to obviate the need for analytic computation of the virtual control derivative and to
obtain the time derivative of the real incremental control ∆u which is required for the I&I
estimator, see Eq. (H-148). Earlier we obtained the following control laws for the complete
nonlinear pendulum:

u =
1

θ2,3
[−z1 − c2 (x2 − α1)− θ2,1 sin(x1)− θ2,2x2 + α̇1] (C-39 revisited)

u0 =
1

θ̂2,3

[

−z̄1 − c2 (x2 − x2,r)− θ̂2,1 sin(x1)− θ̂2,2x2 + ẋ2,r

]

, (H-110 revisited)

which are respectively the full-information BS controller and the Command-Filtered BS con-
troller based on an I&I estimator. Earlier we obtained the following Command-Filtered BS
control law for the incremental system without TSS:

u0 = u0 +
1

θ2,3
[−z1 − c2 (x2 − x2,r)− ẋ2,0 − θ2,1 cos(x1)∆x1 − θ2,2∆x2 + ẋ2,r] .

(E-77 revisited)

Now the following Command-Filtered IBS control law based on an I&I estimator seems viable:

u0 = u0 +
1

θ̂2,3

[

−z̄1 − c2 (x2 − x2,r)− ẋ2,0 − θ̂2,1 cos(x1)∆x1 − θ̂2,2∆x2 + ẋ2,r

]

= u0 +
1

ξ2,3 + β2,3

[
−z̄1 − c2 (x2 − x2,r)− ẋ2,0 − (ξ2,1 + β2,1) cos(x1)∆x1 (H-157)

− (ξ2,2 + β2,2)∆x2 + ẋ2,r
]
.

In order to proof stability, we consider the following quadratic Lyapunov function:

V(z̄,σ2) = z̄21 + z̄22 +
L

2γ2,1
σ2
2,1 +

L

2γ2,2
σ2
2,2 +

L

2γ2,3
σ2
2,3 , (H-158)
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where z̄ and the z̄1-dynamics are similar as in Eqs. (D-37) and (D-38) and L is a positive
constant. The z̄2-dynamics are now given by

˙̄z2 = ẋ2,0 + θ2,1 cos(x1)∆x1 + θ2,2∆x2 + θ2,3∆u− ẋ2,r − χ̇2

= ẋ2,0 + (ξ2,1 + β2,1 − σ2,1) cos(x1)∆x1 + (ξ2,2 + β2,2 − σ2,2)∆x2

+(ξ2,3 + β2,3)∆u− σ2,3∆u− ẋ2,r − χ̇2 . (H-159)

Taking the time derivative of V along the trajectories of the compensated error dynamics and
Eq. (H-154) results in

V̇ = −2c1z̄
2
1 + 2z̄1z̄2 + 2z̄2

[
ẋ2,0 + (ξ2,1 + β2,1 − σ2,1) cos(x1)∆x1

+(ξ2,2 + β2,2 − σ2,2)∆x2 + (ξ2,3 + β2,3)∆u− σ2,3∆u− ẋ2,r − χ̇2

]

−Lσ2,1
[
σ2,1 cos

2(x1)∆x21 + σ2,2 cos(x1)∆x1∆x2 + σ2,3 cos(x1)∆x1∆u
]

−Lσ2,2
[
σ2,1 cos(x1)∆x1∆x2 + σ2,2∆x22 + σ2,3∆x2∆u

]

−Lσ2,3
[
σ2,1 cos(x1)∆x1∆u+ σ2,2∆x2∆u+ σ2,3∆u2

]
. (H-160)

Signal χ2 is the output of the following stable linear filter:

χ̇2 = −c2χ2 + (ξ2,3 + β2,3)
(
u− u0

)
, (H-161)

with χ2(0) = 0. This yields

V̇ = −2c1z̄
2
1 + 2z̄1z̄2

+2z̄2
[
ẋ2,0 + (ξ2,1 + β2,1 − σ2,1) cos(x1)∆x1 + (ξ2,2 + β2,2 − σ2,2)∆x2

+(ξ2,3 + β2,3)
(
u0 − u0

)
− σ2,3u− ẋ2,r + c2χ2

]

−Lσ2,1
[
σ2,1 cos

2(x1)∆x21 + σ2,2 cos(x1)∆x1∆x2 + σ2,3 cos(x1)∆x1∆u
]

−Lσ2,2
[
σ2,1 cos(x1)∆x1∆x2 + σ2,2∆x22 + σ2,3∆x2∆u

]
)

−Lσ2,3
[
σ2,1 cos(x1)∆x1∆u+ σ2,2∆x2∆u+ σ2,3∆u2

]

= −2c1z̄
2
1 + 2z̄1z̄2

+2z̄2 [−z̄1 − c2z2 − σ2,1 cos(x1)∆x1 − σ2,2∆x2 − σ2,3∆u+ c2χ2]

−Lσ2,1
[
σ2,1 cos

2(x1)∆x21 + σ2,2 cos(x1)∆x1∆x2 + σ2,3 cos(x1)∆x1∆u
]

−Lσ2,2
[
σ2,1 cos(x1)∆x1∆x2 + σ2,2∆x22 + σ2,3∆x2∆u

]

−Lσ2,3
[
σ2,1 cos(x1)∆x1∆u+ σ2,2∆x2∆u+ σ2,3∆u2

]

= −2c1z̄
2
1 − 2c2z̄

2
2 − 2z̄2 [σ2,1 cos(x1)∆x1 + σ2,2∆x2 + 2σ2,3∆u]

−L
[
σ2
2,1 cos

2(x1)∆x21 + σ2
2,2∆x22 + σ2

2,3∆u2 + 2σ2,1σ2,2 cos(x1)∆x1∆x2

+2σ2,1σ2,3 cos(x1)∆x1∆u+ 2σ2,2σ2,3∆x2∆u
]

= −2c1z̄
2
1 − 2c2z̄

2
2 + ǫz̄22 −

(
1√
ǫ
[σ2,1 cos(x1)∆x1 + σ2,2∆x2 + σ2,3∆u] +

√
ǫz̄2

)2

−
(

L− 1

ǫ

)

[σ2,1 cos(x1)∆x1 + σ2,2∆x2 + σ2,3∆u]2

≤ −2c1z̄
2
1 − (2c2 − ǫ) z̄22 −

(

L− 1

ǫ

)

[σ2,1 cos(x1)∆x1 + σ2,2∆x2 + σ2,3∆u]2 , (H-162)
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where ǫ is a positive constant. If c2 > ǫ
2 and L > 1

ǫ
, it follows according to Theorem C.2

that:

lim
t→∞

z̄ = 0 (H-163a)

lim
t→∞

[σ2,1 cos(x1)∆x1 + σ2,2∆x2 + σ2,3∆u] = lim
t→∞

[

ϕ
T
2

(

θ̂2 − θ2

)]

= 0 . (H-163b)

Because ǫ and L are arbitrary positive constants, stability is guaranteed when c2 > 0. Note
that Eq. (H-163b) does not imply that the estimate θ̂2 converges to the real parameter θ2.
According to (Karagiannis & Astolfi, 2010) this requires a PE condition, and can be achieved
only by injecting “sufficiently rich” reference signals. From Eqs. (H-154) and (H-163b) can
be seen that this requires a reference signal ∆u 6= 0 that results in x1 6= kπ and ∆x2 6= 0 with
k an integer.

The new control law (H-157) based on an I&I estimator depends on x2,r and ẋ2,r, which are the
output of the command filter and therefore the analytical derivative α̇1 is no longer required.
In the absence of physical limitations (i.e. magnitude, rate and bandwidth constraints on
the intermediate state x2 and control u), closed-loop stability is still guaranteed even when
uncertainties are introduced in either the system dynamics or the control effectiveness matrix.
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Appendix I

Sensor-Based Backstepping

In this appendix the Sensor-Based Backstepping (SBB) control approach is derived and eval-
uated that is based on the singular perturbation theory (see (Khalil & Grizzle, 2002)) and
removes the dependency on the system dynamics by using measurements of the state deriva-
tives (I-1). The SBB controller uses even less model information compared to the incremental
control laws (see Appendix E). In order to evaluate this nonlinear control approach, a SBB
control law is derived and simulated for the pendulum model (I-2).

I-1 Theory

We consider the following scalar nonlinear system:

ẋ = f(t, x, u) , (I-1)

where x ∈ R is the state of the system and u ∈ R is the control input and (∂f/∂u) 6= 0.
In (Hovakimyan et al., 2007) the following controller is proposed for a time-scale separated
system

ǫu̇ = − sgn

(
∂f

∂u

)

f(t, z, u) , ǫ ≪ 1 , (I-2)

with the tracking error z = x − xr. This control law asymptotically stabilizes the error
dynamics when the assumptions in Theorem 2 of (Hovakimyan et al., 2007) are met. These
assumptions are also referred to as the Approximate Dynamic Inversion (ADI) assumptions.
One of the advantages of the SBB controller is that it can be applied to nonaffine systems
without the need for a nonlinear solver.

In (Falkena, 2012) the mapping f(t, z, u) is selected as

f(t, z, u) = ẋ− ẋr + c
∂V(z)
∂z

, c > 0 , (I-3)
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where ẋ is a measurement or estimated value of the state derivative and ẋr is the desired
state derivative. A Backstepping (BS) controller can be designed for the latter using the
positive definite, radially unbounded Control Lyapunov Function (CLF) V(z), of which the
time derivative should be negative definite for asymptotic stability in the sense of Lyapunov.
Substituting Eq. (I-3) in Eq. (I-2) yields

ǫu̇ = − sgn

(
∂f

∂u

)[

ẋ− ẋr + c
∂V(z)
∂z

]

. (I-4)

This controller will guarantee asymptotic stability of the error dynamics when the ADI as-
sumptions are met. Note that the SBB control law (I-4) uses even less model information than
the time-scaled separated Incremental Backstepping (IBS) control method of Appendix E.

I-2 Simulations

In this section an SBB controller is designed for the pendulum model, which is for convenience
repeated below:

ẋ1 = x2 (B-3a revisited)

ẋ2 = θ2,1 sin(x1) + θ2,2x2 + θ2,3u . (B-3b revisited)

The tracking errors are defined as

z1 = x1 − x1,r (I-6a)

z2 = x2 − α1 . (I-6b)

The derivations for subsystem x1 remain exactly the same as in Appendix C-3 (see Eqs. (C-
32) to (C-36)), because this subsystem is assumed to be fully known. Now the following
quadratic Lyapunov function is introduced:

V(z2) =
1

2
z22 → ∂V

∂z2
= z2 . (I-7)

From Eqs. (I-2), (I-6b) and (I-7) we now obtain the SBB control law:

ǫu̇ = − sgn (θ2,3) [ẋ2 − α̇1 + c2z2] . (I-8)

If the angular acceleration ẋ2 cannot be measured, it can be estimated by using (noisy)
angular rate data x2. This will generally amplify the noise level and/or introduce time delays.
Estimation of the angular acceleration can be avoided by integrating both sides of Eq. (I-8):

u = u(t0)−
sgn (θ2,3)

ǫ

[

x2 − x2(t0)− α1 + α1(t0) + c2

∫ t

t0

z2 dt

]

, (I-9)

from which we can conclude that the input u can be calculated without knowledge of the
angular acceleration ẋ2 and the virtual control derivative α̇1. Although Eqs. (I-8) and (I-
9) are mathematically similar, control law (I-9) will result in better tracking performance
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when the system is not equipped with an angular acceleration sensor with a similar or higher
precision compared to that of an angular rate sensor.

If we compare the earlier designed time-scaled separated IBS controller with the SBB con-
troller:

u = u0 +
1

θ2,3
[−ẋ2,0 + α̇1 − z1 − c2z2] (E-49 revisited)

u = u(t0)−
sgn (θ2,3)

ǫ

[

x2 − x2(t0)− α1 + α1(t0) + c2

∫ t

t0

z2 dt

]

, (I-9 revisited)

we can see that the SBB controller uses even less model information than the IBS controller.
The only information which the SBB controller requires from the model is the sign of the
control effectiveness parameter θ2,3, which may be obtained by a crude form of online aero-
dynamic model identification.

Simulations of the SBB controller (I-9) have been run for the system (B-3) with a sampling
time of 0.01 s. The initial conditions and parameters which have been used in this simulation
for the model can be found in Eq. (C-44). The following control parameters have been
selected:

c1 = 10 , c2 = 10 , sgn
(
θ̂2,3
)
= sgn

(
θ2,3
)
. (I-10)

The results of the simulation can be seen in Figure I-1. Clearly, the model-free SBB controller
performs slightly worse than the conventional BS controller in absence of uncertainties. The
tracking performance of the controller can be improved by decreasing the value of ǫ. However,
the sampling rate of the simulation should be consistent with ǫ, i.e. the sampling rate should
be high enough to capture the high frequent dynamics to avoid instability. The advantage
of the SBB controller compared to the BS controller is that it is a model-free approach, and
therefore it is not sensitive to model uncertainties. However, tuning of the parameter ǫ might
be required in order to obtain satisfactory closed-loop performance over the complete state
space (Galrinho, 2013; Galrinho et al., 2013).
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Figure I-1: The control performance of a Backstepping controller and a Sensor-Based Backstep-
ping controller for different values of ǫ in absence of any uncertainties.
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Appendix J

Overview of Backstepping Control
Laws

In this appendix an overview is given of all the Backstepping control laws that have been
derived for the pendulum model in the foregoing appendices.

Backstepping

u =
1

θ2,3
[−z1 − c2(x2 − α1)− θ2,1 sin(x1)− θ2,2x2 + α̇1] (C-43 revisited)

Command-Filtered Backstepping

u0 =
1

θ2,3
[−z̄1 − c2 (x2 − x2,r)− θ2,1 sin(x1)− θ2,2x2 + ẋ2,r] (D-46 revisited)

Incremental Backstepping with Time-Scale Separation

u = u0 +
1

θ2,3
[−z1 − c2 (x2 − α1)− ẋ2,0 + α̇1] (E-46 revisited)

Command-Filtered Incremental Backstepping with Time-Scale Separation

For command filter (1) (see Figure E-4a):

∆u0 =
1

θ2,3
[−z̄1 − c2 (x2 − x2,r)− ẋ2,0 + ẋ2,r] (E-58 revisited)
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For command filter (2) (see Figure E-4b):

u0 = u0 +
1

θ2,3
[−z̄1 − c2 (x2 − x2,r)− ẋ2,0 + ẋ2,r] (E-63 revisited)

Incremental Backstepping without Time-Scale Separation

u = u0+
1

θ2,3
[−z1 − c2 (x2 − α1)− ẋ2,0 − θ2,1 cos(x1,0)∆x1 − θ2,2∆x2 + α̇1] (E-70 revisited)

Command-Filtered Incremental Backstepping without Time-Scale Separation

u0 = u0 +
1

θ2,3
[−z1 − c2 (x2 − x2,r)− ẋ2,0 − θ2,1 cos(x1,0)∆x1 − θ2,2∆x2 + ẋ2,r]

(E-77 revisited)

Tuning Functions Adaptive Backstepping with one unknown parameter

u =
1

θ2,3

[

−z1 − c2(x2 − α1)− θ2,1 sin(x1)− θ̂2,2x2 + α̇1

]

(F-79 revisited)

˙̂
θ2,2 = γ2z2x2 (F-81 revisited)

Command-Filtered Tuning Functions Adaptive Backstepping with one unknown parameter

u0 =
1

θ2,3

[

−z̄1 − c2 (x2 − x2,r)− θ2,1 sin(x1)− θ̂2,2x2 + ẋ2,r

]

(F-95a revisited)

˙̂
θ2,2 = γ2z̄2x2 (F-95b revisited)

Tuning Functions Adaptive Backstepping with three unknown parameters

u =
1

θ̂2,3

[

−z1 − c2 (x2 − α1)− θ̂2,1 sin(x1)− θ̂2,2x2 + α̇1

]

(F-112 revisited)

˙̂
θ2,1 = γ2,1z2 sin(x1) (F-114a revisited)

˙̂
θ2,2 = γ2,2z2x2 (F-114b revisited)

˙̂
θ2,3 = γ2,3z2u (F-114c revisited)
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Tuning Functions Adaptive Incremental Backstepping with Time-Scale Separation

u = u0 +
1

θ̂2,3
[−z1 − c2 (x2 − α1)− ẋ2,0 + α̇1] (F-124 revisited)

˙̂
θ2,3 = γ2z2∆u (F-126 revisited)

Tuning Functions Adaptive Incremental Backstepping without Time-Scale Separation

∆u =
1

θ̂2,3

[

−z1 − c2 (x2 − α1)− ẋ2,0 − θ̂2,1 cos(x1,0)∆x1 − θ̂2,2∆x2 + α̇1

]

(F-136 revisited)

˙̂
θ2,1 = γ2,1z2 cos(x1,0)∆x1 (F-137a revisited)

˙̂
θ2,2 = γ2,2z2∆x2 (F-137b revisited)

˙̂
θ2,3 = γ2,3z2∆u (F-137c revisited)

Least-Squares Adaptive Backstepping with one unknown parameter

u =
1

θ2,3

[

−c2z2 − z1 − θ2,1 sin(x1)− θ̂2,2x2 + α̇1

]

(G-37 revisited)

∆u =
1

θ2,3

[

−c2z2 − z1 − θ2,1 cos(x1,0)∆x1 − θ̂2,2∆x2 + α̇1 − ẋ2,0

]

(G-38 revisited)








ẋ2,k−N − sin(x1,k−N )x1,k−Nθ2,1 − uk−Nθ2,3
...

ẋ2,k−1 − sin(x1,k−1)x1,k−1θ2,1 − uk−1θ2,3
ẋ2,k − sin(x1,k)x1,kθ2,1 − ukθ2,3








︸ ︷︷ ︸

y

∼=








x2,k−N

...
x2,k−1

x2,k








︸ ︷︷ ︸

A

θ2,2 (G-36 revisited)

θ̂2,2 =
(
ATA

)−1
AT

y (G-21 revisited)
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Least-Squares Adaptive Backstepping with three unknown parameter

u =
1

θ̂2,3

[

−c2z2 − z1 − θ̂2,1 sin(x1)− θ̂2,2x2 + α̇1

]

(G-42 revisited)

∆u =
1

θ̂2,3

[

−c2z2 − z1 − θ̂2,1 cos(x1,0)∆x1 − θ̂2,2∆x2 + α̇1 − ẋ2,0

]

(G-43 revisited)








ẋ2,k−N

...
ẋ2,k−1

ẋ2,k








︸ ︷︷ ︸

y

=








sin(x1,k−N )x1,k−N x2,k−N uk−N

...
...

...
sin(x1,k−1)x1,k−1 x2,k−1 uk−1

sin(x1,k)x1,k x2,k uk








︸ ︷︷ ︸

A





θ2,1
θ2,2
θ2,3





︸ ︷︷ ︸

θ2

(G-41 revisited)

θ̂2 =
(
ATA

)−1
AT

y (G-21 revisited)

Least-Squares Adaptive Incremental Backstepping with one unknown parameter

u =
1

θ2,3

[

−c2z2 − z1 − θ2,1 sin(x1)− θ̂2,2x2 + α̇1

]

(G-48 revisited)

∆u =
1

θ2,3

[

−c2z2 − z1 − θ2,1 cos(x1,0)∆x1 − θ̂2,2∆x2 + α̇1 − ẋ2,0

]

(G-49 revisited)








∆ẋ2,k−N − cos(x1,k−N−1)∆x1,k−Nθ2,1 −∆uk−Nθ2,3
...

∆ẋ2,k−1 − cos(x1,k−2)∆x1,k−1θ2,1 −∆uk−1θ2,3
∆ẋ2,k − cos(x1,k−1)∆x1,kθ2,1 −∆ukθ2,3








︸ ︷︷ ︸

y

∼=








∆x2,k−N

...
∆x2,k−1

∆x2,k








︸ ︷︷ ︸

A

θ2,2 (G-47 revisited)

θ̂2,2 =
(
ATA

)−1
AT

y (G-21 revisited)

Least-Squares Adaptive Incremental Backstepping with three unknown parameters

u =
1

θ̂2,3

[

−c2z2 − z1 − θ̂2,1 sin(x1)− θ̂2,2x2 + α̇1

]

(G-53 revisited)

∆u =
1

θ̂2,3

[

−c2z2 − z1 − θ̂2,1 cos(x1,0)∆x1 − θ̂2,2∆x2 + α̇1 − ẋ2,0

]

(G-54 revisited)








∆ẋ2,k−N

...
∆ẋ2,k−1

∆ẋ2,k








︸ ︷︷ ︸

y

∼=








cos(x1,k−N−1)∆x1,k−N ∆x2,k−N ∆uk−N

...
...

cos(x1,k−2)∆x1,k−1 ∆x2,k−1 ∆uk−1

cos(x1,k−1)∆x1,k ∆x2,k ∆uk








︸ ︷︷ ︸

A





θ2,1
θ2,2
θ2,3





︸ ︷︷ ︸

θ2

(G-52 revisited)

θ̂2 =
(
ATA

)−1
AT

y (G-21 revisited)
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Least-Squares Adaptive Incremental Backstepping with Time-Scale Separation

∆u =
1

θ̂2,3
[−c2z2 − z1 + α̇1 − ẋ2,0] (G-58 revisited)








∆ẋ2,k−N

...
∆ẋ2,k−1

∆ẋ2,k








︸ ︷︷ ︸

y

∼=








∆uk−N

...
∆uk−1

∆uk








︸ ︷︷ ︸

A

θ2,3 (G-57 revisited)

θ̂2,3 =
(
ATA

)−1
AT

y (G-21 revisited)

Immersion & Invariance Adaptive Backstepping with one unknown parameter

u =
1

θ2,3

[

−z1 − c2 (x2 − α1)− θ2,1 sin(x1)− θ̂2,2x2 + α̇1

]

(H-40 revisited)

θ̂2,2 = ξ2,2 + β2 (H-17 revisited)

ξ̇2,2 = −∂β2
∂x2

[θ2,1 sin(x1) + (ξ2,2 + β2)x2 + θ2,3u] (H-22 revisited)

β2 =
γ

2
x22 (H-26 revisited)

Command-Filtered Immersion & Invariance Adaptive Backstepping with one unknown
parameter

u0 =
1

θ2,3

[

−z̄1 − c2 (x2 − x2,r)− θ2,1 sin(x1)− θ̂2,2x2 + ẋ2,r

]

(H-55 revisited)

θ̂2,2 = ξ2,2 + β2 (H-17 revisited)

ξ̇2,2 = −∂β2
∂x2

[

θ2,1 sin(x1) + θ̂2,2x2 + θ2,3u
]

(H-22 revisited)

β2 =
γ2
2
x22 (H-26 revisited)
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Immersion & Invariance Adaptive Backstepping with two unknown parameters

u =
1

θ2,3

[

−z1 − c2 (x2 − α1)− θ̂2,1 sin(x1)− θ̂2,2x2 + α̇1

]

(H-75 revisited)

θ̂2 = ξ2 + β2 (H-60 revisited)

ξ̇2 = −∂β2

∂x1
x2 −

∂β2

∂x2

[

θ̂2,1 sin(x1) + θ̂2,2x2 + θ2,3u
]

(H-65 revisited)

β2 = Γ2

[
x2 sin(x1)

1
2x

2
2

]T
(H-86 revisited)

Command-Filtered Immersion & Invariance Backstepping with three unknown parameters

u0 =
1

θ̂2,3

[

−z̄1 − c2 (x2 − x2,r)− θ̂2,1 sin(x1)− θ̂2,2x2 + ẋ2,r

]

(H-110 revisited)

θ̂2 = ξ2 + β2 (H-95 revisited)

ξ̇2 = −∂β2

∂x1
x2 −

∂β2

∂x2

[

θ̂2,1 sin(x1) + θ̂2,2x2 + θ̂2,3u
]

− ∂β2

∂u
u̇ (H-100 revisited)

β2 = Γ2

[
x2 sin(x1)

1
2x

2
2 x2u

]T
(H-103 revisited)

Command-Filtered Immersion & Invariance Incremental Backstepping with Time-Scale
Separation

u0 = u0 +
1

θ̂2,3
[−z̄1 − c2 (x2 − x2,r)− ẋ2,0 + ẋ2,r] (H-133 revisited)

θ̂2,3 = ξ2,3 + β2 (H-120 revisited)

ξ̇2,3 = −∂β2
∂x2

(ẋ2,0 + (ξ2,3 + β2)∆u)− ∂β2
∂∆u

∆u̇ (H-124 revisited)

β2 = γ2x2∆u (H-128 revisited)
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Command-Filtered Immersion & Invariance Incremental Backstepping without Time-
Scale Separation

u0 = u0 +
1

θ̂2,3

[

−z̄1 − c2 (x2 − x2,r)− ẋ2,0 − θ̂2,1 cos(x1,0)∆x1 − θ̂2,2∆x2 + ẋ2,r

]

(H-157 revisited)

θ̂2 = ξ2 + β2 (H-144 revisited)

ξ̇2 = −∂β2

∂x1
x2 −

∂β2

∂∆x1
∆x2 −

∂β2

∂∆x2

[

θ̂2,1 cos(x1,0)∆x1 + θ̂2,2∆x2 + θ̂2,3∆u
]

− ∂β2

∂∆u
∆u̇

(H-148 revisited)

β2 = Γ2

[
∆x2 cos(x1,0)∆x1

1
2∆x22 ∆x2∆u

]T
(H-151 revisited)

Sensor-Based Backstepping

ǫu̇ = − sgn (θ2,3) [ẋ2 − α̇1 + c2z2] (I-8 revisited)

u = u(t0)−
sgn (θ2,3)

ǫ

[

x2 − x2(t0)− α1 + α1(t0) + c2

∫ t

t0

(x2 − α1) dt

]

(I-9 revisited)
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Appendix K

Conclusions Preliminary Analysis

In the literature survey we have seen that there are some blind spots in the Adaptive Back-
stepping (ABS) theory. First of all, a comprehensive comparison study of the closed-loop
performance and sensitivity to parametric uncertainties of these ABS controllers does cur-
rently not exist. Next, most literature does not address the sensitivity of the developed
controllers to sensor dynamics and noise. Because the ultimate goal is to use Fault Tolerant
Flight Control (FTFC) systems to increase the aviation safety, it is of paramount importance
to evaluate the performance of these Adaptive Control laws in a practical context. At last, in
some of the literature only the closed-loop performance of the adaptive controller is addressed,
and not the performance of the parameter estimator itself. Although it is not necessary that
the parameters converge to their true values for satisfactory closed-loop performance, Control
Allocation (CA) modules require accurate estimates of the control effectiveness parameters.

As a result of these findings, a simple nonlinear pendulum model was used for initial evaluation
of five approaches to fault tolerant Backstepping (BS). Sensor noise was not yet considered in
this preliminary analysis. Based on the derivations and simulations in the Matlab/Simulink
environment, we can draw the following preliminary conclusions:

• The performance of the conventional BS controller is significantly degraded when un-
certainties are introduced.

• Command filters obviate the need for analytic computation of virtual control derivatives.
Furthermore, they improve the performance of Lyapunov-based parameter update laws
by implementing magnitude, rate and bandwidth constraints on the (virtual) controls.

• Incremental Backstepping (IBS) reduces the sensitivity to parametric uncertainties and
possibly model mismatch by using measurements or estimates of the state derivatives
and current control deflections. This control approach still relies on a portion of the
model. However, by increasing the sampling rate, we can further robustify the con-
troller. Even when the IBS with Time-Scale Separation (TSS) controller is applied to a
non time-scale separated system, accurate tracking performance is obtained when the
sampling rate is sufficiently high.
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• With the Tuning Functions Adaptive Backstepping (TFABS) approach we can guarantee
closed-loop stability of uncertain systems. A larger adaptation gain of the Tuning
Function (TF) estimator generally provides better tracking accuracy.

• By augmenting the BS control law with Immersion and Invariance (I&I) estimators, we
can guarantee closed-loop stability of uncertain systems. Note that the way in which sta-
bility has been proved for the Immersion and Invariance Adaptive Backstepping (IIABS)
controller in this preliminary thesis significantly improves the ease of tuning compared
to (Sonneveldt, 2010; Ali, 2013). A larger adaptation gain of the I&I estimator generally
provides better tracking accuracy. In contrast to the TFABS approach, the dynamics of
the parameter estimation error are known and are monotonically non-increasing when
we are dealing with one parametric uncertainty. Furthermore, as opposed to TFABS,
the I&I estimator does not require command filters when we are dealing with magnitude,
rate and bandwidth constraints on the (virtual) controls.

• With the Least-Squares Adaptive Backstepping (LSABS) approach, closed-loop stability
cannot be (easily) guaranteed in case of uncertainties. However, the Least-Squares (LS)
estimator is significantly less complex compared to the TF and I&I estimators. A larger
initial covariance matrix P0 generally provides better tracking accuracy.

• The TF, I&I and LS estimators can be used in combination with an incremental control
law; in that case the estimator only has to estimate the control efficiency parameter.

• In order to accurately track time-varying parameters with the ABS approaches, function
approximators must be used that are capable of approximating the unknown function.

• Sensor-Based Backstepping (SBB) removes the dependency on the system dynamics by
using measurements or estimates of the state derivatives and current control deflections.
This control strategy uses even less model information compared to the incremental
control laws. The SBB controller performs slightly worse compared to the conventional
BS controller in absence of uncertainties. The advantage of the SBB controller compared
to the BS controller is that it is a model-free approach, and therefore it is not sensitive
to model uncertainties. However, tuning might be required to obtain satisfactory closed-
loop performance over the complete state space.

From the simulation results can be concluded that all fault tolerant BS control approaches
that have been applied to control the uncertain pendulum model are promising. Based on
these preliminary conclusions, the paper of this thesis will address the practicability of these
control approaches. Furthermore, larger system nonlinearities are considered. To achieve
this, an accurate high-fidelity aerodynamic Lockheed Martin F-16 Matlab/Simulink software
package is used. According to (Sonneveldt, 2010), this highly nonlinear model is currently
the most accurate aircraft model available. To limit the scope of the thesis, and because the
incremental control laws significantly improve the robustness compared to the conventional
BS controller, only Adaptive Incremental BS control laws are considered. The F-16 model will
be augmented with sensor dynamics and noise to make the simulations more realistic. The
angular accelerations that are necessary for the incremental control laws are estimated on basis
of noisy angular rate measurements, because angular accelerometers are not widely available
yet. Finally, the control laws as well as the tracking performance, parameter estimation errors
and stability properties are compared and conclusions are drawn.
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